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ABSTRACT

A structural synthesis capability to minimize the cost of
bonded pretensioned prestressed concrete beams of various
kinds, subjected to different loading conditions including
all the live loading possibilities which may act is developed.
The analysis is based on the Canadian Prestressed Concrete In-
stitute code using the working load prindipal. The synthesis
approach uses the penalty function method of Fiacco and McCor-
mick which converts the constrained minimization problem to a
sequence of unconstrained minimization problems, and enables
the use of the Fletcher and Powell unconstrained minimization
method, The design variables are the independent cross section-
al dimensions, the prestressing stress, the area of prestress-
ing steel in each row and their distances from the bottom fiber
of the beam. Numerical results are presented which demonstrate
the capability of the method and some properties of the design

space,

ii
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SYMBOLS

Ac - The net cross sectional area of concréte.

Ae -~ The transformed cross sectional area of concrete.
Ag - The gross cross sectional area,

Ag - The total area of prestress steel

th
The area of prestress steel in the i~ row, i = 1,

As(i)
2,¢0¢,m where m = number of rows .

b -~ The number of behaviour constraints

Bf - The bottom flange width.

B, - The web thickness,

Cc - The cost of unit volume of concrete including cost
of placing and transportation.

Cr - The forming costs of the vertical, horizontal and
sloping patts of the perimeter per unit area;
respectively (r = 1,2,3)

Ce8eSe -~ The center of gravity of the prestress steel

c(V) - The objective function (the cost function)

d -~ The number of live loading conditions.

Defa - The allowable deflection value of the beam.

iv
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(x)
Def
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S

£
cy

(i)
p(bed)

*p(bed)

The

maximum deflection of the beam for the x££

critical loading combination, x = 1,2,...5

The

th
distance between the i—~ steel row and the

center of gravity of the transformed section.

The
The
The
The
The
The

The

modulus of elasticity of concrete.

modulﬁs of elasticity of steel.

allowable tensile stress of concrete,
allowable compressive stress of concrete.
normal stress of concrete at bottom fiber.

normal stress of concrete at top fiber,

: th™
stress of concrete at the level of the i—

steel row due to the prestressing force,

The

' th
stress of concrete at the level of the i—

steel rowe.

The

stress of concrete at distance Y from the

center of gravity of the transformed section.

The

The

the

The

concrete stress

initial stress of the prestressing steel in

. th
i= row.

initial prestressing stress,
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£ - The maximum principal tensile stress of concrete.

ps
féz) ~ The maximum principal tensile stress of concrete
due to the XEE critical loading combination.
f - The allowable principal tensile stress of concretes
psa
fs - The tensile stress of the prestress steel.
i
fé ) - The stress induced in the prestress steel in the
isﬁ row due to bond between concrete and steel,
fsl -~ The loss in the prestressing steel due to creep
and shrinkage under girder weight and the pre=~
stressing force.
f52 - The loss in the prestressing stress due to creep
under superimposed dead load,
f a -~ The allowable tensile stress of the prestressing
s
steel,
(t) . .
fsg -~ The stress induced in the prestressing steel due
to girder weight,
(1) . ,
f n -~ The net initial prestressing stress of steel in
s
th
the i=— row.
(t)
fsn - The net total prestressing stresss
(1) : . s
st - The reduction in the initial prestressing stress
of steel in the it row,
(t) g - - - -
fost -~ The stress induced in the prestressing due to

vi
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superimposed dead load,

f(V; -~ The function value of a quadratic function at the
minimum.

F(V) -~ The Fiacco and McCormick function.

F(Vf - The minimum value of the Fiacco and McCormick

function.

gj(V) - The jEE constraint function
H . - The total depth of the beam.
th
Hs(i) The height of the i— prestress steel row measured

from the bottom of the beam,
H -~ The web depth

H(V) ~ The matrix of the second partial derivatives of

nme
the F(V) function.

Ie ~ The moment of inertia of the transformed section.
L th
Lk - The lower limit of the constraint on the k=

variable.

M - The bending moment
n ~ The modular ratio
Pr -~ The length of the vertical, horizontal and sloping

parts of the perimeter, respectively (r = 1,2,3).

vii
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P(V)

st

<l

*

<b

The summation of the constraint functions
The total number of side and behaviour constraints

The constant multiplier of the Fiacco and McCormick

function

The number of side constraints,
Move direction

The bottom flange thickness.
The top flange width

The depth of the sloping portion of the bottom

flange
The depth of the sloping portion of the top flange.
The top flange thickness
The upper limit constraint on the total depth,
. . th
The upper limit constraint on the k™ variable,
The vector of the design variables.
The solution vector

tt
The k== design variable

The distance between the center of gravity of the

transformed section and the point at which the

stress is obtained,

viii
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CHAPTER 1
INTRODUCTION

Sttuctﬁral Synthesis has been defined as (Ref. 1) “the
rational, directed evolution of a structural system, which, in
terms of a defined objective, efficiently performs a set of
specified functional purposes". The main problem of a struc-
tural designer is to select the "best" design for a certain
structure which satisfies both sﬁructural and economical require-
ments especially if this structure is going to be constructed
in large numbers. The selection of the best design has been
left to the experience of the designer. There is no other
means of choice between the different acceptable design possibie-
lities except by doing a number of trials and much computational
work. In the end the selected design may not be the optimum one.
However, the present "Synthesis"™ capability can be viewed as a
mathematical programming approaéh which can provide a useful
fool to find the best or the optimum design automatically or at
least provide a good means of choice between the different de-
signs,

The structural synthesis concept, or in other words the
automated optimum éesign of a structural system is based on the
following considerations:

l. A set of "design variables*: these are the éuantities which
are allowed to vary independently during the synthesis proce-~

dure. The goal of the structural synthesis concept is to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2

select these variables such that an acceptable optimum de-
sign is obtained.

2. An Yobjective function®: this is a fﬂnctign of the design
variables and provides‘a basis of choice between alternative
acceptable designs; the most common objective functions used
for evaluating merit in structural problems are the minimum
cost or the minimum weight. By minimizing this function an
optimum design can be obtained.

3. A set of '"constraints®: these represent the limits between
the accepéable and unécceptable designs., They are namely,
“behaviour¥ constraints and "side®” constraints. The behaviour
constrainté are limits on thé different kinds of stresses
(i.e. normal, shear,..etc.) and on deflections, The side
constraints are basically constraints on the design variab-
les. None of these constraints must be violated during the
synthesis procedure in order to reach to an acceptable opti-
mum design,

4. A structural "analysis" capability: this is a well defined
means of predicting the different structural behaviour (i.e.
stresses, deflection,...etc,) during the synthesis procedure.

5. A powerful optimization method: this is a mathematical pro=-
cedure which optimizes the objectivé function in order to
obtain tﬁe 0ptimum design.

The synthesis scheme can be represented graphically by a

Cartesian space having a dimension equal to the number of de~

sign variables; this space is called the "design variable space'.

It can be divided into two portions by means of the *composite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3
cqnstraint surface" which is the collection of the "behaviour
constr#int surface" and the "side constraint surfacé”. This
composite surface represents the limit between the aéceptable
and unacceptable portions of the design variable séace. The
coordinates of any point in this space represent a design of
the structural system. Any point can be identified as one of
the following four types:
1. Free and acceptable.
2., Bound and acceptable.
3. Free and unacceptable.
4. Bound and unacceptable.
A graphical representation of the design variable space
for a case of two design variables, Vl, and V2’ is given in
Fig. 1. The optimum design in this case is a constrained opti-
mum design (i.e. the optimum point is a bound acceptable point),
but in many other cases the optimum design is an unconstrained
. design as shown in Fig. 2. In general there is no means of in-
dicating that the optimum design is an absolute optimum or
"Global" optimum. In the majority of practical cases an optimum
design is only a "local" or M"relative" optimum, Such a relative
optimum is characterized by two or moie designs, each one having
no:acceptable designs of better or equal merit within some finite
neighbourhood about it, The relative minima concept is shown
in Fig. 3. There is a way to build some confidence that a cert-

ain local optimum design is the global design; if the results
obtained from various synthesis paths from widely separated ini-

tial designs converge toward the same particular design, then
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4
this design is probably a global optimum. But if they converge

to different points the optimum design among them all can be
considered és an absolute optimum as shown in Fige. 3.

The structural synthesis concept has been successfully
applied to different structural problems. Schmit (Ref. 1) has
treated the case of a planar statically indeterminate three
bar truss under the influence of several distinct load condi~
tions., A minimum weight design was obtained using a method of
constrained steepest descent as the means of optimization. It
is easily shown that the optimum design was not the fully
stressed design. Rozvany (Ref. 2) applied the principal of re-
versed deformation method to syntﬁesize a prestressed plate of
minimum tendon volume and prestressed beam grids (grillage) of
minimum weight. Goble and DeSantis (Ref. 3) synthesized a con-
tinuous, composite welded plate girder subject to the standard
specifications of the American Association of State Highway
Officials of @ given span length and concrete deck dimensions.
The optimization was based on minimuﬁ girder cost, using a
smoothing technique from dynamic programming to determine the
optimum number of flange splices and the material types. Goble
and LaPay (Ref., 4) synthesized prestressed concrete simple beams
of given span length, used in building structﬁres where their
flanges provide the structural surface, such that the optimum
design obtained covers a large area for the least cost. The
constrained steepest descent optimization method was used as
the minimization procedure, The design variables were the in-

dependent cross sectional dimensions including the slopes of
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5

~the top and bottom flanges, the area of transverse mild steel
reinforcing, the area of prestress steel and the prestress
stress, The center of gravity of the prestress steel was kept
fixed. The analysis was based on the ACI code, using the ulti-
mate load principle. The different loading conditions were
uniformly distributed dead, live and superimposed dead loads,
the prestress force and the losses in prestress force due to
creep and shrinkage.

The aim of this work is to develop a structural synthesis
capability to minimize the cost of bonded pretensioned pre=-
stressed concrete beams of various shapes. The different load-
ing conditions are girder weight, superimposed dead load, all
the live loading possibilities which may occur, prestress force
and losses in prestress force due to creep and shrinkage. The
analysis is based on the CPCI (Réf. 5) code using the working
load principle; the normal stresses, principal stresses and
deflections are obtained under critical loading combinations,
The design variables are a set of independent cross sectional
dimensions, the prestress stress, the area of prestress steel
in the various rows and their distances from the bottom fiber
of the beam.

The problem considered is a constrained minimization prob=-
lem; it is converted to a sequence of unconstrained minimiza-
tion problems using the "Penalty" function method of Fiacco and
McCormick (Ref. 6) in order to be able to use one of the power-
ful unconstrained minimization methods. In this work the method
of Fletcher and Powell (Ref.?)-which is considered the most power-

ful unconstrained minimization method is useds A number of
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designs were obtained for a given siﬁple beam; by varying the
constraint requirements the synthesis capability converged to
completely different optimum design. The relative minima con-
cept was studied in some problems by starting from widely

separated initial designs.,
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CHAPTER II
ANALYSIS OF BONDED

PRESTRESSED CONCRETE BEAMS

2.1 Introduction

A well defined analysis must be used in predicting the
different structural behaviours (i.c. stresses, deflection,.o.
etc.). The analysis must possess the capability of analyzing
beams having rather general cross sectional shapes (i.e. Rect-
angular, T, I..e€tco,) due to the synthesis scheme which may

- prescribe certain cross sectional dimensions to be zero (Fig.
4).

The analysis here is based on the CPCI (Ref. 5) code using
the working load principal, The different loading conditions
acting on the beam are girder weight, which varies during the
synthesis procedure due to the changes in the cross sectional
dimensions, superimposed dead load, all the live loading possi=-
bilities which may act, prestressing force and losses in pre-
stressing force due to creep and shrinkage. 1In the analysis of
a bonded prestressed concrete beam there are five critical load-
ing combinations under which.the different kinds of stresses
(ieee normal stresses, prinéipal stresses, «esetc.) and the maxi-
mum deflection of the beam are determined. The normal stresscs
of the concrete are determined at the top and the bottom fibers
of the cross section where the critical values of normal stresses
of concrete occur. The stresses of the prestressing steel are

determined at each prestressing steel row. In case that the

7
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8

section is not fully prestressed, mild steel may be used to
resist the tensile stresses at the top or the bottom fibers.
The prestressing steel can replace the mild steel if it is not
fully stressed and if it is located at the same place where
tensile stress occurs. In case that the shearing force acting
on the section is large the maximum principal stress must be
determined, It is pointed out that shear reinforcement may be
used in case that the value of the maximum principal tensile
stresses exceed the tensile stress that can be resisted by

concrete,

2.2 Normal Stresses

2,2.1 Due to girder weight, superimposed dead and live

loads.

The determination of normal stresses of concrete for each

loading condition is based on the equation

+ .
¢ I
e
where
f = The concrete stress
c
M = The bending moment due to each loading condi-
tion
Ie = The moment of inertia of transformed section
Y = The distance between the center of gravity of

transformed section and the point at which stress
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is obtained
Due to bond between concrete and the prestressing steel,
stress is induced in the prestressing steel which is obtained

by using the relation

(i) (i)
f = n f (2.2)
S cs -
where
(i) . .
fS = The stress induced in the prestressing steel
in the igh row; i = 1,2,..., m where
m = number of rows
f(l) The stress in concrete at the level of the
cs
th
i=— row
E
n = The modular ratio = .5
E
c

2.2.2 Due to prestressing force

An initial prestressing force is applied on the concrete
section at each prestressing steel row. The compressive stress
in the concrete caused by these forces reduces the initial pre-
stressing force in each row due to the bond action between the
concrete and the prestressing steel. The reduction of the ini-

s . th .
tial stress in the i~ row is given by

(1) (i)
st = n Eép (2.3)
where
f(l) - The reduction in the initial prestressing

SR th
stress of the i-— row
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fé;) - The compressive stress of concrete at the

igh row level due to the total prestressing

force
Let ()
e
— st
Poog)
p(bed)
where (i) L
£ - The initial stress of the prestressing
p(bed)
th
steel in the i TOW,.

th
The net initial prestressing stress of the steel in the i—

row is given by

(i) (1)
Ean = 1= 8y) fp(bed) (2.3)

The normal stress on the concrete due to the prestressing force

only is n
i 3
P( ).6(1)
P e ¥ i=1 D s
F T e e (206)
c A I
€ e
where
Pn - The total net initial prestressing force where
m
P(i)
Pn - :§: n
i=1
(i) th
P - The net initial prestressing force of the i—™
n
TOWo
(1) th
es -~ The distance between the i™ row and the center

of gravity of the transformed section.
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A - The transformed cross sectional area (i.e.
e
A = A + (n~-1) A where A is the total
e g ‘ s s
area of the prestressing steel and Ag is the

gross cross sectional area.

2.2.3 Loss in the prestressing force due to creep and

shrinkage,

The loss in the prestressing force due to creep and shrink=-
age under the girder weight and the prestressing force has a
maximumrand a minimum value depending upon whether the upper
or the lower limit of the creep factor @ and the shrinkage strain
Es is used (Ref. 8). A suitable approximate method of obtain-
ing the creep and shrinkage losses is to calculate these losses
as if the prestressing steel is located at its center of gravity.

The losses are obtained by using the following equation (Ref. 8)°%

- (t) _ E. &£
£y - - 90 [-f(t) N LE-J- 1-2) = SJ

sn 5 sg + . 0
(2.7)
where

fsl - The loss in the prestressing steel stress due
to creep and shrinkage under the girder weight
and the prestressing force,

f::? - The net total prestressing stress

f:;? ~ The stress induced in the prestressing steel
due to girder weight

Es ~ The modulus of elasticity of steel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

where £ is the total

k=

m (1)
i

=]
initial prestressing stress.
The loss in the prestressing stress due to superimposed dead
load is obtained using equation 2.7:

(1 5) f(t)
- _ o m80gy [ - . ssL:]
st SI ¢ S_) : 8

where

fs2 ~ The loss in prestressing stress due to creep

under superimposed dead load

(t)

ssL ~ The stress induced in the prestressing steel

due to superimposed dead load.

] - The creep factor due to superimposed dead load.
sL

‘2.3 Shear stress

The shear stress is obtained by using the following equa-

tion
V.Q
q_ = (2.8)
S Ieot
where
qs - The shear stress
Q - The static moment of the area above the section

at which the shear stress is obtained, about the

center of gravity of the transformed section.,
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V = The shearing force on the section.
t - The width of the section at which the shear is

obtained,

2.4 Principal stress

The maximum principal tensile stress is obtained using the

equation

2 2 .
- 2ff2
fpS fcy/ + s cy/ ) o+ qsy

where

f ~ The maximum principal tensile stress.

fcy ~ The stress of concrete at distance "y" from
the center of gravity of the transformed
section where the maximum tensile stress occur,

qsy ~ The shear stress at the same distance "y%,

In this work, for rectangular beams and beams with only
small flange widths the principal tensile stress was obtained
by dividing the cross section into 10 strips and calculating
the normal and the shear stresses at each strip. The highest
value among thé principal tensile stresses obtained at each strip
was considered to be the maximum principal tensile stress. For
a beam having appreciable flange widths the maximum principal
tegsfke stress was considered to be located at the bottom of

;’//‘. R
the 'filange.

2,5 Stresses under critical loading combinations

The concrete and steel stresses previously obtained are
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combined together under five loading combinations which repre-
sent the critical loading conditions to which the beam will be
subjected, These critical loading combinations are:
l. Girder weight 4 prestressing force (at transfer)
2., Fully loaded + minimum creep and shrinkage
3. Dead load + prestressing force + minimum creep ana
shrinkage
4, Fully loaded + maximum creep and ghrinkage + creep due
to superimposed dead load
5. Dead load + prestressing force + maximum creep and
shrinkage 4 creep due to superimposed dead load

where

Fully loaded prestressing force + girder weight + super=
imposed dead load + live load.

Dead load = Girder weight 4 superimposed dead load.

2.6 Deflections

Maximum deflection of a particular beam due to the pre=
stressing force, girder weight, superimposed dead load, various
live loading conditions and due to creep and shrinkage are ob-
tained using standard elastic methods. In order to determine
the critical deflections the combinations considered are the same

as for determining critical stresses,
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CHAPTER III

SYNTHESIS

3.1 Introduction

Prestressed concrete beams of various kinds and subjected
to different loading combinations including all the live loading
conditions which may act are synthesized in such a way that the
cost of any cross section is minimized, and all the constraints
on the design variables and on the behaviour of the structure
are satisfied, The design variables in this worklare a set of
independent cross sectional dimensions of concrete, the pre-
stressing stress, the area of prestressing steel in each row
and their distances from the bottom fiber of the beam. A func-
tion of these design variables apd of the costs of the different
materials and labour is formed which is called the objective
function; this function reflects the cost of a prestressed
concrete cross—-section per unit length of the beam. The goal of
this work is to minimize this function in order to reach g3
local or global minimum. The minimization of the cost of a pre-
stressed concrete cross section is a constrained minimization
problem. In order-to be able to use one of the successful un-
constrained minimization methods, this constrained minimization
problem must be converted to an unconstrained minimization prob-.
lem by adding a "Penalty function" to the objective function.
The penalty funcﬁion has two factérs; one factor is the constraint
functions and the other is a constant multiplier. The work of

this function is to hold the design away from the constraint
15
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boundaries and allows the design to reach these constraint
boundaries in the limit as the value of the constant multiplier
approaches zero. It is necessary that we start with an accept-
able initial design; that is, due to the influence of the penal=~
ty function none of the constraints will be violated and the
design will remain within the acceptable portion of the design
variable space during the synthesis procedure. The unconstraine-
ed function which is formed is called the<%Fiacco-McCormick?"
function (Ref. 6). The Fletcher and Poweli unconstrained mini-
mization method (kef° 7) is used to m}nimize this function,
This method is based on obtaining the gradient of the function,
which is obtained in an exact way in this work using the ordinary
pdrtial derivatives of the function with respect to each design

. variable.

3.2 Design Variables

The design variables are those quantities which are allowed
to vary independently during the syntﬁesis procedure, The éoal
of this work is to select these design variables such that the
constraints are not violated and the cost of the cross section
is minimiied. ihe design variables here are basically the in-
dependent cross sectional dimensions of the concrete, the pre-
stressing stress, the area of prestressing steel in each row
and their distances from the bottom fiber of the beam. They are
shown in Fig., 5.

The vector of the design variables is

v = {hw’Tt’TSt’st’Tb’BW’Tf’Bf’fp(bed)’As(l)’As(Z)""As(m)’

Hs(l),ns(z),....ous(m)}
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where
Hw ~ The web depth
Tt - The top flange thickness
Tst - The depth of the sloping portion of the top
flange

Tsh - The depth of the sloping portion of the

bottom flange

'1‘b - The bottom flange thickness
Bw -~ The web thickness
Tf - The top flange width
Be - The bottom flange width
- 5 t
fp(bed) The prestressing stress

-~ The area of prestress steel in row i,
i = 1,200, m where m = number of rows
Hs(i) - The height of each prestress steel row

measured from the bottom of the beam

3.3 Preassigned Parameters

The preassigned parameters are those quantities which remain
fixed during the synthesis procedure. They are the span length
and the number of prestress steel rows m.

In certain cases some of the design variables may be given
a constant value in which case they then become preassigned

parameters.
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3.4 Objective function

The objective function is & function of the design
variables which is used as a basis for choice between alternate
acceptable designs, The goal of the synthesis p;ocedure is to
minimize this function in order to obtain a local or global
minimum. The objective function in this work is a cost function
which reflects the cost of a prestressed concrete section per
unit length of the beam in terms of the design variables. The

cost expression is taken as follows:

- 3
. c(v) = Cc AC + Cps AS + 52% Cr Pr (3.1)
where
{V} - The vector of the design variables
Ac - The net cross sectiomnal area of concrete
CC - The cost of unit volume of concrete including

cost of placing and transportation

A - The area of prestress steel

C - The cost of prestress steel per pound including
cost of pulling and placing of steel.

P - The lengths of the vertical, horizontal and

T
sloping parts of the perimeter, respectively
(r 1,2,3).

Cr -« The forming costs of the vertical, horizontal

and sloping parts of the perimeter per unit

area, respectively (r = 1,2,3).
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3.5 Constraints

The optimum or the minimum cost design must be an accept-
able design., The limits of acceptability are defined by side
and behaviour constraints. Side constraints are basically con-
straints on the design variables. Constraints oﬁ the stresses
and deflection of the structure are called behaviour constraints.
In order to satisfy the acceptability condition, the optimum
design must not violate any of these constraints. Most of

these constraints are taken from CPCI (Ref. 5).

3.5.1 Side constraints

Side constraints are limits on the range of the Qesign va-
riables, These limits are prescribed in such a way as to satise-
fy the condition that the resulting cross section of the beam
be a practical shape when the synthesis scheme is carried out

(i.e. rectangular, T I,cee€tCe)y, as shown in Fig. 4. These

ee’
limits can be controlled or additional side constraints can be
addéd in order to reach to an optimum design of a particular
desired shape as will be seen later on in this chapter and in
Chapter 1IV.

In general, all the sidé constraints for the prestressed

concrete beam can be represented as

Uk =2 vV, =2 L

k k

where

“th
Vi =~ The k= design variable
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Lk « The lower limit of the constraint on the KEH
variable
Uk = The upper limit on the kth design variable
For example
V1 = Hw7/ L1
V2 = 'I‘t Z L2
= H L
vn s(m) 7 n

where n is the total number of design variables (n = 9 + 2m)

By chéosing suitable values for the lower limits
Lk(k = 1,2,...,nn) such that all the constraint requirgments are
satisfied, various practical cross sectional shapes are obtained,
as shown in Fig. 4. |

In order to get'an optimum section of a particular shape
we need to add additional side constraints which are mainly
upper limits on one or more of the design variables, or by con-
trolling the lower limit values of some of the side constraints
or setting limits on both of them., For example, in case that
the beam is required to be of a limited depth, the following

side constraints can be added:

=H + T + + U
H = H To# T # Ty * T L Yy

w st b sb

where

H ~ The total depth of the beam
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Ud - The uppef limit on the total depth

In case that the cross section of the béam is required to be

of a particular shape (i.e. rectangular, T, i,es.etc.) and the
initial design is chosen the same shape as the required one,

an optimum design of the desired shape can be obtained; for
example, for a rectangular shape, the.following side constraints
can be added

Tf = 0

Bg = O

By adding these constraint, the top and bottom flange widths
Tf and Bf will remain fixed at the zero value during the syn-
thesis procedure (i.e. they become preassigned parameters)
which ensures that the optimumdesign obtained will have the
same shape as in the initial design (i.e. rectangular). A
similar procedure can be used in case that any other shape is
required. In case that the optimum design is desired to be
of a certain shape which differs from the initial shape (e.g.
the initial design has a rectangular shape and the optimum
design is desired to be of an I or T shape), it may be possible
to obtain an optimum design having the required shape by con-
trolling the upper limits on the top and bottom flange widths
T. and B¢ respectively. For most of these cases, in order to

f

obtain the desired shape the values of the design variables of

the initial design and the variation of these values during the

minimization procedure may have to be changed. By adding or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22
altering the side constréints during the minimization procedure
or controlling the existing side constraints, the desired shape
ﬁay be obtained. Some of these cases will be discussed in more

detail in Chapter 1IV.

3.5,2 Behaviour Constraints

The behaviour constraints are limits on the normal stress-
es, principal stresses and deflections obtained due to the five
critical loading combinations previously mentioned in Chapter
ITI. All these stresses and deflections must be kept within the
allowable limits specified by the CPCI code (Ref.5 ) during
the synthesis procedure.

The behaviour constraints on the normal stresses for each

load combination are

- +
£ < f = f
Ca ct ca
- +
fca = fcb = f,,
fs = fsa
where
fct - The normal stress of concrete at the top fiber
fcb - The normal stress of concrete at the bottom
fiber
' fs - The tensile stress of the prestressing steel
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-

?ﬁ:a - The allowable ténsile‘stress of concrete (a
positive quantity)

f;a ~ The allowable compressive stress of concrete
(a negative quantity)

fsa ~ The allowable tensile stress of theAprestress-

ing steel
It should be'noted that the allowable stresses may be different
at different loading combinations,
The behaviour constraints on the principal tensile stress-

es and maximum deflections are as follows

X
f( ) £
ps K psa
(x)
D D
ef é& efa
where :
(x) : )
fps ~ The maximum principal tensile stress of
concrete = 1,2,..,,,5 where the subscript x
indicates the xEE critical loading combination.
'fpsa -~ The allowable tensile stress that can be re-
sisted by concrete alone.
(x) th
Def =. The maximum deflection of the beam for the x-—
load combination,
ef -~ The allowable deflection value of the beam.
a )

3.6 Fiacco and McCormick function

The minimization of a prestressed concrete cross sectional

cost is an inequality constrained minimization problem. It can

be converted to a sequence of unconstrained minimization problems
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in order éo be asle to use one of ﬁhe successful unconstrained
minimization methods such as the Fletcher and Powellvmethod,
(Refo 7)o This is done by adding.what is called a "Penalty
Function®" to the objective function to form the Fiaéco and

McCormick function. The procedure is as follows (Ref. 6)%

F(V) = c(V) + R » P(V) | (3.2)
where
o d q ——
R+ P(V) = R . E: I/gj(v) is called the penalty
' j=1,2

function
C(V) - The objective function (Eq. 3.1)

g.(V) =~ The jEﬁ constraint function; j=1,2,...q

h)
where q is the total number of side and be=
haviour constraints.
R - An arbitrary constant greater than zero

which represents the relative weight of the
P(V) function in the F(V) function.

All the constraint functions must be of the form
gj(V) = 0

For example, the constraint

can be written as the two constraints

Vk - Lk = 0
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U - A = 0
. k k

In the case of various live loading conditions, the cross
section obtained must be optimum for all live loading conditions;
none of the behaviour constraints due to any loading conditions
must be violated, Therefore, all the behaviour constraints for
every loading condition must be added to the penalty function.

The total number of constraints in this case will be

q = S % dob (303)

where

s = The number of side constraints
b = The number of behaviour constraints

d - The number of live loading conditions

For each value of the multiplier R a minimum value of the F(V)
function is sought., The value of R is reduced after each mini-
mization process; theoretically in the limit the value of R
reaches zero as the F(V) function reaches its optimum value,
Recommendations on the initial value of the multiplier R for a
particular problem and on the rate of its reduction during the
synthesis procedure is given in Chapter IV.

The initial design must be within the allowable portion of
the design space (i.e. to be an acceptable design)., The design
will always remaiﬁ within this acceptable portion during the
sjnthesis procedure due to the influence of the penalty function

which heolds the design away from the constraint boundaries. In
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case thaé the design reaches the constraint boundaries where
one of the constraints becomes zero, the function will be of
an infinite value due to the influence of the penalty function;j
in such a case, a constrained minimum can be obtained as will be
seen in Chapter IV, and thus none of the constraints is violat-
ed during the synthesis procedure. Practically, there is a
possibility that a design point in the unacceptable region may

be reachedy this will be discussed later in the one dimensional

minimization procedure in Chapter 1V.

3.7 The Gradient

The Fletcher-Powell method (Ref. 7) requires the gradient
of the F(V) function. The gradient in this work is obtained in
an exact way using the ordinary partial derivatives of the F(v)
function with respect to each design variables. It is some-
times difficult to differentiate this function (especially the
penalty function portion) but on the other hand an Mexacth
gradient value is obtained., The finite difference method can
be used in obtaining the gradient; however, experimentation in-
dicated that the accuracy of the resulting gradient depended
greatly on the increment used in the finite difference scheme,
It was therefore felt that it was worth the extra effort to

obtain exact values of the gradient.
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 CHAPTER IV

MINIMIZATION METHOD AND
NUMERICAL RESULTS

4.1 Introduction

A computer program using the Fletcher-Powell unconstrain-
ed minimization method (Ref. 7) has been applied to several
specific cases (eight in all). All these cases are studied
under the same 1oading conditions, and they all represent a
cross section at mid span of a simply supported beam. The
first design is for a beam which is desired to be of a rectan-
gular shape, starting with an initial design having the same
shape as desired (i.e. rectangular shape). The second and
third cases study the relative minima concept by starting from
widely separated initial designs for the same side constraint
set, Starting with different initial designs of a rectangular
shape the second, third and fourth cases show the influence of
the different side constraints and initial design on the opti-
mum design which is desired to be of a T shape, The fifth
design is for an I section of a limited cross sectional depth,
The sixth design is for a wide flange I section of a limited

depth. The seventh case is the same as in the sixth case but

only one row of prestressing steel is allowed., The last casec
is for a limited depth 1 section, starting with an initial de-
sign of a rectangular shape, These specific cases shed some

light on the following matters:

27
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. 1, The influence of different additional side con-
straints on the optimum design.

2. The presence of relative minima in the design
space.

3. The best design is not always the fully stressed
design.

4o Operational characteristics of the synthesis tech-
nique for this work, This includes the choice of
the initial value of the constant multiplier "R",
the rate of its reduction and the effect of the
different initial designs on choosing the initial

value of the multiplier R.

4,2 Fletcher and Powell method

Unconstrained minimization methods can now be applied to
minimize the F(v) function for any value of the multiplier R.
As R reaches zexo in the limit, a local minimum of the cost
function is obtained;

The method which is used in this work is the Fletcher and
Powell method (Ref., 7) which is a "second ordexr" gradient
method. The logic behind this method is that the first partial
derivatives of a function with respect to its independent var-
iables vanish at its 'minimum. For examplc a Taylor series ex-
pansion about the minimum of a quadratic function f(V) is

%

ECV) = £V + .;_('\7 -9, u@®* @ -9 (46.1)

wvhere
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v - The vector of variables
A - The solution vector
— '
£(V) ~ The function value at the minimum
H(V*) -~ The matrix of second partial derivatives
of the f(V*) function with respect to its
variables. This is a symmetric positive
definite matrix given by
2
aZE a f L] © Q [ ] L ] » ° * a f
2 o ¥ dv* %
L v
a"\ll avl sz 1 . ov
2%¢ .
. *2 o
oV, . .
H(V*) = . .
2 2
a f . . . . ° e« e 3 . ° a f
o b3 *2
v ov
0 n bvl n
The gradient of the £(V) function is
QE(V) = RB(V*) « (V = V*) (4o2)

From this relation we can get the vector of the variables at

the minimum (i.e. the solution vector) as

Ve = V = H(V%®) . VE(V) (4.3)
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where

H(V*)~1 is the inverse of the H(V%) matrix.
This equation allows V* to be calculated in one step if H(V*fl
is available., However for a general function the elements of
this matrix are not known. In order to approach H(V*)‘l, a
method of successive linear searches in H=-conjugate directions*
is used. In this method the H(V*)~1 matrix is replaced by a
positive definite matrix; in this work this matrix is taken as
the identidy matrix during the first search iteration. A new
H matrix is generated after each search iteration takes place.
The minimum value of the function F(V*) for a particular value
of the multiplier R is obtained as‘the H(V*)n1 matrix is
approached. The total number of iterations required to approach
H(V) ™! for any general function is not known; but, it has
been shown that when applied to a quadratic function the mini-
mum will be found in at most n iterations where n is the number
of independent variables (Refo 7 ).

The Fletcher-Powell method begins from an initial approxi-
mation, Vo, to the minimum of F(V). The initial direction of
travel in the n~dimensional space is taken as the negative
gradient direction, §0 = - vF(Vo). Subsequently, the method
proceeds by generating direction of descent §k(K = 1,2,.00) and
choosing the step length Cﬁi;BC)SUCh that F(Vk + Xy §K) is a

minimum along the direction 3, at cxﬁ.' The new approximation to

K
4+ A set of direction vector'ﬁo, ?l,....,?n , are said
to be conjugate if §f H §3 = 0, 1 # j
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Y - *
the minimum is achieved at VK+1 = V 4 O(K 5., and subsequent

K K
directions are generated from the relation

-—ldv - -—
= =H . \Y bob
sl(-o-l (VK+1) VE( 1(+1) ‘ (4e4)
where
vF(V& 1) - The gradient of the function at the
4
current point 7
K+l
H(v ) - The generated H matrix
K+l
%
In order to find the step length O(K at which the function
F(vk+1) reaches its minimum, a one dimensional interpolative

minimiza;ion method is used which will be discussed in the

next section. The updated H(Vk+1) matrix after this iteration

takes place is given by

-l -
H = H + + o
(vxu) v Ay * By (4.5)
.where
T
o o
A = — K K
K ol .;x
- T
H(V) . ¥ .5 . H
s ow ( K) Y Y (Vx)
K T —
)'K . H(VK) . yK
and
c * 5
k %k %k
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We notfce that the current direction of search is not the
steepest descent direction (i.e. the _vF(VK) direction which
is perpendicular to the lines of equal function value in the
design spacele As a result of this the Fletcher-Powell method
overcomes the difficulty of moving in av“Zig-Zag" fashion
which converges very slowly for any genefal function (Fige 6).
Sometimes the updated H matrix becomes a non-positive definite

matrix, in this case it is replaced with the identity matrix.

4.3 One Dimensional minimization

A one dimensional interpolative minimization method is
*
used to find the required step length Xy which minimizes the

while searching

function F(VK + o¢ §K) of one variable o«

K K

along the direction §ko Starting from a current point'VK along

this direction a step % = h is taken; if convergence tests

indicate that the minimum has not been reached or passed, the

‘step length o, is doubled (i.e, o, = h, 2h, 4h,...) and an-

K K

other search is made using the point represented by the vector

- -

VK.+ O(K S

the minimum has been passed, a cubic polynomial is fitted bet-

g @S a new starting point., When tests indicate that

ween the last starting point and the final point in order to
obtain the minimum of the function,
The initial step length h is obtained by using the follow-

ing equation:

- - T -
h 2(est, = F(VK)?/(SK .. vF(VK)? <1 (4.6)

where
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est, =~ The estimated minimum value of the function

-

F(V. + o S5)

K K K
The t §T F(V.) represents th lope of F(% + S)
e term S . V g) represe e slop K Ky K
d R ~ 4
= ie€o xS which
at xp =0 i.e [ To F(VK * KSK) aKsO] ch must be a

negative quantity in order to ensure that this function is

initially decreasing along_§ (ieeo. the method will converge).

K

We must keep in mind that sometimes one or more of the
constraints are violated while searching along the direction

—
SK (i.e. the design arrives to the unacceptable portion of the

. design space). In this case we must return to the last accept-

able point in the design space and reduce <XK. In this work

CXK was halved in such a8 case..

The convergence tests are based on obtaining the value of

the function F(VK + X §K) and its derivatives with respect to

K

the step length O at the different points. In case that the

derivative of the function remains negative and the value of
the function has been decreased after taking any step length

x more steps will be needed to pass the minimum, But if

K,
the derivative of the function becomes positive or if the func-
tion starts to increase this will be an indication that the
minimum has been passed. The following cubic interpolative

formula 1s used to estimate the value of CX; (Ref. 7).

uenb-s"i“’) t v -z (b - a) (4.7)
gt(b) - g'(a) 4 2w V .

where

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

%
o, - The distance to the minimum (Jl.e. X K)
a § b - Are the points which bracket the minimum.
'(b) = vF(V,). . E
g b - -JK
' = 3T <3
g'(a) = vF(Vy) . 5
w a - b
Z=3£M) F()+g'(a)+g'(b)
. (b = a)
2 ‘ 1/2
w = (z =~ g'(a) . g'(b))

If the value of the functicn at aé is less than that at

points a and b, then o, is achpted as the estimate of <X£ .
Otherwise, the interpolation is repeated over the interval

(a, <Xe) or (<Xe, b) according to whether the sign of the deri-
vative of the function at (%e is positive or negative respective=-

ly.

4o4 Numerical Results

A computer program has been applied to eight specific de-
signs. All these designs represent a cross section at mid span
of a simply supported beam of 40 feet span length, and they all
are studied undexr the same loading conditions, the values of
which are given in Table 1.1, There are two distinct live load-

ing conditions; one is a uniformly distributed load over the

whole span length, and the other is a concentrated load at mid
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span, their values are given in Table l.l1 and Fig.s 7. It is
emphasized that the two live loading conditions act independ-
ently and not concurrently, The girder weight véries during
‘the synthesis procedure due to the changes in the cross
sectional dimensions, The initial prestressing stress is taken
as 135 kosesie for all the problems, The different values of
creep factors and shrinkage strains are given in Table 1.2,
The various allowable stresses of concrete and steel and the
allowable deflection of the beam are given in Table 1.4, The
- different material costs are given in Table 1.3. The average

computer time per iteration is given in Table 1l.3.

Design No, 1t

This design is for a beam which is required to be of a rect-
angular shape., The initial design has the same shape as requir=
ed (Fig, 8 and Table 2,2). In ordexr to achieve this condition
additional side constraints on the top and bottom flange widths,
Tf and Bf,

values as zero during the synthesis procedure (i.e. they become

respectively are added (Table 2.,3) which keep their

preassigned parameters). The optimum design obtained has a
rectangular shape as desired (Fig. 9 and Table 2.2).

The initial design can be considered as a relatively good
design., As a result of that and due to the additional side con-
straints on Tg and Bg the initial design was very close to the
constraint boundaries; thus a small initial value of R was
used in order to achieve a good balance betuveen the cost and

the penalty functions, c(V) and P(V) respectively, such that
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the cost is decreased after successive iterations. This value
of R was taken to be equal to 0.000l (Table 2,1)., A total of

33 iterations were needed to reduce the cost of Fhe initial
design from 10.323 $/ft to 8.197 $/ft at the optimum using a
rate of reduction of R equals to 10 (i.e. R = 1045, 10-6,.0..
etc.) (Table 2.1). Actually, most of the reduction of the cost
was during the first iterations which reduced the cost tob8.407
$/ft. Practically at this limit it can be considered that the
optimum design is obtained since no appreciable reduction in

the cost took place during the last two computer runnings; how=
ever, the last two computer runs were made in order to assure
that the F(v) function was aétualry minimized. The optimum de=
sign can be seen to be a constrained optimum since the stress of
concrete at the top fiber due to the first loading combination
is equal to 0.419 k.s.i. (Table 2.5) which is very close to

0.42 keseie, the allowable tensile stress of concrete (Table 1.3).
The constrained optimum is also due to the fact that the differ-
ence between the height of successive prestressing steel rows

is nearly equal to one inch which is the lower limit on the
distance between the different prestressing steel rows (Table
2.2). The lower limits on the different design variables are

given in Table 2.2

Design No., 2:

This design is for a beam which is required to be of a T

shape starting with an initial design of a rectangular shape
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" (Fig. 10 and Table 3.2). The additional side constraint is on
the bottom flange width Bf which keeps gts value as zero(during
the synthesis procedure (Table 3.3). The initial- design can
be considered as a relatively good design. Due to this good

initial design and to the additional side constraint on B the

£
initial design is very close to the constraint boundaries. As
a result of that the desired T shape was not achieved since
the synthesis scheme has no chance to work and achieve the re-
quired T shape. (Fig. 11 and Table 3.2).

A total of 43 iterations were needed to reduce the cost
.of the initial design from 10,348 $/ft to 7.454 $/ft, start-

* -3
ing with an initial value of R 10 which was found to be a

H

suitable value to achieve a good balance., Actually most of the
reduction of the cost was during the first computer running
which caused the cost to reduce fo 80,2283 $/ft after 9 itera-
tions only., At this limit it can be assumed that the optimum
design was obtained and all the other 34 iterations were made
only to improve the results, (Table 3.1). The optimum design
obtained is a constrained optimum since the stress at the top
fiber of concrete due to the first loading combination and the
stress of concrete at bottom fiber due to the fourth loading
combination are equal to 0.416 ke.s.i. and 0.419 k.s.i. res-
pectively (Table 3.5 and 3,6) which is very close to 0.42 kes.i.
the allowable tensile stress of concrete (Table 1.3). Also,
the height of the fourth steel row is equal to 5.4981 inches

(Table 3.2) which is very close to 5.5 inches,
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its upper limit (Table 3.3).

Design No. 3¢

The aim of this design is to obtain an optimum design of
a T shape, starting with an initial design of a rectangular
shape as in the second design. In order to achieve the re-
quired T shape a significantly different initial design from
that in the second design was chosen (i.e. the initial design
was not as close to the constraint boundaries) as shown in
Fige 12 and Table 4.2. Using the same additional side con-
straints as in the second design, the optimum design obtained
has a rectangular shape which does not satisfy the T-beam re-
qﬁirement (Fig. 13 and Table 4.2). But by changing the con-
straint on the upper limit on the height of the fourth steel

row H to 5.5 inches an optimum design of the desired T

s(4)
shape was obtained (see Design No. 4). An initial value of R
equal to 0.1 was found to be suitable to achieve a good balance
in the F(V3 function. A total of 280 iterations were needed

to reduce the cost of the design from 17.781 §$/ft to 6,713

$/ft, but most of the reduction was during the first computer
running after which the cost was reduced to 8.536 $/ft; the

rest of the computer runnings were made only to improve the de-
sign obtained. The éptimum design obtained is a constrained
optimum as the stress of concrete at bottom fiber due to the
fourth loading combinations is equai to 0.417 k.s.i. (Table 4.6).

which is very close to the upper limit of 0.42 kos.i. (Table

.1.3). The different lower limits on the design variables arec
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given in Table 4.2.

Design No. 4

The aim of this design is the same as for the third de-
sign. Starting with the same initial design and the same side
constraint on the bottom flange width Bf as in the third de-
sign, the upper limit on the height of the fourth steel row
was changed to 5.5 inches. The optimum design obtained is a
T shape as desired (Fig. 14). The values of the different de-
sign variables of the 0ptimuﬁ design}are given in Table 5.2.
The initial value of R was taken to be 0.,l. The total number
of iterations required to reach the optimum design was 140

| (Table 5.1), after which the cost of the design was reduced

from a value of 17,781 §/ft to 7.609 $/ft. But actually the
majoyr reduction of the cost was during the first and second run-
ings of the computer program after which the cost reached to
11.34 §$/ft and 8.268 $/ft respectively (Table 5,1). It can
easily be seen from Table 5,1 that the optimum design obtained
is a constrained optimum since the value of the F(v) is not
close to the value of the cost function., The constrained opti=-
mum can also be seen from Table 5.6 where the value of the con=
crete stress at bottom fiber due to the fourth loading combina-
tion is equal to 0.416 k.e.1. which is very close to 0.42 k.s.i.
the allowable tensile stress of concrete. The different lower

limit values on the design variables are given in Table 5.2,

Design No. 51

This design is for a beam which is required to be of an I
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section having a limited total depth H less or equal to 25 in=-

ches where

The initial design was chosen to be of an I shape having a
total depth H less than 25 inches in order to satisfy the addi-
tional side constraint on the total depth, H (Fig. 15 and Table
6e2) Due to the synthesis scheme none of the constraints are
allowed to be violated and thus the total depth will be kept
below the 25 inches as desired. The‘optimum design of the li-
mited depth I shape is shown in Fig. 16. The values of the

" different design variables of the optimum design are given in
Table 6.2, The initial design is not close to any of the con=-
straint boundaries and therefore the initial value of R was
taken as 0.1 to achieve a good balance between the cost and the
constraint functions, C(V) and P(V) respectively (Table 6.1),
The cost was reduced from 11,452 $/ft to 6,319 §/ft after 200
iterations, using a rate of reduction of R equals to 10 (i.e,
R = Qocl, 0e0l,ec0.2tCo)o Actually, the major reduction of the
cost was during the first running of the computer program in
which the cost was reduced to 7.779 $/ft after 60 iterations,
(Table 6.,1). The optimum design obtained is a constrained op-
timum since the stresses of concrete at the top fiber due to
the fourth loading combination is equal to =2,647 k.s.i. (Table
6.5); this i§ very close to the upper limit on the allowable
compressive stress of concrete which is equal to ~2.7 k.s.i.

(Table 1.3). The lower limits on the different design variables
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are given in Table 6.2 and the upper limit on the height of
the fourth steel row is given in Table 6.3.

It was found by analyzing the optimum design obtained using
the conditions of loading at the support that the allowable nor-
mal stresses were nét satisfieds PRy using the same optimum de-
sign but increcasing the height of different prestressing stecel
rows to a position at thch all the normal stresses are satis-
fied, a minimization process was made in which all the design
variables except the height of the different prestressing steel
rows were kept fixed (iaé. they becanie preassigned parameters).
The position of the steel were the only design variables left
in the problem and finally the center of gravity of the steel
coincided with the center of gravity of the transformed section
as shown in Fig. 17, Obviously, the cost of the optimum design
is identical to that at midspan since the objective function
does not depend on the height of the prestressing steel rows.
The only reduction was in the value éf the F(V) function which
was reduced from 18.466 to 14.91 (i.e. all the minimization

—
procedure was converted to minimize the F(V) function).
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Design No. 6

This design is for a beam which is desired to-have a wide
flange I-section of limited depth and flange width. In order
to achieve this design the initial design was chosen as an
I-section of a total depth less than 25 inches, which is the
upper limit on the total depth., The top and bottom flange
widths were chosen equél to 8 inches which is greater than the
minimum desired flange widths of 6 inches.(Fig. 15)., Addition=
al side constraints were added on the top and bottom flange
widths. (Tables 7.2 and 7.3). Due to the synthesis scheme none
of the constraints can be violated which ensures that the opti~

. mum design will have a wide flange I shape. The optimum design
obtained is shown in Fig.l18 which satisfies all the require-
mentss The values of the different design variables of the op=-
timum design are given in Table 7.2 An initial value of R to
achieve a good balance in the F(V) function was found to be 0.l
(Table 7.1). The cost was reduced ffom 11.452 $/ft (the same
initial design as of the fifth design) to 8.022 §/ft after 54
iterations, using a rate of reduction of R equals to 10. The
optimum design obtained is a constrained optimum since the top
and bottom flange widths are 6,097 inches and 6,080 inches res=-
pectively which are very close to the lower limit specified
(Table 7¢62). Tables 4.4 to 4.8 reveal that the optimum design
is not close to any of the behaviou; constraint boundaries,

The lower limits on the different design variables are given

in Table 7.2.
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Design No. 7:

This design is for a beam which is desired to have an op-
timum design of a wide flange I section of a erth less or
equal to 25 inches, flange width greater or equal to 6 inches
and having only one row of prestressing steel at a certain loca-
tion. To achieve this design the initial design shown in Fig.
19 was chosen. Additional side constraints were added on the
total depth, the top and bottom flange widths and on the height
of the prestressiﬁg steel row, (Table 8,2 and 8.3). The opti=-
mum design obtained has the same propérties as desired (Fig.
20), The value of the different design variables and the low=-
‘er'limit on each variable is given in Table 8.2. The initial
~design is not close to any constraint boundaries: an initial
value of R equals to 10'-3 was found to be suitable for this de-
sign. The cost was reduced from 11.452 §/ft to 9.359 $/ft after
21 iterations, using a rate of reduction of R equals to 10.

It was found that further funning of the computer program was
not practicalksince the reduction in the cost dqring the last
program runnhing was not significant (Table 8.1). Again the
optimum design obtained was not close to the constraint bounda-
ries, since the design variables are not close to the upper or
the lower limits and-the stresses and deflections are not close

to the allowable values. (Tables 8.2 to 8,7).

Degign No. 8:

This design is for a beam which is desired to Le of an I

shape, starting with an initial design of a rectangular shape,
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In.order to achieve this design an initial design which is very
far from the constraint boundaries was chosen (Fig.2l ) and
additional side constraints which are upper limits on the total
depth of the beam and on the height of the fourth prestressing
steel row were added; their values are given in Table 9.3. The
optimum design obtained has an I shape as desired (Fig. 22).
The values of the different design variables and the lower lim-
it on each design variable is given in Table 9.2, The suitable
initial value of R which gives a good balance in the F(V) func-
tion was found to be Q0.l. A total number of 163 iterations
were needed to reduce the cost from 24,316 $/ft to 6,310 $/ft.
The major reduction of the cost was during the first running of
the computer program after which the cost was reduced to 7.799
$/ft after 63 iterations. Practically in order to save on
computer time the optimum design can be assumed at this stage
and the other two runnings of the program were 6n1y made to
improve the design obtained (Table 9.1). The optimum design
obtained was a constrained optimum since it is close to the be-
haviour constraint boundaries as given in Table 9,5 where the
stress of concrete at the top fiber due to the fourth loading
combination for case 1 of live loading is equal to =2,642 k.s.i.
which is very close to =-2.7 k.s.i., the allowable compressive

stress of concrete,

4.5 Discussion of Results '

It has been found from the different designs studied that

the major reduction in the cost for a particular design occurs
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. during the first running of the computer program as long as a
suitable value of R is used. As a result of that the method
can be considered as an effectivé method as it can save much of
the computer time and give a relatively good design from only
one trial.

The relative minima concept has been studied in the second
and the third designs as the initial design in both cases are
widely different from one another and both of them have tﬁe same
set of constraints. The optimum design obtained have signifi-
cantly different cross sectional dimensions and different costs,.

In the case that an optimum design is required to have a
certain shape and the initial design has the required shape
(Designs 1, 5, 6 and 7), suitable additional side constraints
must be added in order to achieve the desired shape. Starting
with an initial design which satisfies these additional side
constraints an optimum design having the desired shape will be
obtained since none of the constraints will be violated during
the minimization procedure due to the synfhesis scheme,

In the case that the initial design has a different shaée
from the desired one (Designs 2, 3, 4 and 8) the choice of the
initial design is critical and various initial designs may have

to be tried. Generally it appears that in such a case it is

best to choose the initial design such that it lies far away
from the constraint boundaries, Also, it may be necessary to
add some additional side constraints or change the values of the
existing constraints in order to obtain an optimum design of the

desired shape.
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The effect of choosing an initial design having a rela-
tively high cost (Designs 3, 4 and 8), is only in increasing
the number of iterations required to obtain the optimum design.
But since most of the cost for a particular design is reduced
during the first running of the computer program.this higher
number of iteration is not of a great importance. The optimum
design obtained may have a smallexr cost than that of a good
initial design, (Designs 2 and 3); this is due to the relative
minima concept,

Practically speaking, the optimum designs obtained for a
section at mid span, can be considered as an optimum design for
the whole beam. This can be done 'by checking the stresses at
the other critical sections; for a case of a simple beam the
other critical section is at the support where the principal
tensile stress is critical and the moment due to different load-
ing conditions are zero., If the normal stresses are found to
be unsafe, it is then required to change the position of the
different prestressing steel rows in order to satisfy all the
normal stress requirements. As shown in design 5 the cost re-
mains constant since the‘cos; function does not depend upon the
height of the prestressing steel rows, This will cause the
prestressing steel wires to have'a curved shape along the
entire length of the beam. Also, in case that the principal
tensile stresses are not safe, the web width, Bw must be increas-

ed in order to satisfy the principal stresses.
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4.6 OQOperational Characteristics

Choosing the initial value of the multiplier R differs
from one problem to another, and depends mainly on the proper-
ties of the initial design., Due to the fact that R represents
the weight of the constraint function P(V) in the F(V) function,
a suitable value of R must be chosen in order to achieve a good
balance which ensures the reduction of the cost function C(V)
after successive iterations. In the case that the initial
design is close to the constraint boundaries the P(V) function
will have a large value which requires a smaller value of R than

. that of a design which is far from the constraint boundaries in
order to achieve a good balance., Obviously, it is of no use to
increase the value of R after tbe minimum is obtained for a
particular value of R; if R is increased, the problem will be
converted to minimize the constraint function P(v) and the cost
function C(@) will remain without any reduction or it may start
to increase since the P(V) function has a large influence.

From that a suitable initial value of R is taken as the value
which causes the cost function C(V) to decrease which is our
goal (i.e. a good balance is achieved).

A suitable initial vaiue of R for most of the cases stud-
ied is 0.1, and a rate of reduction of the value of R equals
to 10 (i.e. R = 0.1, 0.0l,...etc.) was found to be efficient
for most of the cases, In case that the value of R is reduced
too quickly, or when the initial value of R is too small, the
synthesis method may encounter one of the constraints and thus

the moves in the design space are found to move along the con-
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straint boundaries; this was found to make the synthesis method

inefficient.

4.7 Convergence (Criteria

From experience it was found that most of the cost is re-
duced during the initial running of the computer program. In
general the additional iterations for the program are made only
to improve the resulting optimum design. If it is found that
no appreciable reduction in the cost occurs after two successive
R values, for practical purposes it can be assumed that conver-

gence has taken place,
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

An efficient structural synthesis capability to minimize
the cost of bonded pretensioned prestressed concrete beams of
various kinds, subjected to different loading conditions, in-
cluding all the live loading possibilities which may act has
been developed. This efficiency is due to a combination of
sevetal factors:

1. The use of the penalty function of Fiacco and McCormick
causes the successive designs obtained during the syn-
tﬁesis procedure to stay away from the constraint
boundaries and therefore ensures that the designs ob-
tained remain in the acceptable region of the design
space. Another advantage of using the penélty function
is that the problem is converted to a sequence of un-
constrained minimizations which enables the use of the
Fletcher-Powell method which is considered as the most
powerful method for finding the minimum of unconstrain=-
ed géneralnfunction.

2., The gradient of the Fiacco-McCormick function is obtain-
ed in an exact way by using the partial derivatives of
that function with respect to each design variable,

This énsures that the resulting gradient has high accura-
cy which is of a great importance as the Fletcher and
Powell method is intimately related to gradient calcula-

tions. 49
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Using the computer program on different designs, some

general conclusions can be drawn from tﬁem.

l. Relative minima is present in the design space. (Désign
2 and 3).

2. An optimum design of a desired shape canlbe obtain
without difficulty if the initial design has the same
shape as the desired one (Designs 1, 5, 6 and 7).

3. In the case that the initial design has a different
shape from the desired one an optimum design having the
desired shape may be obtained by a suitable choice of
the initial design. In such a case it is recommended
that the initial design be chosen far away from the
constraint boundaries. It may also be required to add
side constraints on some design variables or change the
values of the existing side constraints (Designs 2, 3,
4 and 8).

4, Some designs of desired properties (e.,g. limited depth,
wide flange, limited number of prestressing steel rows,
sosctc,) can be obtained without difficulty (Designs 5,
6 and 7).

5, Most of the optimum designs are constrained.

6., The major reduction of the cost is during the first
iteration of the computer program. As a result, this
method ¢an be considered an efficient method since good
design can be obtained after only one trial,

7. Starting with a relatively costly design does not sige

nificantly affect the minimum cost obtained., Due to
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L
- '

.the relative minima concept the optimum design obtained
may have a less cost than that of an initially good
design. But the high cost initial design may need
higher computer time to reach the minimum, (Design 3,

4 and 8)., This is not of a significant effect since
the major reduction in the cost is during the first
iteration of the computer program.

8. The initial value of R varies from one problem to an-
other, and for the same problem the closer the initial
design to the constraint boundaries the smaller the
initial value of R and vice versa. A good initial value
of R is that value which causes a reduction of the cost
function after each iteration,

9. In practice the optimum design obtained at the critical
moment section can be considered as an optimum design
for the entire beam., In case that the allowable normal
stresses are not satisfied at other critical sections,
changing the position of the different prestressing
steel rows is required in order to satisfy the allowable
normal stresses; this is accomplished without changing
the other cross sectional dimensions and the cost there-~
fore remains constant, If the principal tensile stresses

are not satisfied, the web width, Bw must be increased.
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* 5.2 Recommendations

l. Further studies on the initial value of the multiplier
R and the rate of its reduction should be made.

2. The cost function in this work could be modified by
considering the cost of the normal mild steel used in
resiéting the tensile stresses,

3. A synthesis capability should be developed in the same
way as in this work but using the ultimate load prin-
ciple in the analysis portion of the synthesis scheme.
The method could be extended to post-tensioned concrete
beams.

4, Further studies should be made in order to develop a
synthesis capability to synthesize more complicated

structures (e.g. frames, folded plates,eeeeetCo)e
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Fig. 13 OPTIMUM SECTION FOR DESIGN 3
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Fig.14 OPTIMUM SECTION FOR DESIGN 4
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Fig.16 OPTIMUM SECTION FOR DESIGN 5
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FOR DESIGN 5
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Fig. 18 OPTIMUM SECTION FOR DESIGN 6
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Fig 19 INITIAL SECTION FOR DESIGN 7
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Cost Function
Initial R Shape Value
S/ft F(V)
Design -
107" D 10,323 18.340
Number Minimum Function
R of Shape Cost Value
Iterations s$/ft F(V)
A ,
lo 10 8.407 16.534
107> 16 D 8.328 9.156
10-0 7 D 8,197 8.286
Total number
of 33
Iterations

TABLE 2.1 Function values for Design 1
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TABLE 2.3 Upperx Limit Constraints for Design 1
Design Variables Hg(4) T¢ Bg
in, in, in.
Upper Limit Tb + st 0.0 0.0

TABLE 2.4 Average Steel Stresses for Design 1

Normal Stresses

Average Steel Stress at C.g.5.

(keseis)

Loading
Combinatign 1 2 3 4 5

[ =]

° Initial | 130471 | 111.82 [109.41 [116.76 114,35
" _

ol I |

g

o Final 126,87 | 108.36 [104.54 | 106,79 102.97
[o14]

=

v )

5 Initial | 130,71 | 110.87 |109.41 |115.81 | 114.35
]

o | 2

2

~ Final 126,87 | 106.85 [104.54 |105.28 102.97
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TABLE 2.5 Concrete Stresses at Top Fiber for Design l.
Normal Stresses Stress of Concrete at Top Fiber
' (koSoi.)

Loading

Combination 1 2 3 4 5

e

.S Initial 00128 -00892 "'00405 “"00873 "'00386
b

o

g % ’
O Final 0.419 -10,267 ~0.471 -1.,2717 ~0.481
00

e

red

ae

g Initial 0.128 =0,700 -0.405 -0.681 -0.386
R

)

> b

ot {3

1 Final 0.419 "00953 -0.471 -On963 "'00481

TABLE 2.6 Concrete Stresses at Bottom Fiber for Design 1.
Normal Stresses Stress of Concrete at Bottom Fiber
(k. Se i')

Loading

Combination 1 2 3 4 5

5 Initial | =0.785 04334 | -0.142 0.290 | -0.186
o

-~ 1]

=

S Final -1.518 00340 ~0.428 0.364 -0.404
60

o)

o]

g Initial | -0.785 0,146 0,142 0.102 -0.186
[

o | 2

2

2 Final -1.,518 0.037 ~0.428 0.061 -0.404

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




g1

86¢°0 c0e°0 £€07°0 00¢€ *0 100°0 Teutd .ﬂ..
<
[¢o]
)
0%1°0 961°0 I?1°0 L61°0 7700 1etratul ®
[a ¥
=
*
80Z°0 g80%°0 £€0C°0 £0%7°0 100°0 Teutry mv
- a
[
ov1°0 g¢g°0 i%1°0 LS2°0 %20°0 1eratul o
UOTIBUIQWO)
S k¢ 2 [ 1 Suipeo]
suty
wesg 9yl JO UOFID2[ISC0 WRUIXENW
1 uSt1sSag 103 suct3odyJed WnNWIXBW 2°Z ITI4VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

TABLE 3.1 Function values for Design 2

]
Cost Function
Initial R Shape ‘Value
mEE Pl s/5c F (V)
. -3
Design 10 10.348 70478
Number Minimum | Function
R of Shape Cost Value
Iterations $/ft F(V)
-3
10 9 [] 8,228 48,603
-t
10 12 7.727 11.813
107> 10 ] | 70523 7.959
10-6 12 D 74454 70504
Total number
of 43
Iterations
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Table 3.3 Upper Limit Constraints
for Design 2,
Design Variables Hs(&) Bf
in. in,
Upper Limit 505 0.0

TABLE 3.4 Average Steel Stresses for Design 2

Normal Average Steel stress at C.goSe
Stresses (keseio)

Loading
Combination 1 2 3 A 5

f o

4 Initial| 128.82 | 108.65 | 106,29 | 109.71 [107.34
4

B |1

5

O Final 125.15| 105.82 | 101.89 | 101.31 97.370
bl

=}

o

p Initial|l 128.82 | 107.72| 106.29| 108.77 |[107.34
fun

u 2

-3

-t

— Final 12515 104427 10189 99,755 97.370
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TABLLE 3.5 Concrete Stresses at Top Fiber for Design 2

Normal Stresses Stress of Concrete at Top Fiber
(keseiso)

Loading

Combination 1 2 3 4 5

o

.3 Initial 00279 "00771 "'00287 -00766 "'00281

44

E 1

a Final 0.416% | ~1.643 ~0.658 -1,673 ~-0.688

60

£

@ Initial | 0.279 | -0.580 | -0.287 | -0.575 | -0,281

|

o 2

2 Final 0.416% | -1.255 -0.658 -1.,285 ~-0.688

.

TABLE 3.6 Concrete Stresses at Bottom Fiber for Design 2

Nornal Stresses Stress of Concrete at Bottom Fiber

(kosais)

Loading

Combination 1 2 3 4 5

o

° Initial | -1,145 0.047 -0.424 0.035 -0.436

J

ord 1

o

=

3 Final -2,022 0.331 -0.626 0.419% | -0.537

&0

e

o

]

s Initial | =1.145 «0.138 | -0.424 -0.150 ~-0.436

2

Q

'2 Final —2.022 -0;045 "00626 OOO/+2 —00537

3
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Cost vFunction
Initial R Shape VaLue
$/ft F(V)
Design
0.1 [] 17,781 21141
Number Minimum Function
R of Shape cost Value
Iterations $/ft F(V)
0.1 70 ] 8.536 4015.6
0.01 70 ] 7,109 408,08
.
0.001 70 6.780 46,943
L
0.0001 70 j 6,713 10,776
Total number
of 280
Iterations

TABLE 4,1 Function values for Design 3
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89

for Design 3.

Upper Limit Constraints -

Design Variable H B
€sie t s(4) £
ino in,
er Limit T + T 0.0
Uppe b sb

* TABLE 4.4 Average Steel Stresses for Design 3
Normal Average Steel stress at c.ges.
Stresses (k.s.i‘)
Loading
Combination i 2 3 4 5

S Initial| 130414 | 107.75 (106,91 {110.34 [109.49
- :

- 1

2

S Final 118.03 96,804 93,023 87.437 | 83.657
0

£

L] .

o

g Initial| 130.14 | 107.42 |106.91 |110.0 109.49
-

2

()]

~

:"] Final 118,03 95314 93.023 854948 83.657

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




TABLE 4.

90

5 Concrete Stresses at Top Fiber for Design 3

Normal Stresses

Stress of Concrete at Top Fiber

(ko Soio)
Loading
Combination 1 2 3 4 5
o]
S Initial | 0,260 | -0.143 | 0.018 -0.133 | 0.028
b 1
=
S Final 0.322 | ~«2.220 | =0.986 | -2.281 -1.048
&)
=}
g Initial 00260 ""00079 00018 -00069 00028
2] 2
v A .
E Final 0.322 | =1.734 | -0.986 | ~1.795 | =1.,048
TABLE 4.6 Concrete Stresses at Bottom Fiber for Design 3.

Normal Stresses

Stress of Concrete at Bottom Fiber

(koSoi.)
Loading
Combination 1 2 3 4 5
[of
(o]
o Initial | -0.871 -0.360 -0.519 -0.383 | =0.542
3 |
o &
© Final -2,928 0.147 -1.035 0.417 | =0.765
gn .
S
9 Initial | -0.871 -0.423 ~0.519 -0.445 | =0.542
o 2
>
a Final -2.928 ~0.318 | ~1.035 | -0.048 | =0.765
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Cost Function
Initial R Shape Value
$/ft F(V)
Design
0.1 D 17,781 586345
Number Minimum Function
R of Shape - cost Value
Tterations $/ft F(V)
1 x 107t 43 T 11,346 | 4022
-2
1 x 10 69 T 8.268 409.9
1 x 107> 9 T 7.743 48,13
1 x 1074 19 T 7.609 | 11.695
Total number
of 140
Iterations

TABLE 5.1 Function values for Design &

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




93

ITWIT

u)s (1+u)s

0 1& () H - H S 1 0°0 0°0 0°0 0°0 19m07
8Z7°S|  661°%| wS6°r | LzL°T |wgy9ro | 9610°0 ) LOTO0 | 9800°0 Teutd
€°¢G z°% 1°¢ 02 07°*0 0zZ°0 0¢*0 Z%°0 Ter3itul
*ut ‘urt *ut *utre*bs cut°bs *ur°*bs *ui*bs *ut°bs sajqeide)
- 0°0 0°0 0°2Z 0°2 0°0 0°0 0°'c 0°*%1 ITwI]
I9m07
86 "wET 0°0 928°1 | 269°¢ LET®T 690°0 €68°0 #20°¢ | 7L9°1¢ Teutrd
0°ce1 0°0 0°0 0°8g 0% 0°¢ 0°¢ 0°% 0°9Y Ter3tul
*te°s*y ‘ut *ur *utl ‘utg ‘*ut ‘ut °ut *ur sa1qerIRp
Anmnvau £ 3 ag 9 qas; IS 3y my us rs5q

% u8rsag 103 sayjqelarp udysag Z°¢ ITGVL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

TABLE 5.3 Upper Limit Constraints
for Design 4
pesign Variables Hs(&) Bf
in, in.,
Upper Limit 5¢5 0.0

TABLE 5.4 Average Steel Stresses for Design 4
Normal Average Steel Stress at C.g.s.
Stresses (koesels)

Loading
Combination 1 2 3 4 3
- .
° Initial| 130,14 | 107,75 |106.91 |110.34 (109,49
- ,
o 1
g
S Final 123,57 | 104,63 [100.17 | 98.633| 94.180
00
=
ot
o
p Initialy| 130.14 | 107.42 [106.91 |110.0 109.49
=
o 2
b
~ Final 123,57 | 102,87 1100.17 96.879| 94.180
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TABLE 5.5 Concrete Stresses at Top Fiber for Design 4
Normal Stresses| Stress of Concrete at Top Fiber
(kesSeia)

Loading

Combination 1 2 3 4 3

o

St Initial | 0.260 | =0.143 0.0186 | -0.133 0.028
4

§ 1 .

S Final 0.409 -1.391 -0.532 -1.426 -0.567
00

o

‘ﬂ ’

g Initial| 0.260 | =0.079 0.018 | =0.069 0.028
o

S )

Q, .

e Final 04409 | -1,053 | =0.532 | =1.088 | -0.567
A

TABLE 5.6 Concrete Stresses at Bottom Fiber for Design 4
Normal Stresses Stress of Concrete at Bottom Fiber

(k. Soio)

Loading

Combination 1 2 3 4 5

& Initial | -0.871 | =0.360 | -0.519 | -0.383 | -0.542
l‘j

- 1

o

g Final -2.202 | +0.290 | -0.713 0.416% | =0.587
(@]

(224 '”

o

o Initial | -0.871 | -0.423 -0.519 ~0.445 -0.542
[u] .

S 2

- Final -2.202 | =0.104 | -0.713 0.020 | -0.587
ot

=

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




96

19€°0 1.6°0 Z6€°0 Y6 °0 1€0°0 1eutd =
N

o

500 950°0 H50°0 960°0 010°0 Te13tul w
5

[81]

19€°0 %89°0 Z6€°0 219°0 1£0°0 1euUTd m
[N

cr

%400 690°0 ¥%0°0 L0°0 910°0 1e131ul S
VOT3IRUTIqUOD
s v € ¢ ! Suipeo]

‘M-NM

weag syl

JO u01309739Q WNUIXEN

% u81sag XI0J SUOIJIOD[IoC WnNWIXEW

LS

317¢VL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

Cost Function
Inital R Shape Value
$/ft F(V)
Design
0.1 1 11.452 22.791
Number Minimum Function
R of Shape cost Value
Iterations $/ft F(V)
0.1 60 1 7.779 16.345
0.01 70 I 6.686 7.897
0.001 70 1 6.319 6.530
Total number
of 200

Iterations

TABLE 6.1

Function values for Design 5
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TABLE 6.3 Upper Limit Constraints
for Pesign 5
PDesign Variables H Hs(a)
in. in.
it 5 +
Upper Limit 2 Tb st

TABLE 6.4 Average Stecl Stresses for Design 5
Normal Average SteellStress at C.ge.s.
Stresses (keseio)

Loading
Combination i 2 3 4 5
[+
4 Initial| 128,67 | 107.84 |105.73 | 108.36 |106.25
" i
s |1
5
© Final 120.42 | 100.48 95,54 89.364| 84.424
o0 .
o]
ot
g .
Q Initial| 128.67 | 107.01 |105.73 | 107.53 [106.25
Q
o |2
o4
= Final 120.42 | 98.531] 95.54| 87.418| 84.424
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TABLE 6.5 Concrete Stresses at Top Fiber for Design 5

Normal Stresses Stress of Concrete at Top Fiber
(kes.i.)
Loading
Combination 1 2 3 4 5
o
S Initial | -0.169 | =1.267 -0.714 -1.266 -0.713
&0
l I
=]
S Final 0.327 | =2.574 | =1,155 -2.647 -1,228
(1]
[
ord
° Initial | =0.169 | =1.049 | =0.714 | =1.048 | -0.713
22
]
> Final 0.327 | =2.015 ~1.155 ~-2.088 -1.228
o

TABLE 6.6 Concrete Stresses at Bottom Fiber for Design 5

Nornal Stresses Stress of Concrete at Bottom Fiber
(kosSeio)
Loading
Combination 1 2 3 4 5
g Initial | -1.195 | 04052 | -0.443 0.046 | ~0.449
ord
bt I |
o
g Final -2.869 | 0.085 | -1.044 | 0.387 -0.742
U .
&0
[«]
o Initial | =1.195 |-0.142 -0.443 | =0.149 06449
«
3 2
o Final -2.869 |-0.359 | -1.044 | =0.057 | =0.742
o«
)
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TABLE 7.1

Cost Function
Initial R Shape Value
$/ft F(V)
Design
0.1 L 11.452 22.891
Number Minimum Function
R of Shape Cost Value
Iterations $/ft F(V)
0.1 9 I 9.193 19.664
0.01 45 I 8.022 94527
Total number
of 54
Iterations

Function values for Design 6
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TABLE 7.3 Upper Limit Constraints for
Design 6 .
Design Variables 'H 53(4)
in,. in.
) Upper Limit 25.0 55

TABLE 7.4 Average Steel Stresses for Design 6
: 1

Normal Average Steel Stress at Ce8¢Se
Stresses (keseis)
Loading
Combination 1 2 3 4 5

=

g Initial 128,67 107.84 105.73 108.36 [106.,25

44

g 1

o

S Final 121,07 |100.04 | 95.903| 89,664 85,528

b0

=

wd .

o

g Initial 128.67 |107.01 105,73 |107.53 [106.,25

-

o |2

>

ot

A Final 121.07 98.410 85.903 88.035 85.528
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Concrete Stresses at Top Fiber for Design 6

Normal Stresses

Stress of Concrete at Top Fiber

(kesoia)
Loading
Combination 1 2 3 4 5
5
':; In.itial "'Oe169 -10267 —00714 -10266 -00713
ot
©
o]
S Final 0169 | =2,421 | =1,272 | =2.442 | =1.294
60
=]
L
o
ig Initial “'0.169 "‘10049 _00714 —10048 "00713
=
[
2 Final -0.169 | -1.968 | -1.272 | =1.990 | -1.294
=
TABLE 7.6 Concrete Stresses at Bottom Fiber for Design 6

Normal Stresses

Stress of Concrete at Bottom Fiber

(kOSoil)

Loading

Combination 1 2 3 4 5
5 Initial | ~=1.195 | 0.052 | =0.443 0,046 | =0.449
I}

ot

o

g Final =2.720 | ~0.004 | =1.035 0.263 | -0.766
(&

&an — ~ SR S
o

© Initial | -1,195 | =0.142 | =0.443 | =0.149 | -0.449
(¢}

=

g Final -2.720 "'00410 "10035 -00142 -0.766
ot

-3
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Cost Function
Initial R Shape " Value
§/ft F(V)
Design 3
)
Number of Minimum Function
R : Shape| Cost Value
Iterations | ° -,
s $/ft F (V)
-3
1 x 10 17 I 9.424 129,61
-4
1 x 10 4 1 9,359 21.394
Total number
of 21
Iterations

TABLE 8¢1 Function values for Design 7
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TABLE 8.3 VUpper Limit Constraints
for Design 7
Design Variables H Hs(a)
in, in,
Upper Limit 25,0 1.7

TABLE 8.4 Average Steel Stresses for Design 7.

| Normal Average Steel Stress at c.g.s.

Stresses (kosois)

Loading

"Combination 1 2 3 4 5

o

0 Initial | 127,37 | 106,65 | 104,12 105,08 } 102,55

-

° o1

o

S Final 126.82 | 107.98 | 104.3 |106.19 | 102,51
=4]

o

ot

-c .

i Initial |127.37 [105.65 | 104,12 | 104,09 | 102,55
3

= Final 126,82 106,53 | 104,30 | 104,74 ) 102,51
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TABLE 8.5 Concrete Stresses at Top Fiber for Design 7

Normal Stresses Stress of Concrete at Top Fiber
(kesSeio)

Loading

Combination 1 2 3 4 5

5

ot Initial 0.020 | ~1.109 -0.560 -l.114 ~0.565

44

g | -

S Final -0.035 | -1.884 -0.959 -1.889 -0.965

(1]

=]

o Initial | 0.020 | -0.893 | =0.560 | -~0.898 | -0.565

S |2

[0

'z Final "00035 "'1.52 -0'959 —10525 -00965

=

TABLE 8.6 C(Concrete Stresses at Bottom Fiber for Design 7

Normal Stresses

Stress of Concrete at Bottom Fiber

(kesoia)
Loading
Combination 1 2 3 4 5
5 Initial | =1.362| =0.081 | =~0.570 | =0.060 | =0.549
-:J
- 1
o~
5 Final -1.465| 0.307 | -0.424 | 0.332 | -0.398
S .
&0
o]
o Initial | =1.362 | =0.274 | =0.570 | =0.253 | =0.549
[0}
S 2 -
> Final ~1.465] 04018 | ~0.424 0.0447 | -0.398
[ |
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TABLE 9.1

Cost Function
Initial R Shape Value
$/ft F (V)
Design : -
0.1 1 244316 34.521
Number Minimum Function
R of Shape Cost Value
Iterations $/ft F(V)
0.1 63 1 7.799 18.535
0.01 L4 I 6.647 7,991
0.001 56 I 6.310 6.535
Total number
of 163
Iterations

Function values for Design 8
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TABLE 9.3  Upper Limit Constraints

' for Design 8

Design Variables H Hs
in, in.

Upper Limit 25.0 5.5

TABLE 9.4 Average Steel Stresses for Design 8
| Normal Average Steel Stress at c.ge.S.
Stresses - (kesei,)
Loading 1 3 4 5
‘Combination
o]
° Initial | 131,63 |110.63 109.73 {116.59 |115.70
%] = h o
S| 1
o
5 .
¥ Final 120.04 |100.20 95.195| 89.048| 84.043
00
=]
oy
o
S Initial | 131.63 |110.27 |109,73 [116.24 115,70
el
o] 2
> .
- Final 120.04 98.228) 95,195 87.076| 84.043
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TABLE 9.5 Concrete Stresses at Top Fiber for Design 8

Normal Stresses Stress of Concrete at Top Fiber
(k. Se i-o)
Loading
Combination 1 2 3 4 5
o
o
o Initial | =0.164 | =0.645 -0.435 -0,625 ~0.414
o |1
5
© Final 0.341 | -2,568 ~1.147 -2.642 -1.221
60
b=
el .
o
2 Initial | -0.164 | -0,562 -0.435 -0.542 -0.414
=2
Q
_3 Final 00341 "20008 "'1.147 —2.082 "1.221
3

TABLE 9.6 Concrete Stresses at Bottom Fiber for Design 8

Nornal Stresses Stress of Concrete at Bottom Fiber
(kesoio)
Loading
Combination 1 2 3 4 5
5
S Initial | -0.625 | -0.0l6 | =0.222 | -0.073 | =0.279
- |1
o
o
8 Final "2.869 +00085 "1-043 00389 -00739
00
=)
et
g Initial | =0.625 | -0.097 ~0.222 -0.154 -0.279
S
W
> Final =2.869 | -0.359 ~1,043 -0.055 -0.739
o |
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