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ABSTRACT

Molecular weight distribution curves have been 
determined for two samples of polystyrene by fractionating 
them using a conventional single stage precipitation 
technique, followed by the measurement of the average 
molecular weights of the fractions by visconetry. The 
experimental results obtained were analysed by the usual 
method of plotting cumulative distribution curves. 
Subsequently the distribution curve for a mixture of 
aliquots of the two samples was obtained, and was found 
to agree with the expected curve which would be the sum 
of the curves for the two constituent samples. This 
finding confirms the internal self-consistency of this 
method for determining molecular weight distribution 
curves.

A comparison of the distribution curves of the 
individual samples with the curves predicted by postulated 
kinetic mechanisms of polymerization suggests that the 
growing radical chain is terminated by a process of 
combination of radicals, rather than by one of dispro­
portionation.

11
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CHAPTER I 

INTRODUCTION

General

Polymers are substances, the molecules of which 
consist of a large number of repeating units. Generally 
speaking, there are two kinds of polymer, natural polymers 
and synthetic polymers. The former are naturally occur­
ring and the latter are the result of polymerization re­
actions. The natural polymers, such as cellulose and 
proteins are found in plants, etc., and are of great im­
portance to us in food, clothing and so forth; synthetic 
polymers are obtained by the polymerization of a number 
of compounds, in which the molecules, i.e., the monomer, 
of one or several substances are linked together in the 
course of chemical reactions to form molecules with long 
chains of repeating units. Processes of polymerization 
reactions can be divided into condensation and addition 
polymerization.

Condensation polymerization occurs when conden­
sation takes place between two polyfunctional molecules 
to produce a larger polyfunctional molecule, with the 
elimination of a small molecule. For example, the for­
mation of a polyester and water, from a dibasic acid and 
dibasic alcohol:

0 0 0 0 
H0(CH2)%0H + H0è(CH2)yC0H ---- H0(CH2)%0C(GH2)yC0H + H2O
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2

The reaction continues until one of the reagents is com­
pletely consumed.

Addition polymerization involves chain reactions 
in which the chain initiator may be an ion, a photon or a 
free radical. The free radical is usually formed by the 
decomposition of a relatively unstable material, such as 
benzoyl peroxide which easily decomposes as shown below.

0 0 0
Q S - o - o A Q  — 2 Q L 0.

initiator free radical

In this case, benzoyl peroxide is called an ini­
tiator. The free radical is capable of reacting to open 
the double bond of a vinyl monomer and add to it, with 
an electron remaining unpaired;

0 H
+ CH2=0HX ---<^^C-0CH2-Ç*

0 X
free vinyl growing polymer

radical monomer chain

In a short time, usually much less than one second, many 
more monomers add successively to the growing chain. 
Finally, the growing chain is terminated and forms a 
stable polymer molecule by losing the free radical to 
another molecule, or by reaction between free radicals 
to annihilate each other's growing activity. For ex­
ample:
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< ^ C - 0 (CH2CHX)^ + S -- ^  S« + polymer

growing solvent
radical molecule

2 ̂  ^C-OÇCHgCHX)^* — ">- inactive products
0

In either type of polymerization, the length 
of a chain (a polymer molecule) is determined by purely 
random events, and hence, the polymeric product will 
contain many molecules having many different chain 
lengths. The degree of polymerization, DP, is defined 
as the number of monomers contained in a chain. The 
resulting distribution of molecular weights can be roughly 
determined experimentally.

General Kinetics of Free Radical Polymerization

There are at least three elementary reactions 
involved in an addition polymerization, namely, initia­
tion, propagation and termination.

1. Initiation

In this step, the monomer is activated by the 
initiator such as light (photon). Catalyst !(free radical) 
and thermal effect, for example.
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a) by thermal effect

CHZ=CH2 + heat 
monomer

•CH2“CH2 »
diradical

b) by light

CHX=CH2 + photon X» + H2C=CH. 
radical

and c) by catalyst
0 () 

CgH^—C“0—0—C—CgH^- 
catalyst

0
- 2C6H5-Ü-O. - 
free radical

2C6E5'+ 2002

GHX=CH2 + CgHg'
monomer

- G6H5-CH2CHX 
growing radical

2. Propagation

The polymerizable monomer once activated to a 
free radical state can quite easily react with another 
monomer molecule to give a larger radical. Likewise 
more monomers may be added to form a long chain until 
it becomes terminated. For example,

 '-R* + GHX=GH2

growing chain

H H 
I I -R-G-G «•
I I X H

growing chain

3. Termination

The cessation of the growth of a radical is 
known as termination, and hence the polymer molecule is
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5
formed. This generally occurs by the interaction of two 
radicals either by combination or disproportion, or by 
chain transfer reaction;

a) by combination

H H
R-CH2-C* + RCH2-C. — (R-CH2-CHX)2 

X X

b) by disproportionation

H H
R-CH2-C' + R-CH2-C' — ^  R-CH2-CH2X + R-CH=CHX

IX

The above scheme, however, is not complete for 
those in which the chain transfer is involved. The follow­
ing example shows how the "chain transfer reaction" can 
occur between the growing chain and a monomer molecule.
It may occur also to the solvent, to the polymer or to 
any other foreign substances present. It should be noted 
that although the growing chain is terminated by this 
process, the molecule to which the radical is transferred 
can serve as the initiator for the start of a new chain.

C6H5(CH2~CHX)n“CH2CHX + CH2=CHX

— C6H5(CH2-CHX)ĵ -CH2C^X+ CH2=CX

The overall reaction may be written in the 
simple form as in the following example. Consider a re­
action in which the polymerization is determined only by 
the three elementary process, i.e., initiation, propaga­
tion and termination. The total reaction may be written
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as
Velocity
constant

Initiation M
Propagation Ml + M

Mg + M
*

% - l + M

Termination by combination

& M,

Ml
M2
M3

m

k
'Pi
P2
'Pn

n+m

Termination by disproportionation

M. Mn + Mm kd

where M represents the monomer, represents a grow­
ing radical chain with the degree of polymerization, n. 
In order to derive kinetic equations the first assumption 
is made that all the rate constants involving growing 
chains are independent of the radical size and the degree 
of polymerization. Therefore

'PI = kP2 Pn-1 = kr

The second assumption is that the length of the 
chain is great, and hence the velocity of propagation is 
much greater than that of initiation and termination. 
Since the propagation process involves only the addition 
of monomer to the polymer radical, the velocity of pro­
pagation is, therefore, Vprop = kp[M][C*j, where fC*]
is the total concentration of polymer radicals.

The velocity of initiation is determined by its
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7
nature. A few examples are illustrated in the following;

1. first order initiation (unimolecular)

Tlnlt - k i #
2. second order initiation (bimolecular)

Tinlt =
3. photon initiation

Vinit - k ( I ) M  
where I » intensity of absorbed light

4. catalysed initiation
\

Tïnit “ îCR) (palQ j 
where [Cat] *» concentration of catalyst.

The velocity of termination, either by combination or dis­
proportionation, is

Vterm “ ^tlC*]^

Theoretical Calculation of Size Distribution

Polymer molecules produced during polymeriza­
tion are not all of one size, a whole distribution of 
sizes is obtained. The average molecular weight of such 
a heterogeneous polymer is determined by the method of 
measurement. It varies from one method to another. For 
instance, the measurement of a colligative property of 
the polymer(i.e., by methods such as osmometry, cryoscopy 
and ebulliometry) gives the number average molecular 
weight while the light scattering method leads to the 
weight average. These two averages are not the same.
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8
The latter gives a greater value than the former.

Based upon the kinetic scheme proposed in the 
previous section, methods are available to calculate the 
distribution of molecular size. Of course, different 
types of initiation and termination mechanisms lead to 
different forms of distribution curves. Therefore a 
comparison of the predicted with the experimental dis­
tribution curves can be used to check the theoretical 
kinetic relationships.

At the beginning, it is necessary to introduce 
a few terms which are useful in the future derivations. 
The number, weight, and viscosity average molecular 
weights (In» ^ »  ®v) are defined as;

n

Ivy =

CO

S3

oo

2  npMj

(1)

^WpMj
i

OO (2)

_ oo
1/r

CO

£  WpMp^ 
1

1/r

^npMp 
-  i

OO

.
..(3)

where for a particular polymer sample Up is the number 
of moles of molecules of length p ; Mp is the molecular 
weight of the chain; Wp is the weight of polymer of 
degree of-polymerization p; and p is the degree of 
polymerization(or number of repeating units contained in 
a chain). In the definition of r is the constant
in the Mark-Houwink equation relating the limiting visco­
sity number to the molecular weight of a monodisperse

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9
sample (see equation 23 below). Notice that from the 
above definition

Mp = P.M ...................... (4)

Wp = np.Mp .................... (5 )

where M is the molecular weight of the monomer or re­
peating unit.

The details of the derivation of the distribu­
tion curve from the kinetic model of vinyl polymerization 
can be found elsewhere^. Of interest here are two special 
cases. In each, initiation is assumed to be bimolecular, 
as is presumably the case in spontaneous, uncatalysed 
thermal polymerization of bulk monomer. It is further 
assumed that the chain transfer reaction is negligible, 
and that termination is by the mutual reaction of growing 
radical chains. In the first case it is assumed that 
termination is by disproportionation, in the second by 
combination, of radicals.

In the former case(disproportionation) the dis­
tribution of the molecular weight in the initial polymer 
formed would be given by

Wp = BMPe^  (G)

where Wp is the weight of polymer of degree of polymeri­
zation equal to p, and e is a constant, a combination 
of rate constants, and M is the molecular weight of a 
repeating unit, and B is a constant determining the 
weight of the sample. If, on the other hand, termination is 
by combination, then

^  / hll X' ^ — f —    \i- ..*•(7)= (B'/2) M2p2e^(^)P

1. Bawn, C. E. H., Chemistry of High Polymers (1948)
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10
The frequency distributions, np, are obtained by dividing 
Wp by ÎIP, Thus, for disproportionation

np = B€ . . . . . . . . . . . . . . . . . . .  (8)

and for combination

np = |'îÆP€^(^)P   (9)

If the further substitution is made

then, for disproportionation.

np = Ae-bP ......................  (1 0 )

Wp = MPAe-bP ....................  (1 1 )

and for combination,

np = A’MPe”^P ...................  (12)

wp = A'M2p2e-bp   ...............  (13)

Clearly in the above equations

A = B(e+b_i)2   (14)

a ' = §'(e+b_i)3   (15)

A study of the molecular weight distribution of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11
polymethylmethacrylate^ showed that the theoretical dis­
tribution curve calculated from the kinetic model was 
compatible with the experimentally determined distribution, 
but the agreement was not as good as might be desired.

The Experimental Determination of Molecular Weight Dis­
tribution Curves

The most frequently used method for the experi­
mental determination of the distribution of molecular 
weight in a high polymer sample requires that the sample 
be fractionated into portions as nearly homogeneous as 
possible in molecular weight. Ideally the sample should 
be separated into completely homogeneous fractions from 
whose weights and molecular weights the distribution 
curves could be constructed. In practice it is impossible 
to achieve this degree of separation. As a result, it 
becomes necessary to reconstruct distribution curves 
from weights and average molecular weights of raore-or-less 
homogeneous fractions.

To effect this reconstruction it is common 
practice to make use of the. so-called "integral weight 
distribution curve". The frequency distribution curve 
as used above is a discontinuous function defined only 
for integral values of p. It can be v/ritten as a con­
tinuous function np(p) if the average degree of poly­
merization is large. Under this condition p is for 
practical purposes a continuous variable. If this is 
done, then np(p) should be understood to mean the 
number of moles of polymer whose degree of polymerization 
lies between p and p+dp. Thus

dn = np(p)»dp .............  (16)

2. Baxendale, J. H., Bywater, S., and Evans, M. B., 
Trans. Far. Soc., 42, 675 (1946).
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A similar equation can be written for Wp. For this 
reason np and Wp are often called the differential 
frequency and weight distribution curves. Clearly, as 
before,

wp(p) = Mp»np(p)  ..........  (17)

Mp = P«M

If now one defines Sl(v) to be the "integral 
weight distribution curve"; that is to say, il (p) re­
presents the total weight of polymer whose degree of 
polymerization is less than or equal to p, then clearly

ii (p)
rP
wp(t)dt
o

where t is a dummy variable. fl(p) Wp(p) are related 

by = wp(p)   (18)

Thus if il (p) were known as a function of p 
then Wp(p) and np(p) could be determined from equations 
(17) and (18). Experimentally, the integral weight dis­
tribution curve is constructed by obtaining experimental 
data such as the weight and the molecular weight or chain 
length of the fractions which are separated from the 
heterogeneous polymer sample. Methods of separating the 
sample into fractions with regard to molecular weight or 
chain length are called fractionation. The molecular 
weight or chain length of each fraction may be determined 
by one of the methods described in the next section.
Thus we can plbt the weight(on an accumulative basis) of 
each fraction against its measured chain length.
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For example, if the fractions were monodisperse, 

and if the weight of the fractions were Wi, Wg, W3 , ....
.. and the measured corresponding chain length were 
ï*l» ^2 » ^3 » Pn» then W% and P% would determine
the first point in the "weight versus chain length" plot; 
(W]_ + W2 ) and P2 would determine the second point; (Wi +
W2 + W3 + .... + Wji) and Pn will give the last point. In 
this way a stepwise curve could be drawn.

However, since the fractions can not be very 
sharply separated from the sample, therefore, each frac­
tion is not really of one size but has a range of sizes, 
and hence the measured chain length of each fraction can 
only represent an average value within that range. Now 
•the assumption is made that the distribution of sizes is 
symmetrical around the measured average chain length, and 
that the distribution of molecular weight within a fraction 
does not extend beyond the average molecular weight of 
its neighbouring fraction. Then the integral weight dis­
tribution curve may be established by drawing a smooth 
curve through the middle points of the vertical sections 
of the staircase curve. In other words, that the integral
weight distribution curve may be constructed by plotting 

n
( %Wi + iWn+l) against ?n+i where W^+i and Pn+l repre- 

i=0
sent the measured weight and chain length of (n+l)th 
fraction (Pig. 6 ).

The assumptions made above regarding the symmetry 
and the sharpness of adjacent fractions are severe, and 
are probably not achieved in an ordinary single stage 
fractionation process as described below. It is possible 
to improve the sharpness of fractions by repeated frac­
tionation either conventionally^ or by chromatographic

3. Gragg, L. H., and Hammerschiag, H., Chem. Revs., 
39, 79 (1946).
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techniques.4 The latter procedure has achieved consider­
able favour in recent years but is limited by the small 
size of fractions it produces. It appears, moreover, that 
errors introduced by making the above assumptions tend to 
cancel out.5 The research described herein was undertaken 
in part to check this point.

By applying equation (17) and (18) , the differ­
ential weight and number distribution curves can be res­
pectively constructed from the data obtained by graphical 
differentiation of the integral weight distribution curve 
and the corresponding chain length P.

Measurement of Molecular Weight
The molecular weight of a polymer can be de­

termined by measurement of its colligative properties, 
by light scattering or by viscosity. Since the hetero­
geneous polymer is composed of molecules with different 
chain length, any method of measurement can only give an 
average value. Different methods give different average 
values.

1. The Colligative Methods
The colligative property method is based on 

the measurement of vapor pressure lowering, boiling 
point elevation(ebulliometry), freezing point depression 
(cryoscopy), or the osmotic pressure(osmometry). Prom 
thermodynamic arguments the following relation can be 
derived for dilute solutions

a Q = K I ...................... (19)

4. Bannister, D. W., Phillips, C. S. G., and Williams, 
R. J. P., Anal. Chem., 1451 (1954).

5. Booth, C., and Season, L. R., J. Poly. Sci., 42,
81 (I9 6 0).
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where a Q is the change in property measured, C is the 
concentration of the solute, M is the molecular weight 
and K is a constant depending on the system concerned. 
For solutions at higher concentration equation (19) may 
be written in the general form:

AQ/C = K/M + AiC + AgCZ + + ... (20)

If A Q is measured for various values of C , and 
the quantity AQ/C is plotted against C, the value of 
K/M can be found by extrapolation of data to zero con­
centration, so that M can be calculated.

Any of the colligative properties can be used 
to determine the number-average molecular weight of a 
polymer. But from the following comparison, it is obvious 
that the osmotic pressure is the 'easiest one to measure.

Comparison of Calculated. Boiling Point, Elevation, 
Freezing Point and Vapor Pressure Lowering, and 
Osmotic Pressure for 1% Solution in Benzene.

Boiling Freezing Vapor pressure osmotic

“SeîSît"’'
(Oo.) (Oo.) at 8Q0g.

10,000 0.0031 0.0058 0.076 31
50,000 0.0006 0.0012 ,0.015 6

100,000 0.0003 0.0006 0.008 3

The use of osmotic measurement(osmometry) 
for determining molecular weight is very common and has 
been used for molecular weights up to 10^ and higher.
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In this method, the polymer solution and the pure solvent 
are separated by a membrane which is permeable to the 
solvent molecules, but not to the polymer. Equilibrium 
is reached when the hydrostatic pressure difference 
across the membrane exactly compensates for the difference 
of chemical potential of the solvent arising from the 
presence of the polymer solute,

2. Light-scattering Measurement
It has been found that when a light beam passes 

through a non-absorbing liquid some light is scattered.
If the solvent is made more inhomogeneous by the addition 
of solute molecules, the intensity of the scattered light 
‘is increased. The increase in scattering is related to 
the molecular weight of the dissolved solute. Thus, a 
measurement of this increase for a polymer solution can 
lead to the molecular weight of the polymer.

The scattered intensity for a monodisperse 
solute is given by (Debye equation)

H(|) = I + 2A2C + .... .... (21)

where

The scattered light intensity is expressed in terms of 
the turbidity Y » defined as the fraction of the light 
scattered in all directions from the primary beam per 
centimeter of path. If a beam of intensity I© is 
reduced to intensity I on passage through x cm, of 
the scattering medium, I/Iq = For typical
polymer solutions Y =  10-3, n is the refractive index
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of the system, Nq is the Avogadro's number, X. is the 
wave length of the incoming beam, and C is the concentra­
tion of the polymer solution.

The plot of H(C/y) against C will lead to 
the average molecular weight of the heterogeneous polymer. 
Light scattering measurement is one of the most important 
absolute methods.

3. Viscosity
Viscometry is the easiest and most rapid method 

for obtaining molecular weight, it is widely adopted for 
the routine determination of molecular weight.

In the measurement, the chief quantity of 
interest is the viscosity of a polymer solution relative 
to that of the pure solvent. From this, the molecular 
weight of the polymer solute can be calculated.

Huggins^ found for a series of polymer fractions 
in the same solvent that the slopes of the linear portions 
of the plots of *^sp/G against C were proportional to 
the square of the intercept and proposed the relation:

\sn tin ... .2^  = [\] + K i K l  c .............  (22)
C

where \gp is the specific viscosity which is equal to
(\~\>)/^o» \ o  i-8 the viscosity of the solvent, K is
the viscosity of the solution, is called limiting
viscosity number and K% is a constant for a given
polymer-solvent system. can be obtained by plotting
\gp/0 versus C.

It is usual to use the empirical equation (23) to 
calculate the molecular weight from the viscometric

6 . Huggins, M. ., JACS, 2716 (1942).
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results

K ]  = laF  .............  (23)

where [\] is the limiting viscosity number of a mono- 
disperse sample of polymer of molecular weight M; K and 
r are constants dependent on the polymer-solvent system 
concerned. The molecular weight so obtained for a poly- 
disperse sample is called "viscosity-average" molecular 
weight. Equation (23) is usually associated with the 
names Mark-Houwink.
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CHAPTER II

APPARATUS AND PROCEDURE

Apparatus

1. For Fractionation
The apparatus used for fractionation is shown 

schematically in Fig. 1. It is a double-walled glass 
vessel A, B, closed to the air by mercury seals D, E, 
and J. F is a rotating cup permitting the contents of 
the vessel to be stirred by rotation of the stainless 
steel stirrer C. An etched scale L on the side of the 
inner vessel permits the volume of liquid contained in 
it to be observed. Additions of reagents can be made to 
the vessel through port H. The temperature of the con­
tents of the vessel can be controlled by circulating 
water from a thermostat through the jacket B. To the 
bottom of the inner vessel is connected a glass tube 
leading to a teflon-glass stopcock M to which may be 
attached glass receiver tube P. The receiver has a 
volume scale etched on it, and is connected at the 
bottom to a teflon stopcock Q which in turn is connected 
via a rubber tube R to a mercury reservoir T.

The overall length of the jacketed vessel is 
about 90 centimeters, and the capacity of the inner vessel 
is 5 liters. The receiver has a capacity of about 20
cubic centimeters, and the volume scale on its side is 
calibrated in 0.1 cubic centimeter division.

2. For Viscometry
Because of the simplicity and the convenience,

19
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A. Practionation vessel or inner vessel,
B. Outer vessel for water circulation.
C. Stainless steel stirrer.
D. Mercury.
E. Mercury cup with mercury.
P. Rotating cup.
G, Teflon ring.
H. Cover for inlet of solution.
J. Mercury.
K. Outlet of water to water bath.
L. Volumetric scale.
M. Teflon stopcock.
R. ■ Connecting adaptor.
P. Centrifuge tube.
Q. Teflon stopcock.
R. Flexible rubber tubing.
S. Mercury.
T. Container.
W. Inlet of water from water bath.
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among various types, the suspended-level or Uhbelohde 
dilution viscometer was chosen to measure the viscosity 
of the polymer solution. The essential features are 
shown in Pig. 2. The instrument is entirely made of 
glass. A, B, C, and D; are bulbs* E is the capillary.
The solution being measured is first introduced into the 
bulb A, then forced into the bulb C by pressure, and 
hence the flow time of the solution between the etched 
mark can be timed. Details of the operating procedure 
will be described in a later section.

Chemicals
The principal chemicals used in this experiment 

were polystyrene, methyl ethyl ketone, methanol and toluene. 
Two different samples of polystyrene were used. They were 
different in average molecular weight as determined by 
viscosity measurement. One was about three times higher 
than the other. Both had been prepared previous to this 
work by Dr. E. W. Channen, using a standard method of 
bulk polymerization to low conversion(10%) in the presence 
of benzoyl peroxide as initiator. Nevertheless, the 
samples were repurified by precipitation from methyl ethyl 
ketone with aqueous methanol before being fractionated.

Methyl ethyl ketone, methanol and toluene were 
all obtained from Pisher Scientific Company, and certified 
by the manufacturer to meet the American Chemical Society 
specifications. They were used as supplied without 
further purification.

Procedure
1. For Practionation

Three polymer samples, 20g. each, were frac­
tionated, one, sample-AB being a mixture of equal parts 
of sample-A and sample-B(i.e., lOg. each). Sample-B
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D

E

Pig. 2. Ubbelohde dilution viacometor
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was about three times higher in average molecular weight 
than sample-A, as measured by viscometry. Each sample 
was accurately weighed and a solution of about 1% in 
g./dl was made in methyl ethyl ketone (i.e., two liters 
of solution for each sample).

Before the solution was added into the inner 
vessel, the empty space above the mercury at D was filled 
with methyl ethyl ketone. The purpose of doing so was 
to minimize any condensation of the liquid vapor evaporated 
from the polymer solution during the long period of frac­
tionation. Care was taken that the receiver assembly was 
securely connected to the column, and mercury was allowed 
to fill the receiver assembly to a level above stopcock 
M. The solution was then introduced.

After the temperature of the polymer solution 
in the vessel was brought up to 25°C by the circulating 
water from the water bath, the volume of the solution 
was recorded.

Under stirring, the precipitant, methanol, v/as 
slowly added into the solution through the feeding inlet 
at H until the solution appeared to be densely cloudy.
This point was estimated by guess on the, basis of a 
preliminary run. The volume of methanol added for each 
fraction was recorded. The temperature of the contents 
of the vessel was then raised to such a degree that the 
cloudiness of the solution disappeared. Normally,
IQOO to 15°0 above the bath temperature v/as sufficient.
The solution v/as slowly cooled to 25 i 0.01 °C, allowing 
the polymer to reprecipitate, the stirring was stopped 
and th.e reprecxpitated polymer was allowed to settle 
over night. This heating and cooling cycle would take 
about eight hours.

The precipitate in this case was a moderately 
viscous solution that could be drained into the receiver
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P as the stopcocks M and Q were opened and the mercury 
level in the container T was lowered. The stopcock M 
was closed after the last portion of the fraction had 
passed below the flanged connector to the receiver, pre­
venting the supernatant liquid from draining through.
The stopcock Q was closed after the mercury had come 
down to the beginning of the scale of the centrifuge 
tube so that the fraction could be measured. At this 
point the volumes of 'the fraction and the supernatant 
liquid were recorded and the receiving assembly was dis­
connected from the vessel.

The precipitate so obtained, containing some 
small mercury droplets, was redissolved in an excess 
amount of methyl ethyl ketone (about 10 times more than 
the volume of the precipitate) and the solution was 
filtered through a sintered filter of a medium porosity.
The polymer was then reprecipitated under stirring by 
running the filtered solution slowly into methanol. The 
volume of the methanol was about three to four times as 
much as the filtered solution. The polymer was dried in 
an vaccum oven between 50-70^0 over night. Finally, the 
polymer was weighed and its molecular weight was determined 
by viscosity measurement method. Except for the final 
fraction, this process of fractionation was repeated 
until all the polymer sample was entirely recovered.
Usually 15 to 17 fractions were obtained. The final 
fraction was obtained from the residue resulting from 
the evaporation of all solution removed from the fractiona­
tion vessel. Failure was encountered in trying to preci­
pitate the final portion through the regular means (i.e., 
by addition of precipitant) because at this stage, the 
solution has so low a molecular weight that further 
addition of precipitant would only result in a suspended 
solution with fine polymer particles which remained 
suspended even after several days and could not be filtered

( 1382f
UNIVERSITY OF WINDSOR LIBRARY
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with a medium porosity sintered filter.

2• For Viscometry
The apparatus employed in the viscosity measure­

ment was the suspended-level or Ubbelohde dilution vis- 
cometor. Referring to Fig. 2, in operation, pressure 
was applied to the top of limb-1 while limb-3 was closed 
at the top by the operator's finger, thereby forcing 
liquid from bulb B into bulb A and C and finally into D. 
Then, releasing the pressure on limb-1, limb-3 was opened 
to let air into bulb A. This resulted in the formation 
of the suspended level at the lower end of the capillary. 
Since the suspended level was automatically fixed, it v/as 
unnecessary to charge the viseometor with the same volume 
of liquid each time, and it also permitted dilution of 
the solution while in the viscometer. Therefore the 
viscosity of solutions of different concentration could 
be measured with one filling of the viscometer.

Viscosity measurements were made using toluene 
as solvent. The additional apparatus required for the 
measurement were the water bath, the temperature of which 
was controlled to 25 ± 0.2 °C and the stopwatch of capable 
to register to 0.1 second. The following general procedures 
were followed:

a. The capillary viscometer was thoroughly cleaned 
with warm chromic acid and the vertical alignment of the 
viscometer into the water bath was carefully checked,

b. Care was taken to prevent dust from entering 
the instrument,

c. Sufficient time was allowed for the viscometer 
and its contents to attain the bath temperature before 
measurements were made. This length of time was reduced 
by having the containers of solution and the diluting 
solvent stored in the same bath.

d. Raising the liquid level in the viscometer was
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accomplished by applying a positive pressure of air to 
one limb.

e. A fluorescent light under the water bath and a 
cathe tome ter facilitated accurate observation of the 
meniscus level.

f. Using the stopwatch the reproducibility of the 
flow time was within ±0.1%.

The molecular weight of each fraction was then 
determined by equation (23).

l\] = KM^

where in this case K = 1.7 x 10*4 and r = 0.69. Both 
of the constants were taken from ̂ the reference.? [\] was 
the intercept of the extrapolation of the plot of
( 7 ^ - versus C. The unit of concentration, 0 used
was g./dl and the unit of L’il would be dl/g..

7. Outer, Carr and Zimm, J. chem. Phys., 3^, 830 
(1950).
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CHAPTER III

RESULTS, DISCUSSION AND CONCLUSION

Results
The observations recorded during the fractiona­

tion step for the three different polymer samples are 
shown in Table 1 to 3. The results show that the re­
covery of the starting material was 98.7%, 99.5%, and 
99.3% respectively for the three runs. The losses pre­
sumably arose in handling, and were at a satisfactorily 
low level.

Typical observations obtained from the viscosity 
measurements are shown in Table 4 to 5, and typical plots 
of \sp/C versus C in Fig. 3 to 5. The viscosity re­
sults are summarized for the three samples studied in 
Table 7 to 9, which include values of the molecular 
weight, the degree of polymerization, and the cumulative 
weight distribution function for each sample.

The cumulative weight distribution functions 
for samples A and B are shown in Pig. 6. The circles 
and triangles represent the experimental points, and 
curves representing the functions have been drawn throu^i 
them. Since sample AB is a 50:50 mixture of samples A 
and B, its cumulative weight distribution curve ought to 
be the mean of the curves of A and B. The dotted curve 
drawn for sample AB in Pî j. G was in fact constructed to 
be the mean of the curves drawn for A and B, and the ex­
perimental points obtained for the sample were added 
afterwards. As can be seen they agree quite well with 
the expected curve.

As described earlier, the differential weight 
and frequency distribution curves can be obtained from

28
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TABLE 1 29

Data Recorded on Practionation of Polystyrene,
Sample A 20g. Used. Precipitated from Methyl Ethyl

Ketone with Aqueous Methanol.

Fraction

Methanol 
added for 

each 
precipita­

tion
(ml. )

Volume
of

precipitate 
(ml. )

Volume of 
supernatant 
liquid
(ml. )

Weight
of

precipitate
(g.)

1 534 4.2 2554 1.5479
2 37 5.15 ' 2583 2.0485
3 22 3.0 2600 1.2648
4 21 2.4 2623 1.0540
5 22 2.0 2633 1.1043
6 24 2.2 2654 1.0247
7 28 2.1 2677 1.0258
8 27 1.75 2700 0.9294
9 22 1.2 2824 0.5821

10 47 2.4 2765 1.2357
11 28 1.4 2791 0.8209
12 66 2.1 2845 1.1606
13 97 1.7 2933 0.9999
14 104 1.3 3033 0.9333
15 267 1.7 3288 1.1417
16 2706 * «•* 2.8618

Total 19.7354

* Only suspension was observed. 
** Out of scale.
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TABLE 2

Data Recorded on Fractionation of Polystyrene,
Sample B 20g. Used. Precipitated from Methyl Ethyl

Ketone with Aqueous Methanol.

Fraction

Methanol 
added for 

each 
precipita­

tion
( ml.)

Volume 
. of 

precipitate
(ml.)

Volume of 
supernatant 
liquid
(ml.)

Weight
of

precipitate 

( g.)

1 392 8.4 2433.6 1.9911
2 15 6.2 2438 1.5723
3 11 5.2 2441 1.3720
4 15 5.7 2450 1.5999
5 13 4.2 2455 1.2541
6 20 5.9 2463 1.8422
7 25 5.4 2483 1.8680
8 25 3.6 2507 1.3690
9 25 2.3 2516 0.9026

10 32 2.55 2553 1.0789
11 34 1.6 2588 0.7703
12 39 0.85 2621 0.6607
13 50 1.00 2658 0.5852
14 58 0.65 2710 0.4970
15 — * ** 2.5233

Total 19.8966

**
Only suspension was observed. 
Out of scale.
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TABLE 3

Data Recorded on Practionation of Polystyrene, 
Sample AB, a Mixture of Sample A and B, lOg. each, 

Precipitated from Methyl Ethyl Ketone with 
Aqueous Methanol.

Fraction

Methanol 
added for 

each 
precipita­

tion
( ml.)

Volume
of

precipitate
(ml.)

Volume of 
supernatant 
liquid
(ml.)

Weight
of

precipitate 
( g.)

1 426 6.0 2462 1.6319
2 25.5 5.0 2476 1.4848
3 27 5.0 2490 1.6487
4 22 3.8 2509 1.2952
5 24 3.15 2532 1.1962
6 22 2.6 2549 0.9937
7 22 2.1 2570 0.8780
8 21 1.8 2582 0.7768
9 24 1.85 2603 0.8250

10 28 2.0 2632 0.8911
11 27 1.45 2650 0.7679
12 36 1.6 2685 0.8254
13 38 1.2 2722 0.7105
14 60 1.2 2777 0.7979
15 154 2.25 2920 1.4146
16 446 1.1 3349 0.8799
17 —— * ** 2.8337

Total 19.8513

* Only suspension was observed. 
** Out of scale.
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TABLE 4

Typical Viscosity Data of Fraction 1, Sample A 

Solvent : Toluene
Flow time of solvent at 25^0. : 128.15 sec.
Concentration of polymer stock solution; 0.9726 gm./dl.
Volume of polymer stock solution initially placed in 

viscometer; 5 ml.

Total solvent 
added to 

viscometer
(ml.)

Concentration Flow
(sec

Time
;.) \sp

(gm./dl.) Measured Averaged C

0 0.9726 191.20
191.32 191.26 0.5063

1 0.8105 180.00
179.68 179.84 0.4977

3 0.6079 165.70
165.62 165.66 0.4815

a 0.3741 150.57
150.42 150.50 0.4662

13 0.2702 144.15
144.00 144.08 0.4601

Plot of \sp---- vs. 0 see Fig. 3.
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TABLE 5

Typical Viscosity Data of Fraction 1, Sample B. 

Solvent: toluene
Flow time of solvent at 25^C: 128.15 sec.
Concentration of polymer stock solution; 0.8176 gm./dl.
Volume of polymer stock solution initially placed in 

viscometer: 5 ml.

Total solvent 
added to 

viscometer
(ml.)

Concentration Flow Time 
(sec.) ^ sp

(gm./dl.) Measured Averaged C

0 0.8176 231.01
231.18 231.10 0.9826

1 0.6813 211.50
211.32 211.41 0.9536

3 0.5110 188.07
187.87 187.97 0.9135

8 0.3144 163.67
163.42 163.55 0.8786

13 0.2271 152.98
153.02 153.00 0.8539

Plot Of vs. C see Fig. 4,
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TABLE 6

Typical Viscosity Data of Fraction 1, Sample AB.

Solvent : Toluene
Flow time of solvent at 25°C. ; 128.15 sec.
Concentration of polymer stock solution: 0.8208 gm./dl.
Volume of polymer stock solution initially placed in 

viscometer: 5 ml.

Total solvent 
added to 

viscometer
(ml.)

Concentration Flow Time 
(sec. ) \ sp

(gm./dl.) Measured Averaged C

0 0.8208 224.42
224.50 224.46 0.9156

1 0.6840 206.22
206.32 206.27 0.8912

3 0.5130 184.49
184.37 184.43 0.8561

8 0.3157 161.60
161.50 161.55 0.8274

13 0.2280 151.32
151.40 151.36 0.7944

Plot of " vs. C see Fig. 5 .
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TABLE 7

Practionation of Polystyrene, Sample A,
20g. Used. Precipitated from Methyl Ethyl Ketone

with Aqueous Methanol.

Fraction
Actual
weight
(g.)

It]
(dl./g.)

My
( X 10-4)

P
( X 10-2)

Wt. fraction 
up to p (Wp)

1 1.548 0.442 8.90 8.54 0.987
2 2.049 0.336 5.99 5.75 0.909
3 1.265 0.297 5.03 4.83 0.807
4 1.054 0.286 4.72 ' 4.54 0.744
5 1.104 0.263 4.20 4.04 0.691
6 1.025 0.256 4.03 3.87 0.636
7 1.026 0.224 3.33 3.19 0.585
8 0.929 0.219 3.21 3.08 0.533
9 0.582 0.207 2.95 2.84 0.487

10 1.236 0.201 2.85 2.74 0.458
11 0.821 0.195 2.71 2.60 0.396
12 1.161 0.175 2.33 2.23 0.355
13 1.000 0.166 2.14 2.06 0.297
14 0.933 0.138 1.64 1.58 0.247
15 1.142 0.133 1.55 1.49 0.200
16 2.862 0.098 ■ 1.01 0.97 0.143

where p represents chain length and 
viscosity-average molecular weight.

M,: represents
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TABLE 8

Practionation of Polystyrene, Sample B,
20g, Used, Precipitated from Methyl Ethyl Ketone

with Aqueous Methanol.

Fraction
Actual
weight
(g.)

l\]
(dl./g.)

My
( X 10-4)

P
( X 10-3)

Wt. fraction 
up to p (wp)

1 1.991 0.810 2.14 2.05 0.995
2 1.572 0.715 1.79 1.71 0.895
3 1.372 0.645 1.54 1.48 0.816
4 1.600 0.597 1.38 1.32 0.748
5 1.254 0.565 1.27 1.22 0.668
6 1.842 0.495 1.04 1.00 0.608
7 1.868 0.466 0.96 0.92 0.513
8 1.369 0.429 0.85 0.82 0.419
9 0.903 0.404 0.78 0.75 0.351

10 1.079 0.363 0.67 0.64 0.306
11 0.770 0.333 0.59 0.57 0.252
12 0.661 0.312 0.54 0.52 0.213
13 0.585 0.278 0,46 0.44 0.180
14 0.497 0.249 0.39 0.37 . 0.151
15 2.523 0.193 0.27 0.25 0.126

where p represents chain length and 
viscosity-average molecular weight.

My represents
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TABLE 9

Practionation of Polystyrene, Sample AB,
(a mixture of Sample A and B, lOg. each), 20g. Used, 

Precipitated from Methyl Ethyl Ketone with 
Aqueous Methanol.

Fraction
Actual
weight
(g.)

in,i
(dl./g.)

My
( X 10-4)

P
( X 10-2)

Wt. fraction 
up to p (Wp)

1 1.632 0.751 19.18 18.42 0.993
2 1.485 0.614 14.32 \ 13.75 0.911
3 1.649 0.535 11.75 11.28 0.837
4 1.295 0.464 9.55 9.17 0.754
5 1.196 0.420 8.27 7.95 0.690
6 0.994 0.380 7.16 6.87 0.630

7 0.878 0.356 6.51 6.25 0.580
8 0.777 0.330 5.83 5.60 0.536
9 0.825 0.306 5.23 5.02 0.497

10 0.891 0.287 4.75 4.57 0.456
11 0.768 0.279 4.57 4.39 0.412
12 0.825 0.260 4.11 3.95 0.373
13 0.711 0.249 3.88 3.72 0.332
14 0.798 0.227 3.39 3.25 0.296
15 1.415 0.197 2.75 2.64 0.256
16 0.880 0.168 2.10 2.10 0.186
17 2.834 0.127 1.41 1.41 0.142

where p represents chain length and 
viscosity-average molecular weight.

My represents
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the cumulative curves. This was done, with the results 
shown in Pig. 7. Here the experimental points are 
obtained by taking slopes of the cumulative distribution 
curve, and do not correspond to individual fractions.
As before, the curves for A and B are drawn through the 
plotted points for these samples. The dotted curve for 
AB is the mean of those for its progenitors, and the 
points for AB were obtained from the cumulative distribu­
tion for the mixed sample. Again the agreement is 
satisfactory. Pig. 7 shows the comparison for the 
differential weight distribution curves. Pig. 8 for the 
differential frequency curves.

As described on page 9 above, the differential 
weight distribution curve for a sample of polystyrene 
should be given either by

Wp = TÆPAe"^^ .................  (11)

or Wp = M^P^A'e”^^ ..............  (13)

depending on whether termination is by desproportionation 
or by combination respectively. These equations may be 
cast into a linear form by using a logarithmic trans­
formation

W-n ' -u
logio (-^— ) = log^Q(AM) - — -JÔ3 P  (11a)

loglO = logj^oCA'M^) - P ...(13a)

The differential weight distribution curves 
were plotted in this way for samples A and B. The
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results are shown in ïig. 9 to 12, Clearly the best 
linear fit is obtained using the equation for termination 
by combination. Prom the parameters of the best straight 
lines in these plots it is possible to estimate values 
for the parameters in equations (11) and (13) for each of 
samples A and B. These functions can then be plotted on 
the same graph as the experimental curves and a comparison 
made. The results are seen in Pig, 13 and 14, Again 
the better agreement with termination by combination is 
observed.

Discussion and Conclusions
The results presented in this thesis demonstrate 

tv/o points, Pirst; it has been shov/n that the conventional 
method of determining molecular weight distribution curves 
from a single stage fractionation procedure is self- 
consistent, By this it is meant that the distribution 
curve for a mixture of samples is indeed the sum of the 
curves for its components.

Secondly, it is shown that for two samples of 
polystyrene prepared by benzoyl peroxide catalysed bulk 
polymerization to low conversion, the distribution func­
tions are more closely represented by a kinetic model 
postulating chain termination by combination, than by 
one postulating termination by disproportionation. This 
is in agreement with studies in which .the number of 
initiator fragments per molecule have been determined^,
Por polystyrene it appears that two fragments per molecule 
are found, indicating termination by combination of 
radicals.

8, Baxendale, J. H,, Bywater, S, and Evans, M. B,, 
Trans. Par, Soo,, 42 675 (194&).
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