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ABSTRACT

This study is presented to establish methods of 
analysis and practical applications of cylindrical shells, 
made of corrugated sheets.

The present approach is based on treating the 
corrugated sheets as orthotropic shells, and deals with 
their applications in shell roofs and grain bins.

The differential equations, governing the behaviour 
of orthotropic shells, are established in an exact as well 
as simplified form.

The cases of practical shells, which are solved 
here, include single and group of shells with longitudinal 
stiffeners in valleys only, and with longitudinal 
stiffeners in valleys and crown, as well as half barrels 
supported along their four edges. Simplified design 
formulae and tables are prepared for use in practice.

An experimental program was undertaken with full 
scale shell roofs. The experimental results showed good 
agreement with those obtained theoretically.

Simplified differential equations, governing the 
behaviour of bins made of corrugated sheets, are derived. 
Particular and homogeneous solutions are superimposed to 
satisfy the governing equations as well as the boundary 
conditions.

ii
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A study on the effect of geometry of corrugation 
configuration on the load capacity of the shell is also 
made.

iii
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1

CHAPTER (I)
INTRODUCTION

The use of light gauge corrugated sheets goes back
to the beginning of this century. For a long time,
corrugated sheets were being used as coverings, without any
attention being paid to their structural capability. The
main reason for not considering them as structural materials,
was the lack of a sound basis for connecting these sheets

(18)together, to form' a continuous medium. Nilsonv ' was the
first to study, the behaviour of these sheets when assembled.
His study laid the foundation for the use of corrugated
sheets, as shear diaphragms, to replace shear bracings.
Furthermore, his investigation postulated the possibility

(19)of using these sheets in folded plate roofs , in which 
they carry mainly the shear forces, (the tension and 
compression are.being carried by longitudinal stiffeners).

Parallel to these studies of practical applications, 
extensive study of' the mechanical properties of such 
assembly was carried out by Luttrell , Bryan , 
EL-Dakhakhini and the author

In Canada and the U.S.A., corrugated sheets are 
produced with cylindrical curvature. Up to the present time, 
they are being used in grain bins and farm buildings without
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a reliable method of design. Therefore, it is the author's 
conviction that a precise method of analysis for cylindrical 
shells made of corrugated sheets would open the way for 
another economical practical use of such materials.

Furthermore, shells have better load-carrying 
characteristics than folded plates, (under a uniformly distributed 
load), since they translate the applied loads into mainly membrane 
forces. Moreover, shells offer an efficient use of thin steel 
sheets in longspan structures, as the corrugations minimize the 
problems of local and overall buckling.

Corrugated sheets, with cylindrical curvature, are usually 
produced, using the arc-and-tangent type of corrugations.
The present thesis examines shells made of this type of 
corrugation and suggests alternatives for better performance.

In this study, the corrugated sheets are treated as 
orthotropic materials. In Chapter (II), the mathematical 
formulations of the theoretical model are dealt with.
Exact and simplified governing differential equations are 
derived from these formulations.

In Chapter (III), the applications in roofing are 
presented. The practical cases of boundary conditions are 
discussed and the method of solution is given. The general 
differential equation of the 8th order in the radial 
displacement, w, governing the behaviour of orthotropic 
shells is established. The membrane analysis of the shell, 
under different cases of loading, is also given in this
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3
chapter. In this membrane solution, the boundary conditions 
are not satisfied. Subsequently, a bending solution of the 
governing differential equation, with no surface loading, 
is superimposed in order to satisfy the boundary conditions. 
The practical cases of boundary conditions, which are solved 
here, include single shells and groups of shells with 
longitudinal stiffeners in valleys only, and with longitu
dinal stiffeners in valleys and crown, as well as half 
barrels supported along their four edges. Simplified design 
formulae and tables were prepared for use in practice.

Also undertaken in the course of the present study, 
was an experimental program planned to test shells having 
different cases of boundary conditions. These experimental 
investigations, together with a comparison of the theoretical 
and experimental results, are given in Chapter (IV).

The differential equations, governing the behaviour 
of grain bins, made of corrugated sheets, are obtained in 
Chapter (V). Particular and homogeneous solutions are 
superimposed to satisfy the governing equations, as well as 
the boundary conditions. Curves were prepared for the 
determination of the effective width of corrugated sheets, 
stiffened by vertical ribs, under frictional forces. The 
study of the effect of the slip at sheet-to-sheet and 
sheet-to-frame connections is made for both shell roofs 
and grain bins.

Chapter (VI) deals with the effect of geometry of 
corrugation on the load capacity of the shell. Other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

corrugation configurations are suggested for better 
performance of the shell.

The observations and conclusions of the present 
study are given in Chapter (VII).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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CHAPTER (II)
MATHEMATICAL FORMULATIONS

In this analysis, the theoretical model represents a 
shell, matin sct; rv«*elastic orthotropic material in which the 
mechanical properties are equal to the average properties 
of the corrugated sheets.
II.1 Mechanical Properties;

For the arc-and-tangent type of corrugation, 
figure (1) , the mechanical properties are^'^ :

D, -[-)* t • E (1-a)
* W

Dx ~ ~ ~ 2~r (1“b)X • 6 (1-y ) \f

D , = p (1-c)
2 (l+y) y )

B, = 0.522 E • t * f2 (1-d)9

B =  ■ E ‘ -t 3 j  -- ( ( 1 - e )
X 12 (1-y ) \£j

.3
.■x* 12 (1+p) Vc,
b = . E:£.~ I'L] • d-f)

in v;hich: and are the axial rigidity in the x- and
^-directions respectively; Dx  ̂= shear rigidity in the x-<j>
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plane; Bx and = bending rigidity in the xz- and <|>z-plane 
respectively; Bx  ̂= torsional rigidity; t = average 
thickness of the sheet; c = corrugation pitch; £  = developed
length of corrugation per pitch; f = half depth of 
corrugation; E = modulus of elasticity of steel; v- - 
Poisson's ratio; and p = a reduction factor to account for 
the effect of slip at sheet-to-sheet and sheet-to-frame

11.2. Governing Differential Equations:
The differential equations governing the behaviour 

of the shell are.obtained by using the previously mentioned 
properties, Equations' (1-a, b...f), together with the 
equilibrium conditions and geometric relationships of an 
infinitesmal element, dx*R*d<j>.
11.2. (a). Conditions of Equilibrium:

Referring to figure (2), the conditions of 
equilibrium, are:

connections^. These properties were verified experimentally
in Reference (8).

(2-a)

(2-b)

(2-c)
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where: p , p, and p_ are the components of externalX 9
loading in the x, <j> and z-directions respectively, R is the 
radius of curvature.

Eliminating the•transverse shears, Qx and Q^,from 
equations (2-a,... f) ,• by making use of equations (2-d,e), 
this system of equilibrium equations can be reduced to the 
following:

N + + p = 0 (3-a)
X • R

RN* + R2N' , - M! - Rm' + R2p . = 0 (3-b)tj> X<{> <f) X<fi

M** + RM' * + RM** + R M + RN, + R p = 0 (3-c)<f> X(|> <J>X X <|) cz

R(N , - ) + M. = 0 (3-d)X<{> </>X </>x

U / \ ' 9 ( ) / _ 9 ( )where: ( ) = ? ( ) = — 1— -
9x 9<j>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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II.2.(b). Geometric Relationships;
The geometric relationships of cylindrical shells 

(10) .are

= I 8v _ /_1_\ w +
R a<j> \R+Z / R \R+Z/ 9<t>

_ (4-b)
%

YX<f>

/ R+z \ 9 v  / 1 \ 9u / z Z \

= I t )  *  + A t ) »  + U  + t )

9^W
94> \ R R+z / 9x9 <j>

(4-c)

II.2. (c) Elastic Relationships:
Making use of the elastic law, together with the 

previous geometric relationships, Equation (4), the 
following expressions can be obtained for the stress- 
resultants of orthotropic s h e l l s ;

d a .N, = - —* (w-v) - —% (w+w) (5-a)
*. R R3 .

i B ||
N = D u + —  w (5-b)

R

D B •
= (̂  + Rv) + (̂  " Rw) (5-c)*x R 2R3

D B
N . = —^4 (u + Rv) + —^4 (v + w) (5-d)
X* R 2R
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Substituting for the stress-resultants from 
Equation (5) into the equilibrium equations, Equations (3a-c) 
the following three governing differential equations in u, 
v and w, are obtained:

D li + D f4  + + ! k  f
X ' R X* Ve2 R ) 2R3 \R /

+ p = 0 (6-a)X

3R
D, (v - w) + D (Ru + R2v) + — 54. (v +'w) + R2p = 0 (6-b)9 xq>. , 9

• B , •• III! Ill
D, (v - w) -  —£• (w + 2w + w) - (R B w + RB u)9 x x

n»> 3B , m * B , i •• <)
-  (2  E . w +  — S i  v  -  - 2 1  U ) +  Rxp ,  =  0 ( 6 - 0 )

x *  2 2 R  z

The fourth condition of equilibrium, Equation (3-d), is 
self-satisfied.
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II.3. Simplificationsi
The system of equations/ Equations (6-a,b,c), is 

derived with minor approximations, (lateral strain and 
non-linear terms of the strain expressions are neglected).
It encounters a number of terms which have insignificant 
effects on the results of the corrugated sheet shells. These 
terms may be neglected, and this system of equations can be 
simplified if the following assumptions are made in the 
derivation:

The structural action of a cylindrical shell can be 
approximated by combining the structural actions of a flat membran 
corresponding to the developed shell loaded in its own 
plane; of a plate, formed by the developed shell loaded at 
right angles to its plane; and of the shell regarded as a 
flexible membrane.

Thus, Equations (2), (4) and (5), can be reduced to
a simpler form, based on the following arguments which were

(61first proposed by Donnell for isotropic shells. Firstly, 
in connection with the equations of equilibrium, it can be 
argued that the transverse shearing force, Q^, appearing in 
equation (2-b) , (which represents the condition £ <t> = 0) , 
may be dropped, as it does not occur in the corresponding 
equations of equilibrium of the fl'at membrane or the membrane shell 
Therefore, the equilibrium equations, Equations (3-a, b, c), 
reduce to:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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, n :
Nx + —  + Px = 0 (7-a)

N* + + %  = 0 (7"b)

M. + RM* , + RM* * + R2m" + RN. + R2p = 0 (7-c)ij) X $  <j>X X  <J> z

Secondly, in connection with the strain expressions, the 
effect of changes of curvature on the strains is assumed to 
be negligible, therefore, Equations (4-a,b,c) are simplified 
to:

e = ^  (8-a)
x 8x

\ ■ (8_b) 
R \ 8$ /

k (~) R \8* /
(8-c,

Thirdly, the changes of curvature and twist, are considered 
to be insignificantly _ affected by the "stretching" displace
ments, u and v. Thus, these expressions are reduced to:

a2w
X x = “ T T  ax

a2wX-A = ~■> R2a<f)2

_ _ a2w 
R3xa<f>
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Utilizing Equations (8-a,b,c) together with the 
elastic law, the stress-resultants Nx , Nx<j, and N^x are
reduced to:

I
Nx = Dxu (9-a)

D*N = - —  (w - v) (9-b)
* R

D , •
N . = N = -21 (u + Rv) (9-c)

X(|> <j>X R

and the moments are:
2

- M = - Bv 2-% (9-d)
x X 3x2 '

b , a2w
M.   & — ~ (9-e)
+ R2 3<f»2

B , 32W
M   — ------ (9-f)
x* *x R 8x3 <f>

Substituting Equations (9-a,...f) into Equations 
(7-a,b,c), the following simplified system of governing 
differential equations, is obtained:

II (H)Dx u + Dx* I fr + r ) + px - 0 (1°-a)

D, (v - w) + D . (Ru + I?v) + R p. = 0 (10-b)<p K<p 9

o ihi it" •••• 2Da (v  -  w ) -  (R B w + 2B ,w + 4w) + R p = 0 (10-c)
' q) X  Xq> R Z Z
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The solution presented in the following chapters 
are based on the simplified system of equations, 
Equations (10-a,b,c). The validity of this system of 
equations and the degree of accuracy obtained from them 
are discussed in Chapter (III).
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CHAPTER (III) 
APPLICATIONS OF CYLINDRICAL SHELLS 
MADE OF CORRUGATED SHEETS IN ROOFING

111.1. Introduction:
This chapter suggests some economical applications of 

the cylindrical corrugated sheets used in shell roofs. The 
practical cases of boundary conditions are discussed and the 
solutions are given.

Referring to Figure (3), the chosen coordinate system 
is shown. The origin , 0, is designated at the mid-span of 
the left edge of the shell. The span of the shell is "L"
and half the central angle is 11 •
111.2. Boundary Conditions:

The shell roof is supported by two end trusses as 
shown in Figure (4). Thus, at these ends, the shell under
goes no .deflection and is considered to be free from 
moments. The following boundary conditions are to be
satisfied at x =. ± - .2

w = 0 (I-a)
Mx = 0 (I-b)
N = 0 (I-c)X
N = 0 (I-d)9

The boundary conditions along the straight edges 
differ according to the type of shell as shown in Figures 
(4-a,c.i.e). Their boundary conditions are as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

CASE (I): Single shell with longitudinal stiffeners in
valleys only.

Referring to Figure (4-a), the boundary conditions 
are as follows:

At $ = 0; and <p = 2<p&:

M = 0 (I-i)
<P

Q = 0 (I-ii)q>
N. = 0 (I-iii)V
ushell ~ ustiffener (I-iv)

The first condition means that the torsional 
resistance of the edge stiffener is neglected. The second 
and third mean that the bending rigidity of the edge 
stiffener is also neglected. The fourth condition 
indicates that the longitudinal displacement, u, at the 
edge of the shell equals the longitudinal displacement of 
the edge stiffener.
CASE (II); Single shell with longitudinal stiffeners in 

valleys and crown.
In this case, Figure (4-b), the following boundary 

conditions are to be satisfied:
At <|> = 0;

= 0 (II-i)<p
Q = 0 (Il-ii)S’
1SL = 0 (II-iii)<P
ushell = Ustiffener (II-xv)
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At <f> = (j>e (i.e. along the crown);
Qi = 0 (II-v)

0 (Il-vi)
v = 0
ushell ustiffener

Equations (II-v,vi,vii) are clear from symmetry. 
The 8th equation, Equation (II-viii), is as explained 
before.

For an antisymmetrical loading, the boundary 
conditions at (j> = <f>e becomes:

CASE (III): Half barrel supported along the four edges.
In this case, Figure (4-c), the following boundary 

conditions are to be satisfied:
At <fi = 0 and cf> = 2iJ>e;

V7 53 0
(II-V)
(II-vT)
(ll-vTX)

ushell ~ ustiffener (II-viii)

(Ill-i)
(Ill-ii)

v = 0 (III-iii)

^shell ustiffener (Ill-iv)

which means that there is a hinge-like support along the 
straight edges of the shell.
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CASE (IV): Inner shell of a multiple group of shells with

longitudinal stiffeners in valleys only.

A design approximation is usually made in the treatment of an interior 
shell of a multiple group by treating it as a symmetrical problem.

Referring to Figure (4-d), the boundary conditions 
to be satisfied in this case are:

At <j> = 0; <t> = 2<f>e :
w sinf + v cos<b = 0 (IV-i)C C
0 = 0  (IV-ii)
N, sin<* - Q, cos a = 0  (IV-iii)9 © 9 ©
ushell ~ ustiffener

Equation (IV-i) indicates that the horizontal
components of the displacements, w and v, are zero. This
can easily be seen from symmetry. Equations (IV-ii) states
that the rotation of the tanget should be zero, due to
symmetry. The physical meaning of Equation (IV-iii) is
that the vertical components of the internal forces
and Q ., at the edge of the shell, are set equal to zero.<P
This means that the bending rigidity of the edge stiffener 
is neglected. Equation (IV~iv)'is identical with the 
corresponding formula of CASE (I).

CASE (V) ; Inner 'shell of a multiple group of shells with 
longitudinal stiffeners in valleys and crown. 

Referring to Figure (4-e), the eight boundary 
conditions to be fulfilled here are as follows:

At <|> = 0 ;
w sin(f>Q + v cos<f>e = 0 (V-i)
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6 = 0  (V-ii)
N, sin<£ - Q, cos 9> = 0 (V-iii)9 e 9 • ®

ushell - ustiffener ^

These equations are similar to those given in CASE (IV).
At 9 = 9e;
Q, = 0 (V-v)9

6 = 0  (V-vi)
v = 0 (V-vii)

ushell “ ustiffener viii)

These equations are the same as those discussed in the 
second case of boundary conditions.

111.3. Method of Solution
The solution is carried out in three steps:

(a) A membrane solution with the surface loads acting on 
the shell.

(b) A bending solution of the unloaded shell.
(c) Superposition of the results of (a) and (b) to 

satisfy the boundary conditions that exist along 
the straight edges of the shell.

111.3.(a) Membrane Solution:
In the membrane solution, the shell is idealized as 

•a membrane incapable of resisting bending stresses. This 
membrane solution is valid for all types of shells. Thus, 
omitting the terms due to bending in the Equilibrium 
Equations (3-a,b,c), the following system of equations is
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obtained:
• n ‘aN + + p = .0 (11-a)
X R

RN: + R2n'. + R2p, = 0 (11-b)9 x<p 9

RN. + R2p„ = 0 (11-c)<P z

(i) • Membrane Solution Under Own Weight:
The own weight/ g, can be expressed in a Fourier 

series as follows:

4g / irx 1 3irx , 1 ___ „  5irxg = -2- < c o s  — c o s  h — cos ---

Whenever the load is uniform in the x-direction, it is 
usually adequate to consider the first term of this series. 
The components of the own weight in the x-<|> and z-directions 
can be written as follows:

g = 0 (12-a)3x
g = _ sin _ lj>) cos 22L (12-b)

ir L
g = l£ cos (a - 4.) cos ^  :(12-c)

Z 6  rTT I*

Using the equilibrium equations (ll-a,b,c), and
substituting for the loading (Equations 12-a,b,c), the
membrane solution for the stress-resultants N , N, andx 9
N • are obtained.

X<p
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N, = - ^2^ cos(<()._ “ $) cos kx
6 3r IT

N = “ --9-L-y COS (<j> - <f>) COS kXX f. *3 ©Rir

(13-a)

(13-b)

Nx* “ ^  sln (*e ■ ♦> sln kx7T
(13-c)

The three displacement components are obtained from 
equations (9-a,b,c) as follows:

u = _Z|2—  cos (A 
RkffDvX

sin kx (13-d)

= _ Sa7r i _  + — A
L k3D R2k4D x<|> x

sin(<J>e - <j>) cos kx (13-e)

w -SSL
7T

i _ +  — L
Lk3D*» R *k \ J

cos(<()e - <j>) cos kx (13-f)

in which k = ^ 
L

(ii) Membrane.Solution Under Show Load "p".
The snow load can be expressed in a Fourier series 

as follows:

P = 4? cos ■ \ ttx 1 3irx 1 5irxcos —  - — cos --- + — cos
TT L 3 L 5

As in the case of the own weight, g, the load is uniform 
in the x-direction and the first term in the series is
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usually sufficient. Then the three load components are:
p = 0 (14-a)x

p - - ^2 cos (A - <f>) sin (<f) -<))) cos —  (14-b)
* ir L

p = ^2 cos2 (A - (f>) cos —  (14-c)Z 6 tir L

Substituting equations (14-a,bfc) into the 
equilibrium equations (ll-a,b,c), the membrane solution, 
for the stress-resultants are obtained. Utilizing 
Equations (S-a,b,c), the three displacement components are 
also obtained as follows:

N , = - cos2 (<f> -<f>) cos kx (15-a)
(f) 6TT

N = - cos 2 ((f) - if)) cos kx (15-b)
Rirk 6

N , = sin 2 ((f>- (f>) sin kx (15-c)
Xd> Z 6TT

u = . . cos 2 (<f> - <f)) sin kx (15-d)
Rk3,DX

v = ^ 2  j — 1—  +     sin2((f> - <f>) cos kx (15-e)
1 L A xt h V b x J e

w = ^ 2  — -—  +     cos 2 (<J> -<f)) cos kx
' ' L d ,k2 rVd J
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(iii) Membrane Solution Under Wind Loading:
Many factors affect wind load on shell roofs. The 

load may take any non-symmetrical shape, depending upon 
the geometrical dimensions of the shell, and the direction 
of the wind. The effects of non-symmetrical loading may 
be divided into two cases; (1) symmetrical and, (2) 
antisymmetrical. It is possible to obtain the solution 
under any case of loading, using the principle of 
superposition. The following two cases can be used for 
the determination of the membrane solution under wind 
loading:
(iii)-a. Symmetrical Case of Wind Suction:

The load is expressed in a Fourier series as
* * *previously stated and the three components px , p^ and pz 

are given by:
p* = 0 (16-a)X

p* = 0 (16-b)
<P

* *p = ZiE— COS (<j) - <|>) cos kx (16-c)
Z 0ir .

The following membrane solutions for the stress- 
resultants are obtained using the equilibrium equations 
(11-a,b,c).
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*

N , = ftP - cos (<f> - $) cos kx (17-a)0 6r TT
*

N = ftPx-- cos {<f> - (j>) cos kx ' (17-b)
X irk R 6

*
N , = "ftp— sin (6 - $) sin kx (17-c)

' irk 6

The three displacement components are obtained
from Equations (9-a,b,c).

*
u = — ftP.,—  cos (<j> - <(>) sin kx (17-d)

irD k R

= ftp— f — — 7T + -- \— g-l sin (tf) - <{>) cos kx (17-e)
"• L D , k D k R J e

*
4r

V  =
*• I L

X(j> X

*
= zftEw = _^£_ I" — 1 +  cos U  -■<!>) cos kx (17-f)

ir 1° Ak D k R J eL  X(j) X  J

(iii)-b.. Anti symmetrical Case of Loading: 
The three load components are:

p* = 0 (16-d)X

p* = 0 (16-e)

p = ftP— sin cos kx (16—f)Z d)it e

The membrane solution is obtained by substituting 
Equations (16-d,e,f) into the equilibrium Equations 
(ll-a,b,c). as follows:
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N , = - sin cos kx (17-g)
- ♦ rr * e

N = ~ -P-^— sin —  cos kx (17-h)
X R»*e 4>e

N -a = cos sin kx (17-i)*4 ir*e <j>e

The three displacement components are obtained 
using equations (9-a,b,c) as follows:

u = sin sin kx (17-j)
ir <j> RD +eX

v = -4P*L2 2 ,
u ^e L "x<j)

I" _i_ + — — |cos —  cos kx (17-k)
L Dx* ♦ e R-DxJ

F— + — 5^5 Isin cos kx (17-/)
LDx* *e R DxJ ^e

a * T 2r • T2
w -

If isotropic properties are considered, these 
equations yield the well known membrane solution for 
isotropic shells.

III.3.(b) Bending Solution:
Since the load is considered in the membrane 

solution, tten px, p^ and pz are replaced by zero in 
Equations (10-a,b,c). The bending solution is governed 
by the following system of homogeneous differential 
equations:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

D u + D. f = 0 (18-a)
X x * \ r 2 r )

D, (v - w) + D . (Ru + R2v ) = 0 (18-b)
9 X<p

• B ••••
D. (v - w) - (R2b 'w +2B 'w + -4 w) = 0 (18-c)
<p x x<J>

Eliminating u and v from Equations (18-a,b,c), it is , 
possible to obtain one . governing differential equation in 
the radial displacement, w, as follows:

Differentiating Equation (18-b) twice with respect
to x:

*•11 U *  I I I *  O l l l l ’(v - w> + Dvjl (R u  + R v) = 0 (19-a)
<J) X(p

Applying the operator R to Equation (18-a)(— )\3x9(j) /
I I I * .  1 • • • !  I I* *RD u + Dv , (- u + v) = 0 (19-b)

R

Differentiating Equation (18-b) twice with respect
to <j> :

• •  * •  • •

D, (v - w) + D , (Ru + R2v) = 0 (19-c)
<p X<p

From Equations (19-b) and (19-c), it can be shown
that:

I f f *  • •  • •  • • •

R D u = D , (v - w) x <p
iii •  D , • • • •  ••  •

—  (v - w) (20-a)or R u =
r 2 d  x
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Substituting Equation (20-a) into Equation (19-a):

ti •• ii* D, •••• ••• oim
D , (v - w) + D , ( — ^  (v - w) + R V) = 0 (20-b)
♦  ̂ D Rx

Differentiating Equation (18-c) twice with respect 
to x and once with respect to <j> :

t r *  p  * M
I t  • •  I I *  O  t i l l  III !  " l  * * * • •
(v - w) =  (R B w + 2B w + - 4  w ) (20-c)<j> • R

Substituting Equation (20-c) into Equation (20-b)
then:

ii* ••• ri "it r  r \o mi mi •••• I ••• 2,inR B W +  2B_ w + - § •  w + Dv  ^  (v - w) + R V
X  X<f> r 2 X(J) J^d

= 0

(20-d)

(18-c) yields:
(4)DyR \9<l> /

Applying the operation  ^ ^ J to Equation
x1

IX .... ... B *’** *”*- - ’(v - w) = —  w +  w + — r̂r w (20-e)2 ' "' " 2 4D R  D D R  D Rx x x  x

Substituting Equation (20-e) into Equation (20-d):

• ••lilt B »ll
»• »iI I •2 1111 1,11 "d>R Bx w + 2B w + -f w + PX<1

R
2B

Xd>

DxR

• II
• • ••

w

B

DxR
w + R f i l l  I

v I = 0 (20-f)
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Differentiating Equation (20-f) with respect to 
$ gives:

.mi • r b
Ln

ii** on o i p •*'*
x-- w + S s t  w + + 4 * -  ■:
-x* R Dx+ R Dx* R ^x

2B__ , 12 B
+ „ i —• B, ~1

— w + — w I (20-g)
D R6D J4

R Dx

Differentiating Equation (18-c) four times with 
respect to x, then:

111V* lilt
V =  w  +

R-B„ J',", 2Bx w + Xc|> ir*mi B
w +

D D R2D
w (20-h)

Equating Equations (20-g) and (20-h)

R -̂q III! Oil rj T> II**
m i  ii11 a  m i  m i  -v • *>f i w +  ii. w + __i_ w + w + _2L_ w

D*
2B„ ;

D4> r2d4* x<j>

+ w +
B B **«« OT3

I I I ?x — xd>
2 " ' 4--- w + ”2-- W + T “̂  W

R Dx<f> R  D x<f, R  D x R  D x
B
R6D

> • •

i -  w =. o
x

(20-i)

D.
R x

^Multiplying both sides of Equation (20-i) by 
, then:

B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Equation (21) is the eight-order partial differential 
equation governing the bending behaviour of cylindrical 
orthotropic shells. If isotropic properties are considered 
for the shell, Equation (21) yields the well known Donnell's 
equation.

Taking into account the chosen coordinate system, 
the bending solution can be assumed as follows:

w = H era<|) cos —  , A = ~  (22)
R L

With this Levy-type solution, the boundary conditions 
(I-ajb/C/d), are automatically satisfied since the
resulting bending solution for w, N , M and N ., given inX X (p
Appendix (II), are equal to zero when x = + — .

2
Substituting Equation (22) into Equation (21), the 

following characteristic equation is obtained:
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This characteristic equation is approximate because 
it is obtained form the simplified governing differential 
Equation (21) .

To discuss the accuracy of Equation (23) , a 
comparison is made between its roots and those of the exact 
characteristic equation. This exact characteristic 
equation is obtained by using the exact governing 
differential Equations (6-a,b,c), together with the 
following assumed displacement components

* m<|> Xx /0. .w = A  e cos —  (24-a)
R

u = B emĉ sin —  (24-b)
R

t'-tAv = C e r cos —  (24-c)
R

Equations (24-a,b,c) are substituted in the 
governing differential Equations (6-a,b,c) after replacing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

p^, and pz by zero. The resulting homogeneous system 
of equations can be written in a matrix form as follows:

<-Dxi2+Dx*m2+KX*m2) (-D^mX) (-K X3-K .m2)
v X  Xij>

*A

(D^mX) <D*m2-Dx*x2-3Kx*x2> (D.m+3K .mX2)
q> X<p X

*B

(Kx X3« C^m2X> (D ,m+2K ,mX2+K ,,mX2)' <J> x<j> x<f (D,+K ,m4+2K,m2 9 9 9
+K ,+K X4 (j> x

-
jit, 2 ^ 2 ,-4K ,m X )

X<j> '
*C

B * B B
where: K = —§• , K = -4- and K , = —^

R  ̂ R X<f> 2R2 *

A non-trivial solution of this system of equations 
can be obtained only if the determinant of the left hand 
side matrix is equal to zero. This condition leads to 
the exact characteristic equation. The derivation of this 
equation is given in Appendix (I); its final form is 
as follows:

2. - X2 ( +
2B

D . B,
X<j> <f>

x<fr

+ x
B -  x2 r ^  +

4B
X<()

<f> D B, + 1
X<j> <j>

+  m '

+ m

. . D 2D' B , 4 I x , x X(j>
D , D , B (j) x <f> <J>

■ I D B 6 I x xA D . B 
X<f) (J)

2D B . \ . / 2D 2B 3D B ^x x<|> \ x4 /  X  x , X X(j)

D<j,B<(, j I D«j, B<f, Dx*B*
2B

- X

. , D R 3D B D
+ x f - f ~  + 2r T ^  + 57

<j> Xip tj> <j>

B<f> 

= 0

X(j) , X

X(j)

(25)
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If isotropic properties are considered for the shell,
• •

Equation (25) yields the well known Flugge (Dischinger)
characteristic equation, which is used as a yardstick for

(13)the comparison of theories of isotropic shells '.

The roots of either Equation (23) or Equation (25) 
can be written as follows:

m = + a ̂ ± ipj , m = ± ot2 + i32 (26)

and the displacement "w" as:

w = j ea<<̂ (Acos3i<|> + Bsin3i<f>) + e 01' ̂ (Ccos3-i<|>

+ Dsin34 <j>) + ea2<l> (Ecos32<f> + Fsin32<j>) +

e~a2̂  (Gcos3„<|> + Hsin3.,<j>) } cos —  (27)
R

where: (A,B,...H) are arbitrary real constants to be
calculated by satisfying the boundary conditions.

The values of the set of roots of Equation (26) 
are considered to be exact, when calculated from Equation 
(2 5), and approximate when calculated from the simplified 
Equation (23). The deviation between these sets of roots 
increases with the increase of the ratio ^ . This canJK
be seen from Table (HE.l), which shows the values of the 
roots for different ratios ^ , using the two
characteristic Equations (23) and (25).
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TABLE (III.1):
Values of Roots of Characteristic Equations (23 & 25) 

for Different Ratios of (L/R).

L/R Characteristic 
Equation No. al *1 a2 *2

1.5 25 ,3.164364 1.363599 1.310111 3.293497
23 3.230135 1.336994 1.338256 3.227086

2.0 25 2.721240 1.188397 1.125996 2.871890
23 2.797089 1.157908 1.158728 2.795109

2.5 25 2.416942 1.069511 0.9994159 2.586171
23 2.501633 1.035696 1.036284 2.500215

3.0 25 2.190921 0. 9822185 0.9 052359 2.376776
23 2.283567 0.9454834 0.9459297 2.282490

3.5 25 2.014175 0.9147102 0.8314314 2.215229
23 2.114107 0.8753661 0.8757205 2.113251

4.0 25 1.870837 0.8605449 0.7714272 2.085988
23 1.977519 0.8188437 0.8191339 1.976819

4.5 25 1.751393 0.815705 0.7212826 1.979750
23 1.864387 0.7720242 0.7722672 1.863801

5.0 25 1.649747 0.7782271 0.6784737 1.890576
23 1.768686 0.7324146 0.7326222 1.768184

5.5 25 1.561788 0.7459581 0.6412982 1.814461
23 1.686355 0.6983370 0.6985170 1.685921

6.0 25 1.484623 0.7179042 0.6085605 1.748604
23 1.614545 0.6686123 0.6687703 1.614164
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Figure (5) shows the maximum percentage of error 
versus (L/R). It also shows a corresponding curve for 
the simplified equation of concrete shells (Donnell's

shows that it is permissible to use Equation (23) in 
corrugated sheet shells for higher ratio of (L/R) provided 
that the same degree of approximation is not exceeded.

Stress-resultants and Displacement Components 
due to Bending:

For the longitudinal, transversal and torsional 
moments, the following relations apply (equations 9- d, e, f):

Using Equations (27) and (28-a,b,c), the explicit 
expressions for the bending moments are obtained iii terms 
of the 8-unknown constants A,B,...H . Utilizing the

equation). The simplified Donnell's equation is generally
{21)accepted for concrete shells when L/R ^1.6 . Figure (5)

11M
X

(28-a)

(28-b)

(28-c)

equilibrium Equations (7-a,b,c), (after replacing px , p^
and p by zero), with Equation (27), the explicit z
expressions for the stress-resultants are obtained.

The displacements, u and v, are determined by 
using Equation (27) together with Equation (29):
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Also the rotation of the tangent, 0, is obtained 
from the following equation (10):

0 = ^ (v + w) (30)

All of these displacements and stress-resultants are 
expressed in terms of the unknown constants A,
These equations are given in Appendix (II) because they are 
too lengthy to present here.
III.4. Theoretical Results:

The inembrance and bending solution are superimposed 
and the integration constants A, B,...H, are calculated 
for each type of shell satisfying the boundary conditions 
discussed earlier in this chapter. A computer program for 
all of the theoretical work has been developed for every 
case of boundary conditions for the IBM system 360/50 at 
the University of Windsor. This program is prepared for the 
computer library and can be used to solve orthotropic shell 
roofs, stiffened at the valleys only, as well..as shells 
stiffened at the valleys and crown.

A sample of simplified design tables and formulae 
are given in Appendix (III) for practical use for various 
types of shell roofs with arc-and-tangent type of corrugations.
A snow load was selected in the preparation of these tables.
*Civil Engineering Program Library Department of Civil Engineering, McMaster University,
Hamilton, Ontario.
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The analysis of a simply supported cylindrical shell by the 
use of tables is illustrated in an example at the end of 
Appendix (III).

Tables (A,B & C) , are prepared to give the maximum 
intensity of snow load for each type of shells, provided that 
the maximum displacement "w" does not exceed 1/100 of the span.

Figures (S_a,b) show the comparison between single shell 
and inner symmetrical shell of a multiple group. From these 
curves it can be observed that any inner shell will have values 
of stress-resultants in between the two solved cases. It also 
justifies the assumption previously stated for case (IV) of 
boundary condition.
III.5. Effect of Slip at Sheet-to-sheet and Sheet-to-frame

Connections:
The shear rigidity, , given earlier by Equation (1-c) 

in Chapter (II) incorporates a reduction factor, p , to account 
for the effect of slip at sheet-to-sheet and sheet-to-frame 
connections. This shear slip was studied previously by the 
author and it was found that the values of "p" varied from 
0.0 to 1.0 (8) .

Figure (6) shows the effect of "p" on the values of the 
displacement "w" for different ratios of (L/R). From this 
figure, it is clear that the value of "p" has insignificant 
effect on the shell roofs. Also, the effect of "p" on the 
calculated stresses is even less than its effect on "w". 
Therefore, the number of connectors between the sheets can be 
reduced to the minimum required to carry the loading withouth 
being concerned about the rigidity.
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III.6 . Application of the Approximate Beam-Method;
The solution presented using the differential equations 

is valid for short shells. It also encounters considerable 
calculations and a lengthy program. Therefore, it is interesting 
to examine'. the application of the beam-method of analysis which

is approximate, and easy to apply.

RISE

- S P A N  (L)

P (-lb/ft)

M  - 'Pk
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. Moreover, the beam-method is known to lead to 
good results in the case of long shells where the 
presented solution fails.

The shell is treated here as a beam in the 
longitudinal direction and as an arch in the lateral 
direction. Accompanied by the usual assumptions of the 
theory of elasticity, the following three assumptions are 
to be added as a basis for the beam-method in shells:

(1) The deformation of the cross-section in its • 
plane are neglected.

(2) The shear deformation caused by and N^x
is neglected .{Navier Hypothesis) .

(3) The longitudinal moment, M , and the torsional 
moment Mx  ̂ are neglected.

The beam calculations are made in the usual manner 
as follows:
A. Beam Analysis: ■>

The values of N can 
be calculated by using the 
formula:

N = x
M-Z.t

N.A.
(31-a)

Where: "M" is the bending
moment at any cross-section

Neutral Axis $
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calculated in the same procedure as for the simply 
supported beam and "IN A " is the moment of inertia about 
the Neutral Axis. N ^  is calculated using the well-known 
formula:

N ' = —
x<j>

(31-b)
21N.A.

Where: "V" is the vertical shearing force at the cross-
section, computed in the same manner as a simple beam; and 
"Q" is the first moment of area up to the point under 
consideration about the Neutral Axis, found from the 
expression:

Q = 2tR2 (sin<|> - sintf) )
e

(31-c)

B. Arch Analysis:
The second step in 

the beam-method may be 
described as the arch 
analysis. The object of 
this step is to compute
"M, ", "Q " and "N ".<!> <}> $
Referring to the above 
strip, dx (cut from the 
shell), the equilibrium 
of the arch is maintained
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by two sets of forces - the load acting on the strip and
3N

the specific shear — —  . The specific shear at any
3x

point, acting tangentially on the shell arch, can be 
resolved into horizontal and vertical components. It is 
evident that the sum of the vertical components of the 
specific shear balances the load on the shell arch, and 
the horizontal components of the specific shear which are 
symmetrically disposed about the crown balance themselves. 
The transversal bending moment, , at any point in the 
arch may be calculated as the algebraic sum of the moments 
caused by the loading ‘and the horizontal and vertical 
components of the specific shears.
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Nh = /

1+0

3N
— —  cosfl ds , ds = Rd<j> (31-d)
3x .

Nv = J" £ — —  sin9 + pj ds (31-e)

Q, = N cose + N, sine (31-f)<j> v n

M. = J' ds (31-g)

3N 
3x

r 3N .
N = j  St .  R  .  dcf> (31-h)

This beam-method is used to compare the same cases 
of roofs with the previously presented differential 
equations solution.

Figure (7) presents a comparison of "N " values 
at crown for different ratios of (L/R) for both, solutions 
by the beam method and differential equations.

The same figure shows that at a ratio L/R ^3.5, 
the beam-method gives results close to the solution by the 
differential equations. Thus, for ratios L/R > 3.5, the 
approximate beam-method can be used.

It is emphasized here that the beam-method cannot 
be used for the third case of boundary conditions because 
the shell is supported along the four edges.
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CHAPTER (IV)
EXPERIMENTAL VERIFICATION

An experimental program was undertaken with full 
scale shell roofs using the first two mentioned types of 
boundary conditions.

Figure (8-a) is a photograph of the shell model 
built in the Civil Engineering Laboratory at the 
University of Windsor. The parameters of the roof were as 
follows:

Radius of shell = 7.00 feet.
Span of shell = 20.00 feet.
.Half the central angle (<j> ) = 41°G
The shell was built of standard arc-and-tangent

corrugated sheets with gauge 22, and was simply supported
at the ends on steel trusses as shown in Figure (8-a).

A case of show loading was simulated by suspending
aluminum bars from the shell, as illustrated in Figure
(8-b). In a cross-sectional view there were three levels
of bars. The bars at the first level were suspended by

1 "aircraft wires , <j> = j-g- j that were attached to some of 
the bolts which fastened the sheets together. These bolts 
had small holes drilled through their center-lines and the 
wires were inserted and attached to the heads of the bolts. 
Each bar was suspended by two wires. At the second level
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each bar was suspended by two wires, each wire being attached 
to a separate first level bar. The third level consisted of 
a plywood platform on which weights were placed. The platform 
was suspended by two wires attached to separate bars at the 
second level.

The first two experiments were carried out for Case (I) 
of boundary conditions. Two longitudinal angles 2 1/2 x 2 1/2 
x 1/4 were bolted at the valleys as longitudinal stiffeners.

The following page is a photocopy of the computer 
program output for the theoretical solution to this shell model.

Mechanical dials were used to measure the u-displacements 
at the support every 10° , Figure (9 -C). The dials were located 
at points 6, 6' & 7, 7' &8, 8' &9, 9' and 10, 10'.

In the first experiment, the vertical deflection of the 
crown point at the mid-span "w^" was measured by a mechanical 
dial. In this test, only three increments of load were applied.
The following are the analyses of this experiment.

This experimental analysis is based on the mechanical 
properties given in Equation (1), which were examined experimentally 
for the sheets used in these tests, in reference (8).
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TABLE (1)
Dial Readings for u-displacements at 

left end of shell for experiment No. (1).

Load
psf inch u7 U8 u9 U10

0.66 -0.007 -0.040 -0.071 -0.083 -0.090

1*1 . -0.027 -0.063 -0.Ill -0.140 -0.151
2.2 -0.0575 -0.132 -0.131 -0.320 -0.202

TABLE (2)
Dial Readings for u-displacement at 

right end of shell for experiment No. (1).

Load 
. psf

1
U6

t
U7

1
U8 U9 U10

0.66 -0.005 -0.045 -0.061 -0.077 -0.105
1.1 -0.009 -0.050 -0.102 -0.130 t-0.142
2.2 -0.017 -0.139 -0.209 -0.266

The average value of the displacement, u, of the
two end trusses, was calculated. Then the equivalent 
displacement under unit load was computed for each load 
increment. Finally, the extrapolated value of the u-displacements 
under uni.t load were calculated. These are given as follows:
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TABLE (3)
Extrapolated-values'"of -u-displacement in 
inches for - Experiment -No*. (1) per unit
load p (lb/ft)

Method
. U6 . . U7 . U8 U9 U10

Experiment -0.014p -0.0585p -0.0905p -0.Il6p. -0.131p

Theory -O.OOlp -0.055p -0.0 9 6p -0.119p -0.127p

Figure. (10) shows the comparison between the 
theoretical and experimental u-displacements at the end 
support. Figure (11). shows the load-deflection curve for 
the crown-point of mid-span for this experiment.

In the second experiment, a trial was made to
measure the vertical deflections of selected points
(1,2,3 & 4) on the shell surface using a theodolite 
(Swiss Wild T16) , [[Figure (9)] . The theoretical values 
of these vertical deflections were computed from the 
following equation (21) :

y<t> “ w* cos (‘f’e " +> - v<j, " +>

where y^ is the vertical deflection at angle (f>. Eight
increments of load (one pound per square foot each) were 
applied. At the last two increments, the axial strain, 
ex , was measured on .the longitudinal stiffeners at mid-span 
using electrical resistance strain gauges. Ĵ G.F. = 2.02,
R = 120 ± 0.1ftJ . ' • • „
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16 calculate the axial strains, e , andX
consequently, the stress-resultant "N "f two thin nails 
were.soldered to the shell surface at points 2, 3, 4 and 
5, so that the change in distance between the nails can 
be measured by a micrometer.

The analyses of this experiment are shown in 
Tables (4 to 7). Figures (12 to 19) show the comparison 
between the theoretical and experimental, results.

Analysisjof Experiment_No._ (2):

TABLE (4) .
Average values of displacement "u" for 

Experiment No. (2).

Load
(psf) U6 u7 U8 U9 U10

1 0.016 0.058 0.099 0.122 0.134
2 0.0345 0.123 0.203 0.252 0.278
3 0.0545 0.199 0.314 0.396 0.477
4 0.076 0.253 0.429 0.531 0.583
5 0.101 0.333 0.559 0.690 0.688
6 0.126 0.410 0.691 0.857 0.832
8 0.191 0.568 1.130
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TABLE (5)
Dial reading of vertical deflection of crown 

point at mid-span for Experiment (2).

Load
(psf)

w5(in) 0.453 0.933 1.474 1.960 2.536 — (*)

TABLE (6)
Vertical deflections of points 1,2,3 & 4 

measured by a Theodolite for Experiment (2).

Point
Load

Y1 (in) *2 *3 *4

1 0.90 0.60 0.75 0.49
2 1.30 1.60 1.50 0.98
3 1.96 2.02 ---- 1.09
4 2.50 2.30 2.60 1.90
5 2.74 2.90 3.07 2.50
6 3.15 3.40 3.65 3.00
8 4.05 4.38 4.75 4.45

* dial went out of range.
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TABLE (7)
Comparison between Experimental and Theoretical

N -Distribution.
A

Method Nxl . N x 2
N - x3 ■ N . x4 N x 5

experimentally +0.025p -2.140p -3.54p -3.85p -4.40p

theoretically +0.0138p -1.915p -3.276p -4.086p -4.366p

(Nx in lb/in  ̂p in psf)

The third experiment was conducted on a shell roof
having the second type of boundary conditions. Two 
additional longitudinal angles 2h x 2% x \ were attached 
back to back along the crown line of the shell.

The theoretical solution, as obtained from the 
computer, is shown in the following table.

In this experiment, 2 lbs. per square foot 
increments were applied up to 16 psf. The deflection of 
the crown point at mid-span as well as the u-displacements 
were recorded as before. The . analysis of this experiment 
were done in a similar manner as explained in the first 
two experiments. Figures (20,21) show the comparison 
between the theoretical and experimental results of this 
experiment.
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CHAPTER (V)
APPLICATIONS OF CYLINDRICAL SHELLS 

MADE OF CORRUGATED SHEETS IN GRAIN BINS

V.l. Simplified Differential Equation:
For grain bins, the loads are of the rotational 

type of symmetry since the filling is symmetrical along 
the circumferential perimeter. Thus, in this case, the 
following simplifications can be made:

Although the transversal shearing forces Q are 
negligible in the case of the standard type of corrugated 
sheets, they will be considered in the derivation. This 
would allow the use of the present solution for other 
types of corrugations (such as those of Chapter (VI).

Assuming the radial loading, p , to be positivez
when acting inwards, and taking these simplifications into 
consideration, the equilibrium Equations (2-a,b,...), are 
reduced to the following:

p = n = O = — - = — - =  M = 0p<j> x<J> v<j) - • 3<J> 34. x<t>

N, (32-a)x

(32-b)

*1M.x Q.x (32-c)
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Also, the elastic relationships, Equations (9-a...f), 
are reduced to:

N  ---2- w (33-a)
+ R

Nx = d J i (33-b)

IIM = -B w (33-c)x x

Substituting for M from Equation (33-c) intoX
Equation (32-c), then:

Qx = -Bx w

3Q„ llllor — - = - B w (34)
8x X

Substituting Equations (33-a) and (34) into 
Equation (32-b) results in:

' Sx A f  + %  w = p (35)
X 3x R Z

(4)The radial loading, p , was suggested by the ACI 
as follows:

Pz - - [*|] [ 1 - e-k“*/r ] (36)
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where: r = the hydraulic radius, u = the coefficient of

Equation (37) is the governing differential 
equation of grain bins.
V.2. Method of Solution:

Referring to Equation (37), the particular solution 
can be assumed as follows:

friction between the bin's wall and filling material, 
PzK = —  , y = unit weight of filling material.
^x

Thus, Equation (35) becomes:

Bx w +I I I I -Kux/r (37)

w = E e
hr

*e-Kux/r + p* (38) *

Substituting for " w " into Equation (37):
hr

Bx r. ku j 4 ^ v Kux/r]+ E*e-Kux/r + p*

/ e-Kux/r ̂ (39)

Equating the coefficients in Equation (39):

u
(40-a)
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= _ (40-b)
V

The particular solution Wp becomes:

*p - *= r - ■ -4 ^ 4 -t -  i e_K“x/r - ^  <«>P u B K ia R +r D J D.u
L. X  9 9

If the term expressing the load in Equation (37) 
is suppressed, the corresponding homogeneous equation 
reads:

B „ L T + 4 w ='0 (42)
X R

Assuming a homogeneous solution to be exponential in x,
* Xx *w„ = K e where K is a constant; and substituting forn

wH into Equation (42), it follows that:

B X4 + - 4 = 0  (43)
R

Equation (43) is the characteristic equation. The 
four roots of this equation can be obtained as follows:

x4 - - D<fr - ~ o'
BxR

X = ±*/± / - = ± J ±  i ‘
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2 D*'Defining - s = ---5-
BxR

isX = ± yf± 1

.Defining, s = z2

X = ± z -yf+I

or X = ± — —  -a/ +2i

2Since ±2i = (i±l) , then;

X = + —  (i±l)

Defining, a ~ gives:

X = ± <x (i+1) (44)

Equation (44) gives the four roots ^i ,2,3,4* 
Having obtained the roots, an explicit solution can be 
developed as follows:

WH = K* e«x <i+1> + K* e-aX(i+1> + K* eaX(i_1) + K* e-«x(i-l)

or:

wH = e-“x (K* e-iax + K* ei«x) + e«x (K* eiax + K* e’1051) («5j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

it itwhere K-̂ , K2 are arbitrary constants.
—ctxThe terms multiplied by "e " represent the 

disturbance originating from the upper edge ^Figure (22)
CtXThe terms multiplied by "e " represent the disturbance 

originating from the lower edge. Thus, a new independent 
variable, x, is introduced such that:

x =(h - x) where h = total height of bin.
It follows that x is the distance from the lower shell 
edge. The reason for this substitution will be made 
evident by the discussion of the solution later.

With the new notation, x, Equation (45) can be 
written as:

[
it it it(Kg + Kg) C O S a x  +  i(Kg

+ e"ax eah £ (K* eloth + e"lah) cosax + i (K̂  e”lah 

- K^ e"*"01*1) sinax J (46)

Introducing new constants C^, C2, Cg and C4, then:

w  #“y V  m  Q| V  p m  m i .wH = e (Cĝ cosax + C2 sinax) + e (Cg cosax + smax)

(47)

(48)

Thus, the total solution is:

w = w + wTT P H

it- K„) sinax]
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The constants C.̂ , C2, C3 and C4 can be found by 
superimposing the particular and the homogeneous solutions 
to fulfill the requirements of the boundary conditions at 
the upper and lower edges of the bin.
V.3. Stress-Resultants:

Equation (48) can be written in a more expanded 
form as follows:

w = E* e“Kux'/r + F* + e“ax (Ĉ  cosax + C2 sinax)

+ e“a (h"x) cos(ah-ax) + sin (ah-ax)) (49)

where E and F are given by Equations (40-a,b) 
respectively.

~Dd>Since N, = — - w 
+ R

N, = - —  [e * e“K^x/r + F* + e"aX (C-, cosax
* R L 1

+ C2 sinax) + e a ̂  x  ̂ (C3 cos (ah-ax)

+ sin(ah-ax))l (50)
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M = -B W 
X X

Mx = -Bx | E* (e“Kux^r) + e“aX £-2C2a2 cosax

+ 2a2C^ sinax | + eJ + e a ̂  x) £ -2a2C^ cos (ah-ax) 

■]}
+ 2a2C2 sin (ah-ax)| J (51)

M iQ = -B w x x

Q = -B 
X  X

cosax

| - !<V E* (e-Kux/r, + e-«x ̂ 3  ̂  + ^

ax + 2a3 (C2 “ C^) sinax J + e X  ̂ £ -2a3 (C3 + Ĉ ) 

cos (ah-ax) + 2a3 (Ĉ  - C^) sin (ah-ax)J | (52)

From Equation (32-a), the stress-resultant "N " is expressed
«r£

as:
N.x - / '  py- dx

The stress-resultant, N , depends on the distribution 
of the frictional forces, p .A

These frictional forces depend on: the angle of
internal friction of the filling; the coefficient of 
friction between the grain and corrugated sheet wall; and 
the rigidity of the sheets. These parameters need further 
study.
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V.4. Boundary Conditions:
The integration constants (Ĉ , C2, C3 and C^) can be 

calculated by adding the particular and the homogeneous solutions 
to fulfill the boundary conditions that exist at the upper 
and lower edges of the bin.

Case (1) ; Fixed Bottom_and_Free Tojo:
This is practical for an extremely rigid ring at the 

base of a bin having a free upper edge. Referring to Figure 
(23-a), this condition requires that the displacement "w" of 
the lower edge, as well as its derivative with respect to x 
(slope), are equal to zero. The upper edge is free from 
moments and forces. Hence, at x = Of M = 0...(i),

IQ = 0... (ii) and x = h, w = 0.. . (iii), w = 0...(iv).

Case (2) : £impl_y_Supported_at Top and Fixed at_Bottom:
If there is a ring at the upper edge, the boundary 

conditions, (Figure 23-b), in this case would be: 
at x = 0, w = (wring) •••(!)/ Mx “ 0 at x = hQ

Iw = 0...(iii), w = 0...(iv). The extension of the ring 
(wr^ng) , is governed by the structure and loading of the
cover, as well as the ring itself. In the following analysis,
it is assumed that the cover is infinitely rigid in the plane 
of the ring and eg 0.

Solving the boundary condition w = 0 at x = 0 (or x = h)
then:

w—_q = E + F + e “k (Ĉ  cos a h + C2 sin a h)

+ e° (Ĉ  cos (0) + 0) = 0
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or E* e“Kuh/r + p* e"ah (Ĉ  cosha + sinah) + C3 = 0
™cthBecause of the quick damping of e , (which represents, 

at the lower edge, the rest of the disturbance originating 
from the upper edge), this part represents a very small 
value and can be neglected. Thus:

C, = E* e“Kuh/r + F* = w (53-a)3 p

Similarly, constants of an integration and 
can be neglected for the other boundary conditions 
(at x = 0). The significance of the introduction of the 
co-ordinate x becomes evident in these expressions.

For the other three boundary conditions, the 
remaining constants are determined as follows:

C4 = c, - e~Kuh/r (53_b)
or

x2-2 *
C2 - E (53“c) 2a r

Cl = 7 ^ 3  E* - C2 ■ <53-d>2r a

Once the constants C^, C3, and have been 
evaluated, the complete solution is obtained, excepting 
for Nx~distribution, which can be evaluated if the 
frictional forces are known. The value of "N " is obtainedA
by integrating the load p . Vertical stiffeners are 
necessary when the calculated value of N exceeds theX
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allowable value as given by the following equation:

Nx = 60 x t
0.035

(54)

V. 5 Effective Width:
For vertically stiffened bins, the longitudinal 

stress-resultants "Nx" are unequally distributed throughout

and decrease towards the minimum at the centre, Figure (24). 
In order to have a ready and precise method of calculating 
the maximum stresses and deformations in the bin, the 
actual width of the sheets is replaced by an imaginary width, 
$,e, which is termed the "effective width". The longitudinal 
forces, N , are considered to be constant over the width, \  ,X ©
and are equal to the maximum actual force which occurs at

Herein the forces "N " will be carried by the stiffeners
A

toge.tlier with the effective width of the corrugated sheets; 
and hence:

n = the number of vertical stiffeners; and A is the cross- 
sectional area of each stiffener.

its width, due to the shear strain in the sheets.
The stresses reach the maximum at the stiffener

the stiffener, thus

where: is the effective width of the corrugated sheets;
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To determine the effective width, ^e, the computer 
program, used for shell-rpofs was utilized except that the 
membrane, solution was replaced by the one for frictional forces, 
p , which are assumed to be distributed in a sine-wave.

Referring to Figure (24), the bin's height, h, is taken 
to be half the span of the corresponding shell roof, in which 
case the boundary conditions of either case (1) or Case (2) are 
fully satisfied , by.The mid-span of the shell represents the

‘ k 4 •j* »' >lower edge of Lhe'.'bin, which is fixed in both Cases (1) and (2). 
The end of the shell (at x = L/2), represents the upper edge 
of the bin (either simply supported (Case 2) or free-. (Case 1) . 
Thus, curves are prepared to determine the effective width, 
which depends on the spacing between the stiffeners, ba, and 

 ̂ the total height of the bin. It should be mentioned here that
11 ̂ e" does not depend on the height at which it is to be calculated 
since "Me" is distributed in a sine wave along the total height.

Figures (25,26) show the relation between (h/ba) and 
(A /b ) ; and that between (h/b ) and ('A /h) , respectively . From

G 3  3  ©

these curves, it is seen that the slip at sheet-to-sheet and
sheet-to-frame connections,^ , has a pronounced effect on the
values of the effective width, "A . The reason for this ise
the shear deformation within the sheets.

iiI1
I
iI
t
I
•i .
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CHAPTER (VI)
EFFECT OF GEOMETRY OF CORRUGATION 
ON THE LOAD CAPACITY OF THE SHELL

It was noticed that although the first case of shell 
roofs, stiffened in valleys only, is the most practical one, 
there are excessive displacements imposing limitations on 
the applicability of the arc-and-tangent type of 
coriugations in this case. This is a result of the. 
deficiency in the axial rigidity, D , due to the spring 
(accordion) action in the x-direction (the ratio of 
^x ~ 0.004). This axial rigidity can be improved in 
dxfferent ways.

In this chapter, some alternatives are shown for 
new shapes of corrugations, and the approximate results 
are estimated, and compared with the standard arc-and- 
tangent type of corrugation.
VI.1. Alternative No. (1):

A decrease in the depth of corrugation, 2f, will
E*h / *h Vincrease the axial rigidity, D , since: D = -----—  ( — )

x x 6(1-/) \f/
For example, a value of f = 0.125 inch, (i.e. half

the original value of the standard corrugation), leads to 
four times the rigidity D . The values obtained for the 
u-displacements with f = 0.125 inch are compared with those 
of f = 0.25 inch, and the results are shown in Figure (27), 
for the shell model tested in the laboratory.
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On the other hand, any decrease in "f" will cause a
2decrease in the bending rigidity, , since = 0.522 f .t.E. 

Thus, the critical buckling load under shear will decrease^.
Further research is necessary to determine the 

optimum value of "f" that gives the best performance of 
sheets in elastic behaviour as well as elastic stability.
V.2. Second Alternative:

The author found a recent technique, developed by 
WESTEEL ROSCO LTD.-Toronto-Canada, to produce another 
modified shape of corrugation. A picture of this new 
dimpled shape is shown in Figure (28). Experiments on 
corrugated sheets- with this new dimpled shape were conducted 
to determine the axial rigidity, D . The results are 
given in Figure (2 9). These experiments showed that the 
axial rigidity, D , was about 18 times greater than the 
value of the standard arc-and-tangent type.

The approximate structural rigidities of this 
suggested shape can be estimated as follows:

D = E . t (55-ra)
«o> X

= Ea . t (55-b)9 <P

(55-c) 

(55-d)
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DX(j) = P -E. t 
2(1-t/i)

B = E t
12 (1-/1 )



6k

B, = E.I. (55-e)<P ’ <P 9

' B „  =  ( 5 5 —f )
X<l> 12(l+ju)

in which: E = 0.145E, E, c  E, p =1.0/ I, = 0.522 f2t - x 9 v
(0.08)2t (0.044).
VI.3. . Third Alternative;

A flat steel plate spot-welded to the corrugated 
sheets would increase the rigidity, D , appreciably.X

A flat steel plate spot-welded 
to the corrugated sheet.

Third Alternative

The membrane and bending rigidities can be estimated 
as follows:

2
Dx = Et +' ' Et

6 (1-yi ) Lfm
(56-a)

D, .= E (2t) (56-b)
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= . p, , p, = 1.0 (56-c)
x<f) 1 2 (1+/0 1

Bx •_ i \jimL+ ( 5 6 _ a )

2 Li2d-u2) d-^i2) j

B, = E I , , I, = 0.522f2t + 2.04 x 0.1252t (56~e)9 9 9
<22) ,

x<|) (1+/0

In the case of the arc-and-tangent type of corrugation 
the ratios of the rigidities in the x-direction are small 
compared to those in the <|>-direction. These ratios are 
considerably increased in the above alternatives. The 
effect of this change on the degree of accuracy of the 
roots obtained from the simplified Equation (23), is now 
examined.

Figure (30) shows the maximum percentage error in
the roots vs. the ration (L/R), for the arc-and-tangent 

D D
tyPe (pp—  0.004), alternative No. (3) (=p —  0.5) and for

<f> Dx u<f,
an isotropic case with =p = 1.0.- This figure indicates

<f> D
that as the ratio of (p-) increases, the accuracy of

*the simplified characteristic Equation (23), increases. 
Furthermore, a comparison is made of the "N "X

values at the crown, for different (L/R) ratios as calculated 
by the beam-method, and the differential equations for 
Alternative (3). Figure (31) shows that, the beam-method 
gives results close to the solution of the differential 
equations when L/R £ 4.
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In order to show the effect of the alternative 
shapes of corrugation/ a shell roof, having longitudinal 
stiffeners in valleys only, and with a radius, R = 7.00 
feet, <p& = 80° and GAGE 18, is analysed utilizing:

* (a) The arc-and-tangent type of corrugation.
(b) The dimpled shape.
(c) The third alternative with GA 24 each 

(Total t = 0.5").
For each case, the maximum span is determined such 

that the maximum deflection of the crown point at mid-span 
does not exceed (1/100). of the span under an intensity of 
snow load of 50 p.s.f. The results are listed in the 
following table:

Corrugation Configuration Span (Feet)

Arc-and-tangent 20
Dimpled Shape 50
Third Alternative 70
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CHAPTER (VII)
OBSERVATIONS AND CONCLUSIONS

. 1. The experimental results showed a good agreement
with those obtained theoretically, confirming that 
treating corrugated sheets as orthotropic shells is 
a valid approach. It also proves that the present 
solution is acceptable for design purposes.

2. The simplified equations, based on Donnell's
assumptions, give acceptable results for short shells. 
For concrete shells the Donnel equations are being 
used with the ratio of L/R ^1.6 (21) as an acceptable 
upper limit for the definition of short shells. A 
comparison of the error in the roots of the 
characteristic Equation (23) reveals that, at the 
same level of approximation used for concrete shells, 
corrugated sheet shells can be analysed with higher 
ratios of (L/R).

Furthermore, it was found that, as the ratio of
D
g— increases, the degree of accuracy improves.

It should be emphasized that the range of (L/R) 
within which the simplified characteristic equation 
can be used, depends on the type of boundary conditions 
along the straight edges. This is due to the fact that 
the bending solution is an edge disturbance effect.
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3. The approximate beam-method can be applied, if 
the length of the shell reaches a limit at which the 
solution using the differential equations becomes unrelia
ble.

Therefore, the present study offers methods of 
solution covering almost all lengths of shells, excepting 
barrels supported on four edges.

4. The slip due to shear at sheet-to-sheet and 
sheet-to-frame connections has an insignificant effect 
on the calculated stresses and deflections of the shell 
roof.

5. Since the geometry of corrugation has a consider
able effect on the load capacity of the shell, other 
geometrical forms are suggested for better performance.

6. Theoretical solutions for stiffened and 
unstiffened grain bins made of corrugated sheets are 
obtained. Curves are presented for the determination of 
the effective width of corrugated sheets (stiffened by 
vertical ribs) under frictional forces. These curves can 
be used in the design of stiffened grain bins. The shear 
slip at sheet-to-sheet and sheet-to-frame connections,
p, has a pronounced effect on the magnitude of the 
effective width.
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FIGURES
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Figure (1)

(a> Stress resultants N^N^Nx^ (b) Moments .

N ^ + ^ £ - d x Nx h- ^x_dx 3x M x + lMx_dx
.Q x j_ g Q x__dx 3x

|vty+2!4a

Nx^ +  -3Nx&_-d4>

|\fy + d.Nft., deft 
B$6

^  Qp , d»>

Sx

M x^ + 5 M xc ; 
B £>

M̂ >-j- ̂ M^-dc 
3<f>

F i gu r e  (2)
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FIGUR E (9-a): A PICTURE OF THE SHELL MODEL

FIGURE (3 -b )  : A PICTURE OF TH E LOADING SYSTEM
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F igure  (22):COORDINATE SYSTEM IN GRAIN BINS-

x
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7 ? '/ /  > 7 7 7 7 7
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$
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Figure (23): BOUNDARY CONDITIONS IN GRAIN BINS-
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CIRCULAR BIN UNDER FRICTIONAL FORCES. 

S T IFFE N D  BY LONGITUDINAL RIBS. 
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FIGURE (2 8 ): A PICTURE OF TH E DIMPLED CORRUGATION-
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APPENDIX (I)
DERIVATION .OF EXACT CHARACTERISTIC 
EQUATION OF ORTHOTROPIC SHELLS
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A'[-D, - jt m ‘r ilfi & *  _  4  R*(±f+ 2 Bt, ^ f ]

+  B'lDt ^  + Z ^ i  r»(SL)‘] + c [ B x R  ^  » '

. 07-<

E p u a £ 'o r> ^  ( / )  - a ,  bJ c j  cas? J>e \*/s-s£te/7 /'r? a  rn a fr/'S x

"For*?? <3s- :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104-
o
II

'CQ <o

5v|
«VI

C*«M Is-
aXI__ I

< ^ k
'Y o;CM
+

*1«Q k

v
Of'

C______ t

N

rJ_^

S

Cŷ
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  2  D *  O x *  S k?   Dxp B&   3 Dxp -Bp Bx $   Dx D *

R 4 R + 2 R \  R *
  D *  8 x<f _  Dxfi B ‘fi !Bx&   3 B<p> 3 * 4 \ _j_ f  2 B& D& f ix  4

R e 2 R 6 4  R s '  ' R *

• D<t B *  B x * V i m 4 f  $ * /  B x  B x* & *  -f & ** J k J B ±  - &*# D *±
+  R *  ) \  ^  L ( 2 R e z 2 R e 4 R e

__ 3 &X0 _ 3 BxA Px* _  3  Ox ̂  B x *   2  [Ox *  Bx * _ 3  10x4 3 x 4
8 R *  4  f t *  4  R e R 4 4  R *

I 10# D x *  Bx _/_ 2  Dud B x * _#. 3  Ox# Ox# i 2 Px D& /3xss
f t 4 R +  R *  R 4

3 2
_i Ox D x *  B *  \ 3_Dx B *  B * .*  B _i_ B x  B x *  D *  _, Dx* D x *

^  w ~  2 R *  Z X *  \  2 R °  R *
_t_ 3 i /\  f  ~ D *  D x *  jBx *  , 2 B *  D x *  __ 3 D * D x *  B x *
+  T r * )  +  t 2 R *  R 4 ^
  2 B *  D x*    3  B *  B x*  £ )x *    2 Ox D *  B *  _ & x 4 D *  Ox *

R * ~ ~ ‘ R*'~~ ~  R 4 2  R *

 3  D*> B x *   B *  Bx* D x *    3 B x *  0 $ ) _j_ f— D x *  D * ». 0 *$ D *
2  R 6 R s 2 R € '  K R ?- R 2

i B +  D *  D x *  _  B x * p j  . B x *  Q j  , D *  M l , m * \ t i ( Q d £
+  R *  2 R «  2R *  2 R e 'J  L K R e

  Bx Bx<a Pxd _  3 Bx B it  Dx* _  3 B x &x<t> __ Bx B*</> Dx& _ 3 B * 3**
2 R *  2  R e * R 8 2 R e 4 R s

  3  Ox<£ Bx B *4>   Bx Ox&   3 Bx Bx<p Oxs* _i_ Bx P*& _i. 3  /Ox Rx<>
2  R s R a 2  R g R a 4  R e

Bx Ox 0&   2 Px O x'r’ Bxfi   3 Ox Bx<jb Bx Bx^> Dx4>  3 Bx Bx (i \
R 4 R 4 R c 2 R S 2 R *  s

t \̂4 f  3 D *B $ B x *  2 Bx D * D x *  i 2 O x D x & B *  • 3 D x D * B x < * \
+  ~ p  +  fi* J
, £)*.<. i D *  a   Ovi Dx&   Byi D x #   3 D ?  Bx m
”r V R * ft* ft* ft* 2 ft*

  3 B *  Bxyj D x* I Dx D *  Dx D *    Px D *  B *    Dp Dx*  B x *
2 R C R z "  R *  R 4  2 R *
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  Da Bx&   3 Ofi Bx &   3 B<? Bxj> \  *1 i h 8 ( „  Bxfi Dxsi
2 R e 4 R e 2 R *  J j  ^  R s

  3  Bx 3*s& , Dx Bx D*-fi i- 3 Dm Sx S x (&  ̂ i Ok / Dx Da Dx.a
2 R • p *  2 fi>e '  ^ R Z

■ Dx Dx# Bfi i 3 Dx Da Qx.fi . 3 Dx Dei Bx a Tj — n
R *  2 R *  2  R *  a

A fe jp /e c  fS r fp  < tes-//?s c a s ? £ a //?  /sy> - E  co.r- £• t/s/s'A y /s ? s ;'d r
/?

b /-& c^e As <s/~Aes- /'st̂  b o A A  -S' 'c/es i s

(  B l- \ / t?A e A > //o  y y /'s ia  -e .y  */<£{!?'/os? / s  oA  A <3/s?ec/:

a  , Dx
m S +  m 6 [ r ( -  Z § *  -  ^ )  +  * ]  +  -  [ ' X  (  -  *  ^

- f  ^  A  Bx.fi\  , ^  f  4 &*.$ _ 2 Dx \ A 1 i r/?2 f^ i ( -  Mz-D*.
4 » B + J  K B+ D XfiJ J  L \ BjDx*

-  2 A  B *t \ _L ) 4 f  2 0* , 3 Dx Bxa _  2  Bx ) , 0 2 /  2 J ^ _ A T  
4  ^  /  r  '‘ A* A, Bfi B* / ^

-f- r/V5 r 'i -/- A /? ^.Ac Dx-fi r _Dx y? ~  o .......(25)
L ^ o + a + r *  ^ s* ■ 2 ^ b <  tyJj

Equation (25) is  tAe e x a rc t cAaracte/,~^A ,c e p tsa / / 'ox?.
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APPENDIX (II) 
STRESS-RESULTANTS AND DISPLACEMENTS 

DUE TO BENDING
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f. LONS'A TUP//VA L BENPfNQ ATOATEA/TS- M x :
M * ~ ^  61") °OS B  *'”/<?) +  6 ^  

(C coŝ t ft -j- & s,nj?t ft j -j- € (̂ E- f

- f  €  z<̂  ( G  C0Sy<f ft -{- H S/n^  ftjJ Cos sL?~- .

<• i)
2. T R A N S V E R S A L  B E N D  I  M G  AT OAT E N T S  :

= - l t [ A  (
r ‘ L ' " * l « Cpsf ‘? ~ 2 *  /? S/̂ j )

+ b ( E *  / ( * S ) <SAlyEj ft + 2  «r1/(*? C°S f I? '} )

+ C ( sin f t ] )

0 ( e " ‘*\ sin ft -- <2 «,fi cos/  ? ] )

+ E (ev {« - f t )  <-os j?L ft -- 2 *  /? ^ j  )
+ F (e “ ‘ * |k - / ; s in f j Cos/ i  /Jj )

+ G { e ^ cos^ ft + z « f , s/syfft JJ

~h { « - £ ) s/nfift ~ 2 «f>

Cos
R
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3. , TW/S7-/A/G /WQArfFAfTS ;

A
R* [ *  I e "'f>( *. ^ 7 ?/ -fi, S''’fi/?s) \

~h B h J»7 yf,
+  fi<

Oas yf, ? )  j-

+ C
f € ~

CoS ft
- f i

■S/* ̂  ̂  j

+ D
l e

-<*, cf. ,
( - « ^  / f  ? ) ]

+ £ t < ‘̂  ( n - f t 's//?/ L  / J }

•/- F I * ‘̂ n  - + fit. cos

-h Q { * - A s//? fit. / ) }

~h F
- * / r- « s/n/ J  +fiz c° s / j ) } ]  5/n^

 ̂ »»
4.. LOa/G /T U D /N A L  SHEARING FORCES Q x :

Q x = A .  £ A  £e ^(s, cosf?'? - 4*

sin^?ff6 +£<*'/?, 3 Kft cosf, ?  )  |

■+ c { e - v ( S , Cos ̂  nL 2  6<l £ .f, *'«/,?)}

H- Dl e ^ ( - S , s i n —  2. c< eosfi fij
-h n e K ‘ 7 5 .

Cos ̂  p  —  2. o<t BXpl s/offps) J
+ Ft e * ‘ ^ ^  fit /  * fy cosfo fij

+ <*l.e ^ ( S s c o s f  +  2. <x̂ f. sSnfifij
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+  H. /  e'"‘̂ 4  s r f ?  - 2 * ? , 4, ■ si” Sff ■

where : S, = Acfi <* -  ^  f, ~ Bx ^

5 . T R A N S V E R S A L  SHEARING FORC£S " Q j’ :

Q * ~ w [ A  l e ‘*”‘( ( B*?°<'P‘*+  3 * P * B * ~  ^  C° * N

+(- 4.,f, a V  s 4 , Vtf, _ 4 . / 0  + 3 1***

( (  B* , f ,  ^  -  3  4  J f *  +  B? A )  Cosf ^  +  ( B*? ^  «<

-  fl, V  + 3  K - f , ’ )  S S r i f , ? ) }  +  C  [ < ? ' “ * *

( ( - « ,  B* * ^  +  4  < -  3  M / O  “ S f ' t  + ( - % ? . $  

+  3 B ^ f  -  £ * f t 3)  s/" / ? , ? ) } +  D  [ e '°<'fs

( ( f, *., s « v < + v y  c ° t v  + (-s

+  8^ f - 3 3/'7/, ? ) f  + £  f e  ‘ ( ( % ^  a ,

- 4 ^  v-3 4  J zosfj + (- B, A  f  +3 4i ft
-  *■” / * * ) }  +  F  ( e ^ ( (  B* A ° f  +  5 > E 3

- 3Bt ° { f )  co2f ^  +  + 3

s i n ^ t ) }  + G [ e ' * ^  ( ( - 'x *  +

f
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c°sfit + (- f 'Xf, + 3 °1 5- - S*f* 3) S/>>/?  H

+  4> 7 - 3 4 ° i A V 0 0 5 ■
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d i r e c t  t r a  n s v e r s A L  f o r c e s  N *  ••

+ B?, T  - £T t  fi2-!- fi*) cos f, ? t  (4

- 4  Bt 7 Y ’ +  4  4> ̂  f )  s/”f i  & } ) - * -  &  ( T 1*

( ( -■4 ^ 2«, fi  + 4 % - 4  4  *, /*/ 7  CC,Ŝ

- f  (  %  2 ^  %  t y  * +  * *

_ <T +  & t f ? ) s,n/ ^  j )  +  C  ( e

l ( %  Bx ~  2  Q ?  ̂  *> +  2  B*t ^ fi -h B* %

-  «■ 4> “</// +  cosf' * +  (~ 4  **, f.

+  4  4 * ^ ^  -  ^  )  s" ’f i ^ } )  +  D  ( *

1 ( 4 % ^ *  f, -<*Qo°<*f,+  4-B/.c<lf,S)  cosfit. -h 

(9i Bx _  s  3  4/^, +  2  cj ^  fi v- 4* ̂  ~  ff fy*,/

+  *  f i V  7 ) i -  f  ( ^  i d * s* - * * „ * <
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( e * ' * { ( -  4  BXf /)\  +  4  4, «*/L -  4  B, <* p * )  o s f j

~t~( 4i ^ —  ■? x  B *? ^ ^ ^  +  ft

+ 4 .f V  + G ( * ~ * { (  5« 2 %  * V

+  ■? & * R f Y +  f y  \ -  ^  4> ° t / ^ +  )  Cosf z  ^

-/- (- ̂  4* 3 \  £  +  4  4  *L £  " “* 4- *■ f / ) s/f lrf)

+  H - 4. B f Y . f 2 ^^-BA f . )

C.05 Y  f  -B (X  Bx — 2 P  A  BXfS -j-2  p 3~ B* f  Y  +

- e B f  Y/i. V  V  'J • s V * -  ̂ ) J  ^  '

7* m e m b r a n e  s h e a r i n g  FORCES °Nx " :
b*«,-2 z* * y +

• + “',f- /<J 4< Yf: * +-5 8**1 f ‘ *) a"S/ ’ ?i +  ̂  ^

+ s  B ,, Y N f ,  -  2 -  SB, Y f i  + ’ ° Y E  S*

-&,/,*) **/. * ]) + B (A' * {( Y bx f, - r tfgjjr, 
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2 3Xft

s/n/?,?})+ C (e

{ ( -  £ « ,  B, +  to 8, J f .  2 +  2  %  X * *  -  e  4 -  f>
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-s Bp <,f4) S/" f, ?]) + B  (e^f{(y 3X 

+ ê X Bxf o(t pi + Bf cf  _  /o Bp %  p  -h s 4> "k f^)Cr'fftft

+ (-Wfi.+** \  <?.-* b** 55y’* - 3  4  °iy.
+  /o Bf °<lf*- B ^ f )  s^ppj) + F('*' + L&%(i 
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(eT~'*{( 4  «* - 0 * ^

-f- 12 DXy 0\ x  f  -i- *  -h 15 3^ <>< f  — E 8X/S C\ J?t

-  f y f / )  cosfi ?  +  ( 2  3 * 4  «, f, -  8  8Kf i V f ,
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- * 4 H  ft) * » f i * } ) +  E  f t *  * ft X  ft f t
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+ e 3 f t ,  f t p / -  so 4  ftft +  e f t  f t  ft) co jft &

+ (ftBx f t - a  X b x, ft+ ,2 X e ^ f t f t  +  B„ft 

- is ft ft-f~ !SB< ft f t -  ftBftft 2 X s ^ f t 1 Bft)

srn f, 0 j) +■ G  ( e '■’* ft $ 4  ft —  3 4  4

- IS ft f t -  2  4 ,  3 *4* +  4 ,  ̂  ft *f t  +  ft 

-f- /S f t  ft - 2  ft, f t —  f t = » Y ,  /J ■+

( 2  f t B x s x„ X f t f t  +  8 ft, ft+ * 4 f t I

-20 ft ft ̂  7- «• ft ft ft) S/ftflj) + H  ft*1 ?
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{ ( - 2  4 8 A * e # * * / * ,

+ 20 3? <x* f* - G  3jt j?/J cos 7<- (3*3* 0(1-
-  z  $  A ? ° (  +  J2  J S  4 *  ° i f *

- >s 8, ‘C/C- B,fi - -? 7 s,*^,// =« 2%

9: THE L O N G / T U  D!8J/)L D/S PL Si C£ A?E A/ 7~ "u" //V  THE
X  - D/HECr/OA/ ‘

U - f _A4 c/j( J Dx
U  ~= _ r— J — i f {- (?Jl s,» Jk.

L x 'Vd 1 l <■"*) J RXoj l J R
whe re  (*P} Is Che 7ertcT/'&n //? yi e>e?̂ / 3̂ >y? e&r/'n^

in it&£~/'ow of A /x befn/een J>r& c he £& £ 1

!0- T A M G E N T / A L  D IS P L A C E M E N T  t-’- :

= [A  I(y t k i ) (e ' ((x  B * ~ “ a B«? ̂  ̂  ̂ B'** *  f‘

A- B? * ~  ,0 Bf C f’ +  S  Bp <=</?, )  c‘3fi !'■+(- T 8X /$,

+  e B * ^ ‘C f ' - 2 '- s s >°<*ft+ - V

* ■ - 2
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_  3 y'Bx «  f ‘+  so 4, XV f, +  4 -  10 4,  a - f ,
-  ? ' 4  ‘ f f i *  +  35  4  * i / C -  7 /O  casf /  ^  ^

(_ 3 ̂ 4 ̂  +  10 4„ +  ̂ 4 f ' - s o A , U . f ,
-  ? s ^ y , + 2  + 3 5  4  ~Cf, -  2 / f,"

+ 4/T) s,'r’ f,'7i))} + B ^(~fWK/)(e ^  V' 
- £ X 4„ + a l % f ’+s 4  J/, - 4 ^ ;
+ 4  / /  J c°sf< ? + ( ^  £>**, -  2 X %«,f,

+  Bf S  -  10 4  ̂  V  5- 4  <* j ? 7  s/„f, ?)) -  (-^T7f)

( e " ' * ( ( 3 7l"4 “ f, - " **4, «7 + AV/T
+ 7 4  ̂ f /  - 3 5  4  <?/ 4  *>?' s~  ^  3 * / ' 5

_  2 |?,£ _ 4  ̂7; r»s f, + + ( - *  i t  f

-f 2 0  X  B x^o<i - >0 0\ - 2 ! 4  e<

+ 35 4  ^  -  7 4  -  / f +  ^ 4  « f  -  2

+  * S ) " Y , * ) ) } +  C  i ( - ^ - ) ( e - ^  '

^  4 « t o C +  io 4 * 7  V 2  ̂V  - e 4̂ /f
-  4  ^ 4 * , / / 9  co,J/' ? + ( - ^  4  ̂  c % ? M f i

_ z 4, 'fy*_ S- 4 ̂  V- /* 4 *,7/- 4/0
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* »  -  (-b ^ y K ^ ' X C -  *  6« < + 3 * B* t >

+  2 , Bp

+  ,0  Bv  3 * f t  + 7  Bp <*, f f i )  a  f i t + ( - 3  2^3 f  

+  0?BX f , 3 -/- 3S  Bp « ? / ' +  lOBX)t t f e f f i  -  20 B%p

- 1  Bf «*fi -2/ Bp 2 BXp 0?f*+ Bpfi)s,ofi/))J

+  ° K n h z .
+  2 t f B ^ f i ’  +  s  B p ^ f ,  - t o  B , c t f t + B r f , * )  c ~ f i *

+ (- % 4Bx*  + «? 1 X «*-  «• 4 , '̂ fi -  Bp

+ 10 Bp H 'f?  -  5  * , / ! , '* )  S 'Y ’ * ) )  '" (%  P z' j 7  )

4 -7  f i  — 3 5  4- 21 f t ? * ,  f t  — % Bx f i ,

-  & p / 7-  2  Oi B Xp  fi TJ  c°sf, B  -f- ( z  ~2 B x ct'fi,

- Zo 3*B„p -j- /0 ?) 2 ! Bp,

- 3 5  Bp « f * - 4 -  74  2 * B X +

-  Bp *•/; s*/,*))}-t £ {(~?^) (*
{ ( ^ * B* 0(t -  2 ^  3 Z«:3 + e  7?

+ 5 Bp * f*) Cos fif +  (- 3 3xfi +  S' 3 BXp « ̂t 
- 2 ̂  $  f i t - 5 4 < f ,  4- >0 Bp J f i ’ -  & p f i  S)
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*>"?.+)) -  ( - D j h > r X e ^ ( (  ̂ 8‘ "3- 2
-  3 3“BX<* #f +  zo 4 *  ^  <x* f  - t  Q**l - '& fix? ft

- Z !  B ,  o f j C  +  3 S  7 £  *  f / )  -/-

(- s 3 * 4  ̂  +  /* ̂  ̂  V / ?  *-

-  7 4 < ^ y , + ^ 4 / ^ js'4< * £ f t - z> B* \ f *

+  $ t 7)  * ' y ^ ) ) } +  F  K ^ X p X ) ( e ^ ( ( ^

- *  +  2  X  3 ^  +■^ 4

+  4 > / A  Co- y /  ( ^ " k  B x -  z  5 v  +  e  ^ BA $ -

■I- 4  * / - to 4  X f t + fi V  ̂  ̂  ~  (^  X  a )

( e * ^ ( ( 3  ^ B ' A f  - 1 0  A B y A ^  + 2 o B ^ ^ A f %3

+  7 B f A f i - s s -  B ^ ^ f ^ - t z /  B ^ l f -  fC % fS  

- 2  X & Xftf X  -  4 ^ / 0  <** fi-f +  (-3 X  3 , ^ ^

+  ** 4 ^  3 V / C "  !0 * ̂  * A "  " 2/ ° * X

+  35 B+ °ifC - 7  5,°< f * +  X  A  X  +  4  %

- 2 ) * ' " / > * ) ) !  +  G  K y w u a X *  ^

((- 3 * 4  ̂  ^  -s ̂ ' 4 „  ~  ^  n  / C -  4- * s

- t -  1 0  4  A / A  5  4 >  * 2 / A  c " s/ *  *  + ( -  X - A ,  f

+  e S x A H f : ’■- ~ 2 %  X / C -  S $ f y  7 fo 4  A f f
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+ s u  4 - # V  i B,,
35 4  4 ^  + 10 3V  + 7  4 , ■* ̂  J

cosfift +  (-3 2*£x ‘i f i +  2 * 4 * r 4.  4 y z3

* . > °  4 *  i k T / *  -  2 ,3  f . 3 -  7  4 k / >

-  2  7 4  ° \ f +  2 4 ,. ^  / f  V  4  / ?  y  ■5- :7 ?  ^  t ' -

+  2  v  ^ 4  k /  -  '* 4 ° i ^ v  4 / k

c o y ? *  +  ( ~  3 * 4  ° 1  +  2  $  " 1  4 ^  -  ^ % y > y f  

_  4  4  +  ,0  b ,  4 f t - s  b ^ *  ;;

b 2 0  3  4 * ^ y t  ■/- 7  4 " i  A  —  4 4

_ 4 / f 7-  tf8Kf : - 2 ^ 3 v f C )

+  3 0?BX«  - 2 0 1  *BX, c( /?  V to 2  ^  - 1 4  *

+  2/  4 . -  35  8 ,^ !? +  7 4  « / i e-  # * 7

• f  2  s ' ' y Z ? * ) ) j ]  C o S  '
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//. JROTdT/OA/ Or r//r 7-/1A/G <E/V7- " Q  :

S/nce 0  =  J— ̂  l o 'J , then stj&st/iiu t~Sr̂

-/̂ s~ 'V~ <% <S y no £r> £/'<>/? c /  t ^ e  fa'y'e*7<?~

3 &  o n y  f>oSn£ os? e/ /  n/Cpcf e<5>s? £ c

0 J3 fcS/riec/.
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APPENDIX (III)

SAMPLES OF SIMPLIFIED FORMULAE AND DESIGN TABLES FOR 
SHELL ROOFS MADE OF CORRUGATED 

SHEETS
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1 2 3

. V.
.SIMPLIFIED FORMULAE:

Mx = p cos IS 
L (lb/in)

N*

II • p ? cos —  
L .

(lb/in)

= Nx<j. • p irx* sin —  
L

(lb/in)

- * ♦
.• p . c o s H

L • (lb/in)

where p = Intensity of snow load in (p.s.f.). 

Area of edcre -stiffener: = J=- (Nx*) , —
7 T  g o o o o

(in2).

M e  • £of/ow/ny c/eS/yn "tsb/es 3re . b s s o d  o n  

i/ie -/o//owXny s tru c t'u r& /  ^ro joen€/'es :

£  =. 30 X 10* psi =o-3 , ^  - 1-0

■ 4 -  ( £ ) - * - £
JDX -  s . t  ( ± f

6 (!-yUl)

**. C 2 ( ! + y A )  \ j g l

B t =  0.522 £. t. f  . 

/2 (/-^azj \Jy

* ■ * '  ( 4 )

4  -

3X<p

£= 0.029
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BOUNDARY C O N D IT IO N S : CASE ( I ) .

HALF CENTRAL ANGLE 0e= 80° , GA 22.

RADIUS SPAN Nx Nx<|>

10 15

VALLEY
*
*

V h
CROWN

0.0311
0.2737

-0.0760
-0.5428
-0.7461

0.0 
-0.2777 
-0.6137 
-0.9254 
-1.0537

0.4722
0.6335
0.7274
0.4946
0.0

0.0
-0.0140
+0.1139
0.1979
0.2084

10 20

VALLEY
*
i
3 A
CROWN

0.0311 
0.4355 

-0.1539 
-0.9443 
-1 ._2 9.0.1

0.0
-0.2864
-0.6172
-0.9182
-1.0414

0.6565
0.8471
0.9516
0.6424
0.0

0.0
0.0148
0.2803
0.5458
0.639.5

10 25

VALLEY
X*
i
3 A
CROWN

0.0311
0.5658

-0.2918
-1.4279
-1.9247

0.0
-0.2990
-0.6228
-0.9076
-1.0228

0.8645
1.0655
1.1562
0.7696
0.0

0.0
0.0553
0.5197
1.0552
1.2748

10 30

VALLEY

*
3 A
CROWN

0.0311
0.6431

-0.4999
-1.9848
-2.6324

0.0
-0.3121
-0.6288
-0.8966
-1.0032

1.0908
1.2874
1.3458
0.8812
0.0

0.0
0.0971 
0.7683 
1.5860 
1.9375

10 35

VALLEY
*
i
3 A
CROWN

0.0311 
0.6841 

-0.7701 
-2.6219 
-3.4269. _

0.0
-0.3228
-0.6338
-0.8875
-0.9872

1.3232
1.5106
1.5303
0.9874
0.0

0.0
0.1314
0.9720
2.0214
2.4813

15 30

VALLEY
i

3A
CROWN

0.0311
0.7129

-0.2022
-1.4414
-1.9831

0.0
-0.4196
-0.9209
-1.3858
-1.5773

0.9604
1.2651
1.4490
0.9857
0.0

0.0
-0.0110
0.3527
0.6256
0.6844
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BOUNDARY C O N D IT IO N S : CASE ( I I )

HALF CENTRAL ANGLE 0_=8O° , GA 22.

RADIUS SPAN V K Nx Nx<|>

10 15

VALLEY
*
$
3 A
CROWN

0.03113
0.1076
0.0181

-0.0353
-0.0311

0.0
-0.2904
-0.5693
-0.8814
-1.2719

0.5263 
0.5942 
0.6430 
0.6313 
0.6062

0.0
0.0603
0.3491
0.0097

-0.7211

10 20

VALLEY
k
i

3/4
CROWN

0.0311
0.1791
1.1023

-0.0002
-0.0311

0.0
-0.2861
-0.558
-0.8831
-1.3037

0.7041
0.7759
0.8587
0.8842
0.8723

0.0
0.0575
0.2772

-0.2613
-1.1447

10 25

VALLEY
Xit-
\

3/4
CROWN

0.0311 
0.3376 
0.2497 

. 0.0526 
-0.0311

0.0 
-0.2760 
-0.5490 
-0.8897 
-1.3369

0.8553
0.9543
1.0927
1.1579
1.1564

0.0
0.0312
0.0902

-0.7319
-1.7898

10 30

VALLEY
Xn-
i
3/4
CROWN

0.0311
0.6180
0.4925
0.1352

-0.0311

0.0 
-0.2628 
-0.5384 
-0.8988 
-1.3740

0.9811 
1.1267 
1.3447 
1.4589 
1.4681

0.0
0.0065

-0.1586
-1.3245
-2.5828

10 35

VALLEY
i
i
3/4
CROWN

0.03113
1.0278
0.8392
0.2510

-0.0311

0.0
-0.2495 
-0.5285 
-0.9081 
-1.4094

1.0900
1.2946
1.6087
1.7793
1.7997

0.0
-0.0453
-0.4085
-1.9111
-3.3630

15 30

VALLEY
k
1

3/4
CROWN

0.0311
0.2597
0.0938

-0.0291
-0.0311

0.0
-0.4356
-0.8469
-1.3202.
-1.9297

1.0675
1.1760
1.2795
1.2896
1.2712

0.0
0.1505
0.8006
-0.0938
-1.8760
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BOUNDARY C O N D IT IO N S : CASE ( I I I ) .

HALF CENTRAL ANGLE 0e=9O° , GA 22.

RADIUS SPAN 0>e Nx M ,<l>

15 20

VALLEY
*

V b
CROWN

0.0
0.0189

-0.1150
-0.5410
-0.7996

0.6266
-0.2349
-0.8446
-1.3353
-1.5457

0.9488 
0.9572 
0.9379 
O. 6484 
0.0

0.0
0.3090

-0.5288
0.0300
0.4009

15 30

VALLEY
*
i
3/4
CROWN

0.0
-0.0669
-0.4880
-1.2009
-1.5857

0.6249
-0.2232
-0.8756
-1.3352
-1.5166

1.5698 
1.5592 
1. 4101 
0.8941 
0.0

0.0
0.1333

-1.0022
-0.2254
0.4740

15 40

. VALLEY 
XM-
i
3/4
CROWN

0. 0 
-0.1677 
-0.9609 
-2.0 895 
-2.6738

0.6254
-0.2343
-0.8877
-1.2543
-1.5060

2.1207
2.0983
1.8560
1.557
0.0

0.0
-0.3162
-1.6653
-0.7841
-0.0444

15 50

VALLEY
XH-
*
3/4
CROWN

0.0
-0.2876
-1.5696
-2.0896
-4.0909

0.5878
-0.2754
-0.9098
-1.3318
-1.4903

2.6367
2.5904
2.2888
1.1557
0.0

0.0
-1.4963
-3.1625
-0.7841
-0.8726

10 30

VALLEY
*

3/4
CROWN

0.0
-0.1580
-0.8476
-1.7533
-2.1629

0.3627 
-0.1967 
-0.6156 
-0.8896 
-0.9858

1.5577
1.5388
1.3481
0.8109
0.0

0.0 
-1.0970 
-1.9030 
-1.3011 
-0.7163

10 40

VALLEY
XHr
i
3/4
CROWN

0.0
-0.2756
-1.4396
-2.9390
-3.6331

0.2752
-0.2553
-0.6464
-0.8993
-0.9904

1.9836 
1.9583 
1.7136 
1.0349 
0.0

0.0 
-3.0369 
-4.7427 
-4.4591 
-3.9870
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BOUNDARY C O N D IT IO N S : CASE ( I V ) .

HALF CENTRAL ANGLE 0_=8O° , GA 22.

RADIUS SPAN Nx *♦ Nx* M.$

10 30

VALLEY
*
i
3/k
CROWN

0.0324
-0.5604
-1.1438
-1.6447
-1.8509

-0.0268
-0.4754
-0.7876
-0.9691
-1.0287

1.5751
1.4778
1.1660
0.6507
0.0

6.7248
1.0455
-i;8590
-2.3995
-2.2944

10 35

VALLEY
£
£
3/4
CROWN

0.0324
-0.8459
-1.6593
-2.3056
-2.5609

-0.0394
-0.5142
-0.8449
-1.0354
-1.0973

1.9272
1.7980
1.4034
0.7750
0.0

11.0031
2.4818
-2.7070
-4.7057
-5.0984

10 40

VALLEY
4
* .

3/4
CRCWN

0.0324 
-1.2098 
-2.3239 
r3.1702 
-3.4957

-0.0584
-0.5698
-0.9296
-1.1377
-1.2053

2 .3422 
2 .1783 
1.6901 
0 .9280 
0.0

17.5253
4.7116
-3.9661
-8.2289
-9.4040

20 30

VALLEY
X

4
3/4
CROWN

0.0324
-0.2424
-0.1363
-0.9967
-1.4482

-0.0078
-0.6500
-1.2704
-1.8371
-2.0794

1.1500 
1.2684 
1.3535 
0 .9439 
0.0

2.3178
-0.7174
-0.7950
0.2132
0.6353

20 35

VALLEY
*
£
3/4

CROWN

0.0324
0.1996

-0.2778
-1.3034
-1.8447

-0.0113
-0.6909
-1.3032
-1.8293
-2.0492

1.4196
1.5087
1.5284
1.0378
0.0

3.4760
-0.9477
-1.3367
0.2344
_1.Q38.7_

20 40

VALLEY
X

*
3/4
CROWN

0.0324
0.0947

-0.4929
-1.6351
-2.2324

-0.0150
-0.7326
-1.3381
-1.8227
-2.0189

1.7107
1.7596
1.6899
1.1099
0.0

4.7903
-1.1335
-1.9211
0.1799
1.3658
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BOUNDARY C O N D IT IO N S : CASE ( V ) .

HALF CENTRAL ANGLE 0_=8O° , GA 22.

RADIUS SPAN Nx *♦ Nx<i> M. 4>

10 30

VALLEY
*
i
3A

CROWN

0.0324
0.0414
0.0191

-0.0186
-0.0324

-0.0158
-0.3572
-0.6421
-0.9509
-1.3519

1.2444
1.2584
1.2706
1.2705
1.2601

4.9898 
1.4952 
-0.8545 
-2.7776 
-4 .0583

10 35

VALLEY
i
i
3/4
CROWN

0.0324
0.0602
0.0416

-0.0093
-0.0324

-0.0273
-0.3867
-0.6900
-1.0186
-1.4409

1.5103
1.5255
1.5430
1.5481
1.5402.

9.1070
2.8898
-1.7510
-5.2632
-_7_.14J.-6_

10 40

VALLEY
i
i
3/4
CROWN

0.0324-
0.0812
0.0660
0.0004

-0.0324

-0.0450
-0.4327
-0.7646
-1.1226
-1.5751

1.8303
1.8467
1.8687
1.8781
1.8722

15.4335
5.0242
-3.1354
-9.0747
-11.8594

20 30

VALLEY
X*»•
*
3/4

CROWN

0.0324
0.0548

-0.0880
-0.1237
-0.0324

-0.0060
-0.6566
-1.2042
-1.7532
-2.4320

1.1889
1.2285
1.2225
1.1289
1.0776

1.4276 
-0.6109 
0.2748 
0 .4044 
-1.3814

20 35

VALLEY
*
i
3/4

CROWN

0.0324
0.0300

-0.0889
-0.1098
-0.0324

-0.0066
-0.6616
-1.2004
-1.7510
-2.4511

1.4031
1.4276
1.4123
1.3388
1.2985

1.6754 
-0.5370. 
0 .2830 
0.2642 
-1.6834

20 40

VALLEY

*
3/4
CROWN

0.0324
0.0149

-0.0862
-0.0926
-0.0324

-0.0071
-0.6631
-1.1978
-1.7520
-2.4677

1.6106
1.6267
1.6089
1.5500
1.5173

2.0126 
-0 .3942 
0.2644 
0.0261 
•2 .0802
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MAXIMUM INTENSITY OF SNOW LOAD FOR 
DIFFERENT CASES OF BOUNDARY CONDITIONS

GA 22, <f> = 80°e

SPAN (feet) 15 20 25 30 35 40

RADIUS (feet) 10 10 10 10 10 15

LOAD (psf): 
For CASE (I) 45 20 11 7 4 12

LOAD (psf) : 
For CASE (II) 50 42 23 10 5 18

TABLE (A)

SPAN (feet) 30 40 20 30 40 50

RADIUS (feet) 10 10 15 15 15 15

LOAD (psf):
For CASE (III)
<f> = 90° e

13 6 44 22 12 ' 6

TABLE (B)

SPAN (feet) 30 35 40 30 35 40

RADIUS (feet) 10 10 10 20 20 20

LOAD (psf): 
For CASE (IV) 22.5 16 11 20 14 10

LOAD (psf): 
For CASE (V) 50 50 48 50 50 45

TABLE (C)
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Example;
The analysis of a simply supported cylindrical 

shell by the use of tables will be illustrated in this 
example.

Design a shell roof made of corrugated sheets 
with longitudinal stiffeners at the valleys. The shell 
has the following parameters:
Span = 20 Feet 
Radius = 10 Feet 
<£> = 80°

Maximum intensity of snow load is 15 psf.

Solution:
From table A, the roof with the given dimensions 

can be built with Gage 22 and can carry a maximum intensity 
of 20 psf snow load. From table (I), the stress-resultants 
can be calculated from the following formulae:

A6c =  A/„ - f> • cos -ZL*

. =  N+ . f  - oos ZL2L 

A /^  =. Nx?. ■ sin ZL*

M f  —  ■ sp ■ cos ZL2E.
where = 15 psP

Figures (a, b, c & d) show the distribution of the stress- 
resultants,

/ x  L ^Area of stiffener = — — — ■ 0-6'S€5 — o -ub a7T X

(lb /in  )

( lb/in) 

( l b / i n )  

(lb / in )
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/Vx - Distri&U tion (Ib/in).
e?Z? W - ^ c a / 7 -

Ffr. 6a)

A -̂5 —  D i s t r / L u t f o n  ( / b / i n )

a  £  S UtjDjDort ■

fsJ'P __ 23/vS- triL  u t f o n  ( l b / i ' f

3 t  m id -  .5/0 *3/7.
CbJ

/v fp —  D is tn 'b u t i / 'o n  ( f b / r n )

F r 9 . (c)

<3 £ mr<d- s^pan
F>j' •
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APPEN DIX ( I V ) 

FLOW CHARTS
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ST A R T M A S T E R  F L O W
CHART.

IN  PUT

I N I T  I A  L  ! Z  A T ! 0 ‘

«R : 4

N L :s

E N D

S P A N : RADIUS.

G  £  N £ P  A  T £  P I G  t o  t T I E S

RADIUS
SPA  A /

CALCULATE R 00 TS OP  
CE/ARA CTER/S T/C EQlUATiON, 
CAL CL//1A TE AAA TR/X TAJ &
CBjj CALL SUBROUT/A/C TOP 
M A T R I X  I N V E R S I O N ,  

S O L U T I O N  .
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F L O W  C M  A R  T
B E T  P V E E  N  T E R M I N A L S  
A S  B  /A/ M A S T E R  
r t O W  C M  A  F T .

1 =  1 +  L

I  -  J.

C ALC ULATE ROOTS 
O T  C H A R A C T E R J S T / C  

E Q U A T I O N .

FOR fNVE R S f O N  OF ■

M A T R I X  [A3 ■

CALL SUB R O U T I N E

S O L  V E  F O R  C O N S  T A  N  T S

C A L C U L A T E  s t r e s s e s  A N D  

B I S  P L  A C T  M E  N T S .

GENERA TE M A  TR IC E S  L A I  

AND LBJ FOR BOUNDARY
C O N D IT IO N S .
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