The calculation of the loss ratio of pipe-type cable systems using the finite element numerical technique.

Richard John Hohendorf
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Hohendorf, Richard John, "The calculation of the loss ratio of pipe-type cable systems using the finite element numerical technique." (1976). Electronic Theses and Dissertations. 6647.
https://scholar.uwindsor.ca/etd/6647

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

THE CALCTITATTON OF THE LOSS RATIC OF PIPE-TYPE CABLE SYSTEMS
 USING THE FINTTE EIEMENT NUMERICAL TECHNIQUE

by
Richard John Hohendorf

A Thesis
submitted to the Faculty of Graduate Studies through the Department of Electrical Engineering in Partial Fulfillment of the requirements for the Degree
of Master of Applied Science at The University of Windsor

Windsor, Ontario, Canada
1976

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
(${ }^{\text {B }}$

UMI Microform EC53136
Copyright 2009 by ProQuest LLC.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway
PO Box 1346
Ann Arbor, MI 48106-1346

(C) Richard John Hohendorf 1976

020334

We the undersigned hereby find this Thesis acceptable for partial fulfillment for the Degree of Master of Applied Science in Electrical Engineering.

APPROVED BY:

ABSTRACT

The ratio of effective A. C. resistance to D. C. resistance, the loss ratio, is calculated for a single isolated conductor and for three conductors in various arrangements in a magnetic steel pipe.

The finite element numerical method is used to solve the dual problem to the solution of Maxwell's field equations. A simple but effective technique is used to specify the boundary condition for the single conductor and an approximate condition, based on skin depth, is used for three conductors in the pipe.

- A real and imaginary part functional is presented and shown to be equivalent to the Maxwell field equation, including an eddy current term. The calculations are performed usine both a complex arithmetic and a real arithmetic formulation and the program listings appear in the Appendix, including a useful iterative method for solving matrix equations.

Results for the single conductor case agree well with analytic calculations and the results for the three conductor pipe arrangements compare reasonably to measured values.

ACKNOWLEDGENENTS

I would like to express my sincere thanks to Prof. P. H. Alexander, my supervisor, for his glidance throughout this project and for his considerable patience and willingness to provide assistance when conceptual impasses arose. His resourceful recommendations illuminated both previous pitfalls and possible new avenues of thought and his reservoir of experience was invaluable. I am additionally grateful for his assistance in the preparation of this thesis.

I would also like to thank Dr. E. Kuffel, Dr. M. Shridhar, Dr. M. Raghuveer and Dr. J. Soltis for their interest and helpful suggestions.

Appreciation is also due to Dr. S. I. Tang and the Academic Programming consultants for their aid with programming difficulties and job control information.

This work was made possible through financial assistance from the National Research Council of Canada and I would like to state my sincere appreciation.

A final mention of thanks is due to General Cable Corporation for their co-operation in making available data and results from their recent measurements.
TABLE OE CONTENTS
ABSTRACT iii
ACKNOULEDGERENTS iv
LIST OF TABIES vii
LIST OF FIGURES vii
LIST OF AFPENDICES viii
CHAPMER
1 INTRODUCTION 1
1.1 Loss Ratio 1
1.2 Scope and Limitation 3
2 LOSS PATTO THRCRY 6
2.1 Component Losses 6
2.2 Loss Calculation Methods 8
2.3 Factors Affecting Loss Ratio 11
3 NUNERICAL METHODS 16
3.1 Available Methods 16
3.2 The Finite Element Method 17
3.3 Features of the Finite Element Method 25
3.4 Electromagnetic Equations 28
3.5 Matrix Solution Techniques 32
3.6 Loss Ratio From Vector Magnetic Potentiai 34
4 SINGIE CONDUCTOR RESULTS 36
4.1 Small Radius 36
4.2 Larger Conductor Radius 38
5 THREE CONDUCTOR RTSTIMS 53
5.1 Formulation Difficulties 53
5.2 Boundary Conditions ${ }^{5}$
5.3 Permeability Specification 62
5.4 Results 64
6 CONCLISIONS AND FUTURE WORK 68
6.1 Single Conductor Results 68
6.2 Three Conductor Results 69
6.3 Summary of Results 73 74
APDENTIX 76
PIDLICFPADYY 139
VITA ATCTCRTS I42

LIST OF FIGUDES
Figure Page
1 Cable Geometry 4
2 Grid Patterns-Single Conductor 39
3 Analytical and Numerical Loss Ratio 43 (No Eddy Term)
4 Iterative Search Patterns of Complex 46Boundary Values
5 Analytical and Numerical Loss Patio 50 (Nith Dddy Terms)LIST OF TABIES
Table Page

1. Comparison Between Loss Ratio Calculation 37Methods
2 Single Conductor Results (Without Eddy Term) 41
3 Comparison of Numerical and Analytical Loss 42 Ratio Data for Solid Circular Conductors
4 Single Conductor Loss Ratio Results With 48Eddy Term
5 Comparison of Numerical and Analytical Loss 49 Ratio Data for Solid Circular Conductors
6 Loss Ratio in Air Using Filamentary 64 Superposition
7 Pipe Loss Ratios Vsing Neumann Boundary 65

IIST OF APPENDICES

Appendix Pace
1 Real and Imaginary Part Functional 76 Verification
2 Integral Evaluation 79
3 Evaluation of the Eddy Current Term 80
4 Computer Program Listings 82
5 Flux Density From Vector Potential 133
6 Typical Three Cable Finite Element 134Patterns

CHAPTEP 1

Introduction

1.1 Loss Ratio

One of the parameters of major importance in the selection of the correct cable size for a specific application is the resistance of the cable. The direct current resistance of the cable is easily calculated with a knowledge of only the conductor conductivity and the conductor geometry. However, under alternating current excitation, it has lone been known that the resistance of a cable increases to a value greater than the d. c. value. This alternating oxrrent resistance has been termed the 'effective resistance' and the ratio of effective resistance to d. c. resistance is known as the 'loss ratio'.

Fundamentally, the increase in resistance is due to an unequal distribution of current over the conductor cross section caused by the magnetic fields of the alternating current. For d. c. excitation, the current is distributed evenly over the conductor cross-section, but under a. c. excitation, the current is concentrated in the outer regions of the conductor and the conductor cross-section is inefficiently used.

For proper cable size selection, a knowledge of the loss ratio is important because, since the d. c. resistance is easily calculated, a knowledge of the loss ratio implies a knowledge of effective, or alternating current, resistance.

Investigations have previously been undertaken to calculate the loss ratio for various cable systems. An analytic solution has been obtained for the single conductor case where axial and rotational symmetry exist. For more than one conductor, the rotational symmetry no longer exists, and an analytic solution ceases to be feasible. Efforts have been made by several investigators to derive semiempirical expressions to describe the loss ratio for varying conductor sizes and geometries.

In this work, efforts were expended to formulate a numerical solution for the problem of finding the loss ratios of multi-conductor cable systems of varying geometries. For this reason, the electromagnetic equations describing the vector magnetic potential were solved approximately by using the finite element method, and the loss ratio was calculated from the resultant knowledge of vector magnetic potential values.

A specific type of cable system was selected for this work so that the results of the numerical calculations could be compared to measured values which were recently obtained in an industrial laboratory. The cable system in question
is a three-conductor, three phase pipe-type cable. The three cables are compact, segmental, stranded conductor cables loosely enclosed in a quarter inch thick, ten inch diameter magnetic steel pipe. Figure 1 illustrates the compact segmental cables and shows the two most common pipe configurations.

1.2 Scope and Limitations

For this work, it is requisite that the loss ratio be computed for many different cable sizes and configurations within the pipe. In the finite element method, the cable and pipe geometry is modelled by a triangular grid, with large numbers of triangles in regions where field quantities are expected to exhibit a rapid variation with a change in position. Thus, it was essential to find some manner in which the large number of grid points could be easily and quickly specified for each cable configuration of interest.

However, limits exist as to the number of grid points that can be employed for the modelline of the cable system. Each grid point results in an additional equation that must be solved and as the grid points increase in number, the set of elements in the matrix increases accordingly. For matrices of size greater than 100 by 100 , solution methods s'oc as Gaussion elimination break down because of roundoff errors. For this reason, the cable configurations must be modelled somewhat coarsely. This means that round cable

(a) TYPICAL CABLE CROSS SECTION

CRADLED

CLOSE TRIANGULAR
(b) CONFIGURATIONS

FIGURE I CABLE GEOMETRY
or pipe contours are portrayed by fewer straight line segments than may be desirable . For example octagonal figures are used to represent the round conductors. Also, it is impossible to model the stranding of the conductors without an enormous number of grid points, so the stranded conductor is modelled by a solid conductor. A stranding factor is used to modify the conductor conductivity and thus account for the stranding.

A limit also exists as to the amount of computer time that can reasonably be used for each loss ratio computation and this time constraint results in the exclusion of a number of techniques that might otherwise have been used to specify boundary conditions for the electromagnetic equations.

It is, therefore, the goal of this work to endeavour to achieve the best possible results for loss ratio calculations within the limits which exist for cable system modelling and computer time and storage requirements.

CHAPTER 2

Loss Ratio Theory

2.1 Component Losses

Several investigators have broken down the extra losses which arise under alternating current excitation into constituent parts which are attributed to different phenomena. It was hoped that a simple theory could be found to predict each of the component losses and thus obtain the effective resistance. The theory behind the various components is explained in an American Institute of Electrical Engineers Committee Report (1).

The cable power dissipation is classified into three main types: eddy losses, proximity losses and pipe losses. All three types may occur in each part of the cable. However, the power dissipated in some cable sections is minimal and the most important losses are described below:

The extra losses that occur in a single isolated conductor under a.c. excitation are termed the conductor skin effect losses. These are related to the non-uniform distribution of current which is caused by the electromagnetic fields due to the current in the conductor itself.

If two or more conductors are brought close together, the losses increase to a value greater than those due to
skin effect. This increase is termed the conductor provimity effect and is the result of an intensification of the non-uniformity of the current distribution due to the mecnetic fields of the neighbouring conductor.

The non-uniformity of current results in current flow mainly in the outer regions of the conductor, and the area of the conductor is inefficiently used, resulting in higher power dissipation than under d. c. excitation, where the current is evenly distributed. In small conductors, the current distribution is almost uniform, resulting in a small loss ratio. In very large conductors, it is thought that, under a. c. excitation, current flows in quasi-periodically positioned radial bands.

When conductors are placed in a macnetic steel pipe, the electromaenetic field is strengthened and distorted hy the influence of the pipe material. This results in a further increase in the conductor losses and is known as the magnetic pipe effect.

These three conductor component losses, skin effect, proximity effect and pipe effect, contribute to the bulk of the extra a. c. losses for the cable system. Jowever, in certain instances, other cable system component parts can contribute significantly. The shield assemblies of the three cables are periodically in contact with each other and form three phase circuits which allow the flow of
current which is induced by the magnetic fields due to the conductor currents. . This circulating current flow results in increased power dissipation. An additional loss contribution is termed the shield-assembly proximity effect and occurs when local eddy currents exist in the shield. However, this component is minor in modern cables.

The one remaining significant loss element is that occurring in the pipe itself. In addition to the extra power dissipation caused in other cable parts by the pipe, there exist eddy current losses in the pipe itself which are not negligible. Pipe hysteresis loss may also exist, but this is usually small when compared to eddy loss. The use of non-magnetic pipes would not significantly reduce dissipation in the pipe unless the material had high resistivity to suppress eddy currents, high permeability to reduce the depth of current penetration and a low hysteresis loss characteristic. However, a pipe of such a material would be prohibitively expensive.

2.2 Loss Calculation Methods

Several investigators have attempted to derive expressions for the loss ratio of a magnetic pipe-type cable system using analytical, semi-empirical and empirical means.

Perhaps the earliest investigator was Lord Kelvin, who derived an analytical solution for the problem of alternating current flow in an isolated cylindrical conductor.

The solution is in terms of Bessel functions of the first kind and a similar derivation is presented by Stevenson (?). The skin effect is calculated as a function of the frequency of the current, and the permeability, conductivity, and radius of the conductor.

The proximity effect was investigated in two papers by Arnold (3), (4). In one paper, the proximity effect due to a single phase line and its return is considered and a modified Bessel function solution is presented with the stranding of the cable treated by means of a factor which modifies the resistivity. In the second paper, Arnold's formulae are extended to include multicore cables and to account for effects due to the lead sheath and armouring. The paper handles conductor stranding by considering the cross-conductor conductivity to be about one-half the normal conductivity for concentric stranded conductors and about eighty per cent for compact segmental conductors. The equations in the paper are somewhat complicated and are empirical modifjcations of solutions developed for simpler geometries.

Arnold's papers did not really refer to cables in steel pipes but research into the resistance of cables in steel pipes was reported by Wiseman (5) and Meyerhoff and Eager (6). Wiseman reported on loss ratio measurements that were carried out on a number of cables, and he used a
modified version of Arnold's equations to account for the magnetic pipe in calculations of the loss ratio. The Meyerhoff and Eager measurements were done on compact secmental cables. Some of the equations presented are again modifications of Arnold's equations, but some new derivations are also performed to calculate the pipe loss. An empirical factor was included in the equations to account for cable segmentation.

In an effort to consolidate the work of the foregoing and other researchers, and to standardize the equations for the loss ratio of segmental conductors in steel pipes, a report was written by the American Institute of Electrical Engineers (1). This report also investigates possible design variations for reducing the cable losses. Another paper by Neher and McGrath (7) investigates all the aspecte of cable rating and includes a section on the calculation of A.C. resistance. Stranding factors for various cables are furnished and functions used in determining the losses are presented in tabular and graphical form. The paper by Neher and McGrath is the paper that is most usually quoted in recent literature for the calculation of loss ratio.

Attempts at the numerical solution of the loss ratio problem are not abundant in the literature, but Stoll (8) has used the finite difference method to calculate eddy currents and Silvester (9), (10), (11), (12) has developed
a modal analysis to calculate the a.c. resistance of certain types of conductors. Silvester's papers use an entirely different method than the technique employed in this work. However, the analysis is never applied to pipe-tyre cables and j.t is difficult to determine whether or not only the skin effect loss component is treated. Additional study of these papers is probably warranted to see if the application to pipe-type cables is valid.

2.3 Factors Affecting Loss Ratio

In the literature, many factors which could affect the loss ratio are discussed, but various researchers are not always in agreement on the effect or the importance of the factors.

Conductor conductivity and radius, current frequency and cable seometry are factors on which almost everyone agrees. Increased conductivity, radius and frequency results in a higher loss ratio and the loss ratio is usually higher for a cradled configuration than for a triangular configuration irl a pipe. Wiseman (5) does report one measurement where the opposite is true.

For other factors, agreement among researchers is not good. This is tride for the effect of current and temperature. Some researchers, such as Arnold, state that the only consequences of increased current are those effects caused by the increase in temperature resulting from the
increased loss. Other authors reason that, as the current is increased, more and more of the cross-sectional area is used up, thus decreasing the skin effect. A reduction of the loss ratio with an increase in current at a particular temperature is attributed to the improved current distribution at the higher current level.

With regard to the effect of temperature, it appears that an even greater difference of opinion exists. Wiseman (5) and the AIEE Committee (1) report that the difference between the a.c. and d.c. resistance does not change with temperature. As the heat level increases both the a.c. and d.c, resistance increase by the same amount and the loss ratio decreases. However, recent measurements indicate that temperature plays a much larger role and that heat cycling occurs. When a cable is heated to a high value (about $150^{\circ} \mathrm{C}$) and then brought back to room level the loss ratio at room temperature is found to have increased to a value greater than that before heating. This holds true for various starting temperatures and the loss ratio at a given temperature is a function of the maximum conductor heating that occurs after installation. It is thought that the inter-strand contact resistance is permanently altered by the heating to high temperatures. Subsequent temperature cycling to the same high level does not significantly change the loss ratio and the overall change appears independent of the current magnitude at a specific temperature.

The decrease in transverse strand resistance is suspected of increasing : the loss ratio by making it easier for the currents to travel in the outer portions of the cable and thus increasing the skin effect. Other researchers have also noticed the relationship between inter-strand resistance and the loss ratio. Arnold (4), who introduced a stranding factor to account for the decrease in resistance in a stranded cable, noted that the stranding factor depends on the surface condition of strands, the lay of strands, core impregnation and the tightness of insulation. Meyerhoff and Eager (6) noted that the stranding factor was influenced by cable treatment and the type of binder used. The AIEE Committee found that such uncontrollable factors as strand oxidation and handling have an effect and that even cables manufactured by the same company exhibited different characteristics. This Committee recommended that the a.c. resistance could be reduced by insulating strands to increase the transverse resistance and they found that coating the strands with varnish did reduce the loss ratio. Other cable design parameters can also have an effect Wiseman (5) reported that the loss ratio was less for segmental than for concentric stranded cables.and Meyerhoff and Eager (6) noted that it was dependent on the number of segments that were insulated. They also stated that the construction of the cable shield affects the loss ratio,
with high losses occurring in cables with low resistance shields and suggestions were presented for methods of increasing the shield assembly rosistance.

The AIEE Committee examined a large number of possible loss ratio parameters and concluded that the loss ratio wes not affected by the phase sequence of the current, by twisting the cables or by placing oil in the pipe (1). They did report that the effective resistance increased with the use of skid wires made of magnetic steel instead of the usual brass or copper, and that, although losses did not change with the use of aluminum or other non-magnetic pipe materials, they did become larger with increasing pipe size for a cradled configuration and decreased with increasing pipe size for a close triangular configuration.

In the present loss ratio analysis, the computer program models some of the parameters, but not all. The temperature is assumed to be constant at room temperature but variations could be implemented by changing conductor conductivities. The current is read into the program and both magnitude and phase can be adjusted to any value. Stranding variations can be implemented by altering the stranding factor. The shield assembly is not modelled but provision is made for the representation of conductor segmentation. Pipe material can be modified by changing the conductivity and permeability characteristics and the pipe can be made any size and thickness. The cables can be placed in any
spatial geometry, either with or without the pipe and the conductors can be any size. Provision is also made for any number of conductors and the fineriess of the finite elemont, grid can be adjusted over a fairly wide range.

These features ensure that the programme is sufficiently flexible to be useful in studying an extensive variety of practical cable configurations.

CHAPTER 3

Numerical Methods

3.1 Available Methods

Two numerical methods are widely used for the solution of differential equations and accompanying boundary conditions. The oldest method is the finite difference method where the differential operator itself is approximated. A rectangular grid is drawn over the region of interest and the differential equation is approximated by writing difference equations between neighbouring grid points. A set of equations results which is usually solved by over-relaxation iterative techniques.

The disadvantage of this method is that, for programming ease, the grid must be uniform and rectangular over the entire region of interest. This means that for irregular or curved boundaries, the grid pattern must be very fine and the boundary must be approximated in a step-wise fashion. Advances in the finite difference technique have been developed to allow an irregular grid and to permi.t special equations to be written at the boundaries, but this results in significant programming difficulties.

Many of the problems inherent in the use of the finite
difference method can be eliminated by the use of a different numerical procedure, the finite element method. Here, a regular grid is not required, but instead, a triangular grid is used with small triangles in regions of high interest and larger triangles elsewhere. With a judicious choice of the number and size of triangles, even complicated boundaries can be faithfully modelled, and this, basically, is the most important reason for the preference of the finite element method over the finite difference method.

3.2 The Finite Element Method

The finite element method has evolved from the work of a large number of people who were active in a variety of fields. Perhaps the most direct development of the method resulted from work on the stress analysis of trusses and beams. When a finite number of connection points did not exist in a structure under analysis, the structure was divided into sections with imaginary connection points and an approximate stress analysis was done using these points. Gradually, it was realized that this technique was related to the Rayleigh-Ritz variational technique and a mathematical basis for the finite element method was derived.

The application to electromagnetic and other fields was first demonstrated in a now famous paper by Zienkiewicz and Cheung in 1955 (13). In this paper, an energy functional was minimized jointly over each subregion in the area of interest

It was show that the minimization of the functional was equivalent to the solution of Doisson's equation, and the finite element method was thus made available for anplicetions in heat flow, electromagnetic phenomona and other continuous field problems.

The first step in attacking any finite element problem is to divide the domain into triangular sub-regions. The nodal points of the triangles are the variables of the problem and the field in each triangle is expressed in terms of nodal values. Usially, interpolation polynomials of order one or greater are used to characterize the field in the triangles and to ensure that the field is continuous between adjoining triangles. In this work, first order equations are used throughout, but there would be no substantial difficulty in increasing the order.

Consider a typical triangle.

The potential is assumed to be everywhere of the form $=A+B x+C y$

Triangle i, j, k has nodal potentials Φ_{i}, Φ_{j} and Φ_{k} which must be determined to solve the problem. At each of the triangle nodes the potential must satisfy the general form

$$
\begin{aligned}
& \Phi_{i}=A+B x_{i}+C y_{i} \\
& \Phi_{j}=A+B x_{j}+C y_{j} \\
& \Phi_{k}=A+B x_{k}+C y_{k}
\end{aligned}
$$

The three variables A, B and C can be found by solving the three equations with the use of Cramer's rule. Tn Matrix form:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\Phi_{i} \\
\Phi_{j} \\
\Phi_{k}
\end{array}\right]=\left[\begin{array}{lll}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array}\right]\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]} \\
& \left|\begin{array}{|ccc}
\Phi_{i} & x_{i} & y_{i} \\
\Phi_{j} & x_{j} & y_{j} \\
\Phi_{k} & x_{k} & y_{k}
\end{array}\right| \\
& \left.A=\frac{\mid 1}{1} \begin{array}{lll}
x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array} \right\rvert\, \\
& A=\frac{\Phi_{i}\left(x_{j} y_{k}-x_{k} y_{j}\right)+\Phi_{j}\left(x_{k} y_{i}-x_{i} y_{k}\right)+\Phi_{i}\left(x_{i} y_{j}-x_{j} y_{i}\right)}{x_{j} y_{k}-x_{k} y_{j}+x_{k} y_{i}-x_{i} y_{k}+x_{i} y_{j}-x_{j} y_{i}}
\end{aligned}
$$

If

$$
\begin{aligned}
& a_{i}=x_{j} y_{k}-x_{k} y_{j} \\
& a_{j}=x_{k} y_{i}-x_{i} y_{k} \\
& a_{k}=x_{i} y_{j}-x_{j} y_{i}
\end{aligned}
$$

then

$$
A=\frac{a_{i} \Phi_{i}+a_{j} \Phi_{j}+a_{k} \Phi_{k}}{2 \Delta}
$$

Similarly $\Phi_{i}\left(y_{j}-y_{k}\right)+\Phi_{j}\left(y_{k}-y_{i}\right)+\Phi_{k}\left(y_{i}-y_{j}\right)$

$$
\begin{aligned}
& B=\frac{0}{2 \Delta} \\
& C=\frac{\Phi_{i}\left(x_{k}-x_{j}\right)+\Phi_{j}\left(x_{i}-x_{k}\right)+\Phi_{k}\left(x_{j}-x_{i}\right)}{2 \Delta}
\end{aligned}
$$

where $\Delta=$ triangle area
By defining

$$
\begin{array}{ll}
b_{i}=y_{j}-y_{k} ; & c_{i}=x_{k}-x_{j}, \\
b_{j}=y_{k}-y_{i}, & c_{j}=x_{i}-x_{k}, \\
b_{k}=y_{i}-y_{j}, & \text { and }
\end{array} c_{k}=x_{j}-x_{i}, ~ \$
$$

one can write

$$
\Phi(x, y)=\frac{\left(a_{i}+b_{i} x+c_{i} y\right) \Phi_{i}+\left(a_{j}+b_{j} x+c_{j} x\right) \Phi_{j}+\left(a_{k}+b_{k} x+c_{k} y\right) \Phi_{k}}{2 \Delta}
$$

Thus, once the nodal potentials Φ_{i}, Φ_{j} and Φ_{k} are known, the potential anywhere in the triangle is given in terms of the nodal potentials and the nodal positions.

If shape functions are defined as

$$
\dot{N}_{i}=\frac{a_{i}+b_{i} x+c_{i} y}{2 \Delta}
$$

then the potential for one element can be written in matrix
form:

$$
\Phi=\left[\begin{array}{lll}
N_{i} & N_{j} & N_{k}
\end{array}\right]\left[\begin{array}{l}
\Phi_{i} \\
\Phi_{j} \\
\Phi_{k}
\end{array}\right]
$$

It should also be noted that, since the potential is defined as a linear function of the nodal values along a triangle edge, the potential along a triangle edge is uniquely specified and continuity between adjoining triangles is assured.

Therefore, the entire finite element problem boils dow to selecting the nodal potential values in such a manner that the defining equations and boundary conditions are satisfied. This is done by a transformation into a variational form. Instead of solving the field equation directly, an expression, known as a functional, is sought such that the minimization of this functional is equivalent to solving the field equation. It may not always be easy, or even possible, to find a functional for every field equation, but when it exists, its equivalence to the field equation can be shown and the finite element method can be used.

As an example consider the equation

$$
\frac{\partial^{2} A}{\partial x^{2}}+\frac{\partial^{2} A}{\partial y^{2}}=-\mu \cdot J
$$

The functional whose minimization is equivalent to thic equation's solution is

$$
x=\int\left\{\left|\frac{\partial A}{\partial x}\right|^{2}+\left|\frac{\partial A}{\partial y}\right|^{2}-2 \mu J A\right\} d x d y
$$

A full test for equivalence appears in Appendix 1, but a quick check for equivalence is obtained by applying Euler's criteria:

$$
\frac{\partial F}{\partial w}-\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial w_{x}}\right)-\frac{\partial}{\partial y}\left(\frac{\partial F}{\partial w_{y}}\right)=0
$$

where $w_{x}=\frac{\partial w}{\partial x}$ and $w_{y}=\frac{\partial w}{\partial y}$, and where w is the field variable and F is the integrard of the functional.

For the above functional, $W \equiv$ A, so
$\frac{\partial F}{\partial W}=-2 \mu, \quad \frac{\partial F}{\partial W_{x}}=2 \frac{\partial A}{\partial x} \quad \frac{\partial F}{\partial W_{y}}=2 \frac{\partial A}{\partial y}$
Therefore Euler's equation gives
$-2 \mu J-\frac{\partial}{\partial x}\left(2 \frac{\partial A}{\partial x}\right)-\frac{\partial}{\partial y}\left(2 \frac{\partial A}{\partial y}\right)=0$ or
$\frac{\partial^{2} A}{\partial x^{2}}+\frac{\partial^{2} A}{\partial y^{2}}=-\mu \quad$ which is the original field equation.
This, together with the derivation in Appendix 1, shows the equivalence between the solution of the field equation and the minimization of the functional. Thus, to solve the desired equation, it is necessary only to adjust the potential values until the functional is minimined. This is most easily done by differentiating the functional with
respect to each of the nodal values and setting the resulting expressions to zero. This results in a set of N equations in N unknown where N is the number of nodes. First the expression derived for the potential is placed in the functional and this is then differentiated with respect to nodal values.

$$
x=\int\left\{\left|\frac{\partial A}{\partial x}\right|^{2}+\left|\frac{\partial A}{\partial y}\right|^{2}\right\} d x d y-2 \int \mu J A d x d y
$$

From the expression for potential,

$$
\frac{\partial A}{\partial x}=\left[\begin{array}{lll}
b_{i} & b_{j} & b_{k} \\
2 \Delta
\end{array}\right]\left[\begin{array}{l}
A_{i} \\
A_{j} \\
A_{k}
\end{array}\right]
$$

$$
\frac{\partial A}{\partial y}=\left[\frac{c_{i}}{} \frac{c_{j}}{2 \Delta} c_{k}\right]\left[\begin{array}{l}
A_{i} \\
A_{j} \\
A_{k}
\end{array}\right]
$$

Δ is the triangle area

$$
\frac{\partial x}{\partial A_{i}}=\int\left[b_{i} \frac{\left[b_{i} b_{j} b_{k}\right]}{2 \Delta^{2}}+c_{i} \frac{\left[c_{i} c_{j} c_{k}\right]}{2 \Delta^{2}}\right]
$$

$\left.\left[\begin{array}{l}A_{i} \\ A_{j} \\ A_{k}\end{array}\right]\right\} d x d y-2 \int \mu J N_{i} d x d y=0$
In Appendix 2, it is shown that $\int N_{i} d x d y$ equals $\frac{\Delta}{3}$.

Therefore, since $\int d z d y=$ Area $=\Delta$
$\left.\frac{\partial x}{\partial A_{i}}=\left[b_{i} \frac{\left[b_{j} b_{j} b_{k}\right]}{4 \Delta}+c_{i} \frac{\left[c_{i}, c_{j}\right.}{} c_{k}\right]\right]\left[\begin{array}{l}A_{i} \\ A_{j} \\ A_{k}\end{array}\right]$
$-\frac{J \mu_{\Delta}}{3}=0$
By similarly differentiating with respect to the other nodes, three equations in three unknowns result, which can be put in matrix form

$$
\left[\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{array}\right]\left[\begin{array}{l}
A_{i} \\
A_{j} \\
A_{k}
\end{array}\right]=\left[\begin{array}{l}
+\frac{\mathbf{u} J \Delta}{3} \\
+\frac{\mathbf{H} J \Delta}{3} \\
+\frac{\mathbf{\mu} J \Delta}{3}
\end{array}\right]
$$

where

$$
s_{i j}=\frac{b_{i} b_{j}+c_{i} c i}{4}
$$

After this matrix equation is written for each element in the region, these sub-matrices are used to form the master matrix for the entire problem. Each entry in the sub-matrix is placed into the master matrix in a position Eiven by the overall node numbering of the triangle vertices. For example, a triangle with nodes 7, 21, and 23 will have its value of S_{11} placed in row 7 , column 7 of the master matrix and S_{13} will be placed in row 7 , column 23 . Since adjoining triangles share the same nodes, many
positions in the master matrix will have contributions from more than one triangle. This provides the interaction needed to assure a continuity of solution.

Once the contributions from all the triangles have been added to the master matrix, it is only necessary to impose the existing boundary conditions before the equation is solved and the solution is obtained.

3.3 Features of the Finite Element Method

From the simple description of the finite element method described above, sophistications have been applied to make the method applicable to a greater variety of problems.

For greater accuracy, the use of higher order polynomial approximations to the variation within each triangle is recommended. Zienkiewicz (14) gives a good discussion of the derivation, use, and ramifications of higher order finite elements. In order to facilitate the solving of problems with curved boundaries, several persons have developed finite elements with curved sides. Silvester and Rafinejad (15) and Ergatoudis, Iron and Zienkiewicz (16) directly employed elements with curved sides whereas Richards and Wexler (17) espoused a technique where straightsided elements were used but integration was carried out over the curved boundary.

In addition, several authors have written about the
use of three-dimensional elemonts. Zienkicwicz, Bahrani and Arlett (18), (19) showed the use of tetrahedral elemonts as a bace for bixiling ip larger eight-cornered element blocks and Ziekiewicz and Parekh (20) demonstrated the uee of curved three-dimensional elements. The same paper also illustrated a possible treatment of transient problems by using finite clements in space and time. Finite elements of order one greater than the number of spatial dimensions are used and the extra element order is used to time-step the solution.

One other development that results in an even greater range of applications for the finite element technique is the use of an alternate procedure for deriving the finite element equations. This is useful for those instances where a functional cannot be found which is equivalent to the field equation which is to be solved. Several authors (14), (20), (21) have described the process wherein the weighted residual of the field equation is minimized. Usually, element shape functions are used as the weighting functions and a transformation is performed to decrease the order of the resulting system of equations. This technique greatly increases the number of problems that can be tackled. As a result, the finite element method can be used for a large variety of problems if a method for the treatment of boundary conditions can be specified.

Boundary conditions may be incorporated into the problem in either of two ways: an additional term may be added to the functional to satisfy the conditions or the final matrix may be modified after it has been formed.

Dirichelet conditions are usually applied by modifying the master matrix. For a node which is set at some potential value, the row values of the node are set to zero and the diagonal term is set to unity. The fixed potential value is then placed in the corresponding place in the source matrix. For example:

$$
\left[\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{array}\right]\left[\begin{array}{l}
\Phi_{1} \\
\Phi_{2} \\
\Phi_{3}
\end{array}\right]=\left[\begin{array}{l}
J_{1} \\
J_{2} \\
J_{3}
\end{array}\right]
$$

To fix the potential value of the second node to a value of 23 , the matrix becomes

$$
\left[\begin{array}{ccc}
S_{11} & S_{12} & S_{13} \\
0 & 1 & 0 \\
S_{31} & S_{32} & S_{33}
\end{array}\right]\left[\begin{array}{l}
\Phi_{1} \\
\Phi_{2} \\
\Phi_{3}
\end{array}\right]=\left[\begin{array}{c}
J_{1} \\
23 \\
J_{3}
\end{array}\right]
$$

However, this leads to an asymmetric matrix. The matrix may be made symmetric again by the following technique.

$$
\left[\begin{array}{ccc}
S_{11} & 0 & S_{13} \\
0 & 1 & 0 \\
S_{31} & 0 & S_{33}
\end{array}\right]\left[\begin{array}{l}
\Phi_{1} \\
\Phi_{2} \\
\Phi_{3}
\end{array}\right]=\left[\begin{array}{lll}
J_{1}-S_{12} & \times 23 \\
J_{2} & \\
J_{2}-23 & \times & S_{32}
\end{array}\right]
$$

If convenient, the row and column may be eliminated and the order of the matrix reduced.

Although this is the usual way of imposing Dirichelet conditions, Hazel and Wexler (22), present a term which may be added to the functional to account for the Dirichelet conditions directly. In the same paper, the authors illustrate how the mixed or Cauchy boundary condition is handled. The condition $\frac{\partial \phi}{\partial n}+\sigma(s) \phi(s)=h(s)$
is imposed by including a term of the form

$$
\oint\left[\sigma(s) \phi^{2}-2 h(s) \phi\right] d s \quad \text { in the functional. }
$$

By letting $\sigma(s)$ be equal to zero, Neumann conditions can be applied. The homogeneous Neumann condition, $\frac{d \phi}{d n}=0$, is special to the finite element method because it is a natural boundary condition for the method such that no added term in the functional is needed. In the absence of another applied boundary condition, the homogeneous Neumann condition is in effect. This can be seen by letting $\sigma(s)$ and $h(s)$ go to zero in the above equations. The functional term vanishes and the differential equation becomes $\left.\frac{\partial \phi}{\partial n}\right|_{s}=0$, which is the homogeneous Neumann condition.
3.4 Electromagnetic Equations

Before the correct functional can be found and the finite element method applied, the correct electromagnetic
equations which describe the physical problem must be determined. For this work, it was decided to formulate the equations in terms of the vector magnetic potential and the derivation of the equations was found in a paper by Stoll (8).

The basic electromagnetic equations, in the abscence of displacement currents are:

$$
\nabla \times \overline{\mathrm{H}}=\bar{J}_{\text {tot }}=\bar{J}_{s}+\bar{J}_{e}
$$

$\nabla \cdot \overline{\mathrm{B}}=0$
$\nabla x \bar{E}=-\frac{\partial \bar{B}}{\partial t}$
$\nabla \cdot \bar{J}_{e}=0$
$\overline{\mathrm{B}}=\boldsymbol{\mu} \overline{\mathrm{H}}$
$\bar{J}_{\mathrm{e}}=\sigma \overline{\mathrm{E}}$
Here \bar{J}_{s} is the source current, \bar{J}_{e} is the eddy current, and \bar{E} is the partial field related to the eddy current. The vector magnetic potential, \bar{A}, can be defined such that $\nabla \times \overline{\mathrm{A}}=\overline{\mathrm{B}}$
$\nabla \cdot \overline{\mathrm{A}}=0$
The first equation is consistent with $\nabla \cdot \bar{B}=0$, since the divergence of the curl of any vector field is identically zero. The second equation, together with the equation $\nabla \cdot \bar{J}_{\mathrm{e}}=0$, indicates that both the vector magnetic potential and the eddy current must sum to zero over the conductor area. This is seen by integrating the point form
of the divergence expression over the volume of interest

$$
\int_{v o l} \nabla \cdot \bar{A} d v=0
$$

Applying the divergence theorem to this integral gives

$$
\oint_{S} \bar{A} \cdot d \bar{S}=0
$$

where $d \bar{S}$ is the area vector of the cable cross-section. This expression indicates that the average value of vector magnetic potential must be zero over the cable crosssection area.

To derive the second order differential equation consider:

$$
\begin{aligned}
\nabla \times \bar{E} & =-\frac{\partial}{\partial t} \bar{B}=-\frac{\partial}{\partial t} \nabla \times \bar{A} \\
\bar{E} & =-\frac{\partial}{\partial t} \bar{A} \quad(+\nabla \phi \quad \text { in general })
\end{aligned}
$$

Since
$\sigma \bar{E}=\bar{J}_{E}, \nabla \times \overline{\bar{H}}=\bar{J}_{e}+\bar{J}_{S}$, and $\bar{B}=\mu \bar{H}$

$$
\nabla \times \frac{1}{\mu} \bar{B}=-\sigma \frac{\partial \bar{A}}{\partial t}+J_{S}
$$

or $\nabla \times \frac{1}{\mu} \nabla \times \bar{A}=-\sigma \frac{\partial \bar{A}}{\partial t}+J_{S}$
For a long conductor, it is assumed that there is no variation of \bar{A}_{z} in the z -direction and that the component of vector magnetic potential in the z-direction is the only component that exists. Therefore,

$$
\nabla \times \bar{A}=\frac{\partial A_{z}}{\partial y} \hat{a}_{x}-\frac{\partial A_{z}}{\partial x} \hat{a}_{y}
$$

Tring this result,

$$
\begin{aligned}
& \nabla \times \frac{1}{\mu} \dot{\nabla} \times \bar{A}=-\sigma \frac{\partial \bar{A}_{z}}{\partial t}+\bar{J}^{\prime} \\
= & \nabla \times \frac{1}{\mu}\left(\frac{\partial \bar{A}_{z}}{\partial y_{y}} \hat{a}_{x}-\frac{\partial \bar{A}_{z}}{\partial x} \hat{a}_{y}\right) \\
= & -\frac{\partial}{\partial y} \frac{1}{\mu} \frac{\partial \bar{A}_{z}}{\partial y} \hat{a}_{z}-\frac{\partial}{\partial x} \frac{1}{\mu} \frac{\partial \bar{A}_{z}}{\partial x} \hat{a}_{z}=-\sigma \frac{\partial \bar{A}_{z}}{\partial t}+\bar{J}_{S}
\end{aligned}
$$

Therefore,

$$
\frac{\partial}{\partial x} \frac{1}{\mu} \frac{\partial A}{\partial x}+\frac{\partial}{\partial y} \frac{1}{\mu} \frac{\partial A}{\partial y}=\sigma \frac{\partial A}{\partial t}-J_{S}
$$

The equation is now a scalar equation since all the components are in the z -direction.

It remains only to specify boundary conditions before the differential equation can be solved. However, for this problem, there are no real boundary conditions that can be applied. The vector potential cannot be specified to be constant anywhere and it does not go to zero at infinity. The only equation that can really be used to implement a boundary specification of sorts is $\nabla \cdot \bar{A}=0$. This can be used as a check. If the boundary conditions are specified in some manner, they can be adjusted until the divergence equation is satisfied. When the iterated boundary conditions allow the divergence equation to be satisfied, then the boundary condition is the correct one.

Other boundary conditions may be able to be specified in the presence of special materials, such as high permea-.
bility stecls, or other technicies may be applied to sim? late the boundery condition with the ise of Green's functione or to calcilate them by means of iterative technigues (??), $(24),(25),(26),(27),(28)$.
3.5 Matrix Solution Techniques

The application of the finite element method to an electromagnetic field problem results in a large set of simultaneous equations which can be put in matrix form. The solution of the equations requires a major portion of the computer time used in the problem and, as a result, the efficiency of the solution technique is of considerable importance. Both the matrix entries and the solution voctor are complex quantities end either complex compiter operetions must be used or two systems of real equations rust he solved. In this work, both of these methods were used, with the complex arithmetic method being used predominantly The complex matrix equation in this work was solved by using a complex gaussion elimination sibroutine called CSOLVE* . The subroutine uses a maximum pivot strategy and was used at various times in single and double precision form. CSCLVE was used in conjunction with another sibroutine, CMPRJV, which was used to improve the values obtained from CSOLVE by adjusting the solution values iteratively. For each matrix row, the largest element was * See Appendix 4
chosen and the corresponding solution vector entry was sot to zero and recalculated by subtracting, from the right hand side, the vector product of the row and the solution vector and by then dividing the result by the proviouc? found largest entry. The procedure was continued until successive solution vector changes were sufficiently small. However, the residual of the solution obtained using CSOIVT alone was invariably good enough so that no iterative adjustment was necessary, and the use of subprogram CMPPTV was dropped from later program rins.

When the real and imaginary part method of solution was used, a completely different concept was used in the solntion subprogram.

In this procedure, called CONBPH, a system of equetions, $A x=b$, is solved by an iterative search techrigno which hunts along conjugate directions and minimizes the distance between the search vector and the solution vector at each step. If round-off errors are insignificant, the search terminates at the solution after N iterations where N is the order of the system.

The program CONGRH is a modification of a program written by Dr. M. Shridhar and the theoretical basis can be found in a paper by F. S. Beckman (29). The advantages of this solution method are that both less computer storage area and less computer time are needed to solve the problem
since no zero matrix entries are stored. For one problem, a comparison between the use of CONGRH and the use of SIMQ, an IBM library subroutine, showed that CONGRH was ten times faster and required only one-third the core area. The only difficulty with the method is that it does not always converge and it is often difficult to determine why convergence is not achieved for a specific problem. A listing of the program appears in Appendix 4.
3.6 Loss Ratio From Vector Magnetic Potential

The solution of the finite element method matrix systfem results in a set of vector magnetic potential values for various locations within the cable system. From these potentials, a value for the loss ratio can be obtained by using the finite element equations.

The power per unit length for a conductor of conductiveity d, is given by $\quad \int_{R} \frac{|J|^{2}}{\delta} d[$ Area $]=\int_{R} \frac{\bar{J} \cdot \bar{J}^{*}}{\delta} d[$ Area $]$
where \bar{J} is the total current density.

$$
\begin{gathered}
\bar{J}=\bar{J}_{s}-j \omega d \bar{A} \frac{d \bar{A}}{\partial t}=j \omega \bar{A} \text { for a sinusoidal input } \\
J_{s} \text { is the source current } \\
P_{a c}=\frac{1}{\delta} \int_{R}\left(\bar{J}_{s}-j \omega \delta \bar{A}\right) \cdot\left(\bar{J}_{s}-j \omega d \bar{A}\right)^{*} d[\text { Area }] \\
=\frac{1}{\sigma} \int_{R}\left(\bar{J}_{s} \bar{J}_{s}^{*}-j \omega \sigma \bar{A}_{s}^{*}+j \omega \sigma \bar{A}^{*} \bar{J}_{s}+\sigma^{2} \omega^{2} \bar{A} \bar{A}^{*}\right) d[\text { Area }]
\end{gathered}
$$

The loss ratio is given by the ratio of the a.c. power to the source current power

Loss Ratio $=\frac{P_{a c}}{\frac{1}{\sigma} \quad \int_{R} \bar{T}_{s} \cdot \mathrm{dArea}}=\frac{\mathrm{P}_{\mathrm{ac}}}{\mathrm{P}_{\mathrm{s}}}$

$$
=1+\frac{\sigma^{2} \iint \bar{A} \cdot \bar{A}^{*} d \text { Area }}{P_{S}}+j \omega \frac{\int\left\{\bar{A}^{*} \bar{J}_{S} \bar{J}_{S}^{*} \bar{A}\right\}}{P_{S}} d \text { [Area] }
$$

The integrations in the loss ratio calculations are easily performed since the source current density is assumed constant and the vector potential in any triangle is expressed in polynomial form. The integration can be performed for each triangle in turn and the results summed to obtain the overall loss ratio. Since the integrands are polynomial functions, two methods exist for determining the exact result. The integration may be performed analytically, or Gaussion quadrature of a sufficient order to assure exactness may be used. Either method is equally easy, and the analytic method was used in this work.

CHAPTER 4
 Single Conductor Pesults

4.1 Small Radius

The first calculations using the finite element method to compute a.c. resistance were done for a single, solid, small conductor with a radius of one centimeter. This conductor size was chosen so that the finite element solution could be compared with results that were available from analytic and finite difference calculations.

For this conductor size, the eddy current term in the field equation was neglected because a functional was available for thjs modified field equation in the paper by Zienkiewicz and Cheung (13). Without the eddy current term, $\sigma u \frac{d \bar{A}}{\partial t}$, the field equation is

$$
\frac{d^{2} \bar{A}}{\partial x^{2}}+\frac{\partial^{2} \bar{A}}{\partial y^{2}}=-u \bar{J}
$$

The corresponding functional to be minimized is

$$
x=\int\left\{\left|\frac{\partial \bar{A}}{\partial x}\right|^{2}+\left|\frac{\partial \bar{A}}{\partial y}\right|^{2}-2 u \bar{J} \bar{A}\right\} d x d y
$$

The boundary conditions used for the computations were those suggested in the paper by Stoll (8). Because of. rotational symmetry in the problem, and because all boundary
points are also symmetrically placed, the potential is the same on all boundary points. Stoll suggests that the boundary potential be fixed at some arbitrary value and that the potential in the conductor be calculated using this boundery condition. The average value of potential is then calculated over the conductor area and this average value is subtracted from each of the computed potential values and the loss ratio is calculated using these adjusted values.

With the average value of potential subtracted out, the average value of potential over the conductor area is zero. This assures that the eddy currents go and return in the same path and that the following equation is satisfied: $\nabla \cdot \bar{A}=0$

The results obtained, using this method of specifyins the boundary condition, and using the modified equation, compared favourably with analytic and finite difference results.

TABI.F. 1
Comparison Between Loss Ratio Calculation Methods

ANALYTIC

1.0145

FINITE DIFFERENCE
1.0142

FINITE RLEMENT

These results were obtained for an isolated, solid, round conductor with a conductivity of 5.80×10^{7} mhos per meter and a radius of 1 centimeter. The triangular mech for
the finite element method consisted of 106 trianglos with 97 nodes. This mesh comprised five conducting rings and one insulating ring divided into sixteen segments as shown in Figure 2.

Theoretically, the accuracy of the finite element method can be increased, so that the analytic result is reached, simply by making the triangular mesh sufficiently fine, but this accuracy is not needed. The closeness of the result obtained using the relatively coarse mesh is sufficient to lend confidence to the belief that the finite element method can be used to calculate the loss ratio to a useable accuracy.

4.2 Larger Condictor Radius

After the success of the calculations for the small radius conductor, various parameters were varied to determine their effect on the answer. The conductors are divided into triangles by specifying the number of radial rings and the number of segmental divisions and the grid fineness is adjusted by changing these variables. The rings may be specified to be either conducting or insulating, the position of the rings can be adjusted, and the outer boundary can be placed at any position. Also, the outer conductor radius is adjusted so that the cross-sectional area of the straight-sided conductor model is the same as the corresponding circular conductor. In addition, the cable can be
SEGMENTED

FIGURE 2
specified to be either a solid conductor or a segmental conductor by separating cable quarters by a strip of insulation. Results are presented in Table 2.

From the foregoing data, the effects of the changes in the various parameters can be seen. An increase in radius or conductivity increases the loss ratio. An increase in the number of triangles due to an increase in the number of segments results in increased accuracy. The number of insulating rings does not affect the answer at all, but a change in the position of the conducting rings (location of break-points) does change the answer slightly. Finally, it can be seen that the segmented cable has a lower loss ratio than the solid cable (1.56 compared to 1.59).

When these results were compared to the corresponding analytical results, it was found that results for small conductor cables had good correlation. However, as the conductor radius and conductivity increased, the numerical results deviated more and more from the analytic data.

For the analytic calculation of the loss ratio, formulae and tables are usually presented as a function of a variable mr, which is defined as

$$
\mathrm{mr}=r \sqrt{2 \pi \mathrm{f} \sigma \mu}
$$

where r - conductor radius

$$
f \text { - source current frequency }
$$

μ - conductor permeability

$$
\sigma-\text { conductor conductivity }
$$

TABLE 2

In an attempt to obtain a clearer view of what was happening as the conductor size increased, it was decided to plot both the analytically and numerically calculated loss ratios as a function of mr , as shown in Figure 3.

TABLE 3
Comparison of Numerical and Analytical Loss Ratio Data for Solid Circular Conductors

Radius	Conductivity	mr	Loss Ratio Range	Analytic L. R.
1 cm	3.54 E 7	1.295	$1.0135-1.0154$	1.0145
.791 in	5.80 E 7	3.33	$1.53-1.62$	1.43
1 cm	5.80 E 7	1.658	$1.036-1.038$	1.038
.791 in	$3.54 E 7$	2.602	1.23	1.20

From the table and the graph, the deviation of numerical loss ratio values from the values obtained analytically is clearly evident as the radius and conductivity increase. Upon evaluation, it was decided that this difference was due to the deletion of the eddy current term from the field equation and the functional, and it was therefore decided to formulate a functional to include the eddy term. The functional chosen was
$x=\int\left\{\left|\frac{\partial \bar{A}}{\partial x}\right|^{2}+\left|\frac{\partial \bar{A}}{\partial y}\right|^{2}-2 \mu \bar{J} \bar{A}+\sigma \mu \bar{A} \frac{\partial \bar{A}}{\partial t}\right\} d x d y$
For the time harmonic case, the term $\frac{d \bar{A}}{d t}$ can be replaced by the expression $j \omega \bar{A}$, since $\bar{A}=\bar{A}_{0} e^{j \omega t}$ and $\frac{\partial \bar{A}}{\partial t}=j \omega \bar{A}_{0} e^{j \omega t}$.

Since $e^{j \omega t}$ is common to all terms in the equation, it can be removed and the functional becomes
$x=\int\left\{\left|\frac{d \bar{A}_{o}}{\partial x}\right|^{2}+\left|\frac{\partial \bar{A}_{0}}{\partial y}\right|^{2}-2 \mu \cdot \bar{J} \bar{A}_{0}+j \omega \mu \sigma \bar{A}_{0}^{2}\right\} d x d y$ By applying Puler's equation, $\frac{d F}{d A}-\frac{d}{d x}\left(\frac{d F}{\partial A_{x}}\right)-\frac{d}{d y}\left(\frac{\partial F}{\partial A_{y}}\right)=0$, $\frac{\partial F}{\partial A}=-2 \mu \bar{J}+2 j \omega \mu \sigma \bar{A}, \quad \frac{\partial F}{\partial A_{x}}=2 \frac{\partial \bar{A}}{\partial x}, \frac{\partial \bar{A}}{\partial A_{y}}=2 \frac{\partial \bar{A}}{\partial y}$. $\therefore-2 \mu \bar{J}+2 j \omega \mu \sigma \bar{A}-2 \frac{\partial^{2} \bar{A}}{\partial x^{2}}-2 \frac{\partial^{2} \bar{A}}{\partial y^{2}}=0$

This is the required field equation with eddy terms included.

The chosen functional must be minimized with respect to the nodal potentials and, since this has been done for the other terms already, this must be done only for the eddy term, $j \omega \sigma u \int \overline{\mathrm{~A}}_{0}^{2} \mathrm{~d} \mathbf{x d y}$.

By inserting the finite element expression for \bar{A}, this integration is easily evaluated for each triangle. .The derivation appears in Appendix 3.

Using the new finite element equations, the loss ratio was again calculated for the large conductor. However, once again the results were not close to the known analytic values. After many possible reasons for the discrepancy were examined and rejected, it was decided that the method of specifying the boundary conditions was no longer valid for the extended functional. This was because, with the
addition of the eddy current term, the vector macnetic potential values became complex numbers instead of real numbers as was the case previously. Therefore, althourh the potential values on the boundary were still the same everywhere on the boundary, the relative size of the real and imaginary parts of the boundary value corld not be arbitrarily fixed. Since there was no way to determine what the complex boundary constant should be, it was decided to try an iterative search technique whose purpose was to alter the boundary constant with the goal of minimizing the average value of potential over the conductor area.

The first technique used was a simple one. The initial boundary value was set at zero, the matrix equation was solved, and the average potential value was determined. This average value was then subtracted from the initial boundary value and the result was used as the new boundery condition. The system was solved again and the process repeated until the average potential value became sufficiently small. This technique is a negative feedback approach and the results obtained were very good. The search pattern, when plotted, was shown to be an inward spiral and convergence was achieved in every case examined. This was the case no matter what initial boundary constant was selected and this can be seen in the plot showing the real part and the imaginary part of the boundary constant plotted in the

complex plane with the number of iterations for a particular conductor size as a parameter. The particular search nattern is not only a function of the parameter mr. It also depends on the grid pattern used to model the conductor ard the position of the boundary.

From the plot, it can be seen that, usually, about ten iterations were required to achieve completion of the firet curl of the spiral and so achieve a bound for the solution value. For a more exact answer, the number of iterations can be increased. However, with this technique it is necessary to solve the matrix of equations for each iterative step and this is very time consuming. This fact means that the number of iterations is limited in practice and prevents this technique from being used for unsymmetric problems where more than one boundary constant must be found.

However, for this symmetric problem results could be determined for various cable sizes within a reasonable amount of time.

The effect of changing the various parameters can be seen from the chart. The segmented cables can be seen to produce lower loss ratios than the solid conductors. However, the validity of the segmental results is questionable because the rotational symmetry that was assumed in the boundary specification technique disappears when the conductor is segmented, and the boundary specification is no longer correct.

However, the unsegmented cable results should be correct, and they can be compared with corresponding analytic results.

TABIE 5
Comparison of Numerical and Analytical Loss Ratio
Data for Solid Circular Conductors

Radius (in)	Conduct. $\widetilde{\sigma} / \mathrm{m}$	mr	Num. Loss Ratio	Analytic I. \quad.
.791	3.54 E 7	2.60	1.19	1.20
.791	5.80 E 7	3.33	1.42	1.43
.842	5.80 E 7	3.55	1.50	1.51
.991	5.80 E 7	4.17	1.75	1.74
.791	2.90 Er	2.36	1.13	1.14
.393	3.54 E 7	1.29	1.01	1.01

From this data and from the corresponding rraph, it, can be seen that a much better agreement exists between the analytical and numerical results with the eddy current torm included.

However, in spite of the success of the calculation technique, as evidenced by these results, it was decided to investigate several possible ways to improve the efficiency of the method.

First, the basic technique was applied, but with the boundary changes either under or over-relaxed. This did not

seem to have any effect on the result. Next, a different method of varying the boundary constant vas tried. The program was reorganized so that a Hooke and Jeeves search could be used to vary the boundary constant while minimizins the average potential. Although this search method also converged to the right answer, it was found to be slower than the negative feedback approach.

Other program modifications were also implemented to vary the way in which the eddy current term was handled, since an independent confirmation of the correctness of the chosen functional was not available. As an alternate method, it was decided to treat the eddy current term as part of the source cirrent term. Initially, the problem was solved without an eddy term. Then, using these results, a tentetive value for the eddy term was calculated and added to the source current. This process was repeated in conjunction with a Hooke and Jeeves search to determine the boundary constant and convergence was quite rapid to the correct answer. A program listing appears in Appendix 4.

The source current approach was also tried with negative feedback boundary specification and convergence was also good here.

One final eddy term variation was tried in which a simplified method of approximating the eddy term was employed. The potential in a triangle was assumed to be the
average of the threo nodal potentials. This method gave fairly accurate results but has no firm theoreticel basis. Overall, the results of the calculations for the lose ratio of a single solid conductor were good and compared very well with the analytic results available.

CHAPTER 5

Three Conductor Results

5.1 Formulation Difficulties

The major goal of this work is the calculation of the loss ratio for three phase cables in a magnetic steel pipe. There are, however, many difficulties encountered in going from the single phase calculations to this new problem.

First, it was necessary to devise a computer program to formulate the element pattern for the extended problem. It was necessary that the three conductors and the pipe be modelled with sufficient flexibility to allow the positions of the conductors to be shifted as required to model various cable configurations. In addition it was necessary to be able to vary the grid fineness without forming greatly elongated triangles. Such a program has been written to automatically generate the finite elements. A listing and several computer-generated plots illustrating its capability appear in Appendices 4 and 6. Basically, the position and size of the conductors are first specified and triangles are formed within the conductor cross-section. Segmentation can be implemented if desired. Then, a rectangular grid, with variable grid size is placed over the region and the positions of grid points on the boundary are modified to
conform to the circular contore of the pipe. In doine this, the best fit is made betweon the erid points and the conductor elements in order to obtain good triancles in the area around the conductors. Finally, triangles are formed in one or more circular layers to represent the pipe. Extensive use has proven this program to be adequate for forming the grid for almost any desired cable configuration.

As soon as this pattern generation program was operational, the finite element method was applied to the three phase problem. Initially, a zero potential boundary condition was assumed with no pipe present. The eddy term was not included and the result was quite accurate when applied to small diameter conductors.

However, for larger conductors, the inclusion of the eddy term is necessary. This complicates both the functional and the boundary conditions.

With the addition of the eddy term, the vector masnetic potential becomes complex and the terms in the functional are also complex. The squared macnitude of a complex number equals the number times its conjugate and this results in the addition of new variables to account for the modelling of the conjugate vector magnetic potential. In addition, it has not been possible to find a functional such that the Euler equation is satisfied for both the vector potential and its conjucate, without adding on a
term that is equal to zero. However, it was suggested (30) that this problem might possibly be eliminated if all the equations were expressed in terms of real and imaginary parts and a functional was formulated to satisfy the necessary criteria. For the field equation
$\frac{\partial^{2} \bar{A}}{\partial x^{2}}+\frac{\partial^{2} \bar{A}}{\partial y^{2}}=-\mu \bar{J}+j \omega \sigma \mu \bar{A}$,
the real and imaginary part equations are:

$$
\begin{aligned}
& \frac{\partial^{2} \bar{A}_{R}}{\partial x^{2}}+\frac{\partial^{2} \bar{A}_{R}}{\partial y^{2}}=-\mu \bar{J}_{R}-\omega \sigma \mu \bar{A}_{I} \quad \text { and } \\
& \frac{\partial^{2} \bar{A}_{I}}{\partial x^{2}}+\frac{\partial^{2} \bar{A}_{I}}{\partial y^{2}}=-\mu \bar{J}_{I}+\omega \sigma \mu \bar{A}_{R}
\end{aligned}
$$

where \bar{A}_{R} is the real part of the vector potential and \bar{A}_{I} is the imaginary part.

The functional chosen to correspond to these equations is:
$x=\int\left\{\left|\frac{\partial \bar{A}_{P}}{\partial x}\right|^{2}+\left|\frac{\partial \bar{A}_{R}}{\partial y}\right|^{2}-\left|\frac{\partial \bar{A}_{I}}{\partial x}\right|^{2}-\left|\frac{\partial \bar{A}_{T}}{\partial y}\right|^{2}\right.$
$\left.-2 \mu \sim \mu \bar{A}_{R} \bar{A}_{I}+2 \mu \bar{J}_{I} \bar{A}_{I}-2 \mu \bar{J}_{R} \bar{A}_{R}\right\} d x d y$
Applying Euler's equation twice, gives
$-2 \mu \sigma \omega \bar{A}_{I}-2 \mu \bar{J}_{R}-2 \frac{d^{2} \bar{A}_{P}}{d x^{2}}-2 \frac{d^{2} \bar{A}_{R}}{d y^{2}}=0$ and
$-2 \mu \sigma \omega^{\bar{A}_{Z}}+2 \mu \bar{J}_{I}+2 \frac{d^{2} \bar{A}_{I}}{d x^{2}}+2 \frac{d^{2} \bar{A}_{I}}{d y^{2}}=0$

These two equations corrospond cxactly to the roal and imaginary part equations stated previousiy. A more dotailed proof of the equivalence is presented in Appenci: 1 .

The use of the real and imaginary part functiona? rosults in the need for twice as many variables as with the complex formulation and the final solution matrix i. four times the size. However, this problem may be reducos by using a solution technique which does not store zero elements. In this work, a conjugate gradient routine vas used for this reason. This subprogram, CNOPY, is a search routine that solves a matrix equation, $A x=D$, by minimizing the quadratic, $y=\frac{1}{2} x^{T} A x-B^{T} \mathbf{x}$. At the point of minimization, the gradient of the quadratic is zoro:
$\nabla y=A x-B=0$
$\therefore A x=B$
Thus, the values of x that minimize the guadratic are also those values that satisfy the matrix equation.

It was, however, also desired to continue using tho complex formulation and this was done by examining the matrix which resulted from employing the real and imasinery part functional. When this functional was minimized, the matrix equation that resulted had the following form, for each triangular element:
Δ - area of triangle
The $S_{i j}$ terms have been previously defined and the $P_{i j}$ terms are the corresponding entries resulting from the minimization of the eddy current term. Ap, A A_{I} and ID, ar l ${ }_{T}$ are the real and imaginary parts of the vector potentio? and source current density respectively. This matrix can be obtained by manipulative the complex number formulation of the problem. Consider the following. matrix equation and then separate it into real and imaginary parts:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
S & -j
\end{array}\right]\left[A_{R}-j A_{T}\right]=k\left[J_{P}-j \cdot J_{I}\right]} \\
& S A_{R}-j E A_{R}-E A_{I}-j S A_{I}=k\left(J_{R}-j J_{I}\right) \\
& {\left[\begin{array}{ll}
S & -E \\
-E & -S
\end{array}\right]\left[\begin{array}{l}
A_{R} \\
A_{I}
\end{array}\right]=k\left[\begin{array}{c}
J_{P} \\
-I_{I}
\end{array}\right]}
\end{aligned}
$$

This matrix has the same form and the same entries as the real and imaginary part matrix. Thus, the correct matrix can be obtained using complex arithmetic if the source
current is conjugated and the eddy current torm is rubtracted from the oricinal s-matrix to form a comploys. matrix. The reculting ancwer must alco be conjugated to get the correct value of vector potential.

From program test runs, it has been fourd that both formulations give the same answer. It has also been observed that the matrix equation used for the single conductor calculations is simply the compler conjugate of the modified complex equation described above.

However, from observations of both three phase and single phase calculations, it was noticed that the sign of the right hand side and the sign of the eddy current term do not affect the answer unless Dirichelet boundery conditions are specified. This is logical since the simn of the richt hand side only determines the current direction and the eddy current term is in quadrature.

Thus, from these results, it can be concluded that the problem of the determination of the correct functional for this particular application has been resolved through the use of a functional in real and imacinary part form and by the complex formulation derived from this functional.

5.2 Boundary Conditions

The remaining major difficulty with the three phase calculations is the specification of a boundary condition. There is no real condition that can be rpecified since there
is no equipotential surface and nothing can actualy be said about the potential except that the average value oror the conductor area should be zero. It is cven very difficult to impose the far field boundary condition since tro vector magnetic potential does not approach zero at infinity. Therefore some approximations were necessary in ordor to establish a useable condition.

For the first calculations with the cables in air, a Dirichelet condition was set at a distance far from the cables by treating the conductors as filamentary conductors and summing the contributions by superposition. However, this method is not accurate, especially for large conductors.

It is also not possible to set the boundary condition by using a search technique such as the one used in the single conductor calculations because there is no simple symmetry in the three phase case. This means that a mult. variable search would be necessary with many cost function evaluations and the computer time used would be of the order of hours.

The possibility does exist, however, that a technique based on work already described in the literature may soon be developed to handle the problem. Silvester and Hsieh (25), Hseih (26), Csendes (28), and McDonald and Wexler (27) have all written papers on the use of an exterior element to specify boundary conditions for unbounded problems.

The methods basically use Green's functions to relate tho field in the exterior regjons to the potential or the finite eloment boundary and so derive a relationshin botween the exterior field energy and the boundary potentig?s. This is equivalent to specifying a boundary condition. mhe first three papers seem to be applicable only for electrostatic problems since parts of the derivations are based on assumptions valid only for these problems. However, the work described in the final paper is more general in scope and, in the future, may be able to be applied to this problem.

An initial investigation into these methods has beon begun, but the application of this theory to the loss netio calculations rests with future work, because of the complexity involved in applying exterior element methode to the time harmonic diffusion equation. It was therefore decided to concentrate on solutions for the case of three conductors enclosed in a steel pipe by using an approximate boundary condition. This approximate pipe boundary specification is based on the skin depth of the pipe material. The skin depth is that distance wherein the magnitude of the incident wave is reduced by a factor of ' e^{1} ' and the approximate formula for skin depth is:

$$
\delta=\frac{1}{\sqrt{\pi f \mu \sigma}}
$$

The particular pipe modelled had a thickness of 0.25 inches
and a conductivity of 8.2×10^{6} mhos per meter. The permeability varied throughout the pipe but the average relative permeability was 100. Therefore the skin depth was:

$$
\begin{aligned}
\delta & =\sqrt{60 \times \pi^{2} \times 4 \times .82 \times 100}=.00227 \text { meters } \\
\delta & =.0895 \text { inches. }
\end{aligned}
$$

The pipe is approximately three times the skin depth. This means that the flux density, \bar{B}, at the outer pipe boundary has been reduced in magnitude by a factor of e^{3} or about 20 . Since the flux density at the outer pipe boundary is only $1 / 20$ of the flux density at the inner pipe wall, the flux density can be taken to be approximately zero at the outer wall of the pipe. Since the flux density is assumed to be zero, the curl of vector magnetic potential is zero at the outer pipe boundary.
$\boldsymbol{\nabla} \times \overline{\mathrm{A}}=0$
Since it is assumed that only a z-component exists for vector potential, the curl expands to: (in cylindrical coordinates)

$$
\frac{1}{r} \frac{\partial A}{\partial \phi} \widehat{a_{r}}-\frac{\partial A}{\partial r} \widehat{a_{\phi}}=0
$$

To satisfy the equation, both components must be zero. Therefore $\frac{\partial A}{d r}=0$ and $\frac{\partial A}{\partial \phi}=0$. The second condition indicates that the potential is the same everywhere on the boundary. This is an indication of the amount of approximation that is inherent in accepting that the flux density
is zero when it is not really so, From intuition, it is apparent that the potential should not be the same everywhere on the boundary, especially for the cradled configuration. For this work, this second equation is ignored and only the first one is applied. However, it is reasonable that the use of this chosen condition involves about the same amount of approximation that was implied by the use of the unused equation, and that much of the deviation of answers obtained using this boundary condition, from answers obtained by measurement, may be due to the inexactness of the boundary specification.

The boundary constraint that is used is the homogenous Neumann condition $\frac{\partial \bar{A}}{\partial r}=0$ The application of this condition is accomplished without effort in the finite element method since this condition is 'natural' in the method. This means that it is automatically satisfied, in the absence of any other boundary specification, simply by writing the basic element equations.

5.3 Permeability Specification

All that remained, before the in-pipe calculations could be performed, was to determine a way to specify the permeability variation throughout the pipe. Measurements on the variation of permeability with flux density were available for the particular pipe material of interest. To get them into a form useable in a computer program, the
data was curve-fitted to a polynomial oxproccion using a Iibrary lonct-scuares curve fittine subroutino. Bocono of the large rance of the data, it wan broken into five parte and fitted by five polynomials. In this form, the volun of relative permeability can be determined for any value of flux density and the flux density can be calcilated from a knowledge of vector potertial.

An iterative technique is needed to determine the permeability variation. First, a constant value of permeability is used for all the triangles which make up the pipe. Using this permeability, the matrix equation is written ond solved to yield the vector magnetic potential. From the vector potential, the flux density is calculated and a new value of permeability, which is different for oach triang? is determined. The matrix equation is writton and solvod asain with the new permeability rariation end the proness is repeated until the vector potential is sufficiently similar for successive iterations. In practice, only two iterations were necessary to obtain the correct permeabjilty variation and it was even found that there was no great difference in the vector potential values when constant permeability values, as compared with varying permeability values, were used, The permeability of the pipe triancles did not affect the vector potential in the conductors very much. This can be seen in the program printouts in Appendix 4.
5.4 Results

The following tables list the results obtained for the loss ratio for the three-conductor configuration using the boundary approximations already described.

TABLE 6
Loss Ratio in Air Using Filamentary Superposition

Formulation	Special Notes	Radius	Loss Ratio
Real \& Imag.	Used CONGRY	.833	2.02
Complex	Unconjugated	.833	2.03
Real \& Imag.	Used SIMQ	.833	2.02
Real \& Imag.	Using CONGRH	.393	1.83

The final entry in the table illustrates the change in loss ratio that results with a variation in the conductor radius.

These results are consistent and compare reasonably
well with available measured values. In each case, the use of the stranding factor reduces the loss ratio considerably, but the use of segmentation, the thickness of the pipe and a change of conductor radius does not alter the loss ratio as appreciably as might be expected. This may be because the boundary specification has an overpowering effect on the potential distribution.

For each case with similar parameters, the loss ratio for the cradled configuration is consistently higher than that for the close triangular configuration, and this is as
TABLE 7

was anticipated. However, based on measured values, the difference is not as great as was expected and the loss ratio for the close triangular arrangement is much higher than that obtained by measured values. Once again, the lack of a greater difference between the cradled and triangular loss ratios is probably due to the fact that both have the same specified boundary condition. This condition probably forces the potential values of the two cases to be much more similar than they would be if the correct boundary potential distribution were known. Recent measurements on 2000 Kc mil. segmental cables (corresponding to a. 745 inch corrected radius) indicate a range in loss ratio, at room temperature, from 1.78 to 1.95 for the cradled arrangement and from 1.49 to 1.70 for the close triangular configuration.

The range is due to the dependence of loss ratio on current, and heat cycling and corresponds to calculated loss ratio values of 1.88 for cradled and 1.87 for close triangular arrangements obtained in this work.

It should be noted that a computational adjustment was necessary to prevent all answers from being completely unreasonable. As noted previously the loss ratio can be specified as a ratio of the total current to the source current loss:
Loss Ratio $=\frac{\int\left|\bar{J}_{S}-j-\omega \bar{A}\right|^{2} d x d y}{\int\left|\bar{J}_{s}\right|^{2} d x d y}$

It is the cross-term that causes the difficulty. In the single conductor case this term is found to be zero and thus is no problem. However, in the three conductor case, the real parts of the bracketed term cancel, leaving a term which, when included, adds to the remaining terms in such a way that they cancel out and the loss ratio becomes much less than unity. This is clearly an impossibility and for this reason it was necessary to ignore the contribution of this imaginary term.

In the single conductor calculations the imaginary term vanishes because the average value of vector potential is zero over the conductor. In the three conductor case, the average of the vector magnetic potential is also zero over the three conductors but this average is weighted by a different value of current in each conductor, and, although the currents also have a zero average value, the weighting is such that the integral is prevented from being zero.

Although this indicates what actually happens in the performance of the calculations, it does not explain the fundamental theoretical reasons for the difficulty involved in including the cross term. A reference in a paper by Stoll (8) also indicates that this cross term is ignored, but it is not clear why, or if this omission is valid in general or only in specific cases.

Abstract

CHAPMER 6 Conclusions and Future Work 6.1 Single Conductor Results

The single conductor loss ratio results compare very favourably to analytical results and can provide very good accuracy if a sufficiently fine grid is used.

From the accuracy and consistency of the results, it can be concluded that a workable functional and an acceptable method of formulating the boundary conditions have been developed. The results also confirm the soundness of the basic finite element procedure and attest to the sucores of the solution routines.

In terms of specific results, the effect on the loss ratio due to a change in a number of parameters was observed. The finer the triangular grid, the greater the accuracy. However, the accuracy also greatly depends on the judiconsness of the choice of the ring break points which determire where the finest portion of the grid is placed. However, the number of rings outside of the conductor and the position of the outer boundary does not affect the loss ratio. In terms of physical cable parameters, the loss ratio increases with an increase in radius and conductivity and

decreases when the conductor is segmented. As expectry, a change in radius results in a larger chance in loss ratio than does a corresponding percentage variation in conductivity.

To obtain these results, a variety of technioues were employed. Overall, it appears that the simple negative feedback approach for specifying the boundary is compitationally most efficient. The Hooke and Jeeves search also worked, but the added complexity was not necessary. Yowever, the approach using the iterative source current variation was appealing since it gave a physical indication of how the distribution of the source current becomes modified to cause an increase in the loss ratio.

Overall, the single conductor analysis results were very successful and this was of some significence since these results provided the basis for the three conductor calculations.

6.2 Three Conductor Results

The results obtained in the three conductor loss ratio calculations are reasonable, but the accuracy is limited by the inexactness of the boundary condition specification.

The finite element pattern generation program appears to be able to satisfactorily model almost any imaginable pipe and conductor arrangement as long as the grid lines are judiciously located. Results also indicate that the use of
the real and imaginary part functional and the derived modified complex formulation has solved the problem of finding the correct functional corresponding to the complete field equation.

With regard to the matrix equation solution routines, the complex gaussian elimination scheme has proven to be very stable and gives good results, even when the matrix order is greater than 150. However, for a high order matrix, a very great amount of core area is needed and much of this is wasted by storing zero entries. For this reason, the use of the conjugate gradient subroutine becomes significant. Large matrices can be solved quickly with comparatively little core storage, since zero entries are not retained. In other programs, similar to this work, matrices of order greater than 2200 have been solved in less than five minutes of CPU time using less than 300 k -bytes of memory. Using an elimination subroutine, more than 20,000 k-bytes of storage would have been required and the roundoff errors probably would have rendered the solution iseless. Thus, the use of the conjugate gradient solution routine opens up many more areas in which the finite element method can be employed. Much finer modelling, with many more grid points, can be used and, because of the rapid solution time, iterative techniques, such as those used for boundary specification, can be employed where they would
otherwise not be feasible. There only remains to perform some work on the convergence of the method since convermonoe did not occur in every case tested and a satisfactory orplanation of this failure is not yet available.

The results of the iterative permeability specification appear to be consistent with intuitive expectations. The permeability varies from triangle to triangle in the pipe, but is constant throughout any one triangle. It has been found, however, that the specification of permeability has not been as significant as was believed. Results obtained using a reasonably arbitrary constant permeability have differed from results using the variable permeability by an average of less than one per cent. It should be noted that the permeability measurements for the pipe material sample used were those obtained under direct current conditions and that pipe hysteresis was not modelled or treated in the program at all. Nonetheless, this would not account for the lack of dependence of the loss ratio on permeability of the pipe.

However, it may be that the manner in which the boundary is specified accounts for the lack of sensitivity. Normally, it might be expected that the permeability variation in the pipe would exert a considerable influence on the boundary conditions prevailing; but, if the boundary condition is fiyed, as in this work, the permeability
variation may not be able to control the potential distribution in the expected manner.

The fixedness of the boundary is also likely to be responsible for the closeness in results for the cradled and the close triangular arrangements. It is reasonable that as the cable configuration changes, the boundary conditions should change, but with the boundary specifications used in this work, this is not possible.

In spite of the boundary approximations used, the results are reasonable and compare favourably with other methods of calculation.

The loss ratio calculations for cables in air gave results that are higher than expected results but this is due to the inexact boundary values that were applied. For the cables in the pipe, the calculated loss ratio for the cradled configuration was close to measured values but the loss ratio for the close triangular arrangement was calculated to be higher than expected. The thickness of the pipe did not significantly affect the results, since the boundary condition was the same in both cases. The use of a stranding factor significantly decreased the loss ratio result but the application of segmentation did not have a great effect.

The effect of a change of a number of variables can be handled by the program. Loss ratio decreases with
increasing conductor radius and conductivity and also changes with the position of the cablec or the size of the pipe. No provision has been made for tho variation in loer ratio with a change in temperature, but this could bo implemented by changing the conductor conductivity. The masritude and phase of the source current can be altered to any value but provision has not been made to account for the change in conductivity due to the heating caused by larger currents. Also the effect of heat cycling is not considered but could be handled by modifying the strandins factor. Some cable components, such as the shield assembly, are not modelled and the inclusion of these parts in the cable model is one of the things that could be done to improve the program in the future.

6.3 Summary of Results

Good accuracy was obtained for single isolated conductors of all sizes by using the finite element method and includirg an eddy current term in the functional. A valid boundary condition was specified by iterative techniques which minimized the average vector potential over the conductor cross-section. An alternate formulation procedure illustrated the modification of the source current distribution responsible for the increased losses.

For the three conductor and pipe calculation, an anto-
matic pattern generation program was written which permits the modelling of any size conductor in various arrangemente. Grid fineness is easily modified either in the conductore, the pipe or in the air, and the cables may be represented as either solid or segmented conductors.

A real and imaginary part functional was developed and implemented, both in a real and imaginary part and in a modified complex formulation. Preliminary evaluation of an alternate matrix solution routine was undertaken in an effort to reduce both computer storage and computation time. Approximate boundary conditions were applied to the three conductor case and work was initiated on the specificatior of a more accurate boundary constraint. Pipe permeability was expressed in a polynomial form and several loss calculations were made and compared to measured values.
6.4 Future Work

A number of areas exist in this work which are worthy of consideration for additional study in the future. The most immediate focus of effort should be directed toward the determination of a more accurate boundary condition.

Several avenues exist for the attacking of this problem. With the use of the conjugate gradient routine to decrease the matrix solution time, a modified search routine, similar to that used for the single conductor case, might be feasible. However, the most promising method of defining
a boindary condition appear to be that involving the exterior element concept. The paper by McDonald and Vexler (27) provides a foundation from which it should eventually be possible to obtain a valid boundary condition specification which should improve the results significantly.

Other modifications to improve the computational accuracy include the use of an increased number of grid points to more accurately model the cable geometry. Also, an increase in the order of the defining equations for the electromagnetic vector potential would lead to greater accuracy. The best possible positioning of the triangles of the grid could also improve the results and this might best be accomplished by the use of an interactive graphics terminal. With this type of device, a program to generate the triangular subdivision of the region of interest woxld not be necessary since the grid would be directly and easily constructed by the user.

In addition to this work undertaken to achieve greater accuracy, a comprehensive study should be initiated in an attempt to more completely resolve the difficulty that arose with respect to the cross-term that had to be omitted in the loss ratio calculations.

If most of this work can be successfully accomplished, it seems certain that a method for confidently evaluating the loss ratio for a pipe-type cable will result.

APPENDIX 1

REAL AND IMAGINARY PART FUNCTIONAL VERIFICATION

The full field equation in terms of vector magnetic potential is given by

$$
\frac{\partial^{2} \bar{A}}{\partial x^{2}}+\frac{\partial^{2} \bar{A}}{\partial y^{2}}=-\mu \bar{J}+j \mu \sigma \mu \bar{A}
$$

Both \bar{A} and \bar{J} are complex quantities and the field equation can be separated into real and imaginary parts.
$\frac{\partial^{2}}{\partial x^{2}}\left(\bar{A}_{R}+j \bar{A}_{I}\right)+\frac{\partial^{2}}{\partial y^{2}}\left(\bar{A}_{R}+j \bar{A}_{I}\right)=-\mu\left(\bar{J}_{R}+j \bar{J}_{I}\right)+j \omega \sigma \mu\left(\bar{A}_{R}+j \bar{A}_{I}\right)$
$\frac{\partial^{2} \bar{A}_{R}}{\partial x^{2}}+\frac{\partial^{2} \bar{A}_{R}}{\partial y^{2}}=-u \bar{J}_{R}-\mu \boldsymbol{\mu} \bar{A}_{I} \quad$ (Reai)
$\frac{\partial^{2} \bar{A}_{I}}{\partial y^{2}}+\frac{d^{2} \bar{A}_{I}}{d x^{2}}=-u \bar{J}_{I}+\omega \mu \bar{A}_{R} \quad$ (Imaginary)
For the minimization of a functional to be equivalent to the basic field equation, it must be shown that the functional reduces to the real and imaginary equations written here. Let the proposed functional be:
$x=\frac{1}{2} \int\left[\left(\frac{\partial \bar{A}_{R}}{\partial x}\right)^{2}+\left(\frac{\partial \bar{A}_{R}}{\partial y}\right)^{2}-\left(\frac{\partial \bar{A}_{T}}{\partial x}\right)^{2}-\left(\frac{\partial \bar{A}_{I}}{\partial y}\right)^{2}\right] d x d y$
$+\int\left[-ш \sigma \mu A_{R} A_{I}+\mu J_{I} A_{I}-\mu J_{R} A_{R}\right] d x d y$
Now the functional must be minimized. Let the optimal
(minimum) solution be $A_{P}{ }^{*}$ and $A_{T}{ }^{*}$ and let the solution be perturbed a small amount from the optimum:

$$
A_{R}=A_{R}^{*}+\xi \eta_{R}(x, y) \quad A_{I}=A_{I}^{*}+\xi \eta_{I}(x, y)
$$

ξ is a small number and $\eta(x, y)$ is an arbitrary function. Substituting these values into the functional gives:
$x=\frac{1}{2} \int\left[\left(\frac{\partial}{\partial x}\left(A_{R}^{*}+\xi \eta_{R}(x, y)\right)\right)^{2}+\left(\frac{d}{\partial y}\left(A_{R}^{*}+\xi \eta_{R}(x, y)\right)\right)^{2}\right.$
$\left.-\left(\frac{\partial}{\partial x}\left(A_{I}^{*}+\xi \eta_{I}(x, y)\right)\right)^{2}-\left(\frac{\partial}{\partial y}\left(A_{I}^{*}+\xi \eta_{I}(x, y)\right)\right)^{2}\right] \mathrm{dxdy}$
$+\int\left[-\sigma \mu\left(A_{R}^{*}+\xi \boldsymbol{\eta}_{R}(x, y)\right)\left(A_{I}^{*}+\xi \boldsymbol{\eta}_{I}(x, y)\right)+\mu J_{I}\left(A_{I}{ }^{*}+\xi \eta_{I}(x, y)\right)\right.$
$\left.-\mu J_{R}\left(A_{R}^{*}+\xi \eta_{R}(x, y)\right)\right] d x d y$
Now take a variation on the functional with respect to
and set the functional to zero as ξ approaches zero
$\underset{\xi \rightarrow 0}{\delta x}=\int\left[\frac{\partial A_{R}^{*}}{\partial x} \frac{\partial \boldsymbol{n}_{r}}{\partial x}+\frac{\partial A_{R}^{*}}{\partial y} \frac{\partial \boldsymbol{n}_{r}}{\partial y}-\frac{\partial A_{T}^{*}}{\partial x} \frac{\partial \boldsymbol{n}_{T}}{\partial x}-\frac{\partial A_{T}^{*}}{\partial y} \frac{\partial \boldsymbol{n}_{I}}{\partial y}\right.$
$\left.-\sigma \mu \odot \eta_{R} A_{I}{ }^{*}-\sigma \mu \nu \eta_{I} A_{R}{ }^{*}+\mu J_{I} \dot{\eta}_{I}-\mu J_{R} h_{R}\right] d x d y=0$
Terms such as $\int \frac{\partial A_{R}^{*}}{d x} \frac{\partial \eta_{R}}{\partial x} d_{x} d_{y}$ may be integrated by parts $\int \frac{\partial A_{R}^{*}}{\partial x} \frac{\partial \boldsymbol{\eta}_{R}}{\partial x} d x d y=\left.\frac{\partial A_{R}^{*}}{\partial x} \boldsymbol{\eta}_{R}\right|_{x_{1}} ^{x_{2}}-\int \frac{\partial^{2} A_{R}{ }^{*}}{\partial x^{2}} \quad \boldsymbol{\eta}_{R} \quad d x d y$

Since $\boldsymbol{n}_{R}(x, y)$ and $\boldsymbol{n}_{I}(x, y)$ are arbitrary, they can be chosen to be zero at the endpoints. Thus,

$$
\int \frac{\partial A_{R}^{*}}{\partial x} \frac{\partial \boldsymbol{h}_{R}}{\partial x} d x d y=-\int \frac{\partial^{2} A_{P}^{*}}{\partial x^{2}} \quad \boldsymbol{\eta}_{R} d x d y
$$

Therefore the functional can be rewritten as:
$\delta X=\int\left[-\frac{\partial^{2} A_{R}^{*}}{\partial x^{2}} \eta_{R}-\frac{\partial^{2} A_{R}^{*}}{\partial y^{2}} \eta_{R}+\frac{\partial^{2} A_{T}{ }^{*}}{\partial x^{2}} \eta_{I}+\frac{\partial^{2} A_{T}{ }^{*}}{\partial y^{2}} \eta_{I}\right.$
$\left.-\omega \boldsymbol{\sigma} \boldsymbol{\eta}_{R} A_{I}^{*}-\omega \mu \eta_{I} A_{R}^{*}+\mu J_{I} \boldsymbol{h}_{I}-\mu J_{R} \eta_{R}\right] d x d y=0$
Rearranging and collecting like terms gives
$\delta X=\int\left[\eta_{R}\left(\frac{-\partial^{2} A_{p}^{*}}{\partial x^{2}}-\frac{\partial^{2} A_{P}{ }^{*}}{\partial y^{2}}-\sigma \omega \mu A_{I}^{*}-\mu J_{R}\right)\right.$
$\left.+h_{I}\left(\frac{\partial^{2} A_{T}^{*}}{\partial x^{2}}+\frac{\partial^{2} A_{T}^{*}}{\partial y^{2}}-\sigma \omega \mu A_{R}^{*}+\mu J_{I}\right)\right] d x d y=0$
Since \boldsymbol{n}_{R} and \boldsymbol{n}_{I} are arbitrary, the two bracketed terms are zero. Thus, if the minimum of the functional is found, then $\frac{\partial^{2} A_{R}}{d x^{2}}+\frac{\partial^{2} A_{R}}{\partial y^{2}}=-\mu J_{R}-\omega \sigma u A_{I}$
$\frac{\partial^{2} A_{I}}{\partial x^{2}}+\frac{\partial^{2} A_{I}}{\partial y^{2}}=-\mu J_{I}+\omega \sigma u A_{R}$
These equations correspond exactly to the real and imaginary parts of the field equation previously derived and this proves the equivalence between the minimized functional and the field equation.

APPENDIX 2

INTEGRAL EVALUATION

One integral occurs in finite element derivations a sufficient number of times so that its evaluation once and for all is warranted:
$I=\int N_{i} d x d y$
$N_{i}=\frac{a_{i}+b_{i} x+c_{i} y}{2 \Delta}$
Δ is triangle area
It is well known that for a triangle

$$
\int x d x d y=\bar{x} \Delta d x d y \quad \text { and } \quad \int y d x d y=\bar{y} \Delta d x d y
$$

where \bar{x} and \bar{y} are the centroid values.

$$
I=\int\left\{\frac{a_{i}+b_{i} x+c_{i} y}{2 \Delta}\right\} d x d y=\frac{a_{i}+b_{i} \bar{x}+c_{i} \bar{y}}{2}
$$

Substituting for a_{i}, b_{i} and c_{i}

$$
\begin{aligned}
& I=\frac{x_{i} y_{k}-x_{k} y_{j}+\left(y_{j}-y_{k}\right)\left\{\frac{x_{i}+x_{j}+x_{k}}{3}\right\}+\left(x_{k}-x_{i}\right)\left\{\frac{y_{i}+y_{j}+y_{k}}{3}\right\}}{2} \\
& I=1 / 6\left[\left(x_{j} y_{k}-x_{k} y_{j}\right)+\left(y_{j} x_{i}-x_{j} y_{i}\right)+\left(x_{k} y_{i}-y_{k} x_{i}\right)\right] \\
& \\
& =1 / 3\left|\begin{array}{ccc}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array}\right| / 2=1 / 3 \Delta
\end{aligned}
$$

APPENDIX 3

EVALTATION OF THE EDDY CURRENT TERM

The contribution of the eddy current term towards the total functional is given by the integral:
$x_{E}=j \omega \sigma \mu \int \bar{A}^{2} d x d y$
$\bar{A}=\left[\begin{array}{lll}N_{i} & N_{j} & N_{k}\end{array}\right]\left[\begin{array}{l}A_{i} \\ A_{j} \\ A_{k}\end{array}\right]$
$N_{i}=\frac{a_{i}+b_{i} x+c_{i} y}{2 \Delta}$
To obtain the master matrix entries the functional must be differentiated with respect to each of the nodal potentials. $\frac{\partial \dot{x}_{E}}{\partial A_{i}}=2 j * \boldsymbol{\sigma} \boldsymbol{\mu} \int N_{i}\left[\begin{array}{lll}N_{i} & N_{k} & N_{k}\end{array}\right]\left[\begin{array}{l}A_{i} \\ A_{j} \\ A_{k}\end{array}\right] d x d y$
This expression can be separated into three terms, each of which will be added to the appropriate place in the master matrix.
$E_{i j}=\left[2 j \omega \mu=\int N_{i} N_{j} d x d y_{j}\right] A_{j}$
The expression in brackets is added to the $i^{\text {th }}$ row and the $j^{\text {th }}$ column of the master matrix after the integration is performed.

$$
E_{i j}=\frac{i 2 \omega \sigma \mu}{4 \Delta^{2}} \int\left(a_{i}+b_{i} x+c_{i} y\right)\left(a_{j}+b_{j} x+c_{j} y\right) d x d y
$$

$$
=\frac{j 2 \omega \sigma \mu}{4 \Delta^{2}} \int\left(a_{i} a_{j}+a_{i} b_{j} x+a_{j} b_{i} x+a_{j} c_{i} y+a_{i} c_{j} y+b_{i} b_{j} x^{2}\right.
$$

$$
\left.+c_{i} c_{j} y^{2}+b_{i} c_{j} x y+c_{i} b_{j} x y\right) d x d y
$$

$$
E_{i j}=\frac{j \omega \sigma \mu}{2 \Delta}\left[a_{i} a_{j}+\bar{x}\left(a_{i} b_{j}+a_{j} b_{i}\right)+\bar{y}\left(a_{i} c_{j}+a_{j} c_{i}\right)\right.
$$

$$
+\left(b_{i} c_{j}+c_{i} b_{j}\right)\left(\bar{x} y+\frac{x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}}{12}\right)
$$

$$
\left.+b_{i} b_{j}\left(\bar{x}^{2}+\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}{12}\right)+c_{i} c_{j}\left(\bar{y}^{2}+\frac{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}}{12}\right)\right]
$$

\bar{x} and \bar{y} are triangle centroid coordinates $\mathrm{x}_{1}, \mathrm{y}_{1}$ are nodal coordinates minus centroid coordinates

APPENDIX 4

Computer program listings

The first listing is for a single conductor with a negative Peedback boundary specification.

```
$JOR
```



```
IMDLICIT COMPLEX*1G(C),REAL*8(A-B,C-H,D-Z)
    DIMEVSION XO(3),YO(3),QS(3)
    DIMENSION IFADDX(4),IFADDY(4),SIGMN(56),ISEG(E)
    DIMENSION RADIUS(16), X(33),Y(33).NCOF(56.3).FADI(3)
    REAL*8 MU(56),MU1
    CJMMCN X,Y,NODE,NSEG,NRAD,SIGMM,BIGJ,MI
    DIMFNSION PTNW(11))
    DATA IFAROX/1,C,-1,O/,IFADDY/O,1,0.-1/
    COMPLEX*16 BIGJ(56),BIGJ1,BIGJ2,VAL
    ZFAL*S CDABS
    PI=3.1415S265355DO
        QEAD SEGMENTATION CONSTANTS. THICKNESS IS IN INCHEZO OTHFD
        CONSTANTS AFE 4,6 AND 3 FCR SEGMENTATION. ELSE O,J.O
    READ(5,83O) THIK,NSEGC,IFSEEG,KSEG
        READ NUMBEF OF CABLES CFNTRE DF FEGION ANE FADIUS OF REGION
    FEAD(5,7(O) NPHMAX,XORG,YORG,RO
    THIK2=THIK/2.DO
    VDNO = 1
    NDINIT=NDNO
    JSTART=0
    JO=1
    NPHA SE=0
    SIGMA =5.EOD7
    DO11.3L=1,NPHMAX
        READ NUMZER DF RADIAL RINGS AND SEGMENTS
    READ(5,1C1) NRAO,NSEG
        READ RADIAL BREAK POINTS AS PERCENTAGE DF FADIUS
        READ(5,1:2) (PADIUS(I),I=1,NRAD)
            READ PDSITION AND RADIUS
        FEAD (5,703) XO(L),YO(L),FC(L)
        WRITE(6,31) NRAD,NSEG
        31OFORMAT(1H1.1OX.'CYLINDRICAL CONDUCTOR FINITE ELEMENT ANALYSIS'//
        I5X. NUMBER OF FADIAL SEGMENTS:.,I5/5X. NUMBFR OF ANGUL AF SFGNENTS:
        2*,I5/)
            READ NUMSER OF CCNDUCTING RINGS,PERMEAEILITY. AND CONDUCTOR
            AND INSULATOR CUFRENTS
        READ(5.22)NCON,MUI.BIG JI,BIG J2
    2? FORMAT(I2,F14.9.4G1%,5)
        FADI(L)=FADILS(NCON)*RO(L)
        AVEW=PI*(FADI (L)**2)
            ADJUST CONJUCTOR BOUNDARY
        RADIUS(NCON)=DSQRT((PI*QADIUS(NCDN)**2)/(NSEG*OCOS(PI/NSEG)*CSIN
    (DI/VSEG)))
        WRITE(E,32) (FADILS(I),I=1,NPAD)
    32 FORMAT(1FX, PADIAL BREAK-POINTS (INCHES):/2X.(1OG12.5))
        W~ITE(6,33)NCON,MUI,RIGJ1,BIGJ2
    33OFOFMATII5X. "NLMBER OF RINGS WITHIN THE CONDUCTOR::, I5/5X,
    IMAGNETIC PEPMEABILITY:',G12.5/5X, CUFRENT DENSITY:'/1GX, 'WITFIN T
    *HE CJNDUCTOR:",G12.5.G12.5/1GX."WITHIN THE INSULATION: * 2G12.5/)
        NOHASE=NPHASE + 1
        JMAX=NSEG
        IF(NSEGC.NE.O) GO TO 65?
C
            UNSEGMENTED CABLE
    (II) COMJUTE COJROINA TES OF EACH NODE, X(N) AND Y(N) IN METERS
    REQUIFED IVPUTS: NRAD, NSER, PADIUS(I)
    RESLLTS: X(N), Y(N)
        ANGLE=2.OC&3.1415926535900/NSEG
        N=2
        DO 6 1=1,NRAD
        THETA = O.O\
        DJ 6 J=1,NSEG
        X(N)=RADIUS(I)*OCOS(THETA)*1.ODw2 *2.5AC1DO*TO(L)
        Y(N)= 2ADIUS(I)*DSIN(THETA)*1.0D-2 *2.5401DO*TO(L)
        N=N+1
    6 THETA = THE TA +ANGLE
    SET CODRDINATES OF NODE 1
        X(1)=C:Dr
        Y(1)=0.DO
    (III) DETERMINE NODE NUMRFRS OF EACH ELFMENT, NCRE(I,J)
    REQUIRED INPUTS: NRAD, NSEG
    RESULTS: NOCE(I,J) (I=ELEMENT NOMBEE; J=L,M,N (1,2,3) )
(1) DETEFMINE NODE NUMEEFS OF ELEMENTS IN IST (INNER) RING
            DC 1 J=1,NSEG
            SIGMM(J)=SIGMA
            VODF(J.1)=1
            NODE(J,2)=J+2
    1 VODE (J:3)=J+1
```

NJロT (NSEG. $21=2$

GO TJ ES1

```
C SEGMEVTEO CABLE- INNER PING
    650 CDNTINUE
    DO111J=1.4
    X(NDVO)=xO(L)+(-1)**((J+C)/2)*THIK2
    Y(NDNO)=YO(L)+(-1)**((J+3)/2)*THIK2
    111 VDNO=NDNC +1
    DO72 J=1,4
    ISEG(2*J-1)=NDNO-6+J
    IE(ISEG(2*J-1).LT.NDINIT) ISEG(2*J-1)=NDINIT+3
    72 ISEG(2*J)=NJNG-5+J
    DTHETA =PI/NSEG*2.DO
    THE TA =DTHETA
    NPTS=N SEG/4
    DO 123 M=1,NCCN
    ADD=RO(L)*RADIUS(M)
    DO 124 J=1.4
    X(NDNO)=X(ISEG(2*J-1))+ADD*IFADDX(J)
    Y(NDNO )=Y(ISEG(2*J-1)) + ADD*IFADDY (J)
    X(NDVJ+1)=X(ISEG(2*J))+ADD*IFADDX(J)
    Y(NDVO+1)=Y(ISEG(2*J))+ADD*IFADDY(J)
    NDNO = YONO+2
    NPTSM=NPTS-1
    IF(NPTSM.LE.O) GO TO 123
    DJ 125 K=1,NPTSM
    X(NDNO)= RO(L)*DCOS(THETA)*RAEIUS(M)*X(ISEG(2\not=J))
    Y(NDNJ)= +RO(L)*DSIN(THETA)*FACIUS(M)+Y(ISEG(Z*J))
    THETA = THE TA +D THE TA
    125 NONO=NDNO+1
    THE TA = THE TA +D THE TA
    124 CONTIVUE
    123 CONTINUE
    VIST=NCON+1
    IF(NIST.GT&NRAD) GO TO 782
    DO 375 J=NIST,NRAD
    THETA=0.DO
    DO 375 K=1,NSEG
    Y(NDNO)=YO(L)*RO(L)*FADIUS(J)*DEIN(THRTA)
    X(NDV))=XO(L) +RD(L)*FADIUS(J)*DCDS (THETA)
    THETA = THE TA +D THETA
    375 NDNO=NDNO+1
    782 CONTINUE
    NALL =NDNO-1
    DO 365 J=1,NALL
    X(J)=X{J)*2.54010-2
    365 Y(J)=Y(J)*2.54C1D-2
    030 FORMAT(F1O.5.3(I2))
C FORM TRIANGLES FOR INNER RADIUS
    DO 8.3 J=1.2
    NODE(JC,1)=NDINIT
    NJDE(J(, 2)=J+NDINIT+1
    VJDE(JC,3)=J+NDINIT
    SIGYM(JO)=0.DO
    83 10=15+1
    NONCW=NDINIT+4
    DO 41J=1.NSEGC
    NODE(J,,1)=NDNOW.
    NODE (JC,E)=ND1NIT+J-2
    NODE(JC,3)=NDINIT+J=1
    SIGMM(JO)=0.DO
    IF(NODE(JO.2)*LT.NDINIT) NODE(JO.2I=NOINIT+3
    J?=J0+1
    NUM=NPTS+1
    DO 51 K=1.NUM
        SIGMM(JC)=SIGMA
        IF(K.FO.1) SIGMM(J0)=0.D\
        NODE(J(,, I)=NDINIT+J-1
        VOO=(J\cap,2)=NDNOW41
        IF((<,EO.NUM),AND.(J.EQ&NSEGC)) NOCE(JC.O)=NDINIT+4
            NODE(J0,3)=NENOW
            NONOW=NONOn+i
        51 J^=j)+1
        41 CJNTINUE
    651 CONTINUE
C
            FOFM OTHFR C.CNDUCTING RINGS
```

C（E）DETEQMINE VODE NUMBERS FNR RINGS 2． 4 ，ETC．
IF（NSEGC．NE，C）NSE $4=N$ NEG／NSEGC
$N T R=V S^{e} G+N S E G, C$
$<1=((N S E G+N S F G C) *(2 * N P A D-1)+I F S E G) *(N \cap H A S E-1)+N S E G+N S E G C+1+I F S E G$
$k 2=1+N \cap I N I T+K \subseteq E G$
DO $21=2$, NPAC． 2
$I F((I \cdot G T \cdot N C O N) \cdot A N D \cdot(N S E G C \cdot N E \cdot 9)) \quad G O T O 137 T$
DO $3 J=1, N$ TR
NDDE（K1，1）$=K$ 2
NOD $=(K 1,2)=K 2+N S E G+1+N S E G C$
NODE $(K 1,3)=K 2+N S E G+N S E G C$
K $1=K 1+1$
$\operatorname{NODF}\left(\mathrm{K}_{1,1}\right)=\mathrm{K} 2$
K 2＝K 2＋ 1
VODE $\left(K_{1}, 2\right)=K 2$
NTOF（K1， 3$)=K 2+N S E G+N S E G C$
$3 \quad K 1=K 1+1$
NODE $(K 1-1,2)=K 2-N S E G-N S E G C$
NODE $(K 1-1,3)=K 2$
NODE $(K 1-2,2)=K 2$
K $1=K 1+2$＊NSEG $+2 *$ NSEGC
C ${ }^{2}$（3）${ }^{K} 2=K 2+N S E G+N S E G C$ NUMBERS FOR RINGS 3 ，5，ETC．
$1370 \mathrm{~K} 1=3 * N T R+$ IF SE G＋JSTART +1
$<2=N S E G+1+N D I N I T+N S E G C+K S E G$
DO4I＝3，NFAD， 2
IF（（I．GT．NCON）．AND．（NSEGC．NE．O））GOTO 370
DO $5 \mathrm{~J}=1, \mathrm{NT}$ ？
NODE（K1，1）＝K2
K $2=K 2+1$
$\operatorname{NODF}\left(K_{1}, 2\right)=K 2$
NODE $(K, 3)=K 2+N S E G-1+N S E G C$
$K 1=K 1+1$
NODE（K1，1）＝K2
NODE $(K 1,2)=K 2+N S E G+N S E G C$
NODE $(K 1,3)=K 2+N S E G-1+N$ SEGC
$5 \quad k 1=k 1+1$
NODE（K1－1，1）＝K2－NSEG－NSEGC
NODE（K 1－1，2）$=$ K2
VODE $(K 1-2,2)=K 2-N S E G-N S E G C$
K1＝K1＋2＊NSEG＋2＊NSEGC
$4<2=K 2+N$ SFG＋NSEGC
GO TO 65
370－J0＝K1
C FORM FIRST INSULATING RING FOD SEGMENTED CARLE
K $1=\mathrm{K} 2$
KODREV＝NCON／2
KDDFEV＝NCON－？＊KODREV
IF（KJDREV．ER．O）$K 1=K i+N T R$
IF（KJOREV．NE•O）JO＝JO－2＊NTR
LST＝K $1=$ NTR
DO $371 \mathrm{~K}=1,4$
NODE（JO，1）＝LST
NODE $(J C, 2)=L S T+1$
$\operatorname{VODE}(J \cap, 3)=K 1$
コへニコ0＋1
LST＝LST＋1
DO $372 \quad J=1, N S E 4$
NODF（J0，1）＝LST
$\operatorname{NODE}(J C, 2)=L S T+1$
$\operatorname{NODE}(J 0,3)=K 1$
$\mathrm{J} \cap=\mathrm{J} 0+1$
NODE（JO，1）＝K1
$\operatorname{NODE}(J 欠, 2)=\mathrm{L} S T+1$
$\operatorname{NODE}(J 0,3)=K 1+1$
$j 0=10+1$
$L S T=L S T+1$
$372 \mathrm{~K}_{1}=\mathrm{K} 1+1$
371 CONTINLE
C．
FREM INSULATING LAYERS FOR SEGMENTED CABLE
NJDF $(J(-2,2)=K 1-N S E G-N S F G C-N S E G$
VIDE $(J(-1,2)=K 1-N S E G-N S E G C-N S E G$
$\operatorname{NODF}(J(-1,3)=K 1-N S E G$
NSTT＝VCCN＋2
DO $373 \mathrm{~K}=\mathrm{NSTT}$ SRAD
D） $374 \mathrm{~J}=1$ ． N SEG
NJDE（Jク，1）＝K1
NODE $(J C, 2)=K 1 \because N S E G$
NJD＝（JO． 3 ）$=K 1+1$
$j n=j n+1$

NODE (JC, 1$)=K 1-N S E G$
$\operatorname{VJDF}(J 0,2)=K 1+1-N S E G$
NODE $(J 0,3)=K 1+1$
$K 1=K 1+1$
$374 J n=J \omega+1$
NODF $(1)-1.2)=K 1-2 * \operatorname{NSEG}_{3}$
NODE $(0,1,3)=K 1-N S E G$
NODE (JD-2.3) $=K 1-N S E G$
373 CONTINUE
65 NTR $2=$ NTR 2
SPECIFY ELEMENT CDNDUCTIVITIES
JNOW $=\mathrm{J}$ START+1 + IFSEG + NTR
ICDUN = JNOW
SIG= SI GMA
DO $63, J J=2$, NFAD
IF ($(\mathrm{J} J=1) \cdot E O \cdot N C Q N)$-AND. (NSEGC.NE•O)) NTR2=NTR2-4
IF ($(J J-2) \cdot E Q \cdot N C O N) \cdot A N D \cdot(N S E G C, N E \cdot 6)) \quad N T R 2=N T R 2-4$
IF(JJ•GT•NCON) SIG=O.ODO
DO E4 $K K=1, N T R 2$
$J A R G=J N O W+(J J-2) \neq N T R 2+K K-1$
IF (JJ•GT•NCON+N) JARG=JARG+NSEGC*NCCN-NSEGC
$I F(J J \cdot G T \cdot N C O N+1) J A R G=J A R G+N S E G C \neq N C C N+N S E G C-N S E G C$
$645 I G M M(J A F G)=S I G$
IF ((NSEGC.EQ. $\because)$.OR. (JJ.GT.NCCN) GCTO 63
OO 62 LL $=1$.NSEGC
$S I G M M(I C O U N)=0 . D C$
SIGMU(ICDUN +1)=0.DO
62 ICOUN =ICOUN+NSE $4 * 2+2$
63 CONTINUE
C
ASSIGN CURRENTS AND PERME AGILITIES
CALL MUANDJIMU,BIGJ,NRAD,NSEG,NCCN,MU1, ETGJI,RIGJ2,SIGMA, IFSEG,

- (SEG.NTR)

NDINIT $=$ (NTR*NRAD $+1+K$ SEG) *NPHASE+1
JSTAVT=JSTART+(NCON*2*1)*NTR+(NRAD-NCON)*NSEG*2+IFSEG
IF (NRAD.GT.NCON) JSTART=JSTART+NSFGC
113 CONTINUE
102 FORMAT (16F5.3)
101 FORMAT(2I2)
763 FDRMAT(3(F7.4))
$7(C$ FOPMAT(I2, 3(F1C.5))
$V A L=(0.0 \cap, O . D C)$
INITIALIZE VARIABLES AND CALL SEAFCH ROUTINE
$A R E A L=O \cdot D O$
AIMAG=O.DD
CALL RJHSER(AREAL. AIMAG,VAL)
STOP
END

SUARDUTINE MUANDJ(NU.BIGJ,NRAD, NSEG,NCON, MUI, RIGJI,BIGJ2.SICMM.

- IFSET.KSEG,NTR)

IMOLICIT COMPLEX*16(C), REAL*Q(AB, $C \rightarrow H, D \cdots$)
C ASSIGNS VALUES OF CURFENT DENSITY (BIG.J) AND DFRMEABILITU(MU)
c. TO EACH ELEMENT.

C NCON=NUMBEF OF FINGS IN CCNDIJCTER
C. BIGJI=CURFENT OENSITY IN CONDUCTOR

C BIGJ2=CURFENT DENSITY IN INSULATION
MUI=MAGNETIC PEFNEABILITY
FFAL*R MU(56), MUI, SIGNM(56)
CJMPLEX*15 ヨIGJ(56), BIGJI, RIGJ?
NLCONS=NCON*2*NTF-NTR + IFSEG
NL:MNTS =NLCONS $+2 *(N R A D-N C D N) * N S E G$
DO $1 \mathrm{~N}=1$, NLCDNS
$M \cup(N)=M \cup 1$
BIGJ(N)=RIGJI
IF (SIGMM (N)•EQ•C.DO) BIGJ (N)=BIGJ?
1 CONTINUE
IF (NLCONSOEQ.NLNNTS) PETURN
NLCONS =NLCONS +1
DO 2 N=NLCCNS, NLMNTS
MU(N)=MU1
$2 \operatorname{BIGJ}(N)=E I G J 2$
RETURV
END

SUBFDUTINE RJHSER(AREAL,AIMAG,VAL)
COMPLEX*16 VAL
COMPLEX*16 DCONJG,DCNPLX
FEAL*8 AFEAL, AIMAG
C
C
C
C
C
C
C
C
AREAL IS THE REAL BDUNDARY VALUE
AIMAG IS THE IMAGINARY BOUNDARY VALUE
OLD BOUNDARY MINLS AVERAGE POTENT IAL EQUALS NEW BOUNDARY
DO $1 \quad J=1: 20$
$A R E A L=A F F A L-(D C O N J G(V A L)+V A L) / 2 \cdot D O$
AIMAG=AIMAG+(DCMPLX(C.DO.1•DD)*((VAL-DCCNJG(VAL))/2.DO))
WRITE $(6,3)$ J

CALL CVI(AFEAL,AIMAG,VAL)
1 CONTINUE
RETURV
END

SUBFJUTINE CVI(AREAL,AIMAG,VAL)
IMPLICIT FEAL*B(A-B,D-H, D-2), COMPLEX*1б(C)
COMMJV $x(33), Y(33)$, NODE (56.3), NSEG.NRAE.SIGNM(5S), BIGJ(56).MU(55) COMMON/AZ/ XP(50)

DIMENSIDNCSM(65 (), $2(3), O(3)$, T(3), FADI (1)
COMPL 三X*: 6 AIGJ,S(3,3), RHS,CV(33), VAL, DCMELX, ALPHA
२FAL* $8 \mathrm{MU}, \mathrm{C}) \triangle B S$
CJMSLEX*15 TP. OQ.DR.DS.CN(3), DCONJE,CEES(?3)
DATA CV/33*(C.OO,C.DC)
THIS SUEROUTINE COMDUTES VECTOR DCTFATIAL. CALCULATES LOSS RATID AND FINDS NEW AVEFAGE VALUE

THIS TECHNIQE IS NOT VALID FOF SEGMENTES CAELES DJE TO A LACK OF २JTATIONAL SYMNETRY
$S I G M A=5 \cdot E C D 7$
NPOT=1+(NRAD-1) *NSEG
NTR=NSEG
NPOTS=NPOT+8
NLMNTS=NFAD*2*NSEG-NSEG
NPOT1 $=$ NPOT +1
NPOTSQ =NPOT*NFOT
NSPOQ = NPCT* (NPOT-1)
$B E T A=100$.
NMZ $=$ NSEG +1
$A L O H A=D C M P L X(A R E A L, A I M A G)$
A TOT=0.
NOTOT=NPOT
INITIALIZE MASTER MATRIX
DO $7 \mathrm{I}=1$. NPOT
DO $7 \mathrm{~J}=1$,NPOT:
$7 \operatorname{CSM}(I+\operatorname{NFOT} *(J-1))=(0 . D C, O . D O)$

DO $8 \quad \mathrm{I}=1,3$
$R(I)=(X(\operatorname{NODE}(N, J))-X(\operatorname{NODE}(N, K)))$
$O(I)=(Y(\operatorname{NODE}(N, K))-Y(\operatorname{NODE}(N, J)))$
$T(I)=X(N O J E(N, K)) * Y(N D D E(N, J))-X(N C D E(N, J)) * Y(N O D E(N, K))$
$J=J+1-J / 3 \times 3$
$8 \quad K=K+1-K / 3 * 3$
$\operatorname{AFEL}=(X(\operatorname{NODE}(N, 1)) *(Y(\operatorname{NODE}(N, 3))-Y(\operatorname{NODE}(N, 2)))$

FORM $\stackrel{+}{+} \times(N A T R I X E(N, 3)) *(Y(N O D E(N, 2))-Y(N O D E(N, i)))) * 3 \cdot D \ldots 1$
DO $9 \quad I=1,3$
$0099 \mathrm{~J}=1.3$
SREAL=(O(I)*Q(J)+R(I)*R(J))/(APEA*4.DC)
$S(I, J)=D C M P L \times(S R E A L, O . D O)$
IF(SIGMM(N).EQ.O.OO) GO TO 98
EDALCULATE EDOY TERM
EDCUP $=$ ($60.00 * 3.1415326530 \cap * M U(N) * S I G M A *(T(I)$ *T(J) +XCENT*(O(I)

* $*(J)+T(I) * Q(J))+Y C E N T *(R(I) * T(J)+T(T) * R(J))+(Q(I) * R(J)+R(I) * O(J))$
** (XCFNT*YCENT+(X1*Y1 + X2*Y2+X3*Y3)/12.0) + O (I)*Q(J)*(XCENT**2+1
-X1**2+X2**2+X3**2)/12•DO)+R(I)*R(J)*(YCENT**2+(Y1**2+Y2**2*YZ**2)
- /12.Dn))/(AREA*2.OC)
$S(I, J)=S(I, J)+D C N P L X(O, D), E D C U R)$.
S8 CJNTIVUE
99 CCNTINUF
9 CONTINUF
CALCULATE SCURCE TERM
QHS=91GJ(N)*AREA*ML(N)/3.00
FOFM MATRIX FOR EACH ELEMENT
DO $100 \mathrm{~N}=1$. NL MNTS
XCENT $=(X(\operatorname{NODE}(N, 1))+X(\operatorname{NDDE}(N, 2))+X(\operatorname{NCDF}(N, Z))) / 3 \cdot \operatorname{Du}$
YCEVT $=\{Y(\operatorname{NO} E(N, 1))+Y(\operatorname{NODE}(N, 2))+Y(\operatorname{NCDF}(N, 3))) / 3 \cdot D U$
$\times 1=X(\operatorname{NODE}(N, 1))-X C E N T$
$\times 2=x(\operatorname{NODE}(N, 2))-X C E N T$
$X 3=X(\operatorname{VODE}(N, 3))=X C E N T$
$Y 1=Y(N O D E(N, 1))-Y C E N T$
$Y 2=Y(N O D E(N, 2))-Y C E N T$
$Y 3=Y(N O D E(N, 3))=Y C E N T$
$J=2$
CALCULATE FINITE ELEMENT CONSTANTS
c
.

PLACE FLEMENT MATRIX INTO MASTEP NATRIX
D) $1 \cap \mathrm{I}=1.3$

IF(NODE(N,I).GT.NFOT)GOTO 19
Dก $11 \mathrm{~J}=1.3$
IF (NCDE(N.J).GT.NPDT)GO TO211
 1) $+5(\mathrm{I}, \mathrm{J})$

GO TO 11
211 CSM(VODE(N,I) +NPOTSO)=CSM(NODE(N,I)+NFCTCO)-S(1,J)*ALDAA
11 CONTIVUE

10 CONTIVUE
$1 \cap \mathrm{CONTIVU}$

CALL CSOLVE(CSM,CV,NPOT,CDFT)
CALCULATE AVEFAGE PCTENTIAL
$V A L=(0 . D C \cdot C D)$
DO11\& $N=1$, NL INTS
$\begin{aligned} \text { AREA }= & (X(\operatorname{NJDE}(N, 1)) *(Y(N C D E(N, 3))-Y(N O D E(N, ?))) \\ + & X(N J D E(N, 2)) *(Y(N D D E(N, 1))-Y(N O D E(N, z)))\end{aligned}$
$\begin{aligned} \quad & +X(N J D E(N, 2)) *(Y(N D D E(N, 1))-Y(N O D E(N, 3)) \\ & +X(N O D E(N, 3)) *(Y(N D O E(N, 2))-Y(N O D E(N, 1))\}) * 5 \cdot D-1\end{aligned}$
IF(SIGMM(N).NE•O.DU) ATOT=ATCT+AREA
ก丁118 J=1.3
IF(NJDE(N,3).GT.NPOT) CV(NCDE (N,J)) = ALDHA
IF(SIGMM(N).NE.O.DO) VAL=VAL+CV(NOCE (N, J)) \#ACEAN 3. DO
118 CONTINUE
VAL = VAL/ATOT
VAB=CDABS(VAL)
WR ITE $(6,80 \mathrm{C})$
EOC FORMAT(: '15X. 'NEW BCUNDARY', $15 \times$. 'AVERAGE POTENT IAL.)
WRITE 6,77$)$ AREAL,AINAG, VAL
77 FORMAT(: 10×10 G14.7)
$C V A=V A L$
PRINT OUT RE SULTS
FNOFM=0.00
VNOFM=0.0n
DO $141=1$, NPOT
CRES(I) =C SM (I +NPOTSQ)
DO $13, j=1$, NPOT
$13 \operatorname{CRES}(I)=C R E S(I)-C S M(I+(J-1)$ *NPOT)*CV(J)
VVDFM = VNTEM + CDARS(CV(I) **2)
14. FNOFM=FNOFM+CDABS(CRES(I)**2)

RNORM = DSORT (ENORM)
VNORM = DSQR T(VNORM)
WRITE $(\epsilon, 216)$ VNORM, RNOFM
216 FORMAT(: 2 2G14.7)
WF ITE $(6,105) \mathrm{CVA}$

20 TENTIAL•")
DO $12 I=1$,NPOT
$C V A D=C V(I)-C V A$
12 WRITE (E.103) I,CV(I),CRES(I), CVAD

$P I=3.1415926$
C
C
C

CALCULATE LCSS RATIO

$D P=(0 . D 0.0 \cdot D)$
$\mathrm{DA}=(0 . \mathrm{DC}, 0 \cdot 0 \mathrm{C})$
$D R=(C .00 .0 .30)$
$D S=(\therefore . D, 0 . D \because)$
$\operatorname{RADI}(1)=.7910^{\circ} 0$
NLCOVS=NSEG* (2*NRAD-1)
DO $400 \mathrm{~N}=1$, NLCONS
IF (SIGMM(N).EQ.O.DO) GO TO. 4 (O
$X_{C E}=\operatorname{NT}=(X(\operatorname{NODE}(N, 1))+X(\operatorname{NCDE}(N, 2))+X(\operatorname{NCDE}(N, 3))) / 3 \cdot 00$
YCENT $=(\operatorname{Y}(\operatorname{NJDE}(N, 1))+Y(\operatorname{NCDE}(N, 2))+Y(\operatorname{NCDE}(N, 3))) / 3 \cdot 0$ U
$x_{1}=x(\operatorname{NODF}(N, I))-X C E N T$
$\times 2=x(\operatorname{VDOE}(N, ?)) \cdots X C E N T$
$\times 3=X(\operatorname{VODE}(N, 3))-X C E N T$
$Y 1=Y(V \cap O[(N, 1))-Y C E N T$
$Y 2=Y(V \cap O E(N, R))=Y C E N T$
$Y 3=Y(V D D E(N, 3))-Y C E N T$
$C W(1)=C V(N O D E(N, 1))$
CW(2) $=C \operatorname{CV}(N O S E(N \cdot 2))$
$C W(3)=C V(N D J E(N, 3))$
 - 3)) $)+(C W(2)=$ CVA $) \neq(X(N \cap D E(N, 1)) \neq Y(N C D E(N, 3))=X(N J U E(N, 3)) * Y(N O N E(N$. -1) $)+(\mathrm{CW}(3)-C V A) \neq(X(\operatorname{NODE}(N, 2)) \neq Y(\operatorname{NCDE}(N, 1))-X(N J L E(N, 1)) \neq Y(N C T E(N$.
-E) ${ }^{\prime}$

CTRA=(CW(1)-CVA)*(Y(NODE(N.3))-Y(NCDE(N.2)))+(CN(2)-CVA)*(Y(NODE(A

- 1) $)-Y(\operatorname{NCTE}(N \cdot 3)))+(C W(3)-C V A) *(Y(\operatorname{NODE}(N, 2))-Y(N J D-(N, 1)))$

CTRC $=(C W(1)-C V A) *(X(N O D E(N, 2))-X(N C D E(M, 3)))+(C W(2)-C V A) *(X(N D D E(N$

AREA $=(X(\operatorname{VODE}(N, 1)) *(Y(\operatorname{NODE}(N, 3))-Y(\operatorname{VCDE}(N, C)))$
C $\quad+\quad X(\operatorname{NODE}(N, 2)) \neq(Y(\operatorname{NCDE}(N, 1))-Y(\operatorname{NCDF}(N, 3)))$

 -CTRA)) **

- 112.$) 0$) + XCENT*YCENT) +CTRB*ПCDNJG (CTQA)*XCENT+CTRA*DCONJG(CTPR)* - XCENT+CTFA \#DCCNJG (CTFC) *YCENT+CTRC*DCONJG(CTRA)*YCEVT)/(AFEA*A.D?)

DD IS THE EDDY CONTRIRUTION
DO IS THE SOURCE CONTRIRUTION
DF AND DS ARE CROSS TERMS
$D P=D P+(6 C . D O * 6 C . D O * S I G M A * V P * 4 \cdot D E * P I * D I)$
$D Q=D Q+A D E A / S I G M A * B I G J(N) * D C D N J G(3 I G J(N))$
$D R=D 2+4 O \cdot D O * P I * A F E A *(C W(1)+C W(2)+C W(3)-3 \cdot D O * C V A) * D C O N J G(E I G J(N))$
$D S=D S+4 C$.DO*PI*AREA*BIGJ(N) *DCCNJG (CW(1) +CW(2)+CW(3)-3.DR*CVA)
IF(SIGMM(N).EO.O.DO) GO TO $4 C O$

400

$C P T O T=D P+D Q+D C M P L \times(0 . D 0.1 . D O) *(D S-E P)$
$2 D C=D Q$
RACDC=(CPTOT+DCONJG(CPTCT))/(2•DO*FDC)
WP ITE (6.500) RACDC
WDITE $6,8 \subset 1)$

503 FORMAT(: 'E(G14.7))
WRITE (6,8C2)

WP ITE $(E, 501)$ DP.PDC
WRITE (6.803)
803 FJRMAT(: '5X. 'AREA')
WFITE(6,501) ATOT
SOO FJRMAT(: IRATIO DF AC TO DC RESISTANCE IS =1,GI4.7)
501 FORMAT($1,3(614.7)$)
15 CONTINUE
9999 CONTINUE RETURN
END
*** ITERATION NUMRFR 1 *****

＊＊＊＊ITERATION NUMAER 3＊＊＊＊＊

	$\begin{array}{r} 812430-10 \\ \text { RAW } 30 \text { TE } \end{array}$	$55229310-11)$	RESICUAL		ADJUSTED POTENTIAL		
1：	（－n．2152e370－10＋J	$0.0523(940-10)$	1－0．00000no	＋J－0．0000000	（－		1n－1c1
2：	（－0．28194050－10＋	0．55144520－20）	（－0．0．0ngono	＋ 1 －0．00030．0	（－9．1 $2381550-10$	＋	$0.49621590-10)$
3：		O． 5 5174520－10）	（－0．0960 -0000	＋J－J．0usecoc	（－0．17391550－10	＋J	
$5:$	（－0．2910405D－10 ¢J	$0.55144520-10)$	（－0．0ncoono	＋J－c：ucjucoc	（－9．13381560－10	J	
ϵ ：	$(-n .2910405)-10+J$		－－cosonoso	＋J－j．cusjeno	（－0．13381550－10		$0.40 \times 215 \mathrm{cos}$
7：	－$-0.28194057-10+J$	0．55144520－10）	（－0．00）0000	＋J－0．00Jecco	（－0．13381550－10		¢．40t2） 5 ¢ $0-1 \mathrm{l}$
$8:$	（－C．28174c50－10＋J	0． $5 \in 144520-10)$	（－0．rajocos	＋3－－． 0 uju000	（－0．13382550－10	J	$0 . \triangle G E 2,5 ¢ 0-101$
	－$-2.28104050-10+J$	C． $5=144520-10)$	（－0．0nmioco	＋J－0．0000000	（ $-0.13381550-10$	1	$0.496215 \mathrm{cn}-10)$
110	－r．33r71010－10＋J	0．2571044D－15）	（－o．oriceson	＋J－i．cunecjo	（－0．18？ $08530-2 \%$		O． 2 218751n－101
		C． $25710440-10)$	（－0．06cocro $-0.00 c 300$	＋J－j00002000	（－0．182¢8530－10	$+J$ $+J$	
	（－0．コ3n．71j10－10＋J	$0.2571 .440-10)$	（－C．0000030	＋J－2．0うusouc	（－0．19258530－10	J	n． 2 c （187510－10）
	（－r．33．）7101n－10＋J	$0.25710440-1 C)$	c－u．nonncie	＋J－c．goúcoo	（－n．182E8530－10	J	C．20187510－191
	－0．33671010－10＋J	0．25710440－1n）	（－6．000000n	＋J－0．0023000	（－C．18258530－10		0．20187510－191
	（－n．33671r10－1r＋J	C．2571（44D－1C）	（－c．000coso	＋J－j．ju ujano	（－0．18258530－10		$0.2 n 10751 n-10)$
	（－0．33c71c10－10＋J	C． $2571044 \mathrm{D}-10)$	－c．oncocsa	＋J－j．ccuuroos	（－0．18258530－10		$0.2019751 n-101$
	－r．ozes5cran－10＋J	－53323450－11）	（－0．0orncon	＋J－0．0000600	（－0．86377970－1）		$4 E \in P D-191$
	（－r．2285728n－10＋J	C．5＊237450－11）	（－0．0003000	＋J－0．00000．0	（－0．80377970－11		ก． $17446580-101$
	（－n．22E50280－10＋ 1	0．53237450－11）	（－0．c000con	＋ 5 － 2.0003800	（－0．80377970－11		
	（－0．2235c280－16＋J	C．532374 50－11）	（－c．2000000	＋J－0．0．jucos	（－0．80377970－11		0．1nctesen－101
	（－5．22950280－10＋J	－0．53237455－11）	（－0．0060090	＋J－0．000390	（－0．80377970－1）		$0.1 n 946580-101$
	（－0．2285 $280-110+\mathrm{J}$	－．53237450－11）	（－1．0060000	＋J－i．ccuenuo	（－0．80377070－11		．10246590－101
	－n．2235r $280-10+\mathrm{l}$	－0． $53237450-11$ ）	（－C．00nnojo	＋J－0．6030600	$(-0.80377970-11$		
ATIO OF AC TO DC FESISTANCE IS $=1.662378$ CROSS TERMS							
$0.3432186 \mathrm{D}-1 \mathrm{C}$ C．OCCOOCC $-0.129120 \mathrm{BD}-25$							
$0.2273404 \mathrm{D}-100.0030050$ 0．3432j							
0.19 ACEA							
＊＊＊＊ITERATION NUMBER ${ }^{\text {a }}$（ ${ }^{\text {＊＊＊＊＊}}$							
$38030-690.000020 \mathrm{C}$－							

－naー－n－an－an－an

Gciccociccogioc 800060005008088 çrgesecriogoreo çeciceconco30 0 cocciccoocccoc


```
Single conductor with source
current variation and a Hooke
and Jeeves search.
```

Mainline is the same as that of
the previous program except:
(1) Variable 'VAL' is omitted from statement 9
(2) Statements $24 I, 242$ and 243 are omitted
(3) statement 244 becomes ${ }^{\text {CALL HKNJV (VAL. }}$ PTNT,2)'

```
    SURFOUTINT HKNJV(VAL.OTVW.N)
                                    95
    IMOLICIT PEAL*S(1-H,U-Z)
    DIMENSICNCDED(10),CTEST(10),DTNW(1O)
    COMMON/IO/ IF W-IT
    DFLTA=1.C-1C*1.C-1
    FEAD(5,27)(CORD(J),J=1,N)
    27 FORMAT(1058.4)
    OELTO=DELTA
    IFWE IT=1
    CALL FLNCT(CORD,N,VAL)
    IFWQIT=0
    C TEY FOR A BETTFF POINT GY TESTING ALL CIPECTITNS
    VALGLD=VAL
        5 \text { CALL NEWOIR(N,DELTA,CORD,PTNW,VAL)}
            IF WR IT T=1
            CALL FUNCT(DTNW,N,VAL)
            IFND IT=0
            WRITE:(6,18) VAL,(DTNW(L),L=1,N)
    C TEST FOR THF NUNIAER OF SUCESSFUL CO-DREIATFS
        20 ITEST=0
            DO 2 J=1,N
            IF(CJPD(j).NE,PTNW(J)) ITEST=ITEST+1
            2 CONTINUE
    C IF NO SUCESSFUL SEARCHES DECREASE DELTA
            DELTA=DELTA/2
            IF(DABS(DELTA/DELTO).LT.1.E-3) GO TOT
    C IF LESS THAN TWO NEW CO-ORDINATES DO A LOCAL SEARCH
        4 IF(ITEST.NE.1) GO TO 3
        17 DO 21 J=1,N
        21\operatorname{CORD(J)=PTNW(J)}
            GO TO 5
    C IF MORE THAN ONE NEN POINT ACCELERATE
            3 DO 16 j=1,N
        16 CTEST(J)=?.*PTNw(J)-CORD(J)
            CALL FUNCT(CTEST,N,VNEW)
            IF(VNEW.GE.VAL) GO TO 17
            Dn 19 J=1,N
        19 CJRO(J)=FTNW(J)
            VAL=VNFW
            CALL NEWDIR(N,DELTA,CTEST,PTNA,VAL)
            IFWEIT=1
            CALL FUNCT(PTNW,N,VAL)
            IFWEIT=0
            GO TO 20
        7 WRITE(6,18) VAL,(PTNN(L),L=1,N)
        18 FOFMAT(:.8G14.7/8G14.7)
            RETURN
            FND
```

SUBRTUTINE゙ NEWIIF(N,OTLTA,COF), DTNG,VAL)
IMPLICIT RFAL * $8(\triangle-H, O-Z)$
DIMENSION COPD(1G), PTNW(I?)
DFAL * 3 MAX
$0 \cap 2 L=1, N$
2
(L)

MAX=VAL
DO $1 \quad J=1 . N$
TNPT=CDFD(J)
PTNW(J) = CORD (J) +OELTA
CALL FUNCT(FTNW,N,VAL)
IF (VAL•GE•MAX) GO TO 3
$M A X=V A L$
TNPT=D TNW(J)
3 PTNW(J) =CORD(J)-DELTA
CALL FUNCT(PTNW,N,VAL)
IF (VAL•GE.MAX) GO TO 1
$M A X=V A L$
TNPT=D TNW(J)
1 PTNW(J)=TNPT
VAL =MAX
RETURN
END

```
    SUBROUTINE FUNCT(Z,NOR,VAB)
    IMPLICIT REAL*8(A-B,D-H,O-Z),COMPLEX*15(C)
    COMMJN X(33),Y(33),NOOE (56,3),NSEG,NRAD,SIGNM(55), BIGJ(56),MU(56)
    DIMENSION CSM(E50),R(3),Q(3),T(3),FADI(1)
    CDMPLEX*16 BIGJ,S(3,3),RHS,CV(33), VAL,DCMPLX,ALPHA
    COMPLEX*16 SJ(3),CK(100)
    DIMENSICN Z(10)
    REAL*8 MU,CDABS
    REAL*8 EDCUR (3,3)
    COMP_EX*16 DF,OQ,DR,DS,CW(3),DCONJG,CRES(33)
    COMMON/IO/ IF WFIT
    DATA CV/33*(0.D0,0.D0)/
    DATA VAL/(0.DO,O.DO)/
    AREAL=Z(1)
    AIMAG=Z(2)
    SIGMA=5.EOD7
    NPOT=1+(NRAD-1)*NSEG
    NOOTS=NPOT+8
    NLMNTS=NRAD*2*NSEG-NSEG
    NOOT1=NPOT+1
    NPOTSQ=NPOT*NPOT
    ALPHA=DCMPLX(AFEAL,AIMAG)
    ATOT=0.O
    DO 7 I=1,NPOT
    OO 7 J=1,NPOT1
    7CSM(I +NPOT*(J-1))=(0.00.0.DO)
    DO 422 J=1,NPOT
4 2 2 ~ C K ( J ) = C V ( J ) - V A L ~
    DO 421 J=NPOT1,NPOT3
421 CK(J)=ALDHA
    DO 100 N=1,NLMNTS
    XCENT=(X(NODE(N.1))+X(NODE(N,2))+X(NONE (N,3)))/3.0u
    YCENT=(Y(NO)E(N,1))+Y(NOOE(N,2))+Y(NCOE (N,3)))/3.00
    x1=x(NODE(N,1))-XEENT
    X2=x(NGOE(N,z))-XCEVT
    x3=x(VODE(N,Z))-XCENT
    Y1=Y(NOOE(N:1))-YCENI
```


$T(I)=X(N))=(N, K)) \star Y(N O D E(N, J))-X(\operatorname{VCDE}(N, J)) \neq Y(N O D G(V, K))$
$j=j+1-j / 3 * 3$
$8 \quad K=K+1-K / 3 * 3$
$A R E A=(X(N J D F(N, 1)) *(Y(N O D=(N, ?))-Y(N D D E(N, \tilde{c})))$
- $\quad+\quad X(\operatorname{NDOE}(N, 2))+(Y(\operatorname{NODE}(N, 1))-Y(N D O E(N, 3)))$

$00 \bigcirc \quad I=1,3$
$0099 \mathrm{~J}=1,3$
SKEAL = (O(I)*O(J) +R(I)*R(J))/(AREA*4.DO)
$S(I, J)=D C M O L X(S R E A L, C . D J)$
IF (SIGMM (N). FO.0.00) GC TO 93
EDCUR $(I, J)=(60.00 * 3.14150265300 * M U(N) * S I G 4 A *(T(I) * T(J)+X C F N T *(O(I)$
-*T(J) +T(I) *Q(J))+YCENT*(R(I)*T(J)+T(I)*R(J))+(Q(I)*R(J)+R(I)*O(J))
-* (XCENT*YCENT+(X1*Y1 + X $2 * Y 2+X 3 * Y 3) / 12$ 。DO) + O (I) * O (J) * (XCENT** $2+1$
$\bullet X 1 * * 2+X 2 * * 2+X 3 * * 2) / 12 \cdot 00)+R(1) * R(J) *(Y C E N T * * 2+(Y 1 * * Z+Y 2 * * 2+Y 3 * * 2)$
$\bullet / 12 . D 0)$) (AREA*2•DO)
98 CONTINUE
99 CONTIVUE
9 CONTINUE
RHS=BIGJ(N)*AREA*MU(N)/3.00
DO $10 \quad I=1,3$
SJ(I) $=(0 . D O, 0 . D 0)$
IF(NODE(N,I) GT.NPOT)GOTO 10
oo $11 \quad J=1,3$
IF (SIGMM(N).NE.O.DO) SJ(I)=SJ(I)-DCMPLX(O.DO.EDCUF(I,J))*CK(NODE
-($N, J)$)
IF (NJDE(N,J).GT.NPOT)GO TO211
$\operatorname{CSM}(N D D E(N, I)+(\operatorname{NODE}(N, J)-1) * N P O T)=\operatorname{CSM}(N O D E(N, I)+(N O D E(N, J)-1) * N P O T$
$1)+5(I, J)$
GO TO 11
$211 \operatorname{CSM}(\operatorname{VODE}(N, I)+N P O T S Q)=\operatorname{CSM}(N D D E(N, I)+N P O T S Q)-S(I, J) * A L P H A$
11 CONTINUE
$\operatorname{CSM}(V O D E(N, I)+N P O T S Q)=C S M(N O D E(N, I)+N P D T S Q)+$ RHS -S J (I)
CONTINUE
100 CONTINUE
CALL CSOLVE(CSM,CV,NPOT, $D D E T$)

```
4% VAL=(O.DO,O.DO)
    DO 18 N=1,NLMNTS
    AREA= (X(NODE(N,1))*(Y(NODE (N,3))-Y(NODE(N,2)))
    -. + X(NODE (N,2))*(Y(NODE (N,1))-Y(NODE (N,3)))
    & + X(NJDE(N,3))*(Y(NODE (N,2)) -Y(NODE(N,1))))*3.D-1
    IF(SIGMM(N).NE.O.DO) ATOT=ATOT+AREA
    DO 18 J=1,3
    IF(NODE(N,J).GT.NPOT) CV(NODE(N,J))=ALPHA
    IF(SIGMM(N).NE.0.DO) VAL=VAL+CV(NODE(N,J))*AREA/3.DO
    18 CONTINUE
        VAL=VAL/ATOT
        VAB=CDABS(VAL)
        WRITE(6,77) AREAL,AIMAG,VAL
        77 FJRMAT(:, 1OX,4G14.7)
        CVA=VAL
        IF(IFWRIT.EQ.C) GO TO 9999
        RNORM=O.DO
        VNORM=O.DO
        DO 14 I=1,NPOT
        CRES(I)=CSM(I +NPOTSO)
        DO 13 J=1,NPOT
    13 CRES(I)=CRES(I)-CSM(I+(J-1)*NPOT)*CV(J)
    VNJFM= VNORM+CDAHS(CV(I)**2)
    14 RNORM=FNORM+CDARS(CRES(I)**2)
    RVDRM=DSART(RNORM)
        VNOFM=DSORT(VNORM)
        WRITE(6,105) CVA
    1050FORMAT(!/1 CVA=('.G14.7.'.'.G14.7."''.',
    I NO., 12x, 'RAW PDTENTIAL', 25x;'RFSIDJAL',22X,"ADJUSTED P
    2DTENTIAL'/)
        OO 12 I=1,NPOT
        CVAD=CV(I)-CVA
12 WRITE (G.103) I,CV(I),CPES(I),CVAD
```



```
        2 1=3.1415c26
        DP=(C.DO,C.DO)
        DO=(0.DO,C.OC)
```

```
3
    IF(SIGMM(N).EO.0.OO) GO TO 400
    98
    XCENT}=(X(NGOF(N.1))+X(NODE (N,2))+X(NCOF(N,2)))/3.0
```



```
    X1=X(NODE(N,1))-XCENT
    x = x(N10E(N, E))-xCENT
    X3=x(NOUE(N,3))-XCENT
    Y1=Y(NDDE(N,1))-YCENT
    YZ=Y(NDOF(N.2))-YCENT
    Y 3=Y(NODE(N,3))-YCENT
    CN(1)=CV(NOCE(N,1))
    CW(z)=CV(NOOE(N,z})
    CW(3)=CV(NODE (N.3))
    CTRA=(CW(1)-CVA)*(X(NODE(N,3))*Y(NCDE(N,?))-X(NOJE(V,2))*Y(NCDE(N.
    -3)))+(CW(2)-CVA)*(X(NODE(N,1)) *Y(NCOE(N,3))-X(N1DL(V,3))*Y (NCOR(N.
    -1))}+(CW(3)-CVA)*(X(NODE(N,2))*Y(NCDE(N,1))-X(NOUE(N,1))*Y(NDDE(N.,
    .2))
    CTRB=(CW(1)-CVA)*(Y(NODE(N,3))-Y(NCDE(N,2))) +(CW(2)-CVA)*(Y(NCDE(N
    0,1))-Y(NODE(N,3))})+(C⿴囗十(3)-CVA)*(Y(NODE(N,2)) -Y(NODE(N,1)))
    CTPC=(CW(1)-CVA)*(X(NODE(N,2))-X(NODE(N,3)))+(CN(2)-CVA)*(X(NODE(N
    -.3))-X(NODE(N,1)))+(CN(3)-CVA)*(X(NODE(N,1))-X(NUDE(N,2)))
    AREA= (X(NODE(N,1))*(Y(NODE (N,3))-Y(NDDE(N.2)))
    +X(NDDE (N,2))*(Y(NCDE (N,1))-Y(NODE(N,3)))
    C
    +X(NODE(N,3))*(Y(NODE(N,2))-Y(NOD=(N*1))))*S.D-1
        VP=((CDABS(CTFE))**2*((X1**2+X2**2+X3**2)/12.DO +XCENT**2) +(CRAFS(
        \bulletCTRA))**2+(CDABS(CTPC))**2*( ((Y1**2+Y2**2+Y3**2)/12.DO) +YCFNT**2)
        -t (CTRB*DCONJG(CTRC)+CTRC*DCONJG (CTRB))*(((X1*Y1 +X 2*Y2 +XZ*Y3)
    * / 2.DO) + XCENT&YCENT) +C TRE&DCONJG(CTRA) *XCENT +CTRA*UCJNJG(CTFE)*
    -XCENT + CTRA*DCONJG(CTFC)*YCENT+CTRC*DCONJG(CTRA)*YCENT)/(AREA*4.DO)
    DP=DP +(60.DO*60.DO*SIGMA*VP*4.DO*PI*PI)
    DQ=DQ + AREA/SIGMA*BIGJ(N)*DCONJG(BIGJ(N))
    DR=DR+4O.DC*PI*AREA*(CW(1)+CW(2)+CW(3)-3.DO*CVA)*DCONJG(BIGJ(N))
    DS=DS+40.DO*PI*AREA*BIGJ(N)*DCONJG(CW(1)+CW(2)+CW(3)-3.DO*CVA)
    IF(SIGMM(N).EQ.0.00) GO TO 400
    400
    CONTINUE
    COTOT=DP +DQ +DCMPL X(0.DO.1.DO)*(DS-DR)
    PDC= (PI*RADI(1)*RADI(1)*(2.54010-2**2))/SIGMA
    RACDC= (CPTOT+DCONJG(CPTOT))/(2.DO*PDC)
    WRITE(6.500) RACDC
```

```
    503 FORMAT(: ",8(G14.7))
        WRITE(6,501) DP,PDC
        WRITE(6,501) ATOT
    500 FORMAT(:, 'RATIO OF AC TO DC RESISTANCE IS =',G14.7)
        501 FORMAT(. .,3(G14.7))
        15 CONTINUE
    9999 CONTINUE
        RETURN
    END
```

Three conductors in a steel pipe
using homogeneous Neuman boundary
condition with a complex formulation

99
$F=P C A B$
FINITE ELEMENT PATTEON GENFRATJR FOF A CABLE CDNFIGURATIUN
THIS PDOGRAA GENEEATES THEFINITE ELEMENT PATTEFN FOR A MULTI-PHASE
ENCASEO CAIL COAFTGJFATIDN. SEVERAL CURRENT-CARFYING CONCUCTORS CAN
AC LOCATED ANYWHEEF NITHIN AN DUTEQ CASINT. A STAVOARD FINITE ELFMEN
PATTERN IS GENESATFD WITHIN EACH CONDUCTOF, AND THE USER CAN SPECIFY
THE NUMRER ANO AFEANGEMENT OF AOOITIONAL ELEMENTS FOR COMPLETING THE
PATTERN WITHIN TFE QEMAINDER OF THE REGION.
IMPLICIT PFAL\& $8(A-H, O-Z)$
口EAL XT(6),YT(5), A
DIMENSICN IFADDX (4), IFADDY(4), SIGMM(4OC), ISFG(8), RXR(3), NSPG(9)
DATA IFADDX/1,0.-1,0/,IFADDY/0,1.0. $-1 /$
DIMENSION XO(3),YO(3), RO(3),RADI(3), JEND(3),RADIUS(10),X(200),
- $Y(2 C \cap), N O D \leq(4 C 0,3)$
DIMENSICN DIVH(15), NC(3), DIVV(15), NBF(3), XB(3), YB(3), NBOUN(3,25),
- NNN(5), LL(5), NT (53), NSEGM(3), VODES(3), NST(15), LROW(25), ANG(25)
CCNDUCTIR CONDUCTIVITY
SIGMA $=5.8007$
STRANDING FACTOF
SIGMA $=$ SI GMA** 435
PIPE CONDUCTIVITY
SIGMA1 $=8.10 D 6$
READ SEGMENTATICN THICKNESS IN IVCHES, AND 3 CONSTANTS WHICH ARE
4.6. AND 3 FOR SEGMENTEC CABLES AND $0,0,0$ FOR UNSEGM. CABLES
READ (5,830) THIK.NSEGC.IFSEG,KSEG
THIK2 $=$ THIK/2.D6
READ NUMBER OF CCNDUCTORS AND CENTRE AND INSIDE RADIUS DF PIPE
READ (5,703) NDHMAX XDPG,YORG,RO
READ OUTSIDE PIEF PADIUS AND NUMBER OF PIPE SEGMENTS
READ (5.902) ROUT, NSOJT
WRITE $(5,43)$ NSOUT, PO, FOUT

$P I=3.14157265359 \mathrm{C}$
JSTART=0
$J O=1$
ND $N O=1$
NOINIT = NONO
NPHASF $=0$
DO $1 L=1$, NPHMAX
NPHASE = NPHASE +1
READ NUMGER DF FADIAL DIVISIONS, SEGMENTS, AND CONDUCTING
RADIAL DIVISIOAS FOR FACH CONDUCTOR
READ (5,7O1)NRAD, NSEGM(L), NCON
NC M1 = NCON-1
NSEG $=$ NSEGM(L)
NTR $=$ NSEG + NSEGC
JMAX = NSEG
DTHETA=2.*FI/NSEG
READ RADIAL BREAK-DOINTS AS PERCENTACE OF CONDUCTOR RADIUS
READ (5,7O2) (RADIUS (K), $K=1$, NRAD)
READ POSITIDN ANE RADIUS DF CONOUCTOR
READ (5,70.3) XO(L),YO(L),RO(L)
RADI(L)=RADIUS (NCON)*RD(L)
$X O=X O(L)$
$Y O=Y \cap(L)$
$\mathrm{FQ}=\mathrm{QO}(\mathrm{L})$
IF (NSEGC.NE•O) GC TO 65%
CALCULATE NOOES FOR UNSEGMENTED CONDUCTOR
CALCULATE POSITIEN DF NODES FOR THIS CONDUCTOR
$J M A \times 2=J 0+N S E G-1$
$X(N D N C)=X 0$
$Y(N D N O)=Y 2$
NDNC=NDNC+1
DO 25 I $=1$, NRAD
THETA $=0$
DO $25 \quad J=1$, NSEG
$X(N D N O)=R O * P A D I U S(T) * D C D S(T H E T A)+X D(L)$
$Y(N O N O)=R O * F A D I U S(I) * D S I N(T H E T A)+Y O(L)$
$\mathrm{NONO}=\mathrm{NONO}+1$
25 THETA =THETA+ DTHETA
NOOES(L) =NIINO-1
CALCILATE NDDF OFOFPING FOF EACH ELEMENT FOR THIS CONDUCTOR
C INNFRMOST CCDE OF RLEMENTS
$0030 J=J 0, J M A X ?$
SIG.4(J) =5TGMA
VME (1.11 =NOIMIT
VOTE $(J, 2)=J-J .1+1+N \cap I N I T+1$
IF (J. F2. JMAX?) NCOF (J, 2) =NDINIT+
$30 \operatorname{NODF}(j, 3)=J-J 0+1+\operatorname{NCINIT}$
G) TO 551

- 650 CONTINUE

C CALCULATE NDDES FDD SEGMENTEC CONDUCTJR
INNFR RING
00111 J=1,4
$x(N \cap N C)=x 口(L)+(-1) * *((J+4) / 2) * T H I<2$
$Y(N D N C)=Y O(L)+(-1) *((J+3) / 2) * T H I<2$
111 NDNO $=$ NDND 1
$0072 \mathrm{~J}=1,4$
I SEG $(2 \div j-1)=$ NDNO $-5+J$
IF(ISEG(2*J-1).LT•NDINIT) ISEG(2*J-i)=NDINIT+3
72 ISFG(2*J)=NDNO-5+J
DTHETA $=P 1 /$ NSEG $\$ 2.00$
THE TA = DTHETA
NPTS=NSEG/4
C CALCULATE NODE FOSITIONS FOR CDNDUCTING RINGS
DO $123 \mathrm{M}=1$, NCM1
$A D D=R O(L) * P A D I U S(M)$
DO $124 \quad J=1,4$
$X(\operatorname{NDNO})=X(\operatorname{ISEG}(2 * J-1))+\operatorname{ADD} * \operatorname{IFADDX}(J)$
$Y(\operatorname{NDNO})=Y(\operatorname{ISEG}(2 * J-1))+A D D *$ IFADDY (J)
$x(\operatorname{NDND}+1)=x(\operatorname{ISEG}(2 * J))+A C D * \operatorname{IFADOX}(J)$
$Y(N D N C+1)=Y(I S E G(2 * J))+A D D * I F A D D Y(J)$
NONC=NONO+2
NPTSM=NPTS -1
PO $125 \mathrm{~K}=1$, NPTSM
$X(N D N O)=\quad \operatorname{RO}(L) * D C O S(T H E T A) * R A D I U S(M)+X(I S E G(2 * J))$
$Y(N D N D)=\quad+R D(L) * D S I N(T H E T A) * R A D I U S(M)+Y(I S E G(2 * J))$
THETA =THETA+DTHETA
125 NDNC = NDNC 1
THETA =THETA OTHETA
124 CONT.INUF
123 CONTINUE
THETA $=0.00$
$J=N C O N$
c
CALCULATE NDDE FOSITIONS FOF OUTER RING
DO $375 \mathrm{~K}=1$, NSEG
$Y(N D N O)=Y O(L)+R D(L) \neq R A D I U S(J) * D S I V(T H E T A)$
$X($ NONO $)=X D(L)+$ RO $(L) * P A D I U S(J) * D C O S(T H E T A)$
THE TA = THETA+DTHETA
375 NONC=NDNO +1
782 CONTINUE
NODES (L) =NDNO-1
NALL =NONO-1
830 FOFMAT (F10.5.3(I2))
C. FOPM TRIANGLES FOR IANER RACIUS

DO $83 \mathrm{~J}=1.2$
NODE (JO.1) =NDINIT
NODE $(J 0,2)=J+N D I N I T+1$
NOD $=(J 0,3)=J+$ NDIAIT
SIGMM (JO) $=C \cdot D$
$83 \mathrm{~J} 0=\mathrm{JO+1}$
NDNDW=NDINIT+4
DO $41 \mathrm{~J}=1$, NSEGC
NODE (JN.1) =NONOW
NODE $(10,2)=N D I N I T+J-2$
NOOE $(J C, 3)=$ NDINIT $+J-1$
SIGMM(JC)=0.DO
IF (NODE $(J, 2) \cdot L T \cdot N O I N I T)$ NODE $(J C, 2)=$ NDINIT +3
$J 0=10+1$
NUN=NPTS+1
DO $51 \mathrm{~K}=1$, NIJM
SIGMM(JO) =SIGMA
IF(K.FO.1) SIGMM(JO)=0.DO
NODE(JN,:) =NDINIT+j-1
NODE $(J O .2)=$ NONOW +1

NOOE (JC.3) =NDNOW
NOACW=1DNOW+1
$5!J=J!+1$
\&1 CONTINUE

```
        651 CONTI:UUE
C
                                    EVEN - NUNGFEFD RINGS (2.4.5.**)
        I=(NSFGG,NG.O) NSEA=NSEG/NSEGC
        NTF =NS:G+NGEGC
        K1=(NTD*(2*NCON-1) +1FSEG-NSEGC)* (VPHASE-1) +NTR+1+IFSFG
        K2=1+NDINIT+KSFG
        O\cap }4CI=2.NRAD,
        IF((I.GT.NCM1).AND.(NSEGG.NE.O)) GO TDI370
        DO 35 J=1.NTQ
        NODE (K1.1)=K?
        NODE (K1,2)=K2+NSEG+1+NSEGC
        NODF(K1,3)=K2+NSFG+NSEGC
        K1 =K1+1
        NODE(K1,1)=K2
        K2=K2+1
        NODF (K1,2)=K2
        NODE (K1,3)=K2+NSEG+NSEGC
        35 K1 =K1+1
        NODE (K1-1,2)=K2-NSEG-NSEGC
        NOOE (K1-1,3)=K?
        NODE (K1-2,2)=K2
        K1=K1+2*NSEG+2*NSEGC
        4O K2 =K2+NSEG+NSEGC
    1370 K1 =3*NTR+IFSEG+JSTART +1
    K2 =NSEG+1 +NDINIT +NSEGC +KSEG
    DO 60 I =3,NRAD,?
        IF({I.GT.NCM1).AND.(NSECC.NE.O)1 GO TO 370
    OO 55 J=1 ,NTP
    NODE (K1,1)=K2
    K2 =K2 +1
    NODE (K1,2)=K2
    NODE (K1,3)=K2+NSEG-1 +NSEGC
    K1 =K1+1
    NODE (K1,1)=K2
    NODE (K1,2)=K2+NSEG+NSEGC
    NOOE (K1,3)=K2+NSEG-1+NSEGC
        55 K1=K1+1
            NODE (K1-1,1)=K?-NSEG-NSEGC
            NODE (K1-1,2)=K2
            NDDE (K1-2,2)=K2-NSEG-NSEGC
            K1=K1+2*NSEG+2*NSEGC
        60 K2 =K2+NSEG+NSEGC
            IF(NSEGC.NE.O) GC TO.370
            GOTO65
            J0=K1
                    FORM TRIANGLES FOR DUTER RING
    K1 =K2
    KDDPEV =NCON/2
    KODREV=NCON-?*KOORFV
    IF (KODREV.NE.O) K1 =K1 +NTR
    IF(KODREV=FQ.S) JO= J0-2*NTR
    LST=K1-NTQ
    DO .371 K=1.4
    NODE ( J0,1)=LST
    NODE (JT,2)=LST+1
    NODE (10,3)=K1
    JO= = 0+1
    LST=LST+1
    DO 372 J=1,NSE4
    NODE (J0,1)=LST
    NOn=(10.2)=LST+1
    NODE (JS.3)=K1
    J0= 10+1
    NODE(JN.1)=K1
    N\capDE(JN, 2)=LST+1
    NDDE (JO,3)=K1+1
    Na= Jn+1
    LST=LST+1
    372 K1=K1+?
    371 CONTINUF
    NODG(J,-2,2)=KI-NGEG-NGECC-NSEG
```

NODE $(J-1,2)=K 1-N C F G-N S=G C-N S E G$
NORE (JN-1, Z $)=K ?-N S F G$
$N S T T=N C O N+2$
65 NTT2 = NTM, (2)
JNCV $=J$ STAPT+1 + IFSEG+NTR
$I C O U N=J N C D$
SIC=SICMA
DO $6.3 \mathrm{JJ}=2$, NRAD
IF ((JJ-1) EEG.NCN1) • \triangle NO. (NSEGC.NE•O)) NTR2=NTR2-4
IF ($(J J-2) \cdot F O . N C M 1) \cdot A N D \cdot(N S E G C . N E \cdot 0)$) NTR2=NTR2-4
IF (JJ•GT.NCCN) SIG=O.OR
c
CCMPUTE CCNDUCT IVITY
$J A R G=J N C W+(J J-2) \neq N T R 2+K K-1$
IF (JJ.GT.NCM1+O) JAFG=JAPG+NSEGC*NCMI-NSEGC
IF (JJ.GT.NCM1+1) JARG=JARG+NSEGC*NCM 1+NSEGC-NSEGC
IF((NSEGC.FO.O) ©CF.(JJ•GT.NCON))GO TO 63
DO 62 ML $=1$, NSEGC
SIGMM(ICDUN) = \cdot DO
IF (JJ.NF.NCON) GC TD 66
ICCUN=ICCUN-1
GO TO 62
$665 I G M M(I C C U N+1)=0.00$
62 ICCUN $=1$ CDUN + NSE4 $42+2$
63 C CNTI NUE
JSTART= JSTART + NT F\& (NCCN\%2-1) - NSEGC + IFSEG
$J E N D(L)=J S T A R T$
DRAW ALL ELEMENTS
$\mathrm{JO}=\mathrm{JSTAFT}+1$
NDINIT=(NTR*NCON+1+KSEG-NSEGC)*NPHASE+1
CONTI NUE
700 FORMAT (I $2,3(F 5,3))$
701 FORMAT (3 (I2))
752 FOFMAT (10 (F5.3))
703 FOFMAT (3 (F7.4))
SELFCT GRID SIZE
READ NUMGER OF HORIZ. AND VERT•GRIDLINES
READ (5,701) NHOR Z, NVERT
READ PCSITICNS CF GRID LINES AS $+/=$ FRACTICNS OF INNER PIPE PAD.
$\operatorname{READ}(5,7 \mathrm{OS})(D I V V(J), J=1$, NVERT)
READ (5,705) (DIVH (J), J=1, NHORZ)
SEPARATES CONDUCTORS

WRITE 6,800$)$
800 FOFMAT : VEPT ICAL AND HORI ZONTAL GRID POSITIONS')
WFITE (E, 46) (OIVV (J), J=1, NVERT)
WRITE (6,45) (DIVH(J), J=1,NHORZ)
46 FORMAT(:12F10.5)
C
INITIALIZE BOUNDARY CCUNTERS ANO FLAGS
DO $207 \mathrm{~J}=1$, NPHASE
NC (J) $=1$
207 NBF $(J)=1$
$\mathrm{NTH}=1$
NUMBER THE NODES
DO $202 \quad J=1, N H D R Z$
NTV=1
IFLAG=0
$00203 \mathrm{~K}=1$, NVERT
$X(N D N C)=X C R G+R O * C I V V(K)$
$Y(N D N C)=Y \cap Q G+R C * C I V H(J)$
C GHECK IF NOME IS IN SHFATH CIRCLE

C CHECK IF NODE POSITION SHOULD BE MODIFIED
IF (X(NONO).GE.C) NTV=-1
$K K=K+N T V * 1$
$J J=J+\mathrm{ATH}+1$
$\times S=X$ ORG + RO 2 DIVV $(K K)$
$Y S=Y O R G+P N * D I V+(j J)$

C
GO NTT ASSIGN A NUNBER TC THIS NOUE

```
C. MDDIFY VALUE OF x FO? THIS NODE
    205 x(NDNC)=OSODT(DO **2-Y(NONO)*& 2)
    IF(OIVV(K)\bulletLT.!) x(NONC)=-x(NONJ)
            GO T0,90
C MODIFY VALJE DF Y FCR NDCE
    2O4 Y(NDMD) =CSGET(F***2-x (NNNC)**2)
    IF(DIVH(J).LT.L) Y(NDNO)=-Y(NDNO)
C.TEST IF NODE FALLS WITHIN CONDUCTOR RADIUS
    999 OO 1 n6 L=1.NDUASF
    IF(DSORT((X(NDNO)-XO(L))**2+(Y(NONOI-YO\L))**2).LF. RD(LI) GO TO
    -203
    105 CONTINIJE
C STOFE FIRST NTDE DF EACH GRID POW
    IF(IFLAGOFO.D)NST (J)=NDNO
    IFLAG=1
C TEST IF NODE IS A CONDUCTOR GOUNDARY NODE
    JP= J+1
    JM=J-1
    KV=K-1
    KP=K+1
    IF(K.NE.1)}\times\textrm{N}(1)=\timesOFG+RO*OIVV(KM
    IF(K.NE.NVEDT) XE(2)=XORG+DO*DIVV(<R)
    IF(J.NE.1) YS(1)=YOFGGRO*DIVH(JM)
    IF(j.NE.NHORZ) YE(2)=YORE+FC*DIVH(JP)
    XB(3) =X (NDND)
    YB(3)=Y(NDNO)
    OO 117 L=1, NPHASE
    DO 108 JJ=1,3
    DO 108 KK=1.3
```



```
    -108
            IF(DSOPT({XB(KK)-XC(L))**2+(YB(JJ)-YO(L))**2).LT.RO(L)*.9O99DO)
            -GQ TO 209
            IF((\JJ.EO.3).DR.(KK.EQ.3)).AND.•(DSQRT((XB(KK)-XO(L))**2+(YB(JJ)
            - -YO(L))**?),LE.FC(L))) GOTO 209
    108 CDNTINUE
    2C9 NBCUN(L,NC(L))=NCNO
        NC (L)=NC (L) +1
        IF((X(NDNO).GT.XC(L)).AND.(Y(NDNO) &LE.YO(L)+.OOOL).AND.(NEF(LI.EQ.
            -1)HGO TOL211
        GO TO 1117
    1211 N3F(L)=0
            LL(L.)=NC(L) -1
            NNN(L)=NDNO
    117 CONTINUE
    NONO=NONO+1
    203 CONTINUE
    IF(J.NF.NHORZ) YNEXT=YOPG+PO&OIVH(J+1)
    IF(YNEXT.LE.YORG)NTH=-1
    202 CONTINUE
    NFIN=NDNC
C ORDER THE BCUNDARY NEDES
            D\ 210 L=1,NPHASE
            NC(L)=NC(L)-1
            NCCL=NC (L)
            DO 231 J=1 , NCCL
            IF(X(NSOUN(L,J)).NE.XO(L)) GOTO 232
            ANG(J)=PI/2.
            IF(Y(NBOUN(L,J))\cdotLT.YO(L)) ANG(J)=-ANG(J)
            GO TO 233
    232 ANG(J)=DATAN((Y(NPRUN(L,J))-YO(L))/(X(NPOUN(L,J))-XO(L)\)
    233 CONTINUE
            IF(X(NGOUN(L,J))}LT:XO(L)) ANG(J)=PI+ANG(J
            IF({X(NBCUN(L,J)),GF.XO(L)).AND.(Y(NBOUN(L,J)).LT.YO(L)))
            -2.*PI+ANG(J)
    231 CONTINIJE
            CALL ORDER(NCCL.ANG.NT)
            DO240 J=1,NCCL
    240 LDOW(J)=N3CUN(L.J)
            DD 241 J=1 NCCL
            K=NCCL -J+1
    241 NBOUN(L.,K)=LDOW(AT(J))
    21O CCNTINUE
C FORM TQIANGLES AFOUNR CONDUCTOOS
            DD 3C1 L=1 ND|ASE
            NTHIA=NC(L)+NSFGN(L)
```

```
            NAC=1
            NO=NRIEG(L)-NGSGN(L)+1
            NDOES(L) =NR
            J.j = JO
            D! 30) J=1 NTEIA
            NFP1 =NF+1
            NBCD1=NBC+1
            IF(NFPI.GT.(NODES(L)+NSFGM(L)-1))NRPI=NODES(L)
            IF(NBCP1.GT.NC(L))NBCP1=1
                    CALCULATC TEST CISTANCES
            D1=DS\RT((X(NR)-X(NROUN(L.NBCP1)))**2+(Y(NF)-Y(NBOUN(L.,NRCP1))
        -2)
            D2=DSQRT((X (NRP1)-X(NPOUN(L,NGC)))**2+(Y(NFP1)-Y(NBOUN(L, NAC)))**
            -2)
            D 3 = S SORT ({X(NR)-X (NOOUN(L.NBC)))** 2+(Y(NR)-Y(NBOUN(L.NBC)))**2)
            D4=DSQRT((X (NRP1)-X(NBOUN(L,NBCP1))***2+(Y(NRP1)- Y(NBOUN(LLNBCP1)|
            -)**2)
            D5=DSQPT((X (NR)-X(NRP1))** 2+(Y(NR)-Y(NRP1))**2)
n\capO
                    TEST FCR SHDRTEST DISTANCES
                            IF(DI-LE.D2) GO TO 302
                            IF((D2/D3).GE.({[3+FO(L)*OTHETA*.8)/DO))GO TO 30Z
    305
    IF(D2/(D3+D5).GE..99) GO TO 306
            XTEST=X(NRF1)-2EDO*(X(NFF1)-X(NGOUN(L,NBC)))
            YTEST=Y(NRP1)-* 25DN& (Y(NRP1)-Y(NBJUN(L,NRC)))
                    RTEST=OSGRT({XTEST-XO(L))**2+(YTEST-YO(L))**2)
C
    3 0 3
    IF (RTEST.LE.RO(L)) GOTO 306
    NODE (J0,1)=NR
            NODE (JO,3)=NBOUN(L,N日C)
            NR=NR+1
            IF(NR.GT.NODES(L)+NSEGM(L)-1) NR=NODES(L)
            NODE (JO,2)=NO
            IF((J.EQ.NT?IA).AND.(NBC.NE.1))GOTO 710
            G0 TO 3f0
    710 NSC=NBC+1
            IF(NBC.GT.NC(L)) NAC=1
            NODE(JV,2)=NBOUN(L.NBC)
            G0 TO 300
    302 IF((D1/D4).GE.((C4+RD(L)*DTHETA*.3)/DA)) GO TO 305
    306 NODE (JC.1) =NR
            NODE(J\cap,3)=NAOUN(L,NSC)
            NBC=NBC+1
            IF(NBC.GT.NC(L))NBC=1.
            NODE (JO.2)=NBOUN(L.NBC)
            300 J0=J0+1
                    C DRAW TRIANGLES
                    JFIN=JOI+NTRIA-1
                            DO 301 J=JC1,JFIN
                            SIGMM(J)=O.ODO
    301 CONTINUE
    705 FOFMAT(15(F4.2))
    902 FOFMAT(F5.2.13)
C FORM TRIANGLES INSIDE STEEL PIPE
    JO1=JO
    NHMI=NHCRZ-1
    DO 4CO J=1,NHMI
                            INITIALIZE FLAGS AND COUNTERS
                            ITEST=(-1)**J
    K=J
            NCCWN=0
            NCCUN=0
            F1=1
            F2=1
            F3=1
            IF((Y(NST(J))\bulletGE.YORG) &AND.(Y(NST(J+1))|LT•YORG)) NSTAR=J+1
            IF(J.EO.1)GO TO 41O
            IF(J.EQ.NHMI) GO TR 411
    401 IF((NST(J+1)+NCCUN+1).GE.NFIN) GO TO 4CO
    F1=1
    IF(X(NST(J)+NCOWN+1)\cdotL-.X(NST(J)+NCDWN))FP=?
    IF(X(NST(J+1)+INCCUN+1).LE.X(VST(J+1)+NCOUN))GO TO A12
C CHECK IF TPIANGLES ALRCACY FDRMEO IN THIS RFGION
    DO 4C2 L=1,NDHAGE
```

```
        IF((Y(NST(J+1))\bulletLE*(YO(L)+FO(LL)))*AND.((X(NST(J+1)+NCOINN).L= - XO(L
        -)\.AND.(X(NST(J+1)+NCOUN+1).GE.XJ(L)IJ.AND.(Y(NST(J+1)+NCD(NNI.GT.
        (|Y(L)-RC(L)))) Cn TM 42J
            IF((Y(NST(J)).GE.(YO(L)-GO(L)))•ANO•((X(NST(J)+NCOWN).LF.XO(L)). .
            -AND.(XINST(J)+NCCNN+1).GF.XO(-))\•AND.(Y(NST(J))\bulletLE•(Y)(L)4FO(L))
            -) G\cap TC 4ró
    402 CCNTINUE
            F1=!
            CHECK GOID DIDECTICN
                            IF(ITEST.EQ.*1)GC TO4, 4
            G\cap TO412
            FORM FIRST TRIANGLE OF FIEST ROW
    410 NODE(JO.1)=NST (J)
            NO\capE: }(J,2)=NST(J+1)+
            NODF(JO,3)=NST(J+1)
            JO=JO+1
            NCOUN=1
            GOTD401
C FORM FIFST TRIANGLE OF LAST ROW
    411 NODE (J0,1)=NST (J)
            NOC= (j0,2)=NST (J)+1
            NODE (JO,3)=NST (J+1)
            NCCWN=1
            JO=30+1
            GO TO 4C1
C ADJUST COUNTERS FOR GRID NEAR CONDUCTORS
    403 NCOUN=NCCUN+1
    407 NCCWN=NCEWN+1
            IF(X(NST(J)+NCOWN) GE (XC(L) +RO(L))) GO TO 401
            IF(X(NST(J+1)+NCCUN).LT.(XD(L)+RO(L)))GGOTO 403
            GOTO 407
    406 NCOWN=NCCWN+1
    408 N二OUN=NCDUN+1
            IF(X(NST(J+1)+NCCUN).GE.(XO(L)+RO(L)))GO TO 401
            IF(X(NST(J)+NCDWN).LT.(XC(L)+RO(L))) GOTO &OG
            GO TO 4C8
                FCRM REGULAR TRIANGULAR GFID
    404 NOOE (JO.1) =NST(J)+NCOWN
            NODE. (J0,2)=NST (J+1) +NCOUN+1
            NODE (J0,3)=NST (J+1)+NCOUN
            IF(F3.EQ&1) LRCN(J)=J0
            F3=0
            J0= J0+1
    405 IF(F2.EO.O) GOTTC 4OO
            NOOE(j0.1)=NST(J)+NCOWN
            NODE (30,2) =NST (J)+NCOWN+1
            NODE (J,3,3)=NST (J+1, +NCCUN+1
            TF(F3.EN.1) LROW(J)=30
            F3=0
            30=50+1
            NCCWN =NCOWN+1
            NCOUN=NCOUN+1
            GO TC 401
    C FCRM PEGULAR TRIANGILAR GRID
    412 IF(F2.EQ.O) GO TC 40O
            NODE(JC,1)=NST (J)+NCOWN
            NODE (JO,2)=NST (J)+NCOWN+1
            NOOE (JO,3)=NST (J+1)+NCOUN
            JO=JO+1
            IF(F3.EQ.1) LROW (J)=JO
            F3=0
            IF(F1.EN.1)GOTC40n
            NODE (JC.1)=NST (J)+NCOWN+1
            NODF (JC,2)=NST (J+1)+NCDUN+1
            NODE (JO,3) =NST (J+1)+NCOUN
            JO= JO+1
            NCOWN=NCOWN+1
            NCOUN=NCOUN+1
            I= (F3.EQ.1) LROW (J)=30
            F3=0
            GOTO401
    AOGCONTINUE
            NOOE(J).1)=NST(K)+NCOWN
            NODE (JC,2)=NST (K)+NCC:WN+1
            NOOF (JS,3)=NST (K+1) +NCOUN
                SPECIFY CONOUCTIVITY
            00747 J=J1,J0
    747 SIGNM(J)=0.OOS
```

$J=J n+1$
J「1 $=50$
NREG=NDNC
THETA=C. DO
DTHFTA=2.0:*I/NSCUT
c
FCOM INAER OI OF TFIANGLES
DO $903 \mathrm{I}=1$, ISSOUT
$X(N U N O)=R O I T T O O C O S(T H E T A)$
Y(NDND) $=$ RDUT *DSIN(THETA)
$\mathrm{NDND}=\mathrm{NDNO}+1$
903 THE TA=THETA+DTHETA
$N M=1$
$\mathrm{NN}=2$
$I=1$
$j=N S T A R$
C ORDEF NODE NUMBERS OF INNER PIPE BOUNDARY 900 NT(I)=NST(J)-1
$\mathrm{I}=\mathrm{I}+1$
$J=J-1$
IF(J.NE.1) GO TO 900
901 NT(1) $=$ NST(2)-NN
$\mathrm{N}=\mathrm{N}=\mathrm{N}+1$
$I=1+1$
IF (NT (I-1).NE.NST(1)) GOTO901
904 NT(I) $=$ NST(J+1)
$\mathrm{I}=\mathrm{I}+1$
$J=J+1$
IF J.NE.NHORZ) GC TC 904
905 NT(I) $=$ NST $($ NHORZ $)+N N$
$I=1+1$
$\mathrm{NN}=\mathrm{N} N+1$
IF (NT $(I-1)$. NE.NFIN-1) GOTO905
$906 \operatorname{NT}(I)=N S T(J)-1$
$\mathrm{I}=\mathrm{I}+1$
$J=\mathrm{J}-1$
IF (J.NE.NSTAR) GC TO OOS
NPTS=I-1
NTPIA =NDTS+NSOUT
$\mathrm{NBC}=1$
NR = NBEG
C
FORM PIPE TRIANCLES
DO. $910 \mathrm{~J}=1$. NTRIA
NRP1 $=$ NR+ 1
NBCP1 $=\mathrm{NBC}+1$
IF (NPPI•GT. (NGEG + NSOUT-1)) NRP1=NBEG
IF (NACPI.GT.NDTS) NECPI $=1$

$\mathrm{D} 2=\mathrm{DSQRT}((X(\operatorname{NRP1})=x(\operatorname{NT}(\operatorname{NBC}))) * * 2+(Y(\operatorname{NPP} 1)-Y(N T(N B C))) * * 2)$
IF (D1.LT.D2) GO TO 922
NDDE (JO. 1) =NR
NODE $(J 0,2)=N T(N B C)$
$\mathrm{NR}=\mathrm{NR+1}$
IF (NR•GT•NBEG+NSCUT-1) NR=NBEG
NODE (JC.3) =NR
GO TC 910
$922 \operatorname{NODE}(J 0.1)=N R$
NODE $(J 0,2)=N T(N A C)$
$\mathrm{NBC}=\mathrm{NBC}+1$
IF (NBC.GT.NDTS) $N B C=1$
NODE (30.3) $=$ NT (NBC)
$910 \mathrm{JO}=\mathrm{JO+1}$
DEAD NIJMPER OF EXTRA RINGS, NUMBER OF RING SEGMENTS. AND RING
RADII IN INCHES
READ (5.883) NXRNG, (NSRG(J), J=1.9), (RXR(J), J=1,NXRNG)
WRITE (6,RO1)
8O1 FOFMAT(' 'EXTRA FING RADII')
WRITE (5,44) (RXF(J), J=1, NXRNG)
44 FOFMAT (. .,8G14.7)
883 FORMAT (1012,5F10.5) EORM EXTRA RINGS
DO $881 \mathrm{~J}=1$, NXFNG
NNFG = NS OG (J)
$T H=T A=C . C$
DTHETA=? DO*DI/NNPG
$N \times R=G=N D N 7$
DO 830 $K=1$, NNDG
$X(N O N O)=E X Q(J) \times O(D S(T \vdash=T A)$
$Y(N D N O)=R X P(J) \star D S I N(T H E T A)$

NOCE (JC, 1) = NAESO $+K-1$
NOOE $(3+2)=$ NAE $6+k$
NOCE $(J, 3)=$ VONO +1
$j 0=j c+1$
NOME (J. 1) - NONO
$N J D=(J, ~ 2) ~=N a C G+k-1$
NODE (JR,3) $=\mathrm{NDNO}+1$
$\mathrm{JO}=\mathrm{JO}+1$
NONO=NDNC+1
880 THETA=THETA+ OTHETA
NODE (JO-1.3) =NONC-NNRG
NODE (JT-2,2)=NREC
NBEG = NXBEG
891 NODE (J0-2,3) $=$ NDN $C-N N R G$
ND TOT=NDNO-1
JFI $N=J 0-1$
DO 748 JこJO1.JFIN
748 SIGMM(J) $=$ SIGMA1
C CCNVERT INCHES TO METEPS
DO $277 \mathrm{I}=1$, NDTOT
$X(I)=X(I) * 2.5401 \mathrm{C}-2$
C
277 Y(I) $=$ Y(I) *2. 54010-2
WRITE DATA ON TADE
RE WI ND?
WRITF(2) NDTOT, JFIN, NS CUT, NPHMAX, NTRIA, (NODES(L), L=1,3), (NSEGM(L),
-L=1,3), (JEND (L), L=1,3), (RADI ($-1, L=1, N P H M A X),(X O(L), L=1,3),(Y O(L)$.

- L $=1,3$)

WRITE (2) ((NODE (J,L),L=1,3):J=1,JFIN), (SIGMM(L),L=1,JFIN)
WRITE (2) (X(I), I=1, NDT CT)
WRITE(2) (Y(I), I=1,NOTCT)
WRITE(2) NXFNG, (ASFG(J), $J=1, N \times R N G)$
ENDFILE2
STOP
END

SURQOUTIN: DFDER (NCCL, ANG, NT)
IMPLICIT REAL世P (A-H.O-7)
DIM-NSICN ANG(25), NT (5)
C
C
C
THIS SUEPCUTINE CRDEFS GFID NODES WHICH BRUND CONDUCTORE
DJ $2 K=1$, NCCL $A M A X=-1$.
DO $\quad J=1 . N C C L$
IF (ANG(J).LT.AMAX) GO TOI $A M A X=A N G(J)$
$A T(K)=J$
1 CONTINIE ANG(NT(K)) $=-2$.
2 CONTINUF RE TUFN
END

I YFLICIT FEAL＊3（A－H，O－Z $)$
C（I）REAS IN SOECIFICATICNS CE NODE PATTERN：

REAL＊A DS2PT，DLOG，DEIN，OCRS，KDT，THETA，ETHETA，ATCT（4）

DIMENSION X O（3），YT（3），SIGNM（42：）
DIMENSION NSRG（3）
COMDLFX CV（2）0），CSM（ACR）C），CRES（2ט（），CVAD，CVCLD（2OA），CW（3），
－BIGJ（4CO），BIGJI，RIGJ？，RHS．CBOJN（Jこ），CONJG，CDET，CT（3）
COMPLEX＊16 CTRA，CTER，CTEC．C，DUJNJG
COMPLEX +16 DCMDLX，CRTOT，S $(3,3)$ ，DP，CQ，DF，חS，VD，CVA（4）
C

DEAD DATA FROM TAPES

RE WI ND2
READ（2）NDTOT，JFIN，NSOUT，NPHMAX，NTRIA，（NDDES（L），L＝1，3），（NSFGM（L），
$\cdot L=1,3),(\operatorname{JEND}(L), L=1,3),(\operatorname{RADI}(L), L=1,3),(X C(L), L=1,3),(Y O(L), L=1,3$
－）
$R E A D(2)((N D D E(J, L), L=1,3), J=1, J F I N),(S I G M M(J), J=1, J F I N)$
READ（2）（X（I），$I=1$ ，NDT CT）
READ（2）（Y（I）， $1=1$, NDT OT）
READ（2）NXPNG，（NSRG（J），J＝1，NXFNG）
WRITE（6．44．4）NDTOT．JFIN，NSCUT，NPHMAX，NTRIA，（NONES（L），L＝I，NPHMAX），
－（NSEGM（L），L＝1，NPHMAX），（JEND（L），L＝1，3），（RADI（L），L＝1，$($ ）
444 FOFNAT（：， $14(I 3), 3(F 7,4)$ ）
$P I=3.141592653590$
NBE $G=1$
$M U C=.000001257 D 0$
SPECIFY BCUNDADY RADIUS
$R P T=15.00 * 2.5491 \mathrm{C}-2$
DTHETA $=2$ ．DC $* P I /$ NSOUT
THE TA $=0$ ．DC
NUMOUT＝NDTOT－NSOUT
C CALCULATE ADPROXIMATE ROUNDAFY PJTENTIAL FOR USE IF DESIRED
$00749 \quad J=1$ ，NSOUT
 －DSIN（THETA）－． 558700$) * * 2)$ ）＋DCMPLX（ $=.500$ ．．86EDC）＊DLOG（OSDFT（（PDT＊

－DCMPLX（－．500，－． 26500$) * \cap L O G(D S Q R T((R O T * D C O S(T H F T A)+.349000) * * 2$
$\bullet+(\mathrm{RPT} * D \operatorname{SIN}(T H E T A)+.02930 \mathrm{C}(* 2)))$
$\operatorname{CBDUN}(J)=\operatorname{CsCUN}(J) * 30 \pi$.
749 THE TA $=$ THE TA OTHETA
DO $777 L=1$ ，NPHMAX
C．READ NUMRER OF CEND．RINGS，PERMEAGILITY，AND CTND．AND INSULATION CURRENT
READ（5，2気）NCCN：MUY，FIGJ1．PIGJ2

NCOD（L）$=N C O N$
22 FORMAT（12，F1C．9，4G10．5）
WRI TE $(6,33)$ NCON，NU1，RIGJ1，RIGJ2
330FORMATIS 5 ．＇NUMSER OF RINGS WITHIN THE CONDUCTOF：$:$ I $5 / 5 X$ ．
1．MAGNETIC PERMEAEILITY：，G12．5／5X．CUPRENT NENSITY：1／1．XX，WITHINT

WRITE（6，34）XO（L），Yロ（L）
34 FOFMATR：＇＇X AT CENTFE IS＇，F3．4．＇Y AT CENTRE IS＇，FE．4）
$\operatorname{NLCCN}(L)=(2 * N C O O(L)-1) * \operatorname{NSECM}(L)$
IF（L．NE•1）NLCON（L）$=$ NLCCN（L）$+J$ ENO $(L-1)$
IF（L．NE． 1$)$ NBEG $=$ JEND $(L-1)+1$
NFI： $1=$ NLC CN（L）
NFI $2=\mathrm{JEND}(\mathrm{L})$
C（IV）ASSIGN PERMEABTLITIES
C（IV）GET VALUES D＝PEFVEAEILITY AND CJRRENT EENSITY FOF EACH ELEMENT
CALL MUANDJ（MU，FIGJ，NREG，NFI2，SIGMM，MUI，RIGJI，BIGJZ）
777 CONTINUF：
$C V A(4)=(C . D O .0 . D C)$
ATCT（4）$=\mathrm{C} \cdot \mathrm{DO}$
BIG $J 2=(0 . D N, C \cdot D O)$
SIGJI＝（C．DC．？．DA）
N3EG＝JEND（NDHMAX）+1
NFI $1=j=1 \mathrm{~N}-$ NTRI A－2＊（NSRG（1）＋NSRG（z））
$N=I 2=J F I \wedge$
C ASSIGN PIPE PERNEAEILITY
CALL MUANDJ MU．BICJ，NEET，NFI2．SIGMM，MUI，RIGJI，BIGJ？）
$N=I 1=N=I 1+1$
C INITIALIZE OIPE DERMEARILITY
Dつ $A 4$ N J＝NFII，JFIN
445 MU（ 1）$=3$ CO．＊MUO
C（V）SETSM AVN PM TO ZFFO．EM I I）＝CSM（I＋NPOTSO）．

```
            READ(5.22) IFDIPF
            JLAST=JEND (NPHMAX)
            WOOT IS THE NUMPEF TF INFIXED NODFS
            NOTST=
            IF(IFDIPF,NE.J) NOTST=YFFIDE/IFPIPE
            NPCT=NSTUT+NSOUT*(NOTST-1)
            NPOT1 =NFOT+1
            NOMTSQ=NFOT*NOOT
            WRI TE (5,8%%)
    SRO FOFMAT(", ", 'PDFOXIMATE FRUNOARY POTENTIALS')
    DO 750 J=1,NSOUT
    750 WRITE{6.5r1} CRCUN(J)
    501 FOFMAT(: ,2(514.7))
        DO 15,JJ=1,2
        DO 441 L=1.4
        CVA(L)={C.DO.O.OO)
    4 4 1 ~ A T O T ( L ) = 0 . D O ~
        DO 7 I =1 , NPOT
        DO }7\textrm{J}=1,NPOT
    7CSM(I + NPCT* (J-1))=(0.DO,R.DO)
C (VI) MAIN LOOP-CALCULATE MATFIX ENTRIES FDR EACH ELEMENT
    AND PLUG THEY INTC MATRIX EQUATIONN (SM()A)=(FM)
    FEQUIPES INPUTS: APAD,NSEG.NDDE,X,Y,MU,FIGJ
    PESULTS:CSM
        NLMNTS=JFIN
            DO 10O N=1,NLMNTS
        (1) CALCULATE O(I) AND O(I)
            XCENT=(X(NODE(N,1))+X(NODE:(N,2))+X(NODE(N, Z)))/3.OO
            YCENT=(Y(NODE(N,1))+Y(NODE (N,2))+Y(NONE(N, 3)))/3.DO
            X1=x(NODE (N,1))
            X2 =X(NODE (N,2))-XCENT
            X3=X(NODE (N,3))-XCENT
            Y1 =Y(NODE (N,1))\ldotsYCENT
            Y2=Y(NODE (N.2))-YCENT
            Y3=Y(N\capDE (N,Z))-YCENT
            J=2
            k=3
            DO 8 I=1 ,3
            Q(I)=(Y(NODE (N,K))}~Y(NODE N,N,J))
            R(I)=(X(NDDE(N,J))-X(NODE(N,K)))
            T(I)=X(NODE(N,K))*Y(NODE(N,J))-X(NODE(N,J))*Y(NODE(N,K))
            J=J+1--J/3*3
        8 K=K+1-K/3*3
        (2) CALCULATE ELEMENT MATRIX ENTRIES
            AREA= (X (NODE (N,1))* (Y (NODE(N, 3)) Y(NODF(N, 2)))
            C +X(NODE(N,2))*(Y (NCDE (N,1))-Y(NODE (N, 3)))
            00.9 I=1,3
            0099 J=1.3
            SREAL=(Q(I) &Q(J) +Q(I) #F(J))/(AREA*4.DO)
            S(I,J)= DCMPLX(SPFAL,O\bulletD)
            IF(SIGMM(N).EQ.OMO)GO TC }9
            EDCUR=(6O.DC*PI*MU(N)*SIGMM(N)*(TII)*T(J)+XCENT*(O(I)
            * *T(J)+T(I)*Q(J)) +YCENT*(R(I)*T(J)+T(I)*F(J))+(Q(I)*F(J)+R(I)*Q(J))
            **(XCENT*YCFNT+(XI*YI +X2*Y2+X3*Y3)/12.DN) +Q(I)*Q(J)*(XCENT**? +(
            - X1**2+X2**2+X3**2)/12*DN)+R(I)*R(J)*(YCENT**2+(Y1**2*Y2**?+Y3**?)
            -/12.DC)) /(AREA&2.DR)
            S(I,J)=S(I,J)-DCNDLX(O.OC,EDCUR)
        98 CCNTINUE
            S(I,J) =S(I,J)/N(J(N)
        99 CONTINUE
        9 CONTINUE
C (3) CALCULATE RIGHT HAND SIRE OF ELEMENT MATFIX
            RHS=CENJG(RIGJ(N))*AREA/3.DO
C (4) ADO ENTRIES INTO BIG MATOIX EQUATION: (SM)(A)=(RM)
            DO 10 I=1.3
            I=(NODE(N,I) GG.NOCT)GCTC 1J
            DO 11 J=1.3
                CSM(NODE(N,I)+(NCDE(N,J)-1)*NPDT)=CSM(NODE(N,I)+(NODE(N,J)-1)*NPOT
            1)+S(I,J)
        1. CONTINIJF
                CSM(NORF(N,I)+NPCTSQ)=CGN(NODE(N,I) +NPDTSOI +RHS
        1) CONTINIE
    1^O CCNTINUE
        CALL CSCLVE (CSU,CV,NOOT, CORT)
        WRITE(6,802)
    QC? FOFMAT(: 'VFCTCQ POTENTIAL VALUES')
C COFFECTICN OF FUNCTICMAL
```

```
            O0 9?O J=1 NOCT
            CV(J)=CrNJG(CV(.))
        320 WGITE(E,ENE) J,GV(J)
            NZBU=NCRN*NSEGM(1)+1
            NTH:UN =3*NZRU
            NFOT1 =NOOT+1.
            NPCTSG=NPOT 期MT
C THIS SEETICN RE - EVALUATES SM THEIN EVALUATES THE RESIOUAL
            IF OESIFED CMDRLV IS USEC HERE
            DO 200 N=1,NLMNTS
            AREA= (X(NODE (N,1))*(Y(NMOE (N,3))-Y(NODE(N, z)))
            C +X(NODE(N,2))*(V(NODE(N,i))-Y(NODE N, 3)))
            C IF(SIGMM(N(NODE(N,3))*(Y(NCDE(N,2))-Y(NODF(N,1))M)*G.D-1
                            CAICULATE AVERAGE OOTENTIAL
            L=(N-1)/JEND(1)+1
            IF(L.GT.4) L=4
            ATOT(L)=ATOT (L) + AREA
            DO 247 I=1,3
            247 CVA(L) =CVA(L)+CV(NODE(N,I))* AREA/3.
            GO TO 29
            950 CONTINUE
            29 CONTINUE
            IF(NONE.JFIN) GOTO 402
            DO 403 J=:,4
            IF(ATOT(J):EQ.O.) GO TO 4O2
            403 CVA(J)=CVA(J)/ATCT(J)
            WRITE (5,44) (AT OT (L),L=1,4)
            4 4 ~ F O F M A T ( : ~ , 4 F 1 4 . 7 ) ~
            402 CONTINUE
            I=(N.LE.JFIN) GO TO 200
                THIS SECTION IS USEO TO RECONSTRUCT THE MASTFP MATPIX IF
                CMPFUV IS USED
            DO 1.9 I=1,3
            IF(NODE(N:I) -GT. NOOT, CV(NODE(N.I))=CBOUN(NODE(N, I )-NUMOUT)
            R(I)=(X(NODE (N,J)) -X (NODE (N,K)))
            Q(I)=(Y(NODE (N,K)))
            T(I)=X(NCDE(N,K))*Y(NCDE(N,J))-X(NODE(N,J))*Y(NODE(N,K))
            6 1
            18 K=K+1=k/3*3
            DO 19 I=1,3
            D0119 J=1.3
            SREAL=(O(I)*Q(J) +R(I)*R(J))/(AREA* 4.DE)
            S(I,J)=DCMPLX(SREAL,O.DS)
            IF(SIGMM(N).EQ.O.DO) GO TO 195
            EDCUR=(6O.DO *PI *NU(N)*SIGMM(N)* (T(I)*T(J)+XCENT*(Q(I)
            **T(J)+T(I)*Q(J))+VCENT*(F(I)*T(J)+T(I)*R(J))+(Q(I)*R(J)+R(I)*Q(J))
            **(XCENT*YCENT+(X1*Y1+X2*Y2+X **Y 3)/12 0DO) +Q(I)*Q(J)*(XCFNT**2 +(
            * X1**2+X2**2+X3**2)/12.DO)+R(I)*R(J)*(YCENT**2+(Y1**2+Y2**2+Y3**2)
            - /12.DO)) /(AREA*2.D`)
            S(I,J)=S(I,J)-DCNDLX(C.DO.EDCUR)
        195 CONTINUE
        119 CONTINUE
        19 CONTINUE
            RHS=CONJG(BIGJ(N))*AREA*MU(N)/3.O
            D0 20 1 =1.3
                IF(NODE(N:I).GT. NPCT)GO TO 20
            D: 21 J=1,3
                CSM(NODE(N.I)+(NCDF(N.J)-1)#NPOT)=CSM(NODE(N,I)+(NODE(N.J)-1)*NDOT
            1)+S(I,J)
            21. CONTINUE
                CSM(NHDE(N,I)+NFCTSQ)=CSM(NODE(N,I)+NPOTSQ)+RHS
    29 CONTINUE
    2CO CONTINUE
C DUT CALL TD SURFOUTIE CMPRUV HERE IF CESIFEP
    E16 WOI TEO(G,ICG) EVA(L)
```



```
    1 NO. .12X. FAW FRTENTLAL., 2GX, FESIMUAL., 2ZX, ADJLSTEO P
    2OTENTIAL'/)
    CVA(1)=CVA(1)*ATCT(1)+CVA(O)*ATOT(2)+CVA(3)*ATOT(3)+CVAPA)*ATOT(ム)
            CVA(1) =CVA(1)/(ATOT(1) + ATOT (2) +ATOT(3) +ATOT(4))
            N二ND=NDHNAX+1
```

```
            NBEG=1
            DOT-C
            OPT=?.
            GALCILLATE LOSS FATIO
            DO 4C゙1 L=1.NEND
            DO=(C.DC,O.NO)
            DQ=(C.DC,O.DO)
            DR=(C.)O,O.DN
            DS=(0.00,0.DO)
            IF((IFPTPE.EO.G).AND.(L.EG.NEND)) SO TO 4%1
            IF(L.NE.1) NAEG= JEND(L-1)+1
            IF(L.EQ.NEND ) NEEG=JFIN*N\topRIA+i-2*(NSRG(1)+NSRG(2))
            I=(L.NE,NENN) NFIN=JFND(L)
            I=(L.EO.NEND) NFIN=JFIN
            IF(L.NE.NFND) WRITE(5,504) NEND,IFPIPE,JEND(L),NLCON(L),NFIN
    504
            DO 400 N=NBFG,NEIN
            I=(SIGMM(N).EO.?.DO) GOTO 4J?
            XGENT=(X(NODE(N,1))+X(NODE(N,2))+X(NODE(N, E)))/3.DO
            YEENT=(Y(NCOE(N,1))+Y(NCOE(N,2))+Y(NODE(N, 3)))/3.00
            XI = X(NODF(N,1))-XCENT
            X2 =X(NODE (N,2))-XCFNT
            X3=X(NODE (N,3))-XCENT
            Y1 =Y(NDDE (N,1))-YCENT
            Y2 =Y (NDDE (N,2))-YCENT
            V3=Y(NODE (N,3))-YCENT
            CW(1) =CV(NODE(N,1))-CVA(1)
            CW(2)=CV(NODE(N,2))-CVA(1)
            Cw(3)=CV(NDDE(N,3))-CVA(1)
                            CTRA=(EW(1) )*(X(NODE(N,3))*Y(NODE(N,2))-X(NODE(N,2))*Y(NODE(N.
                            -3))}+(CW(2), *(X(NCDE(N,1))*Y(NODE(N, З))=X(NODE(N,3))*Y(NODF(N.
                            -1)))+(CW(3) ) *(X(NOOE(N,2))*Y(NODE(N,1))-X(NOOE(N,I))*Y(NODE(N.
            -2)))
                CTRB=(CW(1) ) *(Y(NCDE(N.3))-Y(NODE(N,2))) +(CW(E) )*(Y(NODE(N
            -,1)) -.Y(NODE(N,3)))+(CW(3) )*(Y(NODE(N,2))-Y(NODE(N,1))
                            CTRC=(CW(1) ) *(x(NOOE(N,2))-x(NODE(N, 3)))+(Cw(2) ) *(X(NODE\N
                            -,3))-X(NODE(N,1)))+(CW(3) )*(X(NOCE(N,1))-X(NCDE(N,2)))
                            AREA= (X(NODE(N,1))*(Y(NODE(N,3))-Y(NDDF(N,2)))
                            C + X(NODE(N,2))*(V (NCOE (N,1) )-Y(NOOF(N, 彐)))
                            +X(NODE(N,3))*(Y(NODE(N,2))-Y(NODE(N,1)))
```



```
                            - CTFA))**2+(CDABS (CTFC))*2*2*(((Y 1**2+Y2**2+V3**2)/1?.DO)+YCFNT**2)
```



```
                            * 112.D() + XCENT *YCENT) +CTPR*DCUNJG(CTRA)*XCENT +CTFA*DCONJG(GTFR)*
                            * XCENT+CTRA *DCDNJG(CTFC)*YCENT +CTRC*DCONJG(CTRA)*YCENT)/(AREA*4.DO)
    505 FORMAT(* ', I4.2(G14.7))
            DQ IS THE D.C. LOSS
        DQ=DQ+AREA/SIGNM(N)*FIGJ(N)*CONJG(BIGJ(N))
        DS=DS+40.DI*PI *AFEA*RIGJ(N)* CONJG(CW(1)+CW(2)+CW(3))
            DR=DR+40.DO*DI *AFFA*(CW(i)+CW(2)+CW(3)) * CONJG(RIGJ(N)
        -1
            DP IS THE EDDY LOSS
            DP=DP+3600.DO*SIGMM(N)*VD*4.DN*PI*PI
    40%
    CONTI NUE
        COTOT=DP+DN+DCMPLX(C.OO.1.0J)*(DS-DR)
        WRI TE(5,803)
    803 FORMATC' '.5X,'D.C. LDSS', 25X,' IMAGINAFY CROSS TFRMS', 3OX,'TOTAL
    -LOSS')
            WRI TE (6,503) DQ, LR,OS,CFTCT
            POC=OO
            OQT=DQT+DO
            OPT=DPT+DD
            IF(L.NF.NEND) RACDC=(CPTOT+DCJNJG(CPTOT))/(2.DO*PDC)
            I=(L.NE,NEND) RACDC=? .+DF/DQ
503 FOFMAT(', &(G14.7))
            I=(L.NT.NEND) WFITE(5,5?E) RACDE
            WRITE (\epsilon,R"MA)
    804 FOPMAT(: ',EDDY LCSC.)
                            WFI TE (E,501) DD,FDC, AT OT (L)
4 0 1 ~ C O N T I N U E
    RACDC=1.+DDT/DOT
    WRITE(E.50C) FACCC
```

C

```
C THIS SECTION ADJUSTS PEFNEABILITY
        DO 16 J=NFI1,JFIN
        DO 17 K=1.3
        XT(K) =X(NODE (J,K))
        YT(K) =Y (NODE (J,K))
        17 CT(K)=CV(NODE(J,K))-CVA(4)
        CALL MUADJS(ẌT,YT,CT,VAL:J)
        MU(J)=.1257E-5*V AL
        15 CONTINUE
    500 FORMAT(, 'RATIO OF AC TO DC RESISTANCE IS =, G14.7)
S999 CONTINUE
        STOP
        END
```

```
            SUBROUTIN= CSMLVE(CA,CX,N,COET)
            IMPLICIT COMPLEX(-)
            REAL CABS
            FEAL*O CDARS
            DIMENSIGNIDIV(20^),JOIV(?)0), СA(i), CX(1)
            LOGICAL F1.F2
                THIS SUGFQUTINE SCLVFS A SYSTEM OF COMPLFX SIMULTANEJUS
                EQUATIONS BY GAUSSTAN ELIMINATILN
                    WFITTEN RY P.H. ALEXANDFF
                    USES MAXI MUM PI VOT STRATEGY
    F1=.FALSE.
    F2=.FALSE.
    NM1 =N-1
    AP1 =N+1
    DO 5 1=1,NP1
    IPIV(I)=I
    5
    CDET=(1.DC,O.DO)
    DO100 I =1,N
    IP1=I+1
    CELMAX=CA((JPIV(I)-1)*N+IPIV(I))
    DO25 II =I ,N
    DO(2ORS=I (NANS(SAV(J)-1)*N+IPIV(II))).LE.CABS(CELMAX)) GO TO 20
    I SA VE=JPIV(I)
    JPIV(I)=JOIV(J)
    JPIV(J)=I SAVE
    I SAVE=IDIV(I)
    IPIV(I)=IDIV(II)
    IPIV(II)=ISAVE
    CELMAX=CA((JPIV(I)-1)*N+IFIV(I))
    20 CONTINUE
    25 CONTI NUE
    IF(E1 -OR. F2) GC TO 26
    CDET=CDET*CELMAX
    IF( CABS (CDET).LE.1.D-70) FI=.TRUE.
    IF( CAASS(CDET) .GT. 1.OTC) F2=.TRUE.
    IF{=1 .CR.F2) K=I
    25 CONTINUE
    00 30 J=IP1,NP1
    30CA((JPIV(J)-1)*N+IPIV(I))=CA((JPIV(J)-1)*N+IPIV(I))/CELMAX
    CA((JPIV(I)-1)*N+IPIV (I))=(1.00,0.DO)
    0040II=1,N
    IF(II &EG. I) GOTD 36
    DO 35 J=IP1,NP1
    350CA((JOIV(J)\cdots1)*N+IPIV(II))=CA((JPIV(J)-1)*N+IPIV(II))-CA((JPIV(I)-
    11)*N+IPIV(II))*CA((JDIV(J)-1)*N+IPIV(I))
    CA((JPIV(I)-1)*N+IPIV(II))=(0.00,0.D0)
    36 CONTINIJE
    4n CONTI NUE
100 CONTINUE
    00 105 J=1,N
105CX(J)=CA(N*N+J)
    IF(F1) GO TO 110
    IF(F2) GOTO 109
    RETURN
1(.9 WRITE(5,108) K,K,N,N,CDET
1O8 FORMAT(;::: PRCBLEM ILL-CONDITIONED"% DETEFMINANT CALCULATED
    1TO THE (',I3,'.,I3.') ELEMAENT OF THIS .,I3."X',I3.' SYSTEM=(.,
    2G12.5,',',G12.5,'1.'')
        RE TUGN
110 WRI TE (6,1111) K,K,N,N,COET
111 FORMAT(: :: : MATRIX PRACTICALLY SINGULAF."/" DETERMINANT CALCU
    1LATED TO (',13,',",I3,') ELEMENT OF THIS ',I3,'X',IZ,' SYSTEM=(',
    2G12.5,',',G12.5,".'')
        RETURN
        END
```

```
    SUBPOUTINE CMPFUV(CA,CX,N, ITMAX,CQES,CRIT,*)
    I MPLIGIT GOMPLEX#1f(C)
    0IMENG?CN(OES(23),CA(112?), こx(3u), CxOLD(1C%)
    O=AL*E XNOOM,FNOFN,CDIT, CMAX
    FEAL*Y CNAFS,DSQFT
C
    THIS SUPEOUTINE MAY BE USED TJ ITFRATIVELY ADJUST THE VALUES
    CBTAINED GY CSOLVF
    WRITTEN BY P.H. ALEXANDEF
    FOR EACH ROW, SCLUTICN FNTRYY GURRESPONDING TO LAEGEST FOW
    ELEMENT IS AD,JUSTED BY SUBTRACTING RESINUAL DF OTHEP ROW
    ELEMENTS FROM THE D IGHT FAND SIDE
        NSO=N*N
        XNJPM=2.DO
        RNORM=C.DO
        DO2 I=1 N
        CRES(I)=CA(NSO+I)
        DO 1 J=1,N
        1CRES(I)=CRES(I)-CA((J-1)*N+I)*CX(J)
        XNORM=XNOQM+ (CDAES(CX(I)))**2
        2. RNORM=RNCRM+(CDAES (CFES(I)))**2
    RNOFM=DSORT (RNOPN)
    XNORM=D SQRT (XNORN)
    IF(RNORM/XNORM . LE. RRIT,) GOTJ 100
    I TER=1
    3 XNORM=O.DO
    DO 5 I=1,N
    CXOLD(I)=CX(I)
    CMAX=0.DO
    DO & J=1,N
    IF(CDABS}(CA(I+(J-1)*N)),LT. CMAX) GO TO 9
    CMAX=CDARS(CA(I+(J-1)*N))
        JMAX=J
    9 CONTINUE
    CX(JMAX)=CA(NSO+I)
    304 J=1.N
    IF(J.EEQ. JMAX.CF.CCAES(CA(I+N* (J-1))).EQ.C.DO) GO TO 1E
    CX(JMAX)=CX(JMAX)-CAI I+N*(J-1))*CX(J)
    16 CONTINUE
    CONTINUE
        CX(JMAX) =CX(JMAX)/CA(I+N*(JMAX-1))
        XNORM=XNORM+(CDAES(CX(I)))**2
    5 CONTINUE
    XNORN=OSORT (XNORN)
    DO 5 I=1,N
    IF(CDABS({CX(I)=CXOLD(I))/XNORM).GT. CPIT) GO TO 7
    6 CONTINUF
    GO TO 10
    7 IF(ITER •GT. ITMAX) GO TC 200
    DO 3 I=1,N
    8 CXOLD(I) =CX(I)
        ITER=ITER+1
        GOTO
    10 FNORM=0. DO
        DO 12 I=1,N
        CRES(I)=CA(NSQ+I)
        DO.11 J=1,N
    11 CRES(I)=CRES (I) =(A(I+(J-1)*N)*CX(J)
    12 RNOFM=FNCRM+(CDAFS(CFES(I)))**2
    RNORM=DSQRT(RNORN)
    WRITE(6,13) XNCRN,FNOFM, ITFR,CRIT
    13 FOFMATY5X, 'CONVEFGENCE WITH XNORM=',G12.5." AND RNOFM=.,G12.5," AF
    ITER ,I5:' ITERATICNS!//10X,GERFIR CRITERION=',G14.7)
    RETUFN
1CO WRITE (6,101) XNOFM,RNCRM
101 FORMAT(5X, NO ITERATICNS NECESSARY. XNOFM=*,G12.5., ;RNJFM=.,G12.5,
    1'.")
            DE TUFN
2O0 WRITE(6,2)]) CETT,ITMAX, XNRFM, QNJRM
2U1GFORMAT(SX," "CONVFQGENCE" NST ATTAINFO TO WITHIN .,G12.S., RETNEEN
    ISUCCFSSIVE ITEPATICNS FOF ALL SOLJTICN ELFMENTS WITHINI.IS.: ITEPA
```



```
        F=TUFN
        ENO
```

 C ASSIGNS VALUES D= CUNFFNT DFMSITY (SIGJ) AND PFEMEAEILITU(MU)
C TV EACH ELT MENT.

C RIGJI=CURDENT DENSITY IV CTNDUCTGR
C. BIGJ2=CUF?RNT DENSITY IN INSULATION

MLI = MAGNETIC PEFMEAEILITY
IMPLICTT CTMPLFX*?A(C), PEAL*3(A-D, D-:H, O-7)
REAL MU(4OR), MU1
REAL* 3 SIGMM (4GN)
CEMPLEX BIGJ(ACO), BIGJ1.EIGJ2
DO $1 \mathrm{~N}=$ NBFGG, NFII
MU(N) =MU1
BIGJ(N)=3IGJ1
IF(SIGMM(N)•EO.O• BIGJ(N)=8I JJ2
1 CONTINUE
3 RETURN
END
$J=2$
DO $18 \quad \mathrm{I}=1,3$
$B(I)=Y T(K)=Y T(J)$
$C(I)=X T(J)-X T(K)$
$J=j+1-J / 3 * 3$
$18 K=K+1-K / 3 * 3$
$A R E A=X T(1) * E(1)+X T(2) * B(2)+X T(3) * B(3)$
GRAD $X=(0.0 .0 .0)$
GRADY $=(\mathrm{C} .0 .0 .0)$
DO $2 \mathrm{~J}=1.3$
GRAD $X=G R A D X+B(J) * \quad(C T(J)) / A R E A$
2 GRADY=GRADY+C(J) * (CT (J))/AREA
TEMP=GRACX*CCNJG (GFADX) + GFADY*CONJG(ERADY)
MAGNITUOE OF FLUX DENSITY
ST=SORT (TEMD)
$S=S T * 1 \cdot E 4$
C VAL IS RELATIVE DEFMEAGILITY
IF (S.LT..44) VAL $=60$.
$I=((S \cdot L T \cdot 5 \cdot) \cdot A N O \cdot(S \cdot G E \cdot .44)) V A L=64.7661-4.789,63 * S+3.070968 * S * 2-$
-. $358408 * 5 * * 3$

- - Co3801045*5**3t.2253055 0 -4*S**4

- * $3 * *$?

- - $93570206-4 * 5 * * 2+, 2755760-8 * 5 * * 3$

- - $\operatorname{rarn374=-5*5**2.}$
WQITE $(6,3)$ s.VAL.L

	$7455021 E-44$	
	1－5．6944388F	1711945－－64
	CFEA1 or C4	
	7142F72＝－	$143576=-64$
	フママ3大56「－r4	4
	74C才f6	
	6－0．75471c6E－1，4	
	7 － $75412030-04$	4
	$8=0.7539040 E \times 04$	533 F－04
	9－3．7432955＝－C4	389E－ne
	－0－0．7206434F－04	$18377 E-C 4$
	$71592465-04$	21 ¢2391E－84
	2－0．69¢3537Eーく4	－197681 2E－04
	0．59951．5cc－${ }^{\text {－}} 4$	．1453649＝－04
	C． $59724835-04$	－13C2E33E－04
	$5-0.62756465-04$	． $2222132=-65$
	6－0．6766524F－04	－9501253E－05
	7－0．677ミ135F－04	－．8558395E－05
	－0．7147419E－04	1443772－c4
	7248895E－04	GS2418E－04
	$7210222 E=C 4$	－ $2041283 E=04$
	1945435－04	4
	6642351E－04	4
	3－0．6562919E－C4	
	4－0．61477645－64	9327く3E－r4
	5－0．4951749E－64	414150E－04
	$6-0.5226415 \mathrm{E}-\mathrm{C} 4$	$714701 \mathrm{~F}=05$
	7－0．59336965－04	$148834 E-85$
	8－0．648444 7E－04	$1155964 E-04$
	755618E－04	－1988952E＝04
	0－0．6698121F－C4	2365788E－34
	－0．6C67809E－04	． $2338176 E-C 4$
	6852F－04	－2010747E－04
73	$30.5334687 E-04$	－5393554E－04
	$40.528591 \mathrm{CE}-04$	91 8E－04
75	$50.5327554 \mathrm{E} \cdot 04$	$217 E=C 4$
	6 0．5376513E－04	$432111 E-24$
	7 0．5423851E－04	3
	0．5387558E－C4	$120540 \mathrm{E}-04$
79	0．51731395－04	6625－24
	0．495120CE－04	－493037E－04
	$10.4913636 E \times 04$	$50 \geq 3551=-04$
	2．4775c34－04	$1 c 9255 E-94$
83	$30.47837215-64$	－5414303E－04
	4 0．48364295－C4	－ 5476490 E 04
95	5 П．50799115－04	－55c23425－04
86	$60.5341214 \mathrm{E}-04$	0．5512126E－04
87	$70.5425584 E=04$	$0.5483923 \mathrm{E}=04$
88	8 0．5543637E－04	2E－64
89	－0．5223922F－04	655923z－64
90	$0.51 \epsilon 2 \% 3 \epsilon F=04$	598845E－04
91	1 0．4789376E－ 44	356C34E－64
92	C．44146285－n4	$2351535-04$
93	3 C．4361582F＊ 24	22001 9E－04
	C．4c27154E－64	E18565E－04
95	－0．303c¢38E－04	5083019E－04
96	$60.3947807 E 04$	5cs85c8E－04
	70.4447839 E －64	54243685－04
98	C． 5660367 E－64	3296855－04
	O．5JC81．4CE 04	$6876=04$
16	C．544E413E－04	82E－64
101	2．4932582E－C4	c89c15E－64
102	$20.4454 C 5$ cc． 64	$121=04$
123	3 －4n 13321E－64	3339385－04
05	$50.3129045 F-64$	4722885－－54
06	6．37845625－C4	$4561427 E-04$
	7 0．4687543E－04	923072E－04
	0．5230936E＝04	677082E－64
09－	－－1462346E－	183793E－．34
1 c	－-0.11960	
$11 \times$	1－C．87718495w	$918235=0 \cdot 4$
12	2－n．f721572＝－85	943516－J4
13－	3－9．4611136F－05	$819605=-64$
14.	－С．1775035E－C4	37ラ857F．． 04
$15-$	5－7．127ア160こ－ 24	2fce51＝－4
F－	－$-54569955-r 5$	315\％ç50－84

124

S5	127.4959
RFSS $=$	38．18434
STRESS	
STEESS	48
STRESS $=$	
STRESS	73.51547
STRTSS＝	73
STRESS	
STRESS	
STFESS	132．？${ }^{\text {2 }}$ 21
STRES	33.
STRFSS	1.
STRESS	31.
STマFくS	
STRESS	47.
STEESS＝	
STRESS $=$	75
tress＝	Pft．8313
STRESS $=$	
STPESS＝	$18 \% .38$
STRESS＝	
STRESS	1 Cz 18
STRESS＝	193.7
STRESS＝	81
STRESS＝	8
STRESS	
STRESS＝	111.1
STRESS	339．9
STRESS	17
STRESS＝	117.0
qess＝	236． 8
STRESS	59.23
STRESS $=$	
STRESS	43.459
STRESS	58.514
STRESS＝	46.54
STRESS	70.32
RFSS＝	
Stpess＝	44.738
Stress＝	73.25
STRESS	
STRESS＝	44.26
STRESS＝	42.038
STRESS $=$	64.978
STRE	54.70
STRESS＝	42.18
STRESS	46.647
STRESS＝	54.4586 .4
STPESS	44.603
STRESS	46.771
STRESS＝	89.910
STRESS＝	44.717
STRESS	122.2216
STRESS	
STFESS＝	115.3
STRESS＝	122.6
STRESS＝	73.256
STRE：S	115．64？ 2
StFess＝	122．6．711
STRESS	73.500
STRESS	11 F .6781
STRESS＝	121.92
StrEs $5=$	$78 . \operatorname{ce459}$
STRFSS＝	115．8376
STRESS	4E． 316
STRERS	78.49
STRESS＝	14.52694
STRESS	14.17843
stress＝	18.63443
Tress＝	14.95061
STAESS	－．0．47484
STferss＝	18.53834
STRESS $=$	15.771
STRESO－	9.059
STrescm	O．ク710
Stress＝	15.76577
S	12.7
Stresse	
Q	

Three conductors in air using a computed boundary condition and a real and imasinary formulation with a conjugate gradient solution routine.

SIMNS：A（27）

FEAL M！J（33i），MU1，ATOT（4），NIJ

CONOLEX CMOLX，CT（7）
DIMENSICN XT（3）YT（3）
C（I）5GAO I＇寸 SNGIFICATTCNS GF NDDE PATTFタN：
REWI ND2
READ（Z）NDTOT，JFIN．NSCUT，NFIMAX，INTRIA，（NODES（1．），L＝1，ב），（NSFGM（L），

-1
READ（2）（（NODE（J，L），L＝1，3），J＝1，JFIN），（SICNM（J），J＝1，JFIN）
READ（2）（ $X(I), I=1$, NOT OT）
READ（2）（Y（I），I＝1，NOTCT
READ（2）NXPNG，（NSFG（J），J＝1，NXRNG）
WRI TE（ $5,44 a$ ）NDTOT，JFIN，NSGUT，NPHMAX，NTEIA，（NODES（L），L＝1，NPHMAX），
－（NSEGM（L），L＝1，NDHNAX），（JEND（L），L＝1，ヨ），（FADI（L），L＝1，ミ）
444 FOFMAT（＇，14（I3），3（F7．4））
NLVNTS＝JFIN
N3EG $=1$
NUMOUT＝NDTCT－NSOLT
$\mathrm{ROT}=15.0 \mathrm{D} * 2.54 .01 \mathrm{C}-$ ？
$\mathrm{PI}=3.14159265359$
$M U C=.09000125700$
D THE TA $=2.0$ N＊PI／NSOUT
THE TA $=9.00$
C EEMDUTE ADFGOXINATE EOUNTARY VALUES
$00749 \mathrm{~J}=1$ ，NSMIT

$\operatorname{CROUN}(J)=\operatorname{CaOUN}(J) * D I *(F A C I(1) * \cdot(-j 4) 1) * * ~ a$
WRITE（6，24？）J，CECUN（J）
74．S THETA＝THETA DOTHETA
DO 777 L $=1$ ，NDHMAX
$\operatorname{ATOT}(L)=0$ 。
C．READ NUMGER COAD．EINGS，PERAEABILITY，AND COND，AND INSULA TOP
CURRENT
READ
O2
ONCCN，NL1，RIGJI，EIGJ
N二OD（L）＝NCEN
22 FOCMAT（I2，FiG．0，4G1（．5）
WRI TE（E，33）MCON，NUI，RIGJI，EIGJ2
33 CFOFMAT（1EX，NUMEEF OF FINGS WITHIN THE CONCUCTOF：,$~ I 5 / 5 X$,

$\operatorname{NLCON}(L)=(2 * N C O D(L)-1) * N S E G M(L)$
IF（L．NE，1）NLCON（L）＝NLCTN（L）＋JENJ（L－1）
$I F(L \cdot N E \cdot 1)$ NBEG $=N E D(L \cdots 1)+1$
NFI1＝NLCCN（L）
NFI $2=\mathrm{JEMD}(\mathrm{L})$
C（IV）GET VALUES O＝DEPMEAFILITY AND UURENT DENSITY FOF EACH FLEMENT
CALL MUANDJ（MU，BIGJ，NEEG，NFII，JFI2，MUI，BIGJ1，BIGJE）
110 CONTIMUT
777 CONTINUE
6
SPECIFY DIPE CUFOFNT AND EERAËABILITY
BIGJ2 $=(\% \cdot 0 \cdot 0 \cdot D 6)$
BIGJ1＝（\％．0），0．0））
NGEG $=5$ NC（NFHMAX）+1
NFI $1=J=I N-N T R I A$
$N=12=J=1 \mathrm{~A}$
CALL JUANO J（MU，RIGJ，MEEG，NFI1，NFIR，MU1，EIGJ1，EICJ2）
C（V）SET SM AND RM TO ZEFRGPM（I）＝CSM（I＋NPOTSQ）
FEAD（5，35S）IFPIOF
$N=11=N=11+1$
$\mathrm{NO}-3 T=$ ？

NOCT＝MOCTANSIIT \＆（NMTCT－1）
NFITGZ－AFOT＊NDOT
NOO2＝？＊NFった

401301:1

```
            MOOTC2=AFOR *NHO2
            N3POC=O MNOTGQ
    &5 FSENAT(IG)
            NCFAT=1
C INITIMLIET LJCATIEN, VALUE NNO SMLUTIEN &EGAY
        001M21J=1,?2&?
        LJC(J)-*
        VAL(J)=!
        IF(J.GT.3)O)GOTC1:G1
        CuF(J)=O
    1*1 CONTINUF
C
FGRNULATE FINITE ELFMENT MATRIX ENTRIES
    DO 1OC N=1,NLMNT S
        XCENT=(X(NODE(N,I))+X(NCDF(N,Z))+X(NOCE(N, 彐)))/\Xi.DG
        YCENT=(Y(NCDE(N,1))+Y(NCDF(N,2))+Y(NODE(N, 3)))/3.DT
        X1 = X(NODE NN,1))-XCENT
        X2 =x(NODF(N,2))-XCENT
        X3=X(NOCE (N,3))-XCENT.
        Y1 =Y(NOOE (N,1))-YCENT
        YZ =Y(NOOE (N,2)) YCENT
        V3=Y(NODE(N,Z))-YCENT
C (1) CALCULATE O(I) AND F{I)
            AREA = (X (NCDE(N,1))* (Y(NCDE(N,3))=Y(NCDE(N, 2)))
```



```
        C,_,_+_(NODE(N,3))*(Y(NCDE(N,2))-Y(NODE (N,1,))))*E.D-1
            J=2
            DO BLI=1,3
            Q(I)=(Y(NODE(N,K))=Y(NODE(N,J)))
            R(I)=(X(NOUE (N,J)) -X (NODE (N,K)))
            T(I)=X(NODE(N,K))*Y(NCOE (N,J))-X(NDDE(N,J))*Y(NODE(N,K))
            J=J+1*NJ/3*3
        8. K=K+1-K/3*3
C (2) CALCULATE ELEMENT MATPTXENTRIES
            COMPUTE CRNDIJCTER AREAS
            A(N)=\\GammaCA
            IF(N.GT.JFND(NDHNAX))GOTC2O
            DJC5OL=1.3
            IF(N.GT.NLCCN(L).AND.N.LE.JEND(L))GOTO29
            IF(N.GT. NLCCN(L))GOTMOSR
            ATOT(L)=ATGT (L) + AREA
            GOTO2?
        950 CONTINUE
        29 CONTINUE
            DO - I=1,3
            DO O J=1,3
            EDCUR(I,J)=0.0
            S(I,J)=(Q(I)*O(J)+E(I)*F(J))/(AR&A*&\bullet)
            S(I,J)=S(I,J)/MU(N)
            IF(SIGMM(N)&EO.O.) GOTTCO
            EDCUP(I,J)=(6, D, wDI*MU(N)*SIGMM(N)* (T(I)*T(J)+XCENT*(Q(I)
            * T(J)+T(I)*Q(J))+YCENT*(F(I)*T(J)+T(I)*F(J))+(O(I)*F(J)+Q\I)*Q(J))
            -*(XCFNT*YCENT+(X1*Y1 +X2*Y2+X 3*Y 3)/122.DO)+O(I)*Q(J)*(XCENT&#2+(
```



```
            - /12.DO)) /(AR=A*E.DO)
            EDCUR(I,J)=ENCUF (I,J)/NU(N)
            G CONTINUH
C (3) CALCULATE FIGHT HANO SICF OF ELGMENT MATFIX
            RHS=?IGJ(N)*AREA/Z\bulletDG*MU(N)
            RHS=PHS/NU(N)
C (4) ALD ENTEIES INTC 3IG MATEIX EQUITIJN: (SN)(A)=(FM)
            IF(N|EQ*(JSND(NPFUAX)+1)) NSFIV=NSFAR-4
            IF(N&ENEI) GO TO1957
            IF((SIGNN(N).NE•G.).ANE.(CIGMA(N-1).EQ.E.I)NSNOW=NSFAF
    1857 CONTINUE
            DO IO I=1,3
            I=(NODE(N,I).GT.NFOT)GOTOIL
            SO11 J=1,3
```



```
            1LT:1.r-1,GOTM11
C CRMFUTG LMATICN AHEF= MCN-7PFR VILUL OCOUES
```



```
            IF(|.LG.JH)(IOHNAX)) NGF:N=!NS=AR-4
    2%7 NSETQ=NSIN+4
```



```
C -HOK TO SO IF ENTYY mOF THIS LOGATIJM ALFEGSY EXISTS
    SHCK TM SOT IF "N
    k=NN
    IF(LCC(NN).EG.LJCTME)GOTCS51
    85C CCNTINE
        IF(M.LH.JZND(NFHNAX)) GCTC 352
        I=(SIGAM(N1).NE.G.) Gr -0 12&う
        IF(NSSTH.EC|NS=AF) GOTO Q=4
        NSFFR=1SFAR-2
        DO }953\mathrm{ NN=NSSTR,NSFFG.2
        K=NN
        IF(LNC(NN).EO.LOCTMD) GOTC ESI
    233 CGNTINUS.
        GO T= 354
    185J IF(NSNIW.EFG.NSFAF) GO TO }85
        NSFFF=NSFAR-4
        DO }856\mathrm{ NN=NSNOW,NSFFF,4
        K=NN
        IF(LCC(NN).EQ.LOCTMP) GOTO.851
    356 CONTINUF
C
    852 LOC(NSSAR) = LCCTMF
    VAL (NSFAF) =S (I,J)
    NSFAF=NSFAR+1
    LOC (NSFAR) =LOCTMF+N2PSQ+NPOT
    VAL(NSFAR) =-S(1, ()
    NSFAR=NSFAF+1
    LOC (NSEAR) = LDCTMF+NPOT
    VAL(NSFAQ) = EOCUF(T, J)
    NSFAO=NSFAR+1
    LOC(NSFAR) = (NODE (N,J)-1)*NPOZ+NOUE (N,I) +NPCT
    VAL(NSFAR)=-EDCUF(I,J)
    NSFAR=NSSAR+1
    G0 ro11
C
    851 VAL(K)=VAL(K)+S(I,J)
        VAL(K+1)=VAL(K+1)-S(I,J)
        IF(SIGMM(N).EQ.0.) GOTO 11
        VAL}(K+2)=VAL(K+2)-EDCUE (I,J
        VAL}(K+3)=VAL(K+3)-FDCUR(I,J
        GOTOM1
C
    854 LOC (NSFAR)=LOCTMF
        VAL (NSFAR)=S(I,J)
        LOC(NSFAR+:)=LOCTMF+NCOT +N2PSQ
        VAL(NSFAR+1)=-S(I,J)
        NSFAR=NSFAF+2
        GO TO 11
C
    z11 CTEMF=OECUN(NDDE (N,J)-NUNCUTT)
        CBF(NODE(N.I)+NPCT)=CRE(NGEE(N,I) +NPOT)+S(I,J)*AMMAG(CTEMP)
        CBR(NODE(N,I))=CER(NOOE(N,I))-S(I,J)\not=FEFL(CTFMO)
    11 EONTINUE
        INESRT SCURCE ENTEIES
            CEF(NODE(N,I))=CER(NDDE(N,I))+REAL (RHS)
            CBF(NDOZ(N,I) +NDCT)= EF(NOOE(N,I)+NPOT)-AINAG(FHS)
            10 convinuaz
            IF(N.EZO.JENC(NPHN4X)) NSFIN=NSFPR-4
    1C) CONTINK
        NSEAO=A5FAO-2
        *21T:(6,5)?)(ATC+(1),L=1,?)
        !-r=
            TML=1.O-7
            Nf1T(6,*-) NSFC5
```



```
C CALL CONJSGAT# COASIFNT SRLUTICN HOUTINE
        GALL CHGBH(yAL,LCR,NOCAO,CVO,GHF,NDOR,TCL,IFF)
        IF(I*F*O%)SOT0333
        W-IT%(%,2つ2)
    4%
```



```
        L=1
        NOFG=?
Oに
        CALCILATE AVEPAGE DPTENTIAL VALJES
        DO 246 LL=1.3
        L=LL
        CVAR(LL)=).
        CVAI (LL)=?
        I=(LL.NIL1)NGEG=JENO(LL-1)+1
        NFIN=NLCCN(LL)
        DO24EN=NBEG,NFIN
        AREA=A(N)
        OO242,I=1,3
        IF(NODE (N,I).LE.NFCT) GOTOC4&
        CVR(NODE(N,I))=REAL(CROUN(NODE(N,I)-NUMMUT)
        CVR(NDDE(N.I) +NPET)=AIMAG(CBUJN(NODE(N,I)-NUMOUT))
    645
    CONTINJF
    CVAR(L) =CVAF(L) + CVR(NOLE(N,I))%AREA/E.G
    242CVAI(L)=CVAI(L)+CVF(NODE(N.I)+NPUT)&AREA/\Xi.
    245 CONTINUE
        CVAR(L)=CVAR(L)/&TCT(L)
        CVAI(L)=CVAI(L)/ATCT(L)
        WRITE(G,247) L,CVAF(L),CVAI(L)
    246 CENTINJF
    CLLCULATE AVEPACE VALUE FOR PIPE
    ATDT(4)=0.0
    CVAF(4)=0.0
    CVAI (4)=0.
    IF(IFPIPE.-Q.D) CO TO 443
    DO441 N=VFII,JFIN
    ATOT(a)=ATOT (4)+A(N)
    OO442}K=1,
    CVAR(4)=CVAR(4)+A(N)*CVR(NCDE(N,K))
    442 CVAI(4)=CVAI(4)+CVF(NODE(N,K)+NFJT)*A(N)
    CONTINU=
    CVAR(4)=CVAR(4)/&TCT(4)
    CVAI (ム) =CVAI (4)/ATCT(4)
    443 LDI=4
    WRITE(G,247)L\capI,CVAR(4),CVAI(4)
    WQITE(5,0%6)
    8\O FOFMAT(: 'VECTCR FOTENTIAL VALUSS')
    DD 212 I =1 NDOT
    CVI(I)=CVO(I +NPOT)
    212 WRITE(E.247) I.CVF(I),CVF(I+NDOT)
    L=1
    247 FOHNAT(* ,I3.2G14.7)
    NENO =NPHMAX+1
    NSEG=1
C
    CV&&(1)=CVAP(1)*ATGT(1) +CVAR(2)*ATOT(2)+CVAF(E)*ATCT(3)+CVAR(4)*
    -ATOT(4)
    CVAR(1)=CVAF(1)/(\DeltaTOT (1) +ATOT(2) +ATOT(\exists)+ATRT(4))
    CVAI(I)=CVAI(I)* ATCT(I)+CV\DeltaI(2)* ATOT(2)+CVAI(3)*ATOT(3)+CVAI(4)*
    -\triangleTCT(4)
    CVAI(1)=CVAI(1)/(ATOT(1)+ATOT(2)+ATOT(3)+ATOT(4))
    CALCIJATE LCSS FATIO
    07401J=1,NENO
    OO=(,O.,O.O)
    O\Omega=(&.N!O.OM)
    Di*=(:0):0.Oi)
    O}=(\cdots,9,0
```



```
    Ir(J.1. 1)Nm-G=JFNの(1-1)+!
    IF(J.Ed|NGN!)\GRC=JFIN-ATFEIA+1
```

```
    -(1.N-N-ND) yE IN=NrcN(J)
```



```
    OC4NON=NHEG.NFIN
    4:2FA=4(N)
```



```
    YCENT=(Y(NORT(V,1))+Y(NORE(N,Z))+Y(NODE(N, コ)))/7.0
    xi = x(NJ0: (N,T) )-x-cNT
    XE=x(NDOE(N,?) )-xCTNT
    x =x(N)DL(N.3))-XCCNT
    Y1=Y(N)OE(N,!))-YCENT
    Y?=Y(NOOE(N,P))-YC=N!T
    Y3=Y(NOCE (N,Z) ) -YCENT
    CWF(1)=CVO(NODE(N,?))-CVAF(L)
    CNI(1)=CVI(NODE(N.1))-CVAI (L)
    CNF(2)=CVQ(NODE(N,?))-CVAF(L)
    CNI(2)=CVI(NOD=(N,2))-CVAI (L)
    CWF(3)=CVE(NODE(A,3))-CVAF(L)
    CWI (3) =CVI(NC!)E(N,3)) -CVAI (L)
    CWIT=CWI(1)+CWI(2)+CWI(3)
    CWRT=CWR(1)+CWR(2)+CWF(3)
    CTFA=(CMPLX(CWR(1),CWI(1)))*(X(NUUE(N, 3))*Y(NODF(N,2))= X(NODE(N,
    C2))*Y(NODE (N,3)) )+(CMPLX(CWR(2),CNI(z)))*(X(NDDE(N,1))*Y(NODE(N,
    C3))-X(NODE(N,3)) कY (NODE(N,1))) +(CMPLX(CWP(Z), CWI(E)))*(X(NODE(N,
    (2))*Y(NODE (N,1))-X(NCDF(N,1))*Y(NODE (N,E)))
    CTFB=(CMPLX(CWP(1),CNI(1)))*(Y(NJUE(N,3))-Y(NODE(N,z)))+(CMPLX(C
    CWR(2),CWI(2))) = (Y(NODE(N,1)) -Y(NJDE(N,3))) +(CMDLX(CWR(?),CWI(
    C3)))*(Y(NODE(N,2))-Y(NCDE (N,1))
    CTFC=(CMPLX(CWR(1),CWI(1)))*(X(NODE(N, \Xi))-X(NODE(N,Z)))+(CMPLX(CW
    CR(2),CW1(2)))*(X(NODE(N,3))-X(NODE(N,1)))+(CMPLX(CWF(3),CWI(
    (3)))*(X(NODE(N,1))-x(NODE (N,2)))
            VP=((CAGS(CTFB)) **2*((x1**2+x2**2+x3**2)/12.+XCENT**2) +(CAES(
            CCTRA))**2+(CABS(CTFC))**2*(((Y1**2+Y2**2+Y 3**2)/12.)+YCEVT**?)
            C+(CTRB*CCNJG(CTRC)+CTRC*CCNJG(CTRB))*(((X1*Y1+X2*Y2+X 3*Y 3)
            C/12.) +XCENT*YCNNT) +CTRG*CCNJG(CTRA)*XCENT+CTFA*CONJG(CT:3日)*
    CXCENT+CTRA*CDNJG(CTFC)*YCENT +CTRC*CONJG(TTFA)*YCENT)/(AFEA*4.)
            DQ=OO+AREA/SIGMM(N)NRIGJ(N): CONJG(3IGJ(N))
            DS=DS+4%.*RI *ARE&*RIGJ(N)*CMPLX (CNRT, -CWIT)
            OR=CR+&Q.*PI*AREA*CMPLX(CWET, CWIT)*CCNJG(EIGJ(N))
```



```
    400
            CPTOT=DP+OQ+ CMPLX(E.0., 1.OR)*(UU-DP)
            WRITE(5,5:3) OQ,[R,OS,CFTCT
            PDC=
            PDC=DO
            RACDC=(CPTCT+ CCNJG(CPTOT)//(2.CU%DDC)
    5)3 FOFMAT(: , 3(G14.7))
            RACDC=(DP+DDC)/DCC
            WRI TE (6,590) PACEC
            WRITE(5,5心1) DP,FOC
    4C1. CONTINUE
    5OU FOGMAT(///',',FATIO CF AC TO DC EESISTANCE IS,,G2O.8///)
    501 FOQMAT(' 1,2G20.8)
            IF(IFPIPE.EQ.O) GOTO.9000
non
                    CALCULATE NEW PIPE DEFMEAEILITY
    DO 16 J=NFI1,JFIN
    0017 K=1,3
    XT(K) =x(NODE(J,K))
        YT(K)=Y(N)\capE(J,K))
    17CT(K)=CNPLX(CVR(NODE(J,K)),CVI (NOOE(J,K)))
    CALL MUANIS(XT,YT,CT,VAQ,J)
    16 NU(J)=.1257E-5*V&O
    15 CONTINUE
OOg9 CENTINUL
    STJO
    END
```

SU3E JUTIN CNORH（A，L，NNTFE，X，A，N，IPS，IEF）
FEAL＊3 R，O，Y，ALPHA，F二TO，SUM，SUM1，LAMECA，DSQRT，DF，T，GAMMA F－AL＊＝©SO，ETOT，XLSの

－）XLS（2 30$)$
WरITF $(6, z)$ NNTRO
2 FOFMAT（／／／＇•\＆OX．IE／／／）
$O R=U \cdot D O$
$0013=1$ ，N
C INITIALIZE RESIDUAL FO＝E－AX $F(J)=$（J）
$P(J)=9.00$
$D R=A(J) \div P(J)+D R$
$Y(J)=3.100$
$T(J)=0.00$
C INITIALIZE SOLITIION VECTOF
$1 \quad x(J)=0.00$
DO $12 J C=1,3$
DO $15 \mathrm{~J}=\mathrm{i}$ ，NNZ？O
$K R=(L(J)-1) / N+1$
$K C=L(J)-(K R-1) * N$
C INITIALIZE DIPECTICN PO＝AOFE
C CALCULATE TO＝A•FO
$T(K C)=T(K C)+A(J) * P(K F)$
IF（KR．EQ．KC）GOTO 15
$P(K R)=F(K R)+A(J) \neq R(K C)$
$T(K R)=T(K R)+A(J) * R(K C)$
15 CONTINUE
$R S Q=0 . D O$
$001.6 \quad \mathrm{~J}=1, \mathrm{~N}$
$16 \mathrm{RSQ}=\mathrm{RSQ}+\mathrm{F}(J) * \mathrm{R}(J)$
RTCT $=1$. DO／FSO
DO $17 \quad J=1, N$
$17 \times \operatorname{SO}(J)=X(J) / \operatorname{RSO}$
$00101 \mathrm{~J}=1 \mathrm{~N}$
DC4J＝1，NNZF口
$K 2=(L(J)-1) / N+1$
$K C=L(J)-(K R-1) * N$
C CALCULATE $Y=A P$
$Y(K Q)=Y(K R)+A(J) * P(K C)$
IF（KR．FG．KCIGOTOA
$Y(K C)=Y(K C)+A(J) \neq P(K=)$
4 CONTINUE
SUN $=C . D O$
LAMHDA $=$ ． 10
GAMMA $=0.00$
C GAMMA $=(A \cdot R) * * 2$
C．LAMBDA $=(A P) * * 2$
DO $6 \quad J=1, N$
SUN $=S 1 J M+P(J) * Y(J)$
$G A M M A=G A M M A+T(J) \neq T(J)$
6 LAMBDA $=$ LAMBDA $+Y(J) * Y(J)$
C $A L P H A=(A \cdot P) * * 2 /(A D) * * ?$
$A L P H A=G A M M A / L A M B C A$
DO $\quad \mathrm{J}=\mathrm{i}, \mathrm{N}$
$T(J)=0.00$
$x(J)=X(J)+A L G H A * F(J)$
C．NEW RESIDUAL $P=Q-A L F H A * A D$
$8 R(J)=F(J)=A L$ OHA＊Y（J）
DO $7 \mathrm{~J}=1$ ，NNZFO
$K R=(L(J)-1) / N+1$
$K \approx=L(J) \cdots(K R \cdots 1) * N$
C CALCULATE T＝A＇R
$T(K C)=T(K C)+A(J)$ 加 $(K \subset)$
IF（K2．EO．KC）GO TO 7
$T(K Q)=T(K R)+A(J) \neq Q(K C)$
7 CONTI NUS
$F S Q=0 . 万 0$
SUM1 $=0.02$
c CALGULAT：SINMI＝（A•F）$\# * 2$
$2914 J=1, N$

14 SUM1＝S $111+T(J) * T(1)$
OTOT＝1．［：／ $\mathrm{CSO}+\mathrm{ET} \mathrm{CT}^{\top}$

C $D=A \cdot 2+H=T+$ NFW DIGFCTICN

```
    XLSO(J)=XLSQ(J)+X(J)/F=SO
    Y(J)=`.\Gamma.)
        GP(J)=T(J)+BETA*口(J)
        SUM1=S!NM1/DA
        WRITE(5,13) S!JM1 ,SUN
        13 EOFMAT(, ,.10X,G15.8.12X.G1j.8)
        IF(SCM1.LT.EPS)GCTC11
    10 cONTINIUE
    C RE-INITIALI ZE
        DO3J=1,NNZRO
        KR=(L(J)-1)/N+1
        KC=L(J)-(KFL-1)*N
    C Y=AX
        Y(KP)=Y(KR)+A(J)#X(KC)
        IF(K?.EO.KC)GOTOB
        Y(KC)=Y(KC)+A(J)*X(KP)
        3 CONTINUE
    *DOSJ=1,N
    C RESIDUAL Q=F-AX
        R(J)=B(J)-Y(J)
        XLSG(J)=XLSG(J)/ETCT
        WRITE(G,13) XLSO(J),X(J)
        T(J) =0.D,0
        P(J)=0.DO
    5 Y(J) =0.00
    12 CONTINUE
        IF(SUM1.GT.EPS) I ER=1
        OO 1R J=1,N
    18 X(J)=XLSQ(J)
    11 CONTINUE
        RETURN
        END
```


APPENDIX 5
 FLUX DENS ITY FROM VECTOR POTENTIAL

Once the nodal potentials have been determined by solving the matrix equation, the flux density is easily found. The potential in each triangle is given by $\bar{A}(x, y)=\left\{\left(\frac{a_{i}+b_{i} x+c_{i} y}{2 \Delta}\right) A_{i}+\left(\frac{a_{j}+b_{j} x+c_{j} y}{2 \Delta}\right) A_{j}\right.$ $\left.+\left(\frac{a_{k}+b_{k} x+c_{k} y}{2 \Delta}\right) A_{k}\right\} \widehat{a_{z}}$ $\bar{B}=\nabla \times \bar{A}=\frac{\partial A}{\partial y} \widehat{a_{x}}-\frac{\partial A}{\partial x} \widehat{Z_{y}}$
$|\bar{B}|=\frac{1}{2 \Delta} \sqrt{\left(b_{i} A_{i}+b_{j} A_{j}+b_{k} A_{k}\right)^{2}+\left(c_{i} A_{i}+c_{j} A_{j}+c_{k} A_{k}\right)^{?}}$
where the b_{i} 's and c_{i} 's have been previously defined.

APPENDIX 6

Typical three cable finite element patterns.

FINITE ELEMENT PATTERN GENERATOR

CLOSE TRIANGULAR CONFIGURATION

THICK PIPE

CRADLED CONFIGURATION IN A THICK PIPE

FINITE ELEMENT PATTERN GENEFGTOF

THIN PIPE - CRADLED

FINITE ELEMENT
 FATTEAN GENERGTOR

SEGMENTED CONDUCTORS

BIBLIOGRAPHY

1. AIEE Committee Report, A.C. Resistance of Pipe-Cable Systems With Segmental Conductors, AIEE Transactions, 71, pp. 393-414, (1952).
2. Stevenson, W. D. Jr.. Elements of Power System Analysis, McGraw-Hill, Toronto, (1962).
3. Arnold, A. H. M., Eddy-Current, Losses in SingleConductor Paner-Insinlated Lead Covered Unarmoured Cables of A Single-Phase System, Journal. IEE, 89 , p. 636, (1942).
4. Arnold, A. H. M., Eddy-Current Iosses In Multi-Core Paper-Insulated Lead-Covered Cables, Armoured and Tharmoured Carryine Ralanced 3-Ehase Currents, Tournel,
5. Wiseman, D. J., A.-C. Pesistance of Terse Cize Conductors in steel pine or Conduit, NTEE Transactione, 67, pp. 1745-1758, (1948).
6. Meyerhoff, I., and Eager, G. S. Ir., A-C Resistance of Segmental Cables in Steel Pipe, AIEE Transactions, 万8, pp. 815-825, (1949).
7. Neher, J. H., and McGrath, M. H., The Calculation of The Temperature Rise and Load Capability of Cable Systems, AIEE Transactions, 76, pp. 752-772, (1957).
8. Stoll, R. L., Numerical Method of Calculating Eddy Currents in Nonmagnetic Conductors, Proc. IEE, 114, pp. 775-780, (1967).
9. Silvester, P., Modal Network Theory of Skin Effect in
10. Silvester, P., A.C. Resistance and Peactance of Isolated Rectangular Conductors, IEN Trans Power Apparatus and Systems, 86, pp. 770-774, (1967).
11. Silvester, P., The Accurate Calculation of Skin Effoct in Conductors of Comnlicated Shape, TEEE Trans. Power Apparatus and Systems, 87, pp. 735-741, (1968).
12. Silvester, P., Skin Effect in Mxltiole and Dolynhase Conductors, IEEE Transactions on Power Apparatus and Systems, 88, pp. 231-237.
13. Zienkiewicz, 0. C., and Cheung, Y. K., Finite Elements in The Solution of Field Problems, The Engineer, 220, pp. 507-510. (1965).
14. Zienkiewicz, 0. C., The Finite Element in Engineering Science, McGraw-Hill, London, (1971).
15. Silvester, P. and Pafinejad, P., CurviIinear Finite Flements For Two-Dimensional Saturable Magnetic Fields, IEEE Transactions on Power Apparatus and Systems, 93, pp. 1861-70, (1974).
16. Ergatoudis, I., Irons, B. M., and Zienkiewicz, O. C., Curved, Isoparametric, "Quadralateral" Elements For Finite Element Analysis, Int. J. Solids Structures, 4, pp. 31-42, (1968).
17. Richards, 0. J. and Wexler, A., Finite Element Solutions Within Curved Boundaries, Ine Transactions on Microwave Theory and Techniques, 20, (1072).
18. Zienkiewicz, 0. C., Bahrani, A. K., and Arlett, P. T., Solution of Three-Dimensional Field Problems by The Finite Element rethod, The Engineer, 224, (1967).
19. Arlett, P. I., Bahrani, A. K., and Zienkiewicz, O. C., Application of Finite Elements to The Solution of Helmholtz's Equation, PRoc. IVE, 115, (1968).
20. Zienkiewicz, O. C., and Parekh, C. J., Transient Field Problems: Two Dimensional and Three Dimensional. Analysis by Isoparametric pinite Elements, International Journal for Numerical Methods in Engineering, 2, pp. 61-71, (1970).
21. Bruch, J. C. Jr., and Zyvoloski, G., Transient Two Dimensional Teat Conduction Problems Solved by The Finite Rlement Method, International Iournal for Numerical Methods in Engineering, 8, pp. 481-494, (1974).
22. Hazel, T. G. and Wexler, A., Variational Formulation of The Dirichelet Boundary Condition, ILEE Trans. Microwave Theory and rechnqques, 20 , pp. 385-390, (1972).
23. Cermak, I. A., and Silvester, P., Solution of 2Dimensional Tield Problems by Boinतary Relaxation, Proc. IEE, 115, pp. 1341-1348, (1968).
24. Sandy, Ta and Sage, Ti Tse of Dinite Difforence
Approximations to Partial Dfferential galations $\frac{\text { Havina Borndaries at Tnfinity }}{\text { Theory Tech., The } 10, \text { pr. } 484-166 \text {, }(1971) \text {. }}$
25. Silvester, P. and Hsieh, M. S., Finite-Sloment Solution of 2-Dimensional Exterior Qield Problems, Proc. TEE, 118, pp. 1743-1747, (1971).
26. Hsieh, M. S., Finite Element Solution of Tro-Dimensioral Electrostatics Froblems, M. Eng Thesis, McGill University, (1971).
27. McDonald, B. H., and Wexler, A., Finite Element Solution of Unbounded Fisld Problems, IEEE Trans. Microwave Theory and Techniques, 20, pp. 841-847, (1972)
28. Csendes, Z. J., A Note On The Finite Element Solution
 Theory and Techniques, 24, pp. 468-473, (1076).
29. Beckman, F. S., The Solution of Iireer Tantiond by The
 Wiley, New York, (1960).
30. Shridhar, m., personal communication, (Febryary, 1975).

VITA AUCTORIS

1953- Borm in windsor, Ontario on January 21.
1971- Graduated from J.I. Forster Collegiate Institute

1975- Graduated with B.A.Sc. from the University of Windsor

1976- Candidate for M.A.Sc. degree at the University of Windsor

