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ABSTRACT
The Raylelgh-Ritz method Is used to determine the 

deflections and moments of clamped skewed plates. A deflection 
configuration of the skewed plate is assumed in the form:

w -  ( 1 -  a2 f  ( ?2-  P2 )2 ( Ao -  Aj c@ ) 

where A and A. are undetermined parameters defining the shapeO 1
of the deflection surface.

By minimizing the total energy expression for the
bending of plates, the parameters A and A, are evaluated and ao 1
deflection equation for the plate established. The deflection 
equation is then differentiated accordingly to obtain moments 
and stresses at various points of the plate.

An experiment was performed on the bending of a 
clamped skewed plate with a skew sides ratio of 1.23 a 
skew angle of 55 degrees. The results of this experimental 
investigation are compared with those obtained by the Rayleigh-Ritz 
procedure.

ill
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CHAPTER 1 

INTRODUCTION 

Skewed plates and slabs are often required as 
component parts for large scale structures, such as bridges and 

building floor systems, The banding behaviour of such plates is 

also of great interest to the aircraft industry, where such plates 

are found frequently as parts of swept-back wings and fins of 

subsonic and supersonic aircrafts.

Many diverse and indirect Kathode ara now available 

for the analysis of claraped rectangular plates subjected to uniform 

normal loadings. Some of these methods are cited by Timoshenko and 

Woinowsky-Krieger (i) who employ a double series which operates 

with two interdependent systems of infinite linear simultaneous 

equations. However, no general solutions are yet available for the 
skewed plate under similar boundary conditions. This is perhaps due 

to the fact that the analysis of a parallelogram plate is more 

complicated by its absence of orthogonal relationships.
The work embodied in this thesis comprises;

1} a theoretical aiialyais on the beading of

clamped skewed plates subjected to a uniformly 

distributed lateral land5 

arid 22) an experimental investigation of the bending

behaviour of a clamped skewed plate with a skew

sides ratio of 1.2?* and a skew angle of by degrees.
1
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with reference to the theoretical work, the Rayleigh- 

Rits method (2 ) is used to determine the deflections and acoents of 

clamped skewed plates. Essentially, this method is one of the racre 

important energy variational methods based on the well-known principle 
that when a system is in a position of stable equilibrium, its total 

energy is a minimum. Following the Eayleigh-Sitz procedure, a 

deflection configuration containing undetermined parameters wa3 first 

assumed satisfying not only the boundary conditions of the plate but 

giving also polar symmetry - a condition quite evident in a
uniformly loaded skewed plate. The assumed deflection function ic 

next inserted into the expression for the complementary energy and 

the required integration carried out, the limits of the integration 

being extended to cover the entire surface of the plate. The resulting 

energy expression is then a function of the undetermined parameters.
By minimising this energy expression and solving the simultaneous 

equations thus obtained, the parameters are evaluated. Finally, the 

deflection equation with its determined parameters is differentiated 

to yield the required moments and hence stresses.

The ei-cperlmanfcal investigation consisted of the
tl

loading of a l/h thick aluminum plate rigidly clamped c.n all 
four edges. >5eta-filai strain rosette gauges were installed and 

moments and stresses were calculated from the strain measurements 
recorded for the different intensities of loading, Dial indicators
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were also installed to record the lateral deflection at selected 

points on the skewed plate„
To facilitate the ccssputation of deflections, siosr̂ nfcG 

and the principal moments at specified points on the skewed plate, 

progransnes using Fortran language were written and are included in 

Appendix A.

5
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CHAPTER I I

REVIEW OF LITERATURE

In 19^1, Vernon P, Jensen (3) investigated slabs with various 
skew angles, boundary conditions and loading conditions. Finite 

difference equations were developed for a general system of skew co­

ordinates . By means of these equations, he computed the principal 

moments for uniformly loaded slabs simply supported on two or all four 

edges.

In 1933# Eric Reiscner (U) showed that the bending stiffness for 

a skewed plate is leso than that of an unskewed plate and that pure 

bending of the skewed plate is always associated with a twisting de­

formation, the relative magnitude of which depends upon the angle of 

skew.

In the period between 195^ - i960, a great deal of work was done 
on skewed plates and skewed structures. The outstanding researchers 

in this period are L.S.D. Morlay (5), I. Miraky (6), and P.D. Jones (7).
In 1953* P-E. Dorman (8) used the energy approach to investigate 

the bending behaviour of a clamped parallelogram plate but the function 

he assumed has the restrictive character of satisfying not only the 

polar symmetry but also quadrant ayaHaotry — — — ——  — & tondition 

which is non-existent in a skewed plate.

2i
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One of the more recent contributions co the eolation of skewed 

plates and slabs Is the ono by Kennedy and H.W. Huggins (9) who pre­
sented an analytical solution for skewed stiffened plates under a 

uniformly distributed load. Stresses near the corners of skewed 

stiffened plates were also Investigated by Kennedy and Martens (10) 

who have observed experimentally that critical stresses often occur 

in obtuse corners of such skewed plates.

5
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CHAPTER III

THEORETICAL ANALYSIS

(a) The Plate Energy Equation in Oblique Dimenaioaless Co-ordinates

In investigating the bending behaviour of skew plates, it is often 

advantageous to adopt a co-ordinate system parallel to the edges of the 

plate, namely the oblique co-ordinates a, and p shown in Fig. 1.

By the transformation

x * 5 cos 9 (3-1)

y o (I + a sin G (3-2)

in which 9 is the skew angle, the following relationships between the

rectangular and the oblique co-ordinate systems hold:

(3-3)

2_
sec 9 tan 0 + tan^ 0 (3-̂ 0

a Bw »C  e -  £ fan 0
Bx BS Bg

n2-
Q w a a2; 2sec 0 - 2

n2-d w
2

Bx
_2

Bcz BaBp

A180 ,

dw a  C>w
By Bp

>2- >2™o w o w
2 ”  _2

By Bp

(3-5)

(3-6)

6
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From the classical small deflection theory of thin elastic plates, 

the total energy of bending consists of two parts: the strain energy

due to bending and the potential energy of the load distributed over 

the plate. The expression for the strain energy of bending in 

rectangular co-ordinates can be written as.

J a -  D

- 2 (l-v)

f/ o w
* 2

>2- , o w
"r

2
dx dy

f ^2“o w a y  m
2

-dx dy

)

5*2— 2
oi;.o y j

dx dy ( 5-7)

For a clamped skewed plate, the displacement w is zero around the 
boundary and Eq. (5-7) takes a simpler form since

J

rc f-,2-o w a2w , -\2- 2 ' 
- ( L x  )2 — 5

J -a x a y axSy

dx dy = 0 (5-6)

For a plate subjected to normal uniform load of intensity p, 

the potential energy of the total load is

vp dx dy

Hence, the total energy of the system in rectangular co-ordinates
is

a2w + a2w
a x2 a y2

- vp dx dy (3-9)

S
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Using the transformation relations Sqs. (3-1) and (3-2), Eq. (5-9) 

becomes, in oblique co-ordinates,

X « cos ■J] d^w A~  - 2 —  sin 5 + ~
as2 a5a£ ag

da d$ (3-10)

Nov, by putting

a -■ aa

^ « aJ3

oa
■ dT

w » vh

(3-n)

(3-12)
(3-13)

(3-14)

where, a and $ are dimeaslonlesa oblique co-ordinates, 2a and 2b 
are the oblique dimensions of the plate (Fig, l), h la the thickness of 

the plate m &  q the dimensionlesa load, the total energy expression can 

be further simplified Into the following diaensionlese form:

»h' COS 0
/ c7 2 \2LZ. h L. - wq I da d8 (3-15)

a

where

V  Sv * cec2 ? ( ~
da

d w- 2 sin 0 *caop
d2v ,— 5: ;
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(b) The Rayleigh-Kits Procedure
To apply the Eayleigb-Hifcc procedure, a deflection configuration 

for a clamped skewed plate la assumed as:

w«(i -a2)2 (r2 -^2)2 ( A ^ - A ^ )  (3-16)

where A and are undetermined parameters, c l

The boundary conditions for tha clasped plate are:

*r +v > 0 for a » • I, end p » • t

and

la * ^ *t>J’ ? * * 7# and ̂  ** 0 for oc *» - 1

where a is la s direction normal to the edge of the plate (Fig. 1
From Eq, (?-lt ), #.c can be readily shewn that all these boundary 

cenditione ere satisfied, It way he worth noting also that the 

deflection function satisfies polar symmetry, I.e., w(a#3) ** v{•€:,-$)
. . a necessary condition for a uniformly loaded skewed plate.

In order to aubstit^t^ into the plate energy expression (3-15)# 
the assumed deflection function w is diffcrc&tiat&d with respect to

the diiasnsicaleas co-or«inates, & aa« £.

Thun:

i s  » ( 72  -  J32 )2 (~*»A -  12 A, 033 -  2 0  A. cs%. f> o I 1

+ 12 A a2 ); (3-iT)o

10
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2
= (1 - QC2 )2 (12 A. 72 c*P - 20 A op5 

dp2 1 1

- 4 Ao 72 + 12 Ao p2 ) (3-18)

and,

d2y -  16 A ( 72op -  72 o3P -  aP3 + a V  )
353p 0

x . 4 2 c ^ 4 4 1̂ 2 2 - 2Aj (° 7 CK - 5 7 0J - 7 - 36 7 a 0

2 4 P P P ? li 4 4 I,+ 3$ 7 a r  + 6 y f  + 30 a p4 - 25 a p4 - 5 P ) (3-19)

licace,

V 2w « sec2 0 (£-~ - 2 sin 0 —  + )
da dadp dp2

« sec2 9 jf Aq [-474 - A72 + (12 7^ + 3 72) c:2

+ (12 + 8 72 ) P2 - a2P2 (24 72 + 24 ) - 4 p^ + 12 a % k

- 4 72 a* + 12 a^ p2 + 52 sin 9 2 a3p + 32 sin 0 ap3

- 32 sin 0 r2 - 32 sin 0 a3p3J+ A, ( 2 sin 0 7^ + ap (12 72
.» 4

+ 12 7S  - a3P (20 7^ + 24 72 ) - ap5 (24 y2 + 20) + a5p3 (40 72

+ 40) + 12 ap^ - £0 a3 p' + 12 y2 <x: p - 20 a5 p3 • 10 sin 0 7 V *

2 2 2 4 4  4 4 2+ 72 sin 0 7  a p •>• 30 sin 0 a p + 1 0  sin B p - 12 sin By a

- 60 sin e 72 cc4 p2 - 12 sin d 72 p2 - 60 sin 0 a2 P^jj’ (3-20)

11
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Now, the total energy Integral, Eq, (3-15)j can be re-written as,

■ +1
1 - a w  ' 0 * o f

f+y r i * £

r+7 /*

I -7 J
Cm

-1 -1-7 ^

wq da d£f (3-21)

where the limits of the integration extends over the entire surface 

of the plate as shown.
2Substituting the form of V  w, Eq. (3-20), into the energy ex­

pression, Eq. (3*21), and after some tedious algebraic manipulations 

and Integrations, the plate energy equation reduces to:

4,
T D h1 = -jsj— COS 0 

a
sec 0 [ 20.8050793 75 -r (11.8886168

+ 23.7772337 sin20) y1 + 20.8050793 y9] kQ + 2 (ao aJ 

[- 5.9^3085 sin fi 5.9^5083 sin 0 y9 ] + [l.3509791 71

J. (1.3209574 + 2.0419146 sin20) + 1.3509791 7*1] \ jj
(3-22)A q o 225

Following tho Rayleigh Ritz ?roc£°ur®> t1jie total energy expression 
is now minimised vrith respect to each of the undetermined parametera,

r.e.

2L » 0 :dA J o
and dl

3a ,

12
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and partial differcotiatioa, tw> linear aissniteaavus *<,u«s.icni
sx& ©t-calned, via.,

(20.6050793 V:‘ f {XlM^>i6h * 2$*TT!&V «iaa 9) J 1

* so .(m om  \  -  (5.9W 5003 y i «*n 0

* 5.9^?°<>3 n* *i» 0 Ja^ =» q cos'* 5 [ 7^ (3-23)

*rtd

- sin @ 7^ aia y 1 &i o

* (l.35097!Jl 7 f *  (1.380957* * 8.64191*3 aie2 5) ?9

* i.350yT?rl 7* ] * 0 (3-2U)

Solving £Ue«& equuiioas ttiaultauftauali, rb« fMiras&eare a a1
are found to

A -  g c a /  » [ l . l ’ M M  <■ l . ’sagyjfl) -v2 > >,0059119 lZ  atn~ S' ^ .‘■iiTlUtO r** 1
y

and

A. • q cosf* £ ( C.?v3JJ0id aia ^ *

V

13
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where

'f * ao. 1072275 5 05.5*509-5 y2 * 51.7529915 72 #ia2 0

+ 7I.9I0 IO9 7^ - 7.6521766 y4 sin2 0

+ 62,617^250 7^ sln^ $ * U3.5s*5^9o3 7^

♦ 51.7529915 76 ala2 9 + 26.072273 7&

These parameters ere then Inserted into the expression for the 

deflection Eq. (3*16), frosa which deflections at any point within the 
plate boundaries can be determined.

Ik
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(c) Moment and Displacement Relationships

Froia the transformation equations ( 3-i) ■ant* (3-2)* sncJ the diwen* 

alonless ratios, equations (3-11) and (.12), rectangular Borneots can 

be expressed in terras of deflections In oblique dimeneienless co­

ordinates, « and Thus:

^  “ “ D (“  + v “  }
dx dy

K . 2» . D ~  (— w  a«c 0 - 2  — - sec 0 tan 0
a dot docdd

' 4 “ 2» * 4 l  (3-25)d£2 dp2

>2* \2-
H - = -  D (£ -&  “*• v — Sfp )
y dy a P

2 2 2
- . p k  (fLi£ + y sec2 3 - 2  8ec ^ fcsn 02 . 2  V  2 -v -va d£ doc dosdp

* ^ t a a 2 9)) (5-26)
Ofj

2 - 2
M -  . D ( ™ ^ )  h (|~„ sec 9 . tan 8) (>27)ny a2 '555{S ^2

From the rectangular moments M-, K- and the twisting moments 

M--, the principal momenta can be calculated la the usual manner:

max11 -- (M- + M-) j I (w— - ii-) + &- - (5-2d)2 x y ! 2j x y' x. ymia

15
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The direction in which the maximum principal stress occurs is

(3-29)

where is the angle measured clockwise from the x direction.

Once these moments for the plate have been ascertained, the

stresses are then readily obtainable by multiplying the corresponding

moments by £ i.e.,
h2

(d) Sample Calculations
As a sample calculation, deflections and moments were worked out

at specified points for a skewed plate with a skew sides ratio of 1.23

and a skew angle of $5 degrees ^  ttieae results are tabulated 
in Table I. Also, to demonstrate the adaptability of the digital com­

puter to this type of problems, deflections, moments, and principal 

moments for the same sk ' plate were comp^a by the XB& 1620 and the
results are included in Appendix *j.

16
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TABLE I

Theoretical deflections end Moments for a Clamped Skewed Plate

having a skew sides ratio of 1.23 and a skew angle of 55 degrees,
2Plate is subjected to a uniform load of 1.3 lb,/in .

Deflection (w) Max. Moment Min, Moment
Location ia, lb.In./in. ib.in./ln.

a =» o
e » o

.056 22.525 11.436

5 “ |

p = 0
.032 15-661 6.157

a » o
b
2

.032 I6.566 6,8 69

aa w <u
b

.010 8.434 0,348

For D » 14,646.4375 lb.in5 v » 0.333j and E = 10,000,000 p.s.i.
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CHAPTER IV

EXPERIMENTAL STUDY

(a) Materials and Apparatus

A 1/4" thick aluminum alloy (12) 6061-T6 plate was cut to the 

dimensions shown in Fig. 11. With the dimensions Bhcwn, - e plate 

has a skew sides ratio of 1,23 and a skew angle of 35 degrees. A 

total of 32 meta-foil strain rosotte gauges were installed on the 
plate, seven on the top surface and twenty-nine on the bottom surface. 

All these rosette gauges are of the 3-gauge 43° rectangular type, 
having a gage factor of 2.03 and a resistance of 120 ohms. Terminal 

strips (type T-50) were used to connect the lead wires to the gauge 
tabs. The wire leads are twelve feet long, made of No. 26 stranded 

copper wire and with vinyl insulation. To provide support for the 

plate, tandard steel channels twelve inches deep and weighing 20.7 
pounds per foot were cut to the required skew. It was thought that 

there might be a possibility that these channels would twist as the 

clamped plate was being loaded. As a safety measure, 1/4 inch thick 

vertical stiffeners were welded to the channels and were spaced 

approximately six inches apart. The plate and channel assembly was 

then seated on steel angles attached by 1 inch bolts to heavy 3tael 

posts. To assimulate the built-in edge condition, the aluminum plate 

was sandwiched between the flange of the channels and a 1 Inch thick 
cold-rolled steel cover plate, 3 inches wide. The plate was cut in

18
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such a way that It provided a clamping edge of three inches while the 

flange width of the channel was also three inches. A wooden box having 

the same dimensions and skew as the plate was made, the box was 6 1/2 
feet high and was heavily reinforced with 2 inch by 2* inch planks and 
steel straps. A waterproof sheet made of polyethylene material was 

placed Inside the wooden box. The strains were measured by means of 

two standard S-R b strain indicator units, two witch and balancing 

units (model C-10T and C-1QLTC) and a digital strain indicator which 

permitted the strains to be read off directly in micro-inch per inch. 

Seven dial indicators were used to measure the deflection of the plate. 

To clarify the description of the aforementioned apparatus and the 

general set-up of the experiment, photographs were t«< n  and are in­

cluded on pages ^  to ^

19
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(b) Procedure and Results

The l/h inch thick alumlauza plate was first saved to the required 

dimensions and skew, leaving three inches all around for clamping 

purposes. The plate was then cleaned with acetone and the locations 

Sox both the top and bottom surface gouges laid with reference to the 

rectangular axes, x and y. The co-ordinates of all the gauges are 

recorded in Table II while their alignment and locations ere shown in 

Fig. 2 and 3. The installation of these rosette gauges to*.towed a 

set procedure. The spot where the rosette was to be placad was first 

wiped clean with acetona and then sanded with a metal conditioner 

using silicon carbide paper. The ci.net location of the gauge was 

then marked with a ballpen. The same spot was again cleansed In turn 

first with a metal conditioner and then with a neutraiiser. tfith the 

rosette and the terminal strip properly lined, Eastman 91° cement was 

applied to cewant the assembly onto the plate. The gauge and terminal 

we then left to dry for one minute during which time pressure was 

applied to the gauge by means of the thumb. The insulation of both 

ends of the lead wires was next stripped and the bare copper strands 

twisted. Each lead wire consisted of three copper strands, one strand 

was soldered to one tab 't the terminal strip while the other two 

strands were twisted together and soldered to the other tab of the 

terminal. The tabs of the terminal strip were then connected In turn 

with the tabs o£ the gauges by means of thin copper jumper wires. To 

provide waterproof and mechanical protection, besides the usual highly 

insulating gauge coating, a special gauge coat made of a two-component

20
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rubber-like resin was also applied to cover the entire gauge and part 

of the lead wires. This gauge coating is greenish in colour and photo­

graph A on page 3^ shows a clear picture of some of the gauges completely 
Installed on the bottom surface of the plate. All 32 rosettes were 
thus installed and the gauge lead wires soldered in position.

The supporting structure for the plate is shown In photograph A,

The plate was placed between the flange of the channel and the 1 inch 

steel cover plate and all four edges . e then clamped by special 

structural erection clamps spaced six inches apart; allowance was made 

here to have clasps placed closer together near the corners of the 

plate. (See photograph E on page 35)
To allow a direct reading of the deflections, seven indicators

were Installed in locations previously marked on the bottom of the 

plate. These are numbered from 1 to T and their locations in terms of 

the rectangular co-ordinates are tabulated in Table II and are also 

shown in Fig. 4. The wooden skew tank was then placed to rest on the 

cover plates and, inside tl.' tank a waterproof sheet of polyethylene 

material was carefully laid so that water can be used as a loading 

medium.

I'Text, gauge lead wires from 20 rosette gauges were soldered to 

twelve 5-channel receptacles especially provided for the three switch 
and balance units. Unit strains in micro-inch per inch could be read 

off directly from o screen of the digital strain indicator. The 

remaining 12 rosettes were hooked to the terminals of the two switch 
boxes which were in turn connected cc a conventional S-U 4 strain

21
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indicator. Unit strains were read off from this indicator in the usual 

manner. These instruments are clearly depicted in photograph C on 

page 36.
Before the plate was loaded, all the gauges and dial indicators 

were "zeroed Id ". After the plate was loaded, strain and dial in­

dicator readings ware taken and recorded. Such readings were obtained 

for every one foot increment in height of water. Readings were also 

taken and recorded in a similar manner while the load was taken off 

the plate. The average of the loading and unloading readings was 

computed and the resulting strains tabulated in Table 111,

Three strain values e^, and (See Fig. 2) ware obtained 

frost each rosette gauge. From these values the principal stresses 

and principal moments were then computed by using either the Mohr 

Circle or the following formulas!

where 0 gives the direction in which the maximum stress occurs, 
this angle being measured counter-clockwise from the*/ axis.

2 2 
efl - «fc) + 2 (efc - «c) ) (k»l)

2 (®a ' Cb)2 r 2 ( %  ~ ec)2 ) (U-2)
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2
Hmax 6

h2 (t-5)

To facilitate tba computation, a prosrausne in Fortran t?aa 

written to give the rectangular aocsenta, principal nwnjents, principal 

stresses and the direction of these principal stresses. As a sample 

calculation, the digital computer 1620 vas used to calculate the 
principal moments and principal stresses for each rosette and the 

results are tabulated in Table IV. The programs* used for the com­

putation is included in Appendix A.
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TASLE II

€o-ord£aa£oe of Strain Rosetta Gauges and Dial Indicators.

Gauge
No.

Co-oreinates Gauge Co-ordinates

:: ( in) v ( in. ) No. x ( in \ v • in 1
t ~u. ?.» i, 2 * - U .0 + r.. "i
2 -1' .0 «•y 22 -10.0 . 7
3 « • ^ - 57.0 5*3 -'0.0 •> »o. t
U -n .o -2 2 1; -7.0 + 1 1 .

-10.0 -33.'- 25 +7.0 -2 2 .
-2 . „\'i. 2 -11. -h 1.4

i -11.5 -21.5 . 2  • +2 -2 0 .
-11.0 -2 0 . 2 -11 .0 -1 .0

i~\ -too -20.4 ft', .£1 ' 0.0 0.0
10 *2 .h -2 0 . ■50 -11.0 +3.1
11 -U..0 -1- -F 0 -; S \
12 -5.0 -1.5 -12 -11.0 + ’■. 5

' V -•0.0 -11 Dial 1 -•'.0 -21.4
ik ■v ' • ^ -n ' Dial 2 +4.0 -h. 5
t •. i -12.4 Dial 3 - .0
•i -10.0 -2. 3 Dial a 0.0 0,0
; , 0 0 0.0 Dial 5 + .0 ■
7 ~!1 0 +3. 1 Dial 0.0 -)2r

? v.o •-F 1. Dial i 0.0 ■2 --

ao -1 ? .5

?7
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S t r a i n  R e e d in g . .  p e r  in c h ')  a n t i P l a t  t r u H c a t o r

B e a d tn g '-5 '  ? n  ; ::•©*■;) f o r  d i f f e r e n t  in to a s - .  i c i e r .  o f  f o a d ? T ’

Gar-s.e
S o

t f a i f o r w  I jo a d  i n  fe e t :  o f  w a t e r

t 2 j .. - t.: g

? a = 2
t.

** *f 0 ..

*- * -  ‘ ... ’•

i 0 “ 5 - f-Ai«>

2 a Ji '• •, \ ~ T

2> - S - 6 ■ * — 5 - * 0

9 c - 3 ~l «*>
t

■'a ■!■ , t

?b - - *. *• *«y v

"•1 ■ • ■2 -k -h ... "* * - I  ^ >■*

I* \ : ?0 . i,-y .>■■ V

S.T>1 - - 8 - 8 ‘■13 -TO “  ; '

‘■1 -w - 1 5
-S 2 - 5 8 -*<o .-:-2

v a •:■! ■ *■22 - 2 5 ; 0

. \ .. ! -  ’ -:■ r ■*25

■ \ - r:- - I 'd ...;

n .. > oi.. ,.p - 2 -  hO
T-, - 2 ' -2

0 0 Q 0 0

<?. _■? rs-c ™ r f-

•• C"iT
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TABUS III (Coat'd.)

Strain Gauge Headings (Micro-inch per inch) and Dial
Indicator Beadiaga (inches) for Different Intensities of Loading

Gauge
or Dial 
Number

Uniform Load In feet of Water
1 2 3 4 5 & 1/2

7 c -20 -4 4 —61* •C.« 4* —99 -107
3 a -i3 —20 -25 -32 - 37
8 b - 7 — 8 - 4 «* -4 — 4 - 3
8 c -28 -47 -61 -79 -94 -103
9 a -v 4 ♦ 6 + 8 ♦11 ♦14 + 14
9 b - 8 - 3 — 4 - 4 - 4. - 3
9 c -26 -41 -34 -70 -S3 - 88

10 & -26 -35 -81 -110 -139 -130
10 b —26 -40 -34 -71 -34 - 90
10 c ♦ 1 + 3 * 7 + *0 + 8 * 9
11 a —15 -35 -56 -72 -90 -100
XI h -17 -30 -40 -30 —>9 - 65
11 c —43 -78 -108 -13v -167 -182
*r **, ♦as *60 ♦91 *121 *153 *169
12 b —12 - 9 - 3 + 2 + 6 + 6

12 c — 5 ♦IB +36 *33 * 39
10 a — o —i ' - 2 0 -26 -33 - 40
I -2 o - 3 - 2 * 5 * 7 Hr* V? + 12
* -33 -32 -69 -35 -101 -108
14, a —15 -13 -20 -20 -14 - 14
14 b — A 1 -13 -14 -17 -20 - 19
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TABLE III (Coat'd.)

Strain Gauge Readings (Micro-Inch per inch) and Dial
Indicator Readings (inches) for Different Intensities of Loading

Gauge 
or Dial 
Number

Uniform Load in feet of Water
2 Cl 4 5 1/2

14 c •; ; T- > + 13 -11 *16 +16
15 a -55 -ill -160 -210 -255 -266
15 b -21 -41 -61 -82 -1C2 -113
15 c - 9 -20 -28 -37 -50 -50
16 G -17 -32 -43 -54 -63 -70
16 b -11 -12 -16 —2C -23
16 c -24 -42 -56 -94 -103
17 a *5 37 +79 +121 ♦159 +197 +214
17 b + 4 *20 +49 +69 +92 +99
17 c +30 +70 +101 +130 +166 +16S
18 a -33 -57 -77 -95 -111 -122
18 b ♦ 4 +12 +20 +23 +24 +26

18 c - 6 -11 -14 -23 -35 -42
19 a +13 +44 +73 +100 +128 +140
19 b + 9 +21 +42 +70 +93 +134
19 c +19 +45 +69 +90 +106 +116
20 a -44 -76 -100 -124 -143 -154
20 b + 5 +18 *44 +56 +53
£0 c +10 +17 +23 *26 +28 +29
21 a -53 -93 -125 T r— *■» -176 —190
21 b 0 * 7 +16 +23 +31 +37
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TABLE III (Coat*d.)

Strain Gauge Readings (Micro-inch per inch) and Dial
Indicator Headings (inches} for Different Intensities of Loading

Gauge 
or Dial 
Kucaber

Uniform Load a feet of Water
2 3 4 S 5 1/2

21 c * 7 ❖ 9 ❖10 + s ❖ 3 ❖ 4
23 a ■"43 -7S -100 -121 -237 -146
S3 b ❖ 3 ❖ 9 ❖ 19 ❖26 ❖33 ❖37
22 c — 2 — ^ -11 -19 —28 -31
23 a -65 -123 -173 -210 —242 —264
23 b -23 «»41 -61 -79 —100 -1G7
23 c -25 -33 —59 -83 -107 —103
24 a ❖24 ❖49 ❖75 ❖93 ❖120 ❖131
24 b — 3 ❖ 3 ❖11 ❖18 ❖24 ❖23
24 c —11 -12 - 9 — 8 - 7 - 4
23 a ❖16 ❖37 ♦56 ❖69 ❖aa ❖97
22 b -13 -14 -15 -22 -27 -23
25 C •14 -16 -23 -21 -27 -21
26 a ❖ s «i* 4 ❖ 6 ❖ 7 ❖ 6 ❖ 7
26 b ❖ 4 ❖ 1 ❖ 1 ❖ 2 — 3 ❖ 1
26 c ❖ 3 ❖ 8 ❖ © ❖12 ❖12 ♦18
27 a 0 - 4 «- 9 -12 -17 -16
27 h ❖16 ❖37 ❖53 ❖74 ❖91 ❖98
27 c ❖35 ❖65 ❖127 ❖157 ❖272

03COCVJ ❖63 ❖2 GO ❖231 ❖160 +177
O'? ❖ 5 ❖13 ❖24 ❖32 ❖37 ❖42
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TAELS 111 (Confc.d.)

Strata Gauge Readings (.Micro-inch per inch) and Dial
indicator Readings (inches) for Different Intensities of Loading
Gauge 
or Dial
Number

Uniform Load in feet of Hater
1 2 n, 4 5 5 1/2

28 c +33 +48 *63 +73 +34
29 a -59 —69 —95 -119 -144 -132
29 b -2? -33 —44 -55 —54
29 e -76 -100 -122 -138 -143

30 a — 2 - 2 - 1 - 1 + 3 + 6

VC b -18 -30 •42 —54 -63 -63
o +25 +53 +80 +106 +136 *147

31 a -34 -60 O'** -107 -130 -139
31 h —31 -64 -70 —93 -98
32 c —23 -40 —52 -61 -60 -72
32 a -iO -21 -35 -52 -67 -72
32 b —11 -21 -30 -41 -54 -72
32 c +38 —84 -133 *178 +224 +240

Dial i + 3 + 7 *11 *14 *18 +20
vjCL&jL 2 +31 +43 +660 +72 *78
.Oisi j +13 +23 +34 +44 *53 +53
Dial 4 + 0 » +S7 *75 +93
Diai 3 +23 <‘.35 +45 +54 +62
Dial 6 +24 +36 +47 *37 *63

3ic~ 7 "5 "IS +25 +36 *47 +57 1 *63
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TABLE IV

Computation of Principal Moments and
Principal Stresses for Rosette Gauges, Plate is

2
Subjected to a Uniform Load of 1.5 lb./in .

X

Gauge Principal Moment Principal Stresses 0
Number

1
Max
0.354

Min
-0.198

Max
34.017

Min
-19.017

{radians;
-.071

2 0.926 -0.458 88.950 -43.950 -1.427
1.03 0 -0.717 98.852 -88.852 -1.339

. 4 . . 0.470 -3.284 45.156 -315.156 -0.764
5 2.103 -1.322 201.102 -126902 -1.178

.6 0.514 _ -3.795 49.329 -364.329 -0.195

7 -2.365 -8.885 -227.060 -852.939 -0.384
8 -3.058 -9.599 -29". 51:8 -921,471 -0.256
9 -0.753 -6.434 -72.304 -617.695 -0.510
10 -2.096 -9.466 -201.225 -908.774 -0.601
11 -8.953 -16.671 -859.527 -1600.472 -0.277
12 13.836 3.195 1328.299 306.700 -1.288
13 -2.638 -11.268 -253.265 -1081.735 -0.230
lb 0.981 -2.075 94.182 -199.182 -0.502
15 -8.922 -20.452 -856.572 -1963.426 -1.017
16 -4.761 -10.707 -457.056 -1027.943 -0.086
17 22.250 12.437 2130.008 1193.989 -1.491
18 -1.431 -12.788 -137.393 -1227.606 -1.347

2Moments are in It), in./in. and stresses are in lb./in .
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TABLE IV (Coat’d.)
Computation of Principal Moments and

Principal Stresses for Rosette Gauges. Plate Is 
Subjected to a Uniform Load of 1.5 lb./in2.

Gauge Principal Moment Principal Stresses 0*
Number Max Kin Max Min

r

19 13.365 8.823 I283.OI6 846.983 -1.536
20 1.293 -13.324 124.161 -1279.161 -1.212
21 -1.188 -16.781 -114.057 -1610.942 -1.199
22 -1.892 -15.451 -l8l. 66l -1483.337 -1.302
23 -11.937 -24.313 -1145.93^ -233^.063 -1.169
24a.-------------- 8.860 1.452 850.598 139.402 -1.027
25 6.894 -0.957 661.870 -91.870 • -1.157
26 I.569 0.619 150.621 59.379 -0.826
27 10.996 2.598 IO55.585 249.414 -0.893
28 15.965 7.159 1532.669 687.329 -1.331
29 -11.050 -19.419 -IO6O.811 -1864.187 -0.233
30 13.281 -0.938 1275.062 -90.062 -0.230
31 -9.336 -11.758 -893.323 -1131.676 -0.896
32 -7.428 -18.831 -713. H 6 -1806.882 -0.368

3 3 A
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PHOTO. D PHOTOGRAPH SHOWING THE CLAMPED EDGES 
AND THE STRUCTURAL STEEL COLUMNS
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CHAPTER V

COWAEISOH OF RESULTS AMD OBSERVATIONS

The deflections of the clamped skewed piste recorded points 

where the dial indicators were lobster! are compared with the de­

flections at the same points derived irota the theoretical analysis.

The comparison is tabulated in Tabid V.

A comparison of the theoretical m i  experimental principal stresses 

and moments is also made at two locutions of the. skewed plat©, namely, 

at points where gauges 11 and gauge IV (centre, ^nugc) are located.

These results arc tabulated in Table VI.

Bp way of comparison, It i& perhaps interesting to compare 

Timoshenko’a results on clamped uniformly loaded rectangular pletes 
with those vived fr>r~ the theoretical analysis. In this particular 

case, the angle of skew in the deflection function in set to :;ero and 
the deflection calculated for different sides ratios of the rectangular 

plate. Table VII shows a comparison of the centre deflections, contra 

moments and the smii •■■* edge moments.

As can bo seen from Table V, the deflections of the particular 

skew plate investigated check vary well with those from the theoretical 

analysis. Also the deflections for rectangular plates compare v*ry 
closely with those given by Timoshenko anti Krleger(l) f°r clamped rectangu­

lar plates. (See Table VII)

Centre deflections for clasped skewed plates having different 

skew aides ratios and skew angles compare quittr well with those
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obtained by Kennedy. (See Table VIII)

Moments and stresses, on the other hand, do not compare so 

closely with either the experimental results or with other Investigators 

(Tables VI and VII) The maximum or critical moments have been found 

to occur at the midpoint of the longitudinal sides. These moments 

are compared with Timoshenko's solution on clamped rectangular plates, 

and the deviation of the moment values is in the range of about 10 

per cent. Comparisons of principal moments and stresses are also 

made with Kennedy*s work (ll) on clamped skewed plates and it is found 

that all principal moments and stresses compare quite favourably In 

the vicinity of the central portion of the plate but no close agree­

ment could be observed for moments and stresses close to the built-in 

edges.

A comparison with Kennedy's results for the deflections and 

principal moments at the centre of skew plates with different skew 

sides ratios and skew angles is tabulated in Tabic V1XI.

To conclude, it may be interesting to note that while based on 

the theoretical analysis, the deflections, moments and stresses are 

all proportional linearly with the intensity of loading. The experi­

mental resulto, however, tend to deviate from this strict linear 

relationship, the deviation becomes increasingly evident for high 

intensities of loadings. This is understandable in the light that in 

the theoretical treatment of clomped skewed platen embodied la this 

thesis, only the bending effect on curvature is taken into account, 

whereas the tension in the middle surface of the place effecting

3*
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curvecure, is ignored. This effect is presumably negligible when the

lateral deflection v is email  as the deflection gets larger,

thf: membrane effect becomes more and more prominent until for large 

v&luss of w, the membrane affect becoses predominant and the bending 

stiffness is then negligible. It is quite evident from the experimen­

tal results in Table 111 that, for the particular skew plate under 

investigation, the effect of stretching of the middle plane of the 

plate becomes quite appreciable for loadings of * '-•T‘ feet of water 

and higher.

bo
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TABLE V

Comparison of Deflections of a Clamped Skewed 
Plate (y=1.23j 0=55°) Different Intensities of Loading 

Theoretical Studies Vs. Experimental Observations

Load 
in ft. 
of
Water/
1»

Gauge 1 Gauge 2 Gauge 5 Gauge 4 Gauge 5 Gauge 6 Gauge 7
Experi Theor Experi .Theor,Experi .Theor, Experi Theor. Experi .Theor.Experi Theor. Experi. Theor.
.003’* .003" .016" .013" .013’* .Oil" .021" ,01<T .013" .Oil" .013" .011 " .013" .011"

2 ’ .007" .007" .031" .026" .023" .021" .040" .037’ .023" .021 " .024" .021 " .025" .021"

3' .011" .010" .045 " .039^ .034" .032 " .057" .056 " .035" .032 " .036" .032 " .036 " .032"

4 * .014" .014" .060 " .052 " .044" .042 " .075" .075 " .045" .042 " .047" .042 " .047" .042 u

5' .018" .0173* .072" .065 " .053" .053 " .089" .093’ .054" .053 " .057" .053 " .057 " .053 "

5 5 2 .020 " j.0191" .078 " .071 " .058" .058 " .098" .102 " .062" .058 " .063" .058 " .063" .058 "

For Location of Dial Gauges See Fig. U



TABLE VI

Comparison of Maximum Moment and Maximum Stress 
for a Clamped Skewed Plate (7 = 1.23j 0 - 55°) 
for Two Different Intensities of Loading 
Theoretical Studies Vs. Experimental Results

Uniform 
Load 

in Ft.
of Water

Gauge
No.

Max. Moment 
(lb. in./ in.)

Max. Stress 
lbs./ in.^)

Experi. Theor. Experi. Theor.

1
*17 7.55 7.44 725 714

11 -3.09 -2.79 -296 -268

3
*  17 22.25 22.33 +2136 2144

11 -8.95 -8.39 -859 -806

Centre Gauge v = 0.3 D — 14,648.4375 lb. in

E = 10,000,000 p>3#1>
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TABLE VIZ

Comparison of Centre Deflection, Centre Moments and 
Maximum Edge Moments for Clamped Rectangular Plates

-p-
v>i

Centre Deflection Max. Edge Moment Centre Moments

b/' a a 0 , (5 = 0 a = a, 0 = 0 Mx at a -  o, p = 0 My at a = (3, P = 0
From 

Theor. Anal. Titno,
From

rheor.Anal. Timo.
From 

Theor. Anal. Timo.
From 

Cheor.Anal. Timo.
1.0 .021 .020 Pa~rr

2**.170 pa -.205 2pa .110 2pa 2.092 Pa 2.110 Pa 2.092 Pa
1.1 .025 II .024 VI -.203 it -.232 11 .126 II .106 " .114 " .092
1.2 .029 II .028 tl -.233 it -.256 tf .140 ft .120 " .115 .091
1.3 .032 11 .031 tl -.259 tt -.275 If .152 II .131 " .115 " .089 "
1.4 .035 VI .033 11 -.282 tt -.290 If .162 If .140 " .114 " .085 "
1.5 .038 II .035 II -.301 it -.303 »? .170 If .147 ” .112 " . 081 "
1.6 .040 II .037 VI -.318 tt -.312 II .177 II .152 " .109 " .077 "
1.7 .042 tt .038 tl -.332 n -.320 ft .183 11 .157 " .107 " . 073 "
1.8 .043 It .039 It -.344 tt -.325 ft .187 ft .160 " .104 " .070 "
1.9 ,044 II .040 It -.354 tt -.329 II .191 II .163 " .102 " .066 "
2.0 .045 If .041 II -.362 it .332 If .195 11 .165 " .099 " . 063 "

V =  0 . 3
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- V I

CONCLUSION

The Rayleigh-Ritz technique was employed to establish a deflection 

function for clomped uniformly loaded skewed plates. From this function, 

deflections, rectangular moments and principal moments were computed 

at arbitrary points of plates having different sides ratios and

skew angles. Those results were then compared with those observed 

from an experiment on a skewed plate with a skew aides ratio of 1.2J 
and a skew angle of 55 degrees. Also, the same results were used to 
co&pare with these obtained by Kennedy, Timoshenko and other investi­

gators. These comparisons seem to indicate that the deflection function 

established for the clamped uniformly loaded skewed plate represents, 

to a reasonably high degree of accuracy, the true deflections of skew 

plates having the same boundary conditions.

Satisfactory agreements were also obtained when the principal 
moments and principal stresses in the central portion of the plate 

ware compared with those observed from the experiment. Kowevcr, as 

the edge of the plat® is approached, the variation of moments and 

stresses is steep end it is in these areas that incongruencies exist 

in the values of the principal moments and stresses.
To gain confidence in the application of the theoretical analysis 

of clamped skewed plates embodied in this thesis another similar 

experiment will be conducted in the near future on a uniformly loaded 

clomped skewed plate with a skew sides ratio of 1.12 and a akew angle
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of 'J) . The results of such an experiment will again be compared
tical analysis.with those obtained from the -
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APPEflD IX A

Fortran Programme for the Theoretical Analysis of Uniformly 
Loaded Skewed Plates

C ANALYSIS OF UNIFORMLY LOADED SKEWED PLATES
100 READ 10.G.DEGRE.ANU 
10 F0RMAT(3F10.5)

T H E T A = D E G R E * 0 .017453292 
A 1 = (C O S F ( T H E T A ) )**4 
A 2 = (256./225.)*G**5 
A3=A1*A2
A 4 = 2 0 » 8 0 5 0 7 9 3 * G * * 5 + 1 1.8 8 S 6 16 8 * G * * 7 + 23.7772337*G**7 

1*< SINF( THETA) ) #*2+20 . 8050793*G**9 
A001=A3/A4

144 A 2 = 1 . 5 3 7 1 140+1.5029560* G * G + 3 . 0 0 5 9 1 19*G*G 
1*(SI N F ( T H E T A ) ) * * 2 + l . 5 3 7 1 140*G**4 
A3 = A 1*A2
A 4 = 2 8 .1072273+43.543 8 9 6 3 * G * * 2 + 5 1.7529915 * G * * 2 * (S I N F (T H E T A )**2) 
A 5 = 7 1.9188109* G * * 4 - 7 . 8 5 2 1 7 6 8 * G * * 4 * (S I N F (T H E T A )**2)

1 +62 • 8 1 74256*G**4* ( S I NF ( THETA ) -**4 )
A 6 = 4 3 . 5 4 3 8 9 6 3 * G * * 6 + 5 1 •7529915*G**6 

1 * C SINF <T H E T A )++2)+28. 1072273*G**8 
A7=A4+A5+A6 
A002 = A3/A7
A 2 = 6 . 7 6 3 3 0 1 8 * ( S I N F ( T H E T A ) )+6.7633018 * G * G * S I N F (T H E T A )
A3=A1*A2
A 4 = 2 8 .10 7 2 2 7 3 + 4 3 . 5 4 3 8 9 6 3 * G * * 2 + 5 1•7529915 * G * * 2 * (S I N F (T H E T A )**2) 
A5 = 7 1 .9188109*G**4-7.8521768*G** 4*(SINF ( THETA) **2)

1 + 6 2 . 8 174256*G**4*(SINF(THETA ) **4 )
A 6 = 4 3 . 5 4 3 8 9 6 3 * G * * 6 + 5 1 •7529915*G**6 

1 * (S I N F (T H E T A )**2)+28. 1072273*G**8 
A7=A4+A5+A6 
A022=A3/A7 
PUNCH 198

198 F O R M A T (24H INPUT DATA AND RESULTS)
PUNCH 199 »G « THET A .A N U .A 0 0 1 .A002.A022

199 F O R M A T (3H G=F10.5.7H T H E T A = F 10.5.5H ANU=Fl0.5/6H A001=F20.8. 
16H A002=F15.8/6H A022=F15.8)

388 DIMENSION T 8 E T A (3)♦T A L P A <3>
READ 10 1. (T B E T A ( I ), 1=1,3) . (T A L P A (J) .J=1 .3)

101 F0RMAT(6F10.5)
DO 99 J = 1.3 
ALPA = T A L P A (J )
DO 99 1=1.3 
B E T A = T B E T A (I )
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SEC=1,/COSFCTHETA)
S = S I N F (T H E T A )
C = C O S F ( T H E T A )
S E C 3=S E C **3
PI = (G**2~BETA**2 >**2
P2=I2.*A002 * A L P A * * 2 - 4 •* A 0 0 1
P 3 = P 1*P2
P4=32.*S*A001
P5=G**2* CALPA**3)*BETA+ALPA* ( BETA**3 )

1 -G**2*ALPA*BETA- ( A L P A * * 3  ) * ( B E T A * * 3 3 
P6=P4*P5 
P7=S**2
p a = c * * 2
P9= c1• — A L P A * * 2 3**2
P l 0 = 1 2 . * A 0 0 1 * B E T A * * 2 - 4 . * A 0 0 1 * G * * 2  
PI 1= P 9 * P 10
A M A L 1=— S E C 3 * (P 3 + P 6 + (P 7 + A N U * P S )* P 11)
AMBE1=-SEC3*{PI 1+ P 6 + (P 7 + A N U * P 8 )* P 3 3
A M A B 1= - S E C 3 * S * ( P 3 + P 6 + P l 1 )- S E C * ( 1.- A N U > * < - 1 6 * ) * A 0 0 1 * (- P 5 3 
DEF1=P9*P1*A001
P 2 0 = - 4 . * A 0 0 2 + 1 2 . * A 0 2 2 * A L P A * B E T A  

1-20•*A0 22*(A L P A * * 3 )* B E T A + 12.* A002*ALPA**2  
WAA=P1*P20
P 2 1-12.* A 0 2 2 * G * * 2 * A L P A * B E T A - 2 0 « * A 0 2 2 * A L P A * B E T A * * 3 - 4  .*A0 02*G**2 

1 + 12•*A0 02*BET A **2 
W B B = P 9 * P 2 1
P22=16.*A0 0 2 * ( G * * 2 * A LPA*BETA-G**2*< ALPA**3> *BETA 

1-ALPA*BETA**3 + < A L P A * * 3 ) * ( S E T A * * 3 >  3 
P 2 3 = A 0 2 2 * (6.*(G * * 4 )* A L P A * * 2 - 5 •* G * * 4 * A L P A * * 4 - G * * 4 - 3 6 •* G**2*ALPA**2 

I * B E T A * * 2 + 3 0 . * G * * 2 * A L P A * * 4 * 3 E T A * * 2 + 6 . * G * * 2 * 3 E T A * * 2 + 3 0 •*ALPA**2 
2 * 3 E T A * * 4 - 2 5 . * A L P A * * 4 * B E T A * * 4 - 5 . * B E T A * * 4 )
WAB=P22+P23
A M A L 2 = - S E C 3 * (W A A - 2 •* S * W A B + (S * * 2 + A N U * C * * 2 )* W B B )
AMBE2 = -SEC3*C W8B-2. *S * W A B +  ( S**2+.4NU*C**-2 ) *WAA ) 
A M A B 2 = - S E C 3 * S * C W A A - 2 . * S * W A S + W B B ) + S E C * ( 1 .-ANU)*WAB 
DEF2=P9* P 1 * ( A 0 0 2 - A 0 2 2 * A L P A * B E T A )
P 2 4 = 1 6 . * A 0 0 1 * ( G * * 2 * A L P A * B E T A - G * * 2 * (ALPA* * 3 ) *BETA 

1- A L P A * (BET A * * 3 ) + (A L P A * * 3 )*(B E T A * * 3) 3 
TAN=S/C
A M X 1 = - ( (SEC**2*-P3)-2.*SEC*TAN*P24 +TAN**2*P11+ANU*P11>
A M Y 1 =-(PI 1+ A N U * (P 3 * (S E C * * 2 )-2.*SEC*TAN*P24 + P11*CTAN**2) 3 )
A M X Y 1 = ( 1 • — ANU 3 * ( P 2 4 * S E C —P 11 * T A N )
A M X 2 = — (S E C * * 2 * W A A — 2 . * S E C * T A N * W A B + T A N * * 2 * W B B + A N U * W 3 B ) 
A M Y 2 = - ( W B B + A N U * C S E C * * 2 * - W A A - 2 . * S E C * T A N * W A B + T A N * * 2 * ( W 3 3 ))3 
AMXY2 =( 1 .-ANU 3*(W A B * S E C - W B B * T A N )

hS
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PMMAX =(AMX2+AMY2)/2.+SQRTF( ( (AMX2-AMY2 >/ 2 .)**2+(A M X Y 2 )**2) 
PMMI N = (AMX2+AMY2 > / 2 . - S Q R T F ( <(A M X 2 - A M Y 2 )/ 2 •)**2+< A M X Y 2 >**2) 
PUNCH 2 50 1 AMA|_2 . AMBE2 ♦ AMAB2 . AMX2 . AM Y2 .AMXY2 

99 PUNCH 15 2 « PMMAX » P M M I N ♦DEF2 * ALPA(BETA
150 FORMAT! 7H AMA|_2 = E 1 6 • 8 . 7H AMBE2 =E 1 6 . 8/7H AMAB2=E16.8/

16H AMX2=E16.8.6H A M Y 2 = E 16.8/7H AMXY2=E16.8)
151 F O R M A T (7H PMMAX = E 16.8 * 7H PMMIN = E16.3/

26H DEF2=E16. 8/6H A L P A = F 6 . 3 » 6 H  S E T A = F 6 .3///2 
GO TO 100 
END
1.23 55.
0.0 0*615

k9

0 .3333
1 .23 0.0 0.5 1 .0
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Fortran Programme for the Experimental Studies 
of o. Uniformly Loaded Sleeved Plato

C E X P E RIMENTAL STUDIES OF A UNI F O R M L Y  LOADED SKEWED PLATE 
READ 9» E * A N U »T 

100 READ 10.SA.SB.SC 
9 FORMAT(3F10.8)

10 F O R M A T (3 F 10•8)
T 1 = (SA+SC 3/( 1.-ANU)
T 2 = < 1./(1•+ A N U ))* S Q R T F ( 2 . * ( S A - S 8 ) **2 

1+2.*(SB-SC)**2)
S I G M X = (E / 2 •)*(T l + T 2 )
S I G M N = (E/2.)*(T1-T2)
D I M X M = 0 . 5 * A T A N F ((2.* S B - S A - S C )/ C S A - S C ) )-45.*.017453292 
T4=T * T / 6 .
PMMAX = T 4*SIGMX 
PMMIN= T 4 * S I G M N
PUNCH 1 1 .SA.SB.SC.SIGMX.SIGMN.DIMXM .PMMAX.PMMIN

11 F O R M A T (4H SA=E16.8,4H SB=E16.8.4H SC=E16.8/
17H SIGMX =E16 » 8 »7H SIGMN = E 1 6 • 8.7H DIMXM = E16.8/
27H P M M A X  =EI 6•8.7H P M M I N = E 16.8///)
GO TO 1 00
END

10000000. 0.333333 0.25
0. -3 . 1 •
4. -7. -1 .
6 • -9. -4.

00 00 0

50
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APPENDIX B

Computer Solution for Deflections, Moments, and Principal 
Moments for a Uniformly Loaded Skewed Plate with a Skew SideB 

Ratio of 1.23 and a skew Angle of 55°

INPUT DATA AND R E S ULTS  
G =  1 .23000 THET A= .95 993 ANU =
A 001= .00111395 A002 =
A 0 22= .00192663
A M AL2= . 6 7 3 7 9 8 3 6 E - 0 1 AMBE2= 
A M AB2= . 5 8 3 4 6 1 0 8 E - 0 1 
A MX 2  = •3 8 6 4 7 4 8 8 E — 01 AMY2 =
A M XY2= .3151778HE-02 
P M M A X =  .3918 2 3 2 5 E — 01 PMMIN=
D E F2= • 3 28812 7 3 E —02
A L PA= 0.000 BET A= 0.000

.33330
.00143657

. 6219 6 9 6 H E — 01 

2 0609022E-01 

. 2 0 0 7 4 185E-01

AMAL 2 =  . 5 5 376465E— 01 AMBE2=
A M AB2= .48392214 E — 0 1 
AMX2= . 3 1 7 6 2 6 3 6 E - 0 1 AMY2 = 
A M X Y 2 =  •30304716 E — 02 
P M M A X =  .3 2 2 2 8 5 7 5 E — 01 PMMIN=
D E E2= . 18495715E-02
A L PA= 0.000 BET A= .615

•4 9 3 0 3 2 8 1 E — 01 

•12518439E-01 

. 12052499E-01

A M AL2= - . 7 1 9 3 1 2 5 6 E— 0 1 A M BE2 
A M A B 2 =  — .7 5 4 7 7 7 4 6 E — 01 
AMX2= — .412 5 8 0 7 9 E — 01 AMY2 = 
A M X Y 2 =  - . 16555108E-01 
P M M A X =  17614936E-01 P M M I N
D E F 2  = .000 O O O O O E — 99
A L PA= 0.000 BET A= 1.230

= — . 9 2 1 4 1 3 1 8 E — 01

— . 2 9 2 0 6 9 4 8 E - 0 1 

= - . 5 2 8 5 0 0 9 0 E - 0 1

A M A L 2 =  . 4 4 834382E— 01 AMBE2= 
AMAB2= . 4 2 3 43381E— 0 1
AMX2= . 2 5715 9 4 6 E —01 AMY2=
AMXY2= .56 172069E— 0 2
P M M A X =  .27 8 3 1 6 6 0 E — 01 PMMIN=
D E F2= . 18495715E-02 
ALPA= .500 BET A= 0.000

. 4 6 6 9 6 4 8 6 E — 0 1

. 12918 0 2 0 E — 01

• 1 0 8 0 2 3 0 6 E - 0 1

00 00 00
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AMAL2= .228 3 8 8 6 8 E — 01 AMBE2=
A M A 8 2 ” •2 3 3 2 3 4 3 7 E — 01 
AMX2 = • 13099839E-01 AMY2 =
AMXY2= . 4 6 149327E-02 
PMMAX= . 14805100E-01 PMMIN= 
O E F 2 = .6 I I 3 3 2 34E-03

•2 4 2 1 4 0 3 6 E - 0 1 

•23157578 E —02 

.61049510E-03

ALPA = .500 BET A = ■ 615

AMAL2= — .7 0 3 8 9 5 1 7E— 02 AMBE2= - . 90806883E-02 
AMAB2= — •74 3 8 4642E— 02
AMX2= — •4 0 6 6 0 5 6 0 E — 02 AMY2 = -. 28783959E-02
AMXY2= 16315349E-02
PMMAX= - ♦ 17359828E-02 PMMIN= - . 5 2 0 8 4 6 9 0 E - 0 2 
DEF2= .O O O O O O O O E —99 
ALPA = .500 BET A= 1.230

AMAL2= - . 13940060E+00 AMBE2= - . 1 0382480E+00 
AMAB2= - . 1 1 419028E+00
AMX2= — .79956904E —0 1 AMY2= - . 2 6 6 4 9 6 3 6 E - 0 1 
AMXY2= — . 8 9577538E— 09
PMMAX= — .2 6 6 4 9 6 3 7 E — 01 PMMlN= - . 7 9 9 5 6 9 0 3 E - 0 1 
DEF2= ,O O O O O O O O E — 99
ALPA = 1.000 BET A= 0.000

00
AMAL2= - . 1 3 7 3 8 1 7 0 E - 0 1 AMBE2= - . 1 0 7 2 4 8 6 9 E - 0 1 
AMAB2= - . 1 1 2 5 3 6 4 8 E - 0 1
A MX2 = — . 7 8 798907E—02 AMY2 = -.26263675E-02
A M X Y2 = . 14556350E-08
PMMAX= — . 2 6 263675E—02 PMMIN= -. 78798905E-02 
DEF2 = .O O O O O O O O E —99
ALPA= 1.000 BET A= .615

AMAL2= .00000000E-99 AMBE2= .OOOOOOOOE-99
AMAB2= . O O OOOOOOE—99
A MX2 = — . O O OOOOOOE— 99 AMY2 = -.000 00000E-99
AMXY2= •OO O O O O O O E — 99
PMMAX= .00000000E-99 PMMIN= .OOOOOOOOE-99
DEF2 = .OOOOOOOOE-99 
ALPA= 1 .000 BET A= 1.230

52?
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HOMES C LAY * JRB

x y rectangular cartesian co-ordinates

5  & ob lique eo-ord intites

a & direcfSBicnlesa oblieu. co-ordinates

w lateral deflection o£ plate

2a plate's transverse dimension (along <5 axle)

2b plate's icngitwilaal dimension (along $ axis)

h thickness of plate

6 angle of skew

p intensity of wniforwily distributed load

y ratio of the longitudinal and transverse dinsaasiona
(ratio of skew aides)

v Pol$£03"s ratio

3) flexural rigidity of the plate

J strain ensFRP integral lor sending
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I total energy Integral

Ho bending mcmant per unit length of plate perpendicula to
the x axis

Mo bending moment per unit length of plate porpendicula to
^ the y axis

M—  twisting moment per unit length of plate perpendicula toxy

m m

the x axis

(j''- normal component of stress parallel to the x axis

CT - normal coaqsonent of stress parallel to the y axis

rr' maximum principal stressmax

0^rain minimum principal stress

Ao9 ^1 parameter in the assumed deflection function

M principal maximum moment
max

M principal minimum moment

e

angle measured clockwise from the x axis, giving the 
direction in which the maximum principal moment occurs

®c recorded unit strain in the three leys of a rosette gauge
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