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ABSTRACT

A theoretical and experimental study of the deflections
and bending moments in cantilever plates of wvarious aspect ratios
under point loadings is presented. Good agreement between theory
and experiment is shown. Deflection information is obtained
holographioally and bending moment information at the fixed edge
of the cantilever plate is obtained using strain gages. Bending
moment distribution factors are obtained which can be used to
predict the maximum moment in.a cantilever plate under point
loading.

The results are extended by superposition to the case of
line loaded cantilever plates. This information is shown to be
suitable for prediction of the bending moment distribution factors'
in bhelical and Novikov gear profiles. This information is

therefore suitable for use in gear design.
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NOMENCLATURE

a plate bhalf width

a; deflection coefficient

A, nn coefficient in deflection series
o nondimensional load yosition in ¥y direction
b plate length

B nondimensional load position in x direction
Bm line load angle

Y coefficient

x\xy' shear strain

D plate stiffness

S plate deflection

B modulus of elasticity

€, strain in the x direction

¢ . strain in the y direction

F face width

¢n pressure angle

h plate thickness

H potential energy

Km moment distribution factor

Kt stress concentration factor

1m load line length

L work done by a load

A wavelength of light

m index

o1 noment

Mo moment in the x direction

xXiv
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My moment in the y direction

Mxy shearing moment

Mst matrix of coefficients

Mmax Maximum bending moment at the wall

Mnom nominal bending moment at the wall

n index

N fringe'order

n non dimensional intersection point of line load with

free edge of plate
\] Poisson's ratio

P load

Pd Diametral pitch

b helix angle

q load intensity

< stress

Iy stress in the x direotion

Ty stress in the y direoction at tangency point

t width of lewis parabola
t'xy shear stress
Gl angle between illuminating beam and normal'to plate
02 angle between viewing direction and normal to plate
v strain energy
Wt transmitted load
Wst matrix of coefficients
b4 coopdinate system normal to wall
coordinate system parallel to wall
Yn Lewis factor
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.1, INTRODUCTIONR

1.1 Subject of Investigation

This study is concerned with the déflections and maximum
stressgs in cantilever plates under the action of transverse
loading. In partioular, it is concerned with obtaining this
information in a form which is suitable .for use in éear design.
Since gear teeth of the helical or ﬁovikov form are not
uniformly loaded, the application of plate theory in
determining the stress distribution in them is necessary.
However, there is no simple formula relating the plate
dimensions, the type of loading, and the stress distribution;
therefore, it is desirable to present this information in the
form of charts to make it more readiiy useful to a designer.
While the information on siresses is the most imporiant, when
the lozd is being shared pétween two adjacent teeth on a .
gear, the deflection characteristics of the teeth determine
how much load each carries and therefore the stresses in each.
The deflection information is therefore of interest to the
designer when axial overlap is ococurring during the contact
cycle of the gear being considered.

l.2 Impordtance of Bending Moment Distribution Information
in Gear Desgign

The maximum static load carrying capacity of a gear tooth
is determined by either the contact stresses or the bending

stresses occurring in it during operation. Whichever of

I
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these two stresses exceeds the allowable maximum will determine
the allowable loading on the gear tooth. This investigation
will make no attempt to study contact streéses, but will de
concerned with bending stresses only. Factors limiting the
magnitude of this stress are either the yield point of the
material or its fatigue life, which is usually based on infinite
life design. Several authors (1) (2) have shown that bending
moment distribution information, when used in conjunétion with
stress concentration information, can predict the siresses in
non uniformly loaded gear teeth. A great deal of work has been
done to determine two dimensiopal stress concentration factors
for gear tooth profiles using two dimensional photoelasticity.
The application of this data to spur gears is relatively
straight forward; however, for helical gear teeth, knowledge

of the moment distribution is also necessary to obtain the
value of the maximum stress. Therefore, the design of

helical gear teeth would be much simpler if moment distribution
information (or maximum moment‘infbrmation) was available.

1.3 Plan of Investigation

As previously stated, the subjeot of this investigation
is the deflections and bendiﬁg moments in cantilever plates
and their application to gear designe. It was'decided that the
deflections of plates would.be obtained by holography which
yields full field informationj this is especially .important
in plates since the location of the maximum deflection wvalue

is not known beforehand. The moments (maximum) would be
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determined by strain gages located at the fixed edge of the plate,
in the direction normal to the fixed edge.

Due to the difficulties in applying line loads to cantilever
plates only point loads were considered in the experimental study.
Each plate, however, was loaded at various points so that
superposition could be used to approximate line loads. It is quite
likely that the errors in superposition are less than those . in
trying to establish a uniformly distributed line load,

A theoretical solution will also be presented based on ;
paper by J.'Szmelter et al (3), which will be extended to include
a solution for bending moments. This solution will consider the
different t&pes of loading'commdnly sncountered in helical gear
design, i. et line loads at various angles across the face of
the plate. These results will than be compared to work done by

Wellauer and Seireg (4) on line loaded cantilever plates.
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2. LITERATURE REVIEW

2.1 Bending lMoment and Deflection Studies on Gear Teeth

The stressing of gear teeth has long been a subject of
investigation, and in 1893; Wilfred Lewis laid the foundations
for the modern concept of gear design. His approach was
dictated by the spur gears in use at that time which had
symmetry of loading (in theory, at any rate); resulting in a
two dimensional approcach to the problem. His hypothesis was
that the weakest point in the profile was the point of
tangency between an inscribed parabola and the fillets at the
base of the tooth. A parabolic beam loaded at its tip is a

constant stress section, and its stress is given by:

W,P, 6h ¥, P
< = K d = L d q.‘.(Q.l)
F t2 P Yﬁ

where: < = maximum stress in section

2]
B

applied tangential load

face width

o
!

= Diametral pitch

o
B

height of Lewis parabola

ok
[

width of Lewis parabola at tangency point

Yn = Lewis Factor

This approach to determining the stress in gear teeth had one
big advantage in that it was easy to apply, but if also had
the disadvantage that it did not predict the actual stresses.
This shortoonming was hard to overlook; therefore, a great deal

of experimentation was carried out using strain gages and
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photoelasticity to obtain stress concentration factors based

on the Lewis Factor. The AGMA (American Gear Manufacturers
Association) still uses a modified Lewis equation for gear
design at this time (5), which includes factors for the stress
concentration, material (fatigue life), flexibiiity of mountings,
shock loading, operating temperature, etoc.

So much for the simple spur gear systemg in helical gear
systems the loading is not uniform and a two dimensional
approach, as suggested by Lewis, is no longer applicable. The
type of loading in spur, helical involute and Novikov gear
teeth is shown in Figure l. The helical involute system is
the most widely used in high speed and high power applicationsj
however, the newly introduced Novikov system is replacing it in
many applications in Russia and England (6) (7) (8) (9) (10)
(11). The Novikov or Circarc system was first developed by
Ernest Wildhaber in 1923 in the U. S. A. (12) (13); however,
subsequent testing showed no significant improvémeht over the
helical involute system and development was dropped. In 1954,
this system of gearing was reintroduced by Col. M. L. Novikov
in Russia and has since received wide acceptance there (14).
Work on these gsar profiles has shown the need for, and
desirability of a new approach to design of these gears, due to
the localized loading effect (see Figure 1). This localized
loading effeot completely violates Lewis! premises and a new

version of his equation can be written as:
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J =
Frn ) [N XN J (202)

vwhere: K = Moment Distribution Factor
K%'u Stress Concentration Factor from two
dimensional studies.

This type of approach was first applied to the Novikov
system by Fediankan and Tschechanow (15) in 1958 when they
presented some design information for Novikov profiles, the
values of Kﬁ they introduced were based on tests of several
gear sets. In 1961, Wellauer and Seireg (4) applied this
approach to helical gear loading by testing a thick plate,
with an aspeot ratio of 0.188 and deriving quasi-theoretical
moment distribution curves based on a semi-~emperical method
for the same aspect ratio. Also, my own work in 1969 (1)
showed the validity of this approach in predicting the stresses
in Novikov gear profiles.

Very little work has been done on obtaining bending
moment distribution factors for gear teeth, even though the
usefulness of it has been proven. The first person to
consider the problem of moment distribution.in long gear teeth
was MacGregor in 1935 (16). He studied, both experimentally
and theoretically, the deflections of a wide cantilever plate
(aspect ratio 0.167) under a central load at the free edge.
His theoretical solution assumed that the plate was infinitely
vwide in oxrder to evaluate the Fourier integrals which appeared

in his solution. He also svaluated the bending moment at the
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- wall for the point immediately adjacent to the load.

In 1937, D. L. Holl (17), using a finite difference approach,
golved for the deflections and moments in a plate with an aspect
ratio of 0.250, under a point load located at the centre of the
free edge. He considered 41 points in his solution which limited
the accuracy, dbut left the solution manageable. He pointg out
the limitations of the difference method; however, he also
indicates that it is possible to solve plates of finite length
by this method.

Then in 1948, Jaramillo (18), worked out an exact solution
for a cantilever plate of infinite length loaded by a point
load at any distance from the wall. Because the plate was
infinitely long, he was able to express the deflection in
terms of improper integrals and avoid the difficult boundary
conditions at the free corners. He was then able ito evaluate
these integrals by numerical methods in order to obfain thé
deflections and moments in the plate. His solution, of course,
is valid only for infinite cantilever plates, but since the
effects of the load are quickly dissipated, it is possidble to
apply it as an approximation to long plates under central
loadinge.

Vartak, in 1957, experimentally studied two thin cantilever
plates with point loading at various points along the free
edge. He determined the bending moments along the fixed edge

for plates with aspect ratios of 0.250 and 0.167; however,
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the deflection of the 0.250 plate we> wure than 3% times its
thicknesslwhich puts the results for it in c~aht. His
experiments were the first to consider loading of the fiee corner,
which is the critical position for a cantilever plate.

Also in 1948, J. W. Dalley tested a point loaded cantilever
square plate (20) and determined deflection contours for several
loading points. His study was the first to consider loading
at points not at the boundary of the plate., He also determined
stresses in the platej however, the points he chose to study were
not at the maximum moment points, therefore their value is very
limited. A dial gage was used in his experiment to traverse the
plate and obitain the deflection contours for loading at a given
point.

Then in 1959, Wellauer and Seireg (4) made the first
and only serious attempt to obtain moment distribution factors
for geér teeth. They tested two thick plates with aspect
ratios of 0.188 (2" x 22" x 12"), one of which was tapered to
simulate a geaxr tooth shape. Their study showed no signifiocant
effect of taper on moment distribution at the base of the
tooth for the profile they tested. Bending moment distributions
were determined for wvarious line loads, representative of spur,
helical involute and Novikov gears. They also suggested a
semi—emperical bending moment soclution, based on the work of
Jaramillo and a moment image technique they proposed. Their
theoretical results compared very well with their experimental

results; this could be because the plate they were considering
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had a low aspect ratio which would tend to minimize the erroré in
their theorstical approach,

In 1966, Xugimiya (2) determined the stresses in an involute
helical gear set, rotating‘slowly, using strain gages. Then,
employing an approach similar to that of Wellauer and Seireg,.he
also calculated the theoretical stresses in the gears; His
experiment showed very good agreement between theory and
experiment. |

Szmelter, Sulikowski and Lipinski, in 1961, (3), applied a
Ritz approach to the problem of cantilever plates using a
polynomial +to represent the deflected surface. In their paper
they praseﬁted results for a corner loaded rectangular
cantilever plate, as well as a plate with a uniformly distributed
load. A numericél evaluation of the coefficients is necessary,
but this need be done only once for a plate with Poisson's
ratio and aspect ratio specified. Then it is possible to specify
meny differgnt types of loadings and evaluate the deflections
produced. Their solution offers a relatively simple approaoh to
the defleotions in cantilever plates; however, a large amount of
calculation is necessary, but a high speed digital computer does

make the calculations easy.
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3. PROBLEM AS STUDIED

3.1 Theoretical Considerations

3.1.1 Selection of Method

From a oconsideration of the problem at hand i. e: a
cantilever plate of a given aspect ratio, loaded by an
arbitrary transverse loading; it is necessary to make certain
assunptions to simplify the problem. In fact, these assumptions
are specifically those outlined in Chapter One of "“Theory of
Plates and Shells" by Timoshenko and Woinowsky-Krieger (21),
These are the typical épecificafions that the plate thickness
is small in comparison with its othei dimensions, the
deflections are small in comparison to the thickness, the
material has linear properties, it is elastic, etc.

First, let us specify the geometry involved in describing
a cantilever plate, and for the sake of similarity and
convenience we will define our sjstem of coordinates in a
menner similar to that of Szmetler et al (3). This is shown
in Figure 2, where the aspeot ratio is, of course, defined as
(v/22) and the thickness as h. If one were to cpnsider the
problem of a point load somewhere on the plate using the classical
approach to thin plate problems, it becomes'ﬂecessary to establish
the boundary conditions on the four sides. such that the
deflection and slope are zero at the fixed edge and the

shear and normal moment are zero on the three free edges.

This represents eight boundary conditions to be satisfied. Also
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the load must be repregented as a Fourier Series in order
to0 have continuous load function. In order to get an estimate of
how complex and, indeed, almost impossible such a theoretical
solution is, one need only refer to Jaramillo (18) who sol#ed
the case of fhe infinite plate which avoids several of the
problems: there aré no difficult corners to consider, the load
is symmetrio, and.the infinite Fourier series can be replaced by
improper integrals which can be evaluated numerically. The
exact solution for a finite length plate, having no such
advantages is quite likely impossible (at least for me).

Now that exact gOlution has been ruled out, it is necessary
to consider some of the approximate techniques available for
solving the present problem. Basically, there are three methods
available, finite difference, finite element and energy. Eaéh
of these has its own'advantages and disadvantages which must
be considered in light of the specific problem to be solved.

In the cantilever plate problem, it seems that deflection
contours would be of great interest, as well as the beﬁding
moments at the cla@ped adge, which will intuitively be the

largest moments in the plate. Also, since all of these methods
are numerical in nature and. require a great deal of computation,
this becomes an important faoctor in choosing the method of
solution. In fact, this becomes a primary considération when
accuracy of solution is considered important, since these three
techniques give improved accuracy as either more points, elements,

or terms are oconsidexred.
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In a finite difference solution for plate deflections, one
eguation is generated for each point copsidered; as well, .
those familiar with the technigue will realize that fiotitious
points outside the boundary of the plate must also be considered,
vhich also generate an equation each. One will then have an
equation for every point in the plate béing considered, where
these equations are linear algebraic ones with the number of
unknowns equal to the number of points being considered. TFor
the details of this approach, one can refer to "Theory of Plates
and Shells", pg. 351 (reference 21). This set of linear .
algebraic equations must then be solved for the deflectiomns
of all points considered. The quality of solution rests, as
can be eagily guessed, upon the number of points considered in
the net, i. e: more points, betiter accuracy; but at the samé
time a larger system of equations. This larger system of
equations results, of course, in more error due to round-off
in computations, and at some point a balance exists between
increased possible accuracy due to more points (and equations)
and decreased accuracy due to round-off errors in the
computations. So much for deflections which only generate
a single eéuation per point considered. Now, if bending
moments are also desired, a change in technique is required.
This finite difference method is outlined by Holl (17) in
his paper, which was pfeviously mentioned, where he uses
15 points to represent a symmetrically loaded (i. e; 15 points

are only half the plate, if the load were not symmetric, he
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would require 27 points) cantilever plate. He then generates
41 equations in 41 unknowns, i. e: almost three times as many as
the numbexr of points being considered, froﬁ the difference
equations and his boundary conditions. It can easily be concluded
that a better solution requires more points to increase the
possibility of true plate action, while this also causes the
calculations required fo inorease at a greater rate.

In considering finite element techniques, the choice of
the element type, as well as the number of elements must be
considereds this is discussed extensively in "Finite Elements
Methods in Stress Analysis" by Holand and Bell (reference 22).
The number of degress 6f freedom which an element has,
determines how well it can approximate plate aciion, and elements
have been proposed with 12 and more degrees of freedom.
Basically, the finite element technique consists of replacing
the continuous plate by an array of elements whose stiffness
and means of conneotiion is specified, which converts a
statically indeterminate problem into a determinate one. In
clagsical finite élement techniques, a structural matrix of
influence coefficients is established, which, after inoclusion
of boundary oondifions, has to be inverted, résulting in a
great deal of difficulty, as well as numeric errors,
(i. e: computational). More recently, the Rayleigh~Ritz
finite element method hés been developed which avoids the

inversion problem; this technique is described by Walker (23)
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who works out the deflections of a simply supported, uniformly
loaded plate. This method is, however, very complex, especially
when it is extended to include bending moment determination as
well, | |

An energy method, as its name implies, is concerned with
the energy stored in a plate when it is loaded. The essential
steps in the solution are to choose a.deflection function
(usuélly a finite series of terms) capable of satisfying the
boundary conditions, evaluate the stored energy in the plate,
and by making the contribution of qach term a minimum, determine
its coeff;cients. A completg treatment of this approach is
given by Timoshenko and Woinowsky-Krieger (21) who indicate
that the method was first appliecd tc plate problems by Ritz.
This method was used by Szmelter_et ale (3) in working out
the defleotions of a cantilever plate, loaded by a point load
at the free corner, as well as a uniformlyiloaded plate.

Their technique is the one which I plan to use as the bdasis
for my theoretical formulation. The reasons for which this
has been done are as. follows: |

(1) the solution is machine solution oriented

(2) +the accuracy of solution at a point does not depend
upon the absence or presence of nearby points |

(3) the solution can be extended to moment‘prediction

(4) the number of points at which calculations are

being preformed can be easily changed.
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3e¢le2 Deflection and Moment Determination

As mentioned in the previous section, the theoretical
prediction of deflection will be based directly on the paper
entitled, "Bending of a Rectangular Plate Clamped at One Edge",
by J. Szmelter, T. Sulikowski and J. Lipinski (3). It seems
helpful to present the pertinent parts of their paper here, in
order to more clearly define the limitations and scope of this
technique.

Referring again to Figuie 2, we see that the edge x = 0
is clamped with the edges x = b and y=fa free. Now let the
unknown displacement function w (x,y) be assumed in the
following'form: ‘

D

wxy) = 2 e v (ny) e ()

i=0

vhere W, (x,¥) are known funotions satisfying the boundary

conditions at the clamped edge, which are:.

wi(O,y) ='3wi(0,y)/éx =0 ‘ . eee (3.2)

The strain energy of the bent plate is given by (see reference 21

for example):

b a .
D 2 . 2 2 1dxdy e.. (3.3)
V = 2// {W’xx + 2¥w, Wy ¥ Wayy +.2 (1-p) w’xy} _
o,/ -8

vhere D denotes the plate rigidity, ¥ is Poisson's ratio, and
Wy, ME2ns the second derivative of w with respect to x.

Now substituting (3.1) in (3.3) we have:

o0
v =% E ai a-k Vik oo (304)
i’k = 0
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where the coefficients V., are determined from the following

ik
integral
b a
Vi = {Wi X% wk,xx + Y‘(wi ,x_xwk,yy +wi,yy wk,xx)
(o] -3,
tw, W +2(1=-W)w, . w dxd, es (3.
1,37 K3y (2-¥) iyxy k,xy} J | '(3 5)

At the same time, we now assume that the functions LA (z,5)

satisfy the following oondition of orthogonality:

b3 1 when i = k
vﬁk {.ﬁé} =
0 when i # k . ese (3.6)

Equation (3.4) then becomes

.' | oo . |
. Da E, : 2 : .
V = ';"3 a.i ) seoe (307)

1=0

Let Li denote the work of a given load on the
displacement wi(x,y). We then see from (3.1) and the superposition
principle‘that the work L of the load performed on the

displacement w is equal to

i=0

The potential emergy of the plate then can be given as
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oo o
Da § : E :
H n V=1 = —-3- - a.i L i ) (3c9)
i=0 i=0

- The plate is in equilibrium when its potential energy reaches a

minimum, i. e. when

. 2a
é?ai -3 %k k=0 ees (3.10)
which leads to
3
o = ok ’
2Da eee (3.11) -

Now substituting (3.11) in (3.1), the displacement w can be
expressed as

w(x,y) = (b3/2Da):E::I, W'(x,y) ' cos (3312)

i=0

If we now assume that the functibns wi(x,y) have the form of

polynomials, i. e:

wy) = > A G ) e (3.13)

n,n

Hhere the coefficients Aimn are determined in such a way that
the boundary conditions (3.2) and the orthogonality conditions
(3.6) are satisfied. From (3.2), it follows that
n o= 2,3,4, ... mea 0,152,000 ees (3.14)

Substituting (3.13) in (3.5) we obtain
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2a ’ . .
Vi = ;3 Ao Akpq wnmpq : eee (3.15)
mnpgq
wheres: ,
(' 0 when (m+q) is odd
Vonpg = < | .
n(n-1)p(p-1) {b} m_(m~1)a(q-1)
(n+p—3;im+q+1) (m+q-3)(n+p+l) eoe (3.16)
.

+ {%}2 Yn(n~1)q{g~1) + ¥ m(m=1)p(p~1) + 2 (1—-’{)mn£qL
(n+4p ~1) (m+q~1)

when (m + g) is even

The groups of indices mn or pq in equations (3.15) and (3.16)
may be replaced by a single index s or r according to the

following table:

m(org)=0 1 2 3 4 5 6 7T 8 9
n(or p) = 2 r (ors)=0 1 4 51011 18 19 28 29
3 2 3 8 91617 26 27
4 6 7141524 25
5 12 13 22 23
6 20 21 eto.

Now we can rewrite the coefficients used above in a new form

Ajmn = Ais, Alrcpq = Akr, wnmpq, = War = Vrg eee (3.27)
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and (3.15) beconmes
Yy = 2 A W | . (3.18)
ik b3 is Ay sT _ i ¢
T,s '
The matrix of coefficients Vik may be resolved into a product of
two triangular matrices of coefficients Mst’ according to the

following formulas

E M Mo =W, M, =0 for s>t eee (3.19)
t

These equations can be used for the suqcessive calculation of
all the coefficients Mrt' The matrix Mrt is the square root of the-
matrix Wsr(B). The matrix wsr is defined positive and therefore all
the coefficients Mrt are real.

The coeffiocients Air = Aipq can easily be calculated from the

equations
O when i = %

Air MI‘ = . eee (3020)

T 1 when i § t

The calculation of Air is simple because the matrix Mrt
is triangular. Also, if we substitute (3.19) and (3.20) in (3.18)
we can verify that the functions wi(x,y) containing the coefficients
of Air’ calculated above, satisfy the condition of orthogonality
(3.16).

This is where Szmetler et al (3) left their derivation
and calculated results for two examples they presented in their
paper. To summarize their method, one must first establish

Hsr using equation (3.16) and the table which follows it, then
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caleulate M, using equation (3.19), and subsequently determine

A, from equation (3.20).

Since expressions for the deflection, w (x,y), have been‘
developed as outlined above, it is only logical to extend the
results to determination of the bending moments in the plate.

The relations between the bending moments and deflection are

(See reference 21 for example);

M =D ('"sxx * Y,w’yy)

¥_ =D (w, _ + Yw,xx) eos (3.21)

Y ¥y
Mxyab(l- ”"’xy

* Referring to equations (3.12) and (3.13) we see that w (x,y) can
be written as:

m

SN Sy @ C @ .
w (x,y) = ?ﬁaz Aimn b a Li ese (3-22)
i myn ‘ .

Differentiating (3.22) to obtain Wigx? Wy and Wiry these become:

= n-2 m
(5,9) = 5y (D) 2.0 a n@1) B @ L

W,xx T
o0 : '-2 .
(Ee9) = 3 (D) 4?. Do me-1) B (@1, cee (3.23)
. mn
= n-l _ ‘m-l
V’x& (x,5) = zD (‘5_‘) z Z. mn (%) (g) Li
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Now if we substitute (3.23) into (3.21) we have the following
expressions for the moments,.

(-4

M (2,7) =Z Mo (=3) Iy

i

ol
n-2 m
22 le mZ; A { n(-1) (B (&

. n n-2
ot % (m1) (B @ } L

oo
My (xy5) = Zi hlyi (z,5) Li

2

- 2 | n_ m=
22 Z; %;Aimn { (D) a-1) B @ see (3.24)

. n=2 m
+taen @ @ Yo

o0
My (%57) = Zi:mxyi (x,5) I

4

o0
2 Z Z n-1 m-1
= % (::-) i mn Aimn mn (%) (%) I':i. (1-%¥ )

These expressions can be used to predict the moments in a cantilever
plate of a particular aspect ratio (b/22), particular material (YY),

and at a given point (x,y).
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3el1e3 Moment Distribution Factor

The Moment Distribution factor (Kh) is here defined as the
ratio of the maximum bending moment at the fixed edge of the plate
to the nominal moment at the fixed edge. Referring to Figure 3
this can be expressed as:

M

max «
Km = i ece (3.35)
nom

where: Mmax = maximum moment at the fixed edge

Mnom = nominal moment at the fixed edge which is

defined as

M dy wee (3.26)

"
Nf

nom
-2

where M is the value of the bending moment at the wall. The

nominal moment can also be computed in terms of the load being
applied to the plate. The two types of loads applied to plates
in this study are'point loads and line lbads. A point load is
shown in Figure 3, acting on a plate of aspect ratio (b/z2a), at

the point (ﬁb, &L a), The value of Mnom for the plate shown is:

~ BPb | |
Mnom = “é';"" LY X (3.27)

An arbitrary line load is shown in Figure 4; it is not completely
arbitrary, however, in that it is assumed that the loud intersects

the free edge (at T\) and then extends at some ungle (hm) $i1l it
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. intersects another edge. The value of Mnom for this plate is:

o

=
Mnom

N

2 { b - (_q.__;l’(_) tan Bm.} | ;v. (3.'28)

These values of the nominal moments will be used in determining
the bending moment distribution factors.

3.2 Details of Computer Program

The method of determining deflections and moments, as
outlined in Section 3.1.2, is a computational technique which_
invblves-a great deal of calculation, i. e: solving a large set
of linsar algebraic eduations, etec. To do this by hand would
be next to.impossible (it seems, however, that Szmetler et al
(3) did so for two aspect ratios) if a iarge number of plates
and loadings are oonsi&ered. It’was therefore considered
desirable to write a compufer program which wquld calculate

. the deflections and moments in a cantilever plate, of a given
aépect ratio, under a particular point load.

A listing of the final program is giveﬁ in‘Appendix Aj
there are 12 subrou£ines in the program whigh are called
sequentiallylby the main program. The program was written
in subroutine form to allow overlays whicﬁ_would save core
space; as well as break the program into logical segments to
allow easier programming and debugging.

The subroutines are:

1 ESTISR

2 SETW
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SETM |
~ SETA
SHIFT
SORT
ESTH

ESTIXY

O 00 =N o U b~ W

SETL
10 DETW
11 DETH
12 MMAX
and as mentioned before, they are listed in Appendix A.

The program.is written to allow for a maximum of 140
coefficients in the series for the deflection; this was done
in 200K of available éore,storage. The limitation on core
storage required added complexity in the péogram ﬁhich wéuld
not have dbeen neéessary if a larger computer had been available
(not to say that 200K is smali). Since the completion of this
program, more core storage has become available which would
have made the added complexity unnecessary.

In the main program Poisson's ratio is chosen, the aspect
ratio is éet,‘and the number of terms in the series is =set.
Poisson's ratio was set at 0.3 for all of the comﬁuter runs
since this is a suitable wvalue for steel and most aluminum alloys.

In subroutine ESTISR, thé table relating the coefficients
used in equation 3.17 is established. This table is necessary
to derive the matrix wsr from the coefficients mnpq. The matrix

Wsr'is then set up in subroutine SETV using equation 3.16 and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25
and the table of coefficients established in ESTISR. The
values of W, are stored in W(I,J); however, since W, is
symmetric (equation 3.17) it will be necessary to save only
the upper triangular portion of the matrix. The wvalues of
Wsr are calculated as double precision numbers; this, of course,
requires twice as much storage space as single precision
numbers would. This was donefsiﬁce'using single precision
numbers allows only 30 terms in the séries of ooefficients
foi deflection to be calculafed due to loss of accuracy in the

" equations.

The next subroutine called is SETM, and inlthis subroutine
the coefficients Mst are calculated using equation 3.19. The
terms in Mst are also double precision, and are stored in the
lower triangular portion of W(I,J) since the matrix Mst is
triangular (i. e: all terms abo%e the diagonal term are zero).
In order to accomplish this, it was neceséary to store the
diagonal elements of Wsr in the vector A (I), thus leaving the
diagonal of matriz W(I,J) available for storing My

Subrogtine SETA determines the coefficients Air from
equation 3,20, these are also double precision ﬁumbers. The
necessity for double precision numbers is evident here, since
all of the previously calculated terms in Air must be used to
calculate each succeeding term. The terms in Air are stored
in the upper triangular portion of W(I,J)which was previously
occupied by Wsr' Vector A(I) was used in this phase to store
tﬁe diagonal elements in Mst; this is necessary so that the

diagonal terms in Air can be generated in these positions.
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After Air is calculated, it is transferred to the lower triangular
half of W(I,J) with all the above diagonal elements set to zero;
Subroutine SHIFT is then called, and its sole function is to
rearrange the terms in W(I;J) into a more convenient sequence for
the following subroutine.

The next subroutine called is subréutine SORT, and in this
subroutiﬁe the matrix of coefficients, Air’ is sorted into its
even and odd terms. These are defined in the following manner;

a term will be considered even when its y exponent (m in equation
" 3.13) is even and odd when its y exponent is odd. The reason
for this will become more evident later; let it be adequate now
to say that it is necessary to do this. The even terms will be
placed in AE(I,J) and the odd terms in A0(I,J). In order to
once again conserve space,‘these matrices will be equivalenced
with W(I,J). The matrices AE(I,J) and A0(I,J) need to be
dimensioned only half the size (i. e: one qﬁafter as many terms)
as W(I,J) since many of the A, terms (75%) are zero and can be
deleted. Also, since the remaining calculations are simple
multiplications and additions, AE(I,J) and A0(I,J) will be in
single precision format. Having the matrices equivalenced with
w(I,J) ooﬁld cause somé problems since they will contain numbers
already stored in W(I,J). The subroutine SHIFT was called to
rearrange the Air terms so that this would not be a problem.

In subroutine ESTW, which is called next, the grid points

are chosen at which coefficients will be calculated. These

points are then those where loads can be placed and deflection
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and momenf information determined. The ocoordinates (x,y) of
the points are stored in X(I) and Y(I); they are chosen, however,
in terms of x/b and y/a, in order to make them compatable with
equation 3.13. These coordinates are chosen only in the region
Y20 and x>0 since it will be possible to consider points
for y40 by a type of reflection about the axis as outlined
later. Two new matrices are defined in this subroutine:
RE(I,J,K) and RO(I,J,K) which are also equivalenced with W(I,J)
in order to save space. These matrices are dimensioned
6x6x70, each 6x6 (of both the odd and even matrices) group
represents the value of wi(x,y) at 36 points repfesented by
the values of X(I) and Y(I). As mentioned, they represent the
values of wi(x,y), with the terms generated by AE (1,7)
going into RE(I,J,K) and those generated by A0(I,J) going
into RO(I,J,K). |

Rext in subroutine ESTMXY, the same thing that was done
for w, (x,y) in ESTW is done for Mx(x,y),My(x,y) and Mxy(x,y).
That is to say that Mxi is computed by equation 3.24 and stored
in ROX(I,J,X) and REX (I,J,X) and Moyi is stored in ROYX(I,J,K)
and REXY(I,J,K). These matrices are all equivalenced with
W(I,J) to reduce core storage.

Now it only remains to sum up the terms as iﬂdicated in
equations 3.13 and 3.24 to obtain the moments and deflection
of the plate at the points specified; however, before this ocan
be done, it is first necessary to evaluate Li' The work done

by a force P on the displacement w, (x,¥) is given by:
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L = P wi(x,y) dxdy ves (3429)

o] -3

If the load is acting at point (al,bl), and it is a true point
load, then it has a value at this point only (i. es P =0 if

x % ay and y % bi). The value of the integral is then:

i " = P Wi (al, bl) | cee (3.30)

Then in order to apply a load at a point it is only
necessary to select the values of wi(al,bl)as the work vector
Li' This iz done in subroutine SETL where the vector C(I) is
loaded with the wvalues of Li’ chosen by the main program to
represent a given loading from the terms in RO(I,J,K) and
RE(I,J,K). 1In this subroutine, an error vector is also
generated. This is outlined by Szmetler et al: they show
thatlthe influence of the nth coﬁponent on the sum (i. e,

deflection) is given by:
2 n 2 .
?m = I E : L _ see (3.31)
: ‘ i=o

This error vector is useful in indicating how many
terms should be taken in the solution for deflections.
These values are stored in ERROR(I).

Subroutine DETW is called next and this subroutine
determines the deflection of the plate under the point loading

chosen. This is done by taking the sum of the products wi(x,y) L;s
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this is, in effect, evaluating equation 3.12 for w(x,y). The
values of w(x,y) are stored in D(I,J) which in the scheme used here
is dimensioned 6x11. In determining w(x,y) the even components
(i. e. terms RE(I,J,K) x C(K)) are symmetric about the x axis;
however, the odd components (i. e: terms RO(I,J,K) x C(K)) are
sl;evf symmetric, which is to éay they are added in the region y 20
and subtracted in the region y< 0. The values of D(I,J) are
printed out in a suitable format to give the deflections of the
plate under the loading chosen.

Subroutine DETHM is then called, and it determines Mx(x,y),
My(x,y) and Mxy(i,y) in the same manner as DETW determined w(x,y).
The resulting moments at the chosen points in the plate are
stored in DX(I,J), DY(I,J) and DXY(I,J) which are all dimensioned
6x1l. These values are all printed out in matrix format. The
last subroutine calied is MMAX which computes the maximum and
minimum moment at the chosen points from Mx’ My and Mxy at each

of these points. The equation used is:

M+ M ' Mo - M )2 5 ! .
M = —'—é"—z :*_' ——2'- 4 + I‘ixy ese (3.32)
max, min

for the maximum and iminimum moments, while the angle at which
the maximum moment acts is determined from (See reference 24 for

their derivation), -

0».= %—arctan { e Mxy 3 oo (3-33)
M

- M
x
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The values of the principal moments and their angle are printed
out in matrix form as well, since these- may prove useful in
determining the accuracy of the solution by noting the directions
of the free boundary moments.

This completes'the description of the innerx wérkings of the
program as well as the concepts behind it. The program, as presented
here, is suitable fox single point loads on plates; as well, it will
be used to study the effects of line loads. This will require some
modifications since the line load will be simulated by a series of
point loads, with the point load solutions being superimposed to
generate the required moment inforﬁation. Since these modifications
are gimple and self evident, no detailed description of them will
be given.

3.3 Details of Plates Tested

The plates tested were cut from a single sheet of % inch
thick, low carbon, hot rolled steel sheet. The surface of
this plate was rather poor (i. e: loose scale was present) but
no attempt was made to improve its conditions (other than
painting). A total of 10 aspect ratios were tested, even though
only 3 plates were used; this was accomplished by cutting
strips off the top of each plate after it was tested, thereby
resulting in a new aspect ratio. This.process is outlined in.
Figure 5, where plate I attains aséeot ratios of (3,2,1.5),
plate II attains aspect ratios of (1.00, 0.75, 0.50) and
plate III attains aspect ratios of (0.33, 0.25, 0.167, 0.10).
The reason for doing this becomes olear when one considers that

strain gages are mounted near the clamped edge of the plate.
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Plate I has 5 gages, Plate IT has T gages, and Plate III has 9 gages;
mounting this number of gages on 10 different plates (one for each
aspect ratio) would be both expensive and a large amount of labour,
which c¢an be avoided by using the method outlined here.

The aspect ratios chosen were selected to adequately cover
the range between the cantilever beam (nigh aspect ratios) and
the quasi infinite plate (low aspect ratios). They were chosen
to do so in a logarithmic fashion, since preliminary theoretical
results indicated this was desirable. Aspect ratios were also
chosen to correspond to those tested by previous investigators:
.i. e: 1.0 (Dalley, reference 20); 0.25, 0.33 (Vartak, reference 19
and Holl, reference 17).

The thickness of the plates was chosen great enough to
provide holographic stability against air currents and table
vibrations. In most cases studied, the ¢ inch thickness was
adequate; however, the 12" x 4" (aspect ratio 3.0) plate could
not be studied holographically since its length made it too

sensitive to wvibration.

~In order to calculate the deflections and moments from
the experimental information, it was first necessary to obtain
modulus (E) and Poisson's Ratio (V) informati;n. This was
done by testing tension specimens cut from the same piece of
steel plate as the test plates. The resulting values were
E=30.2 x 106 and r= 0.276; this resulted in the value of
4.62 x 10% for the plate stiffness (D). The details of this

determination are outlined in Appendix B,
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3.4 Major Assumptions Involved

The following is a list of assumptions which may affect the
generality of the experimental results obtained.
(1) That the method of clamping the plates is a reasonable
approximation to a fixed end condition. This has been a subjeét
of concern in many studies, and it seems to be likely from their
comments that for deflections it is not adequate (in fact
machining from a solid blook may not be) but for moments,
excellent results can be obtained. However, some effect can still
be expected.
(2) The strain gages used on the plates were of finite length
and width (1/8 inch by 1/16 inch) which introduces some error
due to averagiﬁg, but they must also be placed a finife distance
away from the clamped edge. This will result in a lower moment
reading than actually exists at the clamped edge; however, since
the gage length is small (and therefore the clcsenéss of its
centre to the clamped edge of the plate) this error is assumed
negligible (particularly since the plate lengths are at least

9 times the gage length).
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4. Ixperimental Arrangement and Procedure

4el Deflection Determination

The deflections were determined using holographic
interferometry to obtain the full field‘deflection contours of the
plates undexr load. This meth@d was chosen because it lends itself
so readily to plate deflection determination as the point of
maximum deflection, as well as the deflécted surface, is immediately
evident. This method has obvious advantages over point sensors such
ag dial gages - where a large number of readings, as well as a plot
of the deflected surface, must be made before the maximum point
becomes evident.

The basic elements of holography are described in a host of
papers; even though this is a new technique, there has been a vast
amount of research done to apply it in many areas. The basic elements
and advantages of the technique are well described by Stetson and
Powell (25). Also the application of the technique to plate
deflections is desoribed by Boone and Verbiest (26). The basic
arrangement of the holographic system used in this expefiment is
shown in Pigure 6. This system is slightly different from that
commonly used in holography in that one beam is used to illuminate
both the object and the reference beam mirror, whereas most systems
use two separate beams. The primary advantage of such a system is
that it is inherently more stable; therefore, since the stability
of the table being used was marginal for two beam systems, the
single illumination beam was used. One of the greatest limitations
of the holographic technique is the requirement of interferometric

stability, which requires a special table as a working base.
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The construction of the table used in this study is describded in
Appendix C. where the stability required is alsc disocussed. The
construction of the other optical elements used is also described
in the same appendix.

Hologram interferometiy relies on the comparison of two nearly
jdentical holograms of the object (or a hologram and the real object).
This is done by double exposure of the film (with a change taking
place between exposures) or by viewing the changed object through
a developed hologram plate. When either of these techniques is
used, fringes are produced which are related to movements away
from the hologram plate. The equation for the formation of such

fringes is explained by A. E. Ennos (27) and is given by:

S - AN
- (cos 8, + cos 6,) ees (441)

where: ¢S is the deflection of the plate

>

is the wavelength of the light used (6328 A°)

is the fringe order

o =

is the angle between the illuminating beanm
and the normal to the plate

92 is the angle between the normal to the plate
and the viewing direction

The angles 01 and 92 are shown in Figure 6. The angles 912

and 92 of course vary aoross the specimen; however, looking at

equation (4.1), it is easy to see that if the angles 6, and 8,

are small, any small change in them will result in only a small
change in the egquation for 3 « The conditions in the experiment'

were such, that neglecting the angle variation results in an error
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of only 2% across the plate. This was therefore done in the data
reduction to reduce the amount of work involved. As well, the
anglés 91 and 92 were kept equal, since this results in a
diffuse reflection of light from the plate onto the film which
helps improve beam balance (for opiimum recording, the reference
beam should be 5 times the intensity of the object beam).
Tﬁerefore 01 and 92 are equal in the present arrangement, with
both of them being set equal to 14 degrees. Using these angles
and substituting for )\ , equation (4.1) becomes:

d-12.8x107C ¥ ees (4.2)
wherecyis now given in inches. This indicates the fantastic
sensitivity available — which oan be a disadvantage, since
correspondingly small loads must be used which can be difficult
to apply.

In the testing of a partiocular plate, the first step was to
mount it in the plate holder (which is described in Appendix D).
The plate holder was then clamped to the table to prevent its
movement during the rest of the éxperiment. Then, using the
arrangement shown in Figure T, a hologram was made by exposing the
film for 3 seconds. The film used was Scientia 10E70 by Agfa
Gaveart and it was illuminated by a 5 mw Spectrg Physics He-Ne
Gas Laser. Holography requires the use of film with high
resolution (28) and the film used here is caﬁablé of resolving
2800 lines/mm (regular photographic film, i. e: Kodak Tri~X can
resolve only 40 lines/mm). The hologram was then developed in
Agfa developer Metinol U for 4 minutes, fixed in Agfa Acido Fix

for 4 minutes, and washed in running water for 10 minutes.
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An attempt was made to keep the wash water at room temperature in
order to prevent emulsion shrinkage or expansion. As well, during
the exposure of the film and subsequent testing period, the
ventilation system was shut dowm to eli;inate air currents which
might result in fringe movement. |

After the hologram was allowed to air dry (which usually took
about one hour), it was replaced in.the'film holdexr. The Scientia
10B70 emulsion was on 4" and 5" glass plates, which makes it
rossible to replace the film easily in the holder, as described in
Appendix C. When this is done, a series of equally spaced fringes
is usually seen on the plate; these can be removed by carefully
adjusting the position of the film against the positioning pins.
When the plate appears uniformly bright, the hologram has been
properly repositioned. If, however, the fringes are curved and
cannot be completely nulled out, it is quite likely'that emulsion
shrinkage has occurred, and a new hologram must be made. Once a
satisfactory hologram had been made, repositioned, and nulled, the
loading sequence of the plate was carried out.

Before the plate was put in the loading frame, it was painted
with a diffusely reflective aluminum paint. The paint used was
made by Magnaflux Corporation and is used as an undercoat in
Brittle Coating experiﬁents. A grid of lines was then drawn on the ’
painted surface of the plate, such that its width was divided into
10 equal segments and its length into 5 equal segments (see Figure 8).
As is shown in Figure 8, the loads were applied where the grid lines
intersected and at the edges of the plate. The load selected was

such that a maximum of about 30 to 40 fringes appeared on the plate.
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The deflection data was recorded by photographing the liwve holographic
fringes as observed through the holographic plate. This was done
using a 35 mm camera and Panatomic -'x film with a one secondexposure.
This sequence was repeated at each of the points marked in Figure 8.
Because of the sensitivity of the technique, the loads were all less
than 5 1lbs., with some ranging down to O.l1l lbs. on the more fiexible
platese.

The photographs of the holographic fringes then contain all
the information necessary to obtain deflection contours for the
plate, as well as locating the point of maximum deflection. The
rhotographs may be printed before information is taken from them,
or fhey may be projected on a screen for interpretation.

4.2 3Bending MNoment Determination

The bending moment distribution along the clamped edge of the
plate was determined by using a series of strain gages distributed
along the edge of the plate. It is possible to relate the bending
moment to the strain at the surface of the plate if one assumes
that at the clamped edge only strains normal to the wall can exist.
This means that Ey ( the strain parallel to the wall) must be zero,
as is the shear strain ('$xy). Therefore, the only strain is that
measured by the gage, Ex. The stresses compute@ from such a strain
distribution are (see reference 29, Timoshenko and Goodier, for
instance):

E¢€
J .= I = GXEY‘ ’ = 0 ece (4-3)
X r_"_é'l _xYN ) ’ Y rl' _ Yg) ’t‘xy

The relation between the bending moment in a given direction in a
plate and the surface stress in the same direction is given by

(see reference 24 for example):
M= hzq- see (404)
6
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where the moment M is given in 1b. — in./in. The moments at the

oclamped edge of the plate then become after substituting (4.3) in

(4.4): .
2¢ 2 o
M_=Eh X ’ M = vE h éx ’ M = 0 see (405)
Y s(1-v9 6 (1- v2)

By this means, it is possible to calculate the bending moments from
the strain readings.

The strain gages were placed symmetrically along the clamped
edge, on the side of the plate opposite the load. This resuits in
all of the strains being compressive. There was a gage placed
along the centre line of the plate (y = O) and one at either end of
the plate ( y = i-1); this is illustrated in Figure 9 where the
locations of other gages are listed.

-‘The procedure involwved loading the plate at each of the grid
points shown in Pigure 8 and then recording the strain reading at
each of the gage positions. The load used was up to 130 1bs. in
dead weighté depending upon the stiffness of the plate, with the
maximum sirains to SOO/A in/in. The strains were read out on a
Budd P=350 strain indicator, used in conjunction with a Budd SB-1
switch and balance unit which allows a maximum of 10 gages to be
used. The internal dummy in the switch and balance unit was used,
which means that no temperature compensation is available; however,

over the period of the experiment no measurable changes were noticed.
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5. Results and Discussion

5.1 Plate Deflections

5¢lel Theoretical Results

The first results calculated were those which corresponded to
the work of previous investigators. This was'done to check the
validity of the approach being used on plates of different asgpect
ratios. There is, however, very little to compare to; the only
work being that of MacGregor (16), Holl (17), Jaramillo (18) and
Dalley (20).

Pirst we will compare the theoretiocal results and the work of
MacGregor (16) who tested a plate with a central point load on its
free edge and an aspect ratio of 0.147. He also presented
theoretical results which he had obtained for an infinite plate.
His results, experimental and theoretical, are shown in Figure 10,
The plate he tested was steel, with E = 30 x 10% and Poisson's
ratio 0.3, also it was 8% inches wide, 1.25 inches long and 0.125
inches thick. Based on these dimensions, the deflections expectéd
were calculated using the theory presented in section 3.1.,2., These
are shown in the same figure as MacGregor's results. Agreement is
good with the theory comparing within 1.3% of MacGregor's theory
and within 0.5% of his experimental results at the point of
maximum deflection. Aéreement is also good along the vhole length
of the plate.

Figure 1l shows a comparison between the free sdge deflections
of a cantilever plate with a point load centrally applied on its
free edge. These results were obtained by Holl(l?) who used a

finite difference technique to obtain the deflections of a cantilever
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plate with an aspect ratio of 0.250. Also shown in the same
figure are the results obtained from the present theoretical
solution to the same problem. The two curves agree quite well in
terms of general shape; however, there is a lz% difference between
them at the point of maximum deflection. Holl's results were
obtained from a finite difference technique which used only 16
elements to represent the plate; the reason his deflections are
larger than those predicted by the theory is likely due to the
limited nuhber of elements he used.

Jaramillo (18) derived the deflections of an infinite plate
under variouspoint loading. In Figure 12, the free edge
deflection of an infinite plate under the action of a free edge
load, as calculated by Jaramiilo, is shown. As well, the free edge
deflections of a plate with an aspect ratio of 0.167 witk a load at
« = 0, F>=.1 (see Figure 3 for nomenclature). It is not expected
that these should agree perfectly; however, excellent agreement is
showvn over most of the plate length, with poorest agreement
occurring at the centre of the plate edge (under the load). Here
the maximum difference is 5.5%, which is still reasonable
considering that Jaramillo's.solution is for an infinite plate.
Dulley (20) tested a squure plate with point loads at

different locaticns on the ﬁlute. Figure 13 shows the deflection
contours he obtained for the plate loaded with a point load at the
centre of its free edge. Also shown are values calculated by the
theory being used here; they are shown listed at the grid points
marked. There is excellent agreement between Dalley's experimental

and the theoretiocal results (1% at maximum deflection point).
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Figure 14 shows Dalley's results for a corner loaded square plate,
as well as the theoretical values. Again, agreement is almost -
perfect with a maximum difference of abbut 1% at the maximum
deflection point. Dalley is the only investigator to give
deflection contours, and the ability of the theoretical results to
compare to his over the surface of the whole plate; indicates the
validity of the approach chosen.

In fact, the high degree of agreement between the theoretical
approach being employed here (i. e: that of Szmetler et. al.) znd
the work of the four authofs cited, establishes the accuracy of the
method. TFox this reasSn, the method was considered suitable for use
as a basis for comparison with the experimental results.

The theoretical results for twelve aspect ratios, with a
Poisson's ratio of 0.3, were calculated using the technigue
outlined in section 3.2. The deflection information from the
program run, for an aspect ratio of 0.25, is shown in Table I. The
program calculates the deflections at all of the grid points shown
in Figure 8 for loading at each of the points marked by a star in
the same picture. This results in 30 unique loadings, each

~ generating a matrix of deflections at 66 points. Looking at one of
the deflection matrices, the fixed edge is at the left side of the
page and the frec edge at the right side. The point at which the
load is applied is underlined, with the values of o and B
written beside the matrix giving the location of the lozd as
well. This method of generating a deflection matrix quickly
pinpoints the location of the maximum deflection point in relation

to the maximum load point. As can be seen from the table, the
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maximam deflection is always at the free edge and also on a normal
from the wall through the load point or between the normal and the
closest free corner. This has been observed in all of the plates
considered under point loads anywhere on the plates. Using these
matrices, it is possible to draw deflection contours for the
plates, which should correspond to the results of the holographic
interferometry experiments. This will be discussed in greater
detail in the following section, where the theory and experiment
will be compared.

5.1.2 ZExperimental Results

A total of ten plates were tested, as was previously mentioned.
Three of these, with aspect ratios of 1.0, 0.50 and 0.25, will be
discussed in detail here. These three plates are representative of
the others tested, and have been selected since they cover a large
portion of £he aspect ratio range tested.

Figures 15, 16 and 17 show live fringe holograms of the three
plates mentioned foxr loading at Qarious points along the free edge.
These photczraphs of the loaded plates were taken through the
hologram made while the plate was unloaded, thus producing the
fringes shown. 'The illumination of the plates is nonuniform
since insufficient lasexr power was available for the field size
being used; this tends to be a bit of a probiem when examining
the photograshs. The experimental deflection values were taken
visually from the negatives in an enlarger, and since the
human eye has far‘more latitude than photographic paper, no serious
problems were encountered dus to this nonuniformity.

Tigure 15 shows the holographic deflection contours for the
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square plate tested. All photographs were taken using the same load
. of 0.55 1lbs, which produces a varying amount of maximum deflection
depeiding upon the position of the load. The loadings shown are
for free edge location of the load (i. e: B = 1 and 0S «< 1),
other values of oL and P were tested of course, but the results
will be presented in a summarized form only. It is interesting
t0o note here that the fringes on the plate tend to remain
relatively straight; (truly straight fringes would indicate that
thevdeflection is not too localized). Rather, the effect of the
load is reaching all points of the clamped edge with an
approximately equal effect. In Figure 16, which shows the deflection
contours for a similar loading scheme on a plate with aspect ratio
of 0.5, the curvature of the fringes is very pronounced. Also in
loading this plate, it was necessary to use higher loads near the
centre of the plate than at the corner to produce a suitable number
-of fringes. Here the effect previously mentioned becomes evident,
that is to say that the maximum deflection occurs at the free edge
between the load point and the nearest free corner. This effect is’
more evident in Figure 17 where the deflection contours are shown
for a plate with aspect ratio of 0.25. Here the deflection can be
seen to be relatively localized; ih fact, so muéh so that all
loadings for 0 € & < .8 appear to produce épproiimately equal
maximum deflections. The loading here produces such large
variations in deflection that approximately twice the load had to
be used at the centre of the plate as at the free corner to give
equal maximum defiection.

Figures 18 through 20 compare the theoretical and
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obtained for the square plate tested. The agreement between theory

experimental deflection contours (i. e: 1lines of constant

and experiment is excellent for all the loadings shown; (these being
the same as those shown in Figure 15). In fact, the maximum differences
between the two are about 2%. This agreement was to be expected, of
course, because of the good agreement shown between the theoretical
results and the experimental results of Dalley (Figures 13 and 14).

~ Figurcs 21 through 23 compare the theoretical and experimental
deflection contours obtained fdr the plate with aspect ratio of
0.50. The agreement for this plate is not quite as good, with some
differences up to 5%; however, most contours agree to a greater
accuracy than that. The contours are in all cases of the same shape
and merely displaced or slightly less curved.

In Tigures 24 through 26 the theoretical and exberimental
deflection contours are shown for the plate with aspect ratio of
0.25 tested (the experimental contours being shown in Figure 17).
The agreement here is also within about 5% in the ﬁorst cases, with
very good agreement in terms of contour shape and location. There '
are several points which seem to come out of the nine figures just
‘mentioned (i.e: 18 through 26). And they are:

1) theoresical and experimental contours are similar in shape.

2) maximum differences between the two are less than 5%

3) maximum deflection is always indicated by both contour

sets to be in the same place

4) - as the aspect ratio decreases, the value of jimgz—g-decreases.

. P b
Up to this point, no mention has been made of any loadings

other than those which are on the frec edge. However, mnay other
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_loadings ( i. e: at interior points) were tested and calculated
theoretically, but due to space limitations they will only be
summarized in terms of the maximum defl;ction produced. These
results will be presented in the next 5 figues; however, it is first
necessary to explain the dotted line wvhich appears in all of the
figures. This line represents the eleméntary maximum deflection of
a point.loaded cantilever. This is equivalent to saying that this
would be the maximum deflection produced if the plate were
infinitely stiff in the y direction and could therefore only bend

in the x direction. This approach will of course result in

lower deflections than those which actually do occur. Since the
. D . .
curves are plotted in terms of __EE%___ vs. Aspect Ratio, it is
PDYb

necessary to derive this relationship for the canbtilever beam.
Shigley (5) gives the relation between the maximum deflection and

other variables as

Jm&x = ml;_l—- (3 X 2b — x3) 'YX (5.1)
where the arrangement is shown
P 7
in the small figure (a) o the = B P
i v
right, also. this maximum deflection f— b —-————f
ocours at the free end of the beam.
The moment of inertia, I, is given (a)
by (refer to Figure (b) ) I 2 l_L
’ 9
h
I= T%— (base) (height)3 44232222222 T
X (b)
o 2 h
3 ese (5.2)
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The distance x between the load point and the fixed end of
the.oantilever is given by x = P b. Now'if we substitute this
value for x and the value of Igiven by (5.2), equation (5.1)

becomes
3

cy P Db

max g

(3 52 - 53) : ceo (5.3)

The plate rigidity, D, is given by

Eh 3
De o
12 (1 - Y°)
from which

€15 =12 D (1 - +2)
substituting this equation in (5.3) we have

A‘mangb3 (3 52" §3) ece (504)
12Da(l-y2)

rearranging ve have

d

m D | 3B 2_p3
> ng =(57) ( Goy2 ) e (5.5)
ox:
S pax D b o
m = m — XX o6
> L2 (52 (5.6)

where m is a constant which depends on the location of the load
point ( B ). The values of m corresponding to the P values
which were considered experimentally are given in the following

table:

B m
0.2 | 40202
0.4 | 0790
0.6 | 158
0.8
1.0

.258
«367

Equation (5.6)predicts a linear relation between the

maximum deflection and aspect ratio for the ideal cantilever beam.
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Figure 27 shows the variation of maximum plate deflection as a
function of aspect ratio, for cantilever plates loaded at various
points along the free edge. The solid curves indicate the values
predicted by theory, and several points relating to these ourves
are immediately evident. First, as the aspect ratio becomes small,
(i. e: short, stubby plates) the maximum deflection reaches a
constant value which depends upon the load position ( o ). Second,
as the aspect ratio becomes large (i. e: long, narrow plates) the
value of ™ becomes insignificént and all of the curves converge
on the value predicted by the elementary cantilever approach which
wag outlined previously. As can be seen, the curve for central
loading ( ™ = 0) approaches this value (i. e: cantilever value)
for far smaller values of aspect ratio than the curves for larger
values of & , A fourth point is that all curves for values of & other
than - X will become asympﬁotic to the curve for & = 0 as the
aspect ratio decreases. These four points are true for all values
of B considered and the maximum theoretical defleétion variation
as a function of aspect ratio is shown in Pigures 28 through 31 for

B values of 0.8, 0.6, 0.4 and 0.2.

The experimental maximum deflections obtained from the
holographic experiments are also shown in the figures just mentioned,
as are the results of several other investigators. Referring zgain
to Figure 27, it can be seen that agreement between theory and
experiment is excellent for corner loading of the plate. In fact,
agreement for all values of & is good, with some scatter shown

for the 0.8 and 0.6 curves. This scatter can best be explained in

terms of load point location on the plate, since the values of
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é\max D are changing rapidly in this region as a function of & 3

P 12 ,

any small error in &« (i. e: load posit?on) will result in large
scatter. The experimental points for & = O (central loading of
the free edge) are in exceilent agreement with the theoretical
values for high aspect ratio; however, they tend towards a higher
value as the aspect ratio becomes smallér. This is, howsver, in
agreement with the results of MacGregor (16), whose experimentzal
point is shown for the plate he tested (aspect ratio = 0.147).
Also shown at the extreme left hand side of the figure is the
infinite plate value of MacGregor, which should be equal to the
value predicted by theory. There is a difference between the two
of 10%, however, and the most reasonable explariation of this

. difference is to attribute it to errors in the energy solution
being used. Also shown in this figure is the result of Holl (17)
who used a finite element solution, but agreement hére ié poor, as
was mentioned previously in section 5.l.l. Two investigators, who
studied ocuntilever square plate deflections experimentally, have
their results shown in this figure. They are Palﬁer (30) and
Dalley (20). Agreement with Dalley's results are so good that his
points are not visible_since they are identical to the present
experimentQI results. Palmer's point, however, for s corner loaded
plate, tested using projected moir& fringes shows a larger
deflection resulting than is predicted here.

Figure 28 shows the variation of the maximum plate deflection

with aspect ratio for point loads at P = 0.8 and &« = 0, 0.2,
‘0e4, 0.6, 0.8 and 1.0. These curves are strikingly similar to

those shown in Figure 27 for 5_: 1.,0. Experiment and theory
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agree to within 5% everywhere, with more séatter in the points for
& = 0.8 and 0.6, for the same reason as mentioned before. There
are no other experimenters to compare results with, for loadings
within the plate boundaries. However, the agreement between theory
and the present experiment is adequate to serve as a verification of
the theoretical apprbach.

Figure 29 shows the variation of the maximum plate deflection
with aspect ratio for point loads along P = 0.6 for various values
of &« , Agreement is again quite good, with a general tendency
for the eiperimental values to be above the theoretical curves for
low aspect'ratios. The percent difference between the two (experiment
and theory) is approiima%ely 5% maximum for & = 1,0, 0.2 and O,
and 10% maximum:.for X = 0.4, 0.6 and 0.8. These differences occur
only for aspect ratios less than 0.50, while for aspect ratios
greater than this agreement is exgellent.

However, if we now look at:Figure 30 which shows the vaxriation
of the maximum plate deflection as a function of aspect ratio for
ES = 0.4 and various values of o, ainew effect is in evidence.

The theoretical and experimental (if they had been drawn) curves
arrive at different constant maximum deflection values as the aspect
ratio approaches zero.. The difference betﬁeen these yalues is about .
10%. TFor higher aspect ratios, the agrepment is 8till very good.
This discrepency between theory and experiment will be discussed
later. |

In Figure 31, the variation of the maximum plate deflection as
-a function of aspect ratio is shown for P = 0.2 and various values

of &« « Here the sﬁread between theory and experiment is huge,
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(40% for o¢ = 1); however, the general. shape of the curves is
similar. Thig loading ( P = 0.2) is closer to the clamped ecige
than the previous loading ( B = 0.4) and the discrepency between
theory and éxpe::iment is larger; this would tend to indicate that
either the theory is inadequate near the, clamped edée or the
experiment is inadequate there,

. In order to get a better indication of what is happening as

§ varies, Figure 32 was constructed. This figure shows the
max D

2
: P D
function of load position (ﬁ) for a plate of low aspect ratio

variation of the maximum plate deflection ( ) as a
(€ 0.25). Two theoretical curves are shown, one for X = 1,0
(corner loading) and one for & = 0.0 (central léading). The
theory and expexfimental points for ™ = O are seen to agree well;
also shown is Jaramillo's curve (18) for the infinite prlate. The
experimental points for X = O are seen to lie bgtween Jaramillot's
curve and the theory curve, with the difference between the two
theory curves being about 10%. The curve for & = 1.0.shows a
much higher deflection than that for Oc= 0.0; in fact, it is.
about 2.8 times as great. The experimental points shown ind.icate
good agreement with theory for R greater than 0.6. However, for
lower wvalues of B tile experiemtnal points show a higher
deflection than was indicated by theory. This efféct can be
explained on the basis of one or both of the following
considerations: |

1) as the load is applied nearer the fixed edge, shear
deflections which the theory ignores may become important

2) fixed edge rotations which may be insignificant when the
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load is far from the edge (and producing more deflection per pound)
could easily amount to an increase in deflection of 40%.

5.2 - Plate Bending Moments

5.2.1 Theoretical Results

In order to check the accuracy of the theoretical approach,
the theoretical bending moments weré first calculated which
corresponded to the work which had been done by other investigators.
There are four investigators who have bending moment information for
cantilever plates available. They are: Holl (17), Jaramillo (18),
Vartak (19) and Wellauer and Seireg (4).

Holl, as was mentioned before, used a finite difference
technique to calculate the moments and deflections for a_cantilever
plate with a central free edge point load, with an aspect ratio of
0.25. His moment results are shown in Figure 33, as are the values
predicted by the theory beiﬁg used here. The comparison between the
two methods is extremely good, with the difference at the maximum
moment point being only 2%. The area under both curves is identical,
which is, of course, é necessary situation since the integral of the
moment along the fixed edgé must equal the applied moment to.the
plate. The distripution of the fixed edge bending moment is
slightly different, ﬂowever, with Holl's results being higher near
the edge of the .plate and lower at the centre.

In Figure 34, the bending moments predicted by Jaramillo (18)
for anm infinite plate loaded by a point load at its free edge are
compared to those predicted by the present theory for a plate with
aspect ratio of 0.167. That this comparison is Justified will be
‘-made evident gt a future time. Cbmparison between the two curves

is very good, with the poorest agréement occurring at the centre of
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the plate vhere the difference is 4%. This agreement is still quite
good considering that the differenée in aspeoct ratio should account
for some part.of this difference.

‘Vartak (19) tested two plates, under point loadings at the
free edge, with aspect ratios of 0.167 and 0.250. The deflections
of the 0.250 plate were about 3.5 times the thickness, which is
beyond the region where small deflection theory can be expected to
hold. This plate was not considered here for that reason, and
comparison is made only to his results for the 0.167 plate he
tested. His results for corner and middle free edge loading are
shown in Figure 35, Wheie they are compared to the values predicted
by the theory developed here. As is easily seen, the comparison
is very good for both mid point and corner loading of the free edge.
Under corner load, the theory is 10% lower than the experimental
value predicted by Vartak. For mid point loading, the comparison
is much better with the theory 3% higher than Vartak's value. This
agreement is very encouraging since the thesry shows good comparison
with experimental data.

Vellauer and Seireg (4) tested a thick cantilever plate; this
plate was 2 inches thick, 12 inches long and projected 2.25 inches
from the wall. This corresponds to an aspect rgtio of 0.187. The
plate had < inch fillets; these, of course, lead to some problems
vhen it comes o pldcing the strain gages neér'thé wall. The
fillets are necessary since the plate was machined from a solid
block, and in orde; to a&oid infinite stresses at the corners
where the pléte and vall are joined, some fillet radius is requiréd.

The gage length of the gages used by them was 1/8 inch; this means
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then, that the point at which the ﬁoment is being measured is at
least 0.375 inches away from the wali. This corresponds to 16.7% of
the plate length and lower moments must-therefore be measured for this
reason, than actually occur at the fixed edge. In Figure 36, their
experimental and theoretical results are compared with the theoretical
approach being used here. A few words about the theory advocated by
Wellauer and Seireg would appear to be in order here, since this
approach of theirs will be mentioned many times in subsequent
sections. Their approach is semi empirical (their term) in that
it uses as its basis thé theoretical results of Jaramillo and
manipulates them to obtain a solution which compares to their
experimental results. The basic premise is that Jaramillo's
infinite plate result is valid for finite 1eng€h plates of low
aspect ratio (fhis is borne out by the present research).
Therefore, for loading along the plate centreline, their golution is
identical to that of Jaramillo. However,‘fér off centre loading,
some of the fixed edge bending moment would have no plate to act
upon (as it is symmetric with respect to the load point). Here
they introduce a concept which they call the moment image technique,
whereby the extra moment (beyond the end of the plate) is
reflected abogt the plate end

and added to the moment

already there. This method

is illustrated in the figure

at the right. It is easy to see

that using this concept will

result in Mmax for cornexr loading being 2 Mﬁax for mid point loading.
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Referring to Figure 36 again, we see that for central loaQing of
the free edge ( & = 0, B = 1) agreement between the two
theoretical ourves shown and the experimental points is good with
the difference at the maximum point being about 3%. For corner

loading, it is a different story altogether, with the present theory

giving m;x = 1,22, the theory of Wellauer and Seireg giving
M M
m;x = 1400, and their experiment giving m;x = 0,90, That theixr

theory could give poor results is evident from the description of it
which was just given. Their experimental data could be in some error
as well due to fillet radius which existed at the wall. As was
méntioned, the gages had to be located at least 16.7% of the plate

length away from the wall., The values indicated from my theory for

m;x = 0,98 for corner loading
= 0.45 for mid point loading of the free edge. This

these locations and loadings are

and
tends to explain some of the differences between Wellauer and
Seireg's experiment and the theory being presented here, since this
reduces the percentage differences to abouﬁ lb% for both of the
loadings being considered here.

Based on the comparison between the theory and the rssults
presented by the four authors mentioned above, the’thedry dexived
in section 3.1.2 was judged a satisfactory solution to the problem.
The bending moments at various points (66 of them) were then
calculated for different point loadings (30 of them) as shown in
Figure 8 for plates with various aspect ratios. This results in
the generation of a large amount of information which is impossible
to present totally. The maximum bending moments at the fixed edge
will be presented‘ét a later time (in section 5.2.2) as will .

-several bending moment distribution curves. For the moment, let
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us look at the principal moment distribution in the whole plate for
several loadings. -

Figure 37 shows in a top view the principal moments and their
direction for a point loaded ( B = 1.0y° & = 0.0) cantilever plate
with aspect ratio of 1.,0. The moments are drawn to scale, with
the arrows indicating their sign. As can be seen in the figure,

it is quite easy to visualize the stress flow from'a diagram such
as this. As well, by observing the moments at the free boundaries,
‘a judgment of the solution wvalidity (at the boundaries anyway) can
be made, since the principal moment directions are known a priori
there. TFor the plate being considered here, the free boundary
moments of any significant value are seen to conform quite well to
the directions vhich are allowed by the boundary conditions (i. es
parallel to the boundary a moment may exist bu£ normal to it none
can exist).

In Figure 38 the same plate is shown under the action of a
corner load. The stress trajectories are seen here to begin normal
to the wali and curve over towards the corner where the load is
being applied. Here, there are moments of obviously wrong
directions at the free boundaries in the region of the load. The
deviation from the expected direction becomes worse as the point of
load application is upproached. This means that the bending moment
theory used to predict these moments must be in error at these
points. While this does hurt the general application of this method,
it was to be expected that using an energy technique would result in
a little less than perfect results. The results at the fixed edge,

where the maximum moments result, do conform to the expected
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direction and therefore are not suspect as those at the free
boundary are.

The theoretical principal bending moments in a centrally
loaded ( P = 1.0, o = 0.0) cantilever plate of aspect ratio
0.25 are shown in Figure 39. The moments are drawn to the scale
shown there, with the arrows indicating their sign. Comparing
the moments in this plate to those in Figure 37 (where the sume
loading is applied to a plate with an aspect ratio of 1.0) two
points are evident. First, as a plate becomes wider (i. e: lower
aspect ratio), the stress trajectories must curve more severely
since they originate normal to the wall and must curve toward the
load point. Second, the effect of the load is more isolated in
plates of low aspect'ratio, which is to say that the moment is
unable to distribute itself uniformly along the clamped edge.

In Figure 40 the same plate (aspect ratio = 0.25) is shown
with a point load at a free corner. The resulting bending
méments in this case are seen to be extremely localized with one
half of the plate almost stress free. .Eere it becomes evident
that any lengthening of tﬁis plate would not reduce the stress
introduced in it at allg; in.iaot even in the case shown, the plate
could be significantly shortened (in the clamped direction) and
no increase in stress would occur. The moments at the free edge
are obviously in exrror with regard to direction and the reasoning
here is the same as mentioned previously for Figure 38.

Based on the foregoing figures and discussion, it is
reasonable to say that the moment caloulation technique used for

point loaded cantilever plates gives a satisfactory means for
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predicting the bending moments. The moments indicated by this
means are questionable at the free edges of the plate in the
region of the load, but satisfy the boundaiy condition at the
clamped edge, which is the region of major importance,

5+2+42 Experimental Results

As was outlined in section 4.2, ten different plates were
tested under 30 unique loadings each, or 300 different point
loadings. For each of these cases, a bending moment profile was
obtained at the fixed edge using several strain gages located
along the fixed edge. A detailed comparison of the bending moment
profiles obtained experimentally to those predicted by theory will
be made only for free edge loading ((5 = 1,0) of the plates tested,
This is done for the sake of brevity and since these moments
represent the most severe that can occur in the plate. A discussion
on the maximum moments produced for loadings where ?>is less than
1.0 will be carried out, however, later in this section.

Figure 41 shows the theoretical and experimental bending
moment distributions at the clamped edge of a cantilever plate of
aspect ratio 0,10 under vérious point loads at the freé edge
( B = 1.0, various values éf oL)s The general treﬂd is that the
theory is predicting higher values than those indicated
experimentally. The curves are very sinilar in shape, with only
small differences notable in this respect. Since only nine strain
gages were used on this plate and the moments are very localized,
(as can be seen in the figure), a certain amount of imagination is
necessaiy to draw the experimeptal ourve, For this reason it is

possible that a slightly different interpretation of how this curve
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should have been drawn would have resulted in a better comparison of
the theory and experiment. The difference between theory and
expexriment is about 7% at the maximum moment poiht for all wvalues
of oL except =0.8 where the difference is about 14%. For central
loading only % of the plate sees any load effect (i. e: moment)
énd under the action of a corner load, only 1/3 of the plate sees
any load effect. This localized nature of the bending moment at
the root of the plate is of great significance. This is, of course,
the effect predicted by Jaramillo (18) in his theoretical solution
for the infinite plate.

Figure 42 shows the theoretical and experimental bhending

moment distributions at the clamped edge of a cantilever plate of
aspect ratio 0.167 under several free edge loadings ( B = 1.0,
0 = ¢ > =~1.0). The theoretical ourves are again higher than the
experimental curves with the theory being about 10% higher than
experiment, in most cases. The similarity of shape of the curves
(theory and experiment) is excellent with the exception of the
curves for &= -0.8. In this caée the theory indicates a maximum
directly opposite the load point, while the experiment indicates a
maximum at the edge of the plate. No explanation of this will be
attempted here, as it will be discussed later. _Here it can be seen
that the whole length of the plate sees bending moments under
central loading, whilé for corner loading %—6f the plate sees the
effect of the load. This is far less localized than the moments
for the plate of aspect ratio 0.100.

The bending moments predicted theoretically and obtained

experimentally for a plate of aspect ratio 0.250 are shown in
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Figure 43 for various free edge point loads. Once more the
theoretical curves predict higher and slightly more localized
moments than the experiment produces. 9n obvious.reason for soﬁe of
this difference is the fact that the strain gages must be a small
distance from the wall and>take an average reading over their length.
A 1/8 inch gage length was chosen to alleviate this problem as much
as possible., However, in the case of tﬁe 0,100 plate, the gage
centre was still about one tenth of the plate length away from the
wall. This factor of course diminishes as the aspect ratio increases
because of the way the experiment was carried out (see section 3.3).
Returning to Figure 43, it is evident that the curves all agree in
shape, except the curve for &¢ = =0.8. The curve for corner
loading ( & = =1.0) shows that about three-~quarters of the plate
fixed edge.is stressed by the loading. Agreement between the
maximum values of bending moment (theory and experiment) is very
good for the corner loading; the difference being only 4%.

The results for the plate with aspect ratio of 0.333 are shown
in Pigure 44. Also shown'there are the theoretical root bending
moment distributions for wvarious point loadings on the free edge.
Agreement is good with about 10% difference resulting at the maximum
values for the different loadings shown. In comparing these moment
distribution curves with the previous curves presented, it becomes
evident that as the aspe;t ratio increases, a larger percentage of
the plate length is being used to effectively resist the load being
applied. Another way of putting this is to say that only a certain
length of a plate with low aspect ratio sees any bending moment at

the fixed ed;e under a point load. This is verified by Jaramillo (18)
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for the infinite plate.

All four of the plates mentioned in this seotion had very good
shape agreement between the theoretical and'experimental curves
except for the'curve for o= ~0.8, 1In all the cases studied, with
aspect ratio 0.333 or less, the experiment shows that the maximum
bending moment for o¢ = ~0.8 loading occurs at the edge of the plate
(i e2 y = 1.0). The theory, however, predicts that the maximum
moment will occur at the clamped edge directly opposite the load
point (i. e: y = -0.8) for ot = -0.8 loading. These two cases
obviously cannot both be correct and one of them must be in error.
It is most likely that the theory is correct while the experiment
suffers at this point due to clamping problems. It is easy to see
that any slight curvature changes at the clamped edge in the Jy
dirgction can easily cause this shift in moment distribution to
occur.

Moving on to Figure 45, where the fixed edge bending moments
for a plate of aspect ratio 0.50 under various free edge loadings
are shown, a new factor is evident. For central loading the
bending moment distribution is shown to be essentially constant
across the width of.the plate. This is a significant departure from
the previous plates shown where the fixed edge bending moments were
more localized. However, for corner loading (OZ = ~1,0) a significant
non uniformity of bending moment results. There are not the severe
localizations shown by the previous plates, but corner loading does
fesult in a maximum moment which is twice as high as that obtained
for central loading. Agreement between theory and experiment is

within 4% for central loading and differs by about 10% for corner
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loading. | Sl

In Figure 46, the theoretical and experimental fixed edge'
bending moments are shown for a cantilever plate of aspect ratio
0.75, loaded at various points along its free edge. Comparing this
plate to the previous one, (aspect ratio = 0.50), it is interesting
to note that for central loading the 0.75 plate shoﬁs a much higher
maximum moment than the 0.50 plate (%fn 0.87 vs. 0.64) while for
corner loading, the maximum moments are quite comparable (%-= 1,32
vs. 1.30). The comparison between theory and experiment is quite
good with the maximum differences bging about 10% for all loadings
showvn. The theory now indicates that for corner loading the
maximum bending moment will not occur opposite the load, but will
be displaced towards‘the centre of the plate.

A comparison of the theoretical and experimenfal fixed- edge
bending moments for a cantilever plate of aspect ratio 1.00 for
point loading at vapious free edge positions is shown in Figure 47.
The agreemcnt between theory and experiment is excellent with the
difference being.only 2% for central loading. For corner loading,
the difference between the two is 10% at the maximum loadpoint.
This plate, as well as the previous two tested, represent a second
grouping. The first group consisted of plates with aspect ratios
less than 0.333 and the second group plates with aspect ratios
between 0.333 znd 1.,00. In this second group, the moment
distribution for central loading is uniform (approximately), while
for corner'loadihgs, the distributions are znything but uniform.

The next three figures: 48, 49 and 50 show the distributions

(theoretical and experimental) for cantilever plates with aspect
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ratioé of 1;5, 2.0 and 3.,0. These are coliected into a third group
of plates, those with aspect ratio greater than 1.5. This group
consists of plates which show very 1ittle variation in fixed edge
bending moment, for different positions of the load point (i. e:®& ).
Very little will be said of these plateé, except that for the l.5 and
2.0 plates the theory predicts maximum moments at interior points of
the plate, while the experimental work indicates the.ﬁaximum moments
at the edge of the plate. The explandtion of this is the same as
that indicated previousiy for the plates of lower aspec; rafio.
Also the theoretical curves for the 3.0 plate are not shown since
they are essentially equivalent to the experimental curves shown.
'The maximum moments from all of the foregoing cases, as well
as loadings at different points on the plates are summarized in the
following graphs. These maximum moments are particularly important
‘since they represent the bending moments which will cause failure in
a practical cantilever plate application. In order to establish a
criteria for comparison of the maximum moments to a commonly known
case, the elementary cantilever aoment will be writiten here in a
suitable format. For a load P located a distance x = PDb away
from the fixed edge; the total bending moment a£ the fixed edge is:
M=PPb ees (5.7)
for a simple cantilever beam. This is the moment for the total
width of the beam; thefefore, in order to reduce this to the
bending moment per unit width (as is the usual convention), the
nmoment must be divided by the plate width of 2a giving:
e PP o oo (5.8)

In order to obtain a nondimensional form, the moment (in in. -1b./in.)
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is divided by P (the load), also in the cantilever the maximum
moment is merely the moment anywhere across the width and we obtain:
M .
max b
(—5—)= B () ~eee (5.9)

The non dimensional maximum moment for the cantilever beam is

therefore merely a product of the load position pAand the plate
aspect ratio ('b/2a). The cantilever curves are plottéd in Figures'
51 through 55, as dotted lines. The relationship ﬁetween maximum
moment and aspect ratio is line=r, therefore straight liﬁes result
in these figures.

In Figure 51, fhe theoretical and experimental maximum bending
moments are plotted as a function qf aspect ratio f&r point
loadings at various points along the free edge ( p=10, 0%

o % 1l.0). It is evident that all of the theoretical curves lie
above the cantilever curve. This in effect states that for the
aspect ratios shown, the moment distributions are non uniform and
result in a higher value than the ideal cantilever bezm would
produce. Several general comments on the theoretical curves are in
order and these will apply to all of the figures in this group
(51 through 55). First, as the aspecf ratio decreases all of the
curves (for all values of e() approach a constant valﬁe. Second,
for high aspect ratios (greater than 1.0) the maximum moment values
approach the cantilever value, and the position of the load (L)
becomes unimrortant. Third; as the aspect ratio decreases ( < .04)

loading for any value of X less than 0.8 results in the same value

Mmax

P L ]
_overall. The trend is that the experimental results are lower than

of

The agreement between theory and exyeriment is very good

the theoretical values; this was already mentioned in the previous
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ten figures. It can be seen that the experimental results for
central loading tend to a much lower (105!) value than the theory
predicts. Also shown are the resulté of fhe other authors cited.
Both of the plates tested by Vartak (19) are shown here, and while
his 0.167 plate agrees well with the present experiment, the results
for his 0.250 plate are extremely high for corner loading and much
lover for central loading. The results of Wellauer and Siereg (4)
are also shown (aspect ratio 6.187) and'fheir results indicate a
much lower moment for cormer loading, and a much higher wvalue for
mid point loading. Holl's (17) theoretical point is also shown for
the aspect ratio of 0.250. At the extreme left of the graph is
MacGregor's (16) theoretical value for the case of the infinite
plate; this theory indicates a higher value (10% difference) than
the present theory. The theory and experiment are in good
égreement with regards to predicting the shape of the curves to he

Aexpected, since they Both indicate the same form of curves:

Tigure 52 shows.the theoretical and experimental variation in
the maximum moment in cantilever plates of various aspect ratios
loaded at P = 0.8 with various values of o, The shape of the
theoretical curves is very similar to those for ﬁ>= 1.0, the
main diffexence being that they indicate lower %alues. Again
the experiment indicates a much lower (10%) value than the theory
for -low aspect ratios, for all values of X other than 1.0. The
curves fér corner loading show much better agreement for lower
aspect ratios.

In Pigure 53, which shows the variation in maximum moment vs.
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aspect ratio for various values of ® and B = 0.6, it is
interesting to note that the curve for & = 1.0 is asymptotic to

" almost the same value for low aspect ratios as it was for B = 0.8
and 1l.0. However, the value which the o = 0,0 curve approa.cheé is
much lower (0.3 as compared to 0.42 for B = 0.8) The experimental
results for & = 1.0 show a much lower value (15#) than the theory
predicts, but for central loading ( & = 0.0) the theory and
experiment approach the same value for low aspect ratios. This
figure, as well as the previous ones, shows very good agreement for
high aspect ratios (i.' e: values greater than 1.0) between the
theory and experiment.

The curves for B= 0.4 are shown in Figure 54. The
agreement between theory and experiment is still reasonable (10%)
for all values of o except 1.0. For this loading theré is a
25% difference between theory and experiment for all values of -
aspect ratio less than 1.0. All experimental points are lower than
the corresponding theoretical points in this figure.

Extremely poor agreement is shown in Figure 55 between theoxy
and experiment especially for & = 1,0 where the experimental
points fluctuate wildly. This figure shows the results for loading
along p= 0.2, which means that the load is very close to the
fixed edge. Any small errors in B (i. e: poéitioning of the
loading apparatus) will result in a larger fluctugtion in the
maximum moment produced.

In order to get a better indication of what is happening as the
load point approaches the fixed edge, Figure 56 was drawn. This

figure shows the variation in maximum moment for a plate of low
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aspect ratio (€ 0.25) as a function of the distance of the load
from the fixed edge for corner loading ( & = '1.0) and mid point
loading (¢ = 0.0). Jaramillo's (18) results for the infinite
pla.té are shown as a dashed line in that figure and the theoretical
curve is also shown there. The theoretical curve is 10% lower than
Jaramillo's result for B-= 1.0 and agreement becomes poorer as
f> —~= 0. The experimental results foro = O are lower than the
theory (104 for 1.0, but only 6% for 0.8 =R> 0.4), TFor corner
loading ( &¢ = 1.0) the experiment drops off much faster than the
theory as R —0. Agreement is within 10% only for & = 1.0
and 0.8, while for lower values of P divergence is rapid. An
explanation of what is happening in this case appeai-s to be a
difficult pioblem. However, the plate being clamped in the
loading jig as it is cannot be rigidly fixed. In fact, the
absolutely rigid fixed edge is an impossibility, since no matter
how stiff the material of the wall is, or how massive it is, some
deformation will take place. This deformation will tend to decrease
the maximum moments in the plate and tend towards a more uniform
distribution. This effect has been noted by several of the other
investigators mentioned here, inclﬁding Wellauwer and Seireg (4)
who tested plates machined from a solid block of material. A i‘ecent
study including the effects of fixed edge flexii)ility on the
deflections of thick cantilever plates has béen carried out by
Umeze,wa., Ishikawa and Hayashi (31). Their investigation shows that
the fixed edge actually distorts This will, or course, result in
moment red_lstmbutlon%f the sort mentioned earlier. It is,

therefore, a shortcoming of the present theory that it cannot

@a

il
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account for fixed edge flexibility easily. However, agreement
between theory and experiment at about 10% is still a suitable
comparison for engineering purposes.

In section 3.1.3 the moment distribution factor was defined as
the ratio of the maximum moment in the plate to the nominal moment
in the plate as defined by equation (3.27) for point loaded
cantilever plates. The fact that this equation is identical to
equation (5.9) is hardly surprising. Therefore, in order to obtain

the moment distribution factor, Kﬁ, one must simply divide the
Mm

P

given by the dotted line (cantilever value) at that aspect ratio.

value of from any of the Figures 51 thfough 55 by the wvalue
This was done here, resulting in Figures 57 through 61.

| Figure 57 shows the variation of K with aspect ratio for
cantilever plates loaded along the free edge ( B = 1.0) with-a
point load at wvarious values of &« « The curves all converge to
the value of 1.0 for high aspect ratios, since the maximum moments
approach the cantilever moments in that case. For low aspect ratios
( € 0.25) the moment distribution factor becomes inversely
proportional to aspect ratio, and the equation can be ﬁritten in

the form:

K = ¥ / (aspect ratio) oo (5.10)
where § = 1.23 for P = 1.0.and & = 1,0 and ‘3 = 0.475 for

B = 1.0 and o/ = 0.0. For plates between the two cases mentioned,
(i. e: aspect ratios greater than 0.25 and less fhan 4.0, it is
necessary to refer to the Tigure to obtain Kh values. The

experimental points shown were also transferred from Figure 51

and the suame agreement shown there is shown here also.
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The Km values for ﬁ = 0.8 and various values of o are
shown in Figure 58. These curves are very similar to those shown
in Pigure 59, with the curves converging to 1.0 for high aspeci
ratios (} 4.0) and increasing as the a.spect ratio decreases. The
values of § as defined by equation (5.10) are: ¥ = 1.50 for

B = 0.8 an@ & = 1.0 and ¥ = 0.510 for B= 0.8 and o = 0.0.
The experimental values show a trend towards pred.ictiﬁg slightly
lower values than the theory does. |

In Figure 59, the theoretical and experimental wvariation of Km
with aspect ratio is shown for pcint loaded cantilever plates,
loaded at P = 0.6 and various values of X, The ‘K‘ values for
this figure are: § = 1.92 for B = 0.6 and o= 1.0 and

¥ = 0.550 for B = 0.6 and & = 0.0. Theory and experiment
agree quite well. The agreement is not as good for Figures 60 and
61 vhere the Km curves for B = 0.4 and 0.2 are given. The shape
of the theofetical curves in these figures is quite similar to the
ones mentioned previously.

In summary, it is possible to say that for'aspect ratios greater
than 6.0 the value of K. is es'sentia.lly 1.0 for all values of B
and ® . For values aspect ratio between 6.0 and 0.250, the curves
presented in Figures 57 through 61 must be consulted to determine
Km' For values of aspéct ratio less than 0.250, it is possible to

use equation (5.10) to calculate Km' The values of t are listed

in the following table:
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0.0 1.0
1.0 0.475 1.23
0.8 0.510 1.50
0.6 0.550 1.92
0.4 0.630 3.10
0.2 0.980 4.96

The values listed under o = 0.0 can also be used for other values
of o if the curve for that value of o has converged to the mid
point curve ( o = 0.0). These values of aspect ratio at which this
happens are: 0.200 for ﬁ = 0,2, 0,100 for P = 0.4, 0,100 for

B. = 0.6, and 0.050 for B = 0.8,

5.3 Effect of Poisson's Ratio

In order to determine the magnitude and type of effect Poisson's
ratio has on cantilever plate deflections and moments, several runs
of the program shown in appendix A were made with different values
of Poisson's ratio. The aspect rztio chosen for this study of
Poisson's ratio effect was 0.25. Figure 62 shows the free edge
deflections of two cantilever plates of aspect ratio 0;25 under
the action of bofh.a mid point load and a corner load. These
plates have Poisson's ratios of 0.0 and 0.5, these being the two
extreme values possible. The plate with the largest Poisson's
ratio has the largest deflection for both loadings shown.
Similarly, Figure 63 shows the moments resulting in the same
plates for the same loadings. For mid point loading, the maximum

moment is greater for Y = 0.5; however, for corner loading, the
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maximum moment is greater for Y = 0.0. This is because the moment
for Y = 0.5 peaks within the plate; this is not what was expected,
but :'i.t does occur.

In Figure 64, the maximum deflection and moment in a cantilever
plate of aspect ratio 0.25, with mid point loading and corner loading
are shown as a function of Poisson's ratio. The ina.ximum deflection
of a cantilever plate under a point load ‘is seen to increase as
Poissdn's ratio of the plate does. DIn going fro_m Y = 0.0 to

¥ = 0.5, for corner loading ____n_z_g_x;_ goes from.0.351 to 0.483;
Pb

vhile for Y = 0.3, the value i;s 0.415. This means that if the
value at Y = 0.3 is taken as a base value, an increase in
deflection of 14.4% occurs for ¥ = 0.5, .wh;i.le a decrease in
deflection of 15.4% occurs for ¥ = 0.0. TFor mid point ioading
( B = 1.0,&=0.0) if we again take the value at 0.3 as the
base value; an increase in deflection of 18.7% oécurs. for Y= 0.5,
while a decrease in deflection of 9.7% occurs for Y = 0.0. |
The effect of Poisson's ratio on deflection is very important for
the extremes mentioned; and an effect of a few per;:ent can be
expected even in going from Y- 0.25 to 0.3.
For mid point loading, the maximum bending moment in the

plate increases with increasing Poisson's ratio. If the value i‘or

Y = 0.3 is chosen as the base value, a 10% increase in I_!‘_rg_a_x;_
is noted for Y = 0.5, while a 10% decrease in the maximuumoment
results for Y = 0.0. However, for corner loading, the maximum
bendifxg moment in the plate decreases with increasing Poisson's

ratio. Taking the value of maximum moment for Y= 0.3 as the base

value; a decrease in moment of 19.1% results for Y= 0.5, while
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an increase of 13.2% results for T- o.0.

_No experimental work has been done on studying this variation
in cantilever plate bending moments and deflections with Poisson's
ratio. The theory employed here indicates that a certain amount of
caution is necessary in model studies to ensure that Poisson's
ratio is accounted for. In particular, the testing of models made
of rubber like materials (certain phot§e1astic materiais fall in
this category) is to be avoided due to the way in which the
maximam bending moment for corner loading moves from the free edge
towards the centre of the clamped edge.

5«4 Ixtension of Bending Moment Theory to Helical Tooth Loading

All of the discussion up.to this pqint has dealt with cantilever
plates under the action of point loads. In itrying to apply this
information to gear tooth stressing, it becomes evideﬁt that this
type of loading can be encountered only in a few extreme cases.

Point loading is approximately valid for Novikov profiles; however,
a line load normal to the fixed edge should be a bétter
approximation. Helical gear teeth carry line loads, whose angle of
inclination ﬁ>m is given by (see Shigley (5) for instance):

tan ,Sm = tan | tan ¢n : ees (5.11)
where Af is the helix angle
and ¢n is the normal pressure angle

It is possible to make a further approximation by considering
the load along this line as uniformly distributed. Referring to
Figure 4, the nomenclature used in this section is outlined there

as. follovs:
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T - non dimensional distance (1 =M > -1) used to
indicate where the load line intersects the free edge of the platej-
it is given by'r\= yl/a where ¥y is the actual value of y at which
the intersection occurs ’
Bm —~ inclination angle to thé free edge (0O <ﬁmé 90 o)

q - load intensity per unit length

The moment at the fixed edge will be nondimensionalized as M
. P

where P is the applied load, i. e: P = q_lm where lm is the length
of the load line. In Figure 4, for examplé, the length of the load
line is:

1, = (M +a) /eos P
which means that

P = N+ a » - see (5012)

cos
m

Eouation (5.12) is not always valid, since the load line may
intersect the fixed edge rather than one of the free sides for
large &m and low aspect ratio; in which case the load line would

be shorter. In this case

b.
1m = o) and P = -S%IT—E— ev e (5.13)
sin E’m m

A general rule is to take the value of lm which is the smallest
from equations (5.12) or (5.13).

In order to obtain theoretical bending moments for line
loadings, superposition of point loaded solutions was used. This
was done by modifying the program shownvin Appendix A, such that
31 points along the load line were chosen at equal intervalsj; the

solution for each of these load points was superimposed (at 31
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positions along the fixed edge) and the resulting values divided
by the number of load points considered. This scheme was carried
out for load lines. at ﬁ%avalues of 0,7,12;20,45,60 and 90 degrees,
which covers the range of commohly used values as predicted by
equation (5.11) usiné.the common values of ¢n and T .

Also to obtain experimental values, the point loading
experimental values‘were superimposed in a fashion similar to that
used for the theoretical values. The point loading bending moment
values are listed in Table II. These values weré used in a
computer program which,K superimposed the moments at the gage points
for loading at fixed values of ®& (11 in all) and the values of

ﬁ determined from the values of T\ and ﬁm chosen. These
values of P in geneial did not correspond to the wvalues tested
and interpolation of values was necessary. This means that a
maximum of 1l point loads were superimposed; this haprens for low
values oi‘ﬁh‘and large values of 1l . However, in many cases

few points were considered; if the number was too low, the values
were discarded.

Values of the fixed edge bending moment distribution were
calculated for 7 values of _E:, 11l values of'ﬂband many values of
aspect ratio, both theoretical and experimental by superposition.
To present all of these curves would be impossible; therefore a few
cases to indicate the general trends will be discussed.

In Figure 65, the fixed edge bending moments in a line loaded
cantilever plate of aspect ratio 0.500, with load lines through

N = 1.0, at various angles are shown. It is interesting to note

that theory and experiment indicate the same shape of curve, even
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though the magnitudes are significantly different. The experimental
maximum moment is 11% low for Bp = 90 degrees, and 7% high~for °

P,=0% For B = 0% it can be seen that 75% of the plate
width is subjected to a uniform fixed edge bending moment, with only
a slight dropping off near the ends of the plate. The distributions
for 7 and 12 degrees are also quite uniform, with the moment down
somewhat from the fbm = 0 curve because of the lﬁnger load line
which results in a larger wvalue of P .

In Figure 66, the same plate is shown under the action of line
loads normal to the fixed edge‘( ?Sm = 900). Agreement between
theory and experiment is very good for central loading, the
difference being only 2% for 72: 0 at the maximum value. For
other values of T\ the comparison is poorer. It is interesting
to compare these bending moment curves to those shown in Figure 45
for the same plate (aspect ratio 0.500) under point lbadings along
the free edge. The shape of the curves is very similar, with the
results for line loadings being more localized than those for point
loadings. This can be explained on the basis of tﬁe fact that for
the line loading a larger percentage of the load is near the wall,
vhich results in a more localized bending moment.

Referring to Figure 67, the theoretical and experimental
fixed edge bending moments are presented for a line loaded
cantilever plate of aspect ratio 0.250, with the load lines
passing through 11_: 1.0, for various values of ?>m. For

?sm = 0°, the theory and experiment agree within 2%. As well,
for this wvalue of_ﬁ%“ 80% of the fixed edge sees a uniform

bending moment, with only a slight drop off near the end of the
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plate. For ?h = 90° the experiment predicts wvalues which are
20% lower than the theory predicts. Similar trends exist for the
intermediate values of ?ﬁ shown. |

Now Figure 68 shows the fixed edge. bending moments in the same
plate for line loadings with Aﬁ’m = 90o and various values of Tl .
'Agreement is excellent for Il = 0.0 between theory and experiment;
however for other values of Tl , the experiment indicates lower
values than the theory does. Once again it is interesting to
compare this figure to that for point loadings along the free edge
(Figure 43). The curves are again quite similar with the results
for line loading being more localized than those for point loading.

In the past four figures, it was obvious that agreement
between theoxry and exberiment vas not as good as it had been for
the point loadings. This is explainable mainl& on the basis of
two facts. First, superposition tends to accumulate the exrrors
present in the initial data; in particular, if the data for loading
near the wall is low, as was evidenced in the previous section 5.2.2.
Also if the number of points considered is th low, a reaéonable
approximation of the moment at the wall will not be achieved; in
some cases this condition can be violated in the data available
here.

of ppimary importance in gear design is the maximum bending
moment in the tooth. And to that end the following 7 figures have
been plotted. These give the maximum moment of a line loaded
cantilever plate as a function of aspect ratio.

Figure 69 has Bn1= 0 degrees and is plotted for wvarious
values of T| « The curve for ] = =1.0 is the same in the next

5 figures and is also the same as that shown in Figure 51 for of = 1.0.
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In all cases when T\ = =1,0 the load must be a corner point load ‘
which leads to the curve of Figure 51 ( ®X = 1,0). The nominal
moment for this case was taken as the cantilever homent as given
by equation (5.9) with P = 1.0. Agreement between theory and
experiment is seen to be good for large aspect ratios; however,
for small cspect ratios and larger wvalues of N the two results
diverge. This is due to the fact that the errors in the initial
moment data are becoming large in comparison to the values of
Mmax/P which are decreasing in this region. Two experimental
points of Wellauer and Seireg (4) are shown in this figure for an
aspect ratio of 0.187. Their value for cornmer loading T| = =1.0
is low as was mentioned in section 5.2.2; however, the value
they predict for Tl = 0.0 (i. e: one half of the free edge loaded)
is within 7% of the value predicted by the theory. Their value
for N = 1.0 (i. e: all of free edge loaded) which is not shown
in the figure, agrees within 2% of the fheoretical curve., It is
interesting to note that these curves do not tend fo a constant
value as the plate aspect ratio decreases (except for the M = =1.0
curve) as was the case with the point loaded plates of. section 5.2..
The curve for N = 1.0 in fact becomes identical with the
cantilever curve for small éspect ratios, an effect which could
have been anticipated. The curves for intermediate values of TN
lie between these two éxtrehes and in the region shown in the
figure (aspect ratio > 0.02) they appear to be decreasing
steadily with decreasing aspect ratio.

Figure 70 shows the wvariation in maximum plate bending

moment as a function of aspeot ratio, in line loaded cantilever

plates, when EBm = 7 degrees. These curves are essentially identical
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to those presented in Figure 69 for F%m = 0 degrees. With the only
exception being the curve for N = 1.0. This curve now crosses the
curve for Tl = 0.8 and will likely cross some of the other curves
for lower aspect ratios. The wvalue of nominal moment shown in this
figure and the following.figures is not that predicted by eguation
(3.28) which would be too cumbersome to use in practice. It is
rather the value which would be proper for a cantilever beam with a
uniformly distributed load, i. e: |

M;ax - %-(52— ' ese (5.24)
this equation can be easily derived in a manner similar to that
used to derive equation (5.9), with the realization that the load
is P = gb. This value is exactly one half the value given by
equation (5.9).

In Figure 71, the maximum bending moment as a function of
aspect ratio is shown for E% = 12 degrees. The curves are again
quite similar to those for ﬁ%}= O with the exception of the
curve for'n = 1.0 which crosses the other curves as it did for
the case of Eh = T degrees. However, this time it crosses at
much higher values of gmga s and it appears that it will become
agymptotic at some low vilue of maximum moment for ver& low
aspect ratios (=> 0.02). Agreement between theory and
experiment is good for‘aspect ratios greater than 0.40, for
values_smaller than this with high values of J] there is no
comparison between theory and experiment; this is due to the fact
that only a few loadings were available for superﬁosition.

The maximum plate bending moments for t%n = 20 degress are
shown in Figure T2 as a function of aspect ratio. The curves

for M < 0.0 are almost identical with those for lower ﬁm
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values shown in the preceding figures. For higher T\ values there °
is a decrease in the maximum moment (as compared to the curves for
lower ﬁ% values) for aspect ratios between 1.0 and O.l.

Figure T3 shows the maximum bending moments in line loaded
cantilever plates with Eg = 45 degrees and various values .of 11 N
The curves for T\= -1.0, 0.8, and -0.6 are similar to those in the
previous figure for low aspeot ratios. This figure indicates a
definite change in shape of the curves corresponding to ~0.2< T < 1.0;
these curves tend to become asymptotic to a constant value for lower
aspect ratios. Again the theory znd experiment agree quite well
for aspect ratios greater than 0.50,.

In Figure T4, the maximum plate bending moments for a line
loaded cantilever plate, ﬁa}w 60 degrees are shown as a function
of aspect ratio for various values of T\. Here the curves for
all values of 7] become asymptotic to a constant value as aspect
ratio decreases. The curve for 7| = 1.0 converges to the value
gggg = 0.242. Agreement between theory and experiment is
siiilar to that.mentioned previcusly.

Tﬁe maximum plate bending moments as a function of aspect
ratio are shown in Figure 75 for a line loaded cantilever plate
vith ﬁh = 90 degrees. The shape of thesg curves is very
similar to those discussed in section 5.2.2 for point loading.

A1l of the curves approach a constant value for low aspect ratios,
The curve for T\ = 1.0 reaches the value of ﬂggg = 1,13 for low

P .
aspect ratios and the curves for 0.8 2 N > 0 reach the value of
Mex = 0,278 for low aspect ratios. For edge loading ( 71 = 1.0)

P
the experimental values are lower than the theoretical values and

drop off severely for lower aspect ratios (36% low for O.l). They
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also tend to be somevhat high for aspect ratios greater thaﬁ 1.0.

Agreement is better for lower values of T ’ with the experimental
results lower th.a.n the theory. The results of Wellauer and Seireg
(4) are also shown in the figure (aspect ratio = 0.187); their
value for corner loading is identical with the present experimental
results, for central loadiﬁg their point is significantly higher

(Mmax = 004 VEe Mma.x = 003)0

P P : ‘
It is interesting to compare the theoretical results for the

90 degree line load and the point loaded case where B = 0.5
(see Figure 56) for plates of low aspect ratio ($ 0.25). The

[
values of I‘me.x are compared in the following table:

p
Mmzav.x/P Line Loed Point Load
& =1,0 1.13 1.16
X = 0.0 '0.278 0.276

The values compare within 2%; this is extremely interssting since
the nominal moments given by equations (5.9) and(5.14) are
identical. This means, of course, that their Km values would be
identical and SI'IOWS the possibility of using the point loaded case
to approximate the Novikov Line loaded case ( ﬁm = 900).

The wvalues of Km (the moment distribution factor) are obtained
by dividing the values of _{&Eg_x_ given in the preceding figures by
the nominal moments also shzwn‘ there. These reéﬁlts are presented
in Figures 76 through 82,

Figure 76 presents the moment distribution factors for
éantilever plates with Bm = 0,0 degrees. For high aspect ratios

these curves converge to the value of 1.0 for Mma.x. For low aspect

P
ratios, the curves for T\ = 0.0 assume constant values of Km. It

also appears that the curves for 0.0 > T\ = 0.8 will also achieve
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constant values for smaller values of aspect ratio. Figure 77 shows
the Kﬁ curves for Eh = T degrees. These curves are essentially
the same as tﬁose shown in Figure 76, except that the values are
twice as high since the nominal moment Psed was only half as 1a¥ge.
Also, the curve for T = 1.0 curves up slightly for low aspect ratios.

The X curves for ﬁS# = 12 degrees are shown in Figure 78.
These curves are generally similar to those shown for ¥5m = T degrees,
with the only difference being generall& lower values of Kﬁ.
Figure T9 shows the Kﬁ curves for ?%,= 20 degrees. These curves
no lonéer reach a constant value for low aspect ratios, but rather
continue to increase in the region shown in the figure. Also, these
curves ( at least those for T\ > 0.0) dip below the value of
Kh = 240 in the region of aspect ratios between 0.1 and 3.0

Figure 80 shows the wvariation of K with dspect ratip for

ﬁ:m = 45 degrees and various values of 7] « These curves take on

the more familiar shape noticed in section 5.2.2 for the point
loaded plates considered. That is to say that the curveé show a
linear increase'in Km (for low aspect ratio) as a function of
aspect ratio. This is not true for the 7] = ~0.8 and -0.6 curves
shown however.

The curves showing the Km values as a function of aspeot
ratio for ESm = 60 degrees are shown in Figure 8l. Here the
curves ali become parallel to the curve for 11 = «~1,0 for low
aspect ratios. They also dip below the value of K = 2.0 (al11
ourves except T| = -1.0 and -0.8).

Figure 82 shows the moment distridbution factor Kh, as a
function of aspect ratio for line loaded cantilever plates ﬁith

Bnﬂ 90 degrees. This case is of particular interest since these
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curves form a reasonable approximation to Novikov gear tooth loadinge.
These curves are quite similar to those for point loading. The
vélues of ¥ for them as determined for equation (5.10) are 2.30

for T\ = 1.0 and 0.560 for Tl = 0.0. It is interesting to note

that the curves seem to reach the constant value of 1,20 for aspect
ratios greater than 4.0. This means that the bending moments
predicted by the present theory do not correspond to the values
predicted by elementary cantilever theory which were used for the
nominal moment caloulation.. This 20% increase in moment over that
predicted by the elementary theory for uniformly loaded cantilever
beams should be evident if the subject were conéidered experimentally,
It is likely that for much higher aspect ratios the curves do
converge to the value of 1.0 for Km; however, no attempt was made

to check this out.

55 Comparigon to Tests on Helical and Novikov

Gears

In order to indicate the value of the moment distribution
curves, it is interesting to compare the values given in the
curves to some experimental results.

The first comparison will be to the results given by
Hageniers (1) for a Novikov Gear Set. TFigure 83 shows the
prerimentél arrangement used to test the gear éet, as well as
a view of the wheel teeth with the strain gages on them. The
loading is such that 7| must be between «0.5 and 0.5, since
6utside these limits double tooth contact results in the
experimental system used. It was shown in the experimental
work on the gears that the maximum stresses occurred for these

géars approximately independent of the load position. The aspect
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ratios of the gears were 0.159 for the wheel and 0.175 for the pinion.
These differences come about because the shape of the teeth is
different in a Novikov gear set.and the pinion teeth are longer
than the wheel teeth (but both are the game width). Knowing the
aspect ratio, it is possible to look up the Kh values in Figure 82,

A comparison of the Km values predicted by the experiment, the
present theory and the work of two othe? investigators is shown

in the following table:

X Experiment | Plate | Plate Tellauer Pedyakin &
Reference (1) Expt. | Theory | & Seireg (4) | Chesnokov (15)
Pinion 2.50 3010 3030 4056 1020
Wheel 3455 3.30 3.60 5.04 1.20

The values from the present theory and vellauer end Seireg (4)
were taken for Y\= 0.0, since only small incréases in X are
noted for Y\ less than 0.5. The values predicted by Fedyakin and
Chesnokov aré very low; however, their data is strictly emperical
and.presented during the early days of bending moment distribution
determination. The agreement between the theory and the experimental
results from reference (1) is good, being with 24% for the pinion
and 2% for the wheel. The results presented by Wellauer and Seireg (4)
are significantly higher, differing by 45% and 30 %. This indicates
that the present method results in much better agreement with
acfual tests on gears.

As a second comparison, the resulfs presented by Kugimiya (2)
ﬁill 59 considered. He tested a helical gear set with a helix
angle of 20 degrees and a normal pressure angle of 20 degrees.

Using equation (5.11), B% then is T.5 degrees. The aspect ratio
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of the gear teeth was 0.235. The gears he tested were sﬁch that no
Teal overlap occurred; however, there was multiple tooth contact
due to involute action. Since the teeth are more flexible near the
ends, better tooth load sharing resulted which means that the high
moments predicted by corner loading ( ML = =1.0) could not occur,
but rather the load was shared between the two teeth in question,
resulting in a lower moment. Using his_experimentél results and
equation (2.2), values of K = 1.15 for the pinion and K = 1.41
for the wheel are obtained. His experiment also indicates that
due to involute overlap; the maximum stress occurs for Tl = 0.7
for the pinion and 71::0.5 for the wheel. An exact explanation
of the reasons for this is not possible here, nor is one given by
Kugimiya (2). The corresponding values from Figure 77 must be
nodified since the Kh values are based on the fip loaded moment
rather than the half height moment used in Figure 77. The values
from Figure T7 are therefore 1l.05 for the pinion and 1.38 for the
wheel. These values are within 9% for the pinion and within 2%
for the wheel.

The agreement between the two.referenceé quoted and the method
proyposed here indicates the validity of the approach outlined here.
It would be desirable to compare to the results of further
experiments on gear teeth, but there is a lack of suitable data
in the literature that is complete enough to allow a detailed

comparison.
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5.6 Estimate of the Computational Error

Due to the large number of calculations required in obtaining
the plate deflections and moments (even at a point) using the theory
outlined in section 3.1.2, the possibility of obtaining results with
poor accuracy must be considered. In order to check on the
convergence of the deflections and bending moments, a modified form
of the program listed in Appendix A was-run which Qaried the numbei
of terms used in the series from 3 fo 140. A plot of the résults of
such a program is shown in Figure 84 for a plate with aspect ratio
0.50. The maximum deflections and moments are plotted as a function
of the number of terms in the series for corner and mid point
loading at the free edge. The maximum deflection for mid point
loading is seen to reach an essentially constant value after 30 terms
in the series. It then remains within 1% of that value for the
addition of the next 100 terms after which point, it rises slightly.
For corner loading an essentially constant value is also reached
aftér 30 terms, with the value remaining within 0.5% up to 80 terms,
where it rises 1% and remains constant. Beyond 110 terms, the
values increase wildly and are no longer meaninéful.

The maximum moment for central loading reaches an essentially
constant value after 25 terms and maintains this value within 3%
up to 110 terms; after this point the values drop by 16% to a new
Bteadz\value. For corner loading, an stentially constant value
of moment is reached after 16 terms; this value remains within
2% up to 36 terms, drops 4% and holds to 50 terms, where it drops
4% again, etc. Finally, after dropping by 28% after 110 terms,

the values diverge rapidly and become meaningless. This moment
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for corner loading is the least well behaved of.the variables
considered here. Based on the foregoing figure and similar tests
on other aspect ratios, it is possible to say that the plate
deflections will be within 1% of their final value if more than
30 znd less than 80 terms are taken in the series, Also the plate
moments will be within 5% of their final values if .more than 20
terms and less than 60 terms are taken in the series. The wild
fluctuations beyond 110 terms in the series indicate a loss of
significance in the coefficients used to calculate the deflection
geries. It is also evident that the significance loss is a function
of ot , the load position, since it occurs only for corner loading
in Figure 83 (i. e: for the number of terms less than 140).

5.7 ZEstimate of the Experimental Frror

The determination of the deflection in holography is dependent
upon two factors; first, the accuracy of fringe counting is
lirited to about = 0.5, and second in live fringe work; some nulling
error exists of about =+ 0.5 fringe. This results in a total possible
eiror of ¥ a fringe. Referring to Figures 15, 16 and 17, it can be
seen that a maximum fringe order of about 30 was maintained where
possible. This means that the maximum deflection is known within
one part in 30 or within 3.3%. At the same time the load was known
within 1%‘as determined in a test using a 10 pound capacity load
cell, and wéights which had been previously calibrated. This means
that ‘gmax is known within 4.5%. The value of E and Y were
obtainedPexperimentally as outlined in Appendix B and show a
variation of 2% based on the testing of four samples. The errors

in the plate dimensions (a and b) are limited to a tenth of an inch
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which on most plates is less than 2%. Considering all of these factors
in the determination of Cgmax D.-results in a possible error of
9% in total. Py ° .

In determination of the bending moments from the strain gage
readings, several sources of error are possible. The first is due
to the gages which were used in a non-temperature compensated circuit.
The strain indicator can be read to X 2./u-in/in whiéh out. of the
maximum strains of SOO P in/in represents a 0.4% error. Also,
temperature variations (5° F maximum) result in a possible strain
variation of = 1 /u.in/iﬁ or 0;2%. This indicates a total strain
error of 0.6%. The load applied was again calibrated and a friction
loss factor included in determining the load. Variations in the
load were determined to be less than 2% for the maximum load used.
This means that the errors in M/P are less than 3%.

Other factors which may influence the accuracy of the results,
but whose effect is hard to estimate, and may be assumed to be
small, are: B

1) errors in sirain gage alignment

2) errors in strain gage position along the plate length

3) deformations of the plate clamping jig

4) temperature changes affecting the holographic experiment

5) determination of the maximum moment from the strain gage

information by plotting of the results
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6. RECOMMENDATIONS

6.1 Suggestions for IExperimental Improvement

The holographic part of the experiment could be improved in
two ways. First, a more powerful laser would make possible more
uni form iilumination of test specimens and secondly, a better
isolation system for the holographic table would allow the use of
superior holographic airangements. The experiment would also have
been improved if a data acquisition system with more channels had
been available, thus obtainingjbetter information on Mmax.

6.2 Suggestions for Puture Work

1) An investigation to determine the effect of plate
thickness on the deflections and bending moments in those cases
where the thickness and plate length are comparable.

2) Tests on tooth shaped plates of various aspéct ratios to
determine the effect of thickness changes as a function of length
on deflection and bending moment.

3) A study'of the effect éf degree of rigidity of the plate
clamping on the plate deflections and fixed edge bending moments.

4) A theoretical study of the effect of non-uniform line

loads on plates of wvarious aspect ratios.
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7. CONCLUSIONS

13 The validity of the deflection theory developed by Szmelter
et. al. (3) hes been shown over a large range of aspect ratio by
comparison to experimental deflection contours.

2) Curves have been presented which show the variation in
maximum plate deflecfion as a'function of aspect ratio and load point.
Agreement between theory and experiment in this case is very good.

3) The results of Szmelter et. al. (3) were extended to predict
bending moments in cantilever plates. These results were shown to
compare well with thé results of other investigators,

4) Comparison of the experimental bending moments with those
predicted by the theory developed herg is good and curves for plates
of various aspect ratios, point loaded along the free edge are
presented, |

5) Curveé are presented which show the maximum moment as a
function of aspect ratio and position of the point load. These
curves were used to present moment distribution curves for point
loaded cantilever plates.

6) Using superposition the theory was extended to line loaded
cantilever plates and compafed with experimental values obtained by
superposition as well. These results showed good comparison.

7) Maximum moment curﬁes and moment dis£ribution curves are
presented for line loaded cantilever pluates, loaded at various angles
and at various positions on the plate.

8) Comparison of the moment distribution factors presented
here with those obtained in tests by two investigators show the

value of this approach in gear design.
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-9) The effect of Poisson's ratio on the deflections and
bending moments in cantilever plates has been shown to be quite

significant.
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Fig, 2: Cantilever Plate Geometry
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Fig. 3: Point Loaded Cantilever Plate Variables
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Fig. 4: Lline Loaded Cantilever Plate Variables

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




IIIIIII

PPPPPP

IIIIIII



2

Shuttexr

Mirror

Spatial
Filter

| —— Film

Laser

= ‘Mirror

| s

Test Plate

Fig.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6: Schematic of Holographic Setup

29



100

surasdxy :/ 314

R e T e N af o etk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



*

F—H— KTk

F—R—R—T—%

101

V4

Fig.

4

/7777777777

7777777777

8: Grid Marked on Plate,Showing Load Points

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>y



T Qo
L 0
LN N }\
p
P )
| x
L o b
> ~ >
o ~ “|\9 i
) h b
e >~ ™
s_" |3 | Z
o B ol
»
o o N\
e —~ - S|*
$| > < | S
TN
LJ = 9
I "

Thew

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

| X

y/a Aspect Ratio
Gage No.l{ 001,0.,167,0.25,0.33§0.5,0475,1.001.5,2.0,3.0

1 ~0,987 ~0.975 -0.95
2 ~0.75 ~0.66 1 -0.50
3 -0.50 -0.33 0
4 ] ~0425 0 +0450
5 0] +0.33 +0.95
6. H +0.25 +0.66
T +0.,50 +0.975
8 i +0.75 :
9 +0.,987

Fige 9: Strain Gage Locations on Plates Tested
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Fig. 15: Holographic Deflection Contours for a Plate with
Aspect Ratio of 1.00, Loaded at Various Points
Along the Free Edge (P =1).
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Fig. 16: Holographioc Deflection Contours for a Plate with
Aspect Ratio of 0.50, Loaded at Various Points
Along the Free Edge (P =1).
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Fig. 17 : Holographic Deflection Contours for a Plate with
Aspect Ratio of 0.25, Loaded at Various Positions
Along the Free Edgs (B =1).
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TABLE I

d 2-) at grid points
Pb

shown in figuw 8 (for loading at the points also shown

Theoretical Deflection Values (

there). Aspect Ratio = 0.25

.0000 .0004 .0003 .0007 .00l1l1
.0001 .0004 .0008 .0013 .0019
.0001 .0005 .0015 .0024 .0032

. .0005 ,0015 .0028 .0041 .0053 B = 0.2
. .0015 .0035 .0050 .0064 .0079

.0015 .0035 .0050 .0064 .00T9
»0005 ,0015 .0028 L0041 .0053
.0001 ,0005 .0015 .0024 .0032
.0001 .0004 .0008 .0013 .0019
.0000 .0004 .0003 .000T7 .0011

OOOOO'OOOOOO
[eNeNoNoeRoNoNeNaoNoNeNo)

.0000 .0003 .0014 .0028 .0045
.0005 ,0016 .0032 40052 .0075
L0006 .0025 .0055 .0089 0122

.0 L0015 .0051 .0098 .0147 .0198 B = 0.4
.0 .0035 .0104 .0170 .0229 .0289

.0035 ,0104 .Ol70 .0229 0289
L0015 .0051 .0098 .0147 .0198
.0006 .0025 .0055 .0089 .0122
.0005 ,0016 .0032 .0052 .0075
.0000 .0003 .0014 .0028 .0045

L ] * L) L ]

OOOOO?OOOOO
oNoNoNoRoRoNoNoNoNeNe)

20000 .0009 .0030 +0062 .0100
.0009 .0033 ,0064 .0l12 ,O0159
.0015 .0055 ,0115 .0186 .0260

. .0027 .0097 .0193 .0298 .0405 B = 0.6
. .0050 L0170 .0315 .0456 .0594 .
0063 .0210 ,0382 .0541 .0692 o = 0.0

.0050 .0170 .0315 .0456 .0594
.0027 .0097 .0193 .0298 ,0405
.0015 .0055 .0115 0186 .0260
.0009 .0033 .0064 0112 .0159
.0000 .0009 .0030 +0062 .0100

* * * [ ]

OOOO0.000000
leJeNoNeRoNoNoNoReRoRol

*
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Al

APPENDIX 4

COMPUTER LISTING

The following listing was generated on Januaxry 20, 1970
at the University of Windsor Computer Cenire on their IBM
System 360/Mode1 40 (256K). Running time for deflection and
moment information (based on a 60 term series) at 66 points,
for loadings at 30 different points was about 30 minutes. This
is quite a bit of time, however tﬁe nunber of calculations
required is large, as is the total amount of information given
by the program. The program consists of 12 subroutines which

are called into an overlay area sequentially as they are reguired.
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=

c
c
C
c

CORE AREAS ARE OVERLAYED TG _
T DIMENSITION TSR{24424),W{140, 140),*(140),i“(?O),40(7ﬂ)."(7*),n”(71)

T CALL SORT

EVEL Ly MOD & TMAIN

IN THIS
THE GRID SIZE IS ALSO SFT AT &

MAKE

1,BL{140).
pDOUBLE PRECISTIOM
COMMON TSP yW,A M0,
P=0.3
AB=4 _
N AQ T
CALL ESTISR (1ISR)
CALL SFTUW (ADB, D, MM)
CALL SETM (MM)
CALL SETA (MN)
CALL SHIFT (MM)
(MNY
ESTW (AR, MH)
ESTMXY {AR,P,
1:196
J=2+6
SETL

By
MESNOME

CALL
CALL
pn 1
bn 1
CALL
TCALL
CALL DETM
CALL MMAX
1 CONTINUFE
CALL EXIT

M)

{T9dq20L,yMN)

(Tsds8L ¢MN)

DETV(T, J ,“P 1__; MNy T T T

socH

TDATE

PROGRAM THF MUMRER DF TERMS USED TS SET
BY 12

TO OBTAIM MORE ACCURACY THIS PROGRAM USES DOURLE
FEOP MOCg

= 7TN0%4
AT 140

PRECT AT 0N
TEPMS

A2

IR Y VLT
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TRV EC T, MOD 4 T g g T

SUBROUTTINE ESTISR (MSR)

TPATE = TF002e T T T 2/ RE T

A3

C SUBPNUTINE TO FSTASLISH INTEPRELATICNM GF INDICES

C THE NUMBFR OF TERMS USED IM ISR IS APEOUATE FOPANMY SI7F OF MATRIX (oSfRtosn
DIMENSION MSR{24,24) yMNI12,24) 4M{(24) o o
—— pa 1 J= 1.' 24 AL SR LIRS i O U O
1 MDUL, ) =d%(J=-1)
DO 2 1=2,12
DO 2 J=1,24
2 MD(I s )=MDITI=-1,J)+2%(T+j-1)
DO 3 I=1,12
TTTD0 3 J=1,24 T ) T
11=2%1-1
MSR({I IvJ):MD( IvJ,
3 MSR{II+1,J)=MSR({IT,J})+1
PRINT 4
4 FORMAT (13H1S,R TABLE IS//)
e ng oy .]=l,-24 R S SR e e -
7 N{I)=1-1
PRINT 6,{N(1),I=1,24)
6 FORMAT (BH M QR (Q=424147)
DO 5 T=1,24
5 N{Il=T+1
ST R INT 1Q0 T T e e SO [ -
10 FORMAT (8H N QR Pp=/)
' N0 8 I=1,24
8 PRINT 94M(I),(¥SR{Jy1),J=1,24)
QO FORMAT (4Xq4144,24714)
RETUPN
B VT s E i - — -
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LEVEL 1, M0OD 4 7 T

C THE

cS

ET

13

~wu;n

"

[N}

IQ=K-1

TUsNA(NSL R IPE TP

SURRAYTINE SETH. (S, TeHN)
SIZE OF THE W MATRIX 1S FIXED
MATR I X
DIMENSTOM ISR(24,24),W(14C,140)

DGURLE PRECISTAN WoP 4Py T1,T2,T3,T4,T5,T6,T7,78 ~

Ul THE IMTERMEDIATE Y
COMMON TSR, ¥

1,y MN

1

=1
=1921f ‘
TFLTISRIK,L)-IS})2,2,2

g T

COMT INUFE

NN 5 K=1,424
DO 5 L=1,24
TF{ISR(K,L}~-d5)5,6,5
IP=L+1

GO 0 7

CONT INUE
1IT=4+71¢
IF{IT)15,8,1¢%
IC=171-1 777
IT=17/2
IC=1C/2
IF(IT=-IC)8,49,9
W(T,Jd)=0

GO 10 1

T2={(N+IP=3 )% (M+]IN+1)
T3=Me (M= ) IDE(T0=-1)
T4=({M+JC-3)H{N+[P+1)
TS=NEME]PXT

CTO={NATP=1)%(M+T0=1)

END

CTTENE(MoL) R IOR(10-1) T T

T8=ru(M=1)%TPx(1P=])

W(IpJ)=T1/T2+(D**4.)*(T?/T4)+P#?*(P*(T7+TQ)+P.*(l.—9)*75)/76

CONT INUE
RETURN

BATE L

AT £O SQUARPE IN

700

THIS

COUTIME

A4

127427859 T
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STUEVEL 1, MGD 47T T U SETM T T T T AT = 70054 T T a8 e T

. SUBROUTIME SETM (MN) 4 A5
C SET UP THE M MATRIX
C THE M MATRIX TS COMPUTED AND STOPED IN THE W MATRIX T CONSFPRVE SPACE
C THE A MATRIX IS USED AS TEMPRRARY STNRASE T SAVE spacs .
TUTTTUUUDIMENSION TSR{244924) M 1404140V ,20140)
DOURLE PRECISINN W,4A,TOT,S0Q
COMMON TSR, %W,eA
DN 20 T=1,MN
20 A{1)=W(I,1)
DO 1 I=1,4MN
RO 1 J=1yMN T
1 Wll,J)=0
pO 2 I=1,MN
IK=1-1
DO 2 J=T,MN
TNT=0
0 E TR
3 TOT=TOTH+WIK,,Jd) *d{K, 1)
IF(I-JY4,5,4 ‘
5 SQ=A(1)-TOT7
IF(SQ)I10,11,11
10 Ml=1-1
TTTM2=MT-T
M1l=M1/2
M2=MD/?
TF(M1-M2)14,15,14
15 MN=1-2
GO TN 16
TTTYETEMNET=1 T
16 PRINT 12,MN
12 FORMAT (23HOTHE NUMPER 0F TERMS 15,14)
GO 10 13 .
11 W{T,J)=DSQRTI(SN)
G n T 0 2 O P —————
TETHI T, Y= (W, DY =TETY /N, T
2 CONTINUE
13 PRINT @
8 FNRMAT (16HITHE M MATRIX 1S//)
PRINT G ({W(T,J)yI=1yMN),J=1,¥N)
9 FORMAT (1X,10D13.8)

CCRETURN T e et e e e+ e - - S
END
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wr
>

LEVEL 1, MOD 4

SUPRNUTTINE SETA (MN) |
C SET UP PRELIMINARY A MATRIX (IN R FORMAT )
C THE FORMAT OF THE A MATRIX IS FIXFD oY THAT DF THE M
DIMENSION TSRU24,24),W(140,140),A(140)
'DOURLF PRECISION W, A,C,T0T .
COMMON ISRy WyA
DN 8 I=1,MN
ACTI=W(I,1)
N0 8 J=1,1

MATPTX

8 N(I’J)=O et e e
TTTDD 1 T=1,MNT T
DO 1 J=1,41
IF(I-J)2,3,2
3 C=1
GO T0O 4
2 C=0

4 TOT=0
IK=1-1
JK=J-1
DO 5 K=1,IK
IF{JK~X)20:20,5

20 TOT= T(‘:T'Hc(KyJ)JN(KyI)

STUCONTINUE T

W(T,Jd)={C~TOT)/A(])

1 CONTINUC
DO 11 I=1,MN
DO 11 J=T,%N
WlT,J)=W(Jdy Iy

TTIF(I-J012,11,12
12 WlJ,1)=C
11 CONTINUE
PRINT © : _
9 FNRMAT (21HLA MATRIX IM R EQRMAT//)
PRINT 10, ((W{T,4),1=1,N),J=]1,%N)

IO FORMAT T(1X 10D R)Y T
RETURN
END
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TLEVEL

L HMED TG T T G e T T T T hATE

SURRODUT INE SHIFT (MN)
DIMEMNSTION TSR(24424)4W(14C,240),A{140)
DOURLE PRECISINN “yA
COMMON TSP,WeA

N 2 4] — . SR -
MM=MN-1
DD 1 I=24NN
DO 2 J=1,MN
2 A(J)=W{J, 1)
nn 3 K=1,MM
T AT R g M e e - S —
3 WlJyK)=WlJdK+1)
DO 4 J=14MN
4 WlJ,¥NY=A()
1 CONTINUE
RETURN
[y T T e e — - - e o — -

= 70076

TS/ STER T

AT
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LEVEOLT Y, MOD 4 B Yol:S A DATE = 70024 12742/8%9
SURRNUTINE SORT (*N) - ‘ A8

C THIS SUBRNUTINE DIVIDES THE A MATRIX AS IN THE PAREF

C THE A MATRIX IS SO?TED INTO ITS 0ODND AMD EVEN COMPONENTS

NIMENS TCN ISQ(’4,2«),w(140,1*0),A(140),Hﬁ(7ﬁ).wﬂ(7ﬁ),~“(fn),wf(vn)
14AF(T70,70),A0(73,70)

DOURLE PRECTISION A,W

COMION ISR,W, 8 4MD, M‘,NC,VC

EQUIVALENCE (AF(I),'(l)).(ﬁﬁ(]),d(945l))

MM=MN/ 2

NN=MN-1

DN T2 J=ty MM
DO 2 T=1,NN,?
It=1/2+1
Jd=J

2 AE(IT,0d)=W(]1,4.0)

VQ_M;JH—l '

D03 I=2,MN, 2
N0 3 J=MS,MN
11=1/2

Jd=Jd-4M

3 AO(TIT,dd)=W(T,3)
DO 4 I=1,MN

IS=1-1

KK=1S§/2+1

NI="M=1

DO 5 K=1l4MNT

DO 5 L=1,4M1
IF(ISRIK,L)=TS)5,£45

ATIK=K=Y T T
IJd=L+1
GO TO 7

5 CONTINUF

T OIF{ISYIB,9,8

8 1T=15-1

IC=1S/7
1IT=1T7/2
IF{1IC-1T)c,10,%
g ME(KK)=IK ‘
NE(KK)Y=1J
GO TD 4
TTLO MO (KK Yy =T
NO(KeI=T]
4 CONTINUE
PRINT 11 :
11 FOPMAT (”2411’Llr EVEM AND ODD A MATRICES ARPE/Z/Y
PRINT 11,(”f(1),1~1,‘4)

12 FORMAT (&M ME=,2%14/)
PRIMT 13, (ME(T),I=1,M™)
12 FOPMAT {4H ME=,2514//7)
PRINT 14
14 FORMAT (12H EVEN MATRIX/)
DN 30 1=1,MM

7730 PRINT 15, (AF(Jy1)yd=1,M8) 7
15 FORMAT (1X,10F13.6)
PRINT 16
16 FORMAT (/7)
PRINT 174(MO(T),T=1,4M)
17 _FORMAT (4K M1=,2514/)
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TLEVEL 1y, MaD & T T UsorT T T T U T pATE = 70024 T T W2/40/8a T

. PRINT 18, (NO(T),T=1,%M) A A9

18 FORMAT (4H NO=,2514//) '
PRINT 19

19 FORMAT (11H ODD MATEIX/)

- DO 31 I=1,MH4
31 PRINT 154 (AN(J,1)53d=1,¥M)
RETURN
END
!
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SUBRAUTINE ESTW(R (MN) Al0

C SET UP NEFLECTINN SUR MATRICES : '

C THE NUMBER OF GRID POINTS DFTERMINE THE NUMPER OF TERMS TN THE MATPICES
DIMENSION ISR{24,24),W(14C,140) 3 A(14C) M0(T70) NILTI),MELT0),MF(T0)

TTTYILAE(TOT0Y K AN(T0, 70)'”F(6y6,76),Pﬂ(hyo.70),¥(b) V(s)Y T

DOURLE PhLCISTDN Ay W
COMMON TSR, Wy A MO ME,NCGNE .
EQUIVALENCE (AE(l);N(l))y(Aﬂ(l),W(2451))1(PF(1).H(49@1)),(Pﬁ(]),w(
161611 )y {XC1)y ISRILY ) (YCL),TSRIT))
MM=MN/ 2

'”LEVE[“I;”Mbo"d“'“""w’m'“””ééfﬁm””‘“w'“"”""mmﬁifE”é”?dééh”““m"mfff]§7£37dﬁ““‘

00 1 I=1,6
P=1-1
X(1)=P*0.2

1 Y(I)=P%0.2

DO 2 I=1,MM

D0 2 J=146

DN 2 K=1,6
T0TE=D

TOTN=0

DG 3 L=1,1
IF(NQ(L))20,21,20
21 pP=1

GO TO 24
20 IF{X(J)122423,22
23 P=0
GO TO 24
22 P=X{J)#xN0(L)
24 TF(MO(L))25,26425
26 0=1
co vo 27
25 TR{Y{K))28,29,28
29 Q=0
GO T0O 27
28 Q=Y (K¥x=xMO()
27T CI0=sTOTOSRAQ(L, V) EPRYy T T T T
TF(NELL))30,21,20
31 P=1
GO 70O 324
30 TF{X(J))32,32,32
33 P=0
TGO TN 247
32 P=X(JYNELL)
34 TF(ME(L))IZ25,43¢6,35
36 Q=1
GG 11 3
35 TFLV(K))38,30,74
39 0=n e
GO TN 2
38 0= Y(V)*‘WF(L)
3 TOTE=VOTE+AF(L o T ) %073
RC(Jy y])—TﬂTF“lPOOQ
2 RO(J,y K,y 1)=TOTOX]IN0OGO
 PRINT 4,R ' :
4 FORMAT (3@HLTHE DEFLECTION Sy #ATEICES FIF B/ A= (F7.2,44 0E//7)
PRINT 5
5 FORMAT (25H VA
PRINT &, (X(Y)7I=
6 FORMAT (65X, 4HX/R

UES OF ﬂ'{,l(XyY).l'_’)*’kﬁ./,)
1oAYy (X(T),T=14m)
=e6F10L.144X 651017
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LTEVEL Y, MnD & 77 7 T ERTW T T T pATE = 70024 T T T 2742789

PRINT 7 ' ‘ A1l
T FORMAT (8H Y/A=/) '
NN "/ 1=1,MM
DO 8 J=1,6
CIF(J-1)9,410,9
10 I11=(1-7)%2
12=11+1 ) ’ ‘
PRINT 111Y(J)7I].,(P:‘;(KnyI)’K:l,(") yIZ,‘?ﬁ(Kval)va‘\/:ly“)
11 FORMAT (YHO F4.142HWy 2 124,6F 10472 ,2Hv 4 4,12,6F10,.3)
GO 70O 8 4 B
'“"“WQMPR[NT"12{YTJ){(QF(K§J;T)7K£Iy6)9(RO(K?J,1),KEI}S)
12 FORMAT (1Xy3F4.194X00F10.2,34X,A4F10.3)
8 CONTINUF
RETURN
EMD

e - - - - O -~ —— e e e ey e e
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TUEVEL Y, MOD & T T T ReTMXY T T T DATE T In0ns I - A 2=

SUBROUT INE ESTMXY (R,S,MN) : A12
C CALCULATE X,Y, AND XY MOMENT SUR MATRICTIES
€ SUB MATRICES APE CALCULATED FOR THE GRIND PNFNTS CHNCEN

DIMENSTION TSR 24424) sV 40C140)3A0140) yMOLTO) N7 4B (T7D) HELTD)

T UL AR TO TOY AL 7O, TO) 3 RELG s s T0) 42T A A TOY X (6 4V (n) g ENX (A, 780877

2EX (6465 T0) 4ROV (Ay 6, 70) yFEY (LG, TC) yROXY (A gh 3 T0) yOEXY (446 ,77)
DOUBLE PRECISTON A,k

COMMON TSR, Wy A, M0 M, MOy NE

CQUIVALENGE (AF(L) oW (1)) g CANTL) 024511 ) 3 (0E (1) (4001 ) g (20001, 00
161610 1y (X (11, TSRILI) g (YC1) o TSRIT)) 4 (PRXCT) N (742700, (FEN{1), ¥ (252]

T2, (ROY (L) WHOGAL) Y S UREYLL) g WU LL 20T ) ) G UROXY (L) gl (1 2AETY Y REXY (V)T

IW(13721))
MM=MN/ 2

N0 2 I=1,MM
DO 2 J=1,6
NO 2 K=1,6

IeTaX=o T
TDTEX=0
TOTOY=0
TOTEY=0
TOTOXY=0
TOTEXY=D

no 3 L=1,1
TFINO(L) YIS, 544

5 p=1
GO TO 100

4 IF(X(J))16,746

7 P=0

GO TOT100
& P=Y(J)==NO{L)
100 IF(MOIL))E, 8,
8 Q=1
GO TN 200
9 TF(Y(K))I10,11,10

117 0=0
GNTN 200
10 O=Y(K)x*=n(])
- 200 TC(MP(l)—])l?,I? 13
12 P1=1
GO TN 200
TIRTFRIXINI 1Ay 15,18 T
15 P1=D
GO TO 360
14 PI=X(J ) (0L )=-1)
A00 IF(MO(LY-1)16,154417
16 01=1

TG TD 400
17 [F(Y(K)1)1E8,19,17
19 N1=0
GO TH 400
12 Ql=Y(K)Hsx(MO(1L)~1)
400 TF(MO(L)=-2)27,20,21

20 P2=1

GO 10 800
21 IF(X(J))22,23,
23 P2=0

GNn T 500
22 PR=X(J)wRNO(L)-7)

~
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TEVEL 1, MOD & 7T U ESTMXY T T T DATY = 70024
S00 TF{MO(L)=-2)24,24,25
24 02=1

G0 T 600

25 IF(Y(K))26427426

12742748

Al3

- 57 Az=0 - - e _ e . e
GN TH 600
26 N2=Y(K)x=(MD(L)=2)
600 T1=NO(L)
T2=NA(L)-1
T3=MN(L)

"“"“”T[P:\M‘)(L)-‘[“"" T Tl o - - T .. -
TOTOX=TOTOX+AD(L o T R(T1RT 2P 2004 AR AP A TINTLHDH0D )
TOTOY=TOTOY+AC (L g I )R AR FTRILTANOLN2 4+ SHT 1 T 2%p2x0))
TOTOXY=TOTOXY4AI(L 3 [ )RR ( 1 (= S) T TP ) 0]
IF{NE{L))35,35,34

35 P=}
TGO TH 700 T
34 TF(X{J))36,37,35
37 P=0
TGN TN 700
36 P=X{J)ExNE(L)
700 TF{MF(L)})28,38,39
e L e
GH TO 800
39 IF(YIK) )40, 41440
41 Q=0
GO TO 800
40 Q=Y(KY®RXME(L)"
TTTEO0 TR (NF(UY=1)42 42,437 T
42 pPl=1
GO TO 900
43 IF(X{J))bhe45,44
45 p1=0n
50 TN 900
TR =X (YRR (NFCLYSY T T -
900 IF(ME(L)=-1)464,46564,47
46 0L=1
GO TG 1000
47 TF{Y(K))4R,4G,48
49 Q1=0
e e L g T e e . - - e e e
48 QL=Y(K)kse (MF{1)~1)
1000 TF{NE(L)=-2)50,50,51
50 P2=1 '
GN TN 1100
51 IF(X({J))52,53,56?
'“"'53"'{3250' ' oo o - T o
G2 T 1100
52 P2=X(J)=:(NE(L)=-2)
1100 IF(HE(L)=2) 54, 54,55
54 Q2=
GO TN 1200

55 TF(Y(K))SE,57,55
57 Q2=0
GC TO 1200
56 Q2=Y(K)#=(ME(L)=2)
1200 T1=NME(L)
T2=ME(L)-])
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LEVEL 1, MOD 4 U ESTMXY T DATE = 70024

T3=ME(L)

T4=vE(L)-1

TOTEX=TOTEXHAE (L1 ) (TI#T 24P 2404 QP AR LTI %T4PEN? )
TOTEY=TOTEYHAE(L, 1 )4 (RERATAXTARPEND # SHTTHT 20 2%)

B0 R

Al4

CTOTEXY=TOTEXY+AS (L, T IRR* (L. —S) kT #7232 Pl <] T ey
3 CONTINUE
ROX{Jy Ky 1)=TOATOX
PEX{J yKeI)=TOTEX
ROY{J,K,11=TDTNY
DEY{(Jy Ky V)=TOTEY
T ROXY UYL K TYSTOTOXY T T -
T2 REXY{U WKy 1)=TOTEXY
RETURMN
END
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TLEVEL 1, 40D & T T TTUUTRETL T T haTe = Fo0ra T TN i e
SURROUTTINE SETL(MyN,C4¥N) Al5

C SET UP THE VCRK VFCTOR

DIMENSTON ISR A(24924)4W{1404140),A0040) ,MO{T70) ,M00T70) M (72) ,NE(T7D)

LAAELT0 700y ADCT0, 70) 4 RECE, 6,5 T0) 4 P0L6,6, 701 XA,V A2),CM14) W EVTINL

T 2140)

RO O I=s1, MM

COURLE PRECISION A,W
COMMON TSRy Wy Ay MOy ME SNy NE .
FQUIVALEMCE (AFIL) W11} (ARTL)yW{28651) ), (RF{1)4 9 (4=NT) ), (P{1) 4ul

16161)) o (X(L) ISRETI) (Y1), ISR(T))

MM=M{N/ 2

[T=2%(1-1)+1

ITI=1T+1

COIT)=PF(N,M, T}/10000
1 C{ITII=RO(N,M,T}/10CON
C CALCULATE RELATIVE CONTRIRUTINN TC Si4
T A BB s AU — — —

DO 2 I=1,MN

SOM=SOM#C (T )=xC (1)
2 ERROR{I)=(C(I)=C{T)}/SNM

RETURM

END | '

‘i
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EVELT T, MADTa T T ﬁ ETu T

SSURRNUT INE DETW (MyN,0C,MN)
DEFLFECTINNS ARF OETERMINED
CALCULATE THE DEFLECTION MATRIX

DIMENSTON

2)yYR(11)

DOUBLE PRECISINN
COMMON ISR,yW,yA,M0,
EQUIVALENCE (AZ(1),4W(L)),(AN(]

AyW
ME NGy NF

MM=MN/2
pn 1 1=
no

jo )
o}
N

LR I A |

— | r—'O:-‘r—‘

- e

K=L+5
3 DI KI=DUIZKIFCLTIT)*PE(Y,L,1)
DO 4 J=1,6
DD 4 L=2,6
K=2-L

IT=11+1

DO 5 J=1,6

DO 5 K=1,¢6

L=K+5
TURY=2-K

DOJyLI=DUJ, 1 I4CH{TT)XC0O(Je K,y 1)

2 CONTINMUE
PPINT 64X (M) ,Y (M)
6 FORMAT (27HIDTEFLECTIONM
TOPRINT 9, (XU, t=1,6) 7
S FORMAT (1Xy4HY/R=46F15.1//)
DD 10 I=1,6
Q=1
YR{IN==Q.2%( &, =N)
10 YRA(I+5)=Y(T)
CUPRINMT 1Y T T T
11 FORMAT (SH Y/A=/7)
PO 7 1I=1,11
T PRIMT 8yYR(I)4(D(JIyT)4d=1,46)
& FOPMAT (1X,F4,1,6F15.3)
FETUTH

END

AT THF POINTS SHOWN FNR THE

}
16161105 (X(1),TSRL1) ), (Y(1),ISR(Y

HATRI X F02

LAARTMG

o ISR(24424) 3 W(140,14C) 201400 3MG(T0)4NOITO)ZMTLTT),NE(70)
12 AE(TO 70y AQL 704 70) yRE(E304TC) sRC{E 6970} 4 X(H)3Y (D), C(147N)eD(A,11

WI2451)) 3 (REQT) yWIARCT)) g (FD( 1) g0l
M

T as R
Al6
INDTCATED

4 D{JK+5)=D{J,K+8)+C(TTIHPE(D L, 1)

5 DUJyMI+SE)=D(JyMT4+5)=COIII*RO{I,K,T)

X/B=yFh ]1,3HAND ¥ .*,rA.1//)
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1, #0p 4 DETH DATE = 70024 VE/ARTTS

SURROUTINE NETH (M,K,C4MN) _ : ALT
C CALCULATE THE MOMFNT ARRAYS
C THE MQOMENTS ARE CALCULATED FDR THF LOADING (HASFM

DIMENSION ISRU244324), (140,140 ,A0140) (MOLTO) NO(T0) JMELTI) G HE(TO)

TG AR TO 70N ADLTQ 3 T70) o PE(EGAGTC) WP 6 TOY X {A) ZVIE) (DX Ay n, TH), E
ZFX(6,617’)’1Q”Y(616 7(",1prv(f\ (‘yIO)'FQYV('I‘1("70,yf’rXY(‘.v“ 7’\)'f‘(1é0
3) e DX(6,11)y DY LALIL)NXY(6,11),Y5111)

DOUALE PRECISINN A, N

COMMON TSR,y WeA MO, ME JNM,NE

FQUIVALENCE (AT{1) oW1 )9 {ABII Y {2451 ) ) o (TELLY g (4301) ) , (B ),
TR TEIY Y XY Y TSR Y (Y (D) S ESEATY Y g (ROX 1) g WU 742V Y Yy (VF YOy SORERT

2115 (ROY (L) g (9941 ) y (REY(L) WL I1201) )y (ROXY (DY), (1Z2401) ) 4 (PEXY (1),

(L3721 9 (NXT1) s WITACRTY )L (DYTIT) LU {15014 ), (BXY (1), v {18V T) Y, (V> (
T 41),W{15C80))

=N/ 2

PO 1 1=1,6
R L B T e

DX{T4J)=0

DY(I,+4)=0
1 DXY(T1,J)=0
DO 2 I=1,MM
I1=2%(1-1}+1
o g [ e e i
DO 3 J=1,6
DO 3 L=1,6
K=L+5 g
DX{JyRKI=DX{J yKI+C{TIIRCEX{S,L,T)

DY {JyKI=DY(JyKI+CUTTVHPEY (4L, 1)
FTOXY (I KI=OXY LI KY+C{TIYEROXY (J,L, 1y "7 7 7 7o

D0 4 J=1,6

N0 4 L=2,6

K=2-1

DX(J g KEBY=DX{J X +S)+CTT)HPEX{J,L,T)

DY (JsK+5)=NVY({J,K+5)4C{TITIH*REY{JyL,T)
4L T DXY (e KESY=NXY (I g KARIFC LT ITHROYY (I, L, 1Y
no 5 J=1,6
DO 5 K=1,6
L=K+5
MI=2-K
DX(Jy LI=0X (s L 1+C(TYI2R0OX(J4K T)
NXCI g M +5)Z0X (S AT+ R)=C (] J )% CX(J,%;YW”""""”“““““M'
DY (JyL)=0Y(J L V+0 (T I)VRPOY(J,K, 1)
DY(JeMI+B)I=DY(JyMI+6)=C(TJ)=envg,%,1)

DXY (Sl ¥=DXY (S L)+C LTI I EREXY Sy, 1)
5 DXY(JaMI+S ) =DXY(Jy¥I+S)=C(TILRRENY{Jy%,1)
2 CONTTINUF
TUTPRINT 6 T
6 FORMAT (20MOTHE MOUEMT DISTRIRUTINIS ARE//)
DN 8 I=1,6
Q=1
YR(I)==0.2%(6.-71
8 YR(T+5)=Y(T)
TTTTPRINT 7 ’
7 FGPMAT [(10H X MIMENTS/)
PRINT G, (Y(])yT=1,()
9 FORMAT (1X,4HX/R=,6F15.1//)

"PRINT 1C

10 FORMAT(5H Y/A=//)
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LEVEL 1, MOD &4 DETM
DO 11 I=1,11

PRINT
FORMAT(1X,F4.1,6E15.8)

PRINT 172

11
12

CODATE = 70024 L2/4278%

Al8

12, YRUT}(DXE ST )y d=1,6)

13 FORMAT (10H Y OMOMENTS/YT T T T
PRINT 9, (X(1)y1=1,6)
PRINT 10 :
DD 14 T=1,11 o
14 PRINT 12, YR{T},(DVId,T),J=1,6)
PRINT 15 ,
15 FORMAT (LLH XY MOMENTS/Y T T T T
PRINT Q4 {X(1)4T=1,4K)
PRINT 10
NO 16 1=1,11
16 PRINT 12, YR(I},(DXY{J,T},d=1,6)
RETURN
e e D BT -
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1'i_'“‘E'\Tf_fl_""i‘,"'MD’D"'21,'"'""”" MMAX T e E = 70024 T M27e7758 7

Al9
SURROUT IMNE MMAX o
PIMENSTON [SRE24,24),W{140,140),A(140),50(70) JMO(TO) 4T (7)), M7}
LsAFT{T7O3T70) o ANC 7Oy TOY yCE(Ayh 3 TO) PO A A TEY gX () (V1) fFX{fyh,7N) 0
2EX{6465T0)2ENYIS3AeTOY s REY (66,704 POXY (6,4, T0) BNV (R,6,70),0( 140
T3, ny(b.}l),hv(a,ll),nxv<6,11),v”(11),D~1(<,11) PY2LE LT )y 2 (1, 11)
4y TH(6,11)
DOURLE PRECISTION A,W
COMMON TSP oWy A MO ME N, NF
EQUIVALENCE (AF(1), (1)), 0A001),l(2451) ), (RELL) L4001 ) ), (£011) il
16161003 (XC1) 3 TSREII)HIVELY G ISEUTI) y (FOXOL) %W T421) Vo (PFEX (1) M l24a2)
TN L (ROY LYy W(O9A1) Y g (PEY(L) L HEIL201Y) g (RO Y (1Y, W IT12441) ), (FXY (1),
AWCL372T) )9 (OXC U oW (T14COL) ) (DY (1), (150141 )y (DXY (1), Wl15047)), (VR
41),(15080))
DO 1 1=1,6
PO 1 J=1,11
T1=(DX(T,J)+NY(T,d1) /2,
XX=({DX(1,J)=0DY{1,3)Y/2. 7
T2=SORT (XXEXX+NXY( T4J)#0XY(14d))
DMI(T,0)=T1+7T2
DM2(1,J)=T1-T2
DM3(1,J)=T2
TH{TyJ)=(ATANIOXY LT, ) ZIRX{T,0)=T1) ) /2. ) %120, /2,1616€

1 CONTINUE
PRINT 2
2 FORMAT (22H PRINCIPAL "“OMENTS ﬁ?ﬁ//}
PRINT 3
3 FORMAT (AH M MAX/)
PRIMNT 4, (X{(T),1=1,8&) o
TG RORMAT (LY Y 4aHX /R, AFIR T Y T
PRINT 8
8 FORMAT (BH Y/A=//)
DO 5 I=1,11
5 PRINT 6, YP(I)y(JV](J,])yJ 1:¢6)
PRINT 7
TTTTTTTE T RFORMAT (1X e FAL Ty EELRL YT
7 FORMAT (6H M MIN//)
PRINT 44,(X(T),T1=1,4)
PRINT £ A
DN o9 I1=1,11 ) - T
9F’PI’\TéYP(T)y(""7(J11)yJ lyn)
—w“‘“_—""-—DQI \T ](‘ T Tt
10 FORMAT (AH T MAX//)
PRIMT 4, (X{1)yT=1,6)

PP INT 8
00 11 151, 1)
11 PRINT PO, (N30, T d=1,8)

O SO,

T PRINT 12
1?2 FORMAT (16H ANCIFE T ¥ AXIS//)
PRINT 4,(X[J)yT1=1,454)
PO INT &
NN 13 I=1,11
13 PRINT 14, YD(T)q(TH(J,T)yJ-l 5)
T14 FORMAT (1X,F4.l96F15.3) ‘
RETURN
END

!
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APPENDIX B

~MATERTAL PROPERTIES

In order to determine the material properties, it was
decided to tesf four tension specimens cut from the plate
from which the test plates were cut. Figure 85 shows how these
were cut; the tension samples being cut from materizal sprrounding
the test plates. The specimens meet the standard ASiM E8-61T
for tension specimens; this means théy are 18 inches long and
approximately 13 inches wide. To insure that the material is
isotropic (or to dgtermine if it is anisotropic) two samples
were cut in the rolling direction of the plate (numbers 1 and 2)
and two were cut at right angles to this (numbers 3 and 4). The
roliing'direction wvas determined from visitle mgrkings in the
scale on the plate.

In order to determine both modulus (B) and Poisson's ratio
(V) it is mecessary to have a two element éage; as well to- eliminate
any error due to gage alignment it was decided to use a three
element rectangular rosette. The three element rosette will allow
the accurate determination of the principal straiﬁs, from which
the modulus and Poisson's ratio can be determined. Also, since the
specimens may not be perfectly straight, gages were mounted on
both sidesqu the specimens to nullify any bending effects due
to specimen curvatures. This procedure apd the need for it is
outlined in a paper by Smith and Chapel (32). The specimens

were tension tested on a Tinius Olsen, 120,000 pound capacity
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| . B2
Oniversal Testing Machine. Strain readings.were taken at 2,000 pound
intervals after the specimen had been cycled 5 times to 7,500 pounds.
to remove any gage bhysterises effects. The ﬁaximum load reached was
12,000 pounds since all specimens showed signs of yield before this
point was reached. The gages were connected to a Budd P-350 strain
indicator through a Model SB-1 switch and balance unit. This allowed
the s8ix gages on.any specimen to be read out sequentially at any
load held on the testing machine.

Once the rosette strains were available, the principal strains
"were calculated using the method outlined by Dally and Riley (33).
The principai strains were then averaged across the two sides of
the test specimen: -~ this has the effect of cancelling bending
moments. The largest principal strain was then plotted against
stress (calculated from load and cross. sectional area) for the four
specimens. This plot is shown in Figure g6, and it can be seen that
the last set of readings show signs of yielding. These readings were
then discarded while the remaining values were used to calculate the
line of best fit for each specimen to determine its modulus. Also,
the line of best fit was calculated for the minimum principal strain;
this value was used to calculate Poisson's Ratio for each specimen.

The resulting values of E, and are listed in the following table:

Specimen No. | Dir'n Modulus. (psi) A
1 3l 30.4 x 10° 0.277
2 I 30.3 = 10° | 0.274
3 = 29.7 x 10° | 0.274
4 6

30.2 x 10 0.280
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The variation in modulus shown is a maximum of 2% with three
of the values within 4%, while the Poisson's ratio variations are
all within Z%. These variations can be expected since the gage
factor on the gages isvonly i-l%and reading errors.could easily
account for a 1% error as weli; It seems, therefore, that the
samples cut from the two directions are equivalent and the
material is_isotropic (at least in the-plaﬁe of the plate which
contains the directions of interest). The modulus and Poisson's
ratio used were then the average values of the 4 specimens testedj
these were: E=30.l1 x lOspsi and V= 0.276. When these values are
used with the plate thickness of 0.257 inches, we obtain the plate
stiffness (D) as

3 .
D = ——ELEL~—-—— = 4.62 % 104 1b - in.

TR
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Fig.85 t Specimen Cutting Scheme
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Fig. g6+ Stress vs Strain, Tension Tests
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Ce. Holographic Table and Rquipment

The holographié'téble is shown in Figure 7 with all of the'

elements in the position that they‘wgre used. The table itself

- was oiiginally a cast iron machine base which was donated to the
University of Windsor by Ford Motor Comrany of Canada vhen they
closed out their testing facility in Windsor. It weighs
approximately 3200 lbs. and has slots machined in its surface
which are suitable for the clamping of components. The 1arge.mass
‘of the table is important in providing isolation from vibration.
The machine base also has the advantage that its working surface is
relatively.large; being approximately 5 feet square, allowing a
great deal of versatility in experimental arrangement.

The need for special concern in building a hologram taﬁle
arises due to the extreme amount of stability required in making
holograms. During the exposure of a hologram, all of the elements
must remain in the same relation within a fraction‘of a wavelength
of light (24.9 x 10-6inches for the present experiment). Rogers (34)
sﬁates that the maximum vibration allowed within the plate exposure
time is 1/8 of a wavelength which corresponds to about 3 micio
inches. This limitation is for a high quality reconstruction,
while some degradation is allowable in most experiments.

Stability of this type i; difficult to attain since building

floors usually vibrate and therefore act as a forecing function on
the table. The floor in the lab where our table is located is
vibrating at approximately 30 cycles per second. This frequency is
probably excited by electrical machinery in the building. There

are, however, transient vibrations of lower frequency whose origin

is unknowne.
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When the table was first set up in the ladb, it was placed on
four legs consisting of three layers of concrete blocks and 8 inches
of styrofoam (16" by 16" square). The styrofoam was topped by a
% inch thick steel plate of the same size which was bolted to the
bottom of the table. This flate distributed the load on the
styrofoam so that the maximum pressure ﬁas about 4 psi, which is
well below the yield point or oreep limit of styrofoam. The static
deflection under ioad of the styrofoam was about 0.10 inches, which
results in about 60% isolation from the 30 ops floor vibration.

In the summer of 1969, low angle transmission holograms were made
on this table but their guality was poor. The support system
.finally employed is shown in Figure 873 the main change being the
insertion of "AEON" hollow rubber springs. These springs were
obtained from Go Tract Systems Limited, Quebec, Canada, and are
Model No. 535/65. Under the load of the table (800 pounds per
leg), the springs deflect approximately 1.0 inches vhich results
in about 97% isolation from the flooxr excitation. These springs
have a further advantage in that they have cohsiderable hysterisis
losses, resulting in significant damping of vibrations.' Holograms
made on this table, after the installation of these springs, showed
that acceptable reflection holograms could be made of a guality
suitable for multiple exposure or live fringe hologram
interferometry.

Another element which required a considerable'amount of speciél
attention is the plate holder (shown in Figure T) which is
designed so that the plate can be repositioned to within 1/8 wave

length in all three directions (as well as all three possible rotations).
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This was done by positioning the glass plate back and.edges against
steel pins and holding it in place with powerful springs during the
exposﬁre; When the film is devéloped and replaced in the holder,

it is possible to rposition it within the specified tolerance. This
technique was suggested to us by T. Allan when he visited the University
in the spring of 1969.

Another element requiring special concern is the holdgr used
for holding the mirrors and the spatial filter. The holders are
made from a 3% inch diameter steel bar and weight aboﬁt 20 1bs.

The base of the holder is machined to allow only 3 points to rest
on the table, thereby preventing any rocking of the holder due to

irregularities in the table surface.
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Fig. 87 : Holographic Table Support; Showing Rubber
Springs, Steel Plate, and Styrefoam.
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D. Plate Clamping Arrangement

There were three primary objectives in designing the plate
clamping jigs they are: ‘

1) rigidity of the élamped edge

2) wversatility of loaaing and holding different size plates

3) mass - for stability during the holographic part of the

| experiment, '

The design arrived at for the plate loading system is shown in
Figure 88 . It basically consists of 4 parts; the base plate the
rear bearing block, the front beafing block, and the loading tover.
The base plate is a 14 inch square by 1 inch thick plate of low
carbon steel which as beén surface ground on both sides. All of
the other components are bolted to this plate, vhich can also be
clamped to the table, to prevent movement during the holographic
phase of the investigation. The rear bearing block is also low
carbon steel which has been surface ground on all sides. .It is
12" x 6" by 2 inches thick, and is bolted to the base plate Dby
14, % inch socket head bolts in two rows of 7 each. These two parts
are never disassembled, and the bolts are torqued down as tight as
possible. The front bearing block is also low carbon'steel, surface
ground on all sides, being 12" x 3" by 2 inches thick. As can be
seen in thé figure, it is bolted to both the base plate and the
rear bearing block. There are 5 bolts going through the plate to
the rear bearing block and 6 bolts holding the front bearing block
to the base plate. The plate is held in a vertical position, being
clamped at its base. There is two inches of the plate clamped in

the fixture, which shculd result in a satisfactory end condition.
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When a plate is placed in the holder, the bolts holding the two
bearing blocks together are tightened first. This ensures that
the plate is clamped along its whole length. Then the rigidity of
the system is imgroved by bolting the front bearing block to the
base plats.

The total weight of the plate holder was 135 lbs., making it
difficult to move but very stable. As well, it was clamped to the
table to prevent movements during the deflection analysis of the
plates.

The loads were apélied usiﬁg'a pulley and towef arrangement
as shown in FPigure 87. The tower has holes on 34 inch centres so
that loads caﬁ'be applied at any height, with an essentially

horizontal pull; in fact the maximum error can be expressed as:

AP = P(1 - —32 ) = 0.0003P oo (D.1)
100 + .0625 .

vhich means there is an error in the load of 0.03% which is
negligible. As well, the tower can be moved horizontally and
bolted at 1 inch centres; this alldws an error which can be
expressed as:

AP =P (1 - 10 ) = 0.0012 P e (D42)
100 + 0.25

which indicates an error in the load of 0.12%., The maximum
loading error can be both of these simultaneously, which gives:
ar, = {(1.0003 x 1.2212) - 1} P = 0.0015P e (D.3)
or a maximum error of 0.15% which can be safely neglected.
The loads are applied using a U shaped member which is shown
in Figure 87. Actually, there are two such members available,
one with a 2" clear throat and one with a 6" clear throat. These

are used to transfer the load from the rear of the plate to its
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front (i. e: hologram side), The actual load is applied by a
"1/8" diameter hardened steel ball, pressed into the loading
member. It is assumed that this can result in a satisfactory
approximation of a point load.

A Point of concern in the overall loading scheme being used
here is the friction loss in the pulley used in the loading tower.
it is obvious that some loss ﬁust exist, and that it is likely
significant. It is also likely that the losé is somewhat load

4dependent. Since there.are two major loading ranges involved, it
is necessary to consider them separately. With the loads used in
the holographic portion of the study, no appreciable friction loss
could be determined using a 10 1b. (maximum load) load cell.
However, the loads used in the bending moment determination, being
much higher (20 x in fact) resulted in a measured friction loss

of 5.0 lbs. This factor was of course considered in computing the

plate moments.
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