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ABSTRACT

Edge enhancement is encountered in a number of applications of
digital - image processing. Edges characterize the boundaries of
objects and are useful for segmentation, registration and object
identification in images. Numerous enhancement techniques are in
existence and various classes of these shall be briefly reviéwed
here.

An alternate technique has been proposed by Soltis [1] which
he termed ‘phase contrast filtering’ (PCF). It is the intent of
the thesis to examine this new technique on the basis of its edge
enhancement capabilities and to develop a method for the design of
two-dimensional (2-D) recursive digital filters to meet the
specifications of the PCF method. An examination of the PCF’s
applicability to enhancement of various images such as medical X-
rays, metal surfaces, etc., is also given.

Finally, a comparison between selected edge enhancement

techniques and the PCF technique is presented.
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CHAPTER 1

INTRODUCTION

1.1. A Simple Image Model

Figure 1-1 is a diagram of a scene viewed from some point in
space. The word ‘image’ refers to some bounded region of a scene

as shown below.

Image —H

;
Fig. 1-1 Image Defined as Region of Some Scene

B '.ll
The image itself is a 2-D light intensity function denoted
f(x,y) [2]. The value or amplitude of f£(x,y) at spatial co-
ordinates (X,y) gives the intensity of the image at that point.

The function f(x,y) must be non-zero and finite, i.e.;

0 < £(%x,¥) ¢ ® (1.1-1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As a simple model, f(X,y) is represented as the product of two
componeﬁts, the components being illumination and reflection [3].
The illumination component is the amount of source light incident
on the scene while the reflection component is the amount of light
being reflected by the objects in the scene. The two components
are denoted i(x,y) and r(X,y) respectively and are given in

equation (1.1-2).

£(x,y) = i(%x,y) ©(X/Y) (1.1-2)
where 0 £ i(x,y) ¢ » (1.1-3)
and 0 rxy) 1 \\\;777 ) (1.1-4)

~

In equation (1.1-3) the illuminatiog is bounded by infinity
since infinite incident light is not aFtainable.

In (1.1-4) O corresponds to total absorption while 1 suggests
total reflection. The component r(X,y) 1is determined by the

objects in the scene while i(X,y) is irrespective of the scene.

1.2, Digital Image Processing

A digital image is obtained from the function £(x,y) by
digitizing f(x,y) both spatially and in amplitude ([4]. The
spatial digitization is accomplished by image sampling, while

amplitude digitization is achieved by gray-level quantization.
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If the continuous image £(x,y) is sampled by equally spaced
samples.to form an N x N array in which each element of the array
is a discrete quantity, as shown in eqn.(1.2-1), then a digital

image is formed.

[ £(0,0) £(0.1) . . . £(0,N)
£(1,0) £(1,1) . . . £(1,N)

f(x,y) = . (1.2-1)
£(N,0) E(N,1) . - o EQUN)

Each element of the array is called a pixel or pel.

The digitization process requires a choice of the number of
gray-levels each pixel may assume (G) as well as the number of
samples of f(x,y) (N,N). In digital image processing these
quantities are almost always made equal to some power of two,
i.e.;

N = 2n (1.2-2)
and

G =2m (1.2-3)
where G is the number of gray-levels and n and m are integer
numpbers.

It is obvious that the larger G and N are, the closer the
relationship in eqn.(1.2-1) becomes [18-20].

Figure 1-2 will be used to explain the formulation of edges in

images.
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background (r3)

Spiece (r §%
1
() /7777

Fig. 1-2 Simple Image

In Fig.1-2 constant illumination over the image scene is
assumed. The object has reflectivity rj while the back-ground has
ro and rp ¢ ry. Therefore the image intensity at points on the
object is greater than the intensity of the background of the
image. At points on the edge of the object, the intensity of
f(x,y) has an abrupt transition. This abrupt transition is
characteristic of edges in continuous images and consequently
digital images ([5]. However, in digital images, edges are

characterized by abrupt changes in pixel value.

1.3. Edge Enhancement Techniques

The word ‘image’ will be used synonymously with ‘digital
image’ unless otherwise stated.

Since an edge point is a pixel location at which an abrupt
change in its gray-level occurs, then in general an edge detection
scheme would be to measure the gradient of the image. Two classes
of edge enhancement (detection) operators based on the above
concept are (i) Gradient Operators and (ii) Compass Operators [6-

8].
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For digital images, these operators, or masks, represent
finite differences.
Gradient operators are expressed as a pailr of masks Hj, Hp

which measure the gradient of the image f(m,n) in two orthogonal

directions x and y. Therefore the gradient vector is expressed
as;
2 2 1/2
g(m,n) = [ gy (m,n) + g2(m,n) (1.3-1)
g2(m,n)
fg(m,n) = tan-1 |——— (1.3-2)
gi(m,n)

where g(m,n) is the magnitude and 6g(m,n) is the direction. The
values gj(m,n) and gp(m,n) are the gradients in the x and y
directions respectively. The magnitude is often expressed as in

eqn.(1.3-3) for its ease of implementation on digital machines.

g(m,n) = | gy(m,n) | + | ga(m,n) | (1.3-3)

A list of some common gradient operators is given in Table 1-
1. Note that for a uniform region on the image f(m,n) the
operators yield a zero value.

A pixel location (m,n) can be declared an edge point if g(m,n)
exceeds some threshold value ‘t’. By thresholding, an edge map

e(m,n) can be created of the image f(m,n) as shown below [11-13].
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1, g(mmn) > *t’ (1.3-4)
e(m,n) =
0, g(mmn) < *t’ (1.3-5)
Usually ‘t’ is chosen such that 5 to 10 percent of pixels with

largest gradients are declared edges.

Hp | Hp
I
Roberts [0] 1 [1] O
-1 0 0 -1
- ) - i

-1 0 1 -1 -1 -1
Smoothed | 3 (0] 1 0 [0] O
(Pre-witt) -1 0 1 1 1 1
-1 0 1 -1 -2 -1
Sobel -2 [0] 2 0 [0] O
-1 0 1 1 2 1
, [ .1 0 1 -1 -{2 -1
Isotropic |[-12 [0] 12 0 (0] O
-1 0 1 1 42 1

Table 1-1 - Common Gradient Operators

Compass operators measure the gradient in a selected number of
directions [8]. Table 1-2 shows four compass operators for North

going edges. An anticlockwise circular shift of the 8 boundary
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elements gives a 45°

example, for mask #1 the 8 rotations are;

1 1 1 1 1 1-1 F
1 -2 1(N) 1-2-1 QW) 1-2-1 (W
-1 -1 -1 1-1-1 1 1-1
-1 -1 -1 -1 -1 1 -1 1 1
1 -2 1() -1 -2 1(sE) -1 -2 1 (E)
1 1 1 1 1 1 -1 1 1

O = /2 + k 1/4, k =

rotation of the gradient direction.

1 -1

1 -2

1

-1

1

As an
-1
-1 (SW)
1
1 1
-2 1 (NE)
-1 1

If we let gx(m,n) denote the compass gradient in the direction

0’ e s s g

defined as;

g(m,n) = niXH gk(m,n) 1]

7, then the gradient at (m,n) is

(1.3-6)

As in the case of the previously discussed gradient technique,

an edge map may be obtained by thresholding the gradient. For

higher anqular resolution the size of the compass gradient mask

may be increased.
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1 1 1 1 W 2 5 5 5
1([(-2) 1 -3 [0] -3 KIRSCH
L-l -1 -1 | L—3 -3 -3 _
3 ( 1 1 1 - 4 1 2 1
[0] O 0 [0] O
-1 -1 -1 L-l -2 -1

Table 1-2 - Various (North) Compass Gradients

0 -1 0 -1 -1 -1 1 -2 1
-1 [4] -1 -1 [8] -1 -2 [4] -2
0o -1 0 -1 -1 -1 1 -2 1

Table 1-3 - Three discrete Laplacian Operators

The Laplacian [9] which is the second derivative, is also used
to detect edges. The Iaplacian is defined in equation (1.3-7) and

three discrete approximations to this equation are given in Table

1-3.
32f 982f
sz = — e — (lo3—7)
3x2  dy?

Since the second derivative is involved, this operator is more
sensitive to noise than the previously defined gradient

techniques. Figure 1-3 demonstrates the effect of applying the

Laplacian operator to an edge.
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a) I(x)
[}
Bf 1 "y
b) —
ox ]
|
32f
c) -_—
9x2 zero crossing

Fig. 1-3 - 1-D Example of First and Second Derivatives

A better technicque for the use of the Laplacian is to use the
zero crossings as an edge detection principle.
One proposed method [9] approximates the Laplacian of the

Gaussian function and is defined as

k(m2 + n2)

h(mn) = [ 1 -

———} (1.3-8)

2 g2 exp[_ 2 02

In equation (1.3-8) 02 controls the mask size and k is a
normalization constant so that the sum of the elements in the mask
is zero.

Another useful technique involves Stochastic Gradients [11].
These are used when the image is heavily corrupted by noise.

These techniques however require that a mask be designed based

upon observations taken over various regions of the image.
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10
Stochastic techniques are beyond the scope of this thesis and
will not be discussed further. Details of such schemes are

described in [11].

1.4. Problem Statement

The problem is to explore the PCF technique as an edge
enhancement method and to examine its degree of variability and
applicability, A comparison between the PCF technique and various
proven methods must also be performed. A fundamental aspect is
also to demonstrate 2-D recusive digital filter design to carry

out PCF.

1.5. Thesis Organization

Chapter 2 is a theoretical explanation of PCF with comparison
to various gradient techniques. Digital images processed by the
PCF method and other techniques are presented.

Chapter 3 deals with the methodology developed for the design
of 2-D digital filters required for PCF and a development for a
design technique is presented.

Chapter 4 presents a comparative study, for the purpose of
edge detection, between the PCF technique and various gradient
techniques.

Chapter 5 provides a summary and conclusion of the research
material covered in this thesis with suggestions for extensions

and future work.
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CHAPTER 2

PHASE CONTRAST FILTERING FOR EDGE ENHANCEMENT

2.1, Background Information

In sections 1.2 and 1.3 a background of image theory and
characteristics of edges was presented. Figure 2-1 represents a
typical cross section of a continuous image f(x,y) with two edges

being defined.

£(x)

™ e

edges
Fig. 2-1 - Cross Section of Arbitrary Continuous Image
From Fourier Series theory ([17], any periodic function f(x)

can be expressed as an infinite sum consisting of a fundamental

wave and its harmonics.
Figure 2-2 shows an ideal square wave and one consisting of

components up through the fifth harmonic.

11
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VANV

Fig. 2-2 - Ideal Square Wave and Fourier Representation
Based Upon components Up To Fifth Harmonic
The absence of high frequency components has distorted the
square wave to the effect shown above. In a digital image the
absence of these components would likewise disfiqure or blur the
edges in the image. Consequently, edge information in an image is

characterized by high frequency components [3,4].

2.2. Phase Contrast Filter

The Phase Contrast Filtering technique attempts to extract the
high frequency components of an image via the scheme shown in Fig.

2"'3 .
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X(21,22) P H(Zz1,22) ‘(? Y(21,22)

Fig. 2-3 - Phase Contrast Filtering Technique

In the block diagram of Fig.2-3, X(z, 23) represents a
digital image, H(2z1, 2z3) represents a 2-D digital filter with
specified magnitude and phase response and Y(2z;, 23) represents
the resulting edge enhanced image.

The ideal magnitude and phase characteristics of H(zj, zp) are
given in Fig.2-4. The substitution z = ejwT [13-15] has been made
and the response over the quarter plane wj(+) and wp(+) has been

shown for normalized frequency, i.e.; 0 Swiy S 7, i=1, 2,

.
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IH(elW1, elW2)] ARG[H(elW1, eJw2)]

Fig. 2-4 - Ideal Magnitude and Phase Response for H(zi, 23)

The magnitude response of the filter is required to be unity
over the entire frequency range in order that the magnitudes of
the frequency components in the image X(zj, 23) are unchanged
after filtering. The phase response 1is zero up to some chosen
cut-off frequency wo, and equal to -x radians (-180°) for
frequencies beyond we in the +w; and +wy directions. Examining
the block diagram of Fig. 2-3, 1f the image X(z31, 22) 1is filtered

by H(z1, 2z3) with magnitude and phase responses given by Fig.2-4
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the resulting filtered image will have equal magnitude as the
originai but frequency components above w. will be 180 degrees out
of phase with the original. Consequently, when the subtraction
operation is performed, the magnitude of frequency components
below we will be equal to =zero while those above we will be
doubled. Analytically;

let wp = eJ¥l and wy = ejwz

Y(wy, w2) = X(wy, w2) H(wy, w2) - X(w1, w2) (2.2-1)
where

H(wy, wp) = | H(wy, wp) | /ARG (H(Wwj, Ws)) (2.2-2)
and IH(wy, wp)l =1, 0<¢wj$7,1=1,2 (2.2-3)

0,0 <4 w2+ w2 < uc
ARG(H(Wwy, w2))

Y

(2.2-4)

~x, e S w2 + w2 <7

.

therefore

X(wy, w), 0 $ 4 w2 + w2 < wg
X(wy, w2) H(wy, w2) =

-X(Wwy, Wwp), We S A w12 + w22 L

~

(2.2-5)
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0 0S4 w2 + w2 ¢ g

Y(wy, w2) = -
2 * X(W1, W), We $4 w12 +wyd (7

\

(2.2-6)
The resulting image Y(z3, 22) will contain only the high

frequencies (edges) of the original image X(z21, z3).

The phase response in Fig. 2-4 1is shown to be circular
symmetric over the quarter plane defined by wj(+) and wp(+) [21-
22]. However, square symmetry as well as circular symmetry for
the phase response were both examined. The results shall be

presented at the end of the chapter.

2.3. Reduction of The PCF Technicue

The PCF technique presented in Fig. 2-3 may be reduced to a

single block as follows:

Y(z1, 22) = X(21, 22) H(21, 22) - X(21, 22) (2.3-1)

Y(21, 22) = X(21, 22) [H(Z1, 22) - 1) (2.3-2)

let H' (291, 22) = H(21, 23) - 1 (2.3-3)
Y(21, 22)

then H' (21, 22) = —/ (2.3-4)
X(Zl, 22)
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The reduced block diagram is shown in Fig. 2-5 where H’ (271,

2z5) is given by (2.3-4) and X(21, 22) and Y(23, 2Z3) are unchanged.

X(21,22) H'(231,22) ’YKzlrzz)

Fig. 2-5 - Reduction of the PCF Technique

Substituting z; = eJ¥1 and 2z; = eJ¥W2, the real and imaginary

parts of H’(z1, 23) are given by:

[ Jwy jw2) ( Jwy jwo)
R|H' e , € I| = R{Hle , € f -1 (2.3-5)
L J1. L J
and
[ Jwy Jjwa ( Jwy jw2)
I{H le” ~ , e 1| =1lale ~,e I (2.3-6)
L J { J

The ideal magnitude and phase responses of H(ejwl, elW2) are
unchanged. The ideal responses for H' (eJ¥1, elW2) are shown in

Fig. 2-6.
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w2

Fig. 2-6 - Ideal Magnitude and Phase Responses

For H'(elWw1, ejw2)

The magnitude response is that of an ideal highpass filter
with a gain of 2 and the phase response is zero over the frequency
quarter plane wj(+) and wa(+).

»Discrete 2-D digital filters were designed based on the ideal
response of H'(21, 23) and implemented via the block diagram in
Fig. 2-5. This reduced method was abandoned because of poor edge
enhancement results which were due to large discrepancies between

the desired phase response and the designed phase response.
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2.4. Phase Contrast Filtering In The Frequency Domain

Convolution in the time domain is the equivalent to
multipliction in the frequency domain and vice versa [19,20]. The
filtering of images in the spatial domain is a convolution process
and is equivalent to multiplying together the Discrete Fourier
Transforms of the image and the filter. The 2-D convolution

theorem is given in equations (2.4-1) and (2.4-2).

xX(n,m) * h(n,m) <{==> X(u,v) H(u,v) (2.4-1)

X(n,m) h(n,m) <==> X(u,v) * H(u,v) (2.4-2)

where * denotes convolution.

Due to this property, many functions which are not attainable
in the time domain, the ideal £filter response given in Fig. 2-4,
are precisely represented in the frequency domain.

The PCF technique may be implemented in the frequency domain
through the use of the FFT and IFFT.

The 2-D DFT of the image X(n,m) of size N x N is obtained (see

section 3.3) and expressed as;

X(u,v) = R(u,v) + j I(u,v) (2.4-3)

fOI.' u,V = 0’ l, 2, LR N_l

where R(u,v) and I(u,v) are the real and imaginary components
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respectively. The magnitude and phase are obtained by;

1/2
IX(u,v)| = [(R(u,V))2 + (I(u,v))2] (2.4-4)

ARG[X(u,v)] = TAN-1[I(u,v) / R(u,v)] (2.4-5)

The phase is altered by the addition of 6(u,v) where;

f(u,v) = - 7 exp[Dg/D(1,V)] (2.4-6)
and

D(u,v) = [u2 + v2]1/2 (2.4-7)
for u,v=0,1,2, ..., N-1

A cross section of the function 8(u,v) is given in Fig. 2-7.

f(u,v) O * * » D(u,v)/Dg

Fig. 2-7 - Cross Section of 8(u,v)

The ideal phase response shown in Fig. 2-4 would not be used

because of the ringing effects it produces [4,28].
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The real part and imaginary part of the modified image is

obtained by;

R’(u,v) = |X(u,v)| * cos{ARG(X(u,v)) + 8(u,v)] (2.4-8)

I'(a,v) = IX(u,v)| * sin[ARG(X(u,v)) + 6(u,v)] (2.4-9)
and

H’(u,v) = R’ (u,v) + j I'(u,v) (2.4-10)
for u,v=20,1,2, ..., N-1

In order that the result of the application of the Inverse
Discrete Fourier Transform (IDFT) to H’(u,v) be real, Hermitian
Symmetry conditions must be maintained [25]. Therefore the array
H’(u,v) must be extended to size 2N x 2N before application of the
IDFT. See section 3.3 for details of the array extension and the
definition of Hermitian Symmetry.

Freqﬁency domain techniques produced results similar to that
produced by the 2-D recursive digital filter where coefficients
are given in Table 2-1. Their major difficulty is the large times
and memory required for computing the 2-D FFT and IFFT for images
of size 64 x 64 pixels this approach required about 4 minutes of
CPU time on an IBM-AT, whereas the filtering approach, using order
1 2-D recursive digital filters, takes less than 15 seconds to

filter images of size 256 x 256 pixels.
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2.5. Results and Comments

The. results of applying the Scbel operator and the PCF
technique, with two different cut-off frequencies, to two images
are shown in Figqures 2-8 and 2-9. The images are 256 X 256 pixels
with 8 bit resolution.

The Sobel operator enhances the major edges of the original
image but fine details on the images are not as pronounced. The
PCF technique enhances even the slight variations of the image as
can be seen in Fig. 2-8 (c) and (d). The effect of increasing we
in the PCF technique is also presented.

Table 2-1 shows the £filter coefficients used for the PCF

technique of Figures 2-8 (c) and (d) and 2-9 (c) and (d).

| we = 1.0 | we =1.75
agp | -3.095840 | -1.634320
ag1 |  2.396338 | 1.328521
ajo I 2.396338 I 1.328521
al | -1.553688 | -0.237538
boo | 1.0 | 1.0
bgy | -0.616835 | -0.224075
bio | -0.616835 | -0.224075
byj ! 0.446490 | 0.252944

Table 2-1 Filter Coefficients Used For PCF Technique
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Both of the above filters are circular symmetric over the
quarter-plane wy (+) and wa(+). The PCF technique was applied to
images using a filter with a square symmetric response. This type
of symmetry produces an image in which edge enhancement is lacking
in various directions. As a result a circular symmetric filter

response is preferred for PCF edge enhancement.
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(b) Image Processed by Sobel Operator
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Fig. 2-8 - (c) Image Processed by PCF with ws = 1.0

(d) Image Processed by PCF with we = 1.75
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Fig. 2-9 - (a) Original Image

(b) Image Processed by Sobel Operator
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CHAPTER 3

FILTER DESIGN FROM MAGNITUDE AND PHASE INFORMATION

3.1. Introduction

In this chapter, a design technique will be presented for
designing a 2-D digital filter to meet given phase and magnitude

specifications.

3.2. Problem Statement

The desired magnitude and phase responses are specified in the
frequency domain, see Fig. 2-4. The problem is to design a 2-D
spatial (discrete time) filter which has an impulse response that

approximates the specified impulse response of a PCF.

3.3. Design Procedure

The design technique utilized minimizes the error between the
ideal impulse response, obtained from the magnitude and phase
specifications, and the general case impulse response of a 2-D
digital filter of order N.

With magnitude and phase specified over the entire frequency
plane the impulse response is immediately attainable [27].

The filters frequency response can be separated into real and
imaginary components as shown in eqgn.(3.3-1) and eqgn.(3.3-2)
respectively.

28
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[ Jui Juz ]] | [ Juy jwz] [ [ Jui jwz]]
R|H|e ; € = Hle ; € cos |ARG{H(e ;s ©
(3.3-1)
[ [ Ju jwz]] [ Jup  Jwg ] _ [ [ Jwy jwz]]
I|H|e ; © = |H|e ; € sin|ARG{H(e y €
(3.3-2)

The real and imaginary components can be discretized by
sampling R and I over the wj; and wp plane as shown in equation

(3.3-3) [25].

R (Wlu, wzv]

U, V = O, 1, 2’ LEC IR J k"l (303"'3)
I(wlu, wzv)

and
H[”lur W2v) = R(wlu, wva + jI[wlu, w2V) (3.3-4)

k is thé number sémples taken over wy and wp with the sampling
increment equal§to r/K.

To obtain the impulse response, the Inverse Discrete Fourier
Transform (IDFT) is applied to H(wlu, wgv).

The DFT and IDFT are given in equations (3.3-5) and (3.3-6)

respectively for the 2-D case.
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K-1 L-1 un vm
H(u, vy = L L h(n, m) exp|-j27r |— + — (3.3-5)
n=0 m=0 K

for u = O, 1’ 2, LR Y 4 K"l aIldv = 0, 1, LK 2 4 L"‘l
1 K-11L-1 un  vm
h(n, m) =— L L H(u, v) exp|]j 2x |— + — ||(3.3-6)
KL u=0 v=0 K L
fOr n= 0, 1’ 2’ LRCECAY 4 K—l andm = 0’ 1, 2’ s o0y L—l

If the number of samples in wj is the same as those in wp then
K = L. For simplification, the substitution

u = w (3.3-7)
u

vV = Wy (3.3-8)
v

is made and (3.3-4) can be written as (3.3-9).

H(u, v) = R(u, v) + j I(u, v) (3.3-9)

To obtain the impulse response h(n, m), (3.3-9) is substituted
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1 K-1 K-1 j2r
h(n, m) =— L L R(u, v) + j I(u, v)| exp|— (nu + mv)
k2 u=0 v=0 k
(3.3-10)
for uw, v=0,1, 2, ..., K-1

In order to guarantee that h(n, m) be real, the condition that
H(u, v) be Hermitian symmetric [25] must be met. The Hermitian

Symmetry conditions are given by;

R(u, v) = R(k-u, k-v) (3.3-11)

I(u, v) = -I(k-u, k-v) (3.3-12)

R(u + k/2, v) = R(u, k-v) (3.3-13)

I(u + k/2, v) = -I(u, k-v) (3.3-14)
for u, v=2090,1, 2, ..., K/2-1

H(u, v) is defined over an array of size k x k. In order to
maintai;i the desired H(u, v) and the required symmetry conditions,

H(u, v) must be extended to size P x P where

P=2sk (3.3-15)
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The extended array is shown in Fig. 3-1.

0 k-1 2k-1
0 7 <
7 N
re N
1 4
k-1
3
N 2 P
\ /s
2k-1 A L
(2k-1,2k-1)

Fig. 3-1 - Extended Response For H(u, v) to
Obtain Hermitian Symmetry

Quadrant 1 contains the original k x k samples of H(u, V).
Quadranﬁ-B is obtained by applying equations (3.3-11) and (3.3-12)
with P = 2k directly to H(u, Vv). Quadrant 2 is a shifted version
of 1, and quadrant 3 is obtained by the application of (3.3-13)
and (3.3-14) to the array in quadrant 2.

The result of the appliction of the IDFT to the extended array
is a real impulse response of size P X P. However, the desired

ideal k x k impulse response is contained in the first k x k

samples of the P x P array.
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The general equation for a 2-D digital filter of order N is

given in equation (3.3-16) [25,26].

N N -i -j
E L ajjz1 22
Y(z1, 2z2) i=0 j=0

H(zy1, 22) = (3.3-16)

X(z1, 22) N N -i -]
1+ L L bijjz1 22
i=0 j=0
i=j#0
The condition i=j#0 states that 1 and Jj cannot be equal to 0
coincidentally.
The 2-D difference equation for H(zj, 23) from above can be

written as;

N N N N
y(n, m) = L L ajj x(n-i, m-j) - L L b3 5 y(n-i, m-j)
1=0 J=0 1=0 J=0
i=j#0 (3.3-17)

To ébtain the impulse response [19-21] of the general case

filter of egn.(3.3-17) the input becomes;
X(n, m) —=> &(n, m)

where §(n, m) is the 2-D unit impulse with characteristics;
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1, n=m=20 (3.3-18)
6(n, m) = .
0, otherwise (3.3-19)

With the 2-D unit impulse as the input, the output y(n,m) goes to

h(n,m);
N N N N
h(n, m) = & L aﬁtﬂmi,md)— I I bﬁlumi,md)
i=0 j=0 i=0 j=0
i=j#0 (3.3-20)

Equation (3.3-20) gives the general case impulse response for
a 2-D digital filter of order N.
An error function E 1is created between the ideal impulse

response, denoted hI(n,m), and the general case impulse response;

K-1 K-1 2
E= L L h(n,m) - hI(n,m) (3.3-21)
n=0 m=0 '

where K is the number of samples of the ideal impulse response.

Substituting (3.3-20) into (3.3-21) yields;

K-1K-1 [N N N N
E= L L L L ajj 6(n-i, m-j) - & L bij h(n-i, m-3j)
n=0 m=0 [i=0 j=0 i=0 j=0
i=j#0
12
- hI(n, m)l (3.3-22)

Minimization of the error function (E) requires the

procurement of the partial derivatives of E with respect to
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coefficients ajj and bjj. E is minimum when its derivatives with
respect to coefficients ajj and bjj are equal to zero. This is

shown in equations (3.3-23) through (3.3-25).

OE K-1 K-1 N N N N
=2 6L L L L ajj 6(n-i,m-j) - ¥ L bij h(n-i,m-3j)
dago n=0 m=0 ti=0 j=0 i=0 j=0
i=j#0
- h(n,m)] [G(n,m)} =0 (3.3-23)
OE K-1 K-1 N N N N
=2e¢}§ L L L ajj 6(n-i,m-j) - £ L bij h(n-i,m-3j)
dag1 n=0 m=0 li=0 j=0 i=0 j=0
i=j#0
- h(n,m)] [d(n,. m—-l)] =0 (3.3-24)
OE K-1 K-1 N N N
—— =29°§L I £ L aj§ é(n-i,m-j) - L L b3 4 h(n-i,m-3j)
obny n=0 m=0 li=0 j=0 i=0 j=0
i=j#0
- h(n,m)] [h(n—N, mrN)] =0 (3.3-25)

The result of the above process is a 2 * (N+1)2 - 1 system of
linear_equations which can be solved for the coefficients aij and
bij .

When solving the above equations the assumption of a casual

system is used, that is;
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h(inm) =0, for n or mO (3.3426)

The solution to the system of linear equations above results
in the formulation of a 2-D digital filter with magnitude and
phase responses approximating the specified responses.

The implementation of the PCF technique is accomplished by
applying the designed filter H(u,v) to a digital image I(n,m) of

size S x S. The filtered image I’(n,m) is expressed as;

N N N N
I'n,m) = L L aﬁiumi,mj)— ¢ L bﬁIPUbLIWﬂ
i=0 j=0 i=0 j=0
i=j#0 (3.3-27)
for n'm= 0, 1, 2, LRI 4 S—la

The edge enhanced image E(n,m) is obtained by taking the
absolute value of the difference between the original image and
the filtered image.

E(n,m) = | I'(n,m) - I(n,m) | (3.3-28)

for n,m= 0, 1’ 2, v o0y S—lo
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3.4. Results and Comments

The filter design technique presented in the previous section
was used to design filters of order 1, 2 and 3. Order 1 filters
produced the results presented in the thesis. Higher-order
filters designed to meet the ideal response gave a ringing effect
on the edges produced in the image. This same effect was also
observed when using the ideal response in the convolution approach
described in section 2.4. The designed higher order filters have
a magnitude response which peaks near the cut-off frequency, and a
phase response which is very close to the ideal. The peaking of
the magnitude response could have also contributed to the ringing
(or blurring) effect. Magnitude and phase responses of a designed
third order filter are shown in Figs. 3-2(a) and (b). The filter

coefficients are shown on page 38(a).
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Fig. 3-2 - (a) Magnitude Response of 3rd Order Filter

(b) Phase Response of 3rd Order Filter
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CHAPTER 4

A COMPARATIVE STUDY

4.1. Introduction

This chapter will be devoted to examining the phase contrast
technique as an edge detector. A comparison of various gradient

techniques and the phase contrast approach will be presented.

4.2, Edge Enhancement

In developing an edge detection performance criteria, one
should distinquish between necessary information and additional
information to be obtained from the detector. As an example, it is
necessary for a detector to determine the pixel location of an
edge; moreover, it is attractive if it can also provide the slope
angle of the edge.

Three major errors involved with edge location detection are

shown on the next page.

39
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(a)

(b) () []

(d) ' (e)

Fig. 4-1 - Edge Location (a) Image Segment; (b) Ideal Detection;
(c) Fragmented Detection; (d) Offset Detection;
(e) Smeared Detection.

A commonly used figure of merit for edge detection techniques

[2,16] is defined by;

1 In 1
R=— )X (4.2-1)
IN i=1 1 + ad
where
In = MAX(IT, Ip) (4.2-2)

In represents the number of pixels declared as edge points and
Iy is the number of ideal edge points. The scaling factor a is
adjustable to penalize edge locations that are local but offset
from their true positions. The distance between an ideal edge
point and a pixel location declared as an edge point is given by

d.
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A comparison of various gradient techniques and the phase con-
trast téchnique was conducted using the figure of merit given
above with a = 1/9. The test image, with 8 bit resolution,
consisted of a 64 x 64 pixel array with a horizontal edge running
across it.

Also added to the image was independent White Gaussian noise
with standard deviation op.

The signal to noise ratio (SNR) is defined as;

SNR = — (4.2-3)

where h is the height of the edge.
For each result given in the comparison, the edge detection
technique used was optimized to obtain the highest possible value

of R. As an example, the threshold values ‘t’ were varied in each

case to maximize R.

4.3. " Results and Comments

Figure 4-2 gives the results for various SNR ratios, which
are summarized in Table 4-1. The edge width for this comparison
was set at W = 1 pixel,

Figt_.lre 4-3 gives the results for a comparison based on edge
width. The edge width (W) was varied from 1 to 4 pixels while the

SNR was kept constant at 100.
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Of the edge detection schemes compared, other than the PCF,
the Sobel operator appears to have the best overall performance
and the Roberts the poorest. This was affirmed by examination of
images processed by the two techniques.

The graphs of Figures 4-2 and 4-3 seem to show little
difference between the Sobel and the PCF for high SNR.
Examination of Table 4-1 gives the exact values. The difference
between the two techniques is apparent by examination of Ip, the
number of pixels declared as edge points. Taking Ip and R both
into consideration, for a high SNR the PCF outperforms the Sobel
because of the Sobels tendency to give a smeared indication of
edge location. This is confirmed in Fig. 4-4.

The original image in Fig. 4-4 consists of objects of
different intensity with white Gaussian noise with ¢ = 4.0 added
to it. The Sobel operator has detected all major edges but the

edge map is ‘thick’ in comparison with the PCF technique.
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1 - Phase Contrast
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4 - Roberts

Fig. 4-2 - Edge Location Figure of Merit
As a Function of SNR. W =1, h = 50.
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100

80 _ ._T

70 —_ —

60 — —

Phase Contrast
Sobel & Isotropic
Smoothed

l Roberts

30 —_ — —

20 e —_ —_

= 1N =
|

10 — _ —

Edge Width, W

Fig. 4-3 - Edge Location Figure of Merit
As a Function of Edge Width. SNR = 100, h = 50
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SNR Phase
Contrast Sobel |Isotropic |Smoothed Roberts
100 R 98.4 95.27 95.0 95.0 90.0
Ia 62 74 124 124 63
50 R 95.48 95.12 95.0 94.9 90.0
Ia 63 78 124 120 63
20 R 75.48 95.0 94.88 95.00 84.17
In 66 88 90 80 62
10 R 52.98 85.7 80.29 80.53 65.18
In 66 63 81 64 68
5 R 25.76 62.74 60.65 60.24 42.29
In 70 61 65 63 66

Table 4-1 - Edge Detection Comparison Data

h=50,W=1, I = 62.
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()

(b)

(a)

Fig. 4-4 - (a) Original Image
(b) Image Processed by Sobel Operator

(c) Image Processed by PCF with wo = 1.4
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CHAPTER 5

DISCUSSIONS, EXTENSIONS AND CONCLUSIONS

5.1. Introduction

The previous chapters have presented the PCF technique, a
design method for obtaining the required filters for this
technique and a comparison between the PCF and various gradient

techniques. Conclusions and extensions of the PCF are presented.

5.2. Extensions

Section 3.4 presented the filter design technique’s inability
to obtain a unity magnitude response for filters of order of 2 or
larger. An additional approach to this problem which may be
explored is to use the function in equation (5.2-1) as the
starting point for the minimization procedure.

It can easily be proven that this function provides a unity

magnitude response over the entire frequency plane.

N N -i -j
L L ajjz1 22
i=0 j=0
H(zy, 22) = ) - (5.2-1)
- N N -1 =J
LI ani,N-j2Z1 22
1=0 ]J=0

Future work could also explore the possibilities of obtaining
the phase response, of which the cross-section is shown, in Fig.

5-1 for normalized frequency.

47
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f(wy,wp) O Wel Wz ¥ , (w12+uy2)1/2

Fig. 5-1 Cross-section of Alternate Ideal Phase Response

With a phase response as shown above, unwanted high frequency

noise would be eliminated when incorporated in the PCF technique.

5.3. Conclusions

A new method has been developed for the edge enhancement of
digital images. This method offers a flexibility through its
choice of we and filter order which is unequaled by gradient
techniques (beyond the selection of mask size).

Filters with a square symmetric phase response, when used in
the PCF technique, instead of emphasing actually de-emphasize
edges which have a slope of -1 relative to the x and y axes of the
image. = This type of response, although not suited for edge
enhancement; might find a useful application in an area such as

pattern recognition. This is deemed worthy of further study.
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A fundamental point is the question of the ideal phase
responsé necessary for the PCF technique. This ideal phase
response although not attainable in the discrete time domain can
easily be implemented in the frequency domain. Results have shown
that when this ideal response is applied to an image through the
PCF technique, the resulting image suffers from ringing or "Gibbs
phenomena". Therefore a filter with a smoother response might be
more useful in practice than that depicted by the ideal phase
response in this thesis.

The data obtained in the comparison of the various techniques
for fiqure of merit versus signal to noise ratio and edge width
agrees with results obtained when applying the various techniques
to images. Of the gradient techniques the Sobel operator has the
best performance and the Roberts the poorest.

The PCF technique is capable of enhancing small changes in
pixel values whereas the gradient techniques examined have an
averaging effect so small variations in pixel values are not as
pronounééd. This sensitivity however, creates a noisy image when
the PCF is applied to images with a low SNR. Practically, images
with a low SNR would require the stochastic gradient methods
mentioned in section 1.3. |

The PCF technique has been shown to be effective for edge
enhancement. The implementation of the PCF technique is
straightforward and execution time, for filter order 1, is roughly

equal that of a 3 x 3 gradient technique.
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For conciseness all the data obtained during the course of
the study has not been presented. However, the data is available
on floppy disk through the author. Results are available of the
following: (a) the PCF technique applied in the frequency domain
through the use of the FFT and IFFT, images showing the perform-
ance of the PCF technique encorporating a square symmetric phase
response, results of the use of higher order filters and results
showing the épplication of the various gradient techniques

compared in this thesis.
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this program determines the filter coefficients by solving a
matrix determinaed by the minirization of the error betwean the
ideal and general impulse responses for the 1 dimensional cascge.
real a(20,20)+shC129)yx{20)+232C20)0ybb(20),yC129)

e BN o 2NN ¢ BN ¢

(2]

e the 1-d impulse response is read from file for003.dat

print%, ° enter the order of the filter~
readxen
Dr‘int#,
read¥y,gain
numsamp=129

.-

enter the gain~”

¢ read the impulse response

opan(éyfile="tor003.dat"ystatus="0ld")
do 20 i=lynumsamp
M read(4.+*)h({i)
continue
close(4)
do 67 i=1,20
7 aa(id)=0.0
bb (i)=0.0

[z B g B o B - ]

set the matrix coeff. equal tc zero

do 100 i=1,2%n+1
100 do 100 j=1y2*h4‘2
¢ ali,ji)=0

¢ set upper left matrix diagonal = to 1

do 1 1=1,n+1

do 1 j=1lyn+1
if(i.eqe«jldaCiyji=1
continue

n 7 £ -

determine lower left coefficients.

k=2
do 2 i=n+2,2%n+1l
do 3 J=ken+l )
R} aliy jd)==h(j—k+1)
continue
k=k+1
continue

7 € ) S~

determine upper right matrix coefft.

k=1
do 4 i=2.n+1
do 5 j=1'k
5 aCiy jen+1d==h(i-j>
continue
k=k+1
continue

7 7> £ S~

determine far upper right column
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do 6 i=1lyn+1
aliys2%n+2)=h(i)

o 0 0 o

determine lower right matrix

k=0
do 7 i=n+2,2%n+1
k=k+1
1=0
do B J=n+2,2%n+}
1=1+1
sum=0
do 9 nn=ly,numsamp
ll=nn-1
kk=nn—k
if(llelteleorakkeltal)goto S
3 sum=sum+h(nn=1)%*%h{(nn—-k)>
continue
aliyJjd=sum
continue
continue

0D 0 ~4 oo

determine lower far right column.

k=2
J=2%n+2
do 10 i=n+242%n+l
sum=0
do 11 nn=ksnumsamp
3 sum=sum+h(nnl)*h{nn~-k+1>
continue
k=k+1
BT aCiyjd)=—sum
continue
m=2%n+2
e nl=nk2+1

R the matrix is solved using gauss gorden with partial pivoting

call gauss(asnlymy xd
do 62 i=1lyn+1l
aa(i)=x(id*gain
writel(9,%x)aadi)d
J=i-1 .
h print 33,3,83(;)
L 62 format{” “97a("9i2+°)"e5xy 2qual”yfl0.5)
! continue
do 63 i=n+24.2%n+1
bb(i-n-1)=x(i)
write(9y%x)x{i)
= Jj=i-n—-1
3 print 34,j.x(i)
63 format(® “,°bC"9i297)%95xy"equal 9y fl0.6)
e centinue .

file for0Q4.dati* « note this impulse response is designed for

L
e
R generate impulse response of the designed filter and store it in
e
¢ up to order 5 filter onlye.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



y(1d)=aa(l)
k=1
do T5 i=24n+1
1=i-1
sum=0e0
do 76 j=lsk
sum=sum+bb(j)*y(l)
1=1-1
continue
y(id=aa(id—sum
k=k+1
continue
do 71 i=n+2,NUMSAMP
I yCid)==bb(1)%y(i-1)=-bb{(2)%y(i=2)=~bb(3)%y(i-3)-bb(4)*y(i—=4)—bb{(5)*y(i-5)

continue

do 72 i=1,NUMSAMP
72 writelasXxd)y(id)eh(i)
%9 continue
stop
end

N 8888888888383888888888888388835883888388888883888888888838

subroutine gauss{aynlymyx)
real a(20,202+xC20)

m=n+l and a is the éugmented matrix
solution is given in x

o D 7D

n=nl
do 10 j=1,n
big=absCaljsJj))d
l1=j
do 20 k=j+1l,n
if(bige.lteabs(alkyjll))then
big=abs(alky jdd
1=k
20 endif
continue
if{bigeltele=7)then
print%, ° no unique solution”®
return
endif )
do 30 k=l,n+1
temp=alj.k)
3 aCjiskd)=adl,ykd
allsykd=temp
QQ do 40 k=j+l,n+l
aljskd=aliskdrzalis I
a(isjd=1.0
do 10 i=1l,yn
if(i.eqe.jlgoto 10
3 do 50 k=j+l,n+l
1 aliskd=a(iskd)=-aliyjd*xaljrk)
| aieJjd)=0.0
9 do 60 Jj=1yn
x{jd=aljsn+l)
return
end
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this program determinaes the filter coefficients by solving a
matrix determined from the minimization of the error between
the ideal and general case impulse responses.

real a(50,60)9sh(129,5,129)yx(60)y2aC60)sbb(60)yy(129,129)

e 2N 2 22 N e

the ideal impulse response is read from a file called for02l.datsx
this impulse response must be supplied.

Pe R o BN « I o J

print%y, “ enter the order of the filter~
read%ysn -
print%,” enter the desired gain”
read¥ygain
ni=n+l1

¢ nls=nl¥%nl

¢ read the impulse response

open(éyfile="for02l.datystatus=0l1ld”)
read(es%)(C(h(iyJ)93=19129]4+1i=1,129)
¢ close(4)

¢ set the matrix coeff. aqual toc zero

do 100 i=1,60
loy do 100 j=1,60
' afiyjd)=0

¢ set upper left matrix diagonal = to 1

do 1 i=1l,n1ls

do 1 3=1,nls
if(ieeqgejlalisji=1
continue

€ £ > ~—~

determine middle upper right coefficientse.

1
1
o 2 i=1,nls
if{(leegel)dgoto 3
do 4 j=1,1-1
4 a(iyje+nis)==h(kyl-3d
k| continue.
1=1+1 _
if(l.gtenl)then
1=1
k=k+1
endif
continue

k
1
d

P e B « B o

determine upper right matrix coeff.

do 5 num=1l,n

1=1

k=1

do 6 i=num¥nl+l,nls
do 7 j=1,1
ll=nls+n+(num=1)%nl+j
alielld==h(kyl=-j+1)
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o O 0 o0

led

continue

1=1+1
if(l.gtenldthen
1=1

k=k+1

endif

continue
continue

determine lower left matrix coeff.

do 8 i=nls+l,2%nls-1
do B J=1,nls
aliyjd=alj,id

determine middle lower right matrix coeff.

do 11 num=l,ynl
ifCnume.egeldnnli=n
if(numegtealdnnli=n+}
do 12 i=1yennl

do 13 j=1yn

sum is determinaed

sum=0

do 14 nn=1,129

do 15 mm=1,129

Jil=mm=j

jJi2=nn—num+l

ji3d=mm—i

if{num.gtal1ljj3=jj3+1
if{jjlelteleorejj2elteldgoto 15
ifC(jj3elt.l)goto 15
sum=sum+hinn, jj1d)%h(jj2s3j3d
continue

continue

if({nume.eqgel)ii=nlis+i
iflnume.gtaldii=nls+n+(num=2)%{n+l)+i
aCiiyj+nls)=sum

continue

continue

continue -

determin; lower right matrix coeffe.

do 22 numi=1l,n

do 22 num=1,nl1
if(nume.oaqe.ldnnli=n
if(num.gt.l)nnli=nil
do 17 i=1,nnl

do 18 Jj=1,n1

sum is determined

sum=0

do 19 nn=1,129
do 19 mm=1,129
Jil=nn=-numl
Ji2=mm—-j+1
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56
Ji3=nn-num+l
jié=mm-i
if{numagtel)jjé=jjé+l
if(jjlelteleorejj2eltelidgoto 19
if(jjlelteleorejjéeltaldgoto 19
sum =sum +h(jjl,sjj2)*h(jj3,334)
continue
ifCnume.ege.l)ii=nls+i
if(numegteldii=nls+n+(num=2)%k(n+ld+i
Jiznlsen+(numli-1D%(n+1)+]
aCiisjjd=sum
continue
continue
continue

1y

determine far upper right column

Jij=2%nls
do 30 i=1lynl
do 30 j=1l,n1
ii=Ci=12%knl+j

0 aliiy, jjd=h(i,Jj?
continue

2 N 7 W

determine far lower right column

do 31 i=1,ynl
if(i.eq.l1)then
nan=0
nnl=n
else
nan=1
nnl=nl
endif
do 31 Jj=1,nnl
if{ieeqQeld)ii=nls+j
if(iegteldii=nls+n+(i-2D%Nnl+j
sum=0
do 32 nn=1,129
do 32 mm=1,129
Jil=nn-i+1}
Jij2=mm-3j+nan
if(jjteltelaorejj2elteldgoto 32
3 sum=sum+h(nnymmd*xh(Jjl, jj2)
continue
3 a(iiy jjd=~sum
continue

nni=2%nls~1
Q m=nnle+l
the matrix which is to be solved is written in file for0l6.datix
e writel16,%)CCa(isJ)yj=192%nls)yi=1,2%nls-1)
¢ the matrix is solved using gauss gorden with partial pivoting

call gaussCaynnlysmex)
k=0
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do 62 i=1ynl
do 62 jJ=1lsynl
k=k+1
ii=i-}
ji=3-1
aaCk)=xCkd)%gain
writeCl9,%d)aack)
3 print 83yiisjjraalk)
82 format(® “97a(€ 91291257 ) e5xy"equal”yf10.6)
continue
do 63 i=1l,n1
if(i.eqge.l)then
nnl=n
else
nnl=nl
endif
do 63 j=1lynnl
k=k+1
ii=i-1
Ji=j-1
if(ieeqe1)3j=J
write(19,%)x(k)
8 print 84,iis3jex(k)
83 format(”® “e°b(“9i2,i29°) s5x9"2quUal®yf10.6)
continue
% goto 99
stop
¢ end

C
¢ 38888888888886888888888888888888388888888888888888888888

subroutine gauss(asnnlymyx)
real a(60,60),x(80)

m=n+l and a is the augmented wmatrix
solution is given in x

<7 N o 0

n=nnl
do 10 j=1l,n
big=abs(a(j»jd)
1=
do 20 k=j+1l,n
if(big.lteabs(Calky j))) then
big=abs(alky j))
1=k

20 endif
continue
if(bigeltale~7)than
print%, “ no unique solution”’
return
endif
do 30 k=1yn+1
temp=al(jskd

30 a(j,k)=a(1.k)
aClyk)=temp

40 do 40 k=j+1,n+¢1l
aljskd=aljskdZali,»
aljsdd=1.0
do 10 i=1,n
if(i.eqejdgote 10
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do 50 k=j+l,n+1

% aCiyk)=alisk)=aCiysJ)%¥alIrk)
a(iyjd)=0.0
80 do 60 j=1l4n
x(jd)=a(jsn+l)
return
end
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this program generates ideal pha2se and magnitude responses in the
frequency domain and generates the ideal impulse response for the
1 dimensional case.

«o 0 0 000

REAL PI W(25568), THETA(256)ysMAG(256),4X(256),Y(258)
INTEGER NyN1,4N2

nrint%, ° enter the cut off frequency in radians”
read¥*, wc

N=128

N2=256

PI=4.0%ATAN(C1.0)

N1=C(WC/PID*{N+1)

printk,nl

DELTA=PI/(n+1)

the phase response is 0 form w=0 to wc and it is equal to =-pi
form w = we to pi

CrPEI0 OO

W(l)=delta
DD 1 I=1,4N1

1 THETA(CI)=0.0
WCID=W(I-1)+DELTA

DO 2 I=N1+1,N+1}
THETACI)==PI
WCID=W(I-1)+DELTA

[ow AN 2 BEE on B o ¥ 4

determine real and imaginary part of frequency response

DO 3 I=1,yN+1
XCIX=COS{THETA(Id)>
YCI)=SINCTHETACID)

e N e BN ¢ BN 7%

generate odd and evan symetry of function

KOUNT=N

DO 56 I=N+2,N2
XCI)=XCKOUNT)
YCI)=—YC(KOUNT)
KOUNT=KOUNT-1
CONTINUE,

N ar e N )
1

o DO 57 J=N+1,N2
W(JI)=W(J-1)+DELTA

determine idft of the frequency responsae
the real part is stored in a file called for003.dat;s*

e r A e B o SR ¥, ]

M=3

ISIGN=-1

N=n2

CALL FFT(X,YyNyMy,ISIGN)
WRITE(99%)” IOFT IE h(n) *
D0 94 I=1,N2
write(9y%)x{id,yy(id,i
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% continua

n=128
do 77 i=1lyn
XCid)=x(id)*(=1D%*i

€17 1=142
5 DO 51 I=1,n2
1 WRITEC3,%IXCI)
STOP
. END
2 if isign =-1 the idft is determined
¢ if isign =+1 the dft is determined

SUBROUTINE FFT(XsYsNsMsISIGN)
REAL X(256),Y(256)
N2=N

DO 10 K=1,M

N1=N2

N2=N2/2
E=6.283185307/N1
A=0.0

DO 20 J=14N2
C=C0SCAD

S=SINCAD :
IFCISIGN.EQe=1)S5=-35
A=J%E

DO 30 I=JyNyN1
L=I+N2

XT=X(I>=-X(L)
XCIDd=XC(Id+X(L)
YY=Y(Id-Y(L)
YCID=Y(Id+Y(L)D
XCL)=CxXT+S%YT

3 YCLY=CRYT-S*XT
2 CONTINUE
1 CONTINUE
) CONTINUE
¢
¢
c THIS IS THE BIT REVERSAL PROGRAM
¢
1
! J=1
N1=N-1

DO 10& I=1yN1 _
IF(I.GE.JJGOTO 101
XT=X(JD
X(Jd=XCID
X(Id)=XT
XT=Y{Jd)
Y(JI=Y(I)

loy YCI)=XT

102 K=Ns2 .
IF(K«GE.JJ)GOTO 103
J=J=-K
K=K/2

103 GETD 102

104 J=J+K
CONTINUE
IF(ISIGN.EQ«.-1)THEN
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DO 33 I=14N
13 XCId)=X(Id/N

YCId=YCI)/N

ENDIF

RETURN

END
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this is the program that generates an ideal phase and magnitude
response in the frequency domain and determines the ideal imulse
resSponse.
The phase response is 0 from u equal 0 rad. to w equal wc
and -pi from w equal wc to pi.

O 0 0O 0 o000

REAL PISTHETA(C2569256) yTEMR(256,256),TEMI(256,5256)9XX1(25645256)
real temp(35,35)
INTEGER NyN1,y,N2
print%, * enter the lower cut off frequency in radians”
read¥xy,wc
N=128
N2=256
PI=4.0%ATANC1.0)
xinc=pi/129
N1I=CWC/7PI)¥(N+1)
¢ printikenl

(g

¢ generate zero phase from w =0 to wc

DO 1 I=1,N+1

DO 1 J=14N+1

theta(i,jl)=0

PP1=1

PP2=J
XX1=SQRT(PP1x%k24PP2%Xx2)
IF(XX1aGTaNIDTHETA(TI »J)==-PI
CONTINUE

This small section writes in file for(00B8.dati:% the ideal
phase response you have chosen so you may display it using
the hid.for program imediately after executing this prorgam

Lo Ao B e BN ¢ 2NN v NN ol

nsamp=35

xinc=pi/35
n2i=Cwuc/pidEnsamp

do 96 i=1l,nsamp

do 986 J=lensamp
temp(i,jl=0

pl=i

p2=j
xx1=sqrt(plxx2+p2%%2)

9% if(xxlegeen2ld)temp(iyJd=—pi
continue )
write(B8y%)nsampynsampyXxincyxinc
do 97 i=lsnsamp
do 97 Jj=lsnsamp

Y write(8y%)tempCi,j)
continue

2T D O

determine real and imaginary parts of filters frequency response

0C 3 I=1,N+1

D0 3 J=1,N+1

TEMR(CI»J)=COSCTHETAC(IyJ))
3 TEMICYsJ)=SINCTHETA(I,J))
& continue

generate odd and evan symetry of function
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P e B e e B e B e P e el d 7O

Far 2R v 2R ur 2 av 20 o 2N uv B a@ 4

GENERATE QUADRANT 4

k=n+1

do 4 i=n+l,yn2

l1=n+1

do 5 j=n+l,n2
TEMRCi»J)=TEMR(Cky1)
TEMICIZJ)=~TEMI(KsL)
L=L-1

K=K=-1

GENERATE QUADRANT 1

DO 6 I=1,N

L=N

DO 6 J=N+24N2
TEMR(IZJI=STEMR(I,HL)
TEMICIZJI)=TEMI(CI,L)
L=L-1

GENERATE QUADRANT 3

K=N

DO 7 I=N+2,N2

L=N2

DO 8 J=2,4N
TEMR(IZJI)=TEMR(K,yL)
TEMICILJ)=-TEMI(K,L)
L=L-1

K=K~-1

L=N

DO 9 I=N+2,N2
TEMR(IL1)=TEMR(L,s1)
TEMI(I,1)=-TEMI(L,1)
L=L-1

determine IDFT of filter response

M=8

ISIGN=-1

N=n2

CALL DDFET(XXIyNyMyISIGNy TEMR,TEMI)
n=128

filters impulse response is in array temr(i,Jj)

store the impulse response in file called "FDRO21.DAT$%x”

WRITEC21s%)CCTEMRCI9JD)sJ=19yN+1Dd9I=14N+1)
STOP
END

THIS ROUTINE DETERMINES THE 2-D DFT OF A REAL ARRAY XX1
IF ISIGN=1 WHERE THE REAL PART AND IMAGINARY PART ARE
STORED IN ARRAYS TEMR AND TEMI RESPECTIVELY.

IF ISIGN=-1 THE IDFT IS OETERMINED ANC THE REAL AND INMAGINARY
PARTS ARE STORED BACK INTO THE ARRAYS TEMR AND TEMI WHICH
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20

50

45

64
CONTAIN THE ORIGINAL REAL AND IMAGINARY PARTS RESPECTIVELY.

SUSBROUTINE DOFFT(XXIgyNyMyISIGNsTEMRy TEMI)

REAL XXI(2569256)9 TEMR(2569256),TEMI(2569256)9X(256),Y(256)
INTEGER NyMy, ISIGN

IFCISIGN.EQ.-1)GOTO 47

THE DO 10 LOOP DETERMINES THE ROW DFT

DO 10 I=1,yN

DO 20 J=1,N
XCJI=XXIC(IyJ)

¥Y(J)=0.0

CALL FFT{(XyY9yNyM, ISIGN)
DO 30 J=14N
TEMR(I,JI=XCJ)
TEMICIZJD=Y(J)

CONTINUE

THE DO 40 LOOP DETERMINES THE COLUMN DFT

DO 40 J=1,N

DO S50 I=1,N
XCIX=TEMRCI, J)
YCID=TEMI(I,J)

CALL FFT(X3YyNyMy,ISIGN)D
DO 60 I=1,4N
TEMR(CI,JI=XCI)
TEMICIZJ)=Y(I)

CONTINUE

GOTO 48

THE DD 41 LDOP DETERMINES THE ROW DFT FOR THE IDFT

DC 41 I=1,N

DO 42 J=1,N
XCJI=TEMR(IyJD
YCJII=TEMICIsJ)

CALL FFTC(XyYyNyMyISIGN)D
DO 43 J=1,yN
TEMR(CIZJI=XCJ)
TEMICI»JId=YC(d)
CCNTINUE .

THE DO 4& LOOP DETERMINES THE COLUMN CFT FOR THE IDFT.

00 44 J=1,N

DO 45 I=1,yN
XCID=TEMR(I,J)
YCID=TEMICIyJ)
CALL FFT{XsYyNyMyISIGN)
DO 46 I=1,N
TEMR(I,J)=X(ID
TEMICIZJ)=YC(ID)
CONTINUE
RETURN

END

THIS ROUTINE DETERMINES THE DFT AND IOFT OF A COMPLEX ARRAY
THE REAL PART IS STORED IN X AND THE IMAGINARY PARY IN Y
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FOR ISIGN =1 AND -1 THE DFT ANC IDFT IS DETERMINED RESP.
M IS LOG(BASE 2) OF N.— EX. FOR N=128, M=7

«r

SUBRDUTINE FFT(XyYsNsM,ISIGN)
REAL X(256),Y(256)
N2=N
DO 10 K=1,M
N1=N2
N2=N2/2
E=6.283185307/N1
A=0.0
D0 20 J=1,N2
C=C0SCA)
S=SINCA)

| IFCISIGN.EQe=1)S5=-§
A= J%E

| DO 30 I=JyN,N1

‘ L=I+N2
XT=XCI)=XCL)
XCI)=XCID+XCL)
YT=YCID)-YCL)
YCID=YCID+YCL)

| XCLY=CHXT+SXYT

YCL)=CXYT—S$%XT

CONTINUE

CONTINUE

c CONTINUE

¢
¢ THIS IS THE BIT REVERSAL PROGRAM
t
\

b J=1
N1=N-1
DO 104 I=1,N1
IF(I.GE.J)GOTO 101
XT=XCJ)
XCJI=XCI)
XCId=XT
XT=YCJd)
YCJD=YCID
YCI)=XT
}g; K=N/2 ,
IF(K.GE.J)GOTO 103
J=J=K
K=K/2
GOTD 102
J= J+K
CONTINUE
IFCISIGN. EQ.—1) THEN
DO 33 I=1,N
1 XCI)=XCII/N
YCID=YCI)/N
ENDIF
RETURN
END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65



66

this program determines the discrete impulse response for a filter
of order n. the filter coefficients are read from a file called
“for0l9.dat:*x".

" >0 o0

real h(129,129),a(393),b(3,3)
print%,” enter filter order”®
read¥y,n

ni=n+l
open{2,file="for019.dat“ystatus="0ld")
do 30 i=1l,enl

do 303=1yn1

read(2ys¥dalisJ)

print¥sali,j)d

continue

do 31 i=1,n1

do 31 j=1l4n1
if(iefogeleandajeeqg.ld)goto 31
read(2,%)b{iyj)

print%,b(i,J)

continue

do 10 nn=1,129

do 10 mm=1,129

sum=0.0

do 12 i=1.n1

do 12 j=1l,yn}

Jjl=nn-i+1

ji2=mm—-3j+1
if(jijleltel.or.jj2«lteldgoto 12
sum=sum+b (i, J)*h(jj1,ji2>
continue

ACnngmm)=—=sum
if{nnele.nl.andemmele.nldhinnymmd)=h(nnymm)+alnnymm)
continue
write(21,2)0Ch{iej)syi=19129)+i=14129)
stop

and

i

12
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THIS FFROGFRAM ADDS WHITE GAUSSIAM NOISE WITH STANDARD DEVIATION "=d
TO AN IMAGE "img .

ogaonaon

real sd,rl,rd,. x (16384),twopi
integer img(128,128)
double precision xiu

C
writel(k,k)" enter the desired standard deviation®
read (X, X)sd

C
twopi=8.0Xatan (1.
nl=128%128

C

c the seed for the generator is 5.0d0

C
in=0,0d0/214748786547 . 0d0O
do 10 i=1,81922
call rand(xix)
ril=sngl (xixn)
call rand(xix)
ra=angl (i)

R (i) =adXsqrt(-2Z.0%alog (ri)) ¥cos (twopi ¥r)
¥ (1 +8192) =sd¥saqrt(-2.0%alog(rl1))¥xsin(twopi*¥rd)

10 continue
kount=0
do 20 i=1,128
do 20 ;=1,128
ount=kount+1

20 img (i, jY=x (kount)

C

c store the noisy image.

c .
open(Z,file="temp.img’,form="unformatted’® ,status="neaw’)
write(3)Y(dimg (i, 53, 35=1,128),i=1,128)
close (3)
stop
end

c

CHREKKKEKRKKEEKKKKKKKEKKKKRKEKEKKKKKEKKKKKKE KK KKK KRKRKKKK KKK KK

c
subroutine rand (xix)
double precision xiy

c

C: -

c m—modulus is Z2XK¥kI1—-1 = 2,147,483,647

c a-multiplicator- is 7x%5 = 1&,807

c iv—-seed— equals I Ffor the Ffirst call and zit for subsequent calls.

c

cC

c the form of the generator is z{(i)=z(i-1)%ka

c

Hin=winXk16807,.0d0
wiv=dmod (stix, 1.0d0)
return

end
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C
C THIS FROGRAM FERFORMS THE Z-D FILTERING OF LLARGE SIZE IMAGES GIVEN
c COEFFICIENTS OF THE 2-D DIGITAL RECURSIVE FILTER.
C
™ WRITTEN BY DR. M. SID-AHMED, ELECTRICAL ENGINEERING DEFARTHMENT,
C UNIVERSITY OF WINDSOR,WINDSOR ONT.
C
REAL.¥4 a(10,10) b (10,10)
REAL X4 IX(10,288),IY(10,2586),IYT,MIN,MAX
CHARACTER IARFAY (256)
CHARACTERX 13 FILN
MIN=0
MAX=255
WRITE(X,S1)
=1 FORMAT (* ENTEFR SIZE OF IMAGE. TE 64 X&4,128 X128,256 (E2D6 ETC. W)

READ (X, X)NSIZ
WRITE (X, )
FORMAT (° INFUT FILE NAME———=73 "\)
READ (X, " (A13) ")FILN
OFEN(1,FILE=FILN,FORM="BINARY",STATUS="0LD")
WRITE (X, 4)
4 FORMAT (° OUTFUT FILE NAME——=> *\)
READ (X, * (A1T) " H)FILN
OFEN(2, FILE=FILN,FORM="BINARY" , STATUS="NEW®)
WRITE (X, 6)
& FORMAT (* FILTER COEFFICIENTS FILE NAME=—=3°,\)
READ (X, " (A1) *)FILN
OFEN (7, FILE=FILN, FORM="UNFORMATTED" , STATUS="0LD")
WRITE (%, %) *INFUT DRDER OF FILTER®
READ (X, %) N
WRITE (%, ¥)N
DO 70 I=1,N+1
DO 7O J=1,N+1
READ (7)YA (I, d)
70 CONT INUE
DO 71 I=1,N+1
DO 71 J=1,N+1
READ (7Y E{(I,J)
71 CONT INUE
CLOSE (7)

l'_.“

WRITE (X, %) N
DO 17 I=1,N+1

17 WRITE (X, %) (A(I,J),J=1,N+1)
DO 18 I=1,N+1

18 WRITE (X, %) (B(I,J),J=1,MN+1)

c

c

DO 8 I=1,N+1
DO 8 J=1,NSIZ

IX(I,3)=0
8 IY(I,J)=0
F=0
c
c
DO % L=1,NSIZ
READ (1) (IARRAY (J) J=1,NS12)
DO 10 J=1,NSIZ
10 IX(1,3)=ICHAR (IARRAY (J))
C .
c
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DO 2T M=1,NSIZ

SUM=0. O

DO 11 I=1,N+1

DO 11 J=1,N+1

IF ((M+1=J) .GT.O) THEN
SUM=SUM+A (I, J)HKIX (I M+1=T)
IF((I.EQ.1).AND. (J.EQ. 1))GOTO 11
SUM=SUM=B(I,J)XIY(I,M+1-J)

ENDIF

11 CONTINUE

23 1Y (1, M) =8UM
=k

IF (k. EQ. (N+1)) THENM
DO 21 I=N+1,1,-1
DO 14 J=1,NBIZ
IYT=AES(IY(I,J)-IX(I,J))
C I¥YT=1IY{(I,J)
IFCIYT.LT.MIN) IYT=0O
IF(IYT.GT.MAX) then
maMuw =iyt
IYT=MAX
endif
NMN=TIYT
14 IARRAY (J) =CHAR (NN)
21 WRITE(2) (IARRAY (J) ,J=1,NSIZ)
=0
ENDIF
IF((L.EA.NSIZ) . AND. (K. NE.O)) THEN
PO 22 I=K,1,~1
DO 15 J=1,NBIZ
IVT=ABS(IY(I,J)—-IX(I,J))
C IYT=IY(I,d)
IFCIYT.LT.MINDY IYT=0O
IF(IYT.GT.MAX) then
mayuu =iyt
IYT=MAX
endi f
NM=1IYT
13 IARRAY (J)=CHAR (NN)
22 WRITE(Z) (TARRAY (J) ,J=1,NSI2Z)
ENDIF
DO 12 I=1,N
DO 12 JI=1,NSIZ
IY(N+2-1,J)=IY(N+1-T,J)
IX(N+2~-T,J)=IX(N+1-1I,J)
CONTINUE
CLOSE (1>
CLOSE(2)
write(X,¥X)manux
STOF
END

tJ

g ~
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