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.ABSTRACT

A theoretical and experimental study of the deflections 
and "bending moments in cantilever plates of various aspect ratios 
under point loadings is presented. Good agreement between theory 
and experiment is shown. Deflection information is obtained 
holographically and bending moment information at the fixed edge 
of the cantilever plate is obtained using strain gages. Bending 
moment distribution factors are obtained whioh can be used to 
predict the maximum moment in a cantilever plate under point 
loading.

The results are extended by superposition to the case of 
line loaded cantilever plates. This information is shown to be 
suitable for prediction of the bending moment distribution factors 
in helical and Novikov gear profiles. This information is 
therefore suitable for use in gear design.
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_1. INTRODUCTION

1.1 Subject of Investigation
This study is concerned with the deflections and maximum 

stresses in cantilever plates under the action of transverse 
loading. In particular, it is concerned with obtaining this 
information in a form which is suitable for use in gear design. 
Since gear teeth of the helical or Novikov form are not 
uniformly loaded, the application of plate theory in 
determining the stress distribution in them is necessary. 
However, there is no simple formula relating the plate 
dimensions, the type of loading, and the stress distribution; 
therefore, it is desirable to present this information in the 
form of charts to make it more readily useful to a designer. 
While the information on stresses is the most important, when 
the load is being shared between two adjacent teeth on a 
gear, the deflection characteristics of the teeth determine 
how much load each carries and therefore the stresses in each. 
The deflection information is therefore of interest to the 
designer when axial overlap is occurring during the contact 
cycle of the gear being considered.
1.2 Importance of Bending Moment Distribution Information

in Gear Design
The maximum statio load oarrying capacity of a gear tooth 

1b determined by either the contact stresses or the bending 
stresses occurring in it during operation. Whichever of

I
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these two stresses exceeds the allowable maximum will determine 
the allowable loading on the gear tooth. This investigation 
will make no attempt to study contaot stresses, but will be 
ooncemed with bending stresses only. Factors limiting the 
magnitude of this stress are either the yield point of the 
material or its fatigue life, which is usually based on infinite 
life design. Several authors (l) (2) have shown that bending 
moment distribution information, when used in conjunction with 
stress concentration information, can predict the stresses in 
non uniformly loaded gear teeth. A great deal of work has been 
done to determine two dimensional stress concentration factors 
for gear tooth profiles using two dimensional photoelasticity. 
The application of this data to spur gears is relatively 
straight forward; however, for helical gear teeth, knowledge 
of the moment distribution is alBO necessary to obtain the 
value of the maximum stress. Therefore, the design of 
helical gear teeth would be much simpler if moment distribution 
information (or maximum moment information) was available.
1.3 Flan of Investigation

As previously stated, the subject of this investigation 
is the defleotions and bending moments in cantilever plates 
and their application to gear design. It was decided that the 
deflections of plates would be obtained by holography which 
yields full field information; this is especially important 
in plates since the location of the maximum deflection value 
is not known beforehand. The moments (maximum) would be
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determined by strain gages looated at the fixed edge of the plate, 
in the direotion normal to the fixed edge.

Due to the difficulties in applying line loads to cantilever 
plates only point loads were considered in the experimental study. 
Each plate, however, was loaded at various points so that 
superposition could he used to approximate line loads. It is quite 
likely that the errors in superposition are less than those in 
trying to establish a uniformly distributed line load.

A theoretical solution will also be presented based on a 
paper by J. Szmelter et al (3)» whioh will be extended to inolude 
a solution for bending moments. This solution will consider the 
different types of loading commonly encountered in helical gear 
design, i. e: line loads at various angles aoross the face of
the plate. These results will then be compared to work done by 
Wellauer and Seireg (4 ) on line loaded cantilever plates.
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2. LITERATURE REVIEW

2.1 Bending Moment and Reflection Studies on Gear Teeth
The stressing of gear teeth has long "been a subject of

investigation, and in 1893 j Wilfred Lewis laid the foundations
for the modern concept of gear design. His approach was
dictated by the spur gears in use at that time which had
symmetry of loading (in theory, at any rate)} resulting in a
two dimensional approach to the problem. His hypothesis was
that the weakest point in the profile was the point of
tangenoy between an inscribed parabola and the fillets at the
base of the tooth. A parabolic beam loaded at its tip is a
constant stress section, and its stress is given by:

W.P, 6h W. P,- TCI T C I  / o \«   =   ••..(2.1)
F t 2 F

wheres T  = maximum stress in section
Wt = applied tangential load
P = faoe width
P^ « Diametral pitch
h » height of Lewis parabola
t e width of Lewis parabola at tangenoy point
Y = Lewis FactorII

This approach to determining the stress in gear teeth had one 
big advantage in that it was easy to apply, but it also had 
the disadvantage that it did not predict the actual stresses. 
This shortcoming was hard to overlook} therefore, a great deal 
of experimentation was carried out using strain gages and
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photoelasticity to obtain stress concentration faotors based 
on the Levris Factor. The AGMA (American Gear Manufacturers 
Association) still uses a modified Lewis equation for gear 
design at this time (5)j which includes factors for the stress 
concentration} material (fatigue life), flexibility of mountings, 
shook loading, operating temperature, eto.

So much for the simple spur gear system; in helical gear 
systems the loading is not uniform and a two dimensional 
approach, as suggested by Lewis, is no longer applicable. The 
type of loading in spur, helical involute and Novikov gear 
teeth is shown in Figure 1. The helical involute system is 
the most widely used in high speed and high power applications; 
however, the newly introduced Novikov system is replacing it in 
many applications in Russia and England (6) (7) (8) (9) (10)
(ll). The Novikov or Ciroarc system was first developed by 
Ernest Wildhaber in 1923 in the U. S. A. (12) (13); however, 
subsequent testing showed no significant improvement over the 
helical involute Bystem and development was dropped. In 1954» 
this system of gearing was reintroduced by Col. M. L. Novikov 
in Russia and has since received wide acceptance there (14)•
Work on these gear profiles has shown the need for, and 
desirability of a new approach to design of these gears, due to 
the localized loading effect (see Figure l). This localized 
loading effeot completely violates Lewis’ premises and a new 
version of his equation can be written ass
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where: K » Moment Distribution Factorm
*» Stress Concentration Factor from two
dimensional studies*

This type of approach was first applied to the Novikov
system by FediaxUcan and Tschechanow (15) in 1958 when they
presented some design information for Novikov profiles, the
values of K thoy introduced were based on tests of several m
gear sets* In 1961, Wellauer and Seireg (4) applied this 
approach to helical gear loading by testing a thick plate, 
with an aspeot ratio of 0.188 and deriving quasi-theoretical 
moment distribution curves based on a semi-emperical method 
for the same aspect ratio* Also, my own work in 1969 (l) 
showed the validity of this approach in predicting the stresses 
in Novikov gear profiles.

Very little work has been done on obtaining bending 
moment distribution factors for gear teeth, even though the 
usefulness of it has been proven. The first person to 
consider the problem of moment distribution in long gear teeth 
was MacGregor in 1935 (16). He studied, both experimentally 
and theoretically, the deflections of a wide cantilever plate 
(aspect ratio 0*167) under a oentral load at the free edge.
His theoretical solution assumed that the plate was infinitely 
wide in order to evaluate the Fourier integrals which appeared 
in his solution* He also evaluated the bending moment at the
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wall for the point immediately adjacent to the load.
In 1937, D. L* Holl (17), using a finite difference approach, 

solved for the deflections and moments in a plate with an aspeot 
ratio of 0.250, tinder a point load located at the centre of the 
free edge. He considered 41 points in his solution which limited 
the accuracy, "but left the solution manageable. He points out 
the limitations of the difference method} however, he also 
indicates that it is possible to solve plates of finite length 
by this method.

Then in 1948, Jaramillo (18), worked out an exact solution 
for a cantilever plate of infinite length loaded by a point 
load at any distance from the wall. Because the plate was 
infinitely long, he was able to express the deflection in 
terms of improper integrals and avoid the difficult boundary 
conditions at the free corners. He was then able to evaluate 
these integrals by numerical methods in order to obtain the 
deflections and moments in the plate. His solution, of course, 
is valid only for infinite cantilever plates, but since the 
effects of the load are quickly dissipated, it is possible to 
apply it as an approximation to long plates under central 
loading.

Vartak, in 1957, experimentally studied two thin cantilever 
plates with point loading at various points along the free 
edge. He determined the bending moments along the fixed edge 
for plates with aspect ratios of 0.250 and 0.167} however,
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the deflection of the 0.250 plate Wa,: -more than 3^ times its 
thickness which puts the results for it in ^Mbt* His 
experiments were the first to consider loading of tht f.cee corner, 
which is the critical position for a cantilever plate.

Also in 1948, J. If. Hailey tested a point loaded cantilever 
square plate (20) and determined deflection contours for several 
loading points. His study was the first to consider loading 
at points not at the boundary of the plate. He also determined 
stresses in the plate$ however, the points he chose to study were 
not at the maximum moment points, therefore their value is very 
limited. A dial gage was used in his experiment to traverse the 
plate and obtain the deflection contours for loading at a given 
point.

Then in 1959 » Hellauer and Seireg (4) made the first 
and only serious attempt to obtain moment distribution factors 
for gear teeth. They tested two thick plates with aspect
ratios of 0.188 (2" x 2\ "  x 12"), one of which was tapered to
simulate a gear tooth shape. Their study showed no significant 
effect of taper on moment distribution at the base of the
tooth for the profile they tested. Bending moment distributions
were determined for various line loads, representative of spur, 
helical involute and Novikov gears. They also suggested a 
semi-emperical bending moment solution, based on the work of 
Jaramillo and a moment image teohnique they proposed. Their 
theoretioal results compared very well with their experimental 
results; this could be because the plate they were considering
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had a low aspect ratio whioh would tend to minimize the errors in 
their theoretical approaoh.

In I 966, JCugimiya (2) determined the stresses in an involute 
helical gear set, rotating slowly, using strain gages. Then, 
employing an approach similar to that of Wellauer and Seireg,.he 
also calculated the theoretical stresses in the gears. His 
experiment showed very good agreement between theory and 
experiment.

Szmelter, Sulikowski and Lipinski, in 1961, (3)» applied a 
Bitz approach to the problem of cantilever plates using a 
polynomial to represent the deflected surface. In their paper 
they presented results for a oorner loaded rectangular 
cantilever plate, as well as a plate with a uniformly distributed 
load. A numerical evaluation of the coefficients is neoessary, 
but this need be done only once for a plate with Poisson's 
ratio and aspect ratio speoified. Then it is possible to specify 
many different types of loadings and evaluate the deflections 
produced. Their solution offers a relatively simple approach to 
the deflections in cantilever plates; however, a large amount of 
calculation is neoessary, but a high speed digital oomputer does 
make the calculations easy.
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3‘ PROBLEM AS STUDIED

3.1 Theoretical Considerations
3.1.1 Selection of Method
From a consideration of the problem at hand i. e: a

oantilever plate of a given aspect ratio, loaded by an 
arbitrary transverse loading; it is necessary to make certain 
assumptions to simplify the problem. In faot, these assumptions 
are specifically those outlined' in Chapter One of "Theory of 
Plates and Shells" by Timoshenko and Woinowsky-Krieger (21).
These are the typical specifications that the plate thickness 
is small in comparison with its other dimensions, the 
deflections are small in comparison to the thickness, the 
material has linear properties, it is elastic, etc.

First, let us specify the geometry involved in describing 
a cantilever plate, and for the sake of similarity and 
convenience we will define our system of coordinates in a 
manner similar to that of Szmetler et al (3). This is shown 
in Figure 2, where the aspeot ratio is, of course, defined as 
(b/2a) and the thickness as h. If one were to consider the 
problem of a point load somewhere on the plate using the classical 
approach to thin plate problems, it becomes necessary to establish 
the boundary conditions on the four sides such that the 
deflection and slope are zero at the fixed edge and the 
shear and normal moment are zero on the three free edges.
This represents eight boundary conditions to be satisfied. Also
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the load must be represented as a Fourier Series in order 
to have continuous load function. In order to get an estimate of 
how complex and, indeed, almost impossible such a theoretical 
solution is, one need only refer to Jaramillo (l8) who solved 
the case of the infinite plate which avoids several of the 
problems: there are ho difficult corners to consider, the load
is symmetric, and the infinite Fourier series oan be replaced by 
improper integrals which can be evaluated numerically. The 
exact solution for a finite length plate, having no such 
advantages is quite likely impossible (at least for me).

Now that exact solution has been ruled out, it is neoessary 
to oonslder some of the approximate techniques available for 
solving the present problem. Basically, there are three methods 
available, finite difference, finite element and energy. Each 
of these has its own advantages and disadvantages which must 
be considered in light of the specific problem to be solved.
In the cantilever plate problem, it seems that deflection 
contours would be of great interest, as well as the bending 
moments at the clamped edge,- which will intuitively be the 
largest moments in the plate. Also, since all of these methods 
are numerical in nature and require a great deal of computation, 
this becomes an important factor in choosing the method of 
solution. In faot, this becomes a primary consideration when 
aocuracy of solution is considered important, since these three 
techniques give improved accuraoy as either more points, elements, 
or terms are considered.
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In a finite difference solution for plate deflections, one 
equation is generated for each point considered; as well, 
those familiar with the technique will realize that fictitious 
points outside the boundary of the plate must also be considered 
which also generate an equation each. One will then have an 
equation for every point in the plate being considered, where 
these equations are linear algebraic ones with the number of 
unknowns equal to the number of points being considered. For 
the details of this approach, one can refer to "Theory of Plates 
and Shells", pg. 351 (reference 21). This set of linear 
algebraic equations must then be solved for the deflections 
of all points considered. The quality of solution rests, as 
can be easily guessed, upon the number of points considered in 
the net, i. e: more points, better accuracy; but at the same
time a larger system of equations. This larger system of 
equations results, of course, in more error due to round-off 
in computations, and at some point a balance exists between 
increased possible accuracy due to more points (and equations) 
and decreased accuracy due to round-off errors in the 
computations. So much for deflections which only generate 
a single equation per point considered. Now, if bending 
moments are also desired, a change in technique is required.
This finite difference method is outlined by Holl (17) in 
his paper, whioh was previously mentioned, where he uses 
15 points to represent a symmetrically loaded (i. e: 15 points
are only half the plate, if the load were not symmetric, he
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would require 27 points) cantilever plate. He then generates 
41 equations in 41 unknowns, i. e: almost three times as many as
the number of points being considered, from the difference 
equations and his boundary conditions. It can easily be concluded 
that a better solution requires more points to increase the 
possibility of true plate action, while this also causes the 
calculations required to inorease at a greater rate.

In considering finite element techniques, the choice of 
the element type, as well as the number of elements must be 
considered; this is discussed extensively in "Finite Elements 
Methods in Stress Analysis" by Holand and Bell (reference 22).
The number of degress of freedom which an element has, 
determines how well it can approximate plate action, and elements 
have been proposed with 12 and more degrees of freedom.
Basically, the finite element technique consists of replacing 
the continuous plate by an array of elements whose stiffness 
and means of conneotion is specified, which converts a 
statically indeterminate problem into a determinate one. In 
classical finite element techniques, a structural matrix of 
influence coefficients is established, which, after inolusion 
of boundary oonditions, has to be inverted, resulting in a 
great deal of difficulty, as well as numerio errors,
(i. e: computational). More recently, the Rayleigh-Ritz
finite element method has been developed which avoids the 
inversion problem; this technique is described by Walker (23)
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who works out the deflections of a simply supported, uniformly 
loaded plate. This method is, however, very complex, especially 
when it is extended to include 'bending moment determination as 
well.

An energy method, as its name implies, is concerned with 
the energy stored in a plate when it is loaded. The essential 
steps in the solution are to choose a deflection funotion 
(usually a finite series of terms) capable of satisfying the 
boundary conditions, evaluate the stored energy in the plate, 
and by making the contribution of each term a minimum, determine 
its coefficients. A complete treatment of this approach is 
given by Timoshenko and lioinowsky-Krieger (21) who indicate 
that the method was first applied to plate problems by Ritz.
This method was used by Szmelter et al. (3) in working out 
the defleotions of a cantilever plate, loaded by a point load 
at the free corner, as well as a uniformly loaded plate.
Their technique is the one which I plan to use as the basis 
for my theoretical formulation. The reasons for which this 
has been done are as. follows:

(1) the solution is machine solution oriented
(2) the accuracy of solution at a point' does not depend

upon the absence or presence of nearby pointB
(3) the solution can be extended to moment prediction
(4) the number of points at which calculations are

being preformed can be easily changed.
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3.1.2 Deflection and Moment Determination
As mentioned in the previous section, the theoretical 

prediction of deflection will he based directly on the paper 
entitled, "Bending of a Rectangular Plate Clamped at One Edge", 
by J. Szmelter, T. Sulikowski and J. Lipinski (3). It seems 
helpful to present the pertinent parts of their paper here, in 
order to more clearly define the limitations and scope of this 
technique.

Referring again to Figure 2, we see that the edge x = 0
+is clamped with the edges x ** b and y=-a free. Now let the

unknown displacement function w (x,y) be assumed in the
following form: _

w(x,y) = ^ 2  a w (x,y) ... (3.1)
i = 0

where w^ (x,y) are known funotions satisfying the boundary 
conditions at the clamped edge, which are:.

^(Ojy) = ̂ >*i(0,y)/Ox = 0  ... (3.2)

The strain energy of the bent plate is given by (see reference 21
for example): 

.b a

w,  ̂+ 2Yw, w, + w,^ + 2 (l-y») w,^ \ dxd-yxx xx ’yy *yy ' *xy)

o J —a
where D denotes the plate rigidity, f is Poisson’s ratio, and 
w, means the seoond derivative of w with respect to x.
Now substituting (3.1) in (3*3) we have:

oo

▼ = f I E ]  ai <*k Vik
i,k = 0
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where the coefficients V., are determined from the followingIK

i,xx wk,xx + ^ wi,xxwk,yy +Wi,yy Wk,xx)

+ w. W, +2 (l-/)w. w V dxdy ... (3«5)i,yy k,yy v i,xy k,xy J

At the same time, we now assume that the functions w^ (x,y) 
satisfy the following condition of orthogonality!

1 when .i = k{^3T j 1 when.i
2a/ 0 when iVik i za| I „  A j  k ### (3#6)

Equation (3*4) then becomes

©o
v • 2Sr~3b i=0

^  | a^ ... (3-7)

Let L^ denote the work of a given load on the 
displacement w^(x,y). We then see from (3«l) and the superposition 
principle that the work L of the load performed on the 
displacement w is equal to

CaO
= 'y ~ \ a. L.

— 1 l l
i=0

The potential energy of the plate then can be given as
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CX9 C*>

H p v - L = ^  | ai ^ i  ».»(3«9)
1,3 i=0 i«0

The plate is in equilibrium when its potential energy reaches a 
minimum, i. e. when

tt 2X>a T
" 3 ®k " k » 0 ...(3.10)

oTc 

which leads to
. =
* 2Da ... (3.11)

Now substituting (3.11) in (3.1)> the displacement w can be 
expressed as

o°
w(x,y) = (b3/2Da) S i  wi(x,y) ... (3.12)

i=0

If we now assume that the functions wi(x,y) have the form of 
polynomials, i. e:

wi(x,y) - | Aimn (x/b) (y/a) ... (3.13)
n,m

Where the coefficients A. are determined in such a way thatlmn
the boundary conditions (3*2) and the orthogonality conditions 
(3*6) are satisfied. Prom (3.2), it follows that

n “ 2,3,4, • •• m •* 0,1,2,... ... (3*14)
Substituting (3*13) in (3»5) w© obtain
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r 2a
ik " b3 ranpq

A- A, W j lmn kpq nmpq ••• (3»15)

where:

Wmnpq = <

^  0 when (m+q) is odd

n(n-l)p(p-l) fV) m (m-lk(g-l) 
(n+p-3)(m+q+l) \a J (m+q-3)(n+p+l) ••• (3*16)

+ ._.y~n(.n-l)q(q.-l). + * m(m-l)p(p-l) + 2 (l-t)nmpq
L * (n +p - l) (m + q - 1)

when (m + q) is even

The groups of indices mn or pq in equations (3*15) an(i (3.16) 
may he replaced by a single inder s or r according to the 
following table:

n(or p)
m (or qj *= 0 1 2 3 4 5 6 7 8 9

2 r (or s) = 0 1 4 5 10 11 18 19 28 29
3 2 3 8 9 16 17 26 27
4 6 7 14 15 24 25
5 12 13 22 23
6 20 21 tetc*

Now we can rewrite the coefficients used above in a new form

A. » A. A, a A, W » W - W (3.17)lmn is, Tqpq kr, nmpq sr rs
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and (3.15) "becomes

... (3.18)
r,s

The matrix of coefficients may be resolved into a produot of 
two triangular matrices of coefficients according to the
following formulas

£  N .  V ,  ■ *„• V t - °  *or«>t ...(3.19)
t

These equations can be used for the successive calculation of
all the coefficients M .. The matrix M . is the square root of thert xt
matrix W (3)* The matrix W is defined positive and therefore all sr'1 ' sr *

the coefficients M . are real.rt
The coefficients A. = A. can easily be calculated from thelr xpq

equations
r 0 when i a t

ir rt ... (3.20) 
^ 1 when i / t

The calculation of A. is simple because the matrix M .ir rt
is triangular. Also, if we substitute (3*19) and (3.20) in (3.18) 
we can verify that the functions w^(x,y) containing the coefficients 
of A^r, calculated above, satisfy the condition of orthogonality 
(3.16).

This is where Szmetler et al (3) left their derivation
and calculated results for two examples they presented in their
paper. To summarize their method, one must first establish
W using equation (3*16) and the table which follows it, then 8?
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calculate using equation (3.19)» and. subsequently determine
A. from equation (3*20). ir

Since expressions for the deflection, w (x,y), have been 
developed as outlined above, it is only logical to extend the 
results to determination of the bending moments in the plate.
The relations between the bending moments and deflection are 
(See reference 21 for example);

K » D (w. + t w, )x ' Jxx ■ yy
M = D (w, + Y"w, ) ... (3.21)y v • yy ’xx' v '

M » D (1 - Y ) w,xy v ' ’xy

Eeferring to equations (3.12) and (3«13) we see that w (x,y) can 
be written as:

W u,y) - J ]  (»} Li ...(3.22)
i m,n

Differentiating (3.22) to obtain wlxjc, Wyy and w,xy these becomes

BO

w ’xx (*>y) * Id 2Z 5Z. Aim„ »(“-!) (f) (£) 1-ii ran

i v 3V"1 ^— i v n m-2w, (x,y) Z_. m(m-l) (̂ ) (f) L. ... (3.23)
l mn

’’XT U,y) * 2D Aimn ”” (f> Lixy —  *v a mn
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Now if we substitute (3.23) into (3.21) we have the following 
expressions for the moments.

{Oc,y) » Z  Mzi (x,y)M {
i

Z  ^ i m n { n^ D ( f ) n“Vl m,n

+ * (i) 2» (»-i) (f) ”(£) ”'z ■) j,ct J

My (x,y) = Z Z  Hyl (*,y) 1^

-1 (i) £ Zw {#2 (Dn(£)"'2l mn v

. n-2 m 
f n(n-l) (f) (J) j 1

oo
M (x.y) = x I M . (x.y) L. xy v “  xya v ' i

i.• (3•

1 V 2 V  v n-1 ,r ra-1
I  c|) Z  2 _ z iBn -  tf) (?) ( i - t >i mn

These expressions can be used to predict the moments in a cantilever 
plate of a particular aspect ratio (b/2a), particular material ( Y )> 
and at a given point (x,y).
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3.1.3 Moment Distribution Factor
The Moment Distribution factor (K ) is here defined, as thenr

ratio of the maximum bending moment at the fixed edge of the plate 
to the nominal moment at the fixed edge. Referring to Figure 3 
this oan be expressed as:

^  - r 24 -  < ^ 5 )nom

where: M = maximum moment at the fixed edgeIHclX
M = nominal moment at the fixed edge which isnom

defined as

“non ” la/ M ^  *" (3>26)
-a

where M is the value of the bending moment at the wall. The 
nominal moment can also be computed in terms of the load being 
applied to the plate. The two types of loads applied to plates 
in this study are point loads and line loads. A point load is 
shown in Figure 3, acting on a plate of aspect ratio (b/2a), at 
the point (£>b, cl a). The value of Mnom for the plate sho>m is:

"non, " I P  *>• (3-2T>

An arbitrary line load is shown in Figure 4; it is not completely 
arbitrary, however, in that it is assumed that the load intersects 
the free edge (at and then extends at some angle (jĴ ) till it
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interseots another edge. The value of M for this.plate is:nom

These values of the nominal moments will he used in determining 
the "bending moment distribution factors.
3.2 Details of Computer Program

The method of determining deflections and moments, as 
outlined in Section 3.1*2, is a computational technique which 
involves a great deal of calculation, i. e: solving a large set
of linear algebraic equations, etc. To do this by hand would 
be next to impossible (it seems, however, that Szmetler et al
(3) did so for two aspect ratios) if a large number of plates 
and loadings are considered. It was therefore considered 
desirable to write a computer program which would calculate 
the deflections and moments in a cantilever plate, of a given 
aspect ratio, under a particular point load.

A listing of the final program is given in Appendix A; 
there are 12 subroutines in the program which are called 
sequentially by the main program. The program was written 
in subroutine form to allow overlays which would save core 
space; as well as break the program into logical segments to 
allow easier programming and debugging.

The subroutines are:

Mnom (3.28)

1 ESTISR
2 SETW
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3 SETM
4 SETA
5 SHIFT
6 SORT
7 ESTW
8 ESTMXY
9 SETL

10 DETtf.
11 DETM
12 MMAX

and as mentioned "before, they are listed in Appendix A.
The program is written to allow for a maximum of 140

coefficients in the series for the deflection; this was done
in 200K of available core.storage. The limitation on core
storage required added complexity in the program which would
not have been neoessary if a larger computer had been available
(not to say that 200K is small). Since the completion of this
program, more core storage has become available which would
have made the added complexity unnecessary.

In the main program Poisson's ratio is chosen, the aspect
ratio is set, and the number of terms in the series is set.
Poisson's ratio was set at 0.3 for all of the computer runs
since this is a suitable value for steel and most aluminum alloys.

In subroutine ESTISR, the table relating the coefficients
used in equation 3.17 is established. This table is necessary
to derive the matrix W from the coefficients mnpq. The matrixsr
hi is then set up in subroutine SETW using equation 3.16 and
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and the table of coefficients established in ESTISR. The
values of W are stored in W(l,J); however, since W is sr 7 sr
symmetric (equation 3.17) it will be necessary to save only 
the upper triangular portion of the matrix. The values of 
V are calculated as double precision numbers; this, of course, 
requires twice as much storage space as single precision 
numbers would. This was done;since using single precision 
numbers allows only 30 terms in the series of coefficients 
for deflection to be calculated due to loss of accuracy in the 
equations.

The next subroutine called is SETM, and in this subroutine 
the coefficients M  ̂are calculated using equation 3.19* The 
terms in M are also double precision, and are stored in the 
lower triangular portion of W(l,j) since the matrix M .j. is 
triangular (i. e: all terms above the diagonal terra are zero).
In order to accomplish this, it was necessary to store the 
diagonal elements of V in the vector A (i), thus leaving theS3?
diagonal of matrix W(l,j) available for storing M

Subroutine SETA determines the coefficients A. fromir
equation 3.20, these are also double precision numbers. The
neoessity for double precision numbers is evident here, since
all of the previously calculated terms in A^r must be used to
calculate each succeeding term. The terms in A^r are stored
in the upper triangular portion of W(l,j) which was previously
occupied by W . Vector A(l) was used in this phase to store S3?
the diagonal elements in M this is necessary so that the 
diagonal terms in A. can be generated in these positions.
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After A^r is calculated, it is transferred to the lower triangular 
half of W ( l , J )  with all the above diagonal elements set to zero. 
Subroutine SHIFT is then called, and its sole function is to 
rearrange the terms in W(l,j) into a more convenient sequence for 
the following subroutine.

The next subroutine called is subroutine SORT, and in this
subroutine the matrix of coefficients, A. .  is sorted into itsir
even and odd terms. These are defined in the following manner; 
a term will be considered even when its y exponent (m in equation 
3.13) is even and odd when its y exponent is odd. The reason 
for this will become more evident later; let it be adequate now 
to say that it is necessary to do this. The even terms will be 
placed in AE(l,j) and the odd terms in AO(l,J). In order to 
once again conserve space, these matrices will be equivalenced 
with W(l,j). The matrices AE(l,J) and AO(l,J) need to be 
dimensioned only half the size (i. e: one quarter as many terms) 
as W(l,j) since many of the A^^ terms (75$) are zero and can be 
deleted. Also, since the remaining calculations are simple 
multiplications and additions, AE(l,j) and AO(l,J) will be in 
single precision format. Having the matrices equivalenced with 
W(l,J) oould cause some problems since they will contain numbers 
already stored in W(l,j). The subroutine SHIFT was called to 
rearrange the A^r terms so that this would not be a problem.

In subroutine ESTW, which is oalled next, the grid points 
are chosen at which coefficients will be calculated. These 
points are then those where loads can be placed and deflection
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and. moment information determined. The coordinates (x,y) of
the points are stored in X(l) and Y(l); they are chosen, however,
in terms of x/b and y/a, in order to make them oompatahle with
equation 3.13. These coordinates are chosen only in the region
y>0 and x ^ O  since it will he possible to consider points
for y< 0  by a type of reflection about the axis as outlined
later. Two new matrices are defined in this subroutines
RE(I,J,K) and RO(l,J,K) whioh are also equivalenced with W(l,J)
in order to save space. These matrices are dimensioned
6x6x70, each 6x6 (of both the odd and even matrices) group
represents the value of w^(x,y) at 36 points represented by
the values of X(l) and Y(l). As mentioned, they represent the
values of w^(x,y), with the terms generated by AE (l,J)
going into RE(l,J,K) and those generated by A0(l,J) going
into R0(I,J,K).

Next in subroutine ESTMXY, the same thing that was done
for w. (x,y) in ESTW is done for M (x,y),M (x,y) and K (x,y). x x y xy
That is to say that M . is computed by equation 3*24 and storedAl
in R0X(I,J,K) and RJBX (l,J,K) and M . is stored in R0YX(l,J,K)xyi
and REXY(l,J,K). These matrices are all equivalenced with 
W(l,J) to reduce core storage.

Now it only remains to sum up the terms as indicated in 
equations 3*13 and 3.24 to obtain the moments and deflection 
of the plate at the points specified; however, before this can 
be done, it is first necessary to evaluate L^. The work done 
by a force P on the displacement w^ (x,y) is given by:
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i

28r a
P wi(x,y) dxdy (3.29)

-a

If the load ia acting at point (a^b^), and it is a true point
load; then it has a value at this point only (i. e* P = 0 if
x / a^ and y £  b^)« va ûe integral is then:

L = P w. (a^, b^) ... (3.30)

Then in order to apply a load at a point it is only
neoessary to select the values of w^(a^,b^)as the work vector
L^. This is done in subroutine SETL where the vector C(l) is
loaded with the values of 1., chosen by the main program to1
represent a given loading from the terms in RO(l,J,K) and 
RE(l,J,K). In this subroutine, an error vector is also 
generated. This is outlined by Szmetler et al: they show
that the influence of the nth component on the sum (i. e* 
deflection) is given by:

2 , n 2
”? m = Ln X  y ,  L i ...(3.31)

This error vector is useful in indicating how many 
terms should be taken in the solution for deflections.
These values are stored in ERROR(l).

Subroutine HETW is called next and this subroutine 
determines the deflection of the plate under the point loading 
chosen. This is done by taking the sum of the products w ^ x ^ )
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this is, in effect, evaluating equation 3.12 for w(x,y). The
values of w(x,y) are stored in D(l,j) which in the scheme used here
is dimensioned 6x11. In determining w(x,y) the even components
(i. e. terms RE(l,J,K) x C(K)) are symmetric about the x axis?
however, the odd components (i. e: terms RO(l,J,K) x C(K)) are
skew symmetric, which is to say they are added in the region y > 0
and subtracted in the region y< 0. The values of D(l,j) are
printed out in a suitable format to give the deflections of the
plate under the loading chosen.

Subroutine DETM is then called, and it determines Mx(x,y),
M (x,y) and M (x,y) in the same manner as DETW determined w(x,y). y xy
The resulting moments at the chosen points in the plate are
stored in DX(l,j), DY(l,J) and DXY(l,J) which are all dimensioned
6x11. These values are all printed out in matrix format. The
last subroutine called is MMAX which computes the maximum and
minimum moment at the chosen points from M , M and M at eachx y xy
of these points. The equation used is:

for the maximum and minimum moments, while the angle at which

max, min
• •• (3 *32)

the maximum moment acts is determined from (See reference 24 for 
their derivation),

• • • (3.33)
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The values of the principal moments and their angle are printed 
out in matrix form as well, since these- may prove useful in 
determining the accuracy of the solution by noting the directions 
of the free boundary moments*

This completes the description of the inner workings of the 
program as well as the concepts behind it. The program, as presented 
here, is suitable for single point loads on plates; as well, it will 
be used to study the effects of line loads. This will require some 
modifications since the line load will be simulated by a series of 
point loads, with the point load solutions being superimposed to 
generate the required moment information. Since these modifications 
are simple and self evident, no detailed description of them will 
be given.
3.3 Details of Plates Tested

The plates tested were cut from a single sheet of \  inch 
thick, low carbon, hot rolled steel sheet. The surface of 
this plate was rather poor (i. e: loose scale was present) but
no attempt was made to improve its conditions (other than 
painting). A total of 10 aspect ratios were tested, even though 
only 3 plates were used; this was accomplished by cutting 
strips off the top of each plate after it was tested, thereby 
resulting in a new aspect ratio. This process is outlined in 
Figure 5, where plate I attains aspect ratios of (3>2,1.5), 
plate II attains aspect ratios of (1.00, 0.75» 0*50) and 
plate III attains aspect ratios of (0.33» O.25, O.I67, 0.10).
The reason for doing this becomes dear when one considers that 
strain gages are mounted near the clamped edge of the plate.
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Plate I has 5 gages, Plate II has 7 gages, and Plate III has 9 gages 
mounting this number of gages on 10 different plates (one for eaoh 
aspect ratio) would be both expensive and a large amount of labour, 
which can be avoided by using the method outlined here*

The aspect ratios chosen were selected to adequately cover 
the range between the cantilever beam (high aspect ratios) and 
the quasi infinite plate (low aspect ratios). They were chosen 
to do so in a logarithmic fashion, since preliminary theoretical 
results indicated this was desirable. Aspect ratios were also 
chosen to correspond to those tested by previous investigators: 
i. e* 1.0 (Dailey, reference 20); 0.25, 0.33 (Vartak, reference 19 
and Holl, reference 17).

The thickness of the plates was chosen great enough to 
provide holographic stability against air currents and table 
vibrations. In most cases studied, the 4 inch thickness was 
adequate; however, the 12" x 4" (aspect ratio 3»0) plate could 
not be studied holographically since its length made it too 
sensitive to vibration.

In order to calculate the deflections and moments from 
the experimental information, it was first necessary to obtain 
modulus (E) and Poisson's Ratio (Y) information. This was 
done by testing tension specimens cut from the same piece of 
steel plate as the test plates. The resulting values were 
E=30.2 x 10 and r= 0.276; this resulted in the value of 
4.62 x 10^ for the plate stiffness (D). The details of this 
determination are outlined in Appendix B.
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3.4 Major Assumptions Involved

The following is a list of assumptions which may affect the 
generality of the experimental results obtained.
(1) That the method of clamping the plates is a reasonable 
approximation to a fixed end condition. This has been a subject 
of concern in many studies, and it seems to be likely from their 
comments that for deflections it is not adequate (in fact 
machining from a solid block may not be) but for moments, 
excellent results can be obtained. However, some effect can still 
be expected.
(2) The strain gages used on the plates were of finite length 
and width (l/8 inch by l/l6 inch) which introduces some error 
due to averaging, but they must also be placed a finite distance 
away from the clamped edge. This will result in a lower moment 
reading than actually exists at the clamped edge; however, since 
the gage length is small (and therefore the closeness of its 
centre to the clamped edge of the plate) this error is assumed 
negligible (particularly since the plate lengths are at least
9 times the gage length).
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4. Experimental Arrangement and Procedure 

4*1 Deflection Determination
The deflections were determined using holographic

*

interferometry to obtain the full field deflection contours of the 
plates under load. This method was chosen because it lends itself 
so readily to plate deflection determination as the point of 
maximum deflection, as well as the deflected surface, is immediately 
evident. This method has obvious advantages over point sensors such 
as dial gages - where a large number of readings, as well as a plot 
of the deflected surface, must be made before the maximum point 
becomes evident.

The basic elements of holography are described in a host of 
papers; even though this is a new technique, there has been a vast 
amount of research done to apply it in many areas. The basic elements 
and advantages of the technique are well described by Stetson and 
Powell (25). Also the application of the technique to plate 
deflections is desoribed by Boone and Verbiest (26). The basic 
arrangement of the holographic system used in this experiment is 
shown in Figure 6. This system is slightly different from that 
commonly used in holography in that one beam is used to illuminate 
both the object and the reference beam mirror, whereas most systems 
use two separate beams. The primary advantage of such a system is 
that it is inherently more stable; therefore, since the stability 
of the table being used was marginal for two beam systems, the 
single illumination beam was used. One of the greatest limitations 
of the holographic technique is the requirement of interferometric 
stability, which requires a special table as a working base.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34 •

The construction of the table used in this study is described in 
Appendix C. where the stability required is also disoussed. The 
construction of the other optical elements used is also described 
in the same appendix.

Hologram interferometry relies on the comparison of two nearly 
identical holograms of the object (or a hologram and the real object). 
This is done by double exposure of the film (with a change taking 
place between exposures) or by viewing the changed object through 
a developed hologram plate. When either of these techniques is 
used, fringes are produced which are related to movements away 
from the hologram plate. The equation for the formation of such 
fringes is explained by A. E. Ennos (27) and is given by:

o X u
(cos ©^ + oos &g) *** (4*1)

where: £  is the deflection of the plate
^  is the wavelength of the light used (6328 A°)
N is the fringe order
© is the angle between the illuminating beam

and the normal to the plate
©p is the angle between the normal to the plate

and the viewing direction
The angles ©^ and ©g are shown in Figure 6. The angles ©^

and ©g of course vary across the specimenj however, looking at

equation (4»l)> it is easy to see that if the angles ©^ and ©g

are small, any small change in them will result in only a small 
change in the equation for . The conditions in the experiment 
were such, that neglecting the angle variation results in an error
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of only 2fo across the plate. This was therefore done in the data 
reduction to reduce the amount of work involved. As well, the 
angles ©^ and were kept equal, since this results in a 
diffuse reflection of light from the plate onto the film which 
helps improve beam balance (for optimum recording, the reference 
beam should be 5 times the intensity of the object beam). 
Therefore ©^ and are eQual in the present arrangement, with 
both of them being set equal to 14 degrees. Using these angles 
and substituting for X , equation (4»l) becomes:

where a is now given in inches. This indioates the fantastic 
sensitivity available - which oan be a disadvantage, since 
correspondingly small loads must be used which can be difficult 
to apply.

In the testing of a particular plate, the first step was to 
mount it in the plate holder (which is described in Appendix D). 
The plate holder was then clamped to the table to prevent its 
movement during the rest of the experiment. Then, using the 
arrangement shown in Figure 7 > a hologram was made by exposing the 
film for 3 seconds. The film used was Scientia 10E70 by Agfa 
Gaveart and it was illuminated by a 5 raw Spectra Physics He—He 
Gas Laser. Holography requires the use of film with high 
resolution (28) and the film used here is capable of resolving 
2800 lines/mm (regular photographic film, i. e: Kodak Tri-X can
resolve only 40 lines/mm). The hologram was then developed in 
Agfa developer Metinol U for 4 minutes, fixed in Agfa Acido Fix 
for 4 minutes, and washed in running water for 10 minutes.

(4.2)
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An attempt was made to keep the wash water at room temperature in 
order to prevent emulsion shrinkage or expansion. As well, during
the exposure of the film arid subsequent testing period, the

0
ventilation system was shut down to eliminate air currents which 
might result in fringe movement.

After the hologram was allowed to air dry (which usually took 
about one hour), it was replaced in the film holder. The Scientia 
10E70 emulsion was on 4” and 5" glass plates, which makes it 
possible to replace the film easily in the holder, as described in 
Appendix C. When this is done, a series of equally spaced fringes 
is usually seen on the plate; these can be removed by oarefully 
adjusting the position of the film against the positioning pins.
When the plate appears uniformly bright, the hologram has been 
properly repositioned. If, however, the fringes are curved and 
cannot be completely nulled out, it is quite likely that emulsion 
shrinkage has occurred, and a new hologram must be made. Once a 
satisfactory hologram had been made, repositioned, and nulled, the 
loading sequence of the plate was carried out.

Before the plate was put in the loading frame, it was painted 
with a diffusely reflective aluminum paint. The paint used was 
made by Magnaflux Corporation and is used as an undercoat in 
Brittle Coating experiments. A grid of lines was then drawn on the 
painted surface of the plate, such that its width was divided into 
10 equal segments and its length into 5 equal segments (see Figure 8). 
As is shown in Figure 8, the loads were applied where the grid lines 
intersected and at the edges of the plate. The load selected was 
such that a maximum of about 30 to 40 fringes appeared on the plate.
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The defleotion data was recorded by photographing the live holographic 
fringes as observed through the holographic plate. This was done 
using a 35 nun camera and Panatomic - X film with a one second'exposure. 
This sequence was repeated at each of the points marked in Figure 8. 
Because of the sensitivity of the technique, the loads were all less 
than 5 lbs., with some ranging down to 0.1 lbs. on the more flexible 
plates.

The photographs of the holographic fringes then contain all 
the information necessary to obtain deflection contours for the 
plate, as well as locating the point of maximum deflection. The 
photographs may be printed before information is taken from them, 
or they may be projected on a screen for interpretation.
4.2 Bending Moment Determination

The bending moment distribution along the damped edge of the 
plate was determined by using a series of strain gages distributed 
along the edge of the plate. It is possible to relate the bending 
moment to the strain at the surface of the plate if one assumes 
that at the clamped edge only strains normal to the wall can exist..
This means that £ ( the strain parallel to the wall) must be zero,y
as is the shear strain ( ̂ xy). Therefore, the only strain is that 
measured by the gage, The stresses computed from such a strain
distribution are (see reference 29j Timoshenko and Goodier, for 
instance):

O" ■= E SxEf , ^  - 0 ... (4.3)
< 7 7 7 0  ’ 7  <7 7 7 b **

The relation between the bending moment in a given direction in a 
plate and the surface stress in the same direction is given by 
(see reference 24 for example):

M = h2̂  ... (4°4)
"U
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where the moment M is given in lb. - in./in. The moments at the 
damped edge of the plate then become after substituting (4»3) in
(4.4):

M » B h2£x , M = YE h2fx , M - 0 ... (4.5)
6 (l - Y z) 6 (l -

By this means, it is possible to calculate the bending moments from
the strain readings.

The strain gages were placed symmetrically along the clamped 
edge, on the side of the plate opposite the load. This results in 
all of the strains being compressive. There was a gage placed 
along the oentre line of the plate (y ** 0 ) and one at either end of 
the plate ( y *= —  1) 5 this is illustrated in Figure 9 where the 
locations of other gages are listed.

The procedure involved loading the plate at each of the grid 
points shown in Figure 8 and then recording the strain reading at 
each of the gage positions. The load used was up to 130 lbs. in 
dead weights depending upon the stiffness of the plate, with the 
maximum strains to 500jjl in/in. The strains were read out on a 
Budd P—350 strain indicator, used in conjunction with a Budd SB-1 
switch and balance unit which allows a maximum of 10 gages to be 
used. The internal dummy in the switoh and balance unit was used, 
whioh means that no temperature compensation is available} however, 
over the period of the experiment no measurable changes were noticed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

5* Results and Discussion 
5.1 Plate Deflections

5.1.1 Theoretical Results 
The first results calculated were those which corresponded to 

the work of previous investigators. This was done to check the 
validity of the approach being used on plates of different aspect 
ratios. There is, however, very little to compare to5 the only 
work "being that of MacGregor (16), Holl (17)> Jaramillo (l8) and 
Dailey (20).

First we will compare the theoretioal results and the work of 
MacGregor (16) who tested a plate with a central point load on its 
free edge and an aspeot ratio of 0.147* He also presented 
theoretical results which he had obtained for an infinite plate.
His results, experimental and theoretical, are shown in Figure 10. 
The plate he tested was steel, with E = 30 x 10^ and Poisson's 
ratio 0 .3 , also it was &g- inches wide, 1.25 inches long and 0.125  

inches thick. Based on these dimensions, the deflections expected 
were calculated using the theory presented in section 3*1.2. These 
are shown in the same figure as MacGregor's results. Agreement is 
good with the theory comparing within l»3fo of MacGregor's theory 
and within 0 .5 of his experimental results at the point of 
maximum deflection. Agreement is also good along the whole length 
of the plate.

Figure 11 shows a comparison between the free edge deflections 
of a cantilever plate with a point load centrally applied on its 
free edge. These results were obtained by Holl(17) who used a 
finite difference technique to obtain the deflections of a cantilever
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plate with an aspect ratio of O.25O. Also shown in the same 
figure are the results obtained from the present theoretioal 
solution to the same problem* The two curves agree quite well in 
terms of general shape; however, there is a I'etfo difference between 
them at the point of maximum deflection. Holl's results were 
obtained from a finite difference technique which used only 16 

elements to represent the plate; the reason his deflections are 
larger than those predioted by the theory is likely due to the 
limited number of elements he used.

Jaramillo (18) derived the defleotions of an infinite plate
under various point loading. In Figure Ilf, the free edge
deflection of an infinite plate under the action of a free edge 
load, as calculated by Jaramillo, is shown. As well, the free edge 
defleotions of a plate with an aspect ratio of 0.167 with a load at

= 0, = 1 (see Figure 3 for nomenclature). It is not expected
that these should agree perfectly; however, excellent agreement is 
shown over most of the plate length, with poorest agreement 
occurring at the centre of the plate edge (under the load). Here 
the maximum difference is which is still reasonable
considering that Jaramillo's solution is for an infinite plate.

Dailey (20) tested a square plate with point loads at 
different locations on the plate. Figure 13 shows the deflection 
oontours he obtained for the plate loaded with a point load at the 
centre of its free edge. Also shown are values calculated .by the 
theory being used here; they are shown listed at the grid points 
marked. There is exoellent agreement between Dailey's experimental 
and the theoretioal .results (l$£ at maximum deflection point).
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Figure 14 shows Dailey’s results for a corner loaded square plate, 
as well as the theoretical values. Again, agreement is almost • 
perfect with a maximum difference of ahbut lfc at the maximum 
deflection point. Dailey is the only investigator to give 
deflection contours, and the ability of the theoretical results to 
compare to his over the surface of the whole plate, indicates the 
validity of the approach chosen.

In fact, the high degree of agreement between the theoretical 
approach being employed here (i. e: that of Szmetler et. al.) and 
the work of the four authors cited, establishes the accuracy of the 
method. For this reason, the method was considered suitable for use 
as a basis for comparison with the experimental results.

The theoretical results for twelve aspect ratios, with a 
Poisson’s ratio of 0 .3 > were calculated using the technique 
outlined in section 3.2. The deflection information from the 
program run, for an aspeot ratio of 0.25, is shown in Table I. The 
program calculates the deflections at all of the grid points shown 
in Figure 8 for loading at each of the points marked by a star in 
the same picture.. This results in 30 unique loadings, each 
generating a matrix of deflections at 66 points. Looking at one of 
the deflection matrices, the fixed edge is at the left side of the 
page and the free edge at the right side. The point at which the 
load is applied is underlined, with the values of oL and £> 
written beside the matrix giving the location of the load as 
well. This method of generating a deflection matrix quickly 
pinpoints the location of the maximum deflection point in relation 
to the maximum load point. As can be seen from the table, the
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maximum deflection is always at the free edge and also on a normal 
from the wall through the load point or between the normal and the 
closest free corner. This has been observed in all of the plates 
considered under point loads anywhere on the plates. Using these 
matrices, it is possible to draw deflection contours for the 
plates, which should correspond to the results of the holographic 
interferometry experiments. This will be discussed in greater 
detail in the following section, where the theory and experiment 
will be compared.

5.1.2 Experimental Results
A total of ten plates were tested, as was previously mentioned. 

Three of these, with aspect ratios of 1.0, 0.50 0.25, will be
discussed in detail here. These three plates are representative of 
the others tested, and have been selected since they cover a large 
portion of the aspect ratio range tested.

Figures 15, 16 and 17 show live fringe holograms of the three 
plates mentioned for loading at various points along the free edge. 
These photographs of the loaded plates were taken through the 
hologram made while the plate was unloaded, thus producing the 
fringes shown. The illumination of the plates is nonuniform 
since insufficient laser power was available for the field size 
being used; this tends to be a bit of a problem when examining 
the photographs. The experimental deflection values were taken 
visually from the negatives in an enlarger, and since the 
human eye has far more latitude than photographic paper, no serious 
problems were encountered due to this nonuniformity.

Figure 15 shows the holographic deflection contours for the
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square plate tested. All photographs were taken using the same load 
of 0.55 lbs, whioh produoes a varying amount of maximum deflection 
depending upon the position of the load. The loadings shown are 
for free edge location of the load (i. e: £ » 1 and 0 ^ 1),
other values of ot. and £  were tested of course, but the results 
will be presented in a summarized form only. It is interesting 
to note here that the fringes on the plate tend to remain 
relatively straight; (truly straight fringes would indicate that 
the deflection is not too localized). Rather, the effect of the 
load is reaching all points of the clamped edge with an 
approximately equal effect. In Figure 16, which shows the deflection 
contours for a similar loading scheme on a plate with aspect ratio 
of 0.5, the curvature of the fringes is very pronounced. Also in 
loading this plate, it was necessary to use higher loads near the 
centre of the plate than at the corner to produce a suitable number 
of fringes. Here the effect previously mentioned becomes evident, 
that is to say that the maximum deflection occurs at the free edge 
between the load point and the nearest free corner. This effect is ' 
more evident in Figure 17 where the deflection contours are shown 
for a plate with aspect ratio of 0.25* Here the deflection can be 
seen to be relatively localized; in fact, so much so that all 
loadings for 0 o( <  .8 appear to produce approximately equal 
maximum deflections. The loading here produces such large 
variations in deflection that approximately twice the load had to 
be used at the centre of the plate as at the free corner to give 
equal maximum deflection.

Figures 18 through 20 compare the theoretical and
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ji

experimental deflection contours (i. e: lines of constant ----<0 )
P b

obtained for the square plate tested. The agreement between theory 
and experiment is excellent for all the loadings shown; (these being 
the same as those sho>m in Figure 15)* In fact, the maximum differences 
between the two are about 2fo, This agreement was to be expeoted, of 
course, because of the good agreement shown between the theoretioal 
results and the experimental results of Dailey (Figures 13 and 14)• 

Figures 21 through 23 compare the theoretical and experimental 
deflection contours obtained for the plate with aspect ratio of 
0.50. The agreement for this plate is not quite as good, with some 
differences up to 5^5 however, most contours agree to a greater 
accuracy than that. The contours are in all cases of the same shape 
and merely displaced or slightly less curved.

In Figures 24 through 26 the theoretical and experimental 
deflection contours are shown for the plate with aspect ratio of 
0*25 tested (the experimental contours being shown in Figure 17).
The agreement here is also within about 5% in the worst cases, with 
very good agreement in terms of contour shape and location. There 
are several points which seem to come out of the nine figures just 
mentioned (i.e: 18 through 26). And they are: .

1) theoretical and experimental contours are similar in shape
2) maximum differences between the two are less than 5f°

3) maximum deflection is always indicated by both contour
sets to be in the same place

4) as the aspect ratio decreases, the value of P- decreases.
P b *

Up to this point, no mention has been made of any loadings 
other than those which are on the freo edge. However, mnay other
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loadings ( i. e: at interior points) were tested and calculated
theoretically, but due to space limitations they will only be 
summarized in terms of the maximum deflection produced. These 
results will be presented in the next 5 figues; however, it is first 
necessary to explain the dotted line which appears in all of the 
figures. This line represents the elementary maximum deflection of 
a point loaded cantilever. This is equivalent to saying that this 
would be the maximum deflection produced if the plate were 
infinitely stiff in the y direction and could therefore only bend 
in the x direction. This approach will of course result in 
lower defleotions than those whioh actually do occur. Since the
curves are plotted in terms of max D

P b
vs. Aspect Ratio, it is

necessary to derive this relationship for the cantilever beam. 
Shigley (5) gives the relation between the maximum deflection and 
other variables as

max 6 E I
where the arrangement is shown 
in the small figure (a) to the 
right, also this maximum deflection 
occurs at the free end of the beam. 
The moment of inertia, I, is given 
by (refer to Figure (b) )
I = •jij— (base) (height)^ 

a h

(3 x 2b - x^) (5.1)

x « fib

(a) 
-2a -

(*)
(5.2)

1
hT
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The distance x between the load point and the fixed end of 

the oantilever is given "by x = ^  I. Now if we substitute this 
value for x and the value of I given !by (5.2), equation (5*1) 
becomes

cf - (3 fc2 - E.3) ... (5.3)maz a A
The plate rigidity, D, is given by 

E h 3
12 (1 - IT)

from which
E h3 « 12 D (1 - y 2)

substituting this equation in (5*3) we have 
3 r2 p, 3>max P r  (3 r  - ft 

12 D a ( 1 - V“2 )
... (5.4)

rearranging we have 
£
0 max D

or:
P b 2 a (3 p2 - p 3i ... (5.5)

... (5*6)
P b

where m is a constant which depends on the location of the load 
point ( p> ). The values of m corresponding to the p> values 
which were considered experimentally are given in the following 
table:

ft m
0 .2 .0202
0.4 .0790
0 .6 -.15.8 .

0 .8 .258
1 .0 .367

Equation (5»6)predicts a linear relation between the 
maximum deflection and aspect ratio for the ideal cantilever beam.
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Figure 27 shows the variation of maximum plate deflection as a 
function of aspect ratio, for cantilever plates loaded at various 
points along the free edge. The solid curves indicate the values 
predicted by theory, and several points relating to these ourves 
are immediately evident. First, as the aspect ratio becomes small, 
(i. e: short, stubby plates) the maximum deflection reaches a
constant value which depends upon the load position ( oc ). Second, 
as the aspect ratio becomes large (i. e: long, narrow plates) the 
value of becomes insignificant and all of the curves converge 
on the value predicted by the elementary cantilever approach which 
was outlined previously. As can be seen, the curve for central 
loading ( Qt * 0) approaches this value (i, e: cantilever value)
for far smaller values of aspect ratio than the curves for larger 
values of Oc . A fourth point is that all curves for values of oc other 
than 1 will become asymptotic to the curve for Oc = 0 as the 
aspeot ratio decreases. These four points are true for all values 
of p> considered and the maximum theoretical deflection variation 
as a function of aspect ratio is shown in Figures 28 through 31 for 

values of 0 .8, 0 .6, 0 .4 and 0 .2 .
The experimental maximum deflections obtained from the 

holographic experiments are also shown in the figures just mentioned, 
as are the results of several other investigators. Referring again 
to Figure 27, it can be seen that agreement between theory and 
experiment is excellent for corner loading of the plate. In fact, 
agreement for all values of is good, with some scatter shown 
for the 0.8 and 0.6 curves. This scatter can best be explained in 
terms of load point location on the plate, since the values of
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£  max D are changing rapidly in this region as a function of V  5 
P b2
any small error in ot (i. e: load position) will result in large 
scatter. The experimental points for Gc *= 0 (central loading of 
the free edge) are in excellent agreement with the theoretical 
values for high aspeot ratio; however, they tend towards a higher 
value as the aspect ratio becomes smaller. This is, however, in 
agreement with the results of MacGregor (16), whose experimental 
point is shown for the plate he tested (aspect ratio =» 0 .147) •
Also shown at the extreme left hand side of the figure is the 
infinite plate value of MacGregor, which should be equal to the 
value predicted by theory. There is a difference between the two 
of 10̂ 5, however, and the most reasonable explanation of this 
difference is to attribute it to errors in the energy solution 
being used. Also shown in this figure is the result of Holl (17) 
who used a finite element solution, but agreement here is poor, as 
was mentioned previously in seotion investigators, who
studied oantilever square plate deflections experimentally, have 
their results shown in this figure. They are Palmer (30) and 
Dailey (20). Agreement with Dailey's results are so good that his 
points are not visible since they are identical to the present 
experimental results. Palmer's point, however, for a corner loaded 
plate, tested using projected moire fringes shows a larger 
deflection resulting than is predicted here.

Figure 28 shows the variation of the maximum plate deflection 
with aspect ratio for point loads at =» 0 .8 and oc = 0 , 0 .2,
0.4, 0.6, 0.8 and 1.0. These curves are strikingly similar to 
those shown in Figure for p> «* 1.0. Experiment and theory
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agree to within 5$ everywhere, with more scatter in the points for 
oc a 0.8 and. 0.6, for the same reason as mentioned before. There 
are no other experimenters to compare results with, for loadings 
within the plate boundaries. However, the agreement between theory 
and the present experiment is adequate to serve as a verification of 
the theoretical approach.

Figure 29 shows the variation of the maximum plate deflection 
with aspect ratio for point loads along = 0.6 for various values 
of Oi • Agreement is again quite good, with a general tendency 
for the experimental values to be above the theoretical curves for 
low aspect ratios. The percent difference between the two (experiment 
and theory) is approximately 5i° maximum for ot = 1.0, 0.2 and 0, 
and 10$..maximum, for oc ~ 0.4> 0.6 and 0.8. These differences occur 
only for aspect ratios less than 0 .50, while for aspect ratios 
greater than this agreement is excellent.

However, if we now look at Figure 30 which shows the variation 
of the maximum plate deflection as a function of aspect ratio for 

= 0.4 and- various values of oc, a new effect is in evidence.
The theoretical and experimental (if they had been drawn) curves 
arrive at different constant maximum deflection values as the aspect 
ratio approaches zero. The difference between these values is about . 
10$. For higher aspect ratios, the agreement is still very good.
This discrepenoy between theory and experiment will be discussed 
later.

In Figure 31 > the variation of the maximum plate deflection as 
•a function of aspect ratio is shown for = 0.2 and various values 
of 0( , Here the spread between theory and experiment is huge,
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(40$ for oc => l)j however, the general shape of the curves is 
similar. This loading ( p> = 0.2) is closer to the clamped edge 
than the previous loading ( ^  => 0 .4) and the discrepenoy between 
theory and experiment is larger? this would tend to indicate that 
<adther the theory is inadequate near the. clamped edge or the 
experiment is inadequate there.

In order to get a better indication of what is happening as
& varies, Figure 32 was constructed. This figure shows the

variation of the maximum plate deflection (— -̂ 5——— — ) as a
P b

function of load position (po for a plate of low aspect ratio 
O.25). Two theoretical curves are shovm, one for Of = 1.0 

(corner loading) and one for 0(= 0.0 (central loading). The 
theory and experimental points for SC = 0 are seen to agree well? 
also shown is Jaramillo*s curve (18) for the infinite plate. The 
experimental points for 0C = 0 are seen to lie between Jaramillo*s 
curve and the theory curve,, with the difference between the two 
theory curves being about 10$. The curve for (X a 1.0 shows a 
much higher deflection than that for Oc= 0.0j in fact, it is 
about 2.8 times as great. The experimental points shovm indicate 
good agreement with theory for ^ greater than 0.6. However, for 
lower values of the experiemtnal points show a higher 
deflection than was indicated by theory. This effect can be 
explained on the basis of one or both of the following 
considerations:

1) as the load is applied nearer the fixed edge, shear 
deflections which the theory ignores may become important

2) fixed edge rotations which may be insignificant when the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51
load is far from the edge (and produoing more deflection per pound) 
could easily amount to an increase in deflection of 40$»

5.2 • Plate Bending Moments
5.2.1 Theoretical Results
In order to check the accuracy of the theoretical approach, 

the theoretical "bending moments were first calculated which 
corresponded to the work which had been done by other investigators. 
There are four investigators who have bending moment information for 
cantilever plates available. They ares Holl (17) > Jaramillo (18), 
Vartak (19) and Wellauer and Seireg (4).

Holl, as was mentioned before, used a finite difference 
technique to calculate the moments and deflections for a cantilever 
plate with a oentral free edge point load, with an aspect ratio of 
0.25. His moment results are shown in Figure 33, as are the values 
predicted by the theory being used here. The comparison between the 
two methods is extremely good, with the difference at the maximum 
moment point being only'2$. The area under both curves is identical, 
which is, of course, a necessary situation since the integral of the 
moment along the fixed edge must equal the applied moment to the 
plate. The distribution of the fixed edge bending moment is 
slightly different, however, with Holl*s results being higher near 
the edge of the .plate and lower at the centre.

In Figure 34> "the bending moments predicted by Jaramillo (18) 
for ah infinite plate loaded by a point load at its free edge are 
oompared to those predicted by the present theory for a plate with 
aspect ratio of 0.167* That this comparison is justified will be 
•made evident at a future time. Comparison between the two curves 
is very good, with the poorest agreement occurring at the centre of
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the plate where the difference is 4$» This agreement is still quite 
good considering that the difference in aspect ratio should account 
for some part of this difference.

Vartak (19) tested two plates, under point loadings at the 
free edge, with aspect ratios of 0.167 and 0.250. The deflections 
of the O.25O plate were about 3 .5 times the thickness, which is 
beyond the region where small deflection theory can be expected to 
hold. This plate was not considered here for that reason, and 
comparison is made only to his results for the O.I67 plate he 
tested. His results for oorner and middle free edge loading are 
shown in Figure 35, where they are compared to the values predicted 
by the theory developed here. As is easily seen, the comparison 
is very good for both raid point and corner loading of the free edge. 
Under corner load, the theory is 10$ lower than the experimental 
value predicted by Vartak. For mid point loading, the comparison 
is much better with the theory 3$ higher than Vartak1s value. This 
agreement is very encouraging since the theory shows good comparison 
with experimental data.

Uellauer and Seireg (4) tested a thick cantilever plate; this 
plate was 2 inches thick, 12 inches long and projected 2.25 inches 
from the wall. This corresponds to an aspect ratio of O.I87. The 
plate had inch fillets; these, of course, lead to some problems 
when it comes to placing the strain gages near the wall. The 
fillets are necessary since the plate was machined from a solid 
block, and in order to avoid infinite stresses at the corners 
where the plate and wall are joined, some fillet radius is -required. 
The gage length of the gages used by them was 1/8 inch; this means
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then, that the point at which the moment is being measured is at
least 0.375 inches away from the wall. This corresponds to 16.7$ of
the plate length and lower moments must‘therefore he measured for this
reason, than actually occur at the fixed edge. In Figure 36, their
experimental and theoretical results are compared with the theoretical
approach being used here. A few words about the theory advocated by
Wellauer and Seireg would appear to be in order here, since this
approach of theirs will be mentioned many times in subsequent
sections. Their approach is semi empirical (their term) in that
it uses as its basis the theoretical results of Jaramillo and
manipulates them to obtain a solution which compares to their
experimental results. The basic premise is that Jaramillo's
infinite plate result is valid for finite length plates of low
aspect ratio (this is borne out by the present research).
Therefore, for loading along the plate centreline, their solution is
identical to that of Jaramillo. However, for off centre loading,
some of the fixed edge bending moment would have no plate to aot
upon (as it is symmetric with respect to the load point). Here
they introduce a concept which they call the moment image technique,
whereby the extra moment (beyond the end of the plate) is
reflected about the plate end
and added to the moment
already there. This method
is illustrated in the figure
at the right. It is easy to see
that using this concept will
result in M for corner loading being 2 M for mid point loading, max max
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Referring to Figure 36 again, we see that for central loading of
the free edge ( Ot «= 0, = 1) agreement between the two
theoretical ourves shown and the experimental points is good with
the difference at the maximum point being about 3%. For corner
loading, it is a different story altogether, with the present theory 

M
giving ■ ■??■■■—  a 1.22, the theory of ¥ellauer and Seireg giving 
H M

1.00, and their experiment giving ^  ■ ■■ *» 0.90. That their
theory could give poor results is evident from the description of it
which was just given. Their experimental data could be in some error
as well due to fillet radius which existed at the wall. As was
mentioned, the gages had to be located at least 16.7$ of the plate
length away from the wall. The values indicated from my theory for

M
these locations and loadings are — ** 0.98 for corner loading 

M
and —  « 0.45 mi4 point loading of the free edge. This 
tends to explain some of the differences between Wellauer and 
Seireg*s experiment and the theory being presented here, since this 
reduces the percentage differences to about 10$ for both of the 
loadings being considered here.

Based on the comparison between the theory and the results 
presented by the four authors mentioned above, the theory derived 
in section 3.1.2 was judged a satisfactory solution to the problem. 
The bending moments at various points (66 of them) were then 
calculated for different point loadings (30 of them) as shown in 
Figure 8 for plates with various aspect ratioB. This results in 
the generation of a large amount of information which is impossible 
to present totally. The maximum bending moments at the fixed edge 
will be presented at a later time (in section 5*2.2) as will . 
several bending moment distribution curves. For the moment, let
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us look at the principal moment distribution in the whole plate for 
several loadings.

Figure 37 shows in a top view the principal moments and their 
direction for a point loaded ( ^ = 1»0,J CK = 0.0) cantilever plate 
with aspect ratio of 1,0. The moments are drawn to scale, with 
the arrows indicating their sign. As can be seen in the figure, 
it is quite easy to visualize the stress flow from a diagram such 
as this. As well, by observing the moments at the free boundaries, 
a judgment of the solution validity (at the boundaries anyway) can 
be made, since the principal moment directions are known a priori 
there. For the plate being considered here, the free boundary 
moments of any significant value are seen to conform quite well to 
the directions which are allowed by the boundary conditions (i. e: 
parallel to the boundary a moment may exist but normal to it none 
can exist).

In Figure 38 the same plate is shown under the action of a 
corner load. The stress trajectories are seen here to begin normal 
to the wall and ourve over towards the corner where the load is 
being applied.' Here, there are moments of obviously wrong 
directions at the free boundaries in the region of the load. The 
deviation from the expected direction becomes worse as the point of 
load application is approached. This means that the bending moment 
theory used to predict these moments must be in error at these 
points. While this does hurt the general application of this method, 
it was to be expected that using an energy technique would result in 
a little less than perfect results. The results at the fixed edge, 
where the maximum moments result, do conform to the expected
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direction and therefore are not suspect as those at the free 
"boundary are.

The theoretical principal bending moments in a centrally 
loaded ( p> = 1.0, *= 0.0) cantilever plate of aspect ratio
0.25 are shovm in Figure 39. The moments are drawn to the scale 
shown there, with the arrows indicating their sign. Comparing 
the moments in this plate to those in Figure 37 (where the same 
loading is applied to a plate with an aspect ratio of 1.0) two 
points are evident. First, as a plate becomes wider (i. e: lower
aspect ratio), the stress trajectories must curve more severely 
since they originate normal to the wall and must ourve toward the 
load point. Second, the effect of the load is more isolated in 
plates of low aspect ratio, which is to say that the moment is 
unable to distribute itself uniformly along the clamped edge.

In Figure 40 the same plate (aspect ratio = 0.25) is shovm 
with a point load at a free corner. The resulting bending 
moments in this case are seen to be extremely localized with one 
half of the plate almost stress free. Here it becomes evident 
that any lengthening of this plate would not reduce the stress 
introduced in it at allj in faot even in the case shovm, the plate 
could be significantly shortened (in the clamped direction) and 
no increase in stress would occur. The moments at the free edge 
are obviously in error with regard to direction and the reasoning 
here is the same as mentioned previously for Figure 38.

Based on the foregoing figures and discussion, it is 
reasonable to say that the moment calculation technique used for 
point loaded cantilever plates gives a satisfactory means for
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predicting the bending moraentB. The moments indicated by this 
means are questionable at the free edges of the plate in the 
region of the load, but satisfy the boundary condition at the 
clamped edge, which is the region of major importance.
5.2.2 Experimental Results

As was outlined in section 4*2, ten different plates were 
tested under 30 unique loadings each, or 300 different point 
loadings. For each of these cases, a bending moment profile was 
obtained at the fixed edge using several strain gages located 
along the fixed edge. A detailed comparison of the bending moment 
profiles obtained experimentally to those predicted by theory will 
be made only for free edge loading (£ = 1.0) of the plates tested. 
This is done for the sake of brevity and since these moments 
represent the most severe that oan occur in the plate. A discussion 
on the maximum moments produced for loadings where is less than
1.0 will be carried out, however, later in this section.

Figure 41 shows the theoretical and experimental bending 
moment distributions at the clamped edge of a cantilever plate of 
aspect ratio 0.10 under various point loads at the free edge 
( = 1.0, various values of c L ) • The general trend is that the
theory is predicting higher values than those indicated 
experimentally. The curves are very similar in shape, with only 
small differences notable in this respect. Since only nine strain 
gages were used on this plate and the moments are' very localized,
(as can be seen in the figure), a certain amount of imagination is 
necessary to draw the experimental ourve. For this reason it is 
possible that a slightly different interpretation of how this ourve
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should have been drawn would have resulted in a better comparison of 
the theory and experiment. The difference between theory and 
experiment is about 7$ at the maximum moment point for all values 
of ot exoept -0.8 where the difference is about 14$. For central 
loading only % of the plate sees any load effect (i. es moment) 
and under the action of a corner load, only l/3 of the plate sees 
any load effect. This localized nature of the bending moment at 
the root of the plate is of great significance. This is, of course, 
the effect predicted by Jaramillo (18) in his theoretical solution 
for the infinite plate.

Figure 42 shows the theoretical and experimental bending 
moment distributions at the clamped edge of a cantilever plate of 
aspeot ratio 0.167 under several free edge loadings ( £> ** 1.0,
0 >  Cst -1.0). The theoretical curves are again higher than the 
experimental curves with the theory being about 10$ higher than 
experiment, in most cases. The similarity of shape of the curves 
(theory and experiment) is excellent with the exception of the 
curves for <X«= -0.8. In this case the theory indicates a maximum 
directly opposite the load point, while the experiment indicates a 
maximum at the edge of the plate. No explanation of this will be 
attempted here, as it will be discussed later. Here it can be seen 
that the whole length of the plate sees bending moments under 
oentral loading, while for corner loading •§- of the plate sees the 
effect of the load. This is far less localized than the moments 
for the plate of aspect ratio 0.100.

The bending moments predicted theoretically and obtained 
experimentally for a plate of aspect ratio 0.250 are shown in
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Figure 43 for various free edge point loads. Once more the 
theoretical curves predict higher and slightly more localized 
moments than the experiment produces. An obvious reason for some of 
this difference is the fact that the strain gages must he a small 
distance from the wall and take an average reading over their length. 
A l/8 inch gage length was chosen to alleviate this problem as much 
as possible. However, in the case of the 0.100 plate, the gage 
centre was still about one tenth of the plate length away from the 
wall. This factor of course diminishes as the aspect ratio increases 
because of the way the experiment was carried out (see section 3*3)• 
Returning to Figure 43» it is evident that the curves all agree in 
shape, except the curve for Oi -  -0.8. The curve for corner 
loading ( 01 » -1.0) shows that about three-quarters of the plate 
fixed edge.is stressed by the loading. Agreement between the 
maximum values of bending moment (theory and experiment) is very 
good for the corner loading? the difference being only 4$«

The results for the plate with aspect ratio of 0.333 are shown 
in Figure 44. Also shown there are the theoretical root bending 
moment distributions for various point loadings on the free edge. 
Agreement is good with about 10$ difference resulting at the maximum 
values for the different loadings shown. In comparing these moment 
distribution curves with the previous curves presented, it becomes 
evident that as the aspect ratio increases, a larger percentage of 
the plate length is being used to effectively resist the load being 
applied. Another way of putting this is to say that only a certain 
length of a plate with low aspect ratio sees any bending moment at 
the fixed edge under a point load. This is verified by Jararaillo (18)
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for "the infinite plate.
All four of the plates mentioned, in this seotion had. very good, 

shape agreement "between the theoretical and. experimental curves 
except for the curve for Ot = -0.8. In all the cases studied., with 
aspect ratio 0.333 or less, the experiment shows that the maximum 
bending moment for ot = -0.8 loading occurs at the edge of the plate 
(i. e: y = 1.0). The theory, however, predicts that the maximum
moment will occur at the clamped edge directly opposite the load 
point (i. e: y = -0.8) for ex. = -0.8 loading. These two cases
obviously cannot both be correct and one of them must be in error.
It is most likely that the theory is correct while the experiment 
suffers at this point due to clamping problems. It is easy to see 
that any slight curvature changes at the clamped edge in the y 
direction can easily cause this shift in moment distribution to 
occur.

Moving on to Figure 45, where the fixed edge bending moments 
for a plate of aspect ratio 0 .50 under various free edge loadings 
are shown, a new factor is evident. For central loading the 
bending moment distribution is shown to be essentially constant . 
across the width of the plate. This is a significant departure from 
the previous plates shown where the fixed edge bending moments were 
more localized. However, for corner loading (Od = —1.0) a significant 
non uniformity of bending moment results. There are not the severe 
localizations shown by the previous plates, but corner loading does 
result in a maximum moment which is twice as high as that obtained 
for central loading. Agreement between theory and experiment is 
within 4$ for central loading and differs by about lOfo for corner
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loading. i

In Figure 46, the theoretical and experimental fixed edge 
tending moments are shown for a cantilever plate of aspect ratio 
0.75, loaded at various points along its free edge. Comparing this 
plate to the previous one, (aspect ratio = O.50), it is interesting 
to note that for central loading the 0.75 plate shows a much higher 
maximum moment than the 0.50 plate O .87 vs. O.64) while for
corner loading, the maximum moments are quite comparable (— = 1,32 
vs. 1.30). The comparison between theory and experiment is quite 
good with the maximum differences being about 10fo for all loadings 
shown. The theory now indicates that for corner loading the 
maximum bending moment will not occur opposite the load, but will 
be displaced towards the centre of the plate.

A comparison of the theoretical and experimental fixed- edge 
bending moments for a cantilever plate of aspect ratio 1.00 for 
point loading at various free edge positions is shown in Figure 47* 
The agreement between theory and experiment is excellent with the 
difference being only 2$ for central loading. For corner loading, 
the difference between the two is 10% at the maximum loadpoint.
This plate, as well as the previous two tested, represent a second 
grouping. The first group consisted of plates with aspect ratios 
less than 0.333 and the second group plates with aspect ratios 
between 0.333 and 1.00. In this second group, the moment 
distribution for central loading is uniform (approximately), while 
for corner loadings, the distributions are anything but uniform.

The next three figures: 48, 49 and 50 show the distributions
(theoretical and experimental) for cantilever plates with aspect
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ratios of li5» 2.0 and 3.0. These are colieoted into a third group 
of plates, those with aspect ratio greater than 1.5. This group 
oonsists of plates which show very little variation in fixed edge 
tending moment, for different positions of the load point (i. ejoc.). 
Very little will he said of these plates, except that for the 1.5 and
2 .0  plates the theory predicts maximum moments at interior points of 
the plate, while the experimental work indicates the maximum moments 
at the edge of the plate. The explanation of this is the same as 
that indicated previously for the plates of lower aspect ratio.
Also the theoretical curves for the 3.0 plate are not shown since 
they are essentially equivalent to the experimental curves shown.

The maximum moments from all of the foregoing cases, as well 
as loadings at different points on the plates are summarized in the 
following graphs. These maximum moments are particularly important 
since they represent the bending moments which will cause failure in 
a practical cantilever plate application. In order to establish a 
criteria for comparison of the maximum moments to a commonly known 
oase, the elementary cantilever moment will be written here in a 
suitable format. For a load P located a distance x = |3 b away 
from the fixed edge, the total bending moment at the fixed edge is:

M = P p  b ... (5.7)
for a simple cantilever beam. This is the moment for the total 
width of the beam5 therefore, in order to reduce this to the 
bending moment per unit width (as is the usual convention), the 
moment must be divided by the plate width of 2a giving:

H - P M  ~ )  ... (5.8)
In order to obtain a nondimensional form, the moment (in in. -lb./in.)
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is divided by P (the load), also in the cantilever the maximum 
moment is merely the moment anywhere across the width and we obtain:

( ) - £ ( 2r- ) ■ ••• (5.9)
The non dimensional maximum moment for the cantilever beam is 
therefore merely a product of the load position and the plate 
aspect ratio ( b/2a). The cantilever curves are plotted in Figures 
51 through 55: aa dotted lines. The relationship between maximum 
moment and aspect ratio is linear, therefore straight lines result 
in these figures.

In Figure 51> ‘the theoretical and experimental maximum bending
moments are plotted as a function of aspect ratio for point
loadings at various points along the free edge ( p> = 1.0, 0 ̂

oc 4: 1*0). It is evident that all of the theoretical' curves lie
above the cantilever curve. This in effect states that for the
aspect ratios shown, the moment distributions are non uniform and
result in a higher value than the ideal cantilever beam would
produce. Several general comments on the theoretical curves are in
order and these will apply to all of the figures in this group
(51 through 55)• First, as the aspect ratio decreases all of the
curves (for all values of o() approach a constant value. Second,
for high aspect ratios (greater than 1.0) the maximum moment values
approach the cantilever value, and the position of the load ( CL )
becomes unimportant. Third, as the aspect ratio decreases ( .04)
loading for any value ofOC less than 0.8 results in the same value 

M
of ■ jp- ■ ■■ . The agreement between theory and experiment is very good 
overall. The trend is that the experimental results are lower than 
the theoretical values; this was already mentioned in the previous
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ten figures. It can "be seen that the experimental results for 
oentral loading tend to a much lower (10$) value than the theory 
predicts. Also shown are the results of the other authors cited. 
Both of the plates tested hy Vartak (19) are shown here, and while 
his O.I67 plate agrees well with the present experiment, the results 
for his 0.250 plate are extremely high for corner loading and much 
lower for central loading. The results of Wellauer and Siereg (4) 
are also shown (aspect ratio 0.187) and their results indicate a 
much lower moment for comer loading, p.nd a much higher value for 
mid point loading. Holl’s (17) theoretical point is also shown for 
the aspect ratio of 0.250. At the extreme left of the graph is 
MacGregor's (16) theoretical value for the case of the infinite 
plate; this theory indicates a higher value (10$ difference) than 
the present theory. The theory and experiment are in good 
agreement with regards to predicting the shape of the curves to be 
expected, since they both indicate the same form of curves.

Figure 52 shows the theoretical and experimental variation in 
the maximum moment in cantilever plates of various aspect ratios 
loaded at £ = 0.8 with various values of w . The shape of the 
theoretical curves is very similar to those for j£> = 1.0, the 
main difference being that they indicate lower values. Again 
the experiment indicates a much lower (10$) value than the theory 
for-low aspect ratios, for all values of Mother than 1.0. The 
curves for comer loading show much better agreement for lower 
aspect ratios.

In Figure 53> which shows the variation in maximum moment vs.
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aspect ratio fox various values of od and = 0.6, it is 
interesting to note that the curve for 0t « 1.0 is asymptotic to 
almost the same value for low aspect ratios as it was for = 0.8 
and 1.0. However, the value which the oco 0.0 curve approaches is 
much lower (0.3 as compared to 0.42 for = 0.8) The experimental 
results for &■ = 1.0 show a much lower value (15/0 than the theory 
predicts, but for central loading ( cc = 0 ,0 ) the theory and 
experiment approach the same value for low aspect ratios. This 
figure, as well as the previous ones, shows very good agreement for 
high aspect ratios (i. e: values greater than 1.0) between the
theory and experiment.

The curves for ^ = 0.4 are shown in Figure 54* The 
agreement between theory and experiment is still reasonable (10$) 
for all values of oI except 1.0. For this loading there is a 
25$ difference between theory and experiment for all values of ■ 
aspect ratio less than 1.0. All experimental points are lower than 
the corresponding theoretical points in this figure.

Extremely poor agreement is shown in Figure 55 between theory 
and experiment especially for oc = 1.0 where the experimental 
points fluctuate wildly. This figure shows the results for loading 
along p>= 0.2, which means that the load is very dose to the 
fixed edge. Any small errors in p> (i. e: positioning of the
loading apparatus) will result in a larger fluctuation in the 
maximum moment produced.

In order to get a better indication.of what is happening as the 
load point approaches the fixed edge, Figure 56 was drawn. This 
figure shows the variation in maximum moment for a plate of low
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66
aspect ratio (^  0.25) as a function of the distanoe of the load 
from the fixed edge for corner loading ( = 1*0) and mid point
loading (o( = 0.0). Jaramillo’s (18) results for the infinite 
plate are shown as a dashed line in that figure and the theoretical 
curve is also shown there. The theoretical curve is 10$ lower than 
Jaramillo’s result for |3 = 1*0 and agreement becomes poorer as 

0. The experimental results for ql = 0 are lower than the 
theory (10$ for 1.0, but only 6$ for 0.8 ̂  0*4) ♦ For corner
loading ( oc ** 1.0) the experiment drops off much faster than the 
theory as £  —»-0. Agreement is within 10$ only for p> = 1.0 
and 0.8, while for lower values of divergence is rapid. An 
explanation of what is happening in this case appears to be a 
difficult problem. However, the plate being clamped in the 
loading jig as it is cannot be rigidly fixed. In fact, the 
absolutely rigid fixed edge is an impossibility, since no matter 
how stiff the material of the wall is, or how massive it is, some 
deformation will take place. This.deformation will tend to decrease 
the maximum moments in the plate' and tend towards a more uniform 
distribution. This effect has been noted by several of the other 
investigators mentioned here, including Wellauer and Seireg (4) 
who tested plates machined from a solid block of material. A recent 
study including the effects of fixed edge flexibility on the 
deflections of thick cantilever plates has been carried out by 
Umeze.wa, Ishikawa and Hayashi (31). Their investigation shows that 
the fixed edge actually distorts. This will, or course, result in 
moment redistribution^lf the sort mentioned earlier. It is, 
therefore, a shortcoming of the present theory that it cannot
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account for fixed edge flexibility easily. However, agreement 
between theory and experiment at about 10^ is still a suitable 
comparison for engineering purposes.

In section 3.1.3 the moment distribution factor was defined as 
the ratio of the maximum moment in the plate to the nominal moment 
in the plate as defined by equation (3«27) for point loaded 
cantilever plates. The fact that this equation is identical to 
equation (5»9) is hardly surprising. Therefore, in order to obtain 
the moment distribution factor, E , one must simply divide theIEM
value of —p-—  from any of the Figures 51 through 55 by the value 
given by the dotted line (cantilever value) at that aspect ratio.
This was done here, resulting in Figures 57 through 61.

Figure 57 shows the variation of Km with aspect ratio for 
cantilever plates loaded along the free edge ( p> = 1.0) witb-a . 
point load at various values of oc . The curves all converge to 
the value of 1.0 for high aspect ratios, since the maximum moments 
approach the cantilever moments in that case. For low aspect ratios 
( ^  0.25) the moment distribution factor becomes inversely 
proportional to aspect ratio, and the equation can be written in 
the form:

Km = t  / (aspect ratio) ... (5*10)
where t  = 1.23 for = 1.0. and oc = 1.0 and t = 0.475 for
^  = 1.0 and = 0.0. For plates between the two cases mentioned, 

(i. e: aspect ratios greater than 0 .2 5 and less than 4*0, it is
necessary to refer to the figure to obtain Km values. The 
experimental points shown were also transferred from Figure 5f 
and the same agreement shown there is shown here also.
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The K values for B  = 0.8 and various values of ty are m r

shown in Figure 58* These curves are very similar to those shown
in Figure 59 » with the curves converging to 1.0 for high aspect

«
ratios (^. 4*0) and increasing as the aspect ratio decreases. The 
values of t  as defined by equation (5.I0) are: » I.50 for

= 0 .8 and o 1 .0 and 't = 0.510 for = 0 .8 and OL = 0 .0.
The experimental values show a trend towards predicting slightly 
lower values than the theory does.

In Figure 59 j "the theoretical and experimental variation of 
with aspect ratio is shown for point loaded cantilever plates, 
loaded at {*» = 0.6 and various values of Ot. The ' t  values for 
this figure axe: t  =* 1.92 for p> = 0 .6 and ot = l.o and

=> 0.550 ^or ^  » 0.6 and = 0.0. Theory and experiment
agree quite well. The agreement is not as good for Figures 60 and
61 where the curves for = 0.4 and 0.2 are given. The shape
of the theoretical curves in these figures is quite similar to the 
ones mentioned previously.

In summary, it is possible to say that for aspect ratios greater 
than 6 .0 the value of Km is essentially 1 .0 for all values of p 
and oi , For values aspect ratio between 6.0 and 0.250, the curves 
presented in Figures 57 through 61 must be consulted to determine 
Km. For values of aspect ratio less than O.25O, it is possible to 
use equation (5*10) to calculate K^. The values of $  are listed 
in the following table:
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OC
0 .0 1.0

1.0 0.475 1.23

0.8 0.510 1.50

0.6 0.550 1.92

0.4 0.630 3.10

0.2 0.980 4.96

The values listed under ot = 0.0 can also be used for other values 
of CC if the curve for that value of oL has converged to the mid 
point curve ( ot = 0.0). These values of aspect ratio at which this 
happens ares 0.200 for p, « 0.2, 0.100 for = 0.4j 0.100 for 

p, = 0.6, and 0.050 for {5 *» 0.8.
5.3 Effect of Poisson's Ratio

In order to determine the magnitude and type of effect Poisson's 
ratio has on cantilever plate deflections and moments, several runs 
of the program shown in appendix A were made with different values 
of Poisson's ratio. The aspect ratio chosen for this study of 
Poisson's ratio effect was 0.25* Figure 62 shows the free edge 
deflections of two cantilever plates of aspect ratio O .25 under 
the action of both, a mid point load and a corner load. These 
plates have Poisson’s ratios of 0.0 and 0.5> these being the two 
extreme values possible. The plate with the largest Poisson's 
ratio has the largest deflection for both loadings shown.
Similarly, Figure 63 shows the moments resulting in the same 
plates for the same loadings. For mid point loading, the maximum 
moment is greater for Y- *» 0.5; however, for corner loading, the
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maximum moment is greater for Y ** 0.0. This is "because the moment 
for V" « 0.5 peaks within the plate; this is not what was expected, 
but it does occur.

In Figure 64, the maximum deflection and moment in a cantilever 
plate of aspect ratio 0 .25, with mid point loading and corner loading 
are shown as a function of poisson’s ratio. The maximum deflection 
of a cantilever plate under a point load is seen to increase as 
Poisson’s ratio of the plate does. In going from Y = 0.0 to

cfjnax11a 0 .5, for comer loading 5—  goes from.0.351 to 0.483;
Pb

while for Y = 0.3> the value is 0.415* This means that if the 
value at Y = 0.3 is taken as a base value, an increase in 
deflection of 14*4/6 occurs for Y => 0.5, while a decrease in 
deflection of 15.456 occurs for Y = 0.0. For mid point loading 
( = 1.0, <*= 0.0) if we again take the value at 0.3 as the
base value; an increase in deflection of 18.75& occurs for T <= 0.5*
while a decrease in deflection of 9*7/6 occurs for Y = 0.0.
The effect of Poisson’s ratio on deflection is very important for
the extremes mentioned; and an effect of a few percent can be
expected even in going from S' = O .25 to 0.3.

For mid point loading, the maximum bending moment in the
plate increases with increasing Poisson's ratio-. If the value for

Mv = 0.3 is chosen as the base value, a 10fc increase in Ynax
P

is noted for Y = 0.5, while a 10/6 decrease in the maximum moment 
results for Y = 0.0. However, for corner loading, the maximum 
bending moment in the plate decreases with increasing Poisson's 
ratio. Taking the value of maximum moment for Y = 0.3 as the base 
value; a decrease in moment of 19» lf° results for Y= 0.5, while
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an increase of 13.2^ results for f = 0.0.

No experimental work has heen done on studying this variation 
in cantilever plate bending moments and deflections with Poisson's 
ratio. The theory employed here indicates that a certain amount of 
caution is necessary in model studies to ensure that Poisson's 
ratio is accounted i'or. In particular, the testing of models made 
of rubber like materials (certain photoelastic materials fall in 
this category) is to be avoided due to the way in whioh the 
maximum bending moment for corner loading moves from the free edge 
towards the centre of the clamped edge.
5«4 Extension of Bending Moment Theory to Helical Tooth Loading

All of the discussion up to this point has dealt with cantilever 
plates under the action of point loads. In trying to apply this 
information to gear tooth stressing, it becomes evident that this 
type of loading can be encountered only in a few extreme cases.
Point loading is approximately valid for Novikov profiles; however, 
a line load normal to the fixed edge should be a better 
approximation. Helical gear teeth carry line loads, whose angle of 
inclination j£>m is given by (see Shigley (5) for instance):

tan E> = tan tan ... (5.11)1 m rn ' '

where is the helix angle
and is the normal pressure angle

It is possible to make a further approximation by considering
the load along this line as uniformly distributed. Referring to
Figure 4> the nomenclature used in this section is outlined there
as. follows:
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Tft - non dimensional distance (l 7\ V- -i) used to

indicate where the load line intersects the free edge of the plate;
it is given byT\ = ^l/a where y^ is the actual value of y at which
the intersection occurs

- inclination angle to the free edge (0 < ^ ^ 9 0

q - load intensity per unit length
The moment at the fixed edge will he nondimensionalized as M

P
where P is the applied load, i. e: P = ql^ where 1 is the length
of the load line. In Figure 4, for example, the length of the load 
line is:

1 a ( Tl + a) /cos & m ■ m
which means that

p = CL Cn+ a) ... (5.12)
cos 5 K m

Equation (5*12) is not always valid, since the load line may 
intersect the fixed edge rather than one of the free sides for 
large P>m and low aspect ratio; in which case the load line would 
he shorter. In this case

^  - ■ , > and p = —  (5,13) sin ^ m
A general rule is to take the value of 1 which is the smallestin

from equations (5.12) or (5*13).
In order to obtain theoretical handing moments for line 

loadings, superposition of point loaded solutions was used. This 
was done hy modifying the program shown in Appendix A, such that 
31 points along the load line were chosen at equal intervals; the 
solution for each of these load points was superimposed (at 31
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positions along the fixed edge) and the resulting values divided 
"by the number of load points considered. This scheme was carried 
out for load lines at values of 0 ,7 ,12,20,45,60 and 90 degrees, 
which covers the range of commonly used values as predicted hy 
equation (5*11) using the common values of and ^  •

Also to obtain experimental values, the point loading 
experimental values were superimposed in a fashion similar to that 
used for the theoretical values. The point loading bending moment 
values are listed in Table II. These values were used in a 
computer program which.superimposed the moments at the gage points 
for loading at fixed values of CX (11 in all) and the values of 

determined from the values of Tl and j2>m chosen. These 
values of in general did not correspond to the values tested 
and interpolation of values was necessary. This means that a 
maximum of 11 point loads were superimposed; this happens for low 
values of {3̂  and large values of X[ . However, in many cases 
few points were considered; if the number was too low, the values 
were discarded.

Values of the fixed edge bending moment distribution were 
calculated for 7 values of P  > 11 values of T\ and many values of 
aspect ratio, both theoretical and experimental by superposition.
To present all of these curves would be impossible; therefore a few 
cases to indicate the general trends will be discussed.

In Figure 65, the fixed edge bending moments' in a line loaded 
cantilever plate of aspect ratio 0 .500, with load lines through 
Tl = 1.0, at various angles are shown. It is interesting to note 
that theory and experiment indicate the same shape of curve, even
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though the magnitudes are significantly different. The experimental
maximum moment is 11$ low for >̂m «= 90 degrees, and 7$ high'for *
P>m b 0°. For a 0°, it can he seen that 75$ plate

width is subjected to a uniform fixed edge bending moment, with only
a slight dropping off near the ends of the plate. The distributions
for 7 and 12 degrees are also quite uniform, with the moment down
somewhat from the E> = 0 curve because of the longer load line' m
which results in a larger value of P .

In Figure 66, the same plate is shown under the action of line 
loads normal to the fixed edge ( «= 90°). Agreement between
theory and experiment is very good for central loading, the 
difference being only 2$ for Tl = 0 at the maximum value. For 
other values of T\ the comparison is poorer. It is interesting 
to compare these bending moment curves to those shown in Figure 45 
for the same plate (aspect ratio 0 .500) under point loadings along 
the free edge. The shape of the curves is very similar, with the 
results for line loadings being more localized than those for point 
loadings. This can be explained on the basis of the fact that for 
the line loading a larger percentage of the load is near the wall, 
which results in a more localized bending moment.

Referring to Figure 67, the theoretical and experimental 
fixed edge bending moments are presented for a line loaded 
oantilever plate of aspect ratio O.25O, with the load lines 
passing through 7̂ - = 1*0, for various values of P m* ^0:r

= 0°, the theory and experiment agree within 2$. As well, 
for this value of P>m> 80$ of the fixed edge sees a uniform 
bending moment, with only a slight drop off near the end of the
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plate. For ^  = 90° the experiment predicts values which are
20$ lower than the theory predicts. Similar trends exist for the
intermediate values of shown#*m

Now Figure 68 shows the fixed edge, "bending moments in the same
_ Qplate for line loadings with p m = 90 and various values of Tl • 

Agreement is excellent for T l = 0.0 between theory and experiment; 
however for other values of Tl , the experiment indicates lower 
values than the theory does. Once again it is interesting to 
compare this figure to that for point loadings along the free edge 
(Figure 43)• The curves are again quite similar with the results 
for line loading being more localized than those for point loading.

In the past four figures, it was obvious that agreement 
between theory and experiment was not as good as it had been for 
the point loadings. This is explainable mainly on the basis of 
two facts. First, superposition tends to accumulate the errors 
present in the initial data; in particular, if the data for loading 
near the wall is low, as.was evidenced in the previous section 5*2.2. 
Also if the number of points considered is too low, a reasonable 
approximation of the moment at the wall will not be achieved; in 
some cases this condition can be violated in the data available 
here.

Of primary importance in gear design is the maximum bending 
moment in the tooth. And to that end the following 7 figures have 
been plotted. These give the maximum moment of a line loaded 
cantilever plate as a function of aspect ratio.

Figure 69 has = 0 degrees and is plotted for various
values of Tl • The curve for T[ = -1»0 is the same in the next 
5 figures and is also the same as that shown in Figure 5̂  for <x. ** 1.0.
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In all cases when Tl * —1*0 the load must he a corner point load 
which leads to the curve of Figure 51 ( *» 1.0). The nominal
moment for this case was taken as the cantilever moment as given 
by equation (5.9) with £  «* 1.0. Agreement between theory and 
experiment is seen to be good for large aspect ratios; however, 
for small aspect i-atios and larger values of Tl the two results 
diverge. This is due to the fact that the errors in the initial 
moment data are becoming lar^e in comparison to the values of

points of Wellauer and Seireg (4) are shown in this figure for an 
aspect ratio of 0.187* Their value for corner loading 71 - -1 .0  

is low as was mentioned in section 5*2.2 ; however, the value

is within Tf° of the value predicted by the theory. Their value 
for Tl » 1.0 (i. e: all of free edge loaded) which is not shown
in the figure, agrees within 2t/o o f the theoretical curve. It is 
interesting to note that these curves do not tend to a constant

curve) as was the case with the point loaded plates of. section 5*2. 
The curve for Tl “ 1*0 in fact becomes identical with the 
cantilever curve for small aspect ratios, an effect which could 
have been anticipated. The curves for intermediate values of Tl 
lie between these two extremes and in the region shown in the 
figure (aspect ratio ^  0 .02) they appear to be decreasing 
steadily with decreasing aspect ratio.

Figure 70 shows the variation in maximum plate bending 
moment as a function of aspect ratio, in line loaded cantilever 
plates, when degrees. These curves are essentially identical

which are decreasing in this region. Two experimental

they predict for Tl = 0 .0 (i. e: one half of the free edge loaded)

value as the plate aspect ratio decreases (except for the Tl = —1.0
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to those presented in Figure 6$ for JB>m *» 0 degrees. With the only 
exception "being the curve for T\ «* 1.0. This curve now crosses the 
curve for 71 ® 0.8 and will likely cross some of the other curves 
for lower aspect ratios. The value of nominal moment shown in this 
figure and the following figures is not that predicted by equation 
(3.28) which would be too cumbersome to use in practice. It is 
rather the value which would be proper for a cantilever beam with a 
uniformly distributed load, i. e:

Mn»ax - £  (tj— ) • •• (5.14)
this equation oan be easily derived in a manner similar to that
used to derive equation (5»9)> with the realization that the load
is P qb. This value is exactly one half the value given by
equation (5»9)»

In Figure 71 > "the maximum bending moment as a function of
aspect ratio is shown for = 12 degrees. The curves are again
quite similar to those for P>m ** 0 with the exception of the
curve for 7\ = 1.0 which crosses the other ourves as it did for
the case of => 7 degrees. However, this time it crosses at m,

Mmuch higher values of max , and it appears that it will become
P

asymptotic at some low value of maximum moment for very low
aspeot ratios (^S> 0.02). Agreement between theory and
experiment is good for aspect ratios greater than 0 .40, for
values smaller than this with high values of 71 there is no
comparison between theory and experiment; this is due to the fact
that only a few loadings were available for superposition.

The maximum plate bending moments for = 20 degrees are
shown in Figure 72 as a function of aspect ratio. The curves
for Tl ^  0.0 are almost identical with those for lower P5 1' m
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values shown in the preceding figures. For higher TV values there
is a decrease in the maximum moment (as compared to the curves for
lower values) for aspect ratios "between 1.0 and 0.1.

Figure 73 shows the maximum "bending moments in line loaded
cantilever plates with * 45 degrees and various values of Tl •
The curves for Tl = -1.0, -0.8, and -0*6 are similar to those in the
previous figure for low aspect ratios. This figure indicates a
definite change in shape of the curves corresponding to -0.2 1*0
these curves tend to become asymptotic to a constant value for lower
aspect ratios. Again the theory and experiment agree quite well
for aspect ratios greater than 0 .50.

In Figure 74> the maximum plate bending moments for a line
loaded cantilever plate, jB>m «= 60 degrees are shown as a function
of aspect ratio for various values of 7\» Here the curves for
all values of Tl become asymptotic to a constant value as aspect
ratio decreases. The curve for 1f\ -  1.0 converges to the value
\iax « 0.242. Agreement between theory and experiment is 
P

similar to that mentioned previously.
The maximum plate bending moments as a function of aspect 

ratio are shown in Figure 75 for a line loaded cantilever plate 
with f t = 90 degrees. The shape of these curves is very 
similar to those discussed in section 5*2.2 for point loading.
All of the curves approach a constant value for low aspect ratios.

„  MThe curve for Tl = 1.0 reaches the value of max «* 1.13 for low
P

aspect ratios and the curves for 0.8 ̂  Tl ̂  0 reach the value of
^max -  0.278 for low aspect ratios. For edge loading ( 71 = 1.0)
P

the experimental values are lower than the theoretical values and 
drop off severely for lower aspect ratios (36$ low for 0.1). They
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also tend to be somewhat high for aspect ratios greater than 1.0. 
Agreement is better for lower values of Tl > with the experimental 
results lower than the theory. The results of Wellauer and Seireg 
(4) are also shown in the figure (aspect ratio = O.I87); their 
value for corner loading is identical with the present experimental 
results, for central loading their point is significantly higher
/1*1 a ^  1 \C max » 0.4 vs. max * 0.3;•
P P

It is interesting to compare the theoretical results for the
90 degree line load and the point loaded case where £  * 0 .5

(see Figure 56) for plates of low aspect ratio (^ 0.25). The
¥values of max are compared in the following table:
P ____

M / max/p Line Load Point Load
*  = 1.0 1.13 1.16
0i = 0.0 0.278 0.276

The values compare within 2$; this is extremely interesting since
the nominal moments given by equations (5*9) and (5.14) are
identical. This means, of course, that their K values would be7 7 m
identical and shows the possibility of using the point loaded case
to approximate the Novikov Line loaded case ( Pv = 90°).

The values of Km (the moment distribution faotor) are obtained
Mby dividing the values of max given in the preceding figures by
P

the nominal moments also shown there. These results are presented
in Figures 76 through 82.

Figure 76 presents the moment distribution factors for
cantilever plates with = 0.0 degrees. For high aspect ratios

Mthese curves converge to the value of 1.0 for max. For low aspect
P

ratios, the curves for 71 -^0.0 assume constant values of K . Itm
also appears that the curves for 0.0 7\ V  0*8 will also achieve
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constant values for smaller values of aspect ratio. Figure 77 shows
the curves for ^ degrees. These curves are essentially
the same as those shown in Figure 76 > except that the values are
twice as high since the nominal moment used was only half as large.

*

Also, the curve for Tl = 1.0 curves up slightly for low aspect ratios.
The curves for ** 12 degrees are shown in Figure J& ,

These curves are generally similar to those shown for = 7 degrees.,
with the only difference "being generally lower values of X *
Figure 79 shows the Km curves for = 20 degrees. These curves
no longer reach a constant value for low aspect ratios, but rather
continue to increase in the region shown in the figure. Also, these
curves ( at least those for T l ^  0.0) dip below the value of

*s 2.0 in the region of aspect ratios between 0.1 and 3«0
Figure 80 shows the variation of Km with aspect ratio for
“ 45 degrees and various values of 71 • These ourves take on

the more familiar shape noticed in section 5*2.2 for the point
loaded plates considered. That is to say that the ourves show a
linear increase in K (for low aspect ratio) as a function ofm
aspect ratio. This is not true for the TT B -0.8 and -0.6 curves 
shown however.

The curves showing the Km values as a function of aspect 
ratio for £>m « 60 degrees are shown in Figure 81. Here the 
curves all become parallel to the curve for Tl = -1.0 for low 
aspect ratios. They also dip below the value of => 2.0 (all 
ourves except Tl = -1.0 and -0.8).

Figure 82 shows the moment distribution factor Kffl, as a 
function of aspect ratio for line loaded oantilever plates with

90 degrees. This case is of particular interest since these
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curves form a reasonable approximation to Novikov gear tooth loading. 
These curves are quite similar to those for point loading. The 
values of 'S for them as determined for equation (5.10) are 2.30  

for tl e 1*0 and O.56O for Tl = 0.0 . It is interesting to note 
that the curves seem to reach the constant value of 1.20 for aspect 
ratios greater than 4»0. This means that the bending moments 
predicted by the present theory do not correspond to the values 
predicted by elementary cantilever theory which were used for the 
nominal moment calculation. This 20$ increase in moment over that 
predicted by the elementary theory for uniformly loaded cantilever 
beams should be evident if the subject were considered experimentally. 
It is likely that for much higher aspect ratios the ourves do 
converge to the value of 1 .0 for KmJ however, no attempt was made 
to check this out.
5 .5  Comparison to Tests on Helical and Novikov 
Gears

In order to indicate the value of the moment distribution 
curves, it is interesting to compare the values given in the 
curves to some experimental results.

The first comparison will be to the results given by 
Hageniers (l) for a Novikov Gear Set. Figure 83 shows the 
experimental arrangement used to test the gear set, as well as 
a view of the wheel teeth with the strain gages on them. The 
loading is such that Tl must be between -0 .5 and 0.5> since 
outside these limits double tooth contact results in the 
experimental system used. It was shown in the experimental 
work on the gears that the maximum stresses occurred for these 
gears approximately independent of the load position. The aspect
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ratios of the gears were 0.159 for the wheel and 0.175 for the pinion. 
These differences come about because the shape of the teeth is 
different in a Hovikov gear set and the pinion teeth are longer 
than the wheel teeth (but both are the game width). Knowing the 
aspect ratio, it is possible to look up the Km values in Figure 82.
A comparison of the Km values predicted by the experiment, the 
present theory and the work of two other investigators is shown 
in the following table:

Km Experiment 
Reference (l}

Plate
Expt.

Plate
Theory

Tfellauer 
& Seireg (4)

Fedyakin & 
Chesnokov (15)

Pinion 2.50 3.10 3.30 4.56 1.20

Wheel 3.55 3 .30 3 .60 5.04 1.20

The values from the present theory and Uellauer and Seireg (4) 
were taken for 'fV *= 0 .0 , since only small increases in Km are 
noted for TV less than 0.5» The values predicted by Fedyakin and 
Chesnokov are very low; however, their data is strictly emperical 
and presented during the early days of bending moment distribution 
determination. The agreement between the theory and the experimental 
results from reference (l) is good, being with 24$ for the pinion 
and 2^ for the wheel. The results presented by Wellauer and Seireg (4) 
are significantly higher, differing by 45$ and 30 $• This indicates 
that the present method results in much better agreement with 
actual tests on gears.

As a second comparison, the results presented by Kugimiya (2) 
will be considered. He tested a helical gear set with a helix 
angle of 20 degrees and a normal pressure angle of 20 degrees.
Using equation ( 5 .1 1 )> then is 7»5 degrees. The aspect ratio

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of the gear teeth was 0.235* The gears he tested were such that no
real overlap occurred; however, there was multiple tooth contact
due to involute action. Since the teeth are more flexible near the
ends, better tooth load sharing resulted which means that the high
moments predicted by corner loading ( 71 =■ -1»0 ) could not occur,
but rather the load was shared between the two teeth in question,
resulting in a lower moment. Using his experimental results and
equation (2.2), values of Km = 1.15 for the pinion and *=1.41

for the wheel are obtained. His experiment also indicates that
due to involute overlap, the maximum stress occurs for Tl = 0 .7

for the pinion and 77 = 0.5 for the wheel. An exact explanation
of the reasons for this is not possible here, nor is one given by
Kugimiya (2). The corresponding values from Figure 77 must be
modified since the K values are based on the tip loaded momentm
rather than the half height moment used in Figure 77• The values 
from Figure 77 are therefore 1.05 for the pinion and I .38 for the 
wheel. These values are within 9f° for the pinion and within 2’fo 

for the wheel.
The agreement between the two references quoted and the method 

proposed here indicates the validity of the approach outlined here. 
It would be desirable to compare to the results of further 
experiments on gear teeth, but there is a lack of suitable data 
in the literature that is complete enough to allow a detailed 
comparison.
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5.6 Estimate of the Computational Error

Due to the large number of calculations required in obtaining 
the plate deflections and moments (even at a point) using the theory 
outlined in seotion 3.1.2, the possibility of obtaining results with 
poor accuracy must be considered. In order to check on the 
convergence of the deflections and bending moments, a modified form 
of the program listed in Appendix A was run which varied the number 
of terms used in the series from 3 to 140. A plot of the results of 
such a program is shown in Figure 84 for a plate with aspect ratio 
0.50. The maximum deflections and moments are plotted as a function 
of the number of terms in the series for corner and mid point 
loading at the free edge. The maximum deflection for mid point 
loading is seen to reach an essentially constant value after 30 terms 
in the series. It then remains within 1$ of that value for the 
addition of the next 100 terms after whioh point, it rises slightly. 
For corner loading an essentially constant value is also reached 
after 30 terms, with the value remaining within 0.5% up to 80 terms, 
where it rises Ifo and remains constant. Beyond 110 terms, the 
values increase wildly and are no longer meaningful.

The maximum moment for central loading reaches an essentially 
constant value after 25 terms and maintains this value within yfo 

up to 110 terms; after this point the values drop by 1 Ofo to a new 
Bteady value. For corner loading, an essentially constant value 
of moment is reached after 16 terms; this value remains within 
2$ up to 36 terms, drops and holds to 50 terms, where it drops 
4i° again, etc. Finally, after dropping by 2Qfo after 110 terms, 
the values diverge rapidly and become meaningless. This moment
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for corner loading is the least well "behaved of the variables 
considered here. Based on the foregoing figure and similar tests 
on other aspect ratios, it is possible to say that the plateA
deflections will be within 1^ of their final value if more than
30 and less than 80 terms are taken in the series. Also the plate
moments will be within 5^ of their final values if more than 20

terms and less than 60 terms are taken in the series. The wild
fluctuations beyond 110 terms in the series indicate a loss of
significance in the coefficients used to calculate the deflection
series. It is also evident that the significance loss is a function
of oc , the load position, since it occurs only for corner loading
in Figure 83 (i. e: for the number of terms less than 140).
5.7 Estimate of the Experimental Error

The determination of the deflection in holography is dependent
upon two factors; first, the accuracy of fringe counting is 

+limited to about - 0»5j and seoond in live fringe work; some nulling
+error exists of about - 0 .5 fringe. This results in a total possible

-ierror of - a fringe. Referring to Figures 15, 16 and 17, it can be
seen that a maximum fringe order of about 30 was maintained where
possible. This means that the maximum deflection is known within
one part in 30 or within 3»3$* At the same time the load was known
within Vfo as determined in a test using a 10 pound capacity load
cell, and weights which had been previously calibrated. This means
that ^max is known within 4»5$» ^ e  value of E and V were 

P
obtained experimentally as outlined in Appendix B and show a 
variation of 2% based on the testing of four samples. The errors 
in the plate dimensions (a and b) are limited to a tenth of an inch
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which on most plates is less than 2$. Considering all of these factors
in the determination of cTmax ^ results in a possible error of

P b 2 '9$ in total.
In determination of the bending moments from the strain gage 

readings, several sources of error are possible. The first is due 
to the gages which were used in a non-temperature compensated circuit,. 
The strain indicator can be read to — 2 in/in which out of the 
maximum stx-ains of 500 in/in represents a 0.4/$ error. Also, 
temperature variations (5° F maximum) result in a possible strain 
variation of £ 1 jj- in/in or 0.2$. This indicates a total strain 
error of 0.6$. The load applied was again calibrated and a friction 
loss factor included in determining the load. Variations in the 
load were determined to be less than 2$ for the maximum load used.
This means that the errors in /p are less than 3$.

Other factors which may influence the accuracy of the results, 
but whose effect is hard to estimate, and may be assumed to be 
small, are:

1) errors in strain gage alignment
2) errors in strain gage position along the plate length
3) deformations of the plate clamping jig
4) temperature changes affecting the holographic experiment
5) determination of the maximum moment from the strain gage

information by plotting of the results
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6. RECOMMENDATIONS

6.1 Suggestions for Experimental Improvement
The holographic part of the experiment could he improved in

two ways. First, a more powerful laser would make possible more
uniform illumination of test specimens and secondly, a better
isolation system for the holographic table would allow the use of
superior holographic arrangements. The experiment would also have
been improved if a data acquisition system with more channels had

Mbeen available, thus obtaining better information on max.
6.2 Suggestions for Future Work

1) An investigation to determine the effect of plate 
thickness on the deflections and bending moments in those cases 
where the thickness and plate length are comparable.

2) Tests on tooth shaped plates of various aspect ratios to 
determine the effect of thickness changes as a function of length 
on deflection and bending moment.

3) A study of the effect of degree of rigidity of the plate 
clamping on the plate deflections and fixed edge bending moments.

4) A theoretical study of the effect of non-uniforra line 
loads on plates of various aspect ratios.
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7- CONCLUSIONS

1) The 'validity of the deflection theory developed hy Szmelter 
et. al. (3) has been shown over a large range of aspect ratio by 
comparison to experimental deflection contours.

2) Curves have been presented which show the variation in 
maximum plate deflection as a function of aspect ratio and load point. 
Agreement between theory and experiment in this case is very good.

3) The results of Szmelter et. al. (3) were extended to predict 
bending moments in cantilever plates. These results were shown to 
compare well with the results of other investigators.

4) Comparison of the experimental bending moments with those 
predicted by the theory developed here is good and curves for plates 
of various aspect ratios, point loaded along the free edge are 
presented.

5) Curves are presented which show the maximum moment as a 
function of aspect ratio and position of the point load. These 
curves were used to present moment distribution curves for point 
loaded cantilever plates.

6) Using superposition the theory was extended to line loaded 
cantilever plates and compared with experimental values obtained by 
superposition as well. These results showed good comparison.

7) Maximum moment curves and moment distribution curves are 
presented for line loaded cantilever plates, loaded at various angles 
and at various positions on the plate.

8) Comparison of the moment distribution factors presented 
here with those obtained in tests by two investigators show the 
value of this approach in gear design.
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9) The effect of Poisson’s ratio on the deflections and 
tending moments in cantilever plates has been shown to be quite 
significant.
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Fig> 4 : Line Loaded Cantilever Plate Variables
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Fig. 9* Strain Gage Locations on Plates Tested
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Fig. 41: Comparison of the Theoretical and Experimental Fixed Edge Bending Moments in a Tip
Loaded Cantilever Plate ( p,i.o)
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TABLE I
f J)Theoretical Deflection Values at grid points
Pb

shown in figuig 8 (for loading at the points also shown 
there). Aspect Ratio » 0.25

0.0 .0000 .0004 .0003 .0007 .0011
0.0 .0001 .0004 .0008 .0013 .0019
0.0 .0001 .0005 .0015 .0024 .0032
0.0 .0005 .0015 .0028 .0041 .0053
0.0 .0015 .0035 .0050 .0064 .0079
0.0 t0021 .0046 .0063 .0077 .0092
0.0 .0015 .0035 .0050 .0064 .0079
0.0 .0005 .0015 .0028 .0041 .0053
0.0 .0001 .0005 .0015 .0024 .0032
0.0 .0001 .0004 .0008 .0013 ♦0019
0.0 .0000 .0004 .0003 .0007 .0011

0.0 .0000 .0003 .0014 .0028 .0045
0.0 .0005 .0016 .0032 .0052 .0075
0.0 .0006 .0025 .0055 .0089 .0122
0.0 .0015 .0051 .0098 .0147 .0198
0.0 .0035 .0104 .0170 .0229 .0289
0.0 .0046 .0133 .0210 .0273 .0335
0.0 .0035 .0104 .0170 .0229 .0289
0.0 .0015 .0051 .0098 .0147 .0198
0.0 .0006 .0025 .0055 .0089 .0122
0.0 .0005 .0016 .0032 .0052 .0075
0.0 .0000 .0003 .0014 .0028 .0045

0.2
0.0

0.4
0.0

0.0 ,0000 .0009 .0030
0.0 .0009 .0033 .0064
0.0 .0015 .0055 .0115
0.0 .0027 .0097 .0193
0.0 .0050 .0170 .03150.0 .0063 .0210 .0382
0.0 .0050 .0170 .03150.0 .0027 .0097 .0193
0.0 .0015 .0055 .0115
0.0 .0009 .0033 .0064
0.0 .0000 .0009 .0030

.0062

.0112

.0186

.0298

.0456

.0541

.0456.0298

.0186

.0112

.0062

.0100

.0159.0260

.0405

.0594.0692

.0594

.0405.0260

.0159.0100

^  = 0.6 
£< . 0.0
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17.9
0*0 .0001 
0.0 .00130.0 .0024
0.0 .0041
0.0 .0064
0.0 .00770.0 .0064
0.0 .0041
0.0 .0024
0.0 .0013
0.0 .0001

0.0 .0002 
0.0 .00190.0 .0032 
o.o .0053
o.o .0079 0.0 .0092
0.0 .0079
0.0 .0053
0.0 .0032 
o.o .0019 
0.0 .0002

0.0 .0000 
0.0 .0000 
0.0 .0001 
0.0 .0001 
0.0 .0004
0.0 .0015 0.0 .0022 
0.0 .0016 
0.0 .0004
0.0 .0001 
0.0 .0000

0.0 .0000 
0.0 .0001 
0.0 .00050.0 .0006 
0.0 .0013
0.0 .0035
0.0 .0048 
o.o .0035 0.0 .0014
0.0 .0008 
0.0 .0005

.0017 .0053 .0050 .0111 

.0090 .0186 

.0147 .0298 

.0229 .0456

.0268 .0541 

.0229 .0456

.0147 .0298 .0090 .0186 

.0050 .0111 

.0017 .0053

.0025 .0077 

.0073 .0156 .0124 .0258 .0198 .0406 

.0289 .0494

.0335 .0693 

.0289 .0494 .0198 .0406 

.0124 .0258 

.0073 .0156

.0025 .0077

.0000 .0001 

.0001 .0003

.0004 .0008 

.0005 .0014.0013 .0026

.0035 .0050 .0048 .0064 

.0035 .0050 .0016 .0029

.0008 .0017.0002 .0008

.0002 .0005 

.0006 .0015 

.0015 .0030 .0026 .0053

.0049 .0095 .0104 .0170

.0137 .0214

.0105 *0172

.0053 .0103.0030 .0063

.0010 .0032

.0106 .0169 

.0184 .0263 .0301 .0420

.0472 .0651.0710 .0966 

.0836 .1137.0710 .0966 

.0472 .0651.0301 .0420

.0184 .0263.0106 .0169

.0153 .0243

.0260 .0373 .0421 .0590

.0651 .0907.0966 .1381 

.1137 .1648.0966 .1381 

.0651 .0907.0421 .0590

.0260 .0373

.0153 .0243

.0003 .0005

.0007 .0009.0012 .0017.0022 .0030 

.0039 .0052 

.0065 *0079.0078 .0093.0066 .0081 

.0043 .0057.0026 .0037 

.0015 .0023.

.0013 .0022 

.0026 .0038 

.0047 .0065

.0085 .0115 

.0149 .0193.0229 .0289

.0276 .0339.0234 .0298 

.0158 .0212 

.0102 .0141 

.0051 .0093

P -  0.8

OC “ 0.0

a 1.0
ot » 0.0

^  « 0.2 
ct «» 0.2
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0.0 .0001
0.0 .0003
0.0 .0008
0.0 .0014
0.0 .0026
0.0 .0050
0.0 .0064
0.0 .0050
0.0 .0029
0.0 .0017
0.0 .0002

0.0 .0000
0.0 .0006
0.0 .0012
0.0 .0023
0.0 .0039
0.0 .0064
0.0 .0078
0.0 •0066
0.0 .00440.0 .0028
0.0 .0006

0.0 .0000
0.0 .0009
0.0 .0017
0.0 .0030
0.0 .0052
0.0 .00790.0 .0093
0.0 .0081
0.0 .0058
0.0 .0036
0.0 .0008

0.0 .0000
0.0 .00000.0 .00000.0 .00000.0 .00010.0 .00050.0 .0016
0.0 .0022
0.0 .0016
0.0 .00040.0 .0002

.0004 .0014

.0014 .0034

.0030 .0062

.0053 .0110

.0095 .0188

.0170 .0315

.0214 .0388

.0172 .0322

.0103 .0207

.0063 .0131

.0025 .0068

.0006 .0024

.0026 .0058

.0048 .0108

.0085 .0176

.0144 .0292

.0229 .0456

.0277 .0549

.0235 .0470

.0158 .0320

.0101 .0211

.0042 .0115

.0010 .0035

.0038 .0083

.0066 .0140

.0116 .0244

.0193 .0398

.0289 .0594

.0339 .0702

.0298 .0613

.0213 .0488

.0138 .0292

.0061 .0145

.0000 .0000

.0001 .0002

.0002 .0003

.0004 .0008

.0006 .0014

.0015 .0027

.0035 .0051

.0049 .0067

.0036 .0054

.0016 .0032

.0007 .0017

.0030 .0049 

.0058 .0085

.0104 .0140 

.0176 .0243 

.0292 .0398

.0456 .0594 

.0549 .0702

.0468 .0612 

.0321 .0487 

.0212 .0298 

.0129 .0200

.0051 .0084

.0098 .0142 

.0164 .0230

.0284 .0397 

.0462 .0638 

.0710 .0966 

.0850 .1153

.0730 .0995 

.0509 .0703 

.0344 .0486 

.0218 .0334

.0076 .0121 

.0149 .0200 

.0230 .0327

.0397 .0557 .0638 .0886 

.0966 .1381

.1153 .1672

.0995 .1418 

.0703 .0982 

.0482 .0686 

.0309 .0475

.0001 .0002 

.0003 .0004

.0006 .0008 

.0011 .0016 

.0023 .0030

.0041 .0054.0066 .0082 

.0082 .0097 

.0070 .0088 

.0050 .0066 

.0031 .0046

a 0.6 
o(_ a 0.2

» 0.8 
ot a 0.2

a 1.0
ot 83 0.2

a 0.2
Ot a 0.4
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0.0 .0000 .0000
0.0 .0000 .0003
0.0 .0002 .0007
0.0 .0004 .0014
0.0 .0006 .0024
0.0 .0015 .0052
0.0 .0035 .0105
0.0 .0049 .0141
0.0 .0039 .0111
0.0 .0016 .0059
0.0 .0006 .0029

0.0 .0000 .0001
0.0 .0002 .0008
0.0 .0004 .0015
0.0 .0008 .0028
0.0 .0014 .0053
0.0 .0027 ♦0098
0.0 .0050 .0172
0.0 .0067 .0222
0.0 .0055 .0185
0.0 .0033 .0118
0.0 .0011 .0062

0.0 .0000 .0003
0.0 .0003 .0013
0.0 .0006 .0025
0.0 .0011 .0046
0.0 .0023 .0085
0.0 .0040 .0147
0.0 .0066 .0235
0.0 .0082 .0290
0.0 .0072 .0254
0.0 .0050 .0103
0.0 .0018 .0099

0.0 .0000 .0004
0.0 .0004 .0018
0.0 .0009 .0036
0.0 .0016 .0063
0.0 .0030 .0116
0.0 .0054 .0198
0.0 .0082 .0298
0.0 .0097 .0357
0.0 .0090 .0325
0.0 .0067 .0246
0.0 .0026 .0138

0002 .0006 .0010
0007 .0013 .0018
0014 .0024 .00350028 .0046 .0063
0053 .0085 .0116
0097 .0147 .0198
0173 .0235 .0298
0222 .0290 .0357
0184 .0253 .0324
0118 .0184 .0249
0070 .0124 .0182

,0006 .0014 .0024
,0017 .0029 .0041
,0032 .0053 .0076
,0059 .0097 .0134
,0110 .0177 .0244
,0194 .0298 .0406
,0322 .0469 .0613
,0406 .0576 .0738
,0347 .0507 .0668
,0239 .0376 .0518
,0150 .0263 .0388

,0011 .0024 .0041
,0029 .0049 .0071
,0053 .0089 .0126
,0097 .0158 .0222
.0176 .0285 .0397
,0298 .0473 .0652
,0468 .0730 .0995
,0576 .0894 .1213
,0508 .0793 .1084
,0373 .0598 .0836
,0243 .0428 .0635

,0016 .0035 .0059
,0040 .0069 .0102
,007 6 .0126 .0178
,0135 .0222 .0313
,0243 .0397 .0558
,0406 .0651 .0907
,0612 .0995 .1418
,0738 .1213 .1758
,0668 .1083 .1542
,0511 .0829 .1168
,0338 .0600 .0895

^  » 0.4
Ct. B 0»4

j} = 0.6 

<*. » 0 .4

^  «> 0 • 8 
« 0.4

£ * 1.0 
0( m 0.4
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0.0 .0000 .0000 .0001
0.0 ♦ 0000 .0000 .0001
0.0 .0000 .0000 .0002
0.0 .0001 .0002 .0004
0.0 .0001 .0005 .0008
0.0 .0001 .0006 .0015
0.0 .0004 .0014 .0029
0.0 .0016 .0037 .0055
0.0 .0025 .0053 .0073
0.0 .0017 .0039 .0061
0.0 .0003 .0019 .0042

0.0 .0000 .0000 .0001
0.0 .0000 .0002 .0004
0.0 .0000 .0002 .0007
0.0 .0002 .0007 .0015
0.0 .0005 .0016 .0031
0.0 .0006 .0025 .0055
0.0 .0014 .0053 .0103
0.0 .0036 .0111 .0185
0.0 .0053 .0153 .0244
0.0 .0040 .0124 .0214
0.0 .0018 .0073 .0154

0.0 .0000 .0000 .0002
0.0 .0001 .0004 .0008
0.0 .0002 .0007 .0016
0.0 .0003 .0014 .0032
0.0 .0008 .0030 .0063
0.0 .0015 .0055 .0116
0.0 .0029 ♦0104 .0207
0.0 .0054 ♦0184 .0347
0.0 .0073 .0244 .0450
0.0 .0063 .0215 .0409
0.0 .0035 .0145 .0314

0.0 .0000 .0001 .0004
0.0 .0002 .0006 .0015
0.0 .0003 .0013 .0028
0.0 .0006 .0024 .0053
0.0 .0012 .0047 .0100
0.0 .0024 .0090 .0186
0.0 .0044 .0158 .0321
0.0 .0070 .0253 .0507
0.0 .0091 .0323 .0645
0.0 .0086 .0303 .0607
0.0 .0050 .0221 .0487

,0001 .0001
,0002 .0003
,0003 .0004
,0006 .0009 ?> .. 13
,0012 .0017
,0024 .0033 at
,0044 .0058
,0072 .0086
,0091 .0111
,0084 .0107
,0065 .0089

,0003 .0005
,0006 .0010
,0013 .0017
,0025 .0036 $ SB
,0048 .0066
,0090 .0123 Ot 8
.0159 .0213
.0254 .0325
,0323 .0403
,0302 .0393
.0247 .0340

,0006 .0011
,0014 .0022
,0028 .0039
.0053 .0076 p • 8
,0100 .0140 1
,0186 .0259 Oi 8
,0321 .0438
,0508 .0668
,0645 .0834
,0684 .0812
,0508 .0710

,0011 .0020
,0025 .0037
,0047 .0067
,0089 .0126 £ wa
,0164 .0231

1
,0301 .04208 oL 8
.0509 .0735
.0793 .1083
,1001 .1370
,0956 .1315
.0806 .1149
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0.0 .0000 .0001 .0006 .0017 .0029
0.0 .0002 .0010 .0021 .0036 .0054
0.0 .0004 .0017 .0039 .0067 .0096
0.0 .0009 .0035 .0076 .0126 .0178 fee
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0.0 .0108 .0391 .0804 .1301 .1861
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0.0 .0000 .0000 .0001 .0005 .0009
0.0 .0001 .0003 .0007 .0012 .0019
0.0 .0001 .0006 .0014 .0025 .0036
0.0 .0003 .0013 .0029 .0049 .0070
0.0 .0007 .0027 .0059 .0098 .0140
0.0 .0013 .0052 .0112 .0185 .0261
0.0 .0026 .0102 .0212 .0344 .0482
0.0 .0050 .0184 .0376 .0598 .0829
0.0 .0084 .0302 .0608 .0956 .1308
0.0 .0119 .0420 .0834 .1300 .17 66
0.0 .0119 .0448 .0912 .1428 .1940

£> = 0.8 
os 0 * 8

0.0 .0000 .0000 .0003 .0009 .0015
0.0 .0001 .0005 .0011 .0019 .0028
0.0 .0003 .0010 .0022 .0037 .0054
0.0 .0004 .0018 .0041 .0071 .0103
0.0 .0009 .0039 .0085 .0142 .0200
0.0 .0019 .0075 .0160 .0264 .0374
0.0 .0037 .0142 .0298 .0486 .0686
0.0 .0066 .0249 .0518 .0836 .1168
0.0 .0107 .0393 .0812 .1315 .1861
0.0 .0146 .0527 .1082 .1766 .2537
0.0 .0140 .0551 .1170 .1912 .2703

0.0 .0000 .0000 .0000 .0000 .0000
0.0 .0000 .0000 .0000 .0000 .0000
0.0 .0000 .0000 .0000 .0000 .0000
0.0 .0000 .0000 .0000 .0000 .0000
0.0 .0000 .0000 .0000 .0000 .0000
0.0 .0000 .0000 ioooo .0002 .0002
0.0 .0001 .0001 .0003 .0006 .0009
0.0 .0002 .0006 .0011 .0018 .0026
0.0 .0003 .0018 .0035 .0049 .0065
0.0 .0020 ,0 0 r)6 .0092 .0119 .0140
0.0 .013? .0180 .0202 .0226 .0248

0.0 .0000 .0000 .0000 .0000 .0000
0.0 .0000 .0000 .0000 .0000 .0000
0.0 .0000 .0000 .0000 .0001 .0001
0.0 .0000 .0001 .0001 .0003 .0004
0.0 .0000 .0002 .0004 .0007 .0010
0.0 .0000 .0003 .0010 .0017 .0025
0.0 .0002 .0010 .0025 .0042 .0061
0.0 .0007 .0029 .0062 ,0099 .0138
0.0 .0019 .0073 .0145 .0221 .0289
0.0 .0060 .0192 .0327 .0448 .0551
0.0 .0180 .0478 .0673 ,07 9 0 .0902

^  - 0.2 
& ® 1.0

£> = 0.4 
o( m 1.0
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0.0 .0000 .0000 .0000 .0000 .0002
0.0 .0000 .0001 .0001 .0001 .0003
0.0 .0000 .0001 .0002 .0004 .0006
0.0 .0000 .0002 .0006 .0011 .0016
0.0 .0001 .0006 .0014 .0025 .003 6
0.0 .0003 .0014 .0031 .0053 .0078
0.0 .0008 .0032 .0069 .0116 .0165
0.0 .0017 .0070 .0150 .0243 .0338
0.0 .0042 .0154 .0314 .0487 .0654
0.0 .0102 .0340 .0631 .0912 .1170
0.0 .0202 .0673 .1178 .1550 .1839

0.0 .0000 .0000 .0000 .0001 .0003
0.0 .0001 .0001 .0003 .0005 .0009
0.0 .0001 .0003 .0006 .0011 .0017
0.0 .0001 .0006 .0014 .0024 .0035
0.0 .0003 .0013 .0030 .0051 .0075
0.0 .0007 .0028 .0062 .0107 .0153
0.0 .0015 .0060 .0130 .0218 .0309
0.0 .0031 .0124 .0263 .0428 .0600
0.0 .0065 .0247 .0508 .0807 .1109
0.0 .0135 .0475 .0931 .1428 .1912
0.0 .0226 .0790 .1550 .2320 .2952

0.0 .0000 .0000 .0000 .0003 .0006
0.0 .0000 .0003 .0005 .0009 .0015
0.0 .0001 .0005 .0011 .0020 .0029
0.0 .0002 .0010 .0024 .0041 .0059
0.0 .0005 .0022 .0050 .0084 .0121
0.0 .0011 .0045 .0100 .0169 .0243
0.0 .0023 .0093 ♦0200 .0334 .0475
0.0 .0046 .0182 .0388 .0635 .0895
0.0 .0090 .0340 .0710 .1149 .1606
0.0 .0167 .0599 .1215 .1940 .2703
0.0 .0248 .0902 .1839 .2952 .4152

^  «»0.6 
a. = 1.0

£  <» 0.8 
OC = 1.0

^  « 1.0 
=1.0
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APPENDIX A

COMPUTER LISTING

The following listing was generated on January 20, 1970 
at the University of Windsor Computer Centre on their IBM 
System 360/Model 40 (256K). Running time for deflection and 
moment information ("based on a 60 term series) at 66 points, 
for loadings at 30 different points was about 30 minutes. This 
is quite a "bit of time, however the number of calculations 
required is large, as is the total amount of information given 
by the program. The program consists of 12 subroutines which 
are called into an overlay area sequentially as they are required.
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; LbVtL i, H'JD 4~.......  MAIM "........... UAH: = 7PQ74 ~......
C IN THIS PROGPAM THF NUMBER OF TERMS USFO TS SET AT 140 
C THE GRID SIZE IS ALSO SFT AT 6 BY 17
C TO OBTAIN MORE AC CURACY THIS PROGRAM USES nPUcM..F PREC1ST0M 
C CORE AREAS APE PVERLAYED TO MAKE ROC‘1 FOP MO eg TfrMS

OIM«=NS ION ISP ( 24,74) ,W{ 1 40,140) ,A{ 140) ,mp(70) ,00 ( TO) 'f ( 7;W  
1 , B L ( 14 0).
DOUBLE PRECISION A , '»>
C0M?30i\l ISP,WTA,Yn,Mr-,NP,NE 
P=0. 3 
AB = 4
MN=60  .     "....     "
CALL FST ISR (ISR)
CALL SFTW 
CALL SETM (ON)
CALL SETA {MN )
CALL SHIFT (m n )

 CALL SORT (MN) ...............  T.............. ..
CALL ESTW (AB,m h )
CALL ESTNXY {A 6 ,P,M N )
DO 1 1— 1,6 
DO 1 J = ?,6
CALL SETL (I,J,BL,MM)
CALL DETW C I , J , FL, MN )...  ....  ... ... ... .........
CALL DETN (I,J,BL,MN)
CALL MMAX 

1 CONTINUE 
CALL EXIT 
END

1 7 / 4 7 / 6  « "  

A2 

7 oV
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LEV PL 1,  MOD 4      CSTI  S ° ................................. D / t c  = 70024  1 . 2 / 4 2 / 5  3

SUBROUTINE ESTTSR ( M S R ) A3
C SUBFOUTTNE TO ESTABLISH INTEP R E I. AT I CM OF INDICES
C THE NUMBER OF TERMS USED IN ISR IS A PcOUA TE FOR ANY S I 7 r OF MATRIX OOSIDrR;

DIMENSION MSR(24,24),MDf12,24),N<24) _ __
"" DO 1 J=l,24......................   "....... ...

1 MDtI,J)=J*(J-l)
DO 2 1=2,12
DO 2 J = 1,24

2 MD( I * J ) = MDlI-I,J)+2*(I+J-1)
DO 3 1=1,12

   DO 3 J= 1» 24..............  ..........
11=2* 1-1
MSR( I I,J) = MD(I,J)

3 MSR(II+1,J)=MSR(II,J)+1 
PRINT 4

4 FORMAT (13HIS,R TABLE IS//)
DO 7 1 = 1,24 "......  .. ... .........

7 N ( I >= I - 1
PRINT 6,(N(I),1=1,24)

6 FORMAT (8H M OR Q=,2414/)
DO 5 1 = 1,24

5 N ( I ) = I + 1
PRINT 10.. “.... .. ....

10 FORMAT (3H N OR P=/)
DO B 1=1,24 

fl PRINT 9 , N (I ) , ( S R { J , ] ) , J = ]. , 2 4 )
9 FORMAT {4X,I 4,24T 4)

______ RETUPN
END  ...
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LEV FL 1» MOD 4 .................... ' .....SFTW   ..................... ' ....DA T F ' = ~ " 7 0 0 2 4 ................  "  Y?74 2 / 5

SUBROUTINE SETW. <S,T,MN)
C THF SIZE OF THE W MATRIX IS FIXED AT 00 SOUARF IM THIS POUT IMF 
C SET UP THF INTERMEDIATE W MATRIX

DIMENSION ISR(24,24),W(140,140)
DGUf’L F PP.FC.ISTON' W,P ,P»Tlf T2,T3, T/t",T5,T6 tT'7",Tfi....
COMMON I S R ,W 
R=S P = T
DO 1 T=1,MN 
DO I J=1,I
I S = T - 1 ....      “ “  ' .. ..... ..........
JS=J-1 

13 DO 2 K=l,24 
DO ? L=l,24 
IF(TSR(K,L )-IS)2,3,2

3 M= K-1
N=L+1. .........     '           -......
GO TO 4 

2 CONTINUE
4 00 5 K= 1,24 

DO 5 L = 1, 24 
IFnSR(K,L)-JSI5,6»c> ...6 IQ=K-1...~ ~ '  ..“E ................... ..
IP = L +1 
GO TO 7

5 CONTINUE 
7 IT = M +1 0

1F(IT)15,8,15 _______  ___
15 I C = T T — 1     ".... .

I T= IT/2 
I C = I C /?
IF ( IT-IC) 8,9,?

9 W ( 1 , J ) = 0 GO TO 1
”fl~""TT= ?\|* ( N— 1")’❖ I ( T'p— “ '..~.. .. .

T 2 - (N+ TP-3)*(M + 10+1)
T 3 = M * I M - 1 )* 10* ( T O - 1 )
T4=(M+rO-3)*(N+IP+l)
T 5 = N * M *  I P* T Q 
T 6 = { M + I P - 1  )*('•’ +10-1)

 T 7 = N* ( m-1 } * I y* { I 0-1) .....  '  .........  ... ... .
T8=M*(M-1 )*TP*(IP-I)
W ( I , J )=T1 /T2+( ***4 . ) * ( T3/T4 ) + p * P * ( p * <  T7 + t°, ) + ?  . * ( 1 . - p ) - t 5 ) /t ̂

1 CONTINUE
RETURN . ■
END
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j  L EVEL  1 ,  MOD 4  S F T M ....... ' ......... ...........DATE = 7 D 0 2 4    1 2 / 4 2 / E

SUBROUTINE SETM ( MN )
C SET UP THE M MATRIX A5
C THE M MATRIX TS COMPUTED AND STORED IN THE W MATRIX T0 CONSERVE S n A C. F
C THE A MATRIX IS USED AS TFMPORAPY STnRAOE Tf) S AVE SPACr

DIMENSION I S R ( 2 4 , 2 4 ) ,W(1 AO,140),A( 140)
DOUBLE PRECISION W, A, TOT, SO 
CQvMON ISP » W, A 
DO 20 1=1,MN 

20 A I I ) = W (I ♦ I )
_ DO 1 1=1,MN 

 DO 1 j=I,MU " “■ ".. '...'...........  "
1 W( I , J)=0 

DO 2 1=1, MN 
I K=I— 1 
DO 2 J=I,MN

__ T0T=0
DO 3 K = 1, I K   ~.....

3 TOT=TOT+W(K,J)*W(K,I )
IFCI — J JA,

5 SQ= A( T)-TOT 
IF(SO ) 10» II ,11

 10 M 1=1-1 ________ ______
M2 = MT-1 " ' " ' ...
M1 = M1 / 2 
M 2 - M ? / 2
■IFJM1-M2)14,15,1A

15 MN=I—?
GO TO 16

 14' MN= I - i ..
16 PRINT 12, MN
12 FORMAT (23H0THF NUMPFR OR TERMS IS, 14)

GO TO 13
11 W( I, J >=DSQRT(SO)

GO TO 2
" A W ( I,J ) = (W C J , I ) -TOT)'/W ( I , I )
2 CONTINUE

13 PRINT e
8 FORMAT (16H1THE M MATRIX IS//)

PRINT 0 , ( ( W( I , J) , I = 1,MN) , J = 1 , V*N)
9 FORMAT (IX,10D 13.6)

RETURN ' '..........  ........
END ’
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LEVEL 1.» MOD 4 f' A T C - -» r\ r\ ->I V.J V » /_ *"•

SURRniJTTNE SETA (MN)
C SET UP PRELIMINARY A MATRIX (IN R FORMAT )
C THE FORMAT OF THE A MATRIX IS FIXED RY THAT OF THE !> 

DIMENSION I SR( 24 ,24 ) , W( 140,140) , 4( 1 4 0 )
..... DOURLF PRECISION W,A,C,TOT

COMMON I S P , W , A 
DO 8 I=1,MN 
A( I)=W( 1,1)
no 8 j = i ♦ i

8 W { I, J ) = 0
  DO 1 1 = 1,MN  "...  "".... ... ......... .

DO 1 J= 1,1 
IF(I-J)2,3,2 

3 C = 1 
GO TO 4 

2 C=0
  4 T0T=0......   '.    ".. ...

IK=I-1 
JK=J-1 
DO 5 K = 1, IK 
IF(JK-K)2 0 ,2 0 ,5 

20 TO T = TO T +W { K , J ) *W ( K., I )
.... 5 C.ONT IMUF     ' ~ ~  ' ' ■" '     '

W ( I , J ) = ( C- T OT ) / A ( I )
1 CONTINUE 

DO 11 I=1,MN 
DO 11 J = I,MN 
W ( I , J ) = W ( J , I )

" ...I F I I- J ) 12 , 11 , 12 ~ ""... .........
12 W (J,I) = 0 
11 CONTINUE 

PRINT 9
9 FORMAT ( .? 1 H1 A MATRIX IM R FORMAT//)

PPTNT 10,((W(I,J),1 = 1,‘U\') » J = 1 ,MN)
1C FORMAT { IX, 1CD13.6) .... . .. .... .

RETURN
END

t MATRIX
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L E V E L  I t  MOD 4 ....."    S H I F T   ..........................DATE = 7 0 0 ? A    l P M ' f / S P ” '

SUBROUTINE SHIFT ( MN >
DIMENSION ISP < 2 W 4  ) ,Wf 14C, 140) ,A < 140) A7/'
DOUBLE  PRECISION W,A 
C OM MO N ISPtWtA
NN=MN/2+l ...  "  ............................... .... .... .... ....
MM = M N — 1 
DO 1 I = 21 N N 
DO 2 J=1,MN

2 A ( J ) = W { J , I )
DO 3 K = 11 MM

_ D Q  3  J =  l f   -  —    - - ■ -  * - -  -   ....

3 W(J,K)=W< JtK + 1 )
DO 4 J=1,MN

4 W ( J t MN ) =A ( J )
1 CONTIN UE

RETURN
END ...        " ...   -...  .. . ..
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LEV CL" I f  MOD 4 SORT

SUBROUTINE SORT Ag
C THIS SUBROUTINE DIVIDES THF A MATRIX AS IN THE PARRR 
C THE A MATRIX IS SORTED INTO ITS ODD AMD EVEN COMPONENTS

DI MENS ICN ISR( 2 4,24),W{14 C,1401,A{140) ,00(70) ,M0( 7 0) , VT  ( 70 ) , M‘- C7D )
1 ,AF(70,70),A0 (70,70)    ' ' ".. ...
DOUBLE PRECISION A,W 
COMMON IS R,W,A,MO,M F ,N 0,N F 
EQUIVALENCE ( A E< 1 ) , W{ 1 ) ) , ( AC1. ( 1) , W ( 245 1) ) 
y,M = MN/2
NN=MN—1________ __ _

- on 2 j=i, mm ~ .... .. ...
00 2 I = 1» N N, 2 
11= 1/ 2+1 
JJ = J

2 AE(IT,JJ)=W(I».J)
V,S = MM + 1

_ 00 "3' 1 = 2, MN, 2
DO 3 J=MS,MM
1 I — I / ?
J J = J — M M

3 AO(II,JJ)=W(I,J)
00 4 1 = 1, MN _________ _ ____

   is = i-i  ' ' ...  ...
KK= IS/2+1NI=MM-l
DO 5 K=l,MI .
00 5 L=1,NI 
IF{ISR(K,L)-IS)5,6 ,5

 6 !K=K- 1  ‘... .------ .... ...
1 J=L +1 
GO TO 7

5 CONT T NUE 
• 7 IF( IS)8,9,a
8 IT=IS- 1

 IC= IS/2  ..........  ~........ ...... .
IT= IT/2IF{ IC-1T )C, IQ, q

9 ME(KK) = IK 
N E ( K K ) = IJ
GO TO 4 _ _ _ _ _ _ _______ 10 MO ( K K ) = T K " “ .......... '
NO(KK)=IJ

4 CONTINUE 
PRINT 11 . ‘

11 FOP MAT (32H1THE EVFN AND ODD A f-’ATp ICES ARE//)
PROMT 1 2 , ( M F ( 1 ),! = !, MM ) _ _ _  _____________

12 FORMAT' (*H ME=,2E1 4'/)"
PRINT j 3 ,(ME( I ) ,1 = 1,M«)

1?. FORMAT (AH N E = , 2 5 I a / / )
PRINT 14

14 FORMAT (]2H EVEN MATRIX/)
DO 30 1=1,MM

30 PRINT 15, ( AE( J , I ) , J=1,MM)..... ...." .......
15 FORMAT (IX,1 OF 13.5)

PRINT 16
16 FORMAT (//)

PRINT 17,(M0(I ),1 = 1 ,MN )
17 PORMAT (4H M0=,25I4/)
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LEVEL  1 ,  MOD 4 SOR-T DATE = 7 0 0 2 4 1 2 / 4 ? /

PRINT IB,(N0{ I ) , I = I .MM) A?
18 FORMAT (4H NO=,?5I4//)

PRINT 19
19 FORMAT (11H ODD MATRIX/)

d o  o r  i=i, m m  ...............     " '        "
31 PRINT 15,(AO(J,I),J=1,WM)

RETURN •
END
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; LEV EL 1 ,  MOO 4   ES TW............................... DATE........= 7 0 0 2 4  ‘  .■ " 1.2/4 ? > 'tr>  "

SUBROUTINE F S T W ( P , M N ) Al°
C SET UP DEFLECTION SUB MATRICES
C THE NUMBER OF GRID POINTS DETERMINE THE MUMP F0 OF TERMS IN Ti-F MATRICES 

D I MENS ION I SR( PA, 2 A ) ,W ( 1 4 0 , 1 4 0  , A ( 1 AC> ,MP<70) ,N0(70> , V F I 70)., NF (70)
1;A E (70,7 0 ),A O {70 ,7 0 ),P E (6 ,6 , 70) , R0 ( 6 ,6,70) , XI6 ) ,v(6 F ~ ...
DOUBLE PRECISION A,W 
COMMON T S R , W , A , M0 , M E , N C , NE
EQUIVALENCE ( A E ( I ) » W ( 1 ) ) , ( AD ( 1 ) , W ( 2 4 5 1) ) » ( P E ( 1 ) ,Ut49CI ) ) » ( P P ( I ) , W ( 

16161) ) , (X ( I ) ,I S R (1) ) ,(Y( 1) ,1S R (7) )
MM=MN/2

  DO 1 1 = 1,6.............    '.         —
P=I-1
X(1)=P*0.2

1 YI I) = P*0.2 
DO 2 1=1, MM 
DO 2 J= 1,6
DO 2 K = 1, 6 .... " ...
T0TE=0 
TOTQ=0 
DO 3 L = 1 , I 
IF(NO(L))20,21,20

21 P=1
GO TO 24.. ' " '

20 I F (X ( J ))22,23,22
23 P = 0

GO TO 24
22 P=X(J)**NO(L)
24 I F ( MO ( L ) ) 25 , 26 , 2 5
2 6 o = r            ' *....... ........  ..

GO t o 27
25 I F ( Y ( K ) )?9,29,.2B
29 Q=0 ,

GO TO 27
28 Q = Y (K )** M 0 (I )
27 TO 1 0 = TO TO + AO ( L. , I )*P'*0..............      " " ' “  ' "

IF(NE(L))30,31,30 
31 P=1

GO TO 34
30 IF{X {J ) ) 32,3b ,32
33 P=0

GO TO 34  ..... ..... “ .......... ........... ... ..
3 2 P=X(J)**NF<L)
34 I F (M E (L ))35,31•,35 
36 0=1

GO TO 3
35 I F < Y ( K ) ) 3 R » 3 R , ̂  _______

 ....'39 0-0  ' '....    '    ' " ....
GO TO 3 

38 0= Y ( K ) * * M F ( L )
3 T 0 T E = T 0 T F + A F ( L * I ) * P * 0.

REtJ,K,I ) = TOT F *1 CO00
2 RO(J,K,I)=TOTO*JOOGO

 PRINT 4, R ................................. •......... . ....... ... .....
4 FORMAT (38H1TME DEFLECTION SUP MATRICES FOR S / M  , F7.?,4H *,c p // ) 

PP.INT 5
5 FORMAT {25H VALUES OF K , 1(X,Y).10**4//)

PR INT 6, ( X( I ) , 1= 1 ,6) , (-X < !>,!=] , A )
6 FORMAT ( 5 X , 4H>' /B = , 6 F 1 0 . 1,4 X , 6 F 1 0. 1 / )
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LEVEL I t  MOD 4 ESTW P / \ T f  = 7 0 0 2 4  1 2 / 4 ?

PRINT 7 All
7 FORMAT (EH Y/A=/)

DO R 1=1,MM
DO 8 J = 1,6

  I F (J - 1 )9, 10,9 " ................   ' .    " ................ .

10 I 1=(I - 1)*2 
12=11+1 •
PR IMT 11, Y ( J ) , II , ( P G ( K , J , I ) , K= I , b ) , I 2 , < R 0 ( K , J , I ) , K = 1 , E )

11 FORMAT ( 1H0, FA. 1 ,2HW, , I?,6F10.? ,?Hlr- , , 12 ,6F10.B)
GO TO 8

 9~ P R IN T 12,Y( J) , (RF(K, j , T)VK=1 ) , ( R’O ( K , J , 1 ) ,K = 1 ,6)
12 FORMAT (IX,FA.1,4X,6F10„?,4X,AF10.3)
8 CONTINUF 

RETURN 
END
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L EVEL  1 ,  MOD 4 .........   RSTMXY..................   ■...  DAT F -  7 0 0  24 ~     1 2 / 4 ? y F ;:

SUBROUTINE ESTMXY (R,S,MN) A12
C CALCULATE X,Y,AND XY MOMENT SUB MATRICTES 
C SUB MATRICES APR CALCULATED FOR THE G^IO POINTS CHOSFN

D TMENS ION I SR ( 2 A, 24) , W ( 1 4 0,1 40 ) , A ( 14 0 ) ,M«( 7 0  t'-J0( ? ') , ‘ir: (70),M E <70)
"..... 1, A F { 70 , 70 ) , AO ( 70 , 70) , R F ("6 , m , 70 ) , R0 f * , 6 , 7 0 I , X ( f-0 , v ( M  ,> ny ( TO')",'®"’

2EX(S,6,70),RnY(S,6,70),PEY(6,6,7C),PCXY(4?r,,701,<HrXY(A,p,7'M 
DOUBLE PRECISION A , U 
COMMON ISR,W , A , M P ,VE,MC,NF
EQUIVALENCE ( A E ( 1 ), W ( 1 ) ) , f AO ( 1 ) , (.? 4 5 1 ) ) , { R E ( 1 ) , M ( ̂  r' 0 1 )),(•■ O ( 1 ) ,i :(

161 6 1) I , ( X { i ) , ! SR ( 1) ) , ( Y ( 1 ) , T SD ( 7 ) ) , ( BOX ( 1) , W ( 74.? I) ) , (F F X ( 1 ) , (  7 6 *1 
2 )"} , (ROY ( 1) , W( 0 941) I , (PCY( 1 ) , W( 11 201 ) ), ( P.OXY( 1 ) , W( ]''?'4 61")T7'( X Y l U T  
3W< 13721 ) )
MM=MN/2 
DO 2 1=],MM 
DO 2 J = 1, 6 
DO 2 K = 1, 6
T0T3X = 0 ............      " .... .................................... ........... “
T0TEX=0 
T0T0Y=0 
T0TEY=0 
T0T0XY=0 
TOT EXY=0
do v  L=r, i “ ” .. ~    ... “  " ....
I F ( NO { L ) ) 5, 5,4

5 P=1
GO TO 100 

4 IF(X ( J ) )6,7, 6
7 P=0

GO ' TO I 00....~         '................    '.....
6 P = X { J )**N0{L)

100 IF(MO(L))8,B,9
8 0=1

GO TO 200 
9 I F ( Y ( K ) ) 10, 11 , 10

11 0=0    '      "            ' :
GO TO 200 

10 0= Y ( K )**MP( 1.)
200 IF(N O (L )-])12,12,13 •
12 Pl=l

GO TO 3 00
1? I F ( X { J ) ) 14, IB, 14 ............T   .." ..
15 P 1 = 0

GO TO 300
14 pi = x (j )**('-:n(L > - n

300 IF(MC(L )-1)16,1E,17
16 01-1

' GO TO 400 ....    '............... ..... " .... '
1 7 I F ( Y ( K 1) 1 F•, 1 n , ] ? .
19 01=0

GO Tn 400 
IB Q 1 = Y (K )**(M0(L)-l)

400 IF(NO(LI-2)20,20,21
2 0 P 2 = 1 ' '           *   ~

GO TO 500
21 IF(X(J)122,23,22 
23 P2=0

G" TO 300 
?? P ? = X ( J ) v* ( Nf . ( L ) -2 )
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LEVEL  1 ,  MOO 4 FSTMXY D A T  = 70024 12/42/58
5 00 IF<MD(L)— 2)24,24,75
24 02=1

GO TO 600
25 IF{Y(K 1 ) 36, 27, 26
27 Q2 = 0 ........ '.... "...   “...... ............

GO t q  600
26 02 = Y(K.)**(MP(L ) - 2 )

6 00 T1=NQ(L)
T 2 = M O (L)-l 
T 3 = M H ( L )

  T4 =MO { L ) — 7          ' ;        :
TOTOX=TnTOX + AO(L , T > * ( T1 *T?»P 2 * 0 + T3*T4*s*02 1 
70707=7 0107+40 ( L , I )*{R*R *T 3*T4 * °£Q? + S*T 1 *T2*P2*Q) 
TOTOXY=TOTOYY + AO(L , I )*R*( 1 .-S)*'T]*T3*P1*Q1 
IFCMECL > >35, 35,34

35 P=1
GO TO 700      ~

34 I F (X(J } ) 36, 37, 36 
37 P = 0

GO TO 700
36 P=X{J)**NF<L)

700 I F C M F C L ) ) 30,38,39
 38 Q= 1... ‘....   "        '

GO TO 800
39 IF(Y(K1)40,41,4 0
41 0=0

GO TO 800
40 Q=Y{K)**ME(L)-

" 800' IF (OF (L 1- 1 142, 42,43.....
42 Pl = l

GO TO 900
43 I F (X (J > 144,4 5,44
45 P1 = 0

GO TO 900
4 4 - p i= x" ( j )** ( n f (i:)— 1“) “I ..

900 IF(ME(L 1-1)46, 46,47
46 01 = 1

GO TO 1000
47 I F {Y C K > 148,49,43
49 01=0

GO T O '1 C O O "  .......... ........ . ...............
48 0 1 = Y ( K 1 ** ( Mr { 1. 1-1)

1000 IF(NE(L 1-2) 50, 50, 51
50 P 2=1

GO TO 1100
51 IF(X(J))5?,53,5?

' '"53"' P 2 = 0 .................................. ..... . .....
GO TO 1100

52 P2 = X( J)#*rJE(L )-?)
1100 IF(ME(L)-?)54,54,56

54 Q2=I
GO TO 1200 

' 55 T F (Y (K 11 56 , 57, 56
57 02=0

GO TO 1200 
56 0?=Y(K)**(MF(L)-2)

12.00 Ti=.vr-d.)
T2=ME( 1.1-1
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LEVEL T,  MOD 4  " " " .... ESTMXY ..  DATE = 7 0 0 ? '« ’ " *      12 /  •'* ? ’/

T3=ME(L) A14
T 4 = Y C ( D _ i
TOTEX = TnTEX+AE (L , 1 ) *(T ]* T 2 *P2*0+ R * P * T 3 * T 4 * R * 0 ?  )
TOTE Y =  TOTEY+AE C L ♦ I ) * ( R *P *T3*T A £ P * 0 ?  + S *T 1 *T2*P2*Q)

...... TOTEXY=TOT'FXY + AE ( L , I )#R*{1.-S )*T1 *T3 *P1*01 ........ '........     ~..
3 CONTINUE

P 0 X (J,K,T) = TOTOX 
P E X { J , K t I )~ T 0 T r X .
RQY{J,K,I)=TOTDY 
RFY{J,Kf1 )=TOTrY
ROXY (J » K tI)=T0TOXY .... . .............. .... .

' 2 REXY< J fK, I )=TOTEXY 
RETURN 
END
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SU RR OUT IME SET 1. ( w f N , C , MN ) 
C SFT UP THE WORK VECTOR

A15

“ 2 1 4 0 )  .................... ............................................
COUPLE PR FC IS 1 ON A,W
C CM’MON TSG , w» A ,M0»MF,\'O, NF .
FQl) I V AL EM C F ( A E ( 1 ) , W ( 1 ) ) , ( AO ( 1 ) , w ( 

16161 ) ) , <X( 1 ),ISR( 1) ),(Y ( 1) , r S R (7) ) 
MM = MtM/ 2

1 r>0 I  1 = 1 , ,v M .........
11=?*( 1-1) + 1 
111 = 11 +1
C< 1 I ) = P F (  N, M,  n / i c o o o

1 C( 11 1 ) = P. 0 ( N »M » I ) /10C00
C CALCULATE RELATIVE CON'T R I RUT I ON TO SUr̂

SOM= 0 .................................
DO 2 1 = 1 , MN 
S0 M= S0 M + c ( n * r  (T )

2 ERROR( I ) = ( C ( I ) * C ( T ) ) / SOM 
RETURN
END
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EV El. 1 7  W  4      OF T W  " " .................. " oa .t f  = 7 0 0 2 4  ...Y P / A J V E s ’

A16SURRDUTINF DETW ( M , N , C , M N )
: DEFLECTIONS AR F OETERMI NEn «T THF POI N’TS SHOV.'N pop THE LnAr>I\'G INDirAT 1̂  
; CALCULATE THF DEFlECTION MATRIX

DIMENSION IS?( 24,24) ,W( 100,140) ,A(t/+0) ,MC<70> ,N0(7^1 ,Mf-(7~) ,MF{70J
"... 1 1 A E ( 70 , 7 0 ) , AO ( 70 , 7 01 ', R E { 6 , 6 , 7 0) , R 0 ( 6 , 6 , 7 0) , X (6 ) , Y (4 ) , C (1 4 0 I , 0 (>-, 1 1' *.

2 ) , V R ( 1.1 )
DOUBLE PRECISION A,W 
COMMON ISP,W,A,M0fMF,NO,NF
EQU IV AL EN C E ( A E ( I ) , W ( 1 ) ) , ( AO ( I) , '.-U 245 I ) ) , ( P E ( 1 ) , W ( ̂  0 ) ) ) , ( ? 0 ( I) , w ( 

16161) ) , (X{ 1 ) ,T RR <1)>,(Y( 1) ,ISR < 7) )
MM = M N /  2 .............................             " '' “ ......~
DO 1 1=1,6 
00 1 J = 1,11

1 D { I , J I = 0
DO 2 1=1,MM 
r i=2*<i-ii + i

  DO 3 J = 1, 6........  '..      '.... ... ........ .... .........  ..........
DO 3 L= 1,6 
K = L + 5

3 D(J,K) = D ( J , K )+ C (I I )*PE(J,L,I )
DO 4 J = 1, 6
DO 4 L=2,6

".... K = 2 - L .    ”   ........ . ..... " ..... ...........
4 D{ J,K+5)=D( J,K+5)+C ( I I ) ^ F (  J,L,I)

11=11+1
DO 5 J = 1,6 
DO 5 K = 1, 6

  L= K + 5 _ ___________
 M I = 2 - K   ''' .... ...  '...............    . '

0( J, L )=D( J, I. } * C { 11 )**P< J,K,I )
5 D (J ,M I +5) = D (J ,uI+5)- C (1 I )* R 0 (J ,K ,I )
2 CONT I MUE

PPTNT 6,X(N),Y(M)
6 FORMAT (27H1OFFLECTION MATRIX X / R = , F 4 . I , 8 H A N P Y/A=,F4.t//)
“ PR INT 9, ( X ( I ) , T = T , 6) ...... ....  ...  ...
9 FORMAT {I X,4HX/B=,6F15.1//)

DO 10 1=1,6
0=1 .
Y R (I)=-0.?*(6. - n )

10 Y R (I + 5) = Y (T )
  "'p r i n t  11 ...     ’.............../- ................... ;

11 FORMAT (5H Y/A=//)
DO 7 1=1,11

7 PRINT 8,YR ( I ) ,(0 ( J , I) , J= 1,6)
8 FOPMAT {IX,F4.1,6 F 15.3)

RETURN _ _ _ _  _ _  _ __ END........ “...... ..........  ...  .......  .. .... "........“
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SUBROUTINE HETM (M,N,C,MN)
C CALCULATE THE MOMFNT ARRAYS
C THE MOMENTS ARE CALCULATED FDR THF LOADING CHOSFN

DIMENS ION ISRf?4,24),W(] A 0,14D) , A  ( ] A 0 ) , » « n f  70) ,\'P( 70) ,
 , A E { 70 , 7 0 ) , A 0 ( 7 0 , 7 0 ) , > E ( ft6 , 7 0) , P. f1 ( 6 , 6 , 7 0 ) , X' ( 6 ) , v ( j ,

2 FX ( 6 , 6 , 70 ) , ROY { 6 , 6 , 70 ) , P FV ( 4 t 6 , 70 ) , F OXY ( 6, 6 ,70) , Rr- XY ( 
3 ) , DX ( 6, 1 1 ) , D Y ( 6, 1 1 ) , D X YI 6 , 11) , Yr-M 11 )
DOUBLE PRECIS I ON A,W 
C OMMOM ISP,W,A,MP,MF,MP,NE
FQU I VALENCE ( A F ( 1 ), W ( ] ) ) , C AO ( 1 ) , W f 2 4 ft ] ) ) , ( p t { 1) ,V(4on

 16161)),(X(] I, ISP Cl) ) , ( Y(] ) , IS? (7) ) , (PDX{ 1 ) ,W(74?1 ) j'7(
2) ) , ( R. 0 Y ( 1), W( 9« 4 I ) ) , (RFY( 1 ) ,W( 11201 ) ) , ( RfXYI ] ) , w( 1 746
3W( 13721 ) ) , ( nx( 1 ) , Wf 1 ACfn ) ) , ( 0Y(! ) f\U 1 501 4 )  ) , (DXY ( 1 ) ,
4 1 ) ,W(15C30))
MM =M N / 2

  DO 1 1 = 1,6   _
on i j = i , ii   ... ........ .... .................. .
D X (I,J)=0 
D Y (I ,J ) = 0

1 D X Y ( I, J 1 = 0 
DO 2 1=1,MM
I 1=2*U - l  > + 1 

' IJ=I1+1
DO 3 J = 1, 6 
DO 3 L = 1, 6 
K = L + 5
DX(J,K)=DX(J,K) +C ( T I ) *r E X ( J , L , 1 )
D Y (J ,K )= D Y (J ,K )+ C (I I )*PFV{J,L,I)

 ' 3 ' D X Y { J , K ) = D X Y < J , K ) + C ("I J ) *ROXY ( J ,L , I )..~.....
DO 4 J = 1,6 
DO 4 L = 2 ,6 
K= 2-L
DX(J,K+5)=DX(J,K + 5)+C(I I )* D E X (J,L,T )
DY(J,K+F)=PY(J,X + 5)+C{TI)* R E Y (J , L ,I )

4 DX Y(J , KT-5 ) = nX Y (J , K Vft ) + C { I J M p'VY'I J , I Y D     ....
DO 5 J = 1,6
DO 5 K = 1,6 
L=K + ft 
M I = 2— Y
D X (J ,L )= D X (J ,L )+ C (T J )*R D X (J ,K .T )

  DX ( J , H J +-5 ) = PX (.J, M I + F ) - C ( I J )*PM?X { ,1 , K , D ....
D Y (J ,L )= P Y (J , L 1+ C (I J )*DC Y( J , K , T )
DY ( J , MI + 5 ) = DY ( J , M I + !>) - C ( T J ) *R DY ( J , M , I )
OX Y U ,  I. ) = D X Y (J ,L )+ C ( II )*R^ X Y (J ,^ ,I )

5 D X Y ( J , M I + ft ) = D X Y ( J , ̂  I + 5 ) —C ( II ). * k F X. Y ( J , K , I )
2 Cn.NTTNlJF

     PR INT f "        ” '....  .....
6 FORMAT (?o h o THP MOMENT D I S TR I p UT I no $ ARE//)

DO R 1=1,6
0=1
Y R (I)=-0.2*(6.-0)

8 Y R (I + ft) = Y ( I )
“  PR INT 7 ..........

7 FORMAT I10H X MOMENTS/)
PRINT 0,(X { j ),1=1,6)

9 FORMAT ( 1X,4HX/F= , AF1 ft.. 1 //)
PRINT 1C

10 FORMAT (5H Y/A=//)

i  /  r  .*»i//*t/7 - o

A17/

MF(7'T) t MF (70) 
P HXT 6 t‘ .4 t 70T',‘p 
ft , ft , 7n ) t r ( 1 40

I ) ) , Ir D ( 1. '-M
! r 'xC) )',••■( ftft 'Fl 
1 ) ) ,  ( P f - X Y  ( ] ) ,  

(I 6 047) ) , (vs (
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LEVEL 1 ,  MOD 4 DETM DATE -  7 0 0 2 4  1 2 / 4 , ? / 5  ^

DO IT 1=1,11 A18
11 PRINT 12,YRU),(nX( J,I),J=l,6)
12 F O R M A T ( 1X,F4.1,6El5.fi)

PR TNT 1?
 .. 13 FORMAT ( 10H Y MOMFNTS/)        ' "  .........

PRINT 0 , (X( I ) , 1 = 1,6}
PRINT io 
00 14 1=1,11

14 PRINT 12,Y R (I ),(D V(j,T ),J = 1 ,6)
PRINT 15

15 FORMAT ( 11H XY "t‘0MENTS/)    ' ' ..' ......   “...  . ’
PRINT 9, (X( I) , 1 = 1 ,6)
PRINT 10 
DO 16 1=1,11

16 PRINT 1?,YR(I),(DXY(J,I>,J=1,6)
RFTURN '

  EN D ..........   ' "..     ”
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L EVEL  1 ,  MOD 4   " MAX ..... ........... ..... " b * TE ”= 7 D 0 2 A .....

. SUBROUTINE MMAX
niMENS TON I SR ( 2 4,24) , W( 140, 140) , M  140) , MOf^O) ,HP (*?{') ,’•'?( *0-,) , M-;(7'n I 

1,A F ( 70, 70),AOT 70,7D) .RET 6,fc ,7P) ,POT 6,6 ,70) , X (r' ) ,v f/.) .rnx ( S i . 7'' > tr
2EX(6,6,70>,PnY{fc,fc.7Q) ,BEY( 6, 6,70) ,PCXYf 6,6,70) , P E W  70) fr( i*r

"   3 ) , OX (6, J ] ) , r?Y( 6, ] 1 ) , nxv'{ 6 , 1 1 ) , YP ( 11 ) , DM 1 ( h ,11 ) ,["'? < 0 ,11) , p - M  Y,T l T
4, T H ( 6 , 1 1)
DOUBLE PRECISION A,W 
COMMON I S B ,W ♦ A »M P ♦MF » N O ,NF
EQ'J IV AL FMCF ( A F T 1 ) , W T 1 ) ) , ( AO ( 1 ) , W< 245 I ) ) , ( l> E (1 ) , W(4001 ) ) , (F n( l ) . W ( 

__ 16161 ) ) , I X ( 1 ) , J SR ( ] ) ) , ( YT I ) , I SL ( 7) ) , ( PPX ( I ) ,VT74? I) ) , (PFX (1_) , W ( ? 6 » ?
? y j f { RnY ( i ) f V'(9P41 ) } , (° F Y ( 1 ) , W ( 11201 ) ) t (U:/V(i f l?-> 1 ) )V(R'XY T T ) , 
3W( 137?]) ) , (0X< 1) , W( 14Cf»l ) ) , (0Y( ] ) ,L < 1 50 1 4 ) ) , (DTY ( 1. ) , Wf ]5047)),(YP( 
41),W( 15080) )
DO 1 1=1,6 
DO 1 J= 1, 1 1
T1 = (DX( I,J )+ 0 Y ( T,J ) )/?.

  XX = ( o X ( I,J)-QY(I,J))/?..... ... ..... ......
T 2 = S Q R T (XX*XX+DXY( I,J )* D X Y ( I,J ) )
DM 1 ( I , J 1 = T] +T2 
DM 2 ( I , J } = T 1-T ?
DM 3 ( I, J ) = T2
TH T I ,J )=(ATAN(OXYT I,J)/(DXTI,J)- ti ))/p. )*ipp./3.1*150

' 1 CONTINUE ......... ‘ _.....'   " ....
PRINT 2

2 FORMAT (22H PRINCIPAL MpMENTS ARE//)
PRINT 3

3 FORMAT (6H M MAX/)
PRINT 4 1 (X ( I) , T = 11 6)

4" FO P M AT ( 1. y t AH X / 3= ,/F IF. 17/ )   "............ ..... ' ......
PRINT 8

8 FORMAT (EH Y/A=//)
DO 5 1=1,11

5 PR INT 6,YR ( I) , ( DM] ( J , I ) , J=1 , 6 )
PRINT 7

6"' FORMAT " (IX »T4 LI76ET5 V ? T ~   ...... .... *'...........“
7 FORMAT (FH M MIN//)

PRINT 4, (XT I) ,1 = 1,6)
PRIMT 8 
DO 9 1=1,11

9 PR INT fc,YR T T ) ,TD M 2 (J , I ),J = 1,6 I
PR INT 1.0.........  '.........   ".....

10 FORMAT (FH T MAX//)
PRINT 4 ,(X ( I ) , T = 1,6)
PRINT 8
DO II 1-1,13

11 PRINT fc , Y P ( 1 ) , ( TM 3 ( J , I ) , J = 1 , 6') ' _________- pR jmt i2.....................  -. —  - ' - - —  -.... —  ‘
12 FORMAT (16H ANGLE TP X AXIS//)

PRINT A,TXT I ) ,1=1,6)
PRINT 8 
DO 13 1=1,11

13 PRINT 1 4 , Y P (I) ,TTH(J,! ) , J = 1 ,6) _
 '' 14 FORMAT ( IX,F4. U 6 F 1 5 . 3 )

RETURN
END
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APPENDIX B 
■ MATERIAL PROPERTIES 

In order "to determine the material properties, it was 
decided to test four tension specimens out from the plate 
from which the test plates were cut. Figure 85 shows how these 
were cut; the tension samples being cut from material surrounding 
the test plates..The specimens meet the standard ASTM E8-61T 
for tension speoimens; this means they are 18 inches long and 
approximately 1-g inches wide. To insure that the material is 
isotropic (or to determine if it is anisotropic,) two samples 
were cut in the rolling direction of the plate (numbers 1 and 2) 
and two were cut at right angles to this (numbers 3 and 4). The 
rolling direction was determined from visible markings in the 
scale on the plate.

In order to determine both modulus (E) and Poisson’s ratio 
(Y0 it is necessary to have a two element gage; as well to eliminate 
any error due to gage alignment it was decided to use a three 
element rectangular rosette. The three element rosette will allow 
the accurate determination of the principal strains, from which 
the modulus and Poisson's ratio can be determined. Also, since the 
specimens may not be perfectly straight, gages were mounted on 
both sides of the speoimens to nullify any bending effects due 
to specimen curvatures. This procedure and the need for it is 
outlined in a paper by Smith and Chapel (32). The specimens 
were tension tested on a Tinius Olsen, 120,000 pound capacity
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Universal Testing Machine. Strain readings were taken at 2,000 pound 
intervals after the specimen had "been cycled 5 times to 7*500 pounds, 
to remove any gage hysterises effects. The maximum load reached was
12,000 pounds since all specimens showed signs of yield before this 
point was reached. The gages were connected to a Budd P-350 strain 
indicator through a Model SB-1 switch and balance unit. This allowed 
the six gages on any specimen to be read out sequentially at any 
load held on the testing machine.

Once the rosette strains were available, the principal strains 
were calculated using the method outlined by Dally and Riley (33)*
The principal strains were then averaged across the two sides of 
the test specimen- - this has the effeot of cancelling bending 
moments. The largest principal strain was then plotted against 
stress (calculated from load and cross sectional, area) for the four 
specimens. This plot is shown in Figure , and it can be seen that 
the last set of readings show signs of yielding. These readings were 
then discarded while the remaining values were used to calculate the 
line of best fit for each specimen to determine its modulus. Also, 
the line of best fit was calculated for the minimum principal strain; 
this value was used to calculate Poisson’s Ratio for each specimen. 
The resulting values of E, and are listed in the following table:

Specimen lfo. Dir'n Modulus.(psi) Y-
1 II 30 .4 x 10° 0.277

2 II 30.3 x 106 0.274

3 = 29.7 x 106 0.274
4 30.2 x 10^ 0.280
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The variation in modulus shown is a maximum of 2$ with three
of the values within jf/o, while the Poisson’s ratio variations are
all within 2°/o. These variations oan "be expected since the gage

+ -factor on the gages is only —  15& and reading errors could easily 
account for a 1<fo error as well. It seems, therefore, that the 
samples out from the two directions are equivalent and the 
material is isotropic (at least in the- plane of the plate which 
contains the directions of interest). The modulus and Poisson’s 
ratio used were then the average values of the 4 specimens tested; 
these were: E=30.1 x lO^psi and ¥= O.276. When these values are
used with the plate thickness of 0.257 inches, we obtain the plate 
stiffness (D) as

D . E ,h — *  > 4.62 x 104 lb - in.
1 2 U - + >
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Fig. 85 t Specimen Cutting Scheme
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Fig* 86 * Stress vs Strain, Tension Tests

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



Cl
C. Holographic Table and Equipment

The holographic table is shown in Figure ^ with all of the 
elements in the position that they were used. The table itself 
was originally a cast iron machine base which was donated to the 
University of Windsor by Ford Motor Company of Canada vrhen they 
closed out their testing facility in Windsor. It weighs 
approximately 3200 lbs. and has slots machined in its surface 
which are suitable for the damping of components. The large mass 
of the table is important in providing isolation from vibration.
The machine base also has the advantage that its working surface is 
relativbly.'. large j being approximately 5 feet square, allowing a 
great deal of versatility in experimental arrangement.

The need for special concern in building a hologram table 
arises due to the extreme amount of stability required in making 
holograms. During the exposure of a hologram, all of the elements 
must remain in the same relation within a fraction of a wavelength 
of light (24.9 x 10”^inches for the present experiment). Eogers (34) 
states that the maximum vibration allowed within the plate exposure 
time is 1/8 of a wavelength which corresponds to about 3 micro 
inches. This limitation is for a high quality reconstruction, 
while some degradation is allowable in most experiments.
Stability of this type is difficult to attain since building 
floors usually vibrate and therefore act as a forcing function on 
the table. The floor in the lab where our table is located is 
vibrating at approximately 30 cycles per second. This frequency is 
probably excited by electrical machinery in the building. There 
are, however, transient vibrations of lower frequency whose origin 
is unknown.
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When the table vas first set up in the lab, it was placed on
four legs consisting of three layers of concrete blocks and 8 inches
of styrofoam (16" by 16” square). The styrofoam was topped by a 
■§■ inch thick steel plate of the same size which was bolted to the 
bottom of the table. This plate distributed the load on the
styrofoam so that the maximum pressure was about 4 psi, which is
well below the yield point or creep limit of styrofoam. The static 
deflection under load of the styrofoam was about 0.10 inches, which 
results in about 60$ isolation from the 30 ops floor vibration.
In the summer of 1969* low angle transmission holograms were made 
on this table but their quality was poor. The support system 
finally employed is shown in Figure 8? } the main change being the 
insertion of "AEOH” hollow rubber springs. These springs were 
obtained from Go Tract Systems Limited, Quebec, Canada, and are 
Model No. 535/65* Under the load of the table (800 pounds per 
leg), the springs deflect approximately 1.0 inches which results 
in about 97$ isolation from the floor excitation. These springs 
have a further advantage in that they have considerable hysterisis 
losses, resulting in significant damping of vibrations. Holograms 
made on this table, after the installation of these springs, showed 
that acceptable reflection holograms could be made of a quality 
suitable for multiple exposure or live fringe hologram 
interferometry.

Another element which required a considerable amount of speoial 
attention is the plate holder (shown in Figure 7) which is 
designed so that -the plate can be repositioned to within l/8 wave 
length in all three directions (as well as all three possible rotations).
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This was done hy positioning the glass plate "back and edges against 
steel pins and holding it in place with powerful springs during the 
exposure. When the film is developed and replaced in the holder, 
it is .possible to rposition it within the specified tolerance. This 
technique was suggested to us by T. Allan when he visited the University 
in the spring of 1969.

Another element requiring special concern is the holder used 
for holding the mirrors and the spatial filter. The holders are 
made from a 3-§- inch diameter steel bar and weight about 20 lbs.
The base of the holder is machined to allow only 3 points to rest 
on the table, thereby preventing any rocking of the holder due to 
irregularities in the table surface.
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Pig. (37 : Holographic Table Support j Showing Rubber 
Springs, Steel Plate, and Styrefoam.
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D. Plate Clamping Arrangement

There were three primary objectives in designing the plate 
clamping jig; they are:

1) rigidity of the clamped edge
2) versatility of loading and holding different size plates
3) mass - for stability during the holographic part of the 

experiment.
The design arrived at for the plate loading system is shown in 

Figure 88 . It basically consists of 4 parts; the base plate the 
rear bearing block, the front bearing block, and the loading tower. 
The base plate is a 14 inch square by 1 inch thick plate of low 
carbon steel which as been surface ground on both sides. All of 
the other components are bolted to this plate, Which can also be 
clamped to the table, to prevent movement during the holographic 
phase of the investigation. The rear bearing block is also low 
carbon steel which has been surface ground on all sides. It is 
12" x 6" by 2 inches thick, and is bolted to the base plate by 
14, inch socket head bolts in two rows of 7 each. These two parts 
are never disassembled, and the bolts are torqued do™ as tight as 
possible. The front bearing block is also low carbon steel, surface 
ground on all sides, being 12" x 3" by 2 inches thick. As can be 
seen in the figure, it is bolted to both the base plate and the 
rear bearing block. There are 5 bolts going through the plate to 
the rear bearing block and 6 bolts holding the front bearing block 
to the base plate. The plate is held in a vertical position, being 
clamped at its base. There is two inches of the plate clamped in 
the fixture, which should result in a satisfactory end condition.
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;When a plate is placed in the holder, the "bolts holding the two 
hearing blocks together are tightened first. This ensures that 
the plate is clamped along its whole length. Then the rigidity of 
the system is improved by bolting the front bearing block to the 
base plate.

The total weight of the plate holder was 135 lbs., making it 
difficult to move but very stable. As well, it was clamped to the 
table to prevent movements during the deflection analysis of the 
plates.

The loads were applied using a pulley and tower arrangement 
as shown in Figure 87. The tower has holes on •§■ inch centres so 
tha.t loads can be applied at any height, with an essentially 
horizontal pull; in fact the maximum error can be expressed as:

AP « P(1 -  —   ) „ 0.0003P ... (D.l)
100 + .0625

which means there is an error in the load of 0 .03$ which is 
negligible. As well, the tower can be moved horizontally and 
bolted at 1 inch centres; this allows an error which can be 
expressed as:

A P  = P (l - ----— ----- ) = 0.0012 P ... (D.2)
100 + 0.25

which indicates an error in the load of 0.12$. The maximum 
loading error can be both of these simultaneously, which gives:

= {(1.0003 x 1.2212) - l ]  P = 0.0015 P .*• (D.3) 
or a maximum error of 0 .15$ which can be safely neglected.

The loads are applied using a U shaped member which is shown
in Figure 87. Actually, there are two such members available,
one with a 2" clear throat and one with a 6" clear throat. These
are used to transfer the load from the rear of the plate to its
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front (i. e: hologram side). The aotual load is applied by a
l/8" diameter hardened steel ball, pressed into the loading 
member. It is assumed that this can result in a satisfactory 
approximation of a point load*

A Point of concern in the overall loading scheme being used 
here is the friction loss in the pulley used in the loading tower* 
It is obvious that some loss must exist, and that it is likely 
significant. It is also likely that the loss is somewhat load 
dependent. Since there are two major loading ranges involved, it 
is necessary to consider them separately. With the loads used in 
the holographic portion of the study, no appreciable friction loss 
could be determined using a 10 lb. (maximum load) load cell. 
However, the loads used in the bending moment determination, being 
muoh higher (20 x in fact) resulted in a measured friction loss 
of 5.0 lbs. This factor was of course considered in computing the 
plate moments.
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