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ABSTRACT

The electrical performance of polymeric insulating materials 

was studied in a fog chamber with ac and dc voltage stress. 

The materials examined were elastomers of high temperature 

vulcanized (HTV) silicone rubber and ethylene propylene 

diene monomer (EPDM) rubber and epoxy resins, all containing 

either alumina trihydrate (ATH) filler or silica filler, or 

both.
Material performance was found to be strongly affected by 

the experimental conditions. In fog produced with low (250 

pS/cm) conductivity water, silicone rubber performed better 

than EPDM samples, whereas in fog produced with high ( M 0 0 0  

|iS/cm) conductivity water, the order of performance was 

reversed. The epoxy samples exhibited an inferior perform

ance when compared to the elastomers. Better agreement with 

service experience was obtained by evaluating the materials 

in low rather than in high conductivity fog.

The mechanisms by which fillers impart tracking and e r o 

sion resistance to the insulating materials was also dep e n 

dent on the experimental conditions. These were investigated 

through measurements of released gases and surface tempera

ture during dry band arcing and weight loss and Thermo Gra
vimetric Analysis (TGA) of the materials. Studies of filler

- ii -
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dispersion by Energy Dispersive X-ray Analysis (EDAX) showed 

that material degradation in high conductivity fog could be 

initiated in areas with highly non-uniform filler disper

sion.

M aterial surface study by Electron Spectroscopy for Chem

ical Analysis (ESCA) demonstrated that the migration of 

mobile low molecular weight chains to the surface was 

responsible for the hydrophobicity exhibited by silicone 

rubber material despite the accumulation of surface c on t a m i 

nation.

The tracking and erosion resistance of materials was very 

similar with ac and +dc voltage stress but was significantly 

reduced with -dc for vertically oriented rods (polarity 

refers to the top electrode). For horizontally oriented 

rods, there was no discernable difference in the performance 
with a c , +dc and -dc.

A theoretical study to model the effect of dry band d i s 

charges on materials is presented. Good agreement of the 

predicted behavior of materials with the experimental find

ings was established.

Insulators made from the above materials were studied to 

determine the correlation with tests using cylindrical rods 
of material. Cylindrical rods yielded similar results as 

insulators and in less time. The shape of the sheds which 

provide a protective leakage path had a significant effect 

on the insulator performance.

- iii -
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Chapter I 

INTR O D U C T I O N

Outdoor insulators made from inorganic materials such as 

porcelain and glass have been used on overhead power lines 
since the turn of the century. These materials, despite being 

brittle [1], have performed remarkably well in the majority 

of cases. The main reason for their successful electrical 

performance can be attributed to their capacity to withstand 

the heat of dry band discharges for prolonged periods of 

time without being degraded [2], which occurs on energized 

insulators when the surface is covered by a moist layer of 

contamination. After a long record of useful service, i n s u 

lators made from porcelain or glass are being challenged by 

insulators made from relatively new polymeric materials.

The typical c o n s t r u c t i o n  of a polymeric insulator is 

shown in Fig. 1.1 [3]. It consists of:

1. A central fiber glass rod which provides mechanical

strength to the unit. The glass fibers are usually " E ” 

type and bonded by epoxy or polyester resin [A]. As 

voltage and moist u r e  leads to tracking of the rod in a 

relatively short time, it is protected by a weath- 

ershed which also imparts the necessary wet flashover 

strength to the insulator.

-  1 -
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F i gure

2 .

2

1 . 1 ; Typical C o n s t ruction of a Polymeric Insulator.
Re p r o d u c e d From [3].

An e n capsulating we'athershed which provides the 

required electrical insulating properties. Among the 
wide range of polymeric materials available [4], s e r 

vice experience has shown that the materials suitable 

for w e a t h ersheds are high temperature vulcanized (HTV) 

silicone rubber, ethylene propylene rubber (EPR) and 

epoxy resins. The ethylene propylene diene monomer 

(EPDM) form of rubber is the most suitable type under 

the generic class of EPR [4].
The metal end terminations which are generally g a l v a n 

ized iron or high strength aluminum alloy. The a t t a c h 

ment of the end fitting to the fiber glass core is by 

a wedge system, by crimping technique or by a tapered 

cone using an epoxy resin as a grout [4] .

Owing to the nature of materials used and the m e t h 

od of construction, polymeric insulators are also 

referred to as organic, non-ceramic, synthetic, com

posite and plastic insulators.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1»1 Factors C o n t r ibuting to Increased Usage of Polymeric 
Insula tors

The use of polymeric insulators which began since about 1967

[5] has been gaining popularity for the following reasons:

1. The brittle nature of porcelain and glass has caused

such insulators to shatter when struck by bullets from 

vandals. Polymeric insulators, which do not destruct 
in a similar manner, are therefore used as an a l t e r n a 

tive in vandal prone areas. Although these new
materials have certain known weaknesses regarding 

their ability to withstand dry band discharges and 

long term durability, they still prove to be p ro f i t 

able as they are not required to be replaced as fre

quently as porcelain or glass [6].

2. In recent years t r a n s mission and d i s t r ibution lines 

using horizo n t a l  line post insulators have become very 

popular. This is due to the advantages of elimination 

of cross arms and r e duction in tower height offered by 

line posts, which helps in reducing construction 

costs. Power lines using line posts, due to their c o m 

pact construction, are more ae s t h e t i c a l l y  pleasing 

than lines using pin or suspension type insulators. 

Porcelain line posts, due to their poor impact 

strength, have been damaged from mechanical shock 

loading from sources such as impact of vehicle to the 

base of a pole, ice dropping from conductors and i n s u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

lator breakage due to v a ndalism [7] . The transfer of 

mechanical shock from one pole to another can result 

in insulator breakage over a few spans and dropping of 

the conductor. The use of polymeric line posts, which 

possess a much superior impact strength, has c o n s i d e r 

ably reduced such failures and hence improved the line 

reliability [7]. Currently in the United States, 

about 30% of line post insulators applied are polymer- 

1 c .

3. Porcelain and glass are high surface energy materials

[8], that is, they allow a continuous water film to be

formed easily on the surface. As this is necessary for
leakage current to flow, in contaminated areas it may 

attain sufficient magnitude to cause external flash- 

over. There are many sources of contami n a t i o n  in the 

outdoor environment such as sea salt, road salt, 

cement dust, fly ash, bird droppings, fertilizer and 

many types of industrial emissions. Contamination 
related f l ashover has been one of the biggest factors 

contributing to power outages [9]. They can be m i n i 

mized either by washing the insulators or by coating 
them with a h yd r o p h o b i c  material such as grease, which 

prevents the formation of a continuous surface water 

film. Coating insulators with grease is not a long 

term solution [10] and washing is expensive if it 

needs to be done frequently. On the other hand, poly-
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5

meric materials are inherently low surface energy 
materials [8] and the tendency for water to form a 

continuous film is c o n s iderably reduced. Silicone ru b 

ber material has shown that it prevents water filming 

for prolonged periods, despite the a c c u mulation of 

surface co n t a m i n a t i o n  [11]. Therefore, the use of s i l 

icone rubber insulators in contaminated areas has 

proved to be more advantageous [6,11]. The longer

leakage distance and smaller shed diameter also 
improves the co n t a m i n a t i o n  performance of polymeric 

insulators by increasing the resistance to leakage 

current [6].

4. dc transmission lines have certain advantages over ac

lines [12] and their number has been steadily i n c r e a s 

ing. The problem of insulator c o ntamination is a c c e n 

tuated in dc a p p l i c a t i o n  due to the more effective

a cc u m u l a t i o n  by e l ectrostatic forces [10]. Due to a 

lower c o nt am i n a t i o n  related flashover voltage, i n s u l a 

tors used on dc lines are characterized by a longer

leakage distance when compared to ac lines for the 

same voltage [10]. Because of the longer leakage d i s 

tance for the same connection length, a higher 

strength to weight ratio and better ability to prevent 

continuous water films possessed by certain polymeric 
materials, their use can result in a more compact line 

con s t r u c t i o n  than is possible with porcelain or glass.
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5. Polymeric insulators are much lighter in weight. 

Therefore, their use results in reduced storage, h a n 

dling and con s t r u c t i o n  costs [4].

6. The low cost of base materials required to make p o r c e 

lain is offset by the expensive kilns and long m a n u 

facturing times which are necessary [1]. The m a n u f a c 
ture of porcelain is, in many cases, an art. High 

expansive cement has led to many failures of porcelain  

suspension insulators [13]. Although the initial cost 

of polymeric insulators was much higher than por c e 

lain, increased c o mpetition has led to reduced cost. 

Presently, this cost is comparable or cheaper than 

porcelain for d i s t ri b u ti on  [14].

The comparable cost coupled with the above advantages has 

led to the increased use of polymeric insulators. For e x a m 

ple, in Canada alone there are about 150,000 insulators used 

annually on d i s t r i b u t i o n  lines and in the United States 

their number is about 10 times greater. There is a feeling 

[14] that porcelain and glass suspension insulators have 

seen their last days at least on d i s t r i b u ti on  lines. Thus, 

polymeric insulators can be thought of as a second g e n e r a 

tion of insulators for overhead power lines.
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1 ■ 2 Utility Concerns R e ga rd in g The Use Of Polymeric 
Insula tors

1. The prime concern is in the life of these insulators.
Polymeric materials are c h aracterized by a relatively  

poor thermal stability (less than 500 °C) [15] and

therefore can be degraded by the heat of dry band d i s 

charges. M a te r i a l  degra d a t i o n  could be in the form of 

tracking or erosion. Tracking [16] refers to the fo r 

mation of a continuous conducting carbonaceous p r o d

ucts on the surface formed as a result of polymer d e g 

radation, thereby making the material useless for 

electrical applications. Tracking is minimized by the 

use of inorganic fillers. Filled materials erode [4] 

and in time, the fiber glass rod can be exposed to the 

environment at which point the useful life of the 

insulator can be considered ended. Polymeric materials 

also "age" in an outdoor environment. Aging refers to 

the gradual loss of useful material properties with 
time. Aging in an outdoor environment is due to the

s usceptibility of the material to be attacked by

ultra-violet radiation from sunlight, moisture, acids, 

alkalis, industrial emissions and extreme variations 

in temperature [4,17], At this stage it is not known 

whether materials that show good insulating properties 

when new, will retain them after 40 years of service.

Thus the long term durability of the weathershed
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materials constitutes a major concern. Although the 

existing laboratory accelerated aging tests [16] are 

effective in ranking materials, the long term p e r f o r m 

ance of these materials cannot be predicted from these 

tests.

2. The design of polymeric insulators has not yet been

standardized as they are for porcelain. The designs 
have varied since their evolution and will continue to 

do for several more years. Too many changes in design 
has been a major utility concern [18].

3. The long term mechanical strength of polymeric i n s u l a 

tors has been a n other major concern. Unlike porcelain 

and glass insulators, where mechan i c a l  strength is a 

function of material only, with polymeric insulators, 

the mechanical strength is both material and time 

dependent [7]. Therefore, the mechanical strength when 

new may not be the same after a few years in service. 

The long term mechanical strength in tension (for s u s 

pension and dead end insulators), compression (for 

post insulators), torsion (for dead end insulators), 

and cantilever (for line posts) is not fully known. 

Unlike porcelain insulators where power arc does not 

affect the mechanical strength, polymeric insulators 

could suffer a r e d uction in their mechanical strength 

[19]. Thus, the reduction in the long term mechanical  

strength could be accentuated.
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4. As experience with polymeric insulators is relatively

limited, there are no standards developed to aid u t i l 

ities in their application. Lack of standards has been 

another major concern [18].

The goal of this research is to obtain a better u n d e r 
standing of the performance of polymeric materials in c o n 
taminated environments. The materials under study are the

most widely used materials for outdoor insulation, namely,

HTV silicone rubber and EPDM rubber and epoxy resins.

1.3 Review of Previous Work

1.3.1 Role of Filler

Fillers are used in polymeric materials to improve the
tracking and erosion resistance. The improvement is largely

dependent on the mechan i s m s  by which the fillers operate 

during dry band arcing. For materials containing hydrated 

filler like ATH, it has been suggested that the heat of dry 

band arcing liberates the wat e r  of h y d r a t i o n  as steam. The 

steaming action (sputtering) physically removes the c a r b o n a 
ceous products formed as a result of polymer degradation,

thereby preventing tracking. This is referred to as the 

physical cleaning action [20],

A chemical m e c h a n i s m  has also been suggested wherei n at

high temperature ( > 6 0 0 °C) the water of h y d ration of the

filler combines with free carbon from the polymer to form

gaseous products such as CO or CO 2 » which escapes from the
surface. Thus free carbon on the surface is prevented [20].
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Volume effects of the filler in which with increasing 

filler concentration, fewer organic molecules are exposed to 

the heat of dry band arcing, is another mec h a n i s m  r e s p o n s i 

ble for imparting tracking or erosion resistance. The higher 

thermal conductivity of the filler is believed to help in

better heat d i s s i p a t i o n  and prevent hot spots from forming
[2 1 ] .

As the physical and chemical mechanisms are operative 

only with hydrated fillers, it can be expected that ATH 

filler imparts higher resistance to tracking and erosion to
materials than does silica filler. This is indeed the case

as demonstrated by laboratory tests [20]. But in the field

there have also been successful applications of insulators 

with silica filler [5]. Silica is less expensive to use than 

ATH. In addition, the drawbacks associated with the use of 

fillers such as, reduction in volume and surface r e s i s t i v i 

ty, increase in dielectric loss angle and permittivity and 

water absorption, are considerably lower [21] when silica is 
used as a filler. Therefore, it is important to uncover the 

dominant mechanisms by which fillers impart tracking and 

erosion resistance to materials as it will then enable the 

selection of the correct filler type to be used.

The dependence of tracking and erosion on filler c o n c e n 

tration has not been fully established. It is of practical 

interest to determine if there is a filler threshold level 

beyond which little improvement in material performance is
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obtained, because of difficulties encountered in m an u f a c t u r 
ing when high filler levels are used. It has been shown 

[21] for epoxy material, that a filler level of 40 to 50% is 

the threshold level. As there is very little information 

available for silicone rubber and E P R , it is desirable to 

determine whether the filler threshold level, in terms of 
its effectiveness varies with material.

It is expected that increased electric stress leads to 

higher temperature during dry band arcing. M a t e r i a l  tracking 

and erosion are therefore dependent on electric stress and 

this has been recognized [22]. However, as material p e r f o r m 

ance is also dependent on filler type and concentration, the 

threshold level must therefore be dependent on the m a gnitude 

of electric stress. It is desirable to establish the d e p e n 

dence of filler threshold level to the magnitude of electric 

stress, thereby permitting the correct specification of 

filler level for the intended application.

Molded polymeric materials containing inorganic filler 

can be expected to have some dispersion in filler u n i f o r m i 

ty. The view that filler dispersion plays an important role 

in the initiation of tracking and erosion has been held for 
some time, but up to now this has not been shown e x p e r i m e n 

tally. There have been instances where insulators have shown 

preferential tracking or erosion along mold joins [23]. It 

is important to discover w h e ther d i s p ersion is responsible 

for the initiation of tracking and erosion in order to 

improve on insulation designs.
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1.3.2 Test M e t ho ds  to Eval u a t e  M a t e r i a l  Performance Under 

Accelerated Aging 

To assess the co n t a m i n a t i o n  performance of polymeric m a t e r i 

als, artificial test methods are used. Test philosophies 

have been based on the mechanisms of c o n tamination deposit 

and wetting conditions. Numerous test methods such as the 

ASTM tests [16] , the Tracking Wheel test [16], the IEC

salt-fog and clean-fog tests [24] have been developed. A 

common feature of these tests is that materials are required 

to have substantial fillers ( above 50% by weight) in order 
to pass these tests [16]. Therefore, the outcome is more 

dependent on filler type and co n c e n t r a t i o n  than on the p o l y 

mer type. But, it has been experienced both from outdoor

tests [23] and service conditions [ H ]  that successful p e r 

formance is more dependent on the type of polymer than on 

filler type or its concentration. For example, silicone r u b 

ber insulators have performed better than any other type 

[23] in contaminated areas and the filler c o n centration in 
these has been generally very low. Although the mechanisms 

involved are not fully understood, the successful p e r f o r m 

ance of silicone rubber insulators has been attributed to 

the capacity of the material to m a i n t a i n  a hydro p h o b i c  su r 

face for prolonged periods, despite the accu m u l a t i o n  of s u r 

face con tami n a t i o n  [11]. On the other hand, there have been 

instances [23] of tracking failure of EPDM and epoxy i n s u l a 

tors with substantial filler which have shown excellent
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track resistance in laboratory tests [3]. Thus, there is a 
contradiction between the results from laboratory tests and 
service experience. It is important to understand the rea

sons for the contradiction as it will then facilitate the 

development of suitable test procedures for meaningful e va l 

uation of polymeric materials.
The parameters monitored in the earlier laboratory tests 

in order to obtain an indication of surface aging have been 
time to failure, peak leakage current, weight loss due to 
dry band arcing and the integral of leakage current or c um u 

lative charge [25]. Due to lack of systematic work there has

been no consensus on the parameter which gives the best

indication of surface aging and subsequent material failure. 

From the point of view of standardizing test methods, it is 

desirable to evaluate the merits of these parameters and
suggest the most relevant parameter which gives the best

indication of material aging.

1.3.3 Environmental Factors Influencing Material  

Performance

For successful application of polymeric insulators, it is 

important to know the effect of certain environmental e l e 

ments mentioned in section 1.2, on the tracking and erosion 

resistance of the weathershed materials. It has been shown 
that [17] UV and extreme temperature changes do not have any 

detrimental effects on the tracking and erosion resistance. 

It has also been shown [26] that the tracking and erosion
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resistance of silicone rubber material with silica filler is 

reduced due to moisture ingress. Little information is

a vailable on the effect of moisture ingress on silica filled

EPDM material. In addition, the effect of acids, alkalis

and h y d r o c a r b o n solvents, which may exist in industrial and 

coastal areas, on the tracking and erosion resistance of
materials is not fully known. Therefore, for successful 

appl i c a t i o n  of polymeric insulators such information needs 

to be o b t a i n e d .

1.3.4 Effect of Voltage Type on M a t e r i a l  Performance 
M a t e r ia l performance has been reported mostly for ac.
M at e r i a l  tracking or erosion can be expected to be more

severe with dc than with ac, due to the greater acc u m u l a t i o n  

of contami n a t i o n  due to electro s t a t i c  forces [10], As there 

is very little reported [27] on the performance of materials 

with dc, a detailed study is necessary for the successful

ap p lication of polymeric insulators on dc lines.

1.3.5 T h e oretical Studies to Predict Polymeric M a t e r i a l  

Performance Under Dry Band Arcing

Dry band discharges which o c c a sionally lead to flashover of 
porcelain or glass insulators do not normally cause material 

degradation. But polymeric materials, due to their r e l a t i v e 

ly low thermal stability, could degrade from dry band d i s 

charges before flashover. T h e oretical models which predict 

the effect of dry band discharges on polymeric materials, of
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which there are few [28,29], are of greater relevance in the 
a ppli c a t i o n  of polymeric insulators, than models which p r e 

dict flashover of contaminated insulators, of which there 

are many [9]. In the few models developed so far, the widely 

used materials containing inorganic fillers have not been 

considered. The effect of acc u m u l a t i o n  of contamination, 

which is inevitable in outdoor environments, on material

performance has also not been considered. Although it has

been suggested that prolonged dry band arcing in a p a r t i c u 
lar spot is responsible for initiating degradation, there 

are no models to validate this. Therefore, it is desirable 

to develop a model that takes the above factors into c on s i d 

eration, which can be used to predict the performance of

materials under dry band arcing.

1.4 Research Objectives

1. To uncover the dominant mechanisms by which fillers 

impart tracking and erosion resistance to materials.
2. To determine the type and threshold level of filler

for the three types of materials.

3. To determine w h e t h e r  filler dispersion is responsible

for initiating tracking or erosion.

4* To determine the capabilities of different parameters

to characterize surface aging and suggest the most 
suitable parameter to be monitored in accelerated 

aging tests.
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To determine the factors which are responsible for the 

contra d i c t i o n  between the results from laboratory 

tests and service experience.

To uncover the mechanisms responsible for prolonged 

h y dr op h o b i c i t y  in silicone rubber material.

To determine the effect of voltage type (ac or dc) on 
the tracking and erosion resistance of materials.

To determine the effect of the commonly found chemical 

pollutants on the tracking and erosion resistance.

To develop a theoretical model capable of predicting 

material p e r formance under dry band arcing.
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Chapter II 

E X PE R I M E N T A L  SET-UP

2 . I Fog Chamber

The fog chamber used in this study is shown in Fig. 2.1 

and its schematic is shown in Fig. 2.2. It is a cubicle of 

side 2.54m made up of 3mm thick plexiglass sheets. The floor 

of the chamber is raised above the ground level by 45 cm and 

is sloped towards the center of the chamber to facilitate 
easy draining of water. The fog is created by nozzles which 

are dimensioned a c cording to IEC s p ecification 507 [24]. The 

chamber has four such nozzles placed equidistant on a pair 

of stainless steel tubes having an internal diameter of 8 mm 

and which forms a ring of 2.54 m in diameter. In this system 

the water is recycled from a r e servoir and is handled by two 
corrosion resistant pumps. The pump which drives water into

the chamber is 1/20 hp and the pump which drives water into

the reservoir is 1/200 hp. The reservoir has a capacity of

250S, and the water in it is constantly stirred by a 1/2 hp 

motor. Water of the required conductivity is prepared by 

adding NaCl to tap water.

Water conductivity is measured by a conductivity meter 

(Horizon Mo del 1484) which is capable of m e asuring from 0 to 

20,000 pS/cm. The water in the reservoir is changed at such

- 17 -
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Figure 2 . 1 : General View of the E xp e r i m e n t a l  Set-Up.

times when the c on d u c t i v i t y  due to recycling increases by 

about 10% of the initial value. A stainless steel mesh 

located at the drain of the chamber prevents d e g radation 

deposits origi n a t i n g  from the samples during dry band a r c 

ing, from entering the r e s ervoir through the return pump.

A flowmeter (CALQFLO) in series with the input water line 

controls the wat e r  flow rate. In this system, the flow rate 

can be varied from 0 to 2.4 ̂ / m i n u t e . The air pressure can be 

v aried from 0.1 to 0.6 M P a  by an air regulator.

There is pro v i s i o n  for testing ten samples at the same 

time. The power supply to the samples is through a 25 kV
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Figure 2.2; Schematic Diagram of the Fog Chamber.

porcelain bushing located at the top of the chamber. The 

bushing is regularly coated with silicone grease to prevent 

flashover.

2.2 Test Supply
The ac test supply is a 14.4 kV/220 V, 37.5 kVA distribu

tion transformer. The output is controlled by a 10 kVA, 0 to 

22 0 V v a r i a c .
The dc supply is obtained by half wave rectification of 

the 14.4 kV ac output. A 14.5 jiF/20 kV smoothing capacitor 

ensures that the ripple is less than 2%.
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With ac or dc, the maximum voltage drop at the highest 
electric stress and water conductivity used was found to be 
less than 5%. This satisfies the supply stiffness r e q ui re 

ment [30] necessary to conduct contamination studies.

2.3 Data Acquisition System

The data acquisition system used in this study is based 

on a paper by Jolly [25] and its schematic is shown in Fig. 
2.3. It consists of an 8 bit, 16 channel analog-to-digital 

(A/D) converter (Mountain Computer Inc.) which continuously 

monitors the leakage current from all the samples under 

test. A microcomputer (64k Apple) processes the instan t a n e 

ous currents to yield peak and average values on both the 

positive and negative half cycles. The integration of the 

current to obtain the cumulative charge is also carried out. 

In addition, the data acquisition system is programmed to 
give the number of leakage current pulses between preset 

limits of current values.
The sampling period of the A/D converter can be set over 

a wide interval of time (1 min to 6 hours). A typical period 

is 1 hour at the end of which the data accumulated is stored 

in a floppy disk and also printed out.

A numerical integration (trapezoidal rule) has been used 
to evaluate the cumulative charge ( / i dt). As this requires 
a number of points on the current waveform, the sampling 

frequency depends on the accuracy required: the higher the
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Figure 2 . 3 : Schematic Diagram of the Data Acquisition S y s 
tem .

sampling frequency, lower is the error in numerical i n t eg ra 
tion. In this system, the sampling frequency is variable 
from 4038 Hz when only one sample is tested to 520 Hz when 

ten samples are tested. At the lowest sampling frequency, 

the error involved for a sampling period of one hour is 

about 5%. The error was determined by comparison with a pure 

sine w a v e .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

As the resolution of the 8-bit A/D converter used is 39 

mV, it is necessary that the voltage signal fed to it be 

much higher this value. The current sensing resistor is ch o 
sen such that for the lowest leakage current expected, the 

voltage drop across it is about 500 m V .

2.4 Electrical Protection

The data acquisition system is protected against damaging 

overvoltages which develop in the event of a flashover of 
any one of the samples. A combination of a 75 V low pressure 

fast (10 n s ) spark gap and 4.7 V back-to-back Zener diode is 

used at the input of the A/D converter. Connected in series 
with each sample is a 0.7 5mA fuse wire enclosed in a glass 

tube which melts in the event of a flashover, ensuring that 

the power supply to the other samples is not interrupted. 

The controller variac is protected by a 50 A fuse and a 50 A 

circuit breaker.

2 . 5 Electrodes

It was suggested [25] that the material of the electrodes 

in this type of study could affect the outcome of the tests. 

Metal electrodes corrode, thereby modifying the local e l e c 

tric stress, and leave corrosion by products on the surface 

°f the samples. Carbon electrodes were therefore recommended 

for these experiments. The electrodes used were 5mm thick 

carbon discs, 2 5mm in diameter with a 6.4mm hole drilled in
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the center. Brass screws were used for mounting the elec

trodes on to the samples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter III

AC PERFORMANCE OF POLYMERIC INSULA T I N G  M A T ERIALS

3 .1 In troduction

The performance of polymeric Insulating materials in outdoor 

environments is dependent both on the type of weathershed 

material and insulator design [26]. In order to compare the 

performance of various materials it is important that the 

insulator designs be identical. The use of cylindrical rods 

°f different materials is not only less expensive and easy 

to make but also facilitates direct comparison of material 

p erformance as identical geometries are being compared.

Better underst a n d i n g  of material performance can be 

obtained if the materials are evaluated over a range of 

experimental conditions. In a fog chamber test, the p a r a m e 

ters which can be varied in order to vary the test severity 

are the electric stress and water conductivity. This chapter 

describes the results of material evaluation with ac at d i f 
ferent values of electric stress and water conductivity. 

Various methods to provide an indication of surface aging 
such as, measurement of the peak and average (of each half 

oycle) of the leakage current, the cumulative charge, p e r i

odic measurement of weight loss and flashover voltage have 

been investigated. The influence of inorganic filler, type

- 24 -
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and concentration and the magnitude of electric stress on 
the tracking and erosion properties of materials are 

described. The effect of certain simulated environmental 

degrading factors on material performance are also 

d e s c r i b e d .

All the results reported are the average from at least 

two samples of the same composition for which the variation 

in the reported quantity was wi t h i n  +5%.

3 • 2 Details of M a t e r i a l  Samples
The materials evaluated are listed in Table 3.1. In this 

study, the terms EPDM and EPR have been used to represent 

the same material. The silicone rubber and EPR samples were 

molded rods 2 5mm in diameter. Rod samples of epoxy were 

obtained by machining d i s t r i b u t i o n  insulators. The c o n c e n 

tration of inorganic filler added to impart tracking and 

erosion resistance is denoted in pph which is the number of 

Parts of filler added to one hundred parts of polymer f o r m u 
lation by weight. For protec t i o n  against ultra-violet (UV) 

rays, the ATH and alumina filled EPR samples had about 

0*5pph of ZnO or TiO and the silica filled EPR samples had 

about 0.5 pph of carbon black.
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Table 3 . 1 : I d e n t i f i c a t i o n  of M a t e r i a l s  Studied.

The silicone rubber samples were supplied by SWS C o r p o ra 
tion, Adrian, M i chigan; The EPR samples were supplied by 
National Rubber, Toronto, Ontario. The epoxy samples XA and 
XB were machined from 25 kV class insulators of AB Chance 
Co. and C. K. Composites Inc. respectively.

MATERIAL ID E N T IF IC A T IO N FILLER
TYPE TYPE LEVEL

(pph)
EO NONE 0
EA A f 20 3-3H20 30
EB
EC
ED

ALUMINA
TR IH Y D R A T E
(A TH )

60
80

105
EPR EE

EF
130
250

EDA A * 20 3
(ALUMINA)

105

EAS
ECS

S i 0 2
(S IL IC A )

30
80

EES 130
EFS 250

EPOXY XA
XB

A£20 3.3H20 220
350

HTV
SILICONE
RUBBER

SA
SB
SC
SD
SE

A £20 3.3H20

30
60
80

105
130

pph: PARTS PER HUNDRED OF POLYMER
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3.3 Experimental Conditions
The experimental fog nozzle conditions of water flow rate of 
1.6Sl/min and air pressure of 0. 6M Pa were chosen based on 
earlier work [30]. The samples were evaluated at an average 
electric stress (applied voltage/leakage distance) of 28V/mm 

and 40V/mm (values refer to rms) as outdoor insulators are 

normally operated in this range. If it can be shown that 

the tracking and erosion resistance is not significantly 

affected by a higher electric stress, then for insulators 

using such materials the leakage distance can be reduced. 

In order to investigate this, the materials were also e v alu

ated at an electric stress of 60V/mm. The average electric 
stress was varied by keeping the supply voltage constant and 

varying the sample length. The sample lengths were 150, 105 

and 70mm for an electric stress of 28,40 and 60V/mm r e s p e c 

tively. The samples were evaluated at water conductivities 

of 250, 1000 and 1600 pS/cm. These values were also chosen

based on earlier work [30]. Based on preliminary e x p e r i 
ments, it was found that a test duration of 500 hours was 

sufficient to bring out the relative performance of the v a r 

ious materials.

In order to avoid possible positional bias in the c h a m 

ber, the location of the samples was interchanged after 

every 20 hours. This ensured that each sample was subjected 

to similar wetting conditions during the test.
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3 .4 Material Performance In High (1600 pS/cm) Conductivity 

Fog

3.4.1 Modes of Failure

Due to the vertical orientation of the samples and the rela

tive position of the fog nozzles, tracking and erosion 

developed near the bottom electrode. Tracking and erosion 

progressed respectively upwards along the length and through 
the thickness of the samples. The silicone rubber samples 
which failed did so by erosion leading to mechanical s e p a r a 

tion or to flashover. Epoxy and EPR samples which failed 

did so by tracking.

3.4.2 Time to Failure

Fig. 3.1 shows the results of comparative tests done to 

examine the influence of material, filler type and c o n c e n 

tration, and electric stress on the time to failure. The 

silica filled EPR samples were only evaluated at 40V/mm. The 

following points can be noted from the figure:

1. The magnitude of electric stress had a significant 

effect on the performance of the materials. The time 

to failure decreased with increasing electric stress. 
EPR samples EA and EB which did not fail at 28V/mm 
stress did so at higher stress. Similarly the silicone 

rubber samples SC and SD failed above 28V/mm stress.

2. For ATH levels up to 105 pph, EPR samples performed 

better than the silicone rubber samples. However,
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FIgure 3 . 1 : Time to Failure as a Function of Average E l e c 
tric Stress in 1600 pS/cm Fog.

above this level the order of performance was 
revers e d .

3. The epoxy samples performed poorly in comparison to 

silicone rubber and EPR samples. This was the case 

despite the epoxy samples having higher levels of ATH 

f i l l e r .

4. Both EPR and silicone rubber samples showed a filler 

threshold level beyond which very little improvement 

in material p e r formance was observed at constant elec-
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trie stress. The ATH threshold level of 80 pph at 

28V/mm stress increased to 105 and 130 pph for 40 and 

60V/mm stress respectively.
5. Clearly, ATH filler imparts superior tracking and e r o 

sion resistance to EPR material than does silica or 

alumina filler.

3.5 Parameters M o n i t o r e d  to Obtain Information on Surface 
Aging

3.5.1 Introduction
It is expected that any changes in the surface of the 

material would be reflected by the leakage current and 

therefore this would give a good indication of material 

aging and subsequent failure. It was shown in preliminary 

experiments by Jolly [25] that the integral of the leakage 

current or the cumulative charge was linearly related to the 
weight loss due to dry band arcing. There were indications 
from outdoor tests [8] on ceramic and polymeric insulators 

that the number of peak current pulses above a preset 

threshold was dependent on the type of material which 

increased with time of exposure. As insulator flashover in 

contaminated environments is related to leakage current, if 

leakage current increases with time a corresponding decrease 

in the flashover voltage is to be expected.

The cumulative charge, number and amplitude of peak c u r 
rent pulses above a preset threshold, weight loss due to dry
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band arcing and flashover voltage were monitored with the 
purpose of evaluating the effectiveness of each parameter to 

indicate surface aging and subsequent failure. The i n forma

tion about cumulative charge and the number and amplitude of 

current pulses above a preset threshold was obtained from 

the data acquisition system after every hour of the test. 
The samples were evaluated at an average electric stress of 

4 0 V / m m .

3.5.2 Cumulative Charge as an Index of Surface Aging 

Leakage current is governed by the ability of materials to 

promote a continuous electrolytic film on the surface. Ini

tially, due to the presence of a mold release agent, both 

silicone rubber and EPR samples showed very good water 

repellent properties and the average leakage current did not 
exceed 6mA. On the epoxy samples, because of their machined 

surface, a higher average leakage current (about 25mA) 

developed from the start of the test. However, higher leak

age current (about 20mA) developed on the EPR and silicone 

rubber samples after 1 to 3 hours of exposure. On all 

materials the higher values of leakage current persisted for 

the duration of the test period.
The variation of cumulative charge with time for silicone 

rubber, EPR and epoxy samples is shown in Figs- 3.2, 3.3 and

3.4 respectively. It is evident from an examination of these 

figures that the cumulative charge does not really bring out 

the improved performance of these materials with increased
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filler concentration. The v a r iation of the cumulative charge 

with time is essentially linear both for the samples which 

passed and failed the test. This means that the average 
leakage current has a constant value throughout the test and 

does not increase near failure.

50x10

rr 40
ui

S A , S B , SC
<  30

-'"SD & SE

< 20

FA IL U R E  
SB ( 330h)

200 300

T IM E (H O U R S )

400100 500

Figure 3 . 2 : Cumulative Charge with Time for Silicone Rubber
S a m p l e s .

O s c i l l o g r a p h i c  monito r i n g  of the samples during dry band 

arcing showed that on mat erials which did not track or erode 

a lower magnitude of current (typically a peak of 75 mA) was 

found to persist for a longer duration ( typically 3 to 6 ms 

in each half cycle of the 60 Hz wave). In samples which 

began to track a higher magnitude of current (typically a 

Peak of 150mA) was found to persist for a shorter duration
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Figure 3 . 3 : Cumulative Charge with Time for EPR samples.
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Figure 3 . 4 : Cumulative Charge with Time for Epoxy Samples.

(1 to 3 ms in each half cycle of the 60 Hz wave). It was
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also found that the tracked of eroded portion did not wet

readily with water. This suggests that as the material 

begins to degrade, a higher inception voltage is necessary 
to establish dry band activity. The higher leakage current 

which follows gives rise to rapid dry band formation. T h e r e 

fore, the average current essentially remains the same in 

both c a s e s .

After the completion of the test, it was found that s a m 

ples ED and EE had surfaces which were not markedly d i f f e r 

ent in terms of roughness from the virgin samples. On the

other hand, samples EA, EB and EC had surfaces which

appeared weathered. As the surface roughness increases w e t 
ting, the leakage current and cumulative charge could be
expected to be slightly higher for samples EA, EB and EC

than for samples ED and EE as indeed found in the present

study (Fig. 3.3).

3.5.3 Peak Current Pulses as an Index of Surface Aging 

For materials which passed the test, the peak current did

not exceed 100mA. On materials which failed by tracking or

erosion leading to flashover, the peak current pulses above 
150mA were registered about 4 to 5 hours prior to failure. 

The number of current pulses above 150mA also increased 

towards failure and is shown in Table 3.2. Therefore, this 

parameter gives an indication of surface aging.
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Table 3.2: Peak Current Pulses Prior To Failure.

SAMPLE
FAILURE

MECHANISM
HOURS 

PRIOR TO 
FAILURE

PEAK
CURRENT

(mA)

NUMBER OF 
PULSES 

> 1 5 0  mA

SB ELECTRICAL 3 <150 0
FAILURE 2 250 22

1 >500 676

EA TRACKING 5 <150 0
FAILURE 4 260 12

3 300 1164
2 >500 9368
1 >500 38348

XA TRACKING 4 <150 0
FAILURE 3 250 1588

2 250 8840
1 325 9604

XB TRACKING 4 <150 0
FAILURE 3 260 1350

2 290 9200
1 325 11248

3.5.4 Flashover Voltage as an Index of Surface Aging 

The variation in the flashover voltage with time of test for 
the three types of materials studied is shown in Figs. 3.5,

3.6 and 3.7. The flashover voltage was measured at the start 

and after every 100 hours of test. The experimental c o n d i

tions of water flow rate and conductivity and air pressure 

were unchanged. To avoid possible variations due to sample 

positions in the chamber, the flashover voltage for all s a m 
ples was determined at the same location in the chamber. The 

values reported are the average of at least five m e a s u r e 
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ments for which the variation in the flashover voltage was

less
1.0

Z  0 . 8  ,
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T IM E  (H O U R S )

F i gure 3 . 5 : F l as h o v e r  Voltage with Time for Silicone Rubber
Samples. 1 pu= 12.2kVrmg .

The flashover voltage is dependent on the surface c o n d i 

tion of the sample, the c o n d u ctivity of the water, the s e p a 

ration between the two electrodes and the electrode g e o m 

etry. At the start of the test, the silicone rubber and EPR 

samples which did not allow water filming had the same 
flashover voltage irrespective of the filler concentration  
(Figs. 3.5 and 3.6). However, the epoxy samples which p e r 

mitted water filming exhibited a lower initial flashover

voltage .

than +3%.
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All the silicone rubber and EPR samples were found to wet 
out completely within 10 hours of exposure in the fog c h a m 

ber to voltage stress. The reduction in the flashover v o l t 

age shown in Figs. 3.5 and 3.6 at 100 hours, is attributed 

to the change in the surface conditions of the samples which 

permitted water filming.

The reduction in the flashover voltage of the silicone 

rubber and EPR samples which passed the 500 hour salt fog

test successfully was negligible between 100 and 500 hours

(Figs. 3.5 and 3.6). A marked decrease in the flashover 

voltage was recorded for the silicone rubber samples SB and 

SC (Fig. 3.5). These samples failed due to the erosion 

extending along the entire length of the sample. The sample 

EA which tracked also showed a marked reduction in the 

flashover voltage just prior to tracking failure as can be 

seen from Fig. 3.6.

After 300 hours of test, track marks were produced on the 

surface of sample EB after three flashover measurements. 

These track marks caused a decrease in the flashover voltage 

at 300 hours as can be seen from Fig. 3.6. With further 

exposure, the carbon tracks were removed, probably by the 

physical action of the filler (discussed in chapter 5). This 

resulted in an increase in the flashover voltage when m e a s 

ured after 400 hours (Fig. 3.6).

The epoxy samples also showed a decrease in the flashover 

voltage as can be seen from Fig. 3.7. Initially, the samples
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wetted out completely but the surface of the material was 
not water absorbent. The contact angle was measured and 

found to be about 90° However, when these samples were 

Inspected after 100 hours of exposure in the fog chamber, it 
was found that the surface absorbed water readily. The 

reduction of the flashover voltage measured at 100 hours 

shown in Fig. 3.7 is probably due to the thick water film on 

the s u r f a c e .

An examination of Figs. 3.5, 3.6 and 3.7 reveals that the 

flashover voltage discriminates between materials that pass 

or fail the 500 hour aging test, but does not bring out the

superior performance of the materials with Increasing filler
concentration. M a terials which begin to track, where the 

weight loss would not be significant, show a sharp decrease 

in the flashover voltage.

The measurement of flashover voltage has the disadvantage 

that material degradation in the form of tracking or erosion 

could be initiated by the flashover and such samples on

subsequent exposure to a relatively lower electric stress

and fog could fail sooner. As this parameter did not give 

any v a l u a b l e 'information about surface aging and subsequent 
failure it was not monitored in the rest of the experiments.
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3.5.5 Weight Loss as an Index of Surface Aging 

The measurements of the weight loss were done after every 20 

hours of exposure in the fog chamber on a balance having a 
sensitivity of 0 . l m g . The variation of the weight loss with 

time of test for the three types of materials tested is 

shown in Figs. 3.8, 3.9 and 3.10. For the silicone rubber

samples which failed, the final weight loss was about 30%. 

Up to about 10 hours before failure, the weight loss was 

less than 1%. Rapid weight loss occured within the last few 
hours of the test. The silicone rubber samples which passed 
the test showed less than 3% weight loss. It can be observed 

from Fig. 3.8 that the weight loss is lower in the samples 

having higher filler concentration.

The EPR samples which passed 500 hours of exposure showed 

a gradual weight loss with time (Fig. 3.9). The weight loss 

increased with decreasing filler concentrations. For these 

samples, the slight decrease in the flashover voltage 

appeared to be consistent with the increase in weight loss. 
The weight loss for the samples which failed by tracking 

(EA) was significantly more than for the samples which 

passed the test.

The epoxy samples showed very little (less than 1%) 

weight loss until hours prior to failure (Fig. 3.10). As for 

the silicone rubber samples which failed, failure of the 

epoxy samples was rapid.
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Figure 3 . 8 : Weight Loss with Time for Silicone Rubber S a m 
ples.

A comparison of the weight loss and the flashover voltage 

for the three types of materials, shows that these two 

parameters are insufficient to describe the surface aging. 

In particular, these two parameters cannot predict the rapid 

failure observed in these samples.
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Figure 3 . 9 : Weight Loss with Time for EPR Samples.
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— igure 3.10: Weight Loss with Time for Epoxy Samples.
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3 »6 Weight Loss as a F u n c t i o n  of Electric Stress 
Fig. 3.11 shows the weight loss due to dry band arcing for 

the samples that passed the 500 hour test. The following 

points are evident:

25 EC

20

c/i tn  O  _1 ED

H
Xa
LU
5

EE 

SE 
g  EF 

EO

6040280
E L E C T R IC  STRESS ( V rm s /mm)

F i gure 3 . 1 1 : Final Weight Loss as a Function of Average
Electric S t r e s s .

1. The magnitude of the electric stress has a significant 

effect on the weight loss on EPR samples, increasing 

with Increasing stress.

2. The co n c e n t r a t i o n  of filler has a marked effect on the 
weight loss on EPR samples, decreasing with increasing 

filler l e v e l .
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Figs. 3.12, 3.13 and 3.14 show the material samples

before and after the salt-fog test. The EPR samples which 

passed the -test showed erosion which was more pronounced 

towards the bo t t o m  (ground) electrode as shown in samples EB 
and EC (Fig. 3.13). In the sample EA which tracked, the 

tracking failure was preceded by gradual increase in weight 
loss (10 to 25%, depending on the electric stress). In c o n 

trast, the silicone rubber samples which failed had very 

little weight loss (about 3%) w h e n  measured 1 to 10 hours 

prior to failure and thereafter degraded rapidly. SA, SB and 

SC in Fig. 3.12 show typical erosion failures of silicone 

rubber samples.

Figure 3 . 12 : Silicone R u b be r Samples Before and After Salt-
Fog Test. UN: Sample Before Test.
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Figure 3 . 1 3 : EPR Samples Before and After Salt-Fog Test.
UN: Sample Before Test.

Figure 3 . 1 4 : Epoxy Samples Before and After Salt-Fog Test.
UN: Sample Before Test.
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3.7 Cumulative Charge as a Function of Electric Stress 

The variation of cumulative charge with time of test is

shown in Fig. 3.15. For clarity, plots for epoxy samples are
not shown but were linear and about 20 to 30% higher than

those shown for filled EPR and silicone rubber. The surface

of the epoxy samples was found to become hygroscopic in less 

than 10 hours of exposure to salt-fog, thereby promoting a 

thicker electrolytic film on the surface. This accounts for 

the higher cumulative charge. It is evident that the cumu
lative charge, which is proportional to the energy dissipat
ed during dry band arcing, is dependent on the magnitude of 

electric stress.
Plots 4, 5 and 6 in Fig. 3.15 are for the EPR sample EO

containing no ATH filler. It is evident that the cumulative 

charge and therefore the leakage current is considerably 

lower than for samples of either EPR or silicone rubber that 

contain ATH filler. When these samples were removed after
500 hours of test, they showed no evidence of tracking. In
addition, the weight loss due to dry band arcing was compa

rable to EPR sample EF containing 250 pph of ATH filler as

shown in Fig-. 3.11.

Fig. 3.11 shows that the weight loss in samples is 

reduced with increasing concentration of filler. Fig. 3.15
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Figure 3 . 1 5 : Cumulative Charge with Time as a Function of
Average Electric Stress.

shows that the cumulative charge is constant. Therefore, the 

cumulative charge cannot be related to the weight loss as 

suggested by Jolly [25].

3 .8 Correlation With Standard Accelerated Aging Tests 

It is generally thought that polymeric materials when filled 

with substantial (>40% by weight) ATH filler simply erode 

and do not track. This is based on the results of ASTM tests 

[16,21]. The results of the fog chamber tests at 1600 pS/cm 
tend to support this conclusion. To demonstrate this fur-
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ther, the silicone rubber and EPR samples in Table 3.1 were 

also evaluated by the Tracking Wheel test [32] at Ontario 

Hydro. This test, in one form or another has been accepted 

by most utilities and manufac t u r e r s  in North America as an 

effective screening test for materials to be used for o u t 

door applications. In this test, cylindrical rod samples

placed as spokes of a wheel are subjected to an electric 

stress of 133 V/mm (20kVrmg applied across 150mm of sample 

length). The wheel rotation subjects the samples to a water 

spray of c o n d u ctivity 356 pS/cm once every 90 s. M a t e r i a l s  

enduring 1000 hours or more on the wheel are considered to 

be suitable for outdoor applications.

Table 3.3 compares the results of fog chamber tests at 

40V/mm and the Tracking Wheel test. It can be seen that the 

results are in very good agreement. In particular, it must 
be noted that samples with above 80 pph (44% by weight) of 

ATH filler passed both tests. It was observed that the 

m e ch an is m of material failure in both tests was identical. 

Good agreement between the results of Tracking Wheel and the 

standard ASTM tests has been reported earlier [32].
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Table 3 . 3 ; Results From Fog Chamber and Tracking Wheel 
Test.

MATERIAL
ID E N TIF I 

CATION
ATH

LEVEL
(pph)

TIME TO FAILURE  
(HOURS)

Fog
CHAMBER

TRACKING
WHEEL

EO 0 >500 924
EA 30 310 860

EPDM EB 60 >500 >1000
EC 80 >500 >1000
ED 105 >500 >1000
EE 130 >500 >1000

SA 30 240 575

HTV SB 60 330 475
SILICONE SC 80 400 >1000
RUBBER SD 105 >500 >1000

SE 130 >500 >1000

pph: PARTS PER HUNDRED OF POLYMER FORMULATION

3 .9 M a t er ia l Performance as a Funct i o n  of Water 

Conductivi ty

3.9.1 Need For Such A Study

Good agreement between the results of fog chamber tests at 

high conductivity and standard accelerated aging tests could 
be due to the fact that in all these tests, the experimental 

conditions of electric stress, water conductivity and/or 

wetting are more severe than those encountered on outdoor 

insulators. A high leakage current is promoted in a very 

short time which gives rise to intense dry band activity. 

This rapidly converts the h yd r o p h o b i c  surface of all polymer 

materials to a hyd r o p h i l l i c  surface and is responsible for
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the results to be obtained in a relatively short time (typi

cally in a few minutes to a few hours). Therefore, the o u t 

come of these tests are more dependent on the filler type 

and concent r a t i o n  than on polymer type and generally m a t e r i 

als with greater than 40% by weight of filler show high arc 

resistance in these tests [32]. It was discussed in Section

1.3.2 that these tests are not entirely representative of 

service experience. Therefore, such tests have to be used 

with caution.

Insulator flashover, tracking and erosion are all related 
to leakage current. Tracking and erosion are initiated by 

dry band arcing which produces local surface temperatures 

above 200 °C [21]. Inorganic fillers are added to impart 

tracking and erosion resistance. However, if a material has 

the ability of limiting leakage current below that which 

results in local surface temperature which causes polymer 

degradation, then for such materials the choice of filler 

type and co n c e n t r a t i o n  becomes less important. For i n s u la 

tors made from such materials, flashover is also reduced due 

to the low leakage current. M a t e r i a l s  which do not have the 

same capacity to suppress leakage current need substantial 

(>40% by weight [21]) filler to minimize tracking or e r o 

sion.

Fog chamber tests using 200 pS/cm c o n d u ctivity water have 

shown that continuous dry band arcing on silicone rubber 

material took c o n s iderably longer time to be established
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when compared to p or ce l a i n  [33]. This may suggest that the 

various materials have a different capability of suppressing 

leakage current. Therefore, a better evalua t i o n  of materials 

may be possible if the materials were subjected to test c o n 

ditions which produce a gradual increase in leakage current 

with time, as occurs in service, rather than to test c o nd i
tions which produce high leakage current right from the 
start of the test, as is the case in normal laboratory 

tests. Therefore, a study was initiated to examine the c o n 

ditions which are believed to contribute to the c o n t r a 

diction between service experience and a c celerated aging 

t e s t s .

3.9.2 Sample s

The samples evaluated are shown in Table 3.4. The silicone 
rubber samples were supplied by a different source and 

therefore they have been identified in a different manner. 

The identification of the EPDM samples has been changed 

a c cordingly although these samples and those in Table 3.1 

were supplied by the same source. Cylindrical rod samples 

of glazed and unglazed porcelain were also evaluated for 

comparison of leakage current data. All samples were 25mm

diameter rods and 150mm in length.
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3.9.3 Experimental Conditions

All samples were subjected to an average electric stress of 

60V/mm and evaluated at two levels of water conductivity - 
250 pS/cm and 1000 • pS/cm. An exposure time of 480 hours 

obtained in 30 cycles was found to be sufficient to bring 

out the relative performance of the materials studied. In 

each cycle, the samples were subjected to electric stress 

and fog c o n t i nuously for 16 hours for the first part of the 

cycle. For the next part of the cycle, the voltage and fog 

were switched off for 8 hours. The 8 hour period was s e le ct 
ed on the basis that silicone rubber recovers its surface 

h y dr op h o b i c i t y  which is lost during dry band arcing [34].

For the low cond u c t i v i t y  fog test, tap water of c o n d u c 

tivity 250 pS/cm was used. The water was changed after every 

3 cycles. During the high conductivity (1000 pS/cm) test, a 

fresh solution of salt water was prepared after every 7 

cycles. To ensure similar wetting conditions for all the 

samples, the position of the samples was interchanged after 

e v e r y c y c l e .

3.9.4 Time to Failure.

Table 3.4 shows the time to failure in 250 and 1000 pS/cm 

fog from which the following can be noted:
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Table 3 . 4 : Time to Failure in Low and High Conductivity
Fog .

The silicone rubber samples were supplied by Dow Corning 
Corporation, Midland, Michigan; The EPDM samples were s u p 
plied by National Rubber, Toronto, Ontario.

MATERIAL
ID E N T IF I 
CATION

FILLER
TIME TO FAILURE  

(HOURS) FOR WATER 
C O N D U C TIV ITY

LEVEL
(pph)TYPE 250 /xS/cm 1000 /xS/cm

EO NONE 0 92 > 480

E30A ALUMINA
T R IH Y D R A T E

30 140 165

E120A ATH 120 352 > 480

EPDM E200A ( A * 20 3 .3 H 20 ) 200 > 480 > 480
E250A 250 > 480 > 480

E105A ALUMINA
( A f 20 3)

105 300 150

E30S 30 130 70
E130S SILICA 130 330 160
E250S (S I0 2) 250 > 480 > 480

HTV  
c11 i r n w c

S5S
S30S

SILICA 5
30

> 480
> 480

13
15

W  1 La 1 ̂  U  IN Ca
RUB8ER S120A

S200A
ATH

120
200

> 480
> 480

336 
> 480

PORCELAIN
GLAZED
UNGLAZED

NONE
NONE

0
0

> 480
> 480

> 480
> 480

pph: PARTS PER HUNDRED OF POLYMER FORMULATION

3.9.4.1 Low (250 pS/cm) Conductivity Fog

1. There were no failures of silicone rubber samples.
2. EPDM samples with up to 130 pph of ATH or silica fill

er failed by tracking.
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3. At the same filler concentration, ATH, alumina and

silica fillers impart similar resistance to tracking 

in EPDM material as judged by the similar times to

failure. This indicates that the water of h y d r a t i o n

in ATH filler does not contribute to the tracking

resistance in EPDM material in low conductivity fog.
4. A filler level of 200 pph can be considered as the

mi n imum filler level for satisfactory performance of 

EPDM samples whereas for the silicone rubber samples 

the filler level required is con s i d e r a b l y  lower.

3.9.4.2 High ( 1000 |iS/cm) C o n d u ctivity Fog
1. Unfilled and filled EPDM samples had longer times to

failure than the c o r r e s p o n d i n g l y  filled silicone r u b 

ber s a m p l e s .

2. ATH filler imparts much better resistance to tracking

and erosion to EPDM material than does alumina or si l 

ica filler as judged by the longer times to failure. 

This indicates that the water of hyd r a t i o n  of ATH 

filler contributes signifi c a n t l y  to the tracking and

erosion resistance of EPDM material in high c o nd uc ti v

ity fog.

3. An ATH level of 120 pph seems to be the threshold le v 

el in EPDM material whereas in silicone rubber, about 

200 pph seems to be the ATH threshold level.
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3.9.5 Leakage Current and Cumulative Charge

55

3.9.5.1 Low Con d u c t i v i t y  Fog.
Silicone rubber and EPDM samples were hydrophobic and the 

porcelain samples were h y d ro p h i l l i c  before the test. The 

surface of the EPDM samples was rendered h yd r o p h i l l i c  due to 

dry band arcing in about 1 hour. But it took about 60 to 70 

hours for the h y d r o p h o b i c  surface of the silicone rubber 

samples to be converted to a h y d r o p h i l l i c  surface. This 
transition was indicated by an increase in the average l e a k 

age current from about 0.5 to 5 m A . The v a riation of c u m u l a 

tive charge with time (cycles) is shown in Fig. 3.16 from

which the following can be noted:

1. EPDM samples (both filled and unfilled) had s u b s t a n 

tially higher cumulative charge than porcelain or s i l 

icone rubber.

2. The v a riation of cumulative charge with time was l i n 

ear both for the samples that passed and failed the 

test.
3. The silicone rubber samples S30S and S200A with widely

varying amount of filler had very similar cumulative

charge. This suggests that there is no correlation

between the filler level and leakage current in low 

conductivity fog.
It was observed that there was a scale deposit (Fig. 

3.17) formed on the surface of all the samples. This was 
identified by E DA X  (Energy Disper s i v e  X-ray Analysis [39])
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 UNFILLED AND FILLED EPDM
 S30S AND S200A
 GLAZED AND UNGLAZED

PORCELAIN AND S5S 
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Figure 3 . 1 6 : Cumulative Charge with Time in Low Condu
ty Fog.

and Infra-Red spectro s c o p i c  techniques as carbonates o 
cium and m a g n e s i u m  which remain on the surface whe 

water is boiled off due to dry band heating. The s 

area covered by the deposits was visibly less on the 

cone rubber samples S30S and S200A and greater on al 

samples. On all other samples the extent of the scale 

its was in between these extremes.

ctivi-
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Figure 3 . 1 7 : EPDM Samples Before and After Low and High
Conductivity Test. 1. Tracking of sample EO
in low conductivity fog; 2. Heavily deposited
sample E25 0 A  in low conductivity fog; 3. 
Tracking failure of sample E 1 20A in low con
ductivity fog; 4. Clean surface of sample EO 
in high conductivity fog; 5. Relatively clean 
surface of sample E 2 5 0 A  in high conductivity 
f og .

THe variation in the number of current pulses above a 

preset threshold is shown in Fig. 3.18. It can be seen that 

the number of current pulses above 15mA steadily increased

with time of exposure and was considerably greater for the 

EPDM samples than for silicone rubber or porcelain. It was 

also observed that the highest peak current increased from 

20 to 50mA in the last 4 to 5 hours prior to failure of the 

EPDM samples. It appears that the de p o s i t i o n  of scales on
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the surface of materials increases the leakage current and 

the number of current pulses above a preset threshold.

14x10®

<ELD
LU>o
CQ<
COLU
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IDa.
u_o
Q£
LU03
s
id2

10

FILLED AND UNFILLED EPDM 

•UNGLAZED PORCELAIN  

-GLAZED PORCELAIN
________ S120A

- ________ S30S AND S200A

CYCLES

F igure 3 . 1 8 : Count of Peak Current Pulses above 15mA.

3.9.5.2 High (1000 pS/cm) C o n d uctivity Fog.

It was observed that the h yd r o p h o b i c  surface of the silicone 

rubber and EPDM samples was converted to a h y d r o phillic s u r 

face in 1 to 2 hours of exposure. The dry band arcing was 

observed to be e x tremely energetic and as a result the scale 

d e p o sition on the samples was very minimal (Fig. 3.17). The 
v a riation of cumulative charge with time is shown in Fig. 

3.19 from which the following can be noted:

1. Filled silicone rubber and EPDM samples had higher 

cumulative charge than porcelain.
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FILLED SILICONE RUBBER AND EPDM 
GLAZED AND UNCLAZED PORCELAIN/  
EO /22

20

in

CYCLES

Figure 3 . 1 9 : Cumulative Charge with Time in High C o n d u c ti v
ity Fog.

2. The co n c e n t r a t i o n  of filler from 5 to 250 pph did not 

affect the magnitude of cumulative charge.

3. The v a r iation of cumulative charge with time was lin

ear both for the samples that passed and failed the
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4. Unfilled EPDM samples had the lowest cumulative 

charge. This suggests that the presence of inorganic 

filler or scale deposit contributes to the increased 
leakage current in EPDM material.

3.9.6 Weight Loss as a Function of Water Conductivity 

The weight loss due to dry band arcing was measured after 

every cycle. At low (250 pS/cm) water conductivity, the sam

ples which passed the test had no weight loss. The samples 

that failed the test also had no weight loss when measured 

one cycle prior to failure. However, the ATH filled EPDM 
samples and the silicone rubber sample S200A which passed 

the test showed a gradual erosion with time of test. These 

samples were evaluated at 1600 pS/cm and all other e x p e r i 

mental conditions remained the same.

Fig. 3.20 shows the variation of the final weight loss 

with water conductivity. It can be seen that the final 
weight loss increases with increasing water conductivity 
and decreasing filler concentration.
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0  E120A 

@  S200A 

0  E200A 

0  E250A

250 1000 1600 
WATER C O N D U C T IV IT Y  ( / iS /c m )

Figure 3 . 2 0 : Final Weight Loss as a Function of Water C o n 
ductivity.

3.10 Correlation of the R e s u l t s  of Low Conductivity Fog 

Test with Service Experience  

Leakage current on outdoor insulators is initially very low. 

The build up of contaminants, which is inevitable in outdoor 

environments, is responsible for increasing the thickness of 
the surface electrolytic film and hence increasing the leak

age current. For laboratory tests to be representative of 

service experience it is necessary that the tests simulate 

the gradual increase of leakage current. In the low c o n d u c 

tivity fog test, the leakage current is initially very low
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and similar for silicone rubber and EPDM due to the rela

tively low electric stress, water conductivity and the 

hydrophobic surface of the materials. The polymer type is 

shown to have a considerable effect on the growth of leakage 
current. The silicone rubber samples maintain their hydro- 

phobic surface for a much longer time than the EPDM samples. 

The leakage current increases because of the loss of surface 

hydrophobicity and the subsequent formation of water scales 

which increases the thickness of the surface electrolytic 
film.

It can be seen from Table 3.4 that although the filler 

level in the samples S5S and S30S was low, they passed the 
low conductivity test. This is due to the good leakage c u r 

rent suppression capability of silicone rubber. The s u ccess

ful performance of such insulators in the field has also 

been attributed to the same reason [11]. But these samples 

failed very quickly in the high conductivity test and such 

materials have also failed quickly in the Tracking Wheel 
test [3], due to the unrealistic rate at which dry band a r c 

ing is promo ted.

The ranking of materials obtained from the low conductiv

ity fog test, that silicone rubber performs better than the 

EPDM material is similar to that obtained from outdoor tests 

[23] and service experience [11].

The above illustrations indicate that evaluating the 

materials in low rather than in high conductivity fog yields
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results which are in better agreement with service experi
ence .

3.11 Effect on Certain Simulated Environmental Degrading 

Factors on the Tracking and Erosion Resistance of 

M a terials

3.11.1 Resistance to Mois t u r e  Ingress.
Outdoor insulators are exposed to moisture in the form of 
rain, dew or high humidity. Moisture can attack polymeric 

insulation in a number of ways [35], but the most serious 

damage caused by moisture ingress is due to hydrolysis 

(d e p o l y m e r i z a t i o n ) of polymer chains, thereby causing the 

material to lose its mechanical and electrical strengths. 

In fact, it was hydrolysis which was responsible for failure 
of some of the earlier epoxy insulators [14]. As a part of 

the minimum requirement for materials to be considered for 

outdoor insulators, it has been specified [3] that materials 

when subjected to boiling water at 1 0 0 °C for 100 hours 

should not gain weight in excess of 5%. Based on this work, 

the samples in Table 3.1 were sealed individually with d i s 

tilled water in glass tubes and subjected to 100 °C for 100 

hours in an oven. After the test it was found that all the 

samples had a slight weight increase of about 1%. The hydro- 
phobicity of silicone rubber and EPR samples was found to be 

unaffected by exposure to boiling water.
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These samples were subjected for 500 hours in the fog 

chamber at 40V/mm stress and 1600 pS/cm water conductivity. 

It was found that the time to failure, weight loss and the 

cumulative charge was within +5% of the corresponding q u a n 

tities for the virgin samples. This suggests that the track

ing and erosion resistance of the materials studied was 
unaffected by moisture ingress.

3.11.2 Resistance to Alkali Attack

It has been suggested earlier [36] that polymeric insulators 

encounter more of alkaline than acidic pollutants during 

service. Electrolysis of the saline pollution results in the 
formation of NaOH. So the most likely form of alkali to be 

encountered by polymeric insulators located near the sea 

coast would be NaOH. As electrolysis is more dominant with 

dc than a c , polymeric insulators on dc lines near the sea 

coast are more likely to encounter NaOH. To demonstrate 

this, samples in Table 3.1 were evaluated for tracking and 

erosion with +dc voltage at 40V/mm stress and 1600 pS/cm 

water conductivity. NaOH was detected near the cathode 

(grounded bottom electrode) on the samples with dc but not 
with ac. A volumetric analysis showed that the con c e n t r a 

tion of NaOH on the samples did not exceed 0.2N during the 

500 hours of exposure to salt fog. The leakage current was 

very similar for both ac and + d c . This resulted in similar 

(within +5%) times to failure, weight loss and cumulative 
charge for both ac and +dc voltage. This demonstrated that
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the tracking and erosion resistance of the materials studied 
was unaffected by a weak NaOH solution.

A previous study [36] showed that ATH and silica filled 
epoxy samples were attacked by a 6N NaOH solution, but the 

unfilled resin was not affected. Based on this study, a

selected number of samples from Table 3.1 were held in a 6N 

NaOH solution for 30 days. After this exposure, it was found 

that the ATH filled silicone rubber samples had become b r i t 

tle. The polymer had visibly degraded exposing the filler to 

the surface. All samples had a weight loss of about 2%. None 

of the EPR samples showed any visible signs of degradation. 

There were no changes in weight. The ATH filled epoxy s a m 

ples d i sintegrated in the 6N NaOH solution in about 100

hours .

The silicone rubber and EPR samples were evaluated in the 

fog chamber at 40V/mm stress and 1600 pS/cm water c o n d u c t i v 

ity. Table 3.5 shows that the time to failure was d r a s t i 

cally reduced for the ATH filled silicone rubber and epoxy 

samples but was unaffected for the silica filled and 

unfilled EPDM samples.

All the ATH filled EPR samples failed by tracking and the 

silicone rubber samples failed by erosion leading to m e c h a n 

ical failure. For the silica filled and unfilled EPDM s a m 

ples the cumulative charge was very similar (within + 5 % )  to
that for the virgin samples.
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Table 3 . 5 : Time to Failure for Samples Subjected to 6N NaOH
for 30 Days.

SAMPLE

HOURS TO FAILURE

VIRGIN
AFTER  

EXPOSURE TO 
6N NaOH

EO >500 >500

EA 310 <1
EC >500 <1
EE >500 <1

EAS 67 60
ECS 113 120
EES 160 145

SA 240 9
SC 400 14
SE 500 16

Th ese obs erva ti ons i nd i ca te tha t a 1 though th e po iy mer
i tsel f resis ts a c once ntr a t ed NaOH s o 1u t i o n , the add it ion
ATH fi]H e r make s the f i lied ma t eria 1 mo re sus cep tib le
a t tac k by a cone en tra ted NaOH so lu tio n •

It should be me nt io ned tha t s u ch a high c one entr a tion

NaOH is very unlikely to be encountered in outdoor insulator 
applications and the choice of filler type should not be 
based on this extreme test.
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3.11.3 Re s i s t a n c e  to H y d r o c a r b o n  Solvent Attack

6 7

Polymeric Insulators used in urban areas encounter h y d r o 

carbon solvents from exhaust fumes of vehicles. Insulators 

near railway lines are more likely to encounter hydrocarbon  
solvents due to their close proximity to the lines. The

reaction of the h yd ro ca rb on  solvents with the polymer is

governed by the solubility parameter 6 (the unit of 6 is 
1/2 - 3 /2c a 1 cm ) of both the polymer and the solvent. Similar 

magnitudes of 5 result in mutual interaction causing swelling 

of the polymer. The m a gnitude of 6 for silicone rubber and 

EPR is in the range 7 to 8 and about 11 for epoxy [15]. For 

vehicular fuels like gasoline and diesel, 6 is in the range

6.7 to 7.6 [37], This indicates that the silicone rubber

and EPR samples are more prone than epoxy to attack by these 

h y d r o c ar bo n solvents. To demonstrate this, a selected number 

of samples from Table 3.1 were held for 100 hours in the 

h y d r o c a r b o n  solvent naphtha, for which the solubility p a r a m 

eter lies in the same range as for gasoline and diesel fuels
[37]. Table 3.6 shows the m a x i mu m weight gained and e l o n g a 

tion after the 100 hour exposure. It can be seen that the 

silicone rubber and EPR samples experienced swelling and 

elonga t i o n  whereas the epoxy samples were unaffected. It can 

also be seen that the type of inorganic filler did not 

influence the swelling and el o n g a t i o n  but an increase in the 

filler co n c e n t r a t i o n  decreased the swelling and elongation. 

By increasing the filler c on ce n t r a t i o n  fewer organic m o l 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

ecules are available for attack by the solvent. The change 

in the physical structure was temporary and after the sam

ples were removed from the solvent they regained their o r i g 

inal shape in about 100 hours.

Table 3 . 6 ; Physical Changes and Time to Failure for Samples 
Held in Naphtha.

SAMPLE

MAXIMUM
WEIGHT

GAIN
(%)

MAXIMUM
ELONCATION

(%)

HOURS TO FAILURE

VIRGIN AFTER EXPOSURE 
TO NAPHTHA

EO 155 68 >500 >500

EA 125 55 310 281
EC 80 35 >500 >500
EE 57 30 >500 >500

EAS 120 51 67 61
EOS 78 32 113 115
EES 55 27 160 152

SA 130 57 240 221
SC 80 35 400 388
SE 55 28 >500 >500

XA < 1 <1 115 128
XB <1 < 1 156 170

After the samples had regained their original shape they

were evaluated in the fog chamber at 40V/mm stress and 1600
pS/cm water conductivity. The time to failure shown in Table

3.6 is seen to be unaffected by exposure to naphtha. In

addition, the cumulative charge and weight loss for these 

samples was within +5% of the corresponding value for the
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virgin samples. This suggests that the hydrocarbon solvent 
did not have any detrimental effect on the tracking and e r o 

sion resistance of the materials evaluated.

3 . 12 Summary

The ac performance of polymeric materials in accelerated 

aging tests is largely controlled by the experimental c o n d i 

tions employed. Although the results of the high (>1000 pS/ 

cm) conductivity test were in good agreement with the s t a n 

dard accelerated aging tests, it was the results of the low 

conductivity test which were in better agreement with ser

vice experience.
M e asurement of cumulative charge, weight loss and flash- 

over voltage yield limited information about surface aging. 

The number and amplitude of peak current pulses above a p r e 

set threshold provides a better indication of surface aging 

and subsequent failure of all materials under all e x pe ri me n

tal conditions studied.
Although the ATH filler imparts superior tracking and 

erosion resistance to materials than does silica filler 

under high conductivity fog, in low conductivity fog both 
ATH and silica filler impart similar tracking and erosion 

res i s t a n c e .

The tracking and erosion resistance of the materials 

studied is not affected by moisture ingress, a weak NaOH 

solution or h y drocarbon solvent naphtha.
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C h a p t e r  I V

A COMPARATIVE STUDY OF THE AC AND DC PERFORMANCE 

OF POLYMERIC MA T E R I A L S  AND INSULATORS

4 . 1 Introduction

The effect of polymer type, filler type and concentration, 
experimental conditions of electric stress and water c o n d u c 

tivity on the ac performance of polymeric materials was 
reported in the previous chapter. Data on the merits of d i f 

ferent polymer and filler types, the threshold level of 

filler to be used for satisfactory performance were

obtained. It was also shown that better correlation with 

service experience was obtained when materials were e v a l u a t

ed in low rather in high conductivity fog. As there is very 
little information available on the performance of polymeric 
materials with dc, a detailed study with the objective of 

acquiring similar information obtained with ac, was there

fore undertaken and the results of the comparative study are 

reported in this chapter.

Outdoor insulators are not in the form of cylindrical 

rods. In order that the results of material tests using

cylindrical rods be applicable to outdoor insulators, it is 

necessary to establish the correlation between material 
testing in the form of rods and actual insulator geometries.

- 70 -
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This chapter also describes the results of polymeric i n s u l a 
tor evaluation with ac and dc.

All the results reported are the average from at least 

two samples of the same c om p o s i t i o n  for which the variation 

in the reported quantity was within + 5%.

4 .2 Ex perimental

The rod samples were evaluated in low (250 pS/cm) and high 

(1000 pS/cm) c o n d uctivity fog. The supply voltage was kept 

constant at 9kV and the average electric stress was varied 

from 28 to 60 V/mm by varying the length of the samples.

Due to the u n i d i r e c t i o n a l  current, the electrode which 

was the anode experienced erosion (about 1 % and 5% weight 

loss in 100 hours with -dc, respectively in low and high 

conductivity fog). R e cy c li ng  of water resulted in an 

increase of c o n d u ctivity of about 5% in 20 hours. As a 

result, a fresh water solution was prepared daily.

The carbon electrodes were replaced once every 100 hours 

during the high con d u c t i v i t y  test with -dc. Initially, e l e c 

trodes made from aluminium, stainless steel, brass and c o p 

per were tried, but in all cases, flashover occured after 
about 20 hours in high c o n d u ctivity fog due to erosion 

deposits from the electrodes settling on the samples. The 

use of carbon electrodes together with daily changes of the 

water solution prevented flashover from occuring.
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Table 4.1 M a t e r i a l  Details and Performance in ac, 
-d c .

+dc and

The silicone rubber samples S30A, S80A and S130A 
same as samples SA, SC and SE of Table 3.1.

are the

MATERIAL
SAMPLE
IDENTI

FICATION

FILLER HOURS TO FAILURE AND FAILURE  
MECHANISM AT WATER C O ND U C TIV ITY

TYPE LEVEL
(pph)

250 fiSicm 1 0 0 0  fiSicm

ac +dc -dc ac +dc -dc

HTV
SILICONE
RUBBER

S30A
S80A
S130A
S200A

ALUMINA
TRIH YD RA TE
A£2 03 -3H2O

30
80

130
2 0 0

NF
NF
NF
NF

NF
NF
NF
NF

185M
NF

185m305
NF
NF

,5<*M287
NF
NF

4 3 M

7Sm

21 0

EPDM

E30A
E80A
E130A
E250A

ATH
30
80

130
250

i4o£
193 j
368T
NF

1S1T 18U *
328
NF

3UTs?
NF

165T
NF
NF
NF

194 T 
NF 
NF 
NF

5“ m

22,m358

E30S
E80S
E130S
E2S0S

SILICA
(S i0 2)

30
80

130
250

130^
m l
330
NF

123]!
192J.
319
NF

44 ~L

S7t
75t310

70t1 2 0 i.
160
NF

97t
U 2 t148 
NF

20t

S t
16 8

NOTES:
NF: NO FAILURE  
M: MECHANICAL FAILURE
T : TRACKING FAILURE
pph:PA R TS PER HUNDRED OF POLYMER FORMULATION

4.3 Time to Failure
Table 4.1 shows the details of samples and time to fai lure
for ac, +dc and -dc. In all cases the bottom ele ct rode was

the grounded electrode. It can be seen from the Table that

in both low and high c o n d u ctivity fog, the time to f ai lure

for ac and +dc was very similar, whereas for -dc, the time

to failure was reduced by a factor of about four. The f 0 1 —

lowing can also be noted from the Table:
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4.3.1 Low Conductivity Fog
1. Filled silicone rubber samples had substantially long

er times to failure than the correspondingly filled 

EPDM s a m p l e s .

2. For the same filler concentration ATH and silica fill

er impart similar resistance to tracking in EPDM 
material as judged by their similar times to failure. 
This indicates that the water of hydration does not 

contribute to the tracking resistance in low c o n du c

tivity fog.

4.3.2 High Conductivity Fog

1. ATH filled EPDM samples had much longer time to f a i l 

ure than the c o r respondingly filled silicone rubber 

s a m p l e s .
2. For the same filler concentration, ATH filler imparts

a superior tracking and erosion resistance to the EPDM 

material than does silica filler, as seen by the long

er times to failure. This indicates that the water of 

hydration plays a significant role in imparting track

ing and erosion resistance in high conductivity fog.

The similarity in performance of materials containing 

various types of filler with ac and dc indicates that the 
mechanisms by which fillers impart tracking and erosion 
resistance to polymers is similar for ac and dc.
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4.4 Leakage Current and Cumulative Charge

4.4.1 Low Conductivity Fog

Silicone rubber and EPDM samples were all hydrophobic before 

the start of the test. With both ac and +dc, the silicone 
rubber and EPDM samples maintained a hydrophobic surface for 

about 70 hours and 1 hour respectively. With -dc, the sur

face of silicone rubber and EPDM samples was converted to a 

hydrophillic surface in about 40 hours and less than 1 hour 

respectively. The surface transition was indicated by an 

increase in the average leakage current from 1 to 10mA. The 

deposition of scale (CaCO^ and M g CO^ ) which is formed when 
water is boiled from the surface under dry band heating, was 

found to be initiated from the bottom of the sample with ac 
and +dc, and from the top with -dc. The scale deposit with 

-dc, in terms of apparent area covered on the sample, was at 

least 2 to 3 times greater than with ac or +dc for the same 

time duration. This resulted in a higher leakage current 

with -dc as shown in the variation of cumulative charge with 

time in Fig. 4.1. The following points can also be noted 

from the figure:
1. The inability of the cumulative charge to indicate 

failure which was previously reported for ac is also 

true for dc. This is indicated by the similar m a g n i 

tude of the cumulative charge for the samples which 

passed and failed the test.
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m o x i o2
© E P D M  (-dc)

© E P D M  (ac AND +dc) 

© S I L I C O N E  RUBBER ( -dc)

© S I L I C O N E  RUBBER  
(ac AND +dc)

~ 1 0 0

100 200 300 400
TIME OF TEST (HOURS)

500

Figure 4 . 1 ; Cumulative Charge with Time in Low Conductivity 
Fog .

2. Initially, silicone rubber had a much lower cumulative

charge than the EPDM samples. But this advantage of 

leakage current s up p r e s s i o n  of silicone rubber samples 
was lost when the samples were covered with a thick 

scale deposit (plots 3 and 4).
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4 .A .2 High Con d u c t i v i t y  Fog

The hydro p h o b i c  surface of silicone rubber and EPDM samples 

was converted to a h y d r o p h i ll ic  surface within 1 hour, for 

both +dc and -dc. However, unlike with ac, where the e n e r 

getic dry band acti v i t y  effe c t i v e l y  reduced the formation of

water scale on the surface, with dc, scale was observed and
was much greater for -dc than + d c . As the leakage current is 

dependent on the thickness of the surface electrolytic film, 

it is greater for -dc than for ac or +dc as shown by the

variation of c u m u lative charge with time in Fig. 4.2. The

cumulative charge in high cond u c t i v i t y  fog is independent of 

polymer type and is only dependent on the experimental c o n 

ditions as was previo u s l y  reported for ac.
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2300 X 10

©  -d c

ac AND +dc
250

3  200
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b  100
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0
500300100 2000

TIM E OF T E S T  (HOURS)

Figure 4 . 2 : Cumulative Charge with Time in High C o n d u c t i v i 
ty Fog.

4 ■ 5 Effect of Scale Deposit on M a t e r i a l  Performance 
On an uncontaminated surface, dry bands once formed will 

stay in a particular location until the arc roots dry out 

the surface at which point the arc moves to another f a v oura

ble location. As the water film on an uncontaminated surface 

is only a few monolayers thick, the dry bands change their 
location rapidly. However, once the surface accumulates 

deposits, the thickness of the water film increases due to
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their h y groscopic nature. Therefore, it takes a longer time 

for the arc roots to dry out the surface and hence dry band 

arcing occurs for a longer time in one particular location. 

The scale d eposi t i o n  observed on samples was in the form of 

patches (Fig. 3.17) and therefore non-uniform. As a result, 

regions with relatively less deposit which are sandwiched 

between regions with more deposit are the preferred l o c a 

tions for dry band arcing to occur. Therefore, material 

d egra d a t i o n  on a contaminated surface is more likely to 

occur at a faster rate than on an u n c o n taminated surface due 

to the c o mbination of preferential dry band activity and the 

longer duration of arcing.

In order to demon s t r a t e  that the scale is responsible for 

initiating degradation, the samples in Table 4.1 which had 

failed the low con d u c t i v i t y  test with ac, were evaluated 

under the same experimental conditions with distilled- 

deionized water*" (5 pS/cm), to which ACS grade NaCl ( i m puri

ties less than 0.1%) was added to adjust the water c o n d u c 

tivity to 250 pS/cm. A fresh solution was prepared every two 

days. Due to the similar water conductivity, the initial 

leakage current observed was very similar (typically 5 to 

10mA peak) to that obtained when using tap water. But, as 

the water was devoid of any Ca and M g  impurities there was 

no scale formed. Therefore, there were no current pulses 

above 15mA recorded and no failures occured in 500 hours.

 ̂ Obtained from the Department of Civil Engineering (Room B 
2 9 A) .
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4«6 M a t er ia l D e gr ad a ti on  as a Funct i o n  of Supply Polarity

In addition to dry band heating which causes evaporation of

water to form a scale, scale formation with dc could also be

due to electrolysis of tap water which occurs as follows:
2 +Ca +2H2 0 — >Ca(0H)2 +H2

Ca ( OH )2 +C02--- > CaC03 0

The positively charged Calcium ions migrate towards the 

o ppositely charged electrode (cathode) and combine with 

water to form Ca(OH)2 which inturn could combine with CO^ 

which is present in air or as a dissolved gas in water, to 

form CaC03 . This explains the initiation of water scales 

from the cathode observed with both polarities. With time, 
the scale progresses toward the anode. The hygroscopic  

nature of the scale causes dry bands to be formed p r e f e r e n 

tially between the tip of the scale and the anode. For s a m 

ples oriented vertically, with +dc, dry band activity and 

erosion occurs more towards the top electrode whereas with 

- d c , they occur towards the bottom electrode as shown in 

Fig. 4.3. Due to the relative positions of the fog nozzles 

and the samples in the fog chamber which favors dry band 

activity towards the bo t t o m  electrode, material d e g radation 

is accentuated with -dc when compared with +dc. It can be 

observed from Fig. 4.3 that the area in the vicinity of the 

anode is devoid of scale. This o b s e r v a t i o n  is consistent 

with earlier work [55] in which the formation of clean zones 

has been attributed to the m i g r a ti on  of the positively
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charged ions from the anode under the influence of an e l e c 

tric field.

F igure 4 . 3 : Typical E r o si o n  in ATH filled EPDM Samples in
High C o nd u c t i v i t y  Fog with (1) +dc and (2) -dc.
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4.7 Weight Loss due to Dry Band Arcing
Fig. A . 4 shows the v a r i a t i o n  of weight loss with time for 

the ATH filled EPDM samples in high conductivity fog. It can 

be seen that the var i a t i o n  of weight loss is very similar 

for ac and +dc, but for - d c , weight loss occured at a more 

rapid rate leading to mechanical separation of the samples 
and in less time for reasons explained in section A . 6.
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^ • & Effect of Sample O r i e n t a t i o n  on M a t e r i a l  Performance
The intense a c c u m u l a t i o n  of scale deposit on the vertically  

oriented samples is caused by evaporation of water which 

moves down the sample. In a horizo n t a l  orientation, water 

droplets incident on the sample may not remain on the sur

face for sufficient time for dry band arcing to raise the 

water temperature to boiling. Therefore, it can be expected 

that for the h or iz on ta ll y oriented samples, the deposition  

of deposits could be con s i d e r a b l y  reduced and hence the time 

to failure could increase and the weight loss due to dry

band arcing decrease. To confirm this, a selected number of 

samples were evaluated h o r i z o n t a ll y in low and high c o n d u c 

tivity fog with -dc voltage. The results shown in Table 4.2 

indicate that an improved performance was obtained in the

horizontal rather than in the vertical orientation.

Table 4 . 2 : Effect of O r i e n t a t i o n  on M a t e r ia l Performance in
High C o n d u ctivity Fog with -dc.

SAMPLE

ORIENTATION

V ER T IC A L HORIZONTAL

TIME TO  
FAILURE  

(h)

WEIGHT
LOSS
(%)

TIME TO 
FAILURE  

(H)

WEIGHT
LOSS
(%)

E130A 221 21 NF 10

E250A 358 22 NF 7

S200A 210 21 NF 8.5

NF: NO FAILURE
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4.9 Performance of Polymeric Insulators

84

4.9.1 Details of Insulators Evaluated

Sections of commercial polymeric Insulators were evaluated 

with the purpose of establishing c o r relation with material 
testing in the form of cylindrical rods. The material 

details of the insulators are shown in Table 4.3. The cross 

sectional details are shown in Fig. 4.5. Although the 

designs evaluated were aerodynamic, that is, the u n d e r s u r 

face of the sheds did not contain ribs, for the purpose of 

describing their p e rformance in the fog chamber, the shed 

shapes have been classified as follows: (1) protected, where

the under surface of the sheds are not easily wetted by fog, 

(2) open, where the under surface is easily wetted by fog 

and (3) intermediate, where the shed is partially protected.

From Fig. 4.5, it can be seen that insulators A, B, and C 

are of a protected design, insulator D of an open design and 

insulators E and F of an intermediate design. In addition, 

it can also be noted from Fig. 4.5 that insulators A, D, E 

and F are constructed from a one piece weathershed, whereas 

insulators B and C are of a modular design. The weath-
ersheds in insulators C are epoxy bonded. A silicone gel

seals the interface between the fiberglass rod and the sheds 

in insulator B.

The end fittings were removed and carbon electrodes 5 mm 

thick and of diameter equal to the shank of the insulators 
were used. As the shape of the end fitting of each insulator
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was different, using carbon e l e c t r o d e s  ensured that i n s u l a 

tor perfo r m a n c e  was inde p e n d e n t  of end fitting geometry.

4.9.2 I n sulator P e rformance

It was shown [26] that the leakage current on insulators 

with protected sheds is a func t i o n  of the ratio Z /A , where Z 
is the leakage dist a n c e  and A is the surface area. It was 

reported that the leakage current d e creased with increasing  

&/A and hence such insulators p e r f o r m  better in con t a m i n a t e d  

areas. This p a r a m e t er  has been inve s t i g a t e d  further in the 

present w o r k  for insulators with v a r i o u s  shed profiles.

Tables 4.3 and 4.4 show the time to failure and c u m u l a 

tive charge respectively, under various exp e r i m e n t a l  c o n d i 

tions. Only those insulators that passed the low c o n d u c t i v i 

ty test were eva l u a t e d  at high conductivity. The following  

can be noted from the Tables:

1. Epoxy ins u l a t o r  F with s u b s t a n t i a l  ATH filler and s u b 

jected to a lower stress failed in a much shorter time 

than silicone rubber and EPDM insulators. Thus the 

ranking of mat e r i a l s  obtained by evaluating insulators 

is s i milar to that obtained by evalua t i n g  rod samples.

2. As in the case with rod samples, evaluating insulators

in -dc results in a shorter time to failure and

i ncreased cumula t i v e  charge.

3. Although the % / k  ratio was similar, insulators with

protected design have a much lower leakage current

than those with an open or i n t e r m e d i a t e design. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 9

Table 4 . 3 : Insulator Details and Performance with ac, +dc
and -d c .

APPROX.
X  X 10-3 
A

AVERAGE
HOURS TO FAILURE AT  
WATER C O N D U C TIV ITY

INSULATOR
IDENTIFICATIO N

WEATHER-
SHED

MATERIAL

ATH
LEVEL
(PPH)

ELECTRIC
STRESS

V/mm

250 f iS/cm 1000 p S/cm

(mm- 1 ) ac -dc ac -dc

A EPDM 140 5.8 60 NF NF NF NF

B EPDM 45 6.07 58 NF NF NF NF

C EPDM 120 5.07 57 NF NF NF NF

D EPDM 200 5.25 55 NF 300 NF 126

E HTV
SILICONE
RUBBER

30 5.6 62 NF 324 NF

F EPOXY 220 6.2 40 206 80 - -

DMOD EPDM 200 5.25 55 NF NF NF NF
FMOD EPOXY 220 6.2 40 NF NF - -

E130A
(ROD SAMPLE)

EPDM 130 60 368 69 NF 221

NOTES:
NF = NO FAILURE
PPH = PARTS PER HUNDRED OF POLYMER FORMULATION

order to d e m o n s tr a t e  this further, insulators D and F 

were machined to impart a protected shape to the sheds 

(Fig. 4*5, d Mod and F Mod). The performance, as 

judged by the data in Table 4.3, of the modified i n s u 

lators under identical conditions is seen to be far 

superior than that obtained with the existing designs.
4. A comparison of the typical cumulative charge for rod 

samples and insulators reveals that these quantities 

are much higher for rod samples. Therefore, evaluating 

materials in the form of cylindrical rods yields 

results in a much shorter time.
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Table 4 . 4 : Cumulative Charge For Insulators With ac, +dc
and -dc.

CUMULATIVE CHARGE (C) 
A T WATER C O N D U C T IV IT Y

INSULATOR 250 / iS /cm 1000 fiSfcm

ac -dc ac -dc

A 980 1360 1310 1610

B 960 1820 2130 2630

C 880 1580 1180 1700

D 4140 6970 6100 2020

E 990 1650 2080 2560

F 4800 3560 - -

D MOD 1600 2100 2450 2600

F MOD 1580 2000 - -

E130A
(ROD SAMPLE)

12000 si 4000 24000 30000

5. Insulators with modular and a one piece weath e r s h e d  

c o n s truction performed alike.

Insulators in Table 4.3 which failed at the high electric 
stress were evaluated in low conductivity fog with -dc at 

reduced values of electric stress. The results in Table 4.5 

show that the time to failure increased with decreasing 

stress as was reported earlier with rod samples (Fig. 3.1). 

The results also suggest that there is a threshold current 

of about 15mA below which little material degradation can 

occur under the experimental conditions used.

The insulator D which failed the high conductivity test 
with -dc, eroded in a similar manner as the rod samples
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Table 4 . 5 ; Time to Failure of Insulators at Various E l e c 
tric Stress in Low Cond u c t i v i t y  Fog with -dc.

INSULATOR ELECTRIC  
STRESS (V/mm)

T Y P IC A L  PEAK 
CURRENT (mA)

HOURS TO  
FAILURE

D 65 30 -  50 300
30 <15 >500
25 <15 >500

F 60 30 -  50 80
40 25 -  40 206
30 <15 >500
20 <15 >500

E 62 20 -  30 324
40 <15 >500
30 <15 >500

before exposing the fibre glass rod (Fig. 4.6). The s i l i 
cone rubber insulator E failed by erosion (Fig. 4.7) as was 
the case with the rod samples (Fig. 3.12). The epoxy i ns u 

lator D (Fig. 4.8) tracked as was the case with rod samples 

(Fig . 3.14).
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Figure 4 . 6 : Erosion Leading to Trac k i n g  Failure of I n s u l a 
tor D in High C o n d u c t i v i t y Fog in High C o n 
d u c tivity Fog with -dc.
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Figure 4 . 8 : Tracking in Insulator F in Low Conductivity
Fog with -dc.

4.10 Summary

The performance of polymeric materials under accelerated 

aging is dependent on whether the electric stress is ac or 

dc. For ac and +dc, similar performance was obtained whereas 
for -dc, a marked reduction in the tracking and erosion 

resistance was observed.

In order to differentiate between the leakage current 

suppression capability of various materials for d c , the 

evaluation must be done in low conductivity fog but at a 

much lower electric stress than for ac.
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Although similar ranking of material performance was 
obtained on cylindrical rods and practical insulator g e o m e 

tries of materials, the time of evaluation required is c o n 
siderably lower when cylindrical rods of materials are used. 

The shape of the shed has a significant effect on the i n s u 

lator performance.
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Chapter V

EX P E R IMENTAL TECHNI Q U E S  USED TO INVESTIGATE 

M A T E R I A L  PERFORMANCE UNDER A C CELERATED AGING

5 . I Introduction
This chapter reports the results from different experimental 

techniques used to investigate material performance under 

accelerated aging. The dominant mechanisms by which fillers 

impart tracking and erosion resistance to various materials 

under different e x p e rimental conditions is discussed through 

measurements of released gases, temperature due to dry band 

arcing and Thermo Gravi m e t r i c  Analysis (TGA) of m a t e r i a l s • 
The role of filler d i s p e r s i o n  in initiating tracking or e r o 

sion failure in high conductivity fog has been investigated 

by Energy Dispersive X-ray Analysis (EDAX). M at e r i a l  surface 

study by Electron S p e c t r o s c o p y  for Chemical Analysis (ESCA) 

helped in d e t ermining the mechanisms responsible for:

1. The h y d r o p h o b i c  surface of materials to be converted
to a h y dr o p h i l l i c  surface during dry band arcing .

2. The mechan i s m s  responsible for h yd ro ph o b i c i t y  e x h i b i t 
ed by the silicone rubber material despite the a c c u m u 

lation of surface contamination.

- 96 -
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5.2 M e c h a n i s m s  by which Fillers Impart Tracking and 
Erosion to Polymeric M a t e r ia ls

5.2.1 M e a su re m en t of R e l e a s e d  Gases During Dry Band Arcing 

A chemical m e ch a n i s m  has been suggested by which hydrated 
fillers impart tracking and erosion resistance to materials. 

Although not d e m o n strated e x p e r i m e n t a l l y  on filled e l a s t o m 

ers, it has been postulated that when the temperature of 

filler particles exceeds 900°K during dry band arcing, the 

water of h y dration of the filler combines with free carbon 

produced from bre a k d o w n  of the polymer chains forming C 0 2 or 

CO gases as indicated by the following reactions [20]:

A 1 20 3 .3H20+3C — >-3C0+Al2 03+ 3 H 2 

6A1203 .3H20+9C > 6 A 1 203 + 9C02 + 18H2
To test the validity of the chemical mechanism, an e x pe r

iment to monitor the emission of gases was conducted. A 

small salt fog box ( 1 5 0 X 1 5 0 X I 5 0 m m ) was constructed to test 

50mm long samples at 60V/mm electric stress with 3200 pS/cm 
water conductivity while connected to a Varian Mat Model 

CH5DF Ma ss Spectrometer. The higher water conductivity was 

chosen to promote increased dry band activity leading to 

increased produc t i o n  of c a r b o naceous products.

The dimensions of the box was chosen to allow easy i n s er 

tion and removal of the sample and also that there would be 

a better chance of detecting the gases from dry band arcing 

if the volume of the box was comparable to that of the io n 

izing chamber of the mass spectrometer which was 1.5 I.
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The materials evaluated were EPDM samples EO and EF in an 
a tmosphere of nitrogen. If CO and/or CO^ were detected it 

would validate the chemical mechanism.

The box was first flushed with nitrogen. With the high 

voltage off, the sample was subjected to a continuous water 

spray and the mass s p e c t rometer sampled the box to provide a 

reference spectrum. Two methods were tried in order to 

detect the generation of CO and CO^* In the first method, 

the mass spectrometer c on ti n u o u s l y  monitored the salt fog 

box, while the sample was subjected to dry band arcing. 

During the test which lasted for about 20 minutes, no peaks 

in the spectrum co r r e s p o n d i n g  to CO and CO^ was observed. 

In the second method, arcing on the samples continued for 

about 20 minutes in an attempt to increase the concentration 

of gases before allowing the mass spectrometer to sample the 

salt fog box. The m a g nitude of CO^ detected was similar for 
EO (1.12%) and EF (1.1%). Although there was a weight loss 

of about 1% in the sample E F , the similar magnitude of C0^ 

detected indicated that the water of h y dration has not 

reacted with carbon from the polymer to form C0^*

5.2.2 M e a s u r e m e n t s  of Surface Tempe r a t u r e  During Dry Band 

Arcing

To further disprove the chemical mechanism, temperature 

indicating paints (Omega E n gineering Inc.) which change 

their color irre v e r s i b l y  at a specific temperature were used 

to record the local surface temperature during dry band arc-
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ing. The response time of these paints is specified in the 

order of mi l l i s e c o n d s .  At the bottom electrode where the 

greatest dry band a c t i v i t y  was found, a temperature above 

260 and below 400 C was estab l i s h e d  in the high (1000 and 

1600 pS/cm) c o n d u c t i v i t y  tests. On other parts of the s a m 

ple, the local surface tempe r a t u r e  was found to be below 260 
° C .

In the low c o n d u c t i v i t y  fog test with a c , on the EPDM 

samples which had a c c u m u l a t e d  greater amount of scale, the 

local surface t e m p e r a t u r e  m e a s u r e d  was in the range 200 to 

300°C. On other samples which had r e l a tively less scale 

deposit, the local surface t e m p e r a t u r e  recorded was below
2 00 °C.

When the filler particles reach temperatures above 2 0 0 °C, 

a physical cleaning m e c h a n i s m  has been suggested by which 

h ydr a t e d  fillers impart tracking and e r osion r e s i stance to 

materials. At this temperature, the water of h y d r a t i o n  is 

released as vapor. The resulting sp u t t e r i n g  ac t i o n  p h y s i c a l 

ly cleans the surface of d e g r a d a t i o n  products and therefore  
prevents the f o r m a t i o n  of a c o n t i n u o u s  track [20].

The physical cleaning action of hydrated fillers can 

readily be d e m o n s t r a t e d  a d d i t i o n a l l y  on EPDM and epoxy s a m 

ples by subjecting them to a flame at a temperature of about

3 00 °C.

The physical m e c h a n i s m  was not observed in the ATH filled 

silicone rubber samples (except in S200A) when subjected to
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a flame. One possible reason could be that the bonding 

between the ATH filler and the silicone backbone is much 

stronger than in EPDM or epoxy material. Thus the water of 
hydration of the ATH filler cannot be easily liberated from 

the silicone rubber material as it is from EPDM and epoxy. 

The surface temperature due to dry band arcing in the high 

conductivity fog test (above 260 °C) could be sufficient to 

cause sissions in the polymer chains. This could explain the 

sudden failure of silicone rubber samples after a certain 

period of exposure to high conductivity fog.

5.2.3 Thermo Gravimetric Analysis (TGA) of Polymeric 

Materials

A TGA of polymeric materials gives information about their 

thermal stability. In this technique [38], a sample (about 

O.lg) of the material is heated at a constant rise of temp

erature (10°C/min) in an atmosphere of nitrogen, while the 
sample weight is continuously monitored. The TGA plots of 
the unfilled, ATH and silica filled EPDM samples, shown in 

Fig. 5.1 indicates that the polymer is stable up to 1 7 5 °C. A 

similar weight loss is registered between 175 and 2 5 0 °C for 

all the samples which indicates that the polymer begins to 

degrade at temperatures above 175°C. Between 250 and 4 0 0 °C, 

the ATH filled samples register a greater weight loss than 

the others indicating that the water of hydration from the 

filler is liberated at temperatures above 2 5 0 °C. The final 
weight loss is related to the inorganic filler c o ncentra

tion.
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Figure 5 . 1 ; TGA Plots of EPDM Samples.

The TG A  plots of the filled silicone rubber samples from 

the two sources, used in this work are shown in Figs. 5.2 

and 5.3. It can be seen that there is a significant d i f f e r 

ence in the t e mperature at which d e g r a d a t i o n  is initiated. 

The samples of Table 3.1 are stable up to 250°C (Fig. 5.3) 

whereas the samples of Table 3.4 are stable up to about 175 

°C (Fig. 5.2). This is likely the reason for the different 

times to failure observed at 1000 and 1600 pS/cm (Table 3.4 

and Fig. 3.1) for samples with similar filler concentration.
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Figure 5.2: Typical TG A  plots of Silicone Rubber Samples of
Table 3.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 0 3

SE20

in

100 600300 400 5002001000
TEMPERATURE (°C)

Figure 5 . 3 : Typical TGA plot of Silicone Rubber Samples of
Table 3 . 1 .

5 . 2 . 4  Dominant Filler M e c h a n i s m s  I n  Low and High 

Conductivity Fog 

As the chemical m e c h a n is m is not operative during dry band 

arcing, the mechanisms by which fillers impart tracking and 

erosion resistance to the polymer are: (1) the physical

cleaning action and ( 2 )  volume effects. A weight loss with 

time is associated with the first but not with the second 

mechanism.

From Tables 3 . 4  and 4 . 1  and Fig. 3 . 1 ,  it can be seen that 

all materials had an increase in the time to failure with an 

increase in filler concentration. This was true for all 
experimental conditions which suggests that volume effects 

impart increased tracking and erosion resistance under all 

conditions. For materials with unhydrated fillers (SiC^ and
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Al^O^), volume effects is the only mec h a n i s m  by which the 

filler imparts tracking or erosion resistance to the p o l y 

mer. From Fig. 3.20 it can be seen that the ATH filled EPDM 

samples showed an a p preciable weight loss at higher (1000 

and 1600 jiS/cm) water conductivities but not at low c o n d uc 

tivity. This indicates that the physical cleaning ac t i o n  of 
the filler is operative only at hi g h e r  water conductivities. 

Furthermore, ATH filled EPDM samples had much higher times 

to failure than all others materials evaluated. This s u g 

gests that the physical cleaning action of the filler is 

more effective than volume effects in imparting tracking or 

erosion resistance to the EPDM material in high conductivity 

f o g .

The measured surface temperature and the TGA plots s u g 

gest that the dry band arcing associated with the larger 

leakage current (typically 75 to 100 mA peak) during the 

high conductivity test is capable of raising the local s u r 

face temperature above 250 °C which is sufficient for the ATH 

filler to liberate the water of h y d r a ti on  and hence remove 

the d e g radation products from the surface. Therefore, the 

EPDM materials with ATH filler show substantial erosion. 
During the low conductivity test, it is possible that the 

dry band arcing associated with the lower leakage current 

(typically 20 to 30 mA peak) raises the surface temperature 

sufficiently to cause the EPDM polymer to carbonize but not 

enough for the ATH filler to liberate the water of h y d r a 
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t i o n . Therefore, the carbonaceous products are not removed 
from the surface thereby leading to tracking failure.

For comparison to EPDM samples containing ATH filler, 

EPDM samples with hydrated silica filler (SlO^.H^O) were 

also evaluated in low and high conductivity fog. For samples 

having the same filler concentration, the time to failure, 

failure mechanism and the weight loss of the hydrated silica 

filled samples was very similar to the corresponding ATH 

filled EPDM samples. In addition, the observations made on 
the ATH filled samples on the mechanisms by which the filler 
imparts tracking and erosion resistance to the material in 

low and high conductivity fog were found to be valid for the 

hydrated silica filled EPDM samples also. This clearly 

indicates the dominant role played by the water of hydration 

of the filler in imparting tracking and erosion resistance 

to the EPDM material.
The superior performance of the silicone rubber samples 

in the low conductivity test is due to the very low leakage 

current (Figs. 3.16 and 3.18) which ensures that the local 

surface temperature is below that which initiates polymer 

degrada t i o n .
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5.3 Surface Studies by Energy Dispersive X-ray Analysis 

(EDAX)

The concentration and dispersion of filler (volume effects) 

are thought to play a significant role in the tracking and 

erosion resistance of materials [21]. At high filler concen

tration, fewer organic molecules are exposed at the surface 

to the heat of arcing. Also high concentration of filler 

improves the thermal conductivity of materials which in turn 

improves the heat dissipation and helps prevent local hot 

spots from developing.

To study filler volume effects, the surface of samples 

before and after salt fog tests were studied in a SEMCO M o d 

el Nanolab 7 Scanning Electron Micros c o p e  (SEM) equipped 
with an energy dispersive X-ray attachment (EDAX)*.

5.3.1 Principle of E D A X

When a beam of high energy electrons is incident on a 

material, characteristic X-ray radiation is produced by the 

interaction of the incident electrons of the atoms in the 

sample. Occasionally the beam may dislodge K, L or M inner 

shell electrons and leave the atom in an excited or ionized 

state. The atom returns to its ground state by the tran

sition of an outer electron into the vacancy in the inner 
shell. When the relaxation of the atom back to its original 

state occurs, the atom loses energy in the process by the 

emission of a photon of X-ray radiation. The electrons of

* EDAX work carried out at the Department of Engineering 
Materials, University of Windsor.
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the atom are in discrete energy levels described by the 
quantum numbers of the atom. Since the electrons are in d i s 

crete energy levels, the emitted X-ray photon will also have 
a discrete energy equal to the energy difference between the 
initial and final states of the atom. Therefore, the wave - 

lengths and energy of the characteristic radiation are spe

cific for atoms of an atomic number. Detection of the p r e s 

ence of a characteristic X-ray line indicates that the 

element is present in the sample. These characteristic e n e r 

gies are used to obtain the composition of a sample of 

interest [39]. The spectrum obtained is a plot of the count 

rate of X-rays as a function of energy. The count rate gives 
an indication of the quantity of a particular element pres

ent in a material.

This technique is useful for the detection of elements

with atomic number above 10 [40] and therefore it is useful

for detecting A1 in ATH and Si in SiO^* In silicone rubber 

samples, X-rays are emitted from A1 in the ATH filler and 
from Si in the polymer chain. A deficiency of filler is 

indicated by a decrease in the A1 count rate and an increase 

in the Si count rate. In EPDM and epoxy samples the X-rays 

are of course emitted from the filler particles alone.

The specimens for the SEM studies were prepared by cu t 

ting 10X10X5 mm thick sections from the samples which were 

coated with 200 to 300 A° of spectroscopic grade carbon. At 

the accelerating voltage of 30 kV used in the study, the
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depth of electron penet r a t i o n  is typically less than 2 pm
[40]. X-rays were counted for one minute at 15 locations on 

the surface of the specimens for an indication of the filler 

di s t r i b u t i o n .

5.3.2 D i s t r ibution of Filler in Samples

From each sample of material and filler concentration, three 

to four specimens were prepared from the surface and from

the bulk of the samples for SEM studies of the filler d i s 

tribution. Fig. 5.4 shows the unifor m i t y  of ATH filler p a r 

ticles in silicone rubber samples SE and SA. Similar results 

have been obtained for EPDM samples. In general, improved 

u nifor m i t y  of filler was obtained with increased c o n c e n t r a 

tion of filler. In samples having a low concentration of 

filler (SA in Fig. 5.4), the disper s i o n  was as high as 100%. 
Despite the high ATH levels in the epoxy samples, a non- 

uniform filler di s p e r s i o n  as shown in Fig. 5.5 was observed.

In molds where the material flows together to form a

joint, non-u n i f o r m  d i s p e r s i o n  of filler has been found. An 

example of this is shown for silicone rubber sample SD in 

Fig. 5.6.
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5.3.3 Distribution of Filler in Failed Samples 

Specimens were prepared from samples which failed by either 

tracking or erosion in the high (1600 pS/cm) conductivity 

test. Examples of the non-uniform distribution of filler 

along eroded and tracked sections of the samples are shown 

for epoxy, silicone rubber and EPDM in Figs. 5.5, 5.6 and

5.7 respectively. It is evident that in these specimens the 

filler distribution is highly non-uniform.
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It is postulated that a non-uniform distribution of fill

er particles in materials leads to the formation of dry 

bands across areas devoid of filler. The reason for this can 

be attributed to the hygroscopic nature of the fillers. As 

a result, dry band arcing initiates tracking and erosion in 

these regions which are rendered less resistant to arcing
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due to a deficiency of filler. The superior performance of 
sample EO with no ATH or silica filler in high conductivity 

fog (1000 and 1600 pS/cm) can be explained by the fact that 

no inhomogeneities are created on the surface. Therefore, 

there are no preferential locations on the surface for dry 

band arcing to occur. The reduced magnitudes of the c u m u la 

tive charge and the amplitude of the leakage current pulses 

suggest that the dry bands are wider and also that the temp

erature of the surface due to arcing is lower when compared 

to the filled samples.
In samples which failed the low conductivity test, it was 

observed that the filler dispersion where tracking had i n i 

tiated was very similar to areas not affected by tracking 

and there were no indications of a highly non-uniform filler 

dispersion. This indicated that the tracking failure of 

these materials in low conductivity fog could not be a t t r i b 
uted to filler dispersion. The mec h a n i s m  of failure in low 

conductivity fog has been outlined in Section 5.2.4.

5 . 4 Mate r i a l  Surface Study

5.4.1 Introduction

Polymeric materials, being low surface energy materials, do 
not allow a continuous water film to be formed on a virgin

surface. This is because the advancing contact angle of
owater droplets on such surfaces is greater than 90 which 

causes them to bead up [41]. The transition to a hydrophil-
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lie surface, which occurs during dry band arcing, could be 

due to increased exposure of h yg r o s c o p i c  filler particles at 

the surface and/or surface changes favorable for wetting* 

The former was discounted based on the fact that the 
unfilled EPDM sample EO was also found to wet readily after 

exposure to electric stress and fog. To understand the tran
sition from a h y drophobic to a h y d r ophillic surface, it is 

therefore necessary to follow the changes in surface c o m p o 

sition before and after being subjected to corona which 

causes the transition.

It has been postulated that the h y d r o phobic!ty exhibited 

in silicone rubber insulation in the field despite the a c c u 

mula t i o n  of surface contamination, could be due to the d i f 
fusion of silicone oil (which is used in manufacture) to the 

surface [42], In addition, there may be a number of low 

molecular weight polymer chains in the material which are 

highly mobile due to their relatively low surface tension

[41], These mobile species could also diffuse to form a thin 

silicone layer on the surface thereby causing water to bead 
up .

In order to study the diffusion process and the surface 
transition from a hydro p h o b i c  to a h y d r o phillic surface d u r 

ing dry band arcing, the material surface was analyzed by 

Electron Spectroscopy for Chemical Analysis (ESCA) [43]. The 

reasons for choosing this technique were:
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1. Only the top few monolayers (10 to 50 A° [43]) of the 
surface Is analyzed. Thus, there is a greater chance 

of detecting changes in the surface composition caused 
by the diffusion of mobile species from the bulk to 

the surface.

2. An X-ray beam is used for analysis instead of an elec

tron beam which is used in several other methods [40]. 

Therefore, insulating materials can be analyzed as is, 

without a conducting coating which is required to di s 
sipate charges which are generated on the surface of a 
sample when subjected to an electron beam. This is an 

advantage when the surface has to be analyzed after 

treatment with corona with the least elapsed time.

3. The time of analysis is fairly fast (about 30 minutes 

required for a broad elemental scan).

5.4.2 Principle of ESCA
Surface analysis by ESCA or X-ray Photoelectron Spectroscopy 
(XPS) is accomplished by irradiating a sample with monoener- 

getic soft X-rays and analyzing the emitted electrons on the 

basis of their energy. Mg Ka (1253.6 eV) or A1 K& (1486.6 

eV) X-rays are normally used. These photons have limited 

penetrating power in a solid, of the order of 1-10 jam. They 

interact with atoms in this region by photoelectric effect, 
causing electrons to be emitted. The emitted electrons have 

kinetic energies given by: KE=*hv - BE - >̂; where hv is the
energy of the photon, BE is the binding energy of the atomic
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orbital from which the electron originates, and (j) is the 

spectrometer work function.

The probability of electrons interacting with the sample 

is far greater than that for photons. Therefore, the path 

length of the photons is of the order of micrometers and 
that of the electrons is of the order of tens of Angstroms. 
Thus, while ionization occurs to a depth of a few m i c r o m e 
ters, only those electrons that originate within tens of 

Angstroms below the solid surface can leave the surface

without energy loss. It is these electrons which produce

the peak in the spectra and are most useful.

The electrons leaving the sample are detected by an a n a 
lyzer accprding to their kinetic energy. The analyzer n o r 

mally is operated as an energy "window", accepting only 

those electrons having an energy within the range of this
fixed window, referred to as pass energy. The spectrum 

obtained is a plot of the number of emitted electrons per 

energy interval versus their kinetic energy. Each element

has a unique elemental spectrum and the spectral peaks from 

a mixture are approximately the sum of the individual co n 

stituents [43]. In this technique, the surface composition 
of all elements, except hydrogen and helium, can be
obtained. A typical ESCA spectrum of a silicone rubber

material is shown in Fig. 5.8.

The ESCA instrument used in the present study was a Su r 

face Science Laboratory SSX-100 instrument equipped with a
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hemispherical analyzer and monochromatized A1 Ka X-ray 

source. The specimens for this study were typically 3X3X2 mm 

thick and were cleaned with methanol to remove any mold 

release a g e n t .
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5.4.3 Results Using E S C A ^

In order to demonstrate the diffusion process, the virgin 

surfaces of the silicone rubber samples were analyzed and 

then coated (by evaporation) with a layer of carbon (about 1 

pm thick). The coated samples were then analyzed after some 

elapsed time.

The samples evaluated were viny1-dimethy 1 silicone rubber 

with the vinyl content less than 1%. Therefore, in a predom
inantly dimethyl silicone rubber material, the expected s u r 

face composition would be 0 =» 25%, Si “ 25% and C =* 50%. 

The results of the surface analysis are in Table 5.1. It can 

be seen that the composition of the virgin specimen closely 

corresponds to that expected. The absence of A1 on the v i r 

gin surface indicates that the ATH filler does not occupy 
the top 50 A0 of the surface. With time, the composition of 

the coated surface approaches that of the virgin surface 

which is a clear d e m onstration of diffusion.

As oils are used in the processing of EPDM samples, d i f 

fusion is to be expected in these materials also. But the 

rate of diffusion could be different from that in silicone 
rubber due to the difference in the mobilities of the poly
mer chains in the two materials [41]. To demonstrate this, 

the silicone rubber and EPDM samples which had accumulated 

scale deposits during the low conductivity test were ana-

 ̂ ESCA work carried out at Surface Science Western, U n i v e r 
sity of Western Ontario, London, Ontario.
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Table 5 . 1 : Surface Analysis of Silicone Rubber and EPDM
S a m p l e s .

MATERIAL

COATINC
MATERIAL

AND

SURFACE COMPOSITION (%)
TIME

LAPSED
AFTER

COATING
(HOURS)THICKNESS 0 Si C Ca Mg

NONE
(V IR G IN )

26.60 21.10 52.30 0 0 —

SILICONE
RUBBER
(S120A)

CARBON  
=  1 /im

12.63
13.24
14.76
16.29
25.00

10.26
13.34
13.94
16.90
20.49

77.11
73.42
71.30
66.81
54.51

0
0
0
0
0

0
0
0
0
0

1
12
18
24
50

WATER 
SCALES 

= 0 . 335mm
30.90 13.52 o • o 2 .32 13.16 200

EPDM
(E120A)

WATER 
SCALES 

= 0 .26 mm
41.52 2.11 30.22 4.53 21.61 200
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kness of the scale on 

The results of the 
higher concentration 

ompared to the s i l i- 
early demonstrate that 

scale deposit as well, 

transition during dry 

urface were analyzed, 

s in air for about 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



120

minutes from a portable high frequency generator. After cor
ona treatment, the surface was found to promote a continuous 

water film. The surface was analyzed immediately and after 

about 24 hours at which stage the surface had recovered its 

h y d r o p h o b i c i t y . The results of the analysis shown in Table

5.2 indicate that the corona treatment is responsible for a 

large increase in oxygen concentration and a corresponding 

decrease in carbon concentration. This could be due to the 

deposition of hydroxyl (OH) groups from the atmosphere which 

favours the wetting of the surface.

Table 5 . 2 : Effect of Corona and Recovery on Surface C o m p o 
sition of Silicone Rubber.

MATERIAL SURFACE
CONDITION

SURFACE 
COMPOSITION (%)

0 Si C

VIRGIN 26.6 21.1 52.3
SILICONE
RUBBER

S120A
CORONA

TREATED 45.3 24.0 30.7

24 HOURS 
AFTER 

CORONA
30.97 21.14 47.89

The recovery of hydrophobicity in uncontaminated silicone 

rubber materials after exposure to corona has been a t t r i b u t 

ed to the reorientation of hydrophillic groups away from the 

surface and/or migration of low molecular weight polymer 

chains to the surface [44]. The data obtained in the present 

study demonstrates that the m i g ration of low molecular
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weight chains to the surface is the more dominant mechanism 
responsible for the recovery of h y d r o p h o b i c i t y .

5.5 S umma ry

The dominant mechanisms by which the filler imparts tracking 

and erosion resistance to the polymer is governed by e x p er i
mental conditions. While the volume effects of the filler is 
effective in imparting tracking and erosion resistance under 

all conditions, the physical cleaning action of the hydrated 
filler is effective only in high conductivity fog tests. The 

chemical mechanism of the hydrated filler cannot be s u bstan

tiated under dry band arcing conditions.
Studies of filler dispersion by EDAX demonstrate that a 

highly non-uniform filler distribution is responsible for 

initiating tracking or erosion in high conductivity fog.
Surface study by ESCA demonstrate that the migration of 

silicone oil and/or low molecular weight polymer chains 

through the contamination to the surface is responsible for 

the prolonged hydrophobicity in silicone rubber material.
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C h a p t e r  V I

THEORETICAL M O D E L  TO PREDICT THE PERFORMANCE OF
POLYMERIC MAT E R I A L S  DURING DRY BAND ARCING

6 . I Introduction

When a rod specimen of an insulating material is subjected 

to dry band arcing, the subsequent heating of the material

a heat flux Q (due to dry band arcing), the transient heat

Initially, T**0 at t=*0 and one boundary condition is T — >■ 0 

as z — .

If the heat flux (Q) is incident (i.e., z=*0) on the c i r 

cular area and zero elsewhere (this assumption is valid 

because the temperature drops rapidly outside the region of 
interest [46]), the second boundary condition is:

is due to heat transfer by conduction. If a circular area

of radius R on the surface is heated uniformly by

conduction equation in the cartesian coordinates x, y, z

system is given by [45]: 

‘ a2T 92T 0T
a

. 9x2 9y2 9t

where T=temperature of the material above ambient, °C

t=time duration of dry band arcing in a particular

+ (1 )

location, s

^ “ thermal diffusivity of the material, cm /s.

122
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HT -
K9T Q for r i R and t > O
5z o for r > R and t > O

2 o„where H a surface heat: transfer coefficient, W/cm' 

and K=thermal cond u c t i v i t y  of the material, W/cm °C.

The parameter H in the present problem accounts for the 

surface cooling by convection due to the presence of water 
and pressurized air in the fog chamber.

Equation (1) with the above boundary conditions has been 

solved [45] to yield the transient temperature of the c i r c u 
lar area. In its final form:

-h2R2/4w2,| ?T = Tnc - - 1-e wew erfc(w)dw

and T nc

2Q (w 
H Jo

temperature without surface cooling

(2 >

QR ‘ 2 ’at I/2 -h2R2/4at R
(1-e )+erfc ----

K . y/ r R 2 . 2>/5E .

where w  = h \/aE, h»H/K, erfc( B) = l-erf ( Bj^complimentary error

function and erf(S)' 
t i o n .

B -B‘dB “Gaussian error func-

Both erf(0) and e r f c ( 6) are tabulated function and their 

numerical equivalents are available [46].

6 .2 Effect of ATH or Silica Fillers on the Thermal 

Conductivity and D l f f u s l v l t y  of M a t e r i a l s

Table 6.1 shows the various physical constants for A.TH 
and silica fillers, silicone and EPDM rubbers. The filled 

rubber samples are composite materials in which a volume
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fraction Xi is composed of rubber and the remaining (1-x^ = 

X2 ) is composed of filler. Assuming a uniform filler disper

sion (which has been validated by EDAX for concentrations 
above 50% by weight, K, the effective thermal conductivity 
is calculated analogous to calculating electrical resistanc

es in series [47] and is given by:

K iK2
K = ------------

K]X2 + K2X!

Table 6.1: Physical Constants of Materials Evaluated.

M A TER IA L
THERMAL , 

C O N D U C T IV I T Y 1
W/cra °C

THERMAL , 
D IF F U S I V IT Y 1 

cm2 Is
D ENSITY

g /c m 3

SIL ICONE
RUBBER

EPDM

ATH

SIL IC A

19 X 1 0 '“

19 X 1 0 '“ 

2135 X H f 1* 

150 X 10"*

15 X 1 0 '“

15 X 10"“ 

675 X 10"“ 

80 X 10"“

1.07»l2

0 .992 

2 . 423 

2 . 653

1. FROM REFERENCE T4 71
2. FROM VOLUME AND WEIGHT MEASUREMENTS
3. FROM SUPPLIERS

where and K 2 are the thermal conductivities of rubber 

and filler respectively. Since the exact quantity by weight 
of filler is known, xi and X2 can be calculated for rubber 

samples for different filler concentrations.

The effective thermal diffusivity, a , of the filled rub

ber samples is calculated on the basis that the energy 

required to raise a mass of composite material by AT is
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equal to the sum of the energies required to raise the i nd i 
vidual components of the composite mass through the same 
temperature difference [49],

If p i and p 2 are the densities of polymer and filler, 

respectively, C p  ̂ and Cp^ are the specific heat capacities 

of polymer and filler respectively, it can be shown that the 
effective thermal diffusivity,

K
a = ---------------------

/’lXlCpi + P2*2Cp2

Fig. 6.1 shows the v ar ia t i o n  of K and a of the rubber 

samples as a function of filler concentration.

uu X 10-U

Figure 6.1

© K ( A T H ) ;  ® “ (ATH) 

@ K(Si02) '  ® a (SI02)

2 1 X 1 0

19

-u

18

Eu
17(3

16

1580 120 160 
FILLER LEVEL (pph)

200 250

Effective Thermal Con d u c t i v i t y  and Diffusivity 
of ATH and Silica Filled Rub b e r  Samples.
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6.3 Heat Flux Q due to Dry Band Arcing

In order to determine the surface temperature during dry 

band arcing, the heat flux Q needs to be known accurately. 

The method used by Wilkins [28] to calculate Q is as fol
lows :

The thermal d e c omposition temperature and the time to 
cause thermal breakdown was determined experimentally for 

various polymeric materials. Knowledge of the thermal c o n 

ductivity and diffusivity and the time to thermal breakdown 

enables the calculation of surface temperature using e q u a 

tion (2). According to this approach, for a 6.4mm spacing 

between electrodes on a material, the calculated heat flux 

does not exceed 10 W/cm . For the limiting case without 
cooling, the surface temperature can be shown to be less 

than 200°C, which is insufficient to cause degradation of 
materials like silicone rubber and EPDM. In the present 

study, tracking and erosion of these materials have occured 

on samples subjected to cooling from fog, under experimental 

conditions which gives the same order of leakage current as 

that used by Wilkins for calculation of heat flux. This 

implies that the surface temperature is much higher than 
that predicted by Wilkins' model. Therefore, this n e c e s s i 
tates a different approach for the calculation of heat flux.

The heat flux, in the present study, is calculated from 

the electric stress-current characteristics of the dry band 

discharge. The electric stress E is related to the current i 

as f o H o w s  [ 50 ] :
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E = 530i“0*24 V/cm for i £ 15 mA 
= 63i“0*76 V/cm for i > 15 mA.

If d is the diameter of the arc root (cm), the power
input per unit area P is given by the product of the elec

tric stress and surface current density (i/d). Thus,
Ei 

P = —  W/cm2. 
d

Oscillographic monitoring of samples during ac tests of 

dry band arcing showed that the conduction period varied in 

the range from 2 to 6ms in each half cycle of the 60 Hz 

wave. A separate experiment utilizing a timing circuit 

(details in Appendix), was carried out to determine the d i s 
tribution of the conduction period of dry band s c i n t i l l a 

tions. The results in Table 6.2 show that 90% or more of the 

dry band scintillations had a conduction period between 2 to 

3ms on each half cycle. Therefore for a typical average 

duration of 2.5ms, the heat flux Q or the average power d i s 

sipated per unit area is given by:

where F»time period of the 60 Hz wave and f**2.5ms.

An examination of the samples which had failed by track

ing or erosion showed that the minimum width of the tracked 

or eroded portion was about 3mm. High speed photographs of 
the arc root on aqueous electrodes [51] has yielded an arc 

diameter in the range 2 to 7mm. Visual observations of dry

P
Q =  ------ Pdf = (3)

F O 3.6d
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band arcing indicated that the arcs were definitely not in 

the forms of filamentary streaks but were rather diffused 

[52]. An average value of d=4.5mm was taken for the calcula
tion of Q.

Table 6 . 2 : Distribution of the Conduction Period of Dry
Band Discharges.

SAMPLE

WATER 
C OND U C TIV ITY  

( fiS/cm)

LEAKAGE CURRENT PULSES

CONDUCTION  
PERIOD (ms)

PERCENT OF TOTAL  
PER HOUR (%)

> 6 0
> 4 2.4

S200A 1000 > 3 5.4
> 2 91

> 6 0.3
E120A 250 > 4 4

(WITH SCALE) > 3 10
> 2 92

6.4 Surface Heat Transfer Coefficient
The resulting surface temperature of the sample during dry 

band arcing is dependent on the value of the surface heat 

transfer coefficient H, which takes into account the cooling 

provided by the presence of water and pressurized air in the 
fog chamber. Literature [48] provides the range of H for 

different modes of cooling, but as the magnitude of H varies 
over a wide range, the calculated temperature also varies 

over a wide range. Hence, it is desirable to determine the 

appropriate value of H for the experimental set-up in use.
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The rate of heat transfer q by convection between a sur
face and a fluid is given by [48]:

q-HA(T -T )2 1
Thus H ™ q /A (T^ —T ̂ )

where T -T is the difference between the surface temper- 2 1
ature and the surrounding fluid, °C, and A is the heat
transfer area, cm^ .

To determine the heat transfer coefficient for the fog 

chamber, a 2.54cm diameter steel rod, 28cm in length, with 

an electric heater (1cm diameter) in the center of the rod 

was placed in the same location as the rubber samples. Four 

thermocouples (copper constantan) were soldered on to the
rod at different locations. The water and air supply were 
turned on and after 30 minutes, the steady state temperature 

was measured with a thermometer. The power input q to the 

heater was measured with a wattmeter. The heater supply was 

then switched on and after one hour the steady state temper

ature difference (T -T ) was measured. The value of H was2 1
found to vary in the range 0 .0 2  to 0 .0 3  W/cm^ c for different

locations of the rod corresponding to the various positions
2 °of the samples. An average value for H of 0 .0 2 5 W/cm C was 

used for the model.
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6 .5 Duration of Dry Band Arcing
On a sample subjected to electric stress and fog, the mass

rate of water which remains on the sample dm/dt (g/s) is the
difference of the mass rate being sprayed rag (g/s) and the

mass rate evaporated m g (g/s) due to dry band arcing*

i.e., d m /dt“m -m (4)s e
The mass rate of water evaporated can be calculated from

mh =Vit; where h is the latent heat of vaporization of

water (J / g ).
Therefore m/t =*vi/h =m
Integrating equation (4),

(m - v i / h )t=m - m . (5)s £ l
where m^=final mass of water before the dry band changes 

location and m^ is the initial mass of water.

For a dry band to move to another location on the sur

face, the arc roots must dry up, i.e., m^=*0.
Therefore equation (5) can be written as 

(vi/h-ms)sa'cAP (6)
where T =initial thickness of the water film (cm),

A=surface area of the sample (cm ) and p mdensity of water

(g/cm3 ).

Dividing equation (6) by A

(vi/Ah -m /A)t“ t/7 (7)s
vi/A=*Q; m /A is the rate of water spray per unit area of s

the sample and is dependent on the type of fog generated.

Based on earlier work [53], values of m_/A ranging from 0.8s
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to 3 m g /cm2.min w e r e used and found to have little effect on 
the value of t .

The thickness of the water film t was calculated by the 

difference in the weight of dry and wet samples which had 

accumulated different amounts of scale during ac and dc 
study.

The duration of dry band arcing, t, was calculated using 

equation (7) for various values of leakage current obtained 

during the low and high conductivity tests and for water 

films of varying thickness. The results are shown in Fig. 

6 .2 .

M
Zo
h“<
OC=3
a  
a 
z<
CQ
isosa

3.0

2.5

0.02 cm2.0

0.015cm1.5

0.01 cm.0

= 0 . 005cm
0.5

(VIRGIN SAMPLE)

0
5025 750 100 150125

LEAKAGE CURRENT (mA)
Figure 6 . 2 : Time of Arcing as a F u n c t i o n  of Water Film

Thi cknes s .
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6 .6 Surface Temperature During Dry Band Arcing 

The hot spot temperature T given by equation 2 was evaluated 

by Simpson's rule [54] for various values of Q (as d e t er 
mined from equation 3) and t (obtained from Fig. 6.2) c o rre
sponding to the time of arcing in a particular spot on sur

faces having different thickness of water film. Fig. 6.3 

shows the typical variation of the hot spot temperature T 

with time t for various values of leakage current obtained 

during the low and high conductivity tests with ac. The 

values of the effective thermal conductivity K and d i f f u s iv 
ity for the calculation was obtained from Fig. 6.1.

In order to correlate the model predictions with the 

experimental observations, Fig. 6.3 has been divided into 

zones: (1) 0 to 175 °C, (2) 175 to 250°C and (3) above 2 50 °C.

These divisions are based on TGA results of EPDM and sili

cone rubber samples (Figs. 5.1 and 5.2).
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300

15 mA

250

Uo 200
LU 
q:
H 150 < 
a : iu CL

10 mA

5 m A
S TOO
H

651 42 30

Figure 6 .3 :
D R Y  B A N D  D U R A T I O N  (S)

Hot Spot T e m p e ra tu re  as a Function of Time and 
Leakage Current for Rubber Samples With 120 pph 
of Inorganic Filler.

6 »7 C o rrelation of M o d e l  Predictions With Experimental 

F indi ng s

The following points show the c o r r e l a t i o n  between e x p e r i m e n - 
tal findings and model predictions:

!• The model predicts that under conditions where the 

peak leakage current is less than 15mA, d e g radation of 
samples with little (T<0.01cm) or no scale will be 

slow as the surface hot spot temperature is below 175
oC, the thermal stability limit of silicone rubber and
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EPDM materials. Table 6.3 shows the results of

material e v a l uation at various electric stress in low

conductivity fog. It can be seen that at low electric 

stress when the peak leakage current was less than 
15mA, no failure occured in 500 hours. Failures

occured at higher electric stress when the typical
peak leakage current exceeded 15 to 20mA.

Table 6 . 3 : Time to Failure and Leakage Current as a F u n c 
tion of Electric Stress in Low Conductivity Fog.

SAMPLE
AVERAGE  

STRESS 
V /mm

ac -dc

HOURS TO  
FAILURE

PEAK
CURRENT

(mA)

HOURS TO  
FAILURE

PEAK
CURRENT

(mA)

28 NF 8 - 1 0 NF 12 -  15
E130A 40 NF 10 -  15 142 25 -  35

60 368 20 -  30 69 40 -  50

28 NF 5 - 8 NF 10 -  15
E130S 40 NF 5 - 1 0 126 25 -  35

60 330 10 -  15 75 40 -  50

28 NF 3 - 5 NF 8 - 1 5
S130A 40 NF 5 - 8 NF 10 -  20

60 NF 10 -  15 185 20 -  40

N F: NO FA IL U R E

The practical s ig n i f i c a n c e  of this data is that as 

long as the leakage current is supressed below the 

threshold value, satisfactory performance can be 

expected. Therefore a material with good leakage c u r 

rent supression capability can be operated at a r e l a
tively higher electric stress, whereas materials with
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poor leakage current supression capability has to be 
operated at a much lower electric stress. This has 

also been discussed in Chapter 4 with regard to i n s u 
lators (Table 4.5).

2. In high c o n d u ctivity fog where the peak leakage c u r 

rent is typically 75 to 125mA, local surface hot spots 
exceed 250°C even if dry bands persist in one location 

for a relatively short duration (less than Is) as 

shown in Fig. 6.3. Therefore ATH filled EPDM samples 

can be expected to erode and have much longer times to 

failure than silica filled EPDM samples. The results 

shown in Fig. 3.1 and Tables 3.4 and 4.1 indicate that 

this is indeed the case.

3. As the effective thermal conductivity and diffusivity

of ATH and silica filled samples are very similar 

(Fig. 6.1), in low con d u c t i v i t y  fog where the local 

surface temperature due to the low leakage current (20 

to 30 mA peak) is insufficient to liberate the water 

of hy d r a t i o n  from the ATH filler, similar times to 

failure can be expected for samples with the same 

filler concentration. This is indeed true as i l l u s 

trated by the results in Tables 3.4, 4.1 and 6.2.

4. As the a cc um ul at io n  of surface deposits is more rapid

with -dc, the critical thickness of surface deposit 
required to cause dry band arcs to stay rooted to a 

particular spot to cause material degradation, is
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built up in a much shorter time than with ac or +dc . 

Therefore, the time to failure can be expected to be 

much lower in -dc which is in agreement with the 

results shown in Tables 4.1 and 6.3.

5. Local surface temperature measurements during dry band

arcing in low and high conductivity tests using temp

erature sensitive paints are in good agreement with 

that predicted by the model.
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Chapter VII 

CONCLUSIONS

1. The experimental conditions used in the fog chamber 

tests have a significant effect on the performance of 
silicone and EPDM rubbers. In low (250 pS/cm) c o nd uc 

tivity fog, silicone rubber performed better than the 

EPDM material whereas in high (^1000 pS/cm) c o n du ct iv 

ity fog, the order of performance was reversed. The 
epoxy resin exhibited an inferior performance when 

compared to the elastomers.

The ranking of materials obtained in low con d u c t i v 

ity fog is consistent with that obtained in service. 

The superior performance of silicone rubber is due to 

the higher resistance offered by the material to the 

development of surface leakage current leading to r a p 

id dry band activity. The development of leakage c u r 
rent is dependent on the type of polymer which is also 

consistent with service experience.

The ranking of materials in high conductivity fog 

is due to the difference by which the ATH filler 

imparts increased tracking and erosion resistance to 

silicone and EPDM rubber. The leakage current is inde
pendent of the polymer type which is in contradiction 
to what is observed in service.

- 137 -
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As a much better correlation with service experi

ence was obtained by evaluating materials in low rath

er in high conductivity fog, this work raises serious 

concerns about the ability of existing test methods to 

evaluate materials in accordance with service experi

ence.

2. The dominant mechanisms by which fillers impart track

ing and erosion resistance to the materials is also 

governed by the experimental conditions.
In low conductivity fog, the widely used fillers, 

ATH and silica, impart similar resistance to tracking 

to the EPDM material through the mechanism of volume 

effects, which refers to the improvement in the heat 

dissipating properties of the material obtained with 

increasing filler concentration. In high conductivity 
fog, ATH filler imparts a superior resistance to 

tracking and erosion to the EPDM material than does 

silica filler by virtue of the physical cleaning 

mechanism. This m e c hanism refers to the liberation of 

water as steam and the resulting sputtering physically 

removes the carbonaceous deposits formed on the s u r 
face as a result of polymer degradation.

The chemical mechanism of the hydrated filler which 

refers to the removal of carbonaceous products as g a s 

es is shown not to be operative under dry band arcing 

condi t i o n s .
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3. The filler level required for satisfactory performance
is dependent on the leakage current suppression capa

bility of the polymer. Based on the low conductivity

test, a high filler level of 200 pph is necessary for
the EPDM material, whereas for the silicone rubber

material, the filler level required is considerably
lower.

4. A study of filler dispersion in materials with the 

EDAX demonstrates that tracking and erosion could be 
initiated from areas with highly non-uniform filler 

di spersions .

5. The tracking and erosion resistance of the materials 
studied was similar for ac and +dc but was signifi
cantly reduced for -dc for samples oriented v e r t i c a l 

ly. The reduction was due to the way in which scale 

was formed with -dc, which prolongs dry band activity 

at the bottom of the sample. For samples oriented 

horizontally, there was no discernable difference in 

the performance with ac, +dc and -dc.

In order to differentiate between the leakage c u r 

rent suppression capability of materials for dc, e v a l 
uation has to be done in low conductivity fog, but at 

a much lower electric stress than for ac. This is due 

to the thicker scale formed with dc, which increases 

the leakage current which inturn promotes rapid dry 

band activity in a shorter time interval when compared 

to ac .
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6. Continuous measurement of cumulative charge, periodic 

measurement of weight loss due to dry band arcing and 

flashover voltage yield limited information about su r 
face aging and failure of polymeric materials. On the 

other hand, the number and amplitude of peak current 

pulses above a preset threshold is a better indicator 

of surface aging and subsequent failure.

7. Similar ranking of materials is obtained by evaluating

materials in the form of cylindrical rods and actual 
insulators. However, the use of cylindrical rods 

yields results in a much shorter time.

The shape of the sheds has a significant effect on 

insulator performance. Insulators with a protected 

leakage path perform better than those with an open or 

partially protected leakage paths.
8. ESCA studies demonstrate that the migration of sili”

cone oil and/or low molecular weight polymer chains to 

the surface through the contamination is responsible 

for the prolonged hydrop h o b i c i t y  exhibited by the si l 

icone rubber material.

9. The tracking and erosion resistance of the materials

studied is unaffected by moisture ingress, a weak NaOH 

solution and the h y drocarbon solvent naphtha.
10. The model developed is shown to be in good agreement

with the experimental findings. The most significant 

conclusion drawn from the model is that material deg-
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radation is a function of leakage current magnitude 
and the time duration for which dry bands are rooted 

in a particular spot. As the latter is dependent on 

the accumulation of surface contamination, which is 

inevitable in outdoor environment, it is very impor

tant that the material and insulator design chosen are 
capable of suppressing leakage current to very low 
v a l u e s .
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Chapter VIII 

R E C O M M E N D A TI ON S FOR FURTHER WORK

1. From the point of view of understanding polymer-filler

interaction, the factors responsible for the absence 

of the physical cleaning by sputtering of the ATH 

filler in most silicone rubber samples is an aspect 

which needs further investigation. As sputtering was 

observed only in the sample S200A, it appears that it 
is dependent on the entire material composition.

Knowledge of the type of base polymer, vulcanizing

agent and additives used during processing could

enable better un d e r s t a n d i n g  of the sputtering m e c h a 

nism.

2. The diffusion of mobile species in silicone rubber
material is related to the surface tension of the side 

groups in the polymer chain. It has been shown e a r l i 

er, in connec t i o n  with thin films, that by varying the

composition of the side groups the leakage current 

suppression capability and the rate of recovery of 

hy d r o p h o b i c i t y  can be enhanced [34]. It is important 

to determine w he t h e r  a similar improvement can be 

obtained in filled elastomers as it will enable the 
development of more suitable mate r i a l  compositions for 
outdoor insulation applications.

- 142 -
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A theoretical model to predict the time dependent 
diffusion process in polymeric materials could also be 

developed .

Although it has been shown that in low conductivity 

fog, silicone rubber maintains a hydrophobic surface 

for a significantly longer time than the EPDM m a t e r i 
al , the reasons for this have not been determined. 
Intuitively, it can be expected that under mild dry 

band activity associated with low leakage current, the 

rate of formation of the hydroxyl groups which is 

responsible for the surface transition, is much slower 

in silicone rubber than in EPDM. An ESCA study of 

materials which have been subjected to controlled p a r 

tial discharges, could enable in determining the rates 

of surface transition of different materials.
3. It has been observed from service experience that the

type of contamination found on polymeric insulators is 

dependent on the type of polymer. For example, it has 

been reported [56] that low surface energy materials 

like silicone rubber and Teflon tend to accumulate low 

surface energy or hydrophobic type of contaminants, 

whereas high surface energy materials like porcelain 

and glass tend to accumulate hydrophillic type of c o n 

taminants. It has also been reported [57] that for 
Insulators located in the same site, near a sea coast, 

the concentration of NaCl deposited on EPDM insulators
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is s i gnificantly greater than on on silicone rubber 

insulators. The leakage current, which is determined 

by the surface conductivity, which is inturn dependent 

on the nature of the contaminants, is therefore d i f 
ferent on different materials. As a result, insulator 

performance in the field is also dependent on the 
nature of surface contamination. For successful

appl i c a t i o n  of polymeric insulators, it is necessary 

to determine the mechan i s m s  responsible for the p r e f 

erential a c c u m u l a t i o n  of contami n a t i o n  exhibited by 

different insulating materials.
4. A test method to evaluate polymeric materials and 

insulators has to be developed. Although this work has 

shown that m a t erials have to be evaluated in low c o n 

ductivity fog, work still needs to be done before a 

suitable test procedure can be outlined. For example, 

the effect of surface treatment, parameters like water 

flow rate, air pressure and type of fog generation, 
all of which influence the wetting, on material p e r 

formance has to be determined in order to determine 

the o p timum test conditions.
5. Work still needs to be done in order to fully u n d e r 

stand the dc p e r formance of polymeric materials. 

E l e c t rolysis explains the initia t i o n  of scale from the 

cathode but does not account for the rapid a c c u m u l a 

tion of scale observed with - d c . To ensure that the
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d ifference in material performance under the two 
polarities is not related to the experimental set-up, 

it is necessary to determine the dc performance from 

different set-ups. If similar results are obtained, 

then it means that for satisfactory operation, the 

leakage distance of insulators for the two polarities 

has to be different.
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Appe n d i x  A 

DATA A C Q U I S I T I O N  SYSTEM

The hardware used for data a cq u i s i t i o n  consists of an 8 bit, 

16 channel A/D converter (Mountain Computer Inc.) located in 

slot//4 of an APPLE Clone computer (64K memory), two Quentin 

disk drives (for 5.25 inch floppy disks), an Electrohome 

video monitor and a Gemini 10-X printer.

The software, developed by M c A v o y  [58], is designed to 

continuously monitor the voltage signals proportional to the 

leakage current of the samples, and give the following 

informa t i o n :

1. the positive and negative peak current in a given

period .

2. the number of current pulses between specified current

l i m i t s .

3. the positive and negative cumulative charge in a given
time interval which is the integral of the leakage 

current over the time interval.
4. the average positive and negative leakage current in a 

given time interval which is the ratio of the c u m u l a 

tive charge to the time interval.

- 146 -
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A major portion of the software d e s c r i p t i o n  given below is 
reproduced from R e f e r e n c e  [58].

A . 1 A l g o r i t h m  for Numerical I n t e g r a t i o n

Based on the speed of computation, amount of m e m o ry  used

n u m erical i n t e g r a t i o n  was used to evaluate the cumulative  

charge. The t r a pezoidal rule was i m p l e m e n t e d  as follows:

Let the voltage signal a p plied to the A/D converter be v, 

which is related to the leakage current, 1, of the sample by 

v=ixK. K is the value of the r e s i s t a n c e  used to convert the 

current signal to the v o ltage signal. The cumulative charge 

for a given period of time, from t n to t_ is

Let N be the number of samples taken in a period c2 - t l

The 8 bit A/D co n v e r t e r  converts voltages in the range of

and the c o r r e s p o n d in g  voltages is 

x (n )=2 5.6v (n T ) + 12 8
The numbers are adjusted to e l i m i n a t e  the 128 offset.

x ( n ) = x ( n ) - 1 2 8

x ( n ) = 2 5 .6v(nT)

Since positive and negative currents are integrated s e p a 

rately, they must be added separately. In this derivation,
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only the the c a l c ul at i on  of the positive charge is shown as 

the negative charge can be ca l c u l a t e d  in a similar manner.

For the c a l c u l a t i o n  of the positive charge, x(n) is 

defined as

x ( n ) =2 5 . 6 v (n T ), for v ( n T ) > 0  

=0, for v ( n T )<0

A c c o r d i n g  to the trape z o i d a l  rule,

Q=l/K j v d t = T / K [ v ( 0 )  / 2 +v(T)+v(2T) + ...........+v(nT)/2]

i.e, Q = ( T / 2 5 . 6 K ) [x (0)/2 + x ( 1 ) + x ( 2 ) + ....... + x ( n - l ) + x ( n ) / 2 ]

Define SUM ( n )-x ( 0 )/2+x ( 1) +x (2 ) + ............. +x(n-l)+x(n)

Thus Q= ( T / 2 5 . 6 K ) ( S UM ( n ) —x ( n ) / 2 )

If SUM ( n - 1) =x ( 0 ) / 2+x ( 1) +x ( 2 ) + ................+x(n-l)

then S U M (n )- S U M (n - 1)= x (n ) 

or S U M (n )= S U M (n - 1)+ x (n )

Hence SUM(n) is obtained by s u c c e s s i v e l y  adding to it the 

present value of x(n). The a v erage current i = Q / (t 2 ~ t ^ ). A

The time interval t2 ” t l c o r r e s p o n d s  to the time between  

the data p r intouts and it may be a d j u s t e d  by the user to a 

value no less than 1 minute. The number of samples obtained 

in the time interval t2 - t i depends on the sampling f r e q u e n 

cy.

A .2 Program Design

The software package used in this work consists of three 

programs. A brief d e s c r i p t i o n  of these are outlined in this 

s e c t i o n .
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A . 2 . 1  HELLO

HELLO is a program which is automa t i c a l l y  booted when the 

computer is switched on. This program, w r i tten in Applesoft  

BASIC, provides screens to the user on the various capabili- 
ties of the software.

A .2 .2 SAMPLE

SAMPLE, a program also w r i tten in Applesoft BASIC, i n i t i a l 

izes the variables to be used in the signal processing p r o 

gram, SAMPLE.CODE. Before running the signal processing

program, SAMPLE prompts the user to enter the pertinent 

information. First, the user must enter the date and time of 
the experiment. SAMPLE then creates a file using the date 

and time of the experiment entered for identification.

SAMPLE then prompts the user to enter the number of i ns u 

lating samples used in the experiment and to identify the 

samples. It is also required to enter the time between data 

printouts, the desired sampling frequency, the value of the 

resistor used and the current limits in which the count of 

pulses is required.

SAMPLE then prompts the user to prepare the printer 
before calling SAMPLE.CODE. Once the system begins to m o n i 

tor the signals, the user can stop the signal processing by 

pressing C T R L - S . The user can switch to a different resistor 

and continue the sampling or terminate the program. The flow 

chart of SAMPLE is shown in Fig. A.I.
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START

STATUS »

NO

YES

NO

^SWITCH TCT\ 
SECOND SET OF 
\RESISTORS^"

RUN HELLO

CALL SAMPLE.COOE

SAVE OATA TO 
OISK AND DUMP 

PATE ON PRINTER

ENTER TIME BETWEEN 
OATA QUMP, SAMPLING 
FREQUENCY, VALUE OF 

RESISTOR AND 
PULSE BOUNOARIES

ENTER THE DATE AND 
TIME OF THE EXPERIMENT

ENTER NO. OF CHANNELS

ENTER INFORMATION ON 
INSULATOR SPECIMENS

Figure A . 1 : Flow Chart of Program SAMPLE.

A . 2 .3 SAMPLE.CODE
This program perf o rms th e a ctual real time signal proc es sing
and 1 s written i n 6502 mach ine la ngua ge. The prog ram de ter-
mines the peak and a ve rage leaka ge c urren t , the cumu la tive
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charge and the number of current pulses between preset cur
rent limits within a specified time interval. At the end of 

each interval, SAMPLE.CODE returns control to SAMPLE so that 

the data can be stored on disk and also printed out. SAMPLE 

then reinitializes the variables and calls SAMPLE.CODE to 

continue sampling. The flow chart of SAMPLE.CODE is shown 
in F i g . A .2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 5 2

NO HAS CTRL-S 
EEN PRESSE

NO YES

N O '

YES

.COUNT

START

STORE 0 
-TN STATUS

RETURN TO 
SAMPLE

DECREMENT
COUNTER

PULSE COUNTING

INITIALIZE
VARIABLES

RETURN TO 
SAMPLE

+ PULSE COUNTING

STORE I 
IN STATUS

SEARCH FOR 
PEAK CURRENT

READ THE 
A/D CONVERTER

SEARCH FOR 
+ PEAK CURRENT

SUM [n]

Figure A . 2 : Flow Chart of Program SAMPLE.CODE.
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Appendix B 

TIMING CIRCUIT

Fig. B.l shows the schematic of the timing circuit used to 

determine the d i s t r i bu ti on  of the conduction period of dry 

band discharges which functions as follows:

A voltage signal proportional to the input ac supply is 

fed to a zero crossing detector (ZCD). The falling edges of 

the output of the ZCD triggers a monostable m u l tivibrator M. 

Another voltage signal p r o p o r t i o n a l  to the leakage current

of the sample is fed to a comparator C. The output of C and
M are in phase opposition. By varying the timing elements of 

M, its output w a v e f o r m  can be extended so that a part of it 

is in phase with the output of C. These two outputs are AND 

gated. Since the amount of pulse e x tension is known, the 

counter N^gives the number of current pulses having a width 

greater than a partic u l a r  value. Another counter ^ g i v e s  the 

total number of current pulses in a particular time i n t e r 

val. The ratio N ^ / N^ for different settings of the timing

elements of M gives the d i s t r i b u t i o n  of the conduction p e r i 
od of the dry band discharges.
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Figure B . 1 : Schematic of the Timing Circuit.. ZCD. LM311
comparator configured as a zero crossing d e t e c 
tor; C. LM311 comparator; M. 555 timer c o n f i g 
ured as a mo n o s t a b l e  multivibrator; A. 7408 AND 
gate; N^ and N2 • H e w le tt - Packard 5326-B c o u n t 
ers .
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