Issues involved in the empirical testing of a multivariate predictive system.

Robert T. Forsyth
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Forsyth, Robert T., "Issues involved in the empirical testing of a multivariate predictive system." (1974).
Electronic Theses and Dissertations. 6715.
https://scholar.uwindsor.ca/etd/6715

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

NOTE TO USERS

This reproduction is the best copy available.

ISSUES INVOLVED IN THE EMPIRICAL TESTING OF A MULTIVARIATE PREDICTIVE SYSTEM
by
ROBERT T. FORSYTH
B.A., Brock University, 1973

A Thesis
Submitted to the Faculty of Graduate Studies through the Department of Psychology in Partial Fulfillment
of the Requirements for the Degree of
Master of Arts at the University of Windsor

Windsor, Ontario, Canada
1974

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
(${ }^{\text {B }}$

UMI Microform EC53126
Copyright 2009 by ProQuest LLC.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway
PO Box 1346
Ann Arbor, MI 48106-1346

Ab.9053

(C)Robert S. Forsyth 1975

556541

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dr. M. Morf
APPROVED BY:

Dr. H. Minton

ABSTRACT

This study utilized previously collected data from two samples of 187 and 184 college students to investigate problems inherent in multivariate data analysis as well as patterns of cannabis
use. The multivariate issues considered were: the effects of the
distributions of the scores of the variables; the use of factor
scores as well as raw data in regression analysis to facilitate
"conceptual cross-validation"; effects of sequential orthogonalization
on regression equations; and the utility of criteria exhibited by
factor analyses and canonical correlations. It was found that in
the field of marijuana research, the usual criterion - frequency of
use, was not suitable both for measuremeant and inferential reasons.
Using canonical analysis two patterns of use were found -- moderate
and abnormal, which were related to social and personality predictors
respectively.

ACKNOWLEDGEMENTS

I acknowledge the help of the members of my committee: M. Morf, H. Minton, R. Daly, and S. Sadava. Appreciation is also extended to Marybeth Heilbronn and Larry M. Starr.
Page
ACKNOWLEDGEMENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
Chapter
I INTRODUCTION 1
II METHOD 13
III . RESULTS 23
IV . DISCUSSION 41
V CONCLUSIONS 58
Appendix A Proof for Gamma Scores 64
Appendix B Programmes Written for this Thesis 65
Appendix C Correlation Matrices 67
REFERENCES 75
VITA AUCTORIS 78
Table
1 Variables Used 14
2 Univariate Distributions 24
3 List of Factors for Functions and Demo. 28
4 Factor Loadings of Criteria 32
5 Stepwise Multiple Regression, Raw Scores, Sample 1 33
6° Stepwise Multiple Regression, Raw Scores, Sample 2 34
7 Stepwise Multiple Regression, Functions Factors, Sample 1 35
8. Stepwise Multiple Regression, Functions Factors, Sample 2 36
9 Stepwise Multiple Regression, Demo. Factors, Sample 1 37
10 Stepwise Multiple Regression, Demo. Factors, Sample 2 38
11 Summary of Multiple Correlations 39
12 Canonical Correlations 40

List of Figures

Figure Page
1 Simple, Non-Recursive, Social Learning Mode1 5
2 Scattergrams 25

Chapter I
Introduction

One of the major aims, if not the only aim of psychology, is useful and accurate prediction of human behaviour. The approaches used vary with the particular behaviours studied, ranging from the study of minute reflexes, to overall life patterns, carrying with them constructs from conditioned stimuli to self-concept. For behaviour of medium complexity, the social learning approach, developed by Rotter and his colleagues (eg. Rotter, 1954; Rotter, Chance \& Phares, 1972) or a similar approach may be most useful, provided that constructs are made sufficiently clear. It is the intent of this thesis to operationalize some of these constructs, to investigate methods of testing a predictive system, and to consider specific issues that pertain to this system and generally to complex multivariate data sets.

In this study the behaviour of interest is marijuana use, specifically in college students. Studies on the drug have proliferated, perhaps in keeping with greater public interest in its use and abuse in the last few years. Although much of the literature deals with the physiological and psycho-pharmacological properties of cannabis, the psychological viewpoint demands an exploration of social and personality correlates and the consequent predictions of who uses the drug, and with what effects. Recent studies by Jessor (Jessor, Jessor \& Finney; 1973) and Sadava (1974b) have had some success in this task, by viewing marijuana use as a functional behaviour, "caused" by variables both of an interpersonal (environmental) and of an intrapersonal (personality) nature, and as an ongoing process
changing over time. This conception of the problem may be traced back to Rotter's social learning framework, and a short description of this approach (based mainly on Applications of a social learning theory of personality, chapter 1, 1972) would make the later work more meaningful. Rotter's Social Learning Theory

In general, Roter's Social Learning Theory utilizes the ideas of expectancy and the empirical law of effect, as underlying constructs emphasizing the interaction of the individual and his meaningful environment. Thus, the approach is much more cognitive in nature than most other types of learning theory. Specific efforts are directed to determing the subject's perceptions of his goals and his subjective: expectancy that they will be fulfilled according to his own past experiences. Needs and goals are social in nature since they are initially fulfilled by others. Behaviour becomes available if it has led to reinforcement, either directly, or through observation and modelling. Generalization takes place, with functionally related behavious/reinforcers leading to the same goals/ satisfactions. Cognitions are more important in this theory than others since the generalization may be of symbols and their referents. The general formula used to predict behaviour is: $B P=f(E \& R V)$ where $B P$ is the probability of the behaviour, relative to other behaviours in the specific (psychological or perceived) situations; E is the expectancy or subjective probability of a particular reinforcer occurring as a result of a certain behaviour; and RV, the reinforcement value, is the relative preference for a given reward with expectancies for all rewards kept constant.

So, for instance, the potential for marijuana smoking to occur, in
college, in relation to peer approval, is a function of the expectancy of the occurance of peer approval, following marijuana smoking in college and the value of peer approval. This is a specific example, and may be expanded by including other reinforcements, both positive and negative, other expectancies etc.

Jessor's Approach
Jessor has taken Rotter's system, developed in a clinical setting, and applied it to studies on alcohol use (eg. Jessor, Carnan, \& Grossman, 1968; Jessor \& Finney, 1973). Marijuana use is thought of as "problem behaviour... considered to be purposeful, goal oriented or functional (pl, 1973)". Variables have been classified into structures and systems by Jessor: a personality system consisting of motivational instigation, belief and personal control structures; a perceived environment system with these and other behaviours ranging from closely related to "normal". His methodology consists of administering questionaires at two or more points in time, using multiple-regression techniques, and gain scores (over time), on social and personal variables to increase "accounted-for" variance. He was able to assign users and non-users to their respective groups with 73% accuracy and to achieve multiple R's of up to .39 (Jessor, et $\mathrm{a} 1,1973$).

Sadava's Approach

Sadava's approach has focused in on marijuana use specifically. One major problem in marijuana research is that while ultimate clinical interest may lie in determining what leads to abuse, research has been defined in terms of use versus non-use. Even this distinction is made in different ways by various researchers. For instance the category of "light use" ranges from one to twenty experiences, and there are at least twenty-eight
labels for use patterns (Sadava, 1974a). To cut down this confusion, Sadava designed a short group of questions, with four stages of use (Sadava, 1972) with the additional stages of non-user and "Have stopped" added (Sadava 1974b). For the non-user and the four user stages this scale has Guttman-scale type properties. Continuing to refine criteria, Sadava uses the following measures; frequency of use, time span as a user, contexts of use and adverse consequences of use in a sample comprised of drug users. These measures have average intercorrelations of .23 with a maximum of . 54 (Sadava, 1974b), indicating relationships amongst criteria, and the possibility of patterns of drug use. The complex relationships between behaviour and predictors may be obscured by a poor choice of criterion. Meaningful correlate may be hidden from our investigation if the criterion is poorly defined, or if its scale properties are ignored.

Sadava's schema of variable systems may be seen in Figure 1. The major difference between the systems of Sadava and Jessor is that in the former cognitive functions are conceptualized as a set of predictors of drug use (by Sadava), and as being predicted by other systems of variables. Using his system Sadava (1974b) has found multiple $\mathrm{R}^{\prime} \mathrm{s}$ of up to .62 for variables predicting criteria measured at the same time, and multiple R 's up to . 58 for longitudinal analyses with samples of drug users. Both Jessor and Sadava use longitudinal analyses, and often utilize both the scores on variables at the earlier point in time, and change scores in these variables, to predict behaviour at the second point in time.

Social Learning Theory: Applied to Complex Operations
In the analyses of both these researchers, the variables have been analysed bit by bit, using sub groups of predictor variables to predict

Simplified Non-recursive

Social Learning Model

Behavior

2. Cognitive Functions
(eg. fear, coping)
3. Criteria
(eg. range,
consequence consequences)

Proximal Causes

Distal Causes
3. Personality
(eg. locus of control, trust)
each criterion, then another sub group to predict each criterion and so on. Perhaps this is due to a lack of a statistical framework, or of a notational system that would allow easy manipulation of the large number of variables and extensive data. Thus the first stage of this thesis is the expression of Sadava's and Jessor's systems in a notation that allows manipulations of variables in order to deduce and to subject to verification, hypotheses about relationships between predictors and criteria. This is a necessary step since some of the terms used (eg. 'related structures', 'covary with other kinds of problem behaviours') and also relationships between variables (eg. $\mathrm{BP}=\mathrm{F}(\mathrm{E} \& \mathrm{RV})$) are hard to operationalize. Furthermore, although the underlying principles assume an integrated predictive system, the tendency is to examine concepts and variables in isolation, and with less than complete thoroughness.

Notation

Let $B_{q t n}$ be a criterion observation [section 1 of Figure 1] for individual $\mathrm{n}(\mathrm{n}=1, \ldots, \mathrm{~N})$ at time $\mathrm{t}(\mathrm{t}=1, \ldots, \mathrm{~T})$ on criterion $\mathrm{q}(\mathrm{q}=1, \ldots, \mathrm{Q})$ which after appropriate transformations (s) is in Z-score form ($\operatorname{Exp}\left(\mathrm{B}_{\mathrm{qtn}}\right)=0$, $\left.\operatorname{Var}\left(\mathrm{B}_{\mathrm{q} \mathrm{tn}}\right)=1\right)$. Similarly, let $\mathrm{C}_{1 \mathrm{tn}}(1=1, \ldots, \mathrm{~L})$ be a normalized variable for cognitive functions [section 2 of Figure 1]; $P_{m t n}(m=1, \ldots, M)$ be a normalized variable for personality characteristics [section 3 Figure 1] ; $E_{k t n}(k=1, \ldots, K)$ be a normalized variable for perceived environmental data [section 4 Figure 1]; and $D_{s t n}(s=1, \ldots, S)$ be a normalized variable for demographic data [section 5 Figure 1].

Let $\Delta\left(\mathrm{B}_{\mathrm{q} t \mathrm{n}}\right)$ be a normalized variable corresponding to the unpredicted part (i.e., change over time-delta) of $\mathrm{B}_{\mathrm{qtn}}$ from $\mathrm{B}_{\mathrm{q} 1 \mathrm{n}}$. Similarly, $\Delta\left(\mathrm{C}_{1 \mathrm{tn}}\right)$, $\Delta\left(P_{m t n}\right), \Delta\left(E_{k t n}\right)$ and $\Delta\left(D_{s t n}\right)$.

Let $\mathrm{F}_{\mathrm{rn}}(\mathrm{B})$ be the factor score for the r 'th factor $(\mathrm{r}=1, \ldots, \mathrm{R})$. for individual n, taken from the $\mathrm{B}_{\mathrm{q} t \mathrm{n}}(\mathrm{D})$.

Let $\Gamma_{m t_{n}}^{\rho}(E+C)$ denote a normalized variable consisting of that covariance-free part (gamma) of $P_{m t n}$ remaining after the variance due to the E and C variable systems is partialled out, and so on for combinations of P, E, C and D.

Let $R_{B q . E C P}$ be the multiple correlation between the fth variable of B and the variables of E, C and P.

Thus using the above notation for measurement times 1 and 2, it is hypothesized that an equation of the following general form leads to better estimations of criteria at time 2 and higher multiple R's than obtained previously:

$$
\begin{aligned}
\hat{B}_{q 2 n}= & \sum_{s=1}^{S} r_{q s} F_{s n}\left(D_{s 1 n}\right)+ \\
& \sum_{k=1}^{K} r_{q k} F_{k n}\left(\Gamma_{k \ln }^{\varepsilon}(D)+\Gamma_{k 2 n}^{\Delta E}(D)\right)+ \\
& \sum_{m=1}^{m} r_{q m} F_{m n}\left(\Gamma_{m 1 n}^{P}(D+E)+\Gamma_{m 2 n}^{\Delta P}(D+E)\right)+ \\
& \sum_{i=1}^{L} r_{q 1} F_{1 m}\left(\Gamma_{11 n}(D+E+P)+\Gamma_{12 n}(D+E+P)\right) \\
R_{B_{q} \cdot E C P D}= & R_{\hat{B} q 2 n} B_{q 2 n} .
\end{aligned}
$$

The score for the n'th person, on the q'th criterion, at time 2 , may be estimated from a linear composite comprised of the sum of the variables in each system weighted such that the predictors are orthogonal. Thus in this case, the estimated criterion score is the sum of the factor scores for demographic data weighted by first order correlation coefficients with
the criterion, plus the sum of the personality factor scores, free of covariance with demographic data, and weighted by the correlations with the criterion, plus the percieved environment factor scores similarly partialled (of both demographic and personality scores) and weighted, plus cognitive function factor scores treated in the same manner.

Problems with this Predictive System
In the present study several important limitations exist and should be noted beforehand. Firstly, the model calls for all variables to be normally distributed, zero mean, and unit variance. This condition may not be met because of several considerations in the scales involved; measures may be nominal or at best polychotomous with very discrete values found for what may or may not be underlying continuous variables; some variables may be extremely skewed, and even with transformations may not really resemble a normal distribution.

A second deviation from the model relates to the fact that the various systems of variables should include all non redundant measures in the domain of interest. This condition is not fulfilled as: (a) those measures may not at this point in time exist and (b) only a limited subset (hopefully representative) can be administered in the time permitted.

Another problem exists in that the model is linear in nature whereas either the real or theoretical variables may combine multiplicatively in the form of moderators to other variables, or in other non-linear combinations (eg. curvilinear). This must be kept as a consideration in the research, but as the non-1inear models tend to be limited operationally more or less to small numbers of variables, the present work will (hopefully) serve as a good first approximation.

Other problems exist in the nature of the instruments used and the type of behaviour studied. In the latter case, marijuana use is, of course, illegal and therefore responses to questions about its use can be seen as incriminating. King (1972) reports that anonymous and identifiable : questionnaires on this subject do not significantly differ on reported data, however this does not mean there will be no difference between actual behaviour and reported behaviour due to some fear of exposure. With respect to questionnaire studies in general, we must consider the possibilities of response styles and sets (eg. Jackson, 1967), and also false content through misconceptions on the part of the subject. The latter is more easily dealt with, in that according to the assumptions of the Rotter, Jessor and Sadava models behaviour is determined by subjective expectancies, values, etc. not merely objective facts, and distortion of this kind do not render the information invalid.

To compare the possible distortion of responses on the questionnaire, it is best to consider that the data have two different logical sequences. The first sequence is that of cognitive functions followed by perceived environment, personality and demographic data, ordered in terms of decreasing proximity to the behaviour concerned. The subjects' own perceptions will have the most weight and be least subject to cumulative response biases.

The second sequence will be that of demographic data, personality, perceived environment, and cognitive function, in decreasing order of objective verifiability, as opposed to proximal subjectivity.

Specific Areas of Investigation

There are four specific issues that must be examined in dealing with
the model. These are: distributional properties of predictor and criterion variables; the use of raw data vs factor scores; the use of two sequences of orthoganalization, ie. starting with cognitive functions, and starting with demographic variables; and the patterns of behaviour criteria.

Distributions of the Variables

It is extremely important that we examine the distributions of scores on the variables we use before interpreting results from statistical analyses, since we may be misled by our results if assumptions necessary to the analysis are not met, or if more useful approaches to data analysis are ignored due to a lack of information. This warning takes on more importance when the variables haven't been used extensively in other research, and/or severa1 "non-robust" (requiring stringent assumptions for use and interpretation) statistics such as stepwise regression or canonical correlation are to be used. For instance, we might have a distribution with a few extreme values at each end, being correlated with another variable that also has extreme values. If the extreme values "match", there will be a very high correlation that is not reflected at all by the other variable pairs. Another possibility is that the two variables have a parabolic relationship, or that one variable is related to the logarithm of the other. In both cases, the correlations between the variables would be very low, and the true relationships found only by a theoretical or, more likely, an empirical investigation of the univariate and bivariate frequency distributions of the variables (see Carroll, 1967). As the first part of the exploration of this model, these distributions will be examined.

Raw Data vs Factor Scores

Since the scales for this investigation were chosen on the basis of availability, or constructed to measure a specific area, there may be both a large overlap in the domain of measurement, and a great deal of variance "superfluous" to the model. If the variables are of this nature, the use of a multiple regression technique may lead to different weights for the variable in each sample, even though the particular underlying factors don't change from sample to sample. Cooley and Lohnes (1971) point out that "chance" is an important consideration in multivariate analysis, and since we may have several variables contributing almost the same variance, chance could determine which variable is chosen (the covariance with similar variables being partialled out and consequently not appearing as significant). This process may have more importance than seems readily apparent since we will be influenced in our model building and generalization by the labels or names attached to the "significant" variables, and may draw the wrong inference about the meaning of a variable's loading on the regression equation.

One solution to this problem is to assure ourselves, prior to the dependence analysis (eg, multiple regression), that we have predictors, whose domains, empirically, do not overlap greatly. This may be achieved by orthogonalization of our predictors. We may also collapse the number of variables into a smaller number of factors. Using this method, we may substantiate the findings of analyses of raw data, and more easily infer from the measured variable the underlying trait or cause.

Sequence of Data Entry

When orthogonalizing the data sequentially, the first variables may
retain greater meaningful variance than later variables because of the method itself. The last variables will, most likely, have little or no correlation with the criterion, whereas the corresponding original variable may, in reality, be highly related to the criteria. Ideally every variable should have equal chance to covary with criteria, but this leads to an enormous number of analyses to include each sequential combination. Given these circumstances, together with the theoretical reasons discussed previously for the different types of response sets and kinds of verifiability two sequences of orthogonal predictors will be used: Functions-in which the function variables are entered first (the sequence of proximity); and Demo. - in which the demographic variables are entered first (the objective verifiability order). These sets will be examined to determine what differences exist due to ordering effects.

Criteria Patterns
Considering Sadava's findings (1974b) concerning the relationships between criteria, and the different predictors useful in each case, it is important to look at the criteria carefully, to examine specifically their inter-relationships (eg. by factor analysis), and to find out whether different sets of predictors predict different patterns of criteria (using canonical correlation). Using this information we can evaluate the criteria as to their reliability and usefulness. In addition, a methodology becomes available to ascertain predictive systems for genuine, multidimension: patterns of use.

Chapter II

Method
Subjects
The ruestionnaires were filled out by first and second year students enrolled full-time at Brock University, St. Catharines, Ont. In the 1972-73 academic year. Four hundred and eighty Ss completed questionaires in Nov. 1972; and of these 371 filled out the questionnaire in Mar. 1973. The ages of the Ss ranged from 16 to 74 but most were under 26. Fifty-five per cent of those responding twice were female.

The group (371) was split into two samples randomly, Sample 1 was 187 Ss and Sample 2 was 184. Scores were standardized within samples, but all other estimated parameters. (e.g. correlations, factor loadings, etc.) were obtained from Sample 1 and applied to Sample 2.

Questionnaire

Table 1 lists the scales used, number of items, format and source, if other than Sadava ($1972,1973,1974 \mathrm{~b}$). This table is organized by variable systems, i.e. behaviour, cognitive functions, perceived environment, personality, and demographic data, and excludes some scales not used in the present study.

Major Statistics
Univariate and Bivariate Distributions
Descriptive statistics and frequency distributions were found for each scale, using data before standardization. Scattergrams were constructed for ten predictor variables (standardized) with each of the four criterion variables, to give an indication of the types of

TABLE 1
Variables Used

System/ Variable	Number of Items	Item Format	Source**
Criteria			
System		
Consequences	17	3 point scale	
Range	19	yes/no	
Time Span	1	"how long ago"	
Frequency	1	非 of occasions	
Cognitive			
Functions
Total Positive	14	3 point scale	
Instruemental	6	3 point scale	
Coping	6	3 point scale	
Total Negative	10	3 point scale	
Ideological	4	3 point scale	
Fear	6	3 point scale	
Percieved			
Environment		.	.
Social Support	10	4 point scale	
Social Sanct'n	6	3 point scale	
Availability	2	5 point scale	
Parental Model	16	4 point scale	
Sibling Model	5	4 point scale	
Personality
Peer Confor'y	10	3 point scale	Lin (1972)
Peer Indep.	10	3 point scale	Lin(1972)
Peer Anticon'y	10	3 point scale	$\operatorname{Lin}(1972)$
Family Con'y	10	3 point scale	Lin(1972)
Family Indep.	10	3 point scale	Lin(1972)
Family Anti.	10	3 point scale	$\operatorname{Lin}(1972)$
To1. Drug Use*		10 point scale	
Att. To Devian	15	10 point scale	
Total Risk		9 point scale	Jackson(1972)
Physical Risk	2	9 point scale	Jackson (1972)
Financial Risk	2	9 point scale	Jackson(1972)
Social Risk	- 2	9 point scale	Jackson (1972)
Ethical Risk	2	9 point scale	Jackson (1972)

Table 2 continued

System/ Variable	Number of Items	Item Format	Source**
IE Locus of Con	23	Forced Choice	Rotter (1966)
IE personal	9	Forced Choice	Mirels (196)
IE political	4	Forced Choice	Mirels (196)
Trust	25	5 point scale	Rotter (1966)
Personal Trust	6	5 point scale	
Political Trust	8	5 point scale	
Interper'1 Al'n	10	5 point scale	Keniston(unp)
Social Alien'n	5	5 point scale	Keniston(unp)
Moral Judge.*	35	mixed	
Religiousity*	3	mixed	
Delay Grat'n	4	5 point scale	Stumphauser (1972)
Time Pers've	5	number of months	Shybut (1968)
Demographic		-••••••	-••••
Sex *	1		
Age \%	1		
Social Econ.*	1		
Yr in College*	1		
Poli. Orien'n*	1		
Residence*	1		
Reference Gr.*	1		
Height *	1		
Weight *	1		
Self Des. Obs. ${ }^{*}$	1		
Exp. GPA *	1		
GPA Difference*	1		-

*Not repeated Spring, 1973
** If other than Sadava
bivariate distributions present in the data.

Orthogonalization of Data

Delta and gamma scores. In order to arrive at a set of mutually independent predictors several types of transformation are needed. First, we must get an estimate of change-over-time scores. Given two sets of scores on the same variable, from the same subjects, we can paxtial out of the later score, the variance accounted for by the score taken at a point earlier in time (e.g. Jessor et a1, 1973). Thus, starting with two related scores, we obtain a base score, and an independent estimate of change, a delta (Δ) score. Delta is estimated by Ferguson's formula $\Delta=\left(Z_{1}-r_{12} Z_{2}\right) / \sqrt{1-r_{12}^{2}} \quad(1971, p$. 387) where Z_{1} is the score at the first point in time, Z_{2} is the same subjects' score at second point in time, and r12 is the correlation between Z_{1} and Z_{2} over all subjects.

A generalization of the above formula estimates a score that is Independent of more than one variable (this may be done across time, as for, or with other scores from a larger test battery). If we wish an estimate of this covariance-free score, a gamma (Γ) score, we may use the following formula: $\Gamma_{1.23 \ldots n}=\left(Z_{1}-\sum_{m=2}^{n} r_{m} Z_{m}\right) / \sqrt{1-\sum_{1 m}^{2}} r_{1 m}$ [see appendix A for proof], where Z_{1} is our variable of interest, Z_{2}, \ldots, Z_{n} are the covariates, $r_{1 m}$ is the correlation between the Z_{1} scores for $Z_{m}(m=2, \ldots, n)$ over all subjects. These scores will have $E(\Gamma)=0, \operatorname{VAR}(\Gamma)=1$ and will tend to a normal distribution.

Principal components. The third type of transformation needed is a principal components factor analysis, producing appropriate
factor scores. Since we are interested in linear composites with the characteristics of mutual independence, interpretability and completeness, the proper procedures for this factor analysis are: the use of unities in the main diagonal; an adaptation of the scree test (see Cattell, 1952, for a discussion of this criterion) to determine the number of factors retained; and a varimax rotation of those factors.

We must use unities in the diagonal instead of estimates of communality since our data are not being used to infer underlying structure, but rather, are being described by the factor scores. The question of establishing the number of variables to be rotated is more complex. It may be resolved by considering the nature of the factor structure and the communality of a variable. We may regard communality as the square of a variable's multiple correlation with all the extracted factors. Thus, if each variable has a high communality after a certain number of factors has been extracted, we may assume that each of the common and unique factors has been obtained. For example, if after five factors are extracted, the communality of a variable is .78 , there remains to be accounted for, only 22% of the original variable's variance in all the remaining factors.

We can always (with unities in the diagonal) account for a11 of the variance by taking as many factors as variables, but we most like1y will have "error" factors, due to faulty measurement, discrete scale values etcetera. A procedure that tends to eliminate these factors is Catte11's scree test (Cattell, 1952). A sharp drop-in eigenvalues after relatively high eigenvalues means the following eigenvalues may be neglected. The original argument by cattell
recommended both a scree test, and a minium eigenvalue over 1.0 , however, since we are using principal components, the later requirement may be dropped, and the requirement of high communalities added.

The varimax method of rotation is used so that each factor can be most easily identified as related to a few (and if possible only one) variables. Varimax simplifies factors, as opposed to variables (Mulaik, p.259, 1972), and this means that the "output" of our transformation will tend to be more easily interpretable than if we used either a variable-simplifying or both factor and variable simplifying rotation.

Stepwise Multiple Regression

This technique (SMR) is really a combination of regression and factor analysis (Mulaik, p.412, 1972). The first step is to correlate the criterion with the criterion as the variable in the regression equation. The factor collinear with this variable is extracted from the predictor matrix, and a residual correlation matrix is obtained. Then the variables (or factors since this factor analysis method -that of Cholasky [Mulaik p.412] maintains a correspondence between factors and variables), remaining are correlated with the predictor, the corresponding factor extracted, leaving a residual matrix, and so on. At each step a variable is added to (in occasional circumstances removed from) the regression equation, and the multiple correlation is increased.

This process of adding (and/or removing) variables can continue until all the variables are in the equation, however, as with other factor analytic procedures, later factors (i.e. variables in Cholesky method) miy be unique or error torms. Since we are daling also with
regression, the unique factors that do not correlate with the criterion, may be, for practical purposes, considered error. Either error may increase the multiple correlation, but to such a small extent that, given the probability of measurement error, the predictive utility of the equation is diminished. Cooley and Lohnes (p.56-57, 1971) point out that SMR can capitalize on chance to a large extent, and care must be taken to replicate this procedure on another sample(s). The replicated R may shrink appreciably if too many variables are allowed in the original equation. For our purposes, we may use an E ratio (or an equivalent t test) to determine whether a variable should be added to the equation. This F ratio is computed as the square of the ratio of regression coefficient and its standard error (SPSS, 1970). Orthogonal Predictor Variables

If the correlation matrix of predictor variables is an identity matrix (i.e. the variables are correlated), the regression equation weights may be obtained directly from simple correlations with the criterion (Mulaik, p.404, 1972). Furthermore, the square of the multiple correlation is the sum of the squares of the simple correlation with the criterion. If we have orthogonal predictor variables, the order of entry of these variables into a stepwise MR is the same as the rank order of the absolute values of the correlation coefficients, and the SMR is not necessary. In practice, a SMR can be useful in these circumstances since the correlation with real data probably will not be an exact identity matrix. Even if our regression weights are from a non-orthogonal group of predictors, Cooley and Lohnes (p.56, 1971) point out that sample predictor-criterion correlation
coefficients of the first order may yield better predictive utility than regression weights from more "sophisticated" processes.

Canonical Corrclation

Stepwise Multiple Regression may be considered a special case of canonical correlation. The problem of canonical correlation $1 s$ to find relationshi ps between a set of predictor varlables and a set of criterion variables (in SMR we have a set of one criterion variable). In general, we ask if there is a combination of predictors X (a pattern) that has a high correlation with a combination or pattern of criterion Y variables. To do this we find a set of weights for the predictors such that the composite variable $\left(W_{1}\right)$ is maximally correlated to a composite variable Y_{1} made up of a weighted combination of the' Y variables. A factor corresponding to W_{1} is extracted from X which leaves the residuals X_{r} unrelated to W_{1}, in the same manner as the residual matrix is found in SMR. The composite V_{2} is treatedin the same way to produce a residual matrix Y_{r}. This process is repeated producing (usually) \underline{m} set of weights, where \underline{m} is the number of variables in the smaller of the predictor and criteria groups (see Van de Geer, 1971). We must then evaluate the sets of weights called canonical variates to find which are significant. The canonical correlation coefficient R_{c} can easily be misinterpreted. It is not the correlation or overlap between X and Y but between the linear composites W and V. To evaluate the "overlap" or shared variance of the two sets, we may use a statistic R_{d}, a redundancy coefficient discussed by Stewart and Love (1968). For each canonical correlation there are two redundancy coefficients, one for the X variables given the composite V from the Y variables (i.e. $R_{d x}$) and one for the Y
variables given the composite W from the X variables (i.e. $R_{d y}$). $R_{d x}$ is calculated as the proportion of variance extracted by the factor (W_{n}) times the proportion of shared variance $\left(R_{c n}\right)$ between the factor and corresponding canonical factor of the other battery (Cooley and Lohnes, p. 170, 1972). Thus we square the weights of the X variables, divide by the number of X variables, and multiply by the canonical correl ation The canonical correlation analysis can be useful in exploring criterion patterns however it should be used in conjunction with other measures such as the multiple correlation of each criterion (Cooley and Lohncs, p.176, 1972), chiefly because of the complexity of the procedure, and the possible misinterpretation of results.

Summary of Programmes and Formulae

1. Univariate Distributions - SPSS (1970), subroutine CODEBOOK
2. Bivariate Distributions - BASIS (1971), subroutine Plot.
3. Delta Score $-Z 1 Z 2=\left(Z_{1}-r_{12} Z_{2}\right) / 1-r_{12}^{2}$. A Fortran programme was written and an example given in Appendix B.
4. Gamma Scores: $=\left(Z_{1}-\left(r_{1 m} Z_{m}\right)\right) / 1-r_{1 m}{ }^{2}$. This was done by a Fortran programme in Appendix B.
5. Principal Components Analysis: Both SPSS (1970), subroutine FACTOR, and SSP factor analysis (1970: p.429) were used, with several sets of data run on both to ensure accuracy (identical results to fifth significant digit).
6. Correlation Coefficients. SPSS (1970), subroutine PEARSON CORR was used and compared to SSP subroutine CORRE.
7. Stepwise Mutiple Regression: SPSS (1970), subroutine REGRESSION, and SSP programme for stepwise multiple regression (p. 419) were used and compared.
8. Canonical Correlation: SPSS (1970), subroutine CAN CORR was used, there were no suitable programmes for comparison.

Results

Univariate Distributions

The raw data may be grouped in sets of variables with common forms of frequency distribution. These distributions seem to approximate: the normal, truncated normal, superimposed two population normal, the Poisson, the rectangular and the dichotomous or binomial distributions. Table 2 gives examples of variables from each group, descriptive statistics and type of distribution.

Bivariate Distributions and Correlations

Selected pairs of standardized variables were plotted to check for usual bivariate distributions. None of the distributions seemed curvilinear (e.g. U shaped). The scattergrams including Range seemed to indicate that extreme values (for Range) were depressing the correlations, and suggested that correlation with Log (Range) might be considerably higher. Scattergrams are included as Figure 2.

Correlations matrices between the criteria and each of the predictor variables may be found in Appendix C. There is a matrix for each of the Raw, Functions and Demo. modes of analysis for Sample 1 and for Sample 2. Transforms

The resulting variables, processed in either direction, i.e. partialli:g out covariance of functions from social, of functions and social from personality etc; and partialling out covariance of demographic from personality variables etc., were relatively easily identified, having

TABLE

Univariate Distributions

Variable**	Central Moments *				Range	Quartile	Type of Distribution
	Mean	Variance	Skewness	Kurtosis			
Frequency	17.976	6095.527	10.940	133.106	999	0/0/10	Poisson/
Time Span	19.505	648.855	1.365	1.860	144	0/4/36	Dichotomous Poisson
Range	3.585	13.238	2.725	12.793	33	1/2/5	Poisson
Consequen.	31.118	116.599	0.400	-1.095	34	22/30/41	Rectangular
Social Supp	19.865	36.436	0.406	-0.572	28	15/20/24	Bimodal Nor.
Avail.	8.435	2.436	-1.382	2.536	8	8/9/10	Trunc. Nor.
Sib. Model	7.557	5.433	1.675	4.733	15	6/7/9	Trunc. Nor.
Total Pos.	22.862	27.451	0.491	0.156	28	19/22/26	Trunc. Nor.
Ideo. Neg.	6.470	3.432	0.799	0.159	8	5/6/8	Trunc. Nor.
Fam. Conf.	22.849	6.501	0.053	0.079	15	21/23/25	Normal
Att. To Dev.	36.891	81.661	0.069	0.472	58	31/37/43	Normal
Total Risk	38.192	89.906	0.052	0.010	54	32/38/44	Normal
I.E.	10.593	24.697	-0.014	-0.585	22	7/11/14	Normal
Exp. GPA	73.843	42.218	0.511	1.014	41	70/75/80	Disc. Nor.
S. D. Obes.	3.114	0.530	-0.047	0.370	4	3/3/4	Normal
Sex	1.445	0.248	0.220	-1.952	1	1/1/2	Dichotomous

* Based on 371 observations
** Spring variables except Att. to Dev.

Frequency
high loadings on principal components analyses. Table 3 includes rotated factor loadings, communalities, and lists new variable names for the two modes of factoring.

Factor Analysis of Behaviour

In both Samples 1 and 2, frequency is unrelated to the other criteria, with time and range loading together. Table 4 presents rotated loadings and eigenvalues .

Stepwise Multiple Regression Analysis
A total of 24 SMR's were calculated. Tables 5 through 10 present the variables with significant Beta weights, the cumulative variance in thousandths and the final multiple correlation coefficient. Table 11 presents a $2 \times 3 \times 4$ breakdown of these Multiple correlations, and average correlations (using Fisher's Z transformation) for each classification.

Canonical Correlations

Five canonical correlations were performed, results for canonical correlation with raw data were not obtained due to the size of the r matrix and the programmes available. One of the canonical correlations was meaningless due to a singular matrix resulting in a canonical correlation greater than 1.0 . Table 12 gives the significant canonical correlations, loadings variables with loadings for each of the four meaningful analyses.

TABLE 3

Functions and Demo. Factors

Original Variable		Functions Factors				Demo. Factors			
Name	\#	Name	\#	Loading	Comm.	Name	\#	toading	Comm.
Tot Pos Func	5	Pos Func	7	. 99	. 99	Pos Func	47	. 99	. 99
Inst Pos Func	6	Pos Func	7	. 89	. 80	Pos Func	47	. 88	. 78
Cope Pos Func	7	Pos Func	7	. 87	. 80	Pos Func	47	. 88	. 78
Tot neg Func	8	Neg Func	5	. 99	. 99	Neg Func	44	. 99	. 99
Ideo Neg Func	9	Neg Func	5	. 89	. 77	Neg Func	44	. 85	. 74
Fear Neg Func	10	Neg Func	5	. 94	. 77	Neg Func	44	. 91	. 84
\triangle Tot Pos	11	\triangle Pos	8	. 99	. 99	\triangle Pos	45	. 99	. 99
AInst Pos	12	\triangle Pos	8	. 87	. 80	\triangle Pos	45	. 86	. 76
ACope Pos	13	\triangle Pos	8	. 86	. 88	\triangle Pos	45	. 87	. 78
\triangle Tot Neg	14	$\triangle \mathrm{Neg}$	6	. 98	. 99	$\triangle \mathrm{Neg}$	46	. 98	. 99
AIdeo Neg	15	ANeg	6	. 86	. 76	$\triangle \mathrm{Neg}$	46	. 83	. 70
\triangle Fear Neg	16	$\triangle \mathrm{Neg}$	6	. 89	. 83	$\triangle \mathrm{Neg}$	46	. 86	. 81
Soc supp	17	Soc Sanc	9	. 58	. 83	Soc Clim	37	. 84	. 78
Soc Sanc	18	Soc Sanc	9	. 94	. 92	Soc Clim	37	. 82	. 70
Avail'y	19	Avail	15	. 95	. 95	\triangle Soc Supp	38	. 64	. 74
Par Model	20	Par Mod	13	. 95	. 92	Par Mod	41	. 95	. 93
Sib Model	21	Sib Mod	10	. 81	. 87	Sib Mod	39	. 78	. 81
\triangle Soc Supp	22	ASoc Supp	14	. 96	. 96	\triangle Soc Supp	38	. 85	. 84
\triangle Soc Sanc	23	\triangle Soc Sanc	12	. 98	. 98	\triangle Soc Sanc	40	. 97	. 95
A Avail'y	24	Δ Avail	16	. 99	. 99	\triangle Avail	42	. 97	. 96
4. Par Mod	25	\triangle Par Mod	11	. 97	. 97	\bigcirc Par Mod	43	. 97	. 99
$\angle \mathrm{Sib}$ Mod	26	Sib Mod	10	-. 77	. 86	Sib Mod	39	-. 74	. 79

Cont ${ }^{\prime} \mathrm{d}$

Cont ${ }^{\text {d }}$ d									
Name	\#	Name	\#	Loading	Comm.	Name	\#	Loading	Comm.
aPeer Conf	52	Δ Conf	23	. 83	. 82				
Δ Peer Indep	53	\triangle Indep	28	. 68	. 84				
Δ Peer Anti	54					Δ Fam Indep	24	. 51	. 89
AFam Conf	55	$\triangle \operatorname{Conf}$	23	. 76	. 82	$\triangle \mathrm{Conf}$	17	. 94	. 93
\triangle Fam Indep	56	Δ Indep	28	. 92	. 90	Δ Fam Indep	24	. 90	. 91
$\triangle \mathrm{Fam}$ Anti	57	Δ Non-conf	33	. 87	. 88				
dAtt Tow Dev	58	\triangle Att Tow Dev	35	. 98	. 99	satt Tow Dev	16	. 94	. 95
4Tot Risk	59								
Δ Phys Risk	60	Δ Phys Risk	29	. 96	. 95				
Δ Fin Risk	61	$\Delta \mathrm{Fin}$ Risk	32	. 94	. 94				
Δ Soc Risk	62					Δ Soc Risk	28	. 96	. 98
AEth Risk	63	\triangle Soc Risk	34	. 86	. 88	AEth Risk	34	. 94	. 96
Δ Total I-E	64	$\Delta I-E$ Pers	19	. 93	. 91				
$\triangle I-E$ Pers	65	$\Delta I-E$ Pers	19	. 94	. 92	$\Delta I-E$	15	. 65	. 91
AI-E Poli	. 66					$\Delta I-E$	15	. 89	. 93
ATotal Tr	-67	\triangle Poli Tr	18	. 92	. 91				
$\Delta \mathrm{Tr}$ Pers	68					\triangle Pers Tr	26	. 95	. 96
$\triangle \mathrm{Tr}$ Poli	69	\triangle Poli Tr	18	. 92	. 90	\triangle Poli Tr	30	. 98	. 99
AIP Alien	70	\triangle Alien	25	. 74	. 76				
ASoc Alien	71	Δ Alien	25	. 87	. 83.	Δ Soc Alien	25	. 98	. 98
ADel Grat	72					\triangle Del Grat	19	. 97	. 97
\triangle Time Pers	73	Δ Time Pers	31	. 97	. 96	ATime Pers	18	.96	. 97

Cont'd

Cont'd									
Name	\#	Name	非	Loading	Comm.	Name	非	Loadin	Comm.
Sex	74	Size	36	. 87	. 82	Size	5	. 87	. 82
Age	75	Age	42	. 99	. 99	Age	10	. 99	. 99
Soc. Ec. St	76	SES	44	. 99	. 99	SES	11	. 99	. 99
Yr in Coll	77	Yr in Coll	43	. 99	. 99	Yr in Coll	7	. 98	. 99
Poli Orien	78	Poli Orien	41	. 98	. 99	Poli Aff	- 14	. 99	. 99
Residence	79	Res	39	. 99	. 99	Res	9	. 99	. 99
Ref Group	80	Ref Gr	40	. 99	. 99	Ref Gr	12	. 99	. 99
Height	81	Size	36	. 81	. 91	Size	5	. 92	. 88
Weight	82	Size	36	.91	. 86	Size	5	. 88	. 93
Self D Obs	83	SDO	38	. 98	. 96	SDO	6	. 98	. 97
Exp GPA	84	Exp GPA	45	. 98	. 99	Exp GPA	8	. 98	. 99
Grade Diff	85	Gr Diff	37	. 97	. 99	Gr Diff	13	. 97	. 99

[^0]TABLE 4
Factor Loadings of Criteria
(Varimax Rotation)

Sample	Factor	Criterion				Initial Eigenvalue
		Conseq.	Range	Time	Freq.	
One	1	-. 214	. 398	. 900	. 090	2.284
	2	-. 016	. 293	. 101	. 975	0.968
	3	. 966	-. 192	-. 258	-. 014	0.522
	4	-. 147	. 848	. 336	. 202	0.226
Two	1	-. 106	. 936	.347	. 109	2.076
	2	-. 060	. 124	. 130	. 987	0.870
	3	. 974	-. 113	-. 232	-. 058	0.727
	4	-. 189	. 309	. 900	. 105	0.327
One *	1	$-.165$. 915	. 391	not included	2.089
	2	. 964	-. 180	-. 252		0.643
	3	. 209	-. 360	-. 885		0.268

Freq. excluded from analysis

Stepwise Multiple Regression
Raw Data Sample 1

*Variables with negative loadings
**All variables load significantly (p<.05)

Stepwise Multiple Regression
Raw Data Sample 2

* Variables with negative loadings
** All variables load significantly

TABLE 8
Stepwise Multiple Regression
Functions Sample 2

Stepwise Multiple Regression
Demo Sample 1

**All Variables load significantly ($\mathrm{p}<.05$)
*Variables with negative loading.

Stepwise Multiple Regression

Demo. Sample 2

	Criterion Variable					
	Frequency	Time Span			Consequences	
Predictor Variable** in order of entry with Cumulative Variance	ATime Persp $(067) *$ Soc Clim (094)	Soc Clim (145) Poli Aff'n (304) Size (381) SSoc Alien (407) Del Grat (434) ASoc Supp (461) Yr in Coll (482) Sib Mod (505) $\Delta I . E$ (518)	Soc Clim Pol Aff'n Size Δ Del Grat Δ Poli Tr Relig'y Ref Grp $\Delta E t h$ Rk	$\begin{aligned} & (144) \\ & (253) \\ & (295) \\ & (326) * \\ & (355) * \\ & (379) \\ & (395) \\ & (409) \end{aligned}$	Poli Aff'n $(121) \star$ Soc Clim $(170) \star$ Residence $(209) \star$ Poli Tr (250) $\Delta I E$ $(275) \star$ Size $(309) \star$ Δ Soc Sanc $(355) \star$ Relig $(357) \star$ Time Persp $((380) \star$ Neg Func (401) Soc Al'n $(421) \star$ Yr in Coll $(437) \star$ Self D Ob (451)	-
Multiple Correlation	. 307	. 720	. 640		. 672	

** All variables load significantly ($p<.05$)

* Variables with negative loading

TABLE 11
Summary of Multiple Correlations

		Mode of analysis			
Sample	Criterion	Raw	Functions	Demo.	Total **
One	Conseq.	. 744 (11)*	. 673 (8)	. 697 (14)	. 705
	Range	. 781 (9)	. 743 (10)	. 726 (13)	. 750
	Time Span	. 778 (10)	. 771 (11)	. 741 (12)	. 765
	Freq.	. 426 (4)	. 272 (2)	. 448 (7)	. 384
Two	Conseq.	. 674 (9)	. 652 (8)	. 672 (13)	. 666
	Range	. 711 (8)	. 653 (7)	.640 (8)	. 669
	Time Span	. 780 (7)	. 769 (12)	. 720 (9)	. 758
	Freq.	. 521 (7)	. 214 (2)	. 307 (2)	. 354
Total **	Conseq.	. 708	. 664	. 713	. 686
	Range	. 747	. 701	. 684	. 712
	Time Span	. 779	. 770	. 758	. 761
	Freq.	. 457	. 244	. 380	. 370

* Averages over modes/samples (using Fisher's Z)
** Indicates number of variables with significant loadings

Canonical Correlations

	Mode of Analysis							
	Functions 1		Demo 1		Demo 2	Demo 1		
	1	2	1	2	1	1	2	3
Canonical** Correlation	. 876	. 591	. 860	. 656	. 855	. 854	. 641	. 546
Coefficient of Redundancy (Rdx)	. 088	. 171	. 094	. 197	. 096	. 101	. 237	. 151
Conseq. Range Time Span Frequency	$\begin{array}{r} -0.382 \\ 0.364 \\ 0.419 \\ 0.080 \end{array}$	$\begin{array}{r} 1.010 \\ 0.895 \\ 0.138 \\ -0.366 \end{array}$	$\begin{array}{r} -0.560 \\ 0.282 \\ 0.290 \\ 0.173 \end{array}$	$\begin{array}{r} 0.965 \\ 0.403 \\ 0.777 \\ -0.360 \end{array}$	$\begin{array}{r} -0.475 \\ 0.281 \\ 0.475 \\ 0.042 \end{array}$	$\begin{array}{r} -0.522 \\ 0.398 \\ 0.292 \\ \text { not } \end{array}$	$\begin{gathered} 1.024 \\ 0.213 \\ 0.802 \\ \text { included } \end{gathered}$	$\begin{aligned} & 0.082 \\ & 1.378 \\ & 1.266 \end{aligned}$
Predictors	Neg Func $\Delta \mathrm{Neg}$ * Soc Sanc Avail	Δ Neg Func Δ Time Per	Size Δ Soc Rk* Δ Pol Tr* Soc Clim	Age $\triangle \mathrm{A} . \mathrm{T} . \mathrm{D}$. Δ TimePer* Anticon* ASoc Al* Soc Rk Fam Ind Pol Tr* $\Delta E t h$ Rk* IE Pol* Relig* Soc Clim	Size Pol Or Pol Tr* Soc Clim	Size Pol Or Soc Rk* APOI Tr* Soc Clim	Age ATime Per* ADe1 Gr** Anticon* Time Per* ASoc A1* Soc Rk Fam Ind Pol Tr* Del Gr Relig* AEth Rk* IE Pol	ADel Gr* Soc Rk Δ Per Tr Fam Ind Pol Tr* De1 Gr* $\Delta E t h$ Rk

Chapter IV
Discussion

-

Several importamt issues must be considered in testing a predictive system. The first point is the investigation of the nature of the distributions of scores for the variables, the effects of these distributions on results, and the possibilities of reformulating measures or transforming distributions to eliminate undesirable characteristics. Then, the effect of error components, and covariance of chosen predictors is examined by means of raw score-factor score comparisons with reference to stability of results and interpretation of regression weights. The importance of different sequences of data entry should be considered. And finally, consideration will be given to patterns existing within the criteria, and in the relationships between predictors and criteria patterns. Discussion of each of these issues follows, concluding with a general overview and discussion of implications for multivariate research.

Distributional Properties of the Variables.

The universal and bivariate frequencies of the data seem to deviate from normal, and bivariate normal distributions. Descriptive statistics for 15 of the variables appeared in Table 2 . This sample represents the kinds of distributions found, and includes each of the variable systems. An examination of these fifteen varialbes represents a consideration of the problems in the complete set of 85 variables. First the variables will be considered individually, with the empirical distribution arising from both scaling properties, and the properties
of the underlying "real" distributions.
Criteria
Frequency. This one item scale requires the subject to state the number of times he (she) has used marijuana in the last six months. The answers range from '0' (marijuana not used) to '999', and the distribution has very high skewness (a measure of symmetry, high positive meaning a long tail to the right, high negative a long tail to the left), and a very high kurtosis (a positve kurtosis means the distribution is more peaked than the normal curve). An examination of the histogram for frequency shows that approximately 55% of the respondents gave an answer of ' 0 '. Three possibilities exist as to the nature of the distribution: a dichotomy with unequal intervals; a poisson distribution; or a log-normal distribution. The log-normal is properly a distribution for a continuous variable, but may be approximated for a discrete variable. It is a distribution in which the logarithm of the variable is distributed normally, and results from either a particular process occurring to the "true score" or as a result of error variance being related to the value of the true score (the error variance of a normal variable is unrelated to the true score). The distribution may not take on the true value of ' 0 ' ($\log (0)$ is undefined), and since the probability of ' 0 ' is so high, the addition of a constant in this case may be more distortion than transformation.
Λ poisson distribution occurs when we have "rare occurrences events in a fixed time interval (Tsokos, p.113, 1972)". Since it seems strange that an event that has low probability could occur 100, 200 or 999 timen, as with froquency we must consider what these numbers mean.

First of all over the six month period, the respondent answering ' 100 ' has smoked every second day, the respondant answering ' 400 ' has smoked twice a day, etc. Also we must consider the implications of the number given as to probable error involved. Most likely those responding ' 0 ' will give an exact (true) report, but those responding with '5' may be including the interval 3,7 , and with ${ }^{\prime} 200^{\prime}$ may be including 180,220 etc. This is similar to psycho-physical problems (e.g. JND's) where the error is proportional to the magnitude of the true score. The differences between answers of ' 1^{\prime} and ${ }^{\prime} 100^{\prime}$ and between ' 101^{\prime} and ' 200^{\prime} cannot be considered as equal intervals. Perhaps the most important interval is that between ' 0 ' and ' 1 '. In other research (see Sadava, 1974b), the investigators often treat frequency as a dichotomous criterion 0 and 1 , a11 those answering ' 1 ' or more being grouped together and predictors analyzed by point-biserial correlation or analysis of variance. Upon reanalyzin the present data, classifying frequency as 0 or 1 , the multiple correlation with the predictors rose to .767 (as opposed to a high of .521 with raw data, for sample $1_{\text {; }}^{\text {; }}$ where a continuous distribution was assumed).

One approach to the frequency criterion would be to first analyze assuming a dichotomy and then reanalyze assuming a continuous distribution. An investigation of the portion of the curve including all those answering ' 1 ' or more may allow us to transform answers by taking log(x) or to rescale by intervals and a poisson approximation, resulting in either case in a more normal distribution.

Time Span. Although this criterion does not have the extremities of Frequency ($\operatorname{Pr}\left['^{\prime} 0^{\prime}\right]<.5$ lower kurtosis and skewness), it is by no means normal. In theory, this measure, i.e. how many persons started smoking marijuana in a given month, should take on a poisson distribution, however in practice the person's score is complicated by errors that most likely are proportional to the 'true' answer. The most direct way of transforming this variable would be to add a very small constant (e.g. . 001) to avoid zeros and then take $\log (x)$, this at least would reduce skewedness.

Range. This variable is scored by adding up the number of drugs taken by the individual. The responses are not independent, as in a personality scale, but rather strongly interrelated. In a personality scale, each item is assumed to have constant probability of being endorsed, due to the underlying trait measured. With the Range scale, it is likely that endorsement of one drug in a group (e.g. opium, heroin, morphine) implies a large probability of endorsing the other drugs outside the group (e.g. tranquilizers). Instead of 19 separate questions, we may be asking about 5 or 6 categories of drugs, and assigning different weights to these categories rather arbitrarily (as above-a score of 3 for opium derivatives vs a score of 1 for tranquilizers). It we refine the scale to give equal weights to drug categories, we would most likely find a different distribution. This new variable might have the properties of a Guttman scale (if the theories about "progression to harder drugs" were true), or that of a poisson distribution. In either case, the addition of a small constant, and the use of a $\log (x)$ transform would probably make the Range variable approximate a normal distribution.

Consequences. This variable has a much different form than those above, being relatively symetric (skewness $=0.400$) and flat rather than peaked (the kurtosis is negative). In general however this distribution (labelled rectangular) is a close enough approximation of the Gaussian (or normal) to be used in most statistics. In Carroll's (1961) review of the effects of marginal distributions on correlations, the quality that most often gives rise to problems is that of skewness combined with peakness. The rectangular (as opposed to tapering tails as in the normal) nature of this distribution may be due to extreme scores of a response set. There are 17 three point items all keyed, and worded, in the same direction. The subjects may be responding habitually to a particular key ('often' or 'never') and more discrimination may be afforded by a reversal of keying or wording, or an extension from three point items to five or seven (see below for comments on the personality scales).

Perceived Environment

Social support. This scale more closely approximates normal than any of the preceding, but appears to have two modes. This may be a result of chance, or perhaps there are two reponse patterns-that of users and that of non-users. A discriminant analysis would provide more evidence on this point. For our purpose this distribution may be considered normal.

Availability. This scale and those of sibling model, total positive functions and ideological negative functions all appear to be normal, with one tail truncated. The loss of symmetry caused by
this truncation is a more serious problem than the apparent bi-modality of social support, but the trunctation can be corrected. The score distribution of Availability is negatively skewed and probably results from the common milieu of the subjects. In a less resrticted sample, we most likely would find more subjects at the lower level of the scale. A second approach to approximating nomality could be the extension of this scale from the 3 items to 10 or 15 , adding questions of a higher "difficulty" level (e.g. have you had a pond of marijuana (or more) in your possession at any given time).

Sibling model. As with Availability more items (and more difficult items) should be added.

Cognitive Functions
Total positive functions and ideological negative functions. These two scales are similar in construction except that the former has 14 items and the latter 6 items. The Ideological scale has a higher skewness (. 799 vs .491) and this may be a direct result of there being a fewer items. This comparison suggests to us that the number (and difficulty level) be increased, at least for the ideological scale. Personality Scales

Value family conformity, attitude towards deviance, total risk and locus of control (I-E). Of all the scales used in this study the personality scales (not just the four cited), in general, may be most closely described as normal. This would seem to result from both the theoretical underlying distributions involved (as opposed to time span for example), and the scaling strategies involved (as opposed to

IdRological negative functions). The personality traits are usually assumed to be normally distributed in the general population, and the underlying traits are continuous (not dichotomous or discrete). This follows from a psychological assumption that there are many contributing causes for the trait, and the mathematical principle that the sum of a number of independent, small, random variables has a distribution that is approximately Gaussian (normal). This latter principle is used again in the scale construction, by utilizing either a large number of questions, or a wide range of valuse for each question (or both). The four scales in Table 2 all follow this strategy: Value Family Conformity has 10 items, each a three point scale; Attitude Towards Deviance had 15 ten point items; Total Risk has 8 nine point items; and Locus of Control (IE) has 23 two point items.

Demographic Variables
Expected grade point average. This scale has normal properties with a minor perperbation. Numbers ending in ' 0 ' or ' 5 ' (e.g. 65, 80, 85) seem to include most of the marks otherwise found in the surrounding interval. We may assume that ' 65 ' implies the range from '63' to '67'. (The practice may result from prior experiences with rounded marks). In our interpretation of regression weights etc., connected with Expected GPA, we may have to consider this, but there should be no major problem.

Self description: obesity. Although only a single five point item, this scale appears to be normal. This may result from connection to physical characteristics (weight, height) which are normally distributed, or may be due to chance.

Sex. This variable, at least for the purpose of this study has a dichotomous distribution. We must be careful when interpreting the meaning of any regression weights or other statistics. Furthermore, the combination $n f$ this scale with another whose distribution is markedly non-normal may result in strange values.

Bivariate Distributions

Although only a few scattergrams were produced (out of thousands possible), some of the results were supportive of the consideration above. Range consistently showed that a transformation could have increased correlation. The plot of consequences and age showed that several extremely high values of age combined with high values for consequences to change the correlation. Because of the vast majority of the subjects were 26 or under, the older subjects may have had disproportionate effects on findings. (This may also have occured with Frequency, Time and Range.) The use of scattergrams should be extended (both in this study and mutlivariate analyses in general), and used to substantiate hypotheses about univariate distribution.

Raw Data Versus Factor Scores
The issue we are concerned with is cross-validation, both in the classic statistical sense, across samples, and in a more abstract conceptual sense, i.e. what the label of a reliable variable means. First of all, if the stepwise mutliple regressions performed on frequency are excluded (as previously mentioned, its underlying scale may be unsuitable for this analysis, and as will be pointed out below, it is unrelated to other criteria), the range of multiple R's over two three criteria and three modes of analysis, is remarkably small-the
lowest is . 640 and the highest . 781 (variance-accounted for is between 40% and 60%).

The parameters for Sample 2 were calculated on Sample 1, yet the differences between $R^{\prime} s$ is not great (see Table 11). Without statistical tests (for which we assume, rather tenuously, a multivariate normal distribution), it is safe to say that we have not captilized on chance (we have used large samples and demonstrated a reasonable replication, Lowest variance accounted for is per cent) even though the correlation for Sample 1 are slight;y higher than those of Sample 2. That is, multivariate cross validations (Cooley and Lohnes, 1971), have been demonstrated.

The multiple correlations for the raw data are higher than for either of the factor data sets, however the difference is not great (the largest difference is. .070), and the functions (and demo) have slightly greater stability in individual variable entry into the regression equation. On the average, three variables are replicated from sample one to two, but with raw data, but 5.3 variables are replicated with the factor scores. This is to be expected since there are about half as many with Functions and Demo as there are with the raw data, and these variables are "boiled down" through a process that tends to eliminate unique or error variance.

Both the raw score and the factor score approaches have advantages, but the greatest advantage is gained in using both of them. The analyses for consequences should serve as an example. If we look for raw score variables that are significantly loaded for both Samples 1 and 2,
we find only social support and $\boldsymbol{\Delta}$ Social sanctions. Social support appears in the Functions and Demo. analyses (as the social sanctions and social climate factors respectively). Social Sanctions also appear on all of the analyses. We have gained more confidence in these variables since they might have been eliminated by the errors of proximity and verifiability discussed earlier. Availability appears in in Raw data, Sample 1, both Function analyses, and as social climate in Demo analyses; social sanctions appear in five of the analyses. Now it is clear that the variable complex: social support, social sanctions, availability and social support is of great importance to the consequences criterion. The labels may merge in the factor score analyses, but it is clear that this complex represents a major correlate. Further investigation would seem worthwhile. The variables negative Functions and Δ Negative Functions (or their subscale-fear negative function) appear four times each in the six analyses and similarly indicate that this complex of variables is of importance. In contrast, Δ personal trust is the fourth variable to enter the first raw data sample equation, but
is not replicated in raw or factor score equations. It would appear that this may have been as a result of covariance with those variables, rather than being a significant predictor.

The above discussion is brief, and could be continued for the other criteria, but should be sufficient to show the importance of a simultaneous raw score/factor score approach.

Sequence of Data Entry

It is now appropriate to focus on the comparison of the Functions (sequence of proximity) and Demo (objective verifiability order) analyses. The averages (over samples) multiple R's of the two methods for each of the criteria are very close, and differences are more parsimoneously attributable to chance than one method's being more effective in capturing variance than the other. The two modes of analysis have different sets of individual factors included as having significant beta weights in each analysis. Whereas the function factors, contribute greatly to the multiple R's in Function mode of analysis (e.g. 42% of the variance accounted for, Function Data, Sample 1,

Time Span), they contribute almost nothing in the Demo.
analyses. Only with consequences as the criterion do these factors
appear at all. The reverse is true of demographic factors in Functions analysis (age appears with time span but may be redundant with the criterion rather than an independent correlate). However social factors appear prominently in all analyses (e.g. over 40% of the accounted-forvariance in each of Functions and Demo data, Sample 1, Range), and although not as powerful, the personality factors also enter significantly in each analysis.

Although these results need more exploration, the signs are clear that sequential data entry may influence our interpretation of results, if not the results themselves.

Criteria Patterns

Of the criteria, Frequency was the least predictable by Stepwise Multiple R 's (average R is . 370 for frequency and ranges from . 686 to . 761 for the other criteria). Also its distributional properties deviate much farther from normality than those of Time Span, Range, and Consequences. In the Factor analyses of the criteria, each of the
loads highly on a separate component. Finally, Frequency has no high beta weights on any of the canonical variates. It would seem that, in general, Frequency, as measured in this study at least, is not a constituent of the overall criteria set. This may be because of the dual nature of the Frequency score distribution (dichotomous-Poisson), rendering it unsuitable for these kinds of analyses. This could be investigated by transforming it into a dichotomy and analysing; then, excluding non-users, transforming the Frequency score distribution into an approximately normal distribution and running the analysis again. The results from this might indicate a five criteria set (e.g. Consequences, Range, Time Span, Use vs. Non-use and User Frequency). Alternatively, Frequency may just be a poor criterion; but, as indicated by Sadava (1974a), this is usually the sole continuous criterion in marijuana research. Further, since the practical aim of much of the research is to treat abusers (i.e. those with high consequences) of marijuana, or conceptualize marijuana as an example of the broader range of drugs, the absence of investigation into the criterion domain may be particularly
unfortunate. Given the results of the present criteria factor analysis,
and the canonical correlation analysis, the inferential links from
predictors (of marijuana smoking) to frequency, to the "real" interest may be very weak.

Canonical correlation analysis

In considering the results of this analysis, first a further explanation of the coefficient of redundancy $\left(R_{d x}\right)$. As Stewart and Love (1968) point out, canonical correlations are not correlations between two sets of variables, but between two linear functions of those variables. The square of the canonical correlation cannot be interpreted as r^{2} for simple correlation, or R^{2} in multiple correlation: $R_{d x}$ (or $R_{d y}$) is the quantity used to indicate the relationship between the sets of variables. This tells us the proportion of the variance of the criteria shared with the predictors. Thus the second canonical variate of Demo data, Sample 1 has twice the predictive power of the first variate, even though the first canonical correlation is higher. The loadings of the criteria indicate two patterns of marijuana use (The second canonical variate of Demo., sample two, corresponds to the other second variates, but was not statistically significant).

These might be characterized as the "normal" (i.e. low consequences associated with higher range and time span) and "abuser" (high perceived consequences associated with a long time span and low frequency of use) patterns. The abuser pattern is associated with personality variables, while the normal pattern seems to be associated with social and environmental predictors. In the case of the second variate, it would be very difficult to draw inferences on the causality sequence. To do this would require some form of path analysis, or a set of canonical correlation analyses utilizing Δ predictor scores and Δ criterion scores (see Blalock, 1971, for a set of readings on problems with causal models). At this point in the research, it seems clear that patterns in the criteria exist, and that these may result from or result in different variable complexes. Multivariate Prediction with Conceptual Systems

A consistent finding in this investigation has been the system of variable sets at work. The original model (Figure 1) included five variable systems: behaviour, cognitive function, personality, perceived

those with unknown domains, and a reconstruction of the variables as
orthogonal factors would probably improve reliability (Jesorr, Jessor \& Finney, 1973, pp. 6-8).

The empirical testing of a multivariate system mus t be very
carefully done. The consideration of score distributions is often
never made, although this inattention may alone invalidate or compromise later findings. Similarly multiple regression replication must be more thoroughly done since useful predictors may be excluded or unreliable ones included. Finally, criteria patterns and the links between the measurement of a behaviour and its "real life" correspondant(s) must be examined conceptually and empirically.

The above work did not attempt to examine the results in context of Sadava's system or to relate them to the literature on marijuana research specifically, or deviant behaviour in general. The focus was on issues common to multivariate systems, and to problems often ignored for some reason or another. It is the consideration of these problems, and their solution, that will allow the construction of useful predictive systems, and their meaningful empirical testing.

The results of this thesis may be divided in two parts:
those findings with regards to the content matter, cannabis use; and those related to data analysis and methodology.

The most intriguing and suggestive of the content findings
is the type of predictor and criterion patterns found in the canonical analysis. Several implications point to the potential in replication with different measures and samples. First, consider the two criteria patterns that seem to emerge: that of a moderate or "social smoker" which may parrellel the social drinker in alcohol use; and the "abusive" pattern which includes high adverse consequences of use. If these are "true" patterns they are important in considering the treatment of marijuana problems users and for the attitudes towards marijuana itself. Further, comparisons between patterns for marijuana and alcohol abuse, may clarify the origins of and meaning of "drug abuse".

On the other side of the canonical analysis, the predictor patterns may not only help us to understand drug abuse but may help us visualize the importance of (and the utility of) the differences between situational and intrapersonal factors in psychology. It would seem that there are at least two components in the predictor set: one comprised of social-environmental variables (e.g. peer and family relationships, political orientation size etc.) which is related to the variance in normal behaviour, and a component of
personal variables (e.g. time perspective, conformity issues, etc.)
related more to the "extremes" of behaviour. A thorough investigation
of these kinds of relationships can point out what each approach
can do and how to implement a situational-personality system in
psychology.

A second finding in the content area is much more specific
but, if typical of marijuana research, of some importance. As
pointed out by Sadava (1974a) the criterion used most often in
marijuana research is frequency of use. This variable is used in
a variety of forms: dichotomous (use - not use); ordinal group

```
scale (e.g. 0, 1 - 6, 7 - 15, etc.) and continuous interval
(implicit in the use of Pearson product moment correlation coefficient
or variants thereof). This study found that there were two major
drawbacks to the "frequency of use" criterion. First, the scale
and underlying distribution ssverely limit available statistics
and restrict interpretations of findings with respect to this
variable. Secondly, this variable seems to have little empirical
relationship to other criteria of drug use, and more seriously may
not be suitable as a criterion to be linked with drug abuse or
problem behaviour - the aim of much drug research. These
findings cast doubt on the results of previous research and on
the generalization of findings to the problem area.
    The methodology and data analysis issues raised by this
thesis are important when considering the task of analyzing and
interpreting the large data arrays generated in multivariate
studies. Four problem areas were pointed out: frequency distri-
```

```
butions, patterns of variables, raw data vs. factor scores and
sequential variable entry. Warnings about the effects of the
first two problems are always given when introducing the student
to statistics, however, judging from the apparent lack of attention
to these problems in non-medical drug use research these warnings
may not be needed in practice. Although this thesis has not covered
any new points with regards to the topics of frequency distributions
and variable patterns, the results at least give a good example of
the effects of focused consideration on the two areas.
    The issues of type of data (raw vs. factor scores) and
orthogonalization have received much less attention in the literature
and the present thesis attempted to compare procedures and exemplify
their use. Raw data scores alone, and factor scores alone, have
been used in data analysis previously but this study shows the utility
of considering both and cross-checking results. Quite often the
name assigned to a factor, variable, or "cause" with influence
```

```
greatly interpretation and future research directions. If a result
is obtained by "chance" (and as noted by Cooley & Lohnes, 1971,
multivariate analysis often capitalizes on "chance"), succeeding
research may be ambiguous, or interpretations forced by the historical
"momentum". Although the statistical results may be verified by
cross-validation techniques, interpretations are still based upon
a single source. However, the concurrent use of factor and raw
scores may provide "conceptual cross-validation". This means that
one set of variables (factors) is mapped onto a set of factors
(variables) formed in a different manner, and both are checked
against the criterion (criteria). Hopefully this will establish more
clearly just what it is that predicts (explains) the variance of the
criteria.
    Finally the utility of partitioning the predictor variables
so that orthogonalization takes place in different sequences was
demonstrated. Almost all techniques for orthogonalization (factor
analysis) must extract components sequentially and it is important to
```

```
know whether the results are relatively invariant or whether the
technique determines the results. Since we used two opposite
sequences of entry, the common results may be more trustworthy,
and our subsequent interpretations may be more valid.
    With increased use of multivariate analyses in the social
sciences, the potential pitfalls must be avoided, and guidelines for
meaningful interpretation drawn up. This thesis has attempted to
explore some problem areas in multivariate analyses and to highlight
potentially useful procedures.
```


APPENDIX A

Proof For Gamma $(\underset{y i}{(1)})$

Let $Z_{i}(i=1, \ldots, m)$ be a series of independent, normally distributed variables with $\operatorname{Exp}\left(Z_{i}\right)=0, \operatorname{Var}\left(Z_{i}\right)=1$. T, et Z_{y} be another normally distributed variable $\operatorname{Exp}\left(Z_{y}\right)=0, \operatorname{Var}\left(Z_{y}\right)=1$. Then Z_{y}, the predictable part of Z_{y}^{y} from Z_{i} equals $\sum_{i=1}^{m} \beta_{i} Z_{i}$.

But $\beta_{i}=r_{i}$ for orthogonal predictors (Mulaik,1972, p.404-405), then $Z_{y}=\sum_{i=1}^{m} r_{y i} z_{i} \cdot \operatorname{Let} \Gamma_{y i}\left(\operatorname{Exp}\left(\Gamma_{y i}\right)=0, \operatorname{Var}\left(\Gamma_{y i}\right)=1\right)$ be some variable, and α some constant such that :

$$
\begin{aligned}
& Z_{y}=\alpha \Gamma_{y i}+\sum_{i=1}^{m} r_{y i} Z_{i}, \\
& \Gamma_{y i} \text { indecent of } Z_{i} . \text { Then } \operatorname{Var}\left(Z_{y}\right)=\operatorname{Var}\left(\alpha \Gamma_{y i}\right)+\sum_{i=1}^{m}\left(\operatorname{Var}\left(r_{y i} Z_{i}\right)\right), \\
& 1=\alpha^{2}+\sum_{i=1}^{m} r_{y i}^{2}, \\
& \alpha\left.=\sqrt{1-\sum_{i=1}^{m} r_{y i}{ }^{2}}\right) \\
& \Gamma_{y i}=\frac{Z_{y}-\sum r_{y i} Z_{i}}{\sqrt{1-\sum r_{y i}^{2}}} \\
& \text { Therefore: }
\end{aligned}
$$

APPENDIX B

Delta Score Programme

```
        DIMENSION XDAT(35),YOAT(35),RXY(35),XYDEN(35),DELTA(35)
    50 FORMAT(8F10.4)
    500 FOFMATI5F7.3/28X,6F7.3,/8F7.3,7X,F7.3/10F7.3/F7.3,14X,2F7.3,21X,
        22F7.3/3F7.3,28X,3F7.3/2(10F7.3/),5F7.3,40X,13)
    700 FJRM4T(5F7.3,40X,13,'91'/SF7.3,33X,I3,'92'/10F7.3,5X,I3,'931/
        11OF7.3,5X,13,'94'/2F7.3,50X,13,8X,13,'95')
        RECD(5,50)(RXY(K),K=1,33)
        ว) 300 N=1,33
        XYCEN(N)=1./SQRT(1.-RXY(N)*RXY(N))
    300 CJNTINUE
        00 400 M=1,187
        REAO(5,500)(XDAT(N),N=1,33),(YDAT (N),N=1,33),NUM
        J 100 N=1,33
        IF(XUAT(N).LT.-20..CR.YDAT(N).LT.-20.1 GO TO 99
        DELTA(N)=(YUAT(N)-RXY(N)*XDAT(N))*XYUEN(N)
        G) TO 100
    970ELTA(N)=-99.
    100 ここNTINUF
        W2ITE(7,700)(DELTA(N),N=1,5),NUM, (DELTA(N),N=6,11),NUM,(DELTA(N):
        2V=12,21),NUM,(NELTA(N),N=22,31),NUM, (DELTA(N),N=32,33),M,NUM
    400 OUNTINUE
        .TOP
    ENU
```


Gamma Score Programme

Appendix C

Raw Data, Sample

Raw Data, Sample 2

CORRELATIONS

	Freq. VAR 001	$\begin{gathered} \text { Time } \\ \text { VAR } 002 \end{gathered}$	Range VAROO3	Cons. VAROO4
VAR001	1.00000	c. 28003	0.26321	-0.15418
VAR002	0.28003	1.00000	0.62854	-0.44206
VAR003	0.26321	0.62854	1.00000	-0.26488
VAR004	-0.15418	-0.44206	-0.26488	1.00000
VAR005	-0.14855	-0.41287	-0.31759	0.38669
VAROOG	-0.13211	-0.18294	-0.16946	0.131941
VAR007	-0.01255	-0.07325	-0.02633	0.03133
VAROO 8	0.14063	0.09244	0.14057	0.12987
VAR009	0.13678	0.33229	0.34221	-0.23222
VAR010	0.01523	0.27899	0.15847	-0.04740
VARO11	-0.05134	0.08402	0.06888	-0.05310
VARO12	0.11156	0.18417	0.10105	-0.31537
VAR013	-0.11007	0.65270	0.07966	-0.09076
VAR014	-0.05119	0.04021	-0.00366	0.01937
VAR 015	0.09523	0.19352	0.18137	-0.16562
VAR016	0.03840	0.04023	0.09353	0.08169
VAR017	-0.06583	-0.13788	-0.06242	0.02876
VAR018	-0.09332	-0.12187	-0.03149	0.04863
VAR 019	-0.04642	-0.13880	0.02818	0.05059
VAR020	-0.04831	-0.09354	-0.08934	0.06698
VAR021	-0.08240	0.10880	0.04351	-0.02558
VAR022	-0.02743	-0.15206	-0.03686	0.09202
VAR023	-0.12569	0.03850	0.01765	-0.08624
VAR024	0.11070	0.01322	-0.03318	-0.10762
VAR025	0.00097	-0.00796	-0.23405	0.02198
VAR026	-0.04971	-0.04823	-0.04885	0.11334
VAR027	0.11205	-0.03745	-0.02757	0.00152
VAR028	0.02045	0.13063	0.05201	-0.10017
VAR 029	0.05722	0.09226	0.05753	0.00564
VAR030	0.02096	0.01374	-0.08174	-0.04740
VAR031	0.11752	-0.01713	0.03400	-0.05674
VAR032	0.02045	0.13063	0.05201	-0.10017
VAR033	-0.08999	-0.12608	-0.13512	-0.05682
VAR034	0.05406	0.16017	0.11397	0.08375
VAR035	0.01245	0.15330	0.17705	-0.20506
VAR036	-0.02196	0.07990	0.06207	-0.09379
VAR037	0.01242	0.02223	0.05453	-0.02149
VAR038	0.02580	0.01837	-0.02426	0.09587
VAR039	0.02534	-0.05329	0.01509	-0.10864
VAR040	0.01266	0.01448	0.05838	0.10423
VAR041	0.03239	0.11118	0.02314	-0.09154
- VAR042	0.06922	0.12605	0.05772	0.05320
VAR04 3	-0.03796	-0.02856	-0.01374	-0.09330
VARO4 4	-0.07238	-0.00104	-0.06642	-0.07239
VAR045	-0.04677	0.06581	0.03402	-0.00439

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Demo. Factors, Sample 2

		Freq. VAR 001	Time VAROO2	Range VAR003	Cons. VAROO4
	VAR001	1.00000	0.27443	0.26321	-0.14785
	VAR002	0.27443	1.00000	0.64483	-0.4'039
	VAR003	0.26321	0.64483	1.00000	-0.27486
	VAR004	-0.14785	-0.44039	-0.27486	1.00000
	VAR005	0.11122	0.28282	0.20975	-0.15423
	VAR006	0.00234	-0.03956	-0.02685	0.13053
	VAR007	-0.05253	0.14347	0.13516	-0.20280
	VAR008	-0.00426	0.02284	0.04226	0.01883
	VAR009	0.02486	0.04275	0.08938	-0.17852
	VARO10	0.00763	C. 06850	-0.02984	0.08625
	VAR011	-0.08946	-0.02490	-0.11290	-0.12572
	VAR012	0.07318	0.07703	0.06678	0.00574
	VAR013	0.04274	0.00865	0.08455	0.07730
	VAR 014	0.14153	0.38063	0.31208	-0.34728
	VARO15	0.12358	0.04976	0.03508	-0.15380
	VAR016	-0.02727	-0.03072	-0.00006	0.04871
	VAR 017	-0.01400	-0.07811	-0.05805	-0.12879
	VAR018	-0.25966	-0.07731	-0.02014	0.07123
	VAR019	-0.00792	-0.02702	-0.11947	0.06287
	VAR020	0.13887	0.01995	0.01563	-0.04799
	VAR021	-0.02608	0.01210	-0.06541	-0.03336
	VAR022	-0.04647	-0.05557	-0.01223	0.06490
	VAR023	-0.11565	-0.01106	-0.10785	-0.08834
	VAR024	0.07522	0.07396	0.02463	0.04612
	VAR025	0.02097	0.10395	-0.01369	-0.12568
	VAR026	-0.02388	0.02046	-0.05411	-0.03545
	VAR027	-0.05991	-0.04219	0.01728	0.03901
	VAR028	-0.13344	-0.09201	-0.09793	0.05431
	VAR029	-0.10034	-0.02049	-0.03929	-0.04745
	VAR030	-0.03461	-0.09861	-0.18079	0.00678
	VAR031	-0.00221	-0.08691	0.00460	0.12752
	VAR032	0.00938	0.20090	0.20715	-0.17465
	VAR033	-0.00794	0.08124	0.13933	-0.12503
	VAR034	-0.02833	-0.01079	0.04332	0.00827
	VAR035	-0.05627	-0.10089	-0.10386	-0.01482
	VAR036	0.01694	0.07796	0.08253	-0.00531
	VAR 037	0.15675	C. 38100	0.38002	-0.20629
	VAR038	-0.05547	0.04151	-0.02657	0.02091
	VAR039	0.06213	0.21437	0.15566	0.01784
	VAR 040	0.08805	0.07861	0.07557	-0.11753
	VAR041	-0.03145	0.06484	0.10331	0.01184
	VAR 042	-0.00904	-0.00934	-0.04122	0.06873
	VAR043	-0.06197	0.08787	0.07726	-0.03944
	VAR 044	0.00351	-0.05133	-0.04724	0.12675
	VAR045	0.00321	-0.01064	0.03339	0.05894
	VAR 046	0.05590	0.01127	0.00020	0.04778
	VAR047	0.01358	0.07259	0.03016	0.04284
					,04284

BASIS: Burroughs Advanced Statistical Inquiry System, as described in Basis at Brock. (ed. F.R.Skilton) Brock University,1971.

Blalock,H.M., Causal models in the social sciences. Chicago, Ill.: Aldine, Atherton, Inc, 1971.

Carroll,J.B., The nature of the data, or how to choose a correlation coeffient. Psychometrika, 1961, 26, 4, 347-372.

Cattell, R. B. , Factor Analysis. New York: Harper and Row., 1952. Cooley,W.W., \& Lohnes, P.R., Multivariate data analysis. Toronto: John Wiley and Sons, Inc, 1971.

Ferguson, G.A., Statistical analysis in psychology and education(3rd. Ed). Toronto: McGraw-Hi11 Book Co., 1971.

Jackson D.N., Aquiescence response styles: Problems of identification and control.In I.A.Berg(Ed), Response set in personality assessment. Chicago: Aldine. 1967.

Jessor,R., Collins,M.I., \& Jessor,S.L. On becoming a drinker: Social psychological aspects of an adolescent transition.In R.E.Selxas (Ed), Nature and nurture in alcoholism. New York: Annals of N.Y.Academy of Sciences,1972, 197, 199-213.

Jessor, R., Carman, R.S., \& Grossman, P. H. Expectations of need satisfaction and drinking patterns of college students. Quarterly Journal of Studies on Alcohol. 1968,29, 101-116.

Jessor, R., Jessor,S.L., \& Finney,J. Asocial psychology of marijuana use: Longitudinal studies of high school and college youth. JPSP, 1973, 26, 1-15.

King, F. W. Anonymous versus identifiable questionnaires in drug usage surveys. American Psychologist, 1970, 25 982-985.

Mulaik, S.A. The foundations of factor analysis. Toronto: McGrawHi11 Book Company, 1972.

Rotter, J.B. Social learning and clinical psychology. Englewood Cliffs, N.J.: Prentice-Hall, 1954.

Rotter, J.B., Chance, J.E., and Phares, E.J. Applications of a social learning theory of personality. Toronto: Holt, Rinehart and Windston, Inc., 1972.

Sadava, S.W. Stages of college student drug use: A methodological contribution to cross-sectional study. Journal of Consulting and Clinical Psychology, 1972, 38, 298 (and extended report, mimeo.).

Sadava, S.W. Patterns of college student drug use: A longitudinal social learning study. Psychological Reports, 1973, 33, 75-86.

Sadava, S.W. Research on illicit drug use: A critical analysis. Genetic Psychology Monographs, 1974, in press (a).

Sadava, S.W. Patterns and meanings of college student drug use: A social learning approach. Canadian Journal of Behavioural Science, 1974, in press (b).

SPSS: Statistical package for the social sciences as described in Statistical package for the social sciences. Nie; N., Bent, D. H., and Hu11, C.H., Toronto: McGraw-Hi11, 1970.

SSP: Scientific Subroutine Package, Version III, IBM release GH20-0205-4, 1970.

Stewart, D., and Love, W., A general canonical correlation index. Psychology Bulletin, 1968, 70, 3(1).

Tsokos, C. P., Probability distributions: An introduction to probability theory with applications. Belmont, California: Duxbury Press, 1972. Van de Geer, J.P., Introduction to multivariate analysis for the social sciences. San Francisco: W. H. Freeman and Co., 1971.

VITA AUCTORIS

1947 Born in St. Catharines. Ont., to Alexander Simson and Edythe Jean Forsyth.

1953-66 Educated at L. G. Lorriman and Thorold High Schools, Thorold Ont.

Graduated with B.A., from Brock University, St. Catharines.

[^0]: Note : All loadings after varimax rotation and based on Sample 1

