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ABSTRACT

o fhis study is presented to establish methods of
analysis and practical application; of cylindrical shells,
made of corrugated sheets. |

The present approach is based on treating the
corrugated sheets as orthotropic shells, and deals with
their applications in shell roofs and grain bins.

| The differential equations, governing the behaviour
of orthotropic shells, are established in an exact as well
as simplified form.

- The cases of practiéal shells, which are solved
here, include single and group of shells with longitudinal
stiffeners in valleys only, and with longitudinal
stiffeners in wvalleys and.crown, as well as half barrels
supported along their four edges. Simplified design
formulae and tables are prepared fbr use in practice.

An experimental program was undertaken with full
scale shell roofs. The experimental results showed good
agreement with those obtained theoretically.

Simplified differential equations, governing the
behaviour of bins made of corrugated sheets, are'deriveé.
Particular and homogeneous solutions are superimposed to
satisfy the governing equations as well‘as the boundary

conditions.

ii
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A study on the effect of geometry of corrugation
configuration on the load capacity of the shell is also

made.

iii
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A,B,C, ~ Integration constants.

D,E,F,

G,H,A%*,

B* ,C*,

E* ,F*

Bx -~ Bending rigidity in the x-direction.
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Eg - Apparent- strain rigidity in the x-direction.
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 NOMENCLATURE con't

Mx¢ - Torsional moments,

Nx - Direct longitudinal stress-resultant.

N¢ ~ Direct transversal stress-resultant.

qu> ~ Membrane shearing forces.

Q. ~ Longitudinal shearing forces.

Q¢ - Transve:sal shearing forces.

R ~ Radius of curvature of the shell.

t - Average thickness of the sheet.

u - Displacement component in the x-direction.

\'4 B - Displacement component‘in the ¢—directibn.

w - Radialldisplacement noxrmal to the shell
surface.

X,4,2 - Coordinates.l

o - Réal part in the foots of the characteristic
equation.

B - Imaginary part in roots of the characteristic
equation. :

A '~ A parameter equals (wR/L).
-Ae = Effective width of corruéated sheets.

u - Poisson's ratio. |

¢e - Half the central angle.

P - A reduction factor to account for the effect
of slip at sheet-to-sheet and sheet-to-frame
connections.

€y = Axial strain in the x-direction.

5 € - Strain in the tangential direction.
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NOMENCLATURE con't

Yo - Shear strain in the x-¢ plane.

<] . - Rotation of the tangent of shell surface.
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CHAPTER (I)

INTRODUCTION

The use of light gauge corrugated sheets goes back
to the beginning of this century. For a long time,
corrugated sheets ﬁére being used as coverings, without any
attention being paid to their structural capability. The
main reason for not considering them as structural matérials,
was the lack of a sound basis for connecting these sheets

(18) was the

vtogefher, to form a continuous medium. Nilson
first to stﬁdy.the behaviour of these sheets when assembled.
His study laid the foundétion fof the use of corrugated
sheets, as shear diaphragms, to replace shear bracings..
Furthermore, his invéstigation postulated the possibility
of using these sheets in folded plate roofs(lg), in which
they carry mainly the shear forces, (the tension and
compression are. being carried by-longitudinal stiffeners).
Parallel to these studies of practical applications,
.extengive study of the mechanical properties of such

(17) (20)

assembly was carried out by Luttrell , Bryan

(20) and the author(s).

EL-Dakhakhini
In Canada and the U.S.A., corrugated sheets are
’ produced with cylindrical curvature. Up to the present time,

they are being used in grain bins and farm buildings without
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a reliable method of design. Therefore, it is the author's
conviction that a precise method of analysis for cylindrical
shells made of corrugated sheets would open the way for
another economical practical use of such materials.

Furthermore, shells have better'load~carrying
characteristics than folded plates, (under a uniformly distributed
load), since they translate the applied loads into mainly membrane
forces. Moreover, shells offer an efficient use of thin steel
sheets in longspan structures, as the cofrUgations minimize the
problems of local and overall buckling.

Corrugated sheets, with cylindrical curvature, are usually
produced, using the arc-and-tangent type of*corrugations.

. The present thesis examines shells made of this type of
corrugation and suggests aiternatives for better performance.

In this study, the corrugated sheets are treated as
orthotropic materials. 1In Chapter (II), the mathematical
formulations of the theoretical model are dealt with.

Exact and simplified governing differential equations are
derived from these formulations.

In Chapter (III), the applications in roofing are
presented. The practical cases of boundary conditions are
discussed and the method of solution is given. The general
differential equation of the 8th order in the radial
displacement, w, governing the behaviour of orthotropic
shells is established. The membrane analysis of the shell,

under different cases of loading, is also given in this
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3
chapter. In this membrane solution, the boundary conditions
are not satisfied. Subsequently, a bending solution of the
governing differential equation, with ﬁo surface léading,
is sdperimposed in order to satisfy the boﬁndary conditibns.
The practical cases of boundary conditions, which are solved
here, include single shells and groups of shells with
longitudinal stiffeners in valleys only, and with longitu-
dinal stiffeners in valleys and crown, as well as half
barrels supported along their four edges. Simplified design
formulae and tables were prepared for use in practice.

AAléo undertaken in the course of the present study,

; was an experimentgl.program_planned to test shells having
different cases of boundary conditions. These experimental
investigations, together with a comparison of the theoretical
and experimental results, are given in Chapter (IV).

The differential equations, governing the behaviour
of grain bins, made of corrugated sheets, are obtained in
Chaptex (Vf. Pafticular and homogeneous solutions are
superimposed to satisfy the governing equations, as well as
the boundary canditions. Curves were prepared for the
determination of the effective width of corrugated sheeté,
stiffened by vertical ribs, under frictional forces. The
study of the effect of the slip at sheet-to-sheet and
sheet~to-frame connections is made for both shell roofs

; and Qrain bins.

Chaéter (VI) deals with the effect of.géometry of

corrugation on the load capacity of the shell. Other
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L.

corrugation configurations are suggested for better
performance of the shell.

The observations and conclusions of the present

stud§ are given in Chapter (VII).
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CHAPTER (II)

M;i'THEMATICAL FORMULATIONS

in this analysis, the theoretical model represents a
shell, mad::-~t:anwelastic orthotropic material in which the
mechanicalkﬁfopadties are equal to the average properties

of the corrugated sheets.

II.1 Mechanical Properties:
For the arc-and=tangent type of corrugation,

figure (1), the mechanical properties are(l'a):

b e(%)-'t . E (1-a)
¢ "\g ‘ |

. : 2
D, = __ELEE? t (1-b)
© 6(1-u“) £/ '
qu) = p .__E_‘_t... c (1-c)
' 2 (1+p) £ ‘
B, = 0.522E - t ° £2 - C(1-a)
13
12 (1-p7) 4 _
o3 :
B, = _Bet” 4’1) | - (1-f)
Xe 12(1+p)  \c ~ :
in which: D, and D¢ are the axial rigidity in the x- and
¢—-directions respectively; D = shear rigidity in the x-¢

X¢
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plane; B, and B¢ = bending rigidit& in the xz- and ¢z-plane
respectively; Bx¢ = to;sional rigidity; t = aVeragef
thickness of the sheet; ¢ = corrugation pitch;,? = developed
length of corrugation per pitch; £ = half depth of
corrugation; E = modulus of elasticity of steel; » =
Poisson'é rétib; and p = a reduction factor to account for

the effect of slip at sheet-to-sheet and sheet-~to-frame

'connections(l). These properties were verified experimentally
: ~in Reference (8).

IX.2. Governing Differential Equations:

The differential equations governing the behaviour
of the shell are. obtained by:using the previously mentioned
propértieé, Equations’ (1-a, b...f), together with the
equilibrium donditions.and'geometric relationships of an
infinitesmal element, dx*R-d¢.

II.2.(a). Conditions of Equilibrium:

Referring to figure (2), the conditions of

equilibrium are:

oN

N, 1
X 4 — . ¢xX + p, = 0 (2-a)

- 9xX R ¢

3N aN '

—¢ 4R [ X -0, + Rp, = 0 © (2~b)
3¢ 3% »

20, 20,

—L 4R [—E ) +N, +Rp, =0 (2-c)
3¢ ax ¢ .
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My e (M)
3¢ ax
M M
R | %) + 8% .
8% 1)
RNy, = Ny} o+ My

where: Py p¢ and p, are the components of external

it
o

(2-d)

(2-e)

(2-£)

loading in the x, ¢ and z-directions respectively, R is the

radius of curvature.

Eliminating the'transverse shears, Qx and Q¢,from

equations (2-a,...f), by making use of equations (2-d,e),

this system of equilibrium equations can be reduced to the

following:
TN
1
N, o+ X p, =0
X X
- R
‘Rl\.l' + R2N" - M -
¢ x¢ )
M** + RM'® + RM''
¢ S 1 ¢x
R(Nx¢ - N¢x) + M¢X
where: ( ) =20) i
oxX

! 2
RMx¢ + R'p
+ RZM'K+ RN
X
=0
)" = 3( )
3¢

¢

¢

=0

2
+sz

0

(3-a)

(3-b)

(3-c)

(3-4)
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IXI.2.(b). Geometric Relationships:

The geometric relationships of cylindrical shells

o (10),
2
e, = 4+ z 7 (4~a)
) ax. X
. 2
E___;L__gy__(l)w_'_g_(l)aw. (4-b)
® R 3¢ Rtz R \R+tz/ 03¢
| (R+Z) oV A 1 aﬁ z z 82w
Yo, = [ — ) — -+.(-———> —_— + (-+ ———)
x¢ R ax Rtz / 3¢ R Rtz /) 3x3¢
' ' (4-c)

II.2.(c) Elastic Relationships:
Making use of the elastic law, together with the.
previous geometric relationships, Equation (4), the

following expressions can be obtained for the stress-

resultants of orthotropic shells(lo) :
N¢> = - -i (w=v) = —i (w+w) ‘ .. (5-a)
1 BX 11 . ’
NX = Dxu + = W (5-b)
R _
D . 1 B . | )

N o= 2L 4+ rRy) + 2 (4 - Rw) (5-c)
ox R 4 2R3 . . .
D B 1o :

Nx‘¢ = X6 (u + Rv) + -—-}-{-% (v + w) (5-4)

R 2R
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=
-
il
. {
xbﬂ ’;Unle':w

a————

R

¢x 2R2

g T T 2R

(w + w)

(Rw + u)
. B . - 1
_X$ (2Rw - u + Rv)

B . '
—ﬁ% (2Rw + 2RV)

(5-e)

" (5-1)

(5-9)

(5-h)

Substituting-for the stress-resultants from

Equation (5) into the equilibrium equations, Equations (3a-c),

the following three governing differential equations in u,

v and w, are obtained: -

w B

(1Y l,‘. B
! x " u , v ) X (11 > T
D uw+—w+D —_t =)+ | =~~-w |+ p_ =0 (6-a)
X R X9 (RZ R 2r° \ R X |
P . e " 3B 1] 1 te
D (v -w) +D (Ru + sz) + =X (v + w) + R2p =.0 (6-b)
¢ x¢. o 2 ¢
. . Bd’ sees . . 2 1" 1
D, (v -w) -~ =% (w+ 2w + w) -~ (R°B_, w + RB_ u)
¢ R2 X X
) 'ﬁ.. 3B tte B 1 oo
- (2B, w22y Xy o R%p_ =0 (6-c)
¢ 2 2R

‘The fourth condition of equilibrium, Equation (3-d), is

self-satisfied.
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II.3. Simplifications:

The system_of equations, Equations (6-a,b,c), ié
derived with minor apﬁroximations, (lateral strain and -
non—iinear terms of the strain expressions are neglected).

It encounters a number of terms which have insignificant
effects on the results of thé corrugated sheet shells. These
terms may be neglected, and this system of eguations can be
simplified if the following assumpﬁioﬁs are made in the |
derivatidn: |

The structural action.of a cylindriéal shell can be
approximated by combining the strﬁctural_actions of a flat membran
corresponding to the -developed shell loaded in its own
plane; of a plate, formed.by'the developed shell loaded at
;ight angles to its plane; and of the shell regarded as a
fle#ible membrane. -

Thus, Equations (2), (4) and (5), can be reduced to
é simpler form, based on the following arguments which were
first proposed by Donnell(G) for isotropic shells. Firstiy,”
in connection wiﬁh the equations of equilibrium,if can bhe
argued that.the transverse shearing force, Q¢; appearing in
equétion (2-b) , (which represents the condition £ ¢ = 0),
may be dropped, as it does not occur in the corresponding
equations of equilibrium of the flat membrane or the. membrape shell
Therefore, the equilibrium equations, Equations (3-a,.b, c),

reduce to:
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' Néx ’ . o

4Nx + —= + p, = 0 (7-a)

R .
o ' 0 | 7-b
: .+ + = -

N+ RN, HRP = | (7-b)
oe 0. Pe AL 2 _ :

M¢ + RMX¢ + RM¢x + R™M_ +.RN¢ + R°p, = 0 (7-c)

Secondly, in connection with the strain expressions, the
effect of changes of curvature on the strains is assumed to

be negligible, therefore, Equations (4-a,b,c) are simplified

to:
du '
e =24 (8-a)
X % .
€. = .:.I‘_ (.e.l - w) ’ ' (8-b)
¢ R \a¢
avl 1l /au ) '
Yoy = — + = (— (8=c)
X 3% R (a¢)

Thirdly, the changes of curvature and twist, are considered
to be insignificantly affected by the "stretching" displace-

ments, u and v. Thus, these expressions are reduced to:

X =~—a_iy-
X axz
. = 32w
¢ Rza¢2
vi. = - 3%y
x$ R3xX9¢
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Utilizing Equations (8-a,b,c) together with the
elastic law, th? strg;s—resultants Nx’ N¢, Nx¢ and N¢x are

reduced to:
’ | )

N, = Du ' (9-a)
) D .
N =--% (w-v) o | (9-b)
¢ R
D .. '
N, =N_ =-X (a+ Rv) ~ (9-¢)

X¢ X R

and the moments are:

2
9 W
M =-B_ 2% (9-4)
X X 8x2 N
B BZW
M, o= - 5 | (9-e)
¢ 22 9 |
. | By 52w
M: =M =-X | (9-£)
X¢ ox R 9x3¢ '

Substituting Equations (9-a,...f) into Egquations
(7-a,b,c), the following simplified system of governing
differential equations, is obtained:

u v ‘ _ : -
Dxu+Dx¢ (E-Z-’FE) ‘I‘Px.- 0 (10 a)
D, v - w) + Dyy (Ru + V) + R2p¢'= 0 (10-b)
. L Hee B¢ 2
D¢ (v - w) -~ (R wa + 2Bx¢w + ;5 w) + R p, = 0 (10-c)
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The solution presented in the folléWing chapters
are baéed on the simplified system of equations,
Equafions (10-a,b,c). The validity of this system of
equafions and the degree of accuracy obtained from them

are discussed in Chapter (III).
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CHAPTER (III)

APPLICATIONS OF CYLINDRICAL SHELLS

MADE OF CORRUGATED SHEETS IN ROOFING

IIT.l. Introduction:

" This chapter suggests some economical applications of
the cylindrical corrugated sheets used in shell roofs. The
practical cases of boundary conditions are discussed and the
solutions are given.

Referring to Figure (3), the chosen coordinate>system
is shown. The origin , 0, is designated at the mid-span of
the left edge of the shell. The séan of the shell is "L"
and half the central éngle is "¢e". '

III.2. Boundary Conditions:

The shell roof is supported by two end trusses as
shown in Figure (4). Thus, at»these ends, the shell under-
goes no .deflection and is considered to be free from

moments. The following boundary conditions are to be

satisfied at x = # % .
- w=0 o ' (I-a)
MX=0 . (I-b)
Nx =0 ’ . (I-c)
N = I-d
s =0 (1-d)

The boundary conditions along the straight edges
differ according to the type of shell as shown in Figures

(4-a,c.;.e). Their boundary conditions are as follows:
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CASE (I): Single shell with longitudinal stiffeners in
valleys only. |
Referring to Figure (4¥a), the boundary conditions
are as follows:

At ¢ = 0; and ¢ = 2¢

e
M, =0 | : | , , (x-1)
Q=0 - (1-ii)
N¢-=,0 : ' ‘- (I-iii)
Yshell =~ Ystiffener ' (I~iv)

The first conditioﬁ means that the torsionai
resistance of the edge stiffener is neglected. The second
and third mean that the bending rigidity of the edge
stiffener is also neglected. The fourth condition
indicates that the longitudinal displacement, u; at the
edge of.the shell equals the longitudinal displacement of
the edge stiffener. |
'CASE (II): Single shell with longitudinal stiffeners in

vaileys and crown.

In this case, Figure (4-b), thé following boundary

conditions are to be satisfied:

At ¢ = 0;

M, = 0 : ' (II-i)
9, =0 : (II-ii)
N, = 0 " | (II-iid)

Yshell Ustiffener (II-iv)
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At ¢ = ¢e (i.e. along the crown);'
-Q¢ =0 : (IX-v)

6 =0 (II-vi)
v =_o' (IT-vii)

Yshell = Ystiffener (II-viii)
Equations (II-v,vi,vii) are clear from symmetry.

The 8th equation, Equation (II-viii), is as explained

before.

For an antisymmetrical loading, the boundary

conditions at ¢ = ¢_ becomes:

e
M, = 0 A ' (IT~-V)
w =0 . . B A (II~vI)
Ny =0 L - A{II-vid)
(II-viii)

usheli= Ustiffener

“CASE (ITX): Half barrel supportéd along the four edges.

In this case, Figure (4-c), the following bbundary
_conditiéns are to be satisfied:

At ¢ = 0 and ¢ = 2¢_;

e
w=20 _ , (ITI-1i)
M¢ = 0 : ; C(III-idi)
v =20 | | (ITI-iii)
(III-iv)

Ushell = Ystiffener

which means that there is a hinge-like support along the

stréight edges of the shell.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L .

. 17 -’
CASE (IV): Inner shell of a multiple group of shells with

_ longitudinal stiffeners in valleys only.

A design,approximation:is usually made in the treatment of an interior

shell of a multiple group by treating it as a symmetrical problem.

Referring to Fiéure (4-d) , the boundary conditions
to be satisfied in this case are:

At ¢ = 0; ¢ = 2¢ =

e .

w sin4>,e + v cosp = 0 ' (TV-1i)

6 =0 _ A - (IV-ii)
N¢ sinqse - Q¢ cos¢, = 0 (TV-iii)

Ushell © Ystiffener (Tv-iv)

Equation.(IV-i) indicates that the horizontal
components of the displacements, @ and v, are zero. This
can easily be seen from symmetry. Equations (IV-ii) states
that the rotation of the tanget should be zero, due to
symmetry. The physical meaning of Equation (IV-iii) is -
'that the vertical components of the internal forces N¢

and Q,, at the edge of the shell, are set equal to zero.

¢
This means that the bending rigidity of the edge stiffener
is neglected.. Equation (IV-iv) "is identical with the

corresponding formula of CASE (I).

CASE (Vi: Inner shell of a multiple group of shells with
longitudinal stiffeners in valleys-and crown.
Referring to Figure (4-e), the eight boundary
conditions to be fulfilled here are as follows:
b At ¢ = 0;

w sing, + Vv cos¢, = 0 ' (V-1i)
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6 =0 o (Vv~1ii)
N¢ sip¢é —_Q¢.pos¢é = 0 ' . (V-iii)

Yshell = Ystiffener (V-iv)

These equations are similar to those given in CASE (IV).

At ¢ = ¢7

Q = 0 (V-v)

8 =0 (V=-vi)
v =0 v (V—Vii)

Usheil = Ystiffener (V-viii)

These equations are the same as those discussed in the

second case of boundary conditions.

III.3. Method of Solution

The solution is carried out in three steps:
.(a)‘ A membrane solution with the surface loads acting on
the shell.
(b).-A bending sblution of the unloaded shell.
(c) Superposition of thé results of (a) and (b) to
satisfy the boundary conditions that exist along

the straight edges of the shell.

III.3. (a) bMembrane Solution:

In the membrane solution, the shell is idealized as
-a membrane inéapable of resisting bending stresses. This
membrane solution is wvalid for all types of shells. Thus,
omitting the terms due to bending in the Equilibrium

Equations (3-a,b,c), the following system of equations is
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obtained:
' N;ub | B ,
N+ ———R +p, =0 (11-a)
RN + R2N. . + R%p, = 0 (11-b)
¢ b {4 ¢
RN, + ﬁzp -0 (11-c)
¢ z :

(i) * Membrane Solution Under Own Weight:
The own weight, g, can be éxpressed in a Fourier

series as follows:

9 =‘£g {.cos X 1 cos'éﬂi + L cos SuX ....}
T L 3 L 5 L

Whenever the load is uniform in the x-direction, it is
usually adeqﬁate to consider the first term of this series.
The components of the own weight in the x-¢ and z-directions

can be written as follows:

g, =0 B (12-a)
g, = - 49 sin (¢_ - ¢) cos = - (12-Db)
$ e

T L - .
g, = 49 cos (4 - ¢) cos X (12-c)
z k14 e L .

Using the equilibrium eqguations (ll-a,b,c), and
substituting for the loading (Equations 12-a,b,c), the
ﬁembrane solution for the stress-resultants Nx' N, and

¢

N_, are obtained.

X¢
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N¢ = - 4gR cos(_¢_e -~ ¢) cos kx (13-a)
kil
__8qr? B . |
N, = - 3 COS (¢e $¢) cos kx (13~b)
R,n, - .
N - 8gL sin (¢e - ¢) sin kx | (13~c)

xXé "2

The three displacement components are obtained from

- eguations (9-a,b,c5 as follows:

u = _;%g__ cos (4. - ¢) sin kx (13-4d)
e
Rk™xD
X
v = - i_ [ 1 + 1 _} siﬁ(¢e - ¢) cos kx (1L3~-e)
3 2,4
ka¢ Rka

\/ =A§3. [ 1 + 1 .] cos(¢e - ¢) cos kx (13-£)

in which k = 3 .
L

(ii) Membrane Solution Under Snow Load "p".

The snow load can be expressed in a Fourier series

~as follows:

4p. cos [ (6_~¢) '
T L 3 L 5 L

i As in the case of the own wéight, g, the load is uniform

in the x-direction and the first term in the series is

L4
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usually sufficient. Then the three load components are:

p, =0 - (14-a)
p¢.= - ég-cos (¢e - ¢) sin (ée -9) ¢os Ix (14-b)
i : L
_ 4p 2 _ X ' _
p, = cos“ (¢, ~ ¢) cos — (14-c)
L , L

Substituting equations (l4-a,b,c) into the
equilibrium equations (ll-a,b,c), the membrane solution
for the stress-resultants are obtained. Utilizing
vKuétions (9?a,b,c), the three displaceﬁent components are

also obtained as follows:

N¢ = - 4pL c052 (ée -¢) cos kx ' (15-a)
T .
NX = - lei cos 2 (¢ - ¢) cos kx | (15-b)
e
Rrk :
N = 5pL sin 2 (¢_~ ¢) sin kx | | (15-¢)
X¢ Tr2 e :
u = —12P o5 2 (¢e - ¢) sin kx - (15-4)
Rk>37D '
v = =6p [: 1 + 4 ] sin2(¢e - ¢) cos kx (15-e)
™ 2 2,4 ’
k Dx¢ Rk Dx
w =.12p

[ 1,4 _] cos 2 (¢, - ¢) cos kx
X¢ X (15-£)
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)

(iii) Membrane Solution Under Wind Loading:

Many factors affect wind load on shell roofs. The
load'may take any non-symmetrical shape, depending upon
the geometrical dimensions of the shell, and the direction
of the wind. The effects of non-symmetrical loading may
be divided into two cases; (1) symmetrical and, (2)
antisymmetfical. It is possible to obtain the solution

- undexr any case of ioading, using the principle‘of
superposition. The following two cases can be used for
the determination of the membrane solution under wind
loading:

(iii)=-a. Symmetrical Case of Wind Suction:
The load is expressed in a Fourier series as
* *

%
previously stated and the three components Py p¢ and P,

are given by:

* N . ‘ .

P, = 0 (L6-a)
*

P, =0 | 3 (16-b)
* 4 * '

'p, = —E-COs (¢, - ¢) cos kx (16-c)

™.

The following membrane solutions for the stress-
resultants are obtained using the equilibrium equations

(ll"a ,b,C) -
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* .
N¢'= p R cos (¢e ~ ¢) cos kx : (17-a)
ﬂ S

* ' B
N =,£Eg— cos (¢e - ¢) cos kx " (17-b)
7k"R

*
Wl - ; | -
Nx¢ — sin (¢e ¢)>51n kx (17-c)

The three displacement components are obtained
- from Equations (9~a,b,c).

u = —4p_ cos (¢e - ¢) sin kx : (17-4)

v = 4p [ 1 ]l 2:] sin.(¢e - ¢) cos kx (17-e)

=
i

*
-4p [ R 2] cos (4, ='¢) cos kx (17-£)

pD. k% D k*r
xX¢ X

(iii)~b. Antisymmetrical Case of Loading:v

The three load components are:

P, =0 . | (16-d)
*
p¢ =0 ‘ (L6~e)
* .
p* = 4 sin ™ cos kx (16-£)
2 T ¢e .- i . ,

The membrane solution is obtained by substituting
Equations (16-d,e,f) into the equilibrium Equations

(11-a,b,c) as follows:
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N, = Z4P*R oin T os kx - (17-9)
9 T ¢e '

2 ,
N = :ﬁgi%— sin ™ cos kx ' (17-h)

,R“¢e L%

*
N . =.4_P_£

T s s
%0 “¢e cos ¢e sin kx , (17~-1)

The three displacement components are obtained

using equations (9-a,b,c) as follows:

_ ; |
u = :%B;E— sin ¢ sin kx (17-3)
T ¢ RD ¢e
X .
2 2 | '
v = Z4p*L LA, L cos ™ cos kx (17-k)
124 D ¢+ *Rr%D ¢
e xX¢ e X e
' 2 2 : :
W= 4P*g [ 14 2L2 ]sin T cos kx (17- )
T Dx¢ ¢ R'D, 9o

If isotropic properties are considered, these
equations yield the well known membrane solution for

isotropic shells.

III.3.(b) Bending Solution:

Since the load is considered in the membrane
solution, ﬂnn,px, Py and p, are replaced by'zero in
Equations (l10-a,b,c). The bending solution is governed
by the following system of homogeneous differential

equations: .
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Dx u + DXCb (;i- + E ) = 0 (18 a) .
.o -. e 2" _ ' _
D¢ (v - w) + Dx¢ (Ru + R°v) =0 (18 b?
D, (v - w) - (R®B.w +28B ﬁ"+ Se 2 o (18-c)
p v w . % x.¢w R2 =

Eliminating u and v from Equations (18-a,b,c), it is

possible to obtain one . governing differential equation in

the radial displacement, w, as follows:
Differentiating Equation (18-b) twice with respect

to x:
D (v -wr+ D, (Ru+ Rz;'"; 0 (19-a)
- Wy u v) = -a
o )
4 ) .
Applying the operator R . to Equation (18-a):
AKX
l.ll‘. hde | ’ pee X
RD_ u + Dx¢ (E u+v) =0 (19~b)
Differentiating Equation (18-b) twice with respect
to ¢ : .
D, (v - W+ D, (Ru + R%V) = 0 - (19-c)
From Equations (19-b) and (19-c), it can be shown
that:
3 11se ' [TXY} Y
R°D, u =Dy (v - w
e e . D¢ XYY s .
or Ru = 5 (v = w) (20-a)
R Dx
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Substituting Equation (20-a) into Equation (19-a):

wee ne Dy e e -
D, (v - w) + Dy ( 5 (v = W) + R°V) = 0 (20-b)

¢
DxR

Differentiating Equation (18-c) twice with respect

to x and once with respect to ¢ :

me [ d B ",

It o> tre i 2 un . mnn ¢ are .
D, (v - w) = (R°B_w + 2B w+ —= w) (20-c)
) : X x¢ R
Substituting Equation (20-c) into Equation (20-b)

then:

N

R wa + 2Bx¢ w + ;f-w + Dx¢ 5 (v - w) + R°v |= 0

(20-4d)

3
Applying the operation 12 ( 83‘) to Equation

DR 3¢

(18-c) yields:

D eoes  wee B 2B B aeve
-T¢2 (v - w)~=‘—5 w + ——5%-w + ¢4 w (20-e)
DxR Dx DXR DXR

Substituting Equation (20-e) into Equation (20-d):

5 g B, aU B i 2B, i
R°B. W+ 2B, W+ 2w+ 0D Xy Xy
X X¢ 2 X¢ 2

R ¢ Lo, D_R

DR4

B o {111 ’
+ W+ rR2Y ]= 0 (20-£)
X
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‘ Differentiating Equation (20-f) with respect to

¢ giyes:
B 150 2B oo B -:-:!. B YRy
RItERS " e . 111]]
vV = - [-—’-‘-—- WA W+ 4¢ Wt o W
D-xc{> R Px¢ R Dx¢ R Dy
2B_, uu B, .
R w] (20-g)
R'D R°D
X X

Differentiating Equation (18-c) four times with

respect to x, then:

2 un tjee
e Slx i, e v e (20-h)
D .
Py P R Dy

e L1213
v =W +

Equating Equations (20—g5 and (20-h):

2 L 13 ohe L]
RB ":llll 2B ll"ll B ll': mn B ::;'
Ewt X wtr b wrw+ 2w

2 .
D D RD D
¢ - ¢ X
2B_ ; un B, &l B, wn 2B_ WU
’+—2—§—iw+ 4¢ w+'2x w + 4x¢w
R Dx¢ R Dx¢ R Dx R Dx
B¢ o '
+ — w=20 ‘ (20-1)
R Dx .

Multiplying both sides of Equation (20-i) by

D
R6 .3 ., then:
B
¢
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D 2B 7 . um D 2B .D B e
w+[x+ X¢] R2w+[—’3+-—x¢—§+—B—x-]R4w

"x¢ Py P PePxe B
- 2B D, B_D _me rDUB m
+ x¢x+xx ]R6w+[xx~]R8w
-B¢ D¢ Bd’ DX¢ D¢B¢
'DXRG "re '
-+ — ] w = 0 (21)
L B¢

Equation (21) is the eight-order partial differentiél
equation'governing the bending behaviour of cylindrical
orthotropic shells. If isotropic properties are considered
foi the shell, Equation (21) yields the well known Donﬁeli's
equation. .

Taking into account the chosen coordinate system,

the‘bending solution can be assumed as follows:

w=H ™ cos AX Ao IR (22)
R L

With this Levy~type solution, the boundary conditions

(I-a,b,c,d), are automatically satisfied since the

resulting bending solution for w, Nx’ Mx and N¢, given in

Appendix (II), are equal to zero when x = # L .

2
Substituting Equation (22) into Equation (21), the

following characteristic eéuation is obtained:
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Bs Px¢ By Bs Dy
2
+ BxDx + 18 [DxBx] + 14 [DXR ] } =0
B.D D¢B¢ ' B

(23)

Ry 2

This characteristic equation is approximate because
it is obtained form the simplified governing differential'
Equation (21).

- ~ To discuss the accuracy of Equation (23), a
comparison is made bhetween its roots and those of the exact
éharacteristic equation. This exact charécteristic
equation is obtained by using the exact governing
differential Equations (6;a,b,c), together with the

followving assumed displacement components

w = A em¢ cos Ax ' (24~-a)
u=238 em¢ sin Ax (24-hb)
R .
* .
v = C em¢ cos Ax (24-c)
. R '

Eguations (24-a,b,c) are substituted in the

governing differential Equations (6~a,b,c) after replacing
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P, p¢ and P, by zero.

30

The resulting homogeneous system

of equations can be written in a matrix form as follows:

2 2
( Dxx +Dx¢m +KX

2

(Dx¢mx)

3

(K. X+K 2
X X

¢m.x)

K =

Where: < > K,

A non-trivial
can be obtained only

side matrix is equal

the exact characteristic equation.

- x 23 w2y | [2a*]
( Dx¢mx). (-Kxx Kx¢m ) A
2 2 2 2 *
(D¢@ DX¢A 3Kx¢1 ) (D¢m+3Kx¢ml ) % B i}
2 2 4 2
(D¢m+2Kx¢mA +Kx¢mx,) (D¢+K¢m +2ﬁp
_ 4
+K¢+Kx>\- X
2.2, *
4Kx¢m)t) | _C_J
. B B
) X¢
= —t and K = =L
r2 X6 9R?

solution of this system of equations
if the déeterminant of the left hand
to zero. This condition leads to

The derivation of this

equation is given in Appendix (I); its final form is

as follows:

D 2B D_ 2D.B
me + mGu 5 - 32 DX g X¢ + m4 14 55 + s xBx
xS ) ] ¢ Pxosy
B 2D 4B / .. [D_B
T R Gl (. P N m? | - a8 EZ
¢ xo o ] x9°¢
. 2D, B, . . 20, 2B, 3B, 2[2Byy , Dy
D B - ) B ' D_B A
¢ ¢ $. X¢ ¢ ¢ X¢
2
g [ DyB, 4 DR° 3B D
R B A I e R - B IS (25)
$ ¢ ¢ X¢7¢ ¢

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

If isotropic properties are considered for the shell,
Egquation (25) yields the well known Flagge (Dischinéer)
characteristic equation, which is used as a yardstick for
the comparison of theories of isotropic shells(lB).

The roots of either Equation (23) or Equation (25)

can be written as follows:

m=taqa % iB P m= % o, + i82 (26)

and the displacement "w" as:

w o= { %19 (Aqoss,¢ + BsinB44¢) + e_u'¢ (CcosB4 ¢
+ DsinBy¢) + ea2¢ (Ecossz¢ + Fsin82¢) +

eT2¢ (GeosB,¢ + Hsin62¢)} cos %f : (27)
where: (A,B,...H) are arbitrary real constants to be
calculated by satisfying the boundary conditioné.

The values of the set of roots of Equation (26)
are considered_to be exact,'when calculated from Equation
(25) , and approximate when calculated from the simplified
Equation (23). The deviation between these sets of roots
increases with the increase of the ratio % . .This can
be seen from Table (II.l), which shows the values of the
roots for different ratios L + using the two

R
characteristic Equations (23) and (25).
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TABLE (III.1l):

Values of Roots of Characteristic Equations (23 & 25)
for Different Ratios of (L/R).

L/R Characteristic

Equation No. %1 By ®2 B
1.5 25 3.164364 1.363599 1.310111 3.293497
23 3.230135 1.336994 1.338256 3.227086
2.0 25 2.721240 1.188397 1.1259%6 2.871890
23 2.797089 1.157908 1.158728 2.795109
2.5 25 2.416942 1.069511 0.9994159 2.586171
23 2.501633 1.035696 1.036284 2.500215
3.0 25 2.190921 0.9822185 0.9052359 2.376776
23 2.283567 0.9454834 0.9459297 2.282490
3.5 - 25 2.014175 0.9147102 0.8314314 2.215229
23 2,114107 0.875366L 0.8757205 2.113251
4.0 25 1.870837 0.8605449 0.7714272 2,085988
23 1.977519 0.8188437 0.8191339 1.976819
4.5 25 1.7513¢3 0.815705 0.7212826 1.9798750
23 1.864387 0.7720242 0.7722672 1.863801
5.0 25 1.649747 0.7782271 0.6784737 1.890576
23 1.768686 0.7324146 0.7326222 1.768184
5.5 25 1.561788 0.7459581 0.6412982 1.814461
23 1.686355 0.6983370 0.6985170 1.685921
6.0 25 1.484623 0.7179042 0.6085605 1.748604
23 1.614545 0.6686123 0.6687703 1.614164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

Figure (5)_shows the maximum percentage of error
versus (L/R). It also shows a correspohding curve for
the eimplified equation of concrete shells (Donnell's
equation) The simplified Donnell's equetion is generaily

1. 6(21) Figure (5)

accepted for concrete shells when L/R &
shows that it is permissible to use Equation (23) in
corrugated sheet shells for higher ratio of (L/R) provided

that the same degree of approximation is not exceeded.

Stress~resultants and Dlsplacement Components
due to Bendlng-

For the longitudinal, transversal and torsional
moments, the following relations apply' (equations 9 - 4, e, f):

M = -Bw ‘ (28-a)

X X
B¢ .
M = - =W (28-b)
¢ R |
B Ll
M = e ._?Ei. V'IV (28—0)
x¢ R _

Using Equations (27) and (28-a,b,c), the explicit
expressions for the bending moments are obtained in terms
of the 8-unknown constants A,B,...H . Utilizing the
equilibrium Equations (7—a,b,c),.(after replacing Py p¢

- and P, by zero), with Equation (27), the explicit
expressions for the stress-resultants are obtained.

The displacenments, u and v, are determined by

using Equation (27) together with Equation (29):
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(29-a,b)

Also the rotation of the tangent, 6, is obtained

from the following equation (10):

I )
0 = R (v + w) : (30)

All of these displacements and stress—reéultants are
expressed in terms of the unknown constants A, B,...H.
These equations are given in Appendix (II) because they are
too lengthy to present here.

III.4. Theoretical Results:

The membrance and bending solution are superimposed
and the integration constants A, B,...H, are calculated
for each type of shell satisfying the boundary conditions
discussed earlier in this chapter. A computer program for
all of the theoretical work has been developed for every
case of boundary conditions for the IBM system 360/50 at
the University of Windsor. This program is prepared for the
computer library*and can be used to solve orthotropic shell
roofs, stiffened at the valleys only, as well .as shells
stiffened at the valleys and crown.

A sample of simplified design tables and formulae
are gi&en in Appendix (III) for practical use for various
types of shell roofs with arc-and-tangent type of corrugations.

A snow load was selected in the preparation of these tables.
*Civil Engineering Program Library . L
Department of Civil Engineering, McMaster University,
. Hamilton, Ontario.
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The analysis of a simply supported cylindrical shell by the

use of tables is illustrated in an example at the end of
Appendix (III).

Tables (A,B & C), are prepared to give the maximum
intensity of snow load for each type of shells, provided that
the maximum displacement "w" does not exceed 1/100 of the span.

Figures (8.3,b) show the comparison between single shell
and inner symmetrical shell of a multiple group. From these
curves it can be observed that any inner shell will have values
of stress-resultants in between the two solved cases. It also
justifies the assumption previously stated for case (IV) of
boundary condition.

IIT.5. Effect of Slip at Sheet-~to-sheet and Sheet-to-~-frame
Connections:

- ‘ The shear rigidity, DX ; given earlier by Equation (1l-c)
in Chapter (II) incorporates a reduction féctor, @ ., to account
for the effect of slip at sheet—tofsheet and sheet~to-frame
connections. This shear slip was studied previously by the
author and it was found that the values of "e" varied from
0.0 to 1.0(8).

Figure (6) shows the effect of "p" on the values of the
displacement."w" for different ratios of (L/R). From this
figure, it is clear that the value of "P" has insignificant
effect on the shell roofs. Also, the effect of "e" on the
calculated stresses is even less than its effect on "w".
Therefore, the number of connectors between the sheets can be
reduced to the minimum required to carry the loading withouth

being concerned about the rigidity.
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III.6.

Application of the Approximate Beam-Method:

The solution presented using the differential equations

is valid for short shells.

calculations and a lengthy program.

It also encounters considerable

Therefore, it is interesting

to examine . the application of the beam-method of analysis which

is approximate, and easy to apply.

RISE

SPAN (L) »
P (ib/ft) ,
\IlIIUllllllllllllllllllllLllllllllllIllj
PLY
2 e .
.”" ‘{
(/VI::. ff_l-..a
&

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

: . . Moreover, the beam-method is known to lead to
good results in the case of long shells where the

presented solution fails.

The éhell is treated here as a beam in the
lonéitudinal direction and as an arch in the lateral
direction. Accompanied by the usual assumptions of the
theory of elasiicity, the following three assumptions are
té be added as a basis for the beam-method in shells:

(1) TherdefOrmation of the érosé—sectioh infi%sl

plane .are neglected.

(2) The shear deformation caused by Nx¢ and N¢x
is neglected KNavier Hypothesis). |
(3) The longitudinal moment, Mx' and the torsional

moment Mx¢ are neglected.

The beam calculations are made in the usual manner
as follows: |
A. Beam.Analysis: | N
The values of Nx can
be calculated by using the

formula:

Where: "M" is the bending

moment at any cross-section
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calculated in the same procedure as for the simply

supported beam and "I " is the moment of inertia about

N.A-

the Neutral Axis. N is calculated using the well-known

X¢
formuila:

N = V0 . (31-b)
X6 o1
NQA.
.Where: "V" is the vertical shearing force at the cross-
section, computed in the same manner as a simple beam; and
‘"Q" is the first moment of area up to the point under

consideration about the Neutral Axis, found from the

. expression:
2 . ) . ’ ) .
Q = 2tR” (sin¢ - 3y s1n¢e) (31-c)
. e - .

B. Arch Analysis:
The second step in
the beam-method may be
\ descriﬁed as the arch

analysis. The object of

this step is to compute
wipou " " d "N.".
g1 D 9N
Referring to the above
strip, dx (cut from the

éhell), the equilibrium

of the arch is maintained
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by two sets of forces - the load acting on the strip and
the specific shear iﬂii . The specific shear at ény
point, acting tangeni?ally on the shell arch, can be
resolved into horizontal and vertical componehts. It is
evident that the sum of the vertical components of the
specific shear balances the load on the shell arch, and
the horizontal components of the specific shear which are
symmetriéally disposed about the crown balance themselves.

The transversal bending moment, M,, at any point in the

¢
arch may be calculated as the algebraic sum of the moments
caused by the loading and the horizontal and vertical

- components of the spécific shears.
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3NX¢ :
Nh =J/. cosf ds , ds = RdA¢ (31-4)
' X .

-~ aN : /

Nv = / [——-—xﬂ sin® + p] ds (31-e)

oxX :

Q¢ = Nv cosh + Nh sind | (31-£)

M, =fQ¢ ds : (31-g)
BNX

N =f——"’i . R . d¢ ’_ | (31-h)

y 9X

This beam-method is used to compare the same casés
. of foofs with the previously presénted differential
equations solution.

Figure (7) presents a comparison of "Nx" values
at crowﬁ for different ratios of (L/R) for both, solutions
by the beam method and éifferential equations.

The same figure shows that at a ratio L/R = 3.5,
the beam-method gives results close to the solution by the
differential equations. Thus, for ratios L/R > 3.5, the
approximate beam-method can be used.

It is emphasized here that the beam-method cannot
be used for the third case of boundary conditions because

the shell is supported along the four edges.
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CHAPTER (IV)

EXPERIMENTAL VERIFICATION

An experimental program was undertaken with full
scale shell roofs using the first two mentioned types of
boundary conditions.

Figure (8~a) is a photograph of the shell model

| built in the Civil Engineering Laboratory at the
University of Windsor. The parameters of the roof were as
follows: .

o Radius of shellu= 7.00'feet.

Span of shell = 20.00 feet.

.Half the central angle (¢e) = 41°

‘The shell was built of standard arc—-and-tangent
corrugated sheets with gauge 22; and was simply supported
at the ends oh steel trusses as shown in Figure (8-a).

A case of show loading was simulated by suspending
aluminum bars from the shell, as illustrated in Figure
(8=b). In a cross-sectional view there were three levels
of bars. The bars at the first level were suspended by
aircraft wires , ¢ = f?n, that were attached to some of
the'bolts which fastened the sheets together. These bolts
had small holes drilled through their center-lines and the

wires were inserted and attached to the heads of the bolts.

Each bar was suspended by two wires. At the second level
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each bar was suspended by two wires, each wire being attached
to a sepérate first level bar. The third level consisted of
a plywood platform on which weights were placed. The platform
vas suspended by two wires attached to separate bars at the
second level.
The first two experiments were carried out for Case (1)
of boundary condiﬁions. Two longitudinal angles 2 1/2 x 2 1/2
X 1/4 were bolted at the valleys as longitudinal stiffeners.
The following page is a photocopy of the computer
program output for the theoretical solution to this shell model.
Mechanical dials were used to measure the u-displacements
at the support every 100, Figure (9 -¢. The dials were located
at points 6, 6' & 7, 7' & 8, 8' & 9, 9' and 10, 10°'.
In the first experiméht, the vertical deflection of the
crown point at the mid-~span "w5"'was measured by a mechanical
dial. In this test, only three increments of load were applied.
The following are the analyses of this experiment.
This experimental analysis is based on £he mechanical
properties given in Equation (1), which were examined experimentally

for the sheets used in these tests, in reference (8).
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TABLE (1)

Dial Readings for u-displacements at
left end of shell for experiment No. (1l).

Load ué u : u u u

psE inch 7 8 2 10

0.66  =-0.007  -0.040  =-0.071  =-0.083  =0.090

1.1,  =0.027  -0.063  =-0.111  -0.140  -0.151

2.2 -0.0575 =-0.132  =-0.131L  =0.320  =0.202
TABLE (2)

Dial Readings for u-~displacement a
right end of shell for experiment No. (1).

Load u u u u u
psf - 6 7 8 9 10
0.66 -0.005 ~-0.045 -0.061  -0.077 -0.105
1.1 . =0.009 ~0.050 -0.102 -0.130 ~0.142
2.2 ~0.017 ~0.139 -0.209 -0.266  —————-

The average value of the displacemént, u, of the
two end trusses, was calculated. Then the eguivalent
displacement under unit load was computed for éach load
increment.‘Finally, the extrapolated value of the u-displacements

under unit load were calculated. These are given as follows:
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TABLE (3)
Extrapolated -values” of -u-displacement in

‘inches -for- Experiment -No-. (1) per unit
- load p- (1b/ft) e S

Methed =~ wg . w; - ug . Uy T

Experiment =~0.014p -0.0585p ~0.0905p -0.116p. }—0.i3lp

Theory - -0.00lp -0.055p -0.096p -0.119p -0.127p

Figure.(lb) shows the comparison befween the
: theoretical and experimental u-displacements at the end
 snpport. Figure (ll){shows the load-deflection curve for
the crown-point of mid-span for this experiment.

'In the second experimeﬁt, a trial was made ﬁo
ﬁeasure'tﬁe verticalldeflections of selected points
(1,2,3 & 4) on the shell surface using a theodolite
(Swiss wild T16), [Figure (9)] . The theoretical valuesl
of these verticalfdeflections were computed from the

following equation (21):
Yo = W, cosld, = ¢) - v, sin(¢, ~ ¢)

where Yy is the vertical deflection at angle ¢. Eight
increments of load (one pound per square foot each) were
applied. At the last two increments, the axial strain,

€,r Was measured -on .the longitudinal stiffeners at mid-span

using electrical resistance strain gauges. [G.F. = 2.02,

R=120 i 0.19]- T <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

:To éalculate the axial étrains, €y and
consequently, the stress-resgltant "Nx", two thin nails
were,soidered to the shell surface at points 2, 3, 4 and
5, so that the change in distance between the nails can
be measﬁred by a micrometei. . |

The analyses of this experiment are shown in
Tables (4 to 7). Figures (12 to 19) show the comparison

between the theoretical and experimental results.

Analysis of Experiment No. (2):

— e Smr e s et s St e mvw e e e s v

TABLE (45

Average value§ of displacement "u" for
Experiment No. (2).

oag) g 7 Yg Uy Y10
1  0.016 0.058 0.099 0.122 0.134
2 0.0345 0.123 0.203 - 0.252 0.278
3 0.0545 0.199 © 0.314 ' 0.396 0.477
4 0.076 0.253 0.429 0.531 0.583
5 0.101 - . 0.333 0.559 0.690 0.688
6 0.126 0.410 0.691  0.857 0.832

8 0.191 -~ 0.568 = ——=em e 1.130
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TABLE (5)

Dial reading of vertical deflection of crown
point at mid-span for Experiment (2).

Load 1 2 .3 4 5

(pSf) ................. 6
ws(in)  0.453  0.933  1.474  1.960  2.536  -=(¥)
TABLE (6)

Vertical deflections of points 1,2,3 & 4
measured by a Theodolite for Experiment (2).

Point

fond ¥, (in) Yy Y3 Yy
1 0.90 1 0.60 0.75. 0.49
2 1.30 1.60 1.50 0.98
3 1.96 2.02 —— 1.09
4 2.50 2.30 2,60 1.90
5 2.74 2.90 3.07 2.50
6 '3.15 3.40 3.65 3.00
8 4.05 4.75 4.45

4.38

*¥ dial went out of range.
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TABLE (7)
Comparison between Experimental and Theoretical

Nx—Distribution.

Method le . NX2 : Nx3 o Nx4 .Nx5

experimentally +0.025p -2.140p =-3.54p -3.85p =-4.40p

theoretically +0.0138p -1.915p  -3.276p -4.086p ~4.366p

(Nx in 1b/in ¢ p in psf)

The third experiment'was conducted on a shell roof
having tﬁe second type of boundary conditions. Two
additional longitudinal angles 2% x 2% x % were attached

BB back to back along the crown line of the shell.

The theoretical solﬁtion, as obtained from the
computér, is shown in the following table.

In this éxperiment, 2 lbs. per square foot
increments were applied up to 16 ésf. The deflection of
the crown point at mid-~span as well as the u—displaéements
were recorded as before.ThHé -analysis of this experiﬁent
were done in a similar manner as explained in the first
two experiments. Figures (20,21) show the comparison
between the theoretical and experimental results of this

experiment.
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CHAPTER (V)

APPLICATIONS OF CYLINDRICAL SHELLS
MADE OF CORRUGATED SHEETS IN GRAIN BINS

V.1l. Simplified Differential Equation:

For grain bins; the loads are of the rotational
type of symmetry since the filling is symmetrical along
the circumferential perimeter. Thus, in this case, the

following simplifications can be made:

Although the transversal éhearing forces Qx are
negligible in the case of the standard type of corrugated
sheets, they will be considered in the derivation. This
would allow the use of the present solution for other
types of corrugations (such as those of Chaéter (Vi) .

Assuming the radial loading, P, to be positive
when'acting inwards, and taking these simplifications inﬁo
consideratién, the equilibrium Equations (2-a,b,...), are

reduced to the following:

N, = -py (32-a)
o L ]

N¢ + RO, = -Rp, (32-b)

M, =0, (32~-c)
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Also, the elastic relationships, Equations (9-a...f),
are reduced to:

P4
¢ R
1
N, = Dxu (33-b)
11]
M_ = -B_W (33-c)
X x
Substituting for Mx from Equation (33-c) into
Equation (32-c), then:
(R
Qx = --Bx w
. ‘an 11
or = - B_w (34)
X
99X
Substituting Equationé (33-a) and (34) into
Equation (32-b) results in: ‘ |
4 D
3w $ -
B, —g *+ - W =p, (35)
IxX R
The radial loading, p,s was suggested by the ACI(4)
as follows: '

(36)
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where: r = the hydraulic radius, u = the coefficient of
friction between the bin's wall and filling materidl,
P, '

K = B v Y = unit weight of filling material.
X

Thus, Equation (35) becomes:
wn (D T
Bx w + — ) w= [(yr)/u ] [ e - l] (37)

Equation (37) is the governing differential
equation of grain bins.

V.2. Method of Solution:

Referring to Eguation (37), the particular solution

can be assumed as follows:

~R10 * . .
_wp = E*e Kux/x + F (38) *

Substituting for "wp into Equation (37):

' =741 % g D * R *
B [—- K—E—} [E e K“x/r]+ -2 E e KUX/T 4 g
X 2
r R
= Yr <e~Kﬁx/r) - ¥ (39)

Equating the coefficients in Equation (39):

R2r4

—4.2 4

7 (40-a)
BxKuR+rD

E*=x.-£
u ¢
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* = R :Y—r . (40_b)

The particular solution WP becomes:

w = 1T r2r? o—Kux/r _ yrR> (41)
P - 44 2 4 =
u | B K UWRHTD, D,u

If the term expressing the load in Equation (37)

is suppressed, the corresponding homogeneous equation

reads: : ‘ ‘ .
4 D , .
B, 28+ Lw=To | (42)
X R

Assuming a homogeneous solution to be exponential in x,

* *
bWy = K eAx; where K is .a constant; and substituting for
Wy into Equation (42), it follows that:
D
Bt + L= o (43)
X RZ ) ,

Equation (43) is the characteristic equation.' The

four roots of this equation can be obtained as follows:

4 D,

BXR

| ) D
A=i‘/iw/‘- 4 =+ qfti J—¢
R’B R’B
X X

2
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. D,
Defining - 52 = ¢2
BxR
A = # + 1is
e s 2
.Defining s = z
A=+ z q/22
N
or A = & 2 4f 22i
\12
Since #2i = (ifl)z, then:
' A= & 2 (ixl)
3f2
- | P/ .
Defining. ¢ = —— gives:
\’2
A= & o (ifl) | . . (44)

Equation (44) gives the four roots Al,2,3,4‘
Having obtained the roots, an explicit solution can be

developed as follows:

% ax(i+l) *  —ax (i+1) *  gx(i-1) % —ax (i-1)
: WH = Kl e + K2 e + K3 e + K4 e
or:
' -ak * -ic;x % iax X, * dax *  ~iox
= 4
wy=e (ke + Ky e ) e (K e + Ky e 77) ( 5)
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* * '
where Kl’ K2,... are arbitrary constants.

—0Xy

The terms multiplied by "e represent the

disturbance originating from the upper edge [Figure (22)] .

aXu represent the disturbance

The terms multiplied by "e
originating from the lower edge. Thus, a new independent‘

variable, X, is introduced such that:

X =(h - x) where h = total height of bin.
It follows that X is the distance from the lower shell
edge. The reason for this substitution will be made
evident by the discussion of the solution later.

With the new ndtation, X, Equation (45) can be

written as:

. C % * ' L% x
W, = e (K3 + K2) cos ax -+ :L(K3 - K2) sinox

L~

& * 4 £ -3
+ e e (K1 elah + K4 e 1ah) cosax + i(K4 e ich

-

,*' ] ,-‘.
- K elah) sinex ] (46)
Introducing new constants Cl’ Cyr Cq and C4, then:
-oxX -aX

W, = € (C1 cosax + C2 sinax) + e

. (C3 cosax + C4 sinaox)

P - '3 P Y] - (47)

w = + w : 48
wp (48)
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The constants Cl, Cz, C3 and C, can be found by
superimposing the particular and the homogeneous solptions
to fulfill the requiremgnts 6f the boundary conditions at
the upper and lower edges of the bin.

V.3. Stress~Resultants:

Equation (48) can be written in a more expanded

form as follows:

*  ROx/r @ _* - ‘
w=E e Kux/x + F + e °% (Cl cosax + C2 sinox)

+ e—a(h‘x) (C3 cos (ah-ax) + C4 sin (ah-ox)) (49)

* * . .
where E and F are given by Equations (40-a,b)

respectively.
] —D¢
Since N, = — w
¢ R
D¢ * —Kﬁk/r * —-aX
N, = - —& E e + F + e (C, cosax
) R 1

-a (h-x)

+ C2 sinax) + e (03 cos (ah~-ax)

+ C4 sin (och-ax) )] (50)
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1

M = ~B,W
k32 % -RKux/r ~-ax 2
M = -B E (e ) + e -2C,a" cosux
X X r2 _ 2
+ 2a2C1 sinax ] + o ¢ (h-x) lr-2d204 cos (ah-ax)
2, . :
-+ 2a C3 sin (ah—ax)}} (51)
1e s
Qp = ~Byw
Q ___. ~B - K3ﬁ-3 E* (e-KEX/rv) + e’;ax 2 3(C + C )
b4 X 3 , : o 1 2

cosax + 2a3(02 - Cy) sinax] + o~ BEh=x) [ —2aé(c3 +Cy)
cos (ah-ax) + 2a3(C3 - C4) sin (ah-ax{l% - (52)
From Equation (32-a), the stress-resultant “NX“ is expressed
NX = J[L Py dx

The stress-resultant, Nx’ depends on the distribution

ass

of the frictional forces, P,

| These frictional forces depend on: the angle of
internal friction of the filling; the coefficient of
friction between the grain and corrugated sheet wall; and
the rigidity of the sheets. These parameters need further

study.
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V.4. Boundary Conditions:

The integration constants.(cl, C2, C3 and C4) can be
calculated by adding the particular and the homogeneous solutions
to fulfill the boundary conditions that exist at the upper

and lower edges of the bin.

Case (l): Fixed Bottom and Free Top:

- e . G e Smn  m w— - o S ——

This is praétical for an extremely rigid ring at the
base of a bin having a free upper edge. Referring to Figure
(23-a), this éondition requires that the dispiacement "w" of
the lower edge, as well as its derivative with reépect to x
(slope), are equal to zero. The upper edge is free from
moments and forces. Hence, at x = 0; M= 0...(i),

. @, =0...(ii) and x = h, W = 0...(iii1), W = 0...(iv).

Case (2): Simply Supported at Top and Fixed at Bottom:

— — — —— - —— a— = A o e e Wt et e et o o — e

If there is a xring at the upper edge, the boundary
conditions, (Figure 23-b), in this case would be:

at x =0, w= (w )eoo (i), MX = 0...(ii) at x = h

ring o)

1
w=20...(iii), w= 0...(iv). The extension of the ring

(wring
cover, as well as the ring itself. In the following analysis,

), is governed by the structure and loading of the

it is assumed that the cover is infinitely rigid in the plane

of the ring and w 0.

; -
ring
Solving the boundary condition w = 0 at X =0 (or x = h)

then: .
*  —KQ * - :
Wooo < E e Kuh/r + F + e oh (C1 cosaoh + 02 sin a h)

+ e° (C3-cos (0) + 0) =0
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. * T % -
or E e Kuh/r + F e ch (C1 cosha + C. sinch) + C = 0

2 3
Because of the quick damping of e-ah, (which represents,
at the lower edge, the rest of the disturbance originating
from the upper edge), this ‘part represents a very small

value and can be neglected. Thus:

* RN %*
C3'= E e Kuh/x + F = wb ‘ (53—a)

Siﬁilarly, constants of an integration C3 and C,
cén be neglected for the other boundary conditions
(at x = 0). The significance of the introduction of the
co-ordinate X becomes evident in these expressions.

For the other three boundafy conditions, the

remaining constants are determined as follows:

— . : _ .
C4 =y - KuE e—Kuh/r (53-b)
or
2—-2
_ K™u * _
C2 = 2—'—2-——2' E (53 C)
a“r’
3-3
K~ u * -
Q=33 "% (53-4)
roa ‘

Once the constants Cl’ CZ’ C3 and C4 have been
evaluated, the complete solution is obtained, excepting
for Nx-distribution, which can be evaluated if the
frictional forces are known. The value of "N " is obtained
by integrating the load P, - Vertical stiffeners are

necessary when the calculated value of Nx exceeds the
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allowable value as given by the following equation:

Nx = 60 x t (54)
0.035
Vv.5. Effective Width:

For vertically stiffened bins, the longitudinal
stress-resultants "Nx" are unequally distributed throughout
its width, due to the shear strain in the sheets.

The stresses reach the maximum at the stiffener
and decrease towards the minimum at the centre, Figure (24).
In order to have a ready and precise method of célculating
the maximum stresses and deformations in the bin, the
actual width of the sheets is replaced by an imaginary width,

- vﬂe, which is termed the "effective width". The longitudinal
forces,~Nx, are considered to be constant over the width,)\e

and are equal to the maximum actual force whlch occurs at

e -f_—N* R#

Herein the forces "Nx" will be carried by the stiffeners

the stiffener, thus le =

together with the effective width of the corrugated sheets;

and hence:

. _ D
Atotal - (aé't'ﬁﬁ + A) n

where:')\e is the effective width of the corrugated sheets;
n = the number of vertical stiffeners; and A is the cross-

sectional area of each stiffener.
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To determine the effective width, %e, the computer

program, used for shell-roofs was utilized except that the
membrane. solution was replaced by the one for frictional forces,
Py which are assumed to be distributed in a sine-wave.

Referring to Figure (24), the bin's height, h, is taken
to be half the span‘of the corresponding shell roof, in which
case the bounda;y conditions of either case (l) or Case (2) are

fully satisfied . 3:iThe mid-span of the shell represents the

lower edge ofALhéggin, which is fixed in both Cases (1) and (2).
The end of the shell (at x = L/2), represents the upper edge

of the bin (either simply supported (Case 2) or free. (Case 1).
Thus, curves are prepared to determine the effective width,

which depends on the spacing between the stiffeners, b and

a’
the total height of the bin. It should be mentioned here that
"A" does not depend on the height at which it is to be calculated
since "N" is distributed in a sine wave along the total height.
Figures (25,26) shov the relation between (h/ba) and
(Qé/ba); and that between (h/ba) and (Qe/h), respectively. From
these curves, it is seen that the slip at sheet-to-sheet and
.sheet-to—frame connections,e, has a pronounced effect on the

values of the effective width, ?é' The reason for this is

the shear deformation within the sheets.

i
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CHAPTER (VI)

EFFECT OF GEOMETRY OF CORRUGATION
ON THE LOAD CAPACITY OF THE SHELL

It was noticed that although the first case of shell
roofs, stiffened in valleys only, is the most practical one,
there are excessive displacements imposing limitations on
the applicability of the afc-and-tangent type of
corrugations in this case. This is a result of the.
deficiency in the axial rigidity, D due to the spring

(accordion) action in the x-direction (the ratio of

\w)

~ 0.004). This axial rigidity can be impfoved in

D
d

o

fferent ways.

In this chapter, some alternatives are shown fpr
new shapes of corrugations, and the approximate results
are estimatea, and compared Qith the standard arc-and-
tangent type of corrugation.

VI.1l. Alternative No. (1l):

A decrease in the depth of corrugation, 2f, will

increase the axial rigidity, Dx' since: D_ = ——EE—E— (E> .
6 (1-n“) £

For example, a value of £ = 0.125 inch, (i.e. half
the original value of the standard corrugation), leadé to
four times the rigidity D,. The values obtained for the
u~-displacements with £ = 0.125 inch are compared with those
of £ = 0.25 inch, and the results are shown in Figure (27);

for the shell model tested in the laboratory.

~
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On the other hand, any decrease in "f" will cause a

decrease in the bending rigidity, B¢, since B¢ = 0,522 fz.t.E.

Thus, the critical buckling load under shear will decrease(l).
Further research is necessary to determine the
optimum value of "£" that gives the bestbperformance of

sheets in elastic behaviour as well as elastic stability.

V.2. Second Alternative:

The author found a recent technique, developed by
WESTEEL ROSCO LTD.-Toronto-Canada, to produce another
modified shape of corrugation. A picture of this new
dimpled shape is shown in Figure'(28). E#periments on
corrugated sheets with this new diﬁpled shape were conducted
to determine the axial rigidity, bx' The results are
~given in Figure (29). These experiments showed thaﬁ the
axial rigidity, D, , was about 18 times greater than fhe
value of the standard aré-and-tangent type.

‘ The approximate structural rigidities of this

suggested shape can be estimated as follows:

DX = EX . t ‘ (55~a)
D, =E, . t (55~b)
D, = ot =EE | (55-c)
¢ 2 (1+p)
A 3 .
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= 55~
B, = B I, ~ (55-e)
3
' B, = Bt (55-£)
b 12014
. . | * 2
in which: Ex = 0,145E, E¢ ~E, p = 1.0, I¢ = 0.522 £t -~

(0.08)%¢t (0.044).

VI.3.  Third Alternative:

A flat steel plate spot-welded to the corrugated

sheets would increase the rigidity, D, appreciably.

EQJ/N\\Q//r\\p/rN\\'!‘lhkf‘!hhv”@

A flat steel plate spot-welded
to the corrugated sheet.

Third Alternative

The membrane and bending rigidities can be estimated

as follows:

" Et t : .

D = Et JRSU oo - 56~
" [f ] ( a)
D,.= E (2t) , (56-b)

»
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o B(2t)

D. = »p o, = 1.0 " (56-c)
x¢ 1 2(lﬁp) 1
: 3 22
B = %_ E:(zt)2 . E.Ztéf | (56-d)
12(1-u”) (ljp )
By =E I, ,I,= 0.522£%¢ + 2.04 x 0.125%t (56-€)
2 (22) : N
B, = 1.33Etf - (56=%)
(lﬁu) ’ '

In the case of the arc~and~tangen£ltype of corrugation
the ratios of the rigidities in thé x-direction are small
compared t§ those in the ¢-direction., These ratios ére |
considerably increased in the above alternatives. The
effect of this change on the degree of accuracy of the
roots obtained from the simplified Equation (23), is no&
examinea.

Figure (30) shoWs'the maximum percentage.error in

the roots vs. the ration (L/R), for the arc-ahd—tangent
D D

type (5—}-{-.’:‘_’ 0.004), alternative No. (3) (B§ = 0.5) and for
¢ D ¢
an isotropic case with 55 = 1.0.. This figure indicates
: ¢
that as the ratio of (55) increases, the accuracy of
b .

the simplified characteristic Equation (23), increases.
Furthermore, a comparison is made of the "NX"

values at the crown, for different (L/R) ratios as calculated

by the beam-method, and the differential equations for

Alternative (3). Figure (31) shows that, the beam-method

gives results close to the solution of the différential

equations when L/R 2 4.
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In order to show the effect of thé'alternative
shapeé of corrugation, a shell roof, having longitudinal
stifféners in valleys only, énd with a radius, R = 7.00
feet, by = 80° and GAGE 18, is analysed utilizing:

, (a) The arc-and-tangent type of corrugation.

(b) The dimpled shape.

(c¢) The third alternative with GA 24 each

(Total t = 0.5").

For each case, the maximum span is determined such
that the maximum deflection of the crown point at mid-gpan
does not exceed (1/100) 6f the span under an intensity of

snow load of 50 p;s.f; The results are listed in the

following table:

Corrugation Configuration Span (Feet)
Arc-and-tangent 20
Dimpled Shape - 50
Third Alternative 70
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CHAPTER (VII)

OBSERVATfONS AND CONCLUSIONS

1. The experimental results showed a good agreement
with those obtained theoretically, confirming that
treating corrugated sheets as orthofropic shells is
a valid approach. It also proves that the present
solution is acceptable for design purposes.

2. The'simplified equations, based on ﬁonnell's
assumptions, give acceptable results for short shells.
For concrete shells the Donnel equations are being
used with the ratio of_L/R < i.G(Zl) as an acceptable
uppex limit for the defiﬁition of short shells. A
bomparison of the error in the roots of the
characteristic Equation (23) reveals that, at the
same level of approximation used for concrete shells,
corrugated sheet shells can be analysed with higher
ratios of'(L/R). |

Furthermore, it was found that, as the ratio of

D
X . .
=— increases, the degree of accuracy improves.

D
¢
It should be emphasized that the range of (L/R)
within which the simplified characteristic equation
can be used, depends on the type of boundary conditions

along the straight edges. This is due to the fact that

the bending solution is an edge disturbance effect.
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3. The approximate beam-method can be applied, if
the length of the shell reaches a limit at which the
solution using the differential equations becomes unrelia-
ble.

Therefore, the present study offers methods of
solution covering almost all lengths of shells, excepting
barrels supported on four edges.

4. The slip due to shear at sheet-to-sheet and
sheet-~to~frame connections has an insignificant effect
6n the calculated stresses and deflections of the shell
roof.

5. Since the geometry of corrugation has a consider-
able effect on the load capacity of the shell, other

geometrical forms are suggested for bettér performance.

6. Theoretical solutions for stiffened and
unstiffened grain bins made of corrugated sheets are
obtained. Curves are presented for the determination of
the effective width of corrugated sheets (stiffened by
vertical ribs) under frictional forces. These curves can
be used in the design of stiffened grain bins. The shear
slip at sheet-to-sheet and sheet-to-frame connections,

P has a pronounced effect on the magnitude of the

effective width.
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FIGURES
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' ~ Figure (1)

(@) Stress resultants Ny,Ng,Nxg (b) Moments MX;M4,,I\/|,(¢.

Figure (2)‘
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.end fruss |

figurc 3: COORDINATE SYSTEM.
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v

(a) case 1 (b) case . (c)case mr

(d)} case 17 | : (e) case ¥

i’.lGURE 4 : PRACTICAL APLICATIONS [N ROOFING.
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FIGURE (8~b): A PICTURE OF THE LOADING SYSTEM.
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_ longitudinal ribs.

CIRCULA'R BIN UNDER FRICTIONAL FORCES.

STIFFEND BY LONGITUDINAL RIBS.

FIGURE 24.
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FIGURE (28): A PICTURE OF THE DIMPLED CORRUGATION.
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. ROTATION OF r#wE 7ANGEN7T “87:
Since @=L (vt D) L then substiluling
for v £ O, the rololivn o Fhe Z‘aye;y/‘
ar &/7 /oaz'ﬂf oy Z‘%P S/e//. J‘urz{;vc'c“ o7 e
OAZLJI.,?‘?J,
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APPENDIX (ITII)

SAMPLES OF SIMPLIFIED FORMULAE AND DESIGN TABLES FOR
SHELL ROOFS MADE OF CORRUGATED

SHEETS
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. SIMPLIFIED FORMULAE:

=F -p - cos TX -  nsi
Nx = Nx . P cos . , . - (1b/in)
N, =N, -p : cos XX . . (1b/in)
¢ $ ' 1 . S
,qu, = Nx¢ - p - sin L , (lb/ln)
M, =M, .p- cos XX o ‘(1b/in)

where p = Intensity of snow load in (p.s.f.).

Area of edge stiffener = L (Neg) P (in2).
7r ”‘/’fj 20000 .

The ~;£;//0w/‘nj o’esf'}n Z‘aé/e; are .bé’sea/ orn
the 74//01/\///‘7 structurs!/ )ch}offf/és N

£ = 30xi0° PS/ , U =03 ) , =10 .,z,"-_-o.oz.?
D, = (_4) . E |
S = 6(/—/;")t (f’)
D""‘: ¢ 2(1+44) (1)
B, = 0.522 £.¢. Ve
— £ c
A= ey ()

- _Et® /e
kd /2(/+/u) ()

*
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BOUNDARY CONDITIONS:

CASE (I).

HALF CENTRAL ANGLE ¢€=36’ , GA 22.

RADIUS | SPAN g/ﬁe N, Ny Nyg My
VALLEY | 0.0311| 0.0 0.47221 0.0
+ 0.2737 | =0.2777}0.6335 [-0.0140
10 15 % -0.0760 | -0.6137{0.7274 [+0.1139
3N -0.5428 | -0.9254(0.4946 | 0.1979
CROWN 1-0.7461 | -1.053710.0 0.2084
VALLEY | 0.0311 | 0.0 0.6565 | 0.0
* 0.4355 | -0.2864|0.8471 | 0.0148
10 20 % -0.1539 | -0.6172|0.9516 | 0.2803
4 ~0.9443 | -0.9182|0.6424 | 0.5458
CROWN _|-1.2901 | -1.0414[0.0 ' 0.6395
VALLEY | 0.0311 | 0.0 0.8645 | 0.0
1 0.5658 | -0.2990{1.0655 | 0.0553
10 25 3 -0.2918 | -0.6228|1.1562 | 0.5197
3/ -1.4279 | -0.9076(0.7696 | 1.0552
CROWN [-1.9247 | ~-1.0228[0.0 1.2748
VALLEY | 0.0311 | 0.0 1.0908 | 0.0
% 0.6431 {-0.3121{1.2874 | 0.0971
10 30 % ~-0.4999 | -0.62881.3458 | 0.7683
3/ -1.9848 |-0.8966{0.8812 | 1.5860
CROWN [-2.6324 |-1.003210.0 1.9375
VALLEY | 0.0311 | 0.0 1.3232 | 0.0
% 0.6841 |-0.3228(1.5106 | 0.1314
10 35 % -0.7701 |-0.6338(1.5303 {0.9720
' 3N -2.6219 |-0.8875[0.9874 [2.0214
OROWN 1-3.4269 [-0,987210.0 2.4813
VALLEY | 0.0311 | 0.0 0.9604 |0.0
i 0.7129 |[-0.4196{1.2651 +0.0110
15 30 3 -0.2022 |-0.9209]1.4490 |0.3527
3/ -1.4414 |-1.3858(0.9857 |0.6256
- CROWN _ }-1.9831 |-1.577310.0 0.6844
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BOUNDARY CONDITIONS:

CASE (II)

HALF CENTRAL ANGLE #_=80" , GA 22.

RADIUS

SPAN | ¢, N, Ny N M,
VALLEY | 0.03113 0.0 0.5263| 0.0
% 0.1076 [-0.2904 |0.5942| 0.0603
10 15 % 0.0181 |-0.5693 |0.6430| 0.3491
7 -0.0353 [-0.8814 | 0.6313] 0.0097
CROWN | -0.0311 1-~1.2719 }0.6062}-0.7211
VALLEY | 0.0311 | 0.0 0.7041 | 0.0
% 0.1791 |-0.2861 [0.7759| 0.0575
10 20 3 1.1023 +0.558 |0.8587 | 0.2772
3/h ~-0.0002 0.8831 |0.8842 |-0.2613
CROWN |-0.0311 +1.3037 [0.8723 |~1.1447
VALLEY | 0.0311 | 0.0 0.8553 | 0.0
1 0.3376 ~0.2760 [0.9543 | 0.0312
10 25 3 0.2497 0.5490 |1.0927 | 0.0902
/4 | 0.0526 10.8897 |1.1579 |-0.7319
CROWN |-0.0311 {-1.3369 |1.1564 |~1.7898
VALLEY | 0.0311 | 0.0 0.9811 | 0.0
2 0.6180 |0.2628 |1.1267 | 0.0065
10 30 % 0.4925 |-0.5384 |1.3447 [-0.1586
34 0.1352 }0.8988 [1.4589 {-1.3245
CROWN {-0.0311 |-1.3740 |1.4681 -2.5828
VALLEY | 0.03113[0.0 1.0900 | 0.0
+ 1.0278 +0.2495 |1.2946 }-0.0453
10 35 1 0.8392 |-0.5285 [1.6087 |-0.4085
' 3N 0.2510 {-0.9081 [1.7793 F1.9111
BROWN  |-0.0311 +1.4094 |1.7997 |-3.3630
VALLEY | 0.0311 {0.0 1.0675 | 0.0
1 0.2597 {+0.4356 |[1.1760 | 0.1505
15 30 % 0.0938 $0.8469 [1.2795 | 0.8006
3 -0.0291 L1.3202. 1.2896 0.0938
CROWN _ [-0.0311 +1.9297 [1.2712 [-1.8760
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BOUNDARY CONDITIONS:

CASE (III).

HALF CENTRAL ANGLE §=90" , GA 22.

RADIUS | SPAN | ¢/, N, ﬁ; i;¢ ﬁ;
VALLEY | 0.0 0.6266|0.9488 | 0.0
% 0.0189 | -0.2349{0.9572 | 0.3090
15 20 3 -0.1150 | -0.8446|0.9379 |-0.5288
3N -0.5410 | -1.3353]0.6484 | 0.0300
CROWN |-0.7996 | -1.5457/0.0 0.4009
VALLEY | 0.0 0.6249(1.5698 | 0.0
% -0.0669 | -0.2232{1.5592 | 0.1333
15 30 3 -0.4880 | -0.8756(1.4101 {-1.0022
3/h -1.2009 | -1.3352|0.8941 |-0.2254
CROWN | -1.5857 [ ~1.5166]0.0 0.4740
. VALLEY | 0.0 © 0.6254]2.1207 | 0.0
% -0.1677 | -0.2343|2.0983 [-0.3162
15 40 3 ~0.9609 | -0.8877[1.8560 |-1.6653
3 -2.0895 | -1.2543{1.557 |-0.7841
CROWN |-2.6738 | =1.5060|0.0 ~0.0444
VALLEY 0.0 0.5878|2.6367 | 0.0
k! -0.2876 | -0.2754{2.5904 |~1.4963
15 50 3 -1.5696 | -0.9098]2.2888 |-3.1625
3/ -2.0896 | -1.3318|1.1557 {~0.7841
CROWN |[~4.0909 | -1.4903{0.0 -0.8726
VALLEY | 0.0 | 0.3627|1.5577 | 0.0
% -0.1580 | -0.1967|1.5388 |-1.0970
10 30 % -0.8476 | -0.6156}1.3481 [~1.9030
3 -1.7533 | -0.8896|0.8109 {~1.3011
GROWN _ 1-2.1629 | -0.9858]| 0.0 ~0.7163
VALLEY | 0.0 0.2752|1.9836 | 0.0
+ ~0.2756 [ -0.2553}1.9583 ~3.0369
10 40 * ~1.4396 | -0.6464|1.7136 4.7427
3 -2.9390 | -0.8993|1.0349 |-4.4591
CROWN _ [-3.6331 | -0.9904{0.0 3.9870
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BOUNDARY CONDITIONS:

CASE (IV).

HALF CENTRAL ANGLE ¢e=3°° , GA 22.

RADIUS | SPAN | @B, N, N, A M,
VALLEY | 0.0324 | -0.0268]1.5751 | 6.7248
* -0.5604 | -0.4754|1.4778 | 1.0455
10 30 % -1.1438 | -0.7876|1.1660 |-1.8590
4 -1.6447 | -0.9691{0.6507 |-2.3995
CROWN | -1.8509 | =1.0287]0.0 -2.2944
VALLEY | 0.0324 |[-0.0394|1.9272 [11.0031
1 -0.8459 | -0.5142(1.7980 | 2.4818
10 35 3 -1.6593 | -0.8449|1.4034 [-2.7070
3/ -2.3056 | -1.0354{0.7750 [-4.7057
CROWN |-2.5609 | =1.0973{0.0 -5,0984
VALLEY | 0.0324 | -0.0584(2.3422 [17.5253
1 -1.2098 | -0.5698(2.1783 | 4.7116
10 40 ¥  ]-2.3239 |-0.9296(1.6901 |-3.9661
4 ~3.1702 | -1.1377(0.9280 }8.2289
CROWN _ {-3.4957 [ -1.2053[0.0 -9.4040
VALLEY | 0.0324 {-0.0078|1.1500 | 2.3178
+ -0.2424 | ~-0.6500{1.2684 |0.7174
20 30 3 -0.1363 | -1.2704|1.3535 }0.7950
3/ -0.9967 | -1.8371(0.9439 [ 0.2132
CROWN _|-1.4482 |-2.0794(0.0 0.6353
VALLEY | 0.0324 |-0.0113|1.4196 | 3.4760
% 0.1996 | -0.6909|1.5087 0.9477
20 35 % -~0.2778 |-1.3032[1.5284 |-1.3367
' 3N -1.3034 |[-1.8293|1.0378 | 0.2344
CROWN _ |-1,8447 |-2,049210.0 1.0387
VALLEY | 0.0324 {-0.0150(1.7107 | 4.7903
+ 0.0947 |-0.7326|1.7596 |1.1335
20 40 % -0.4929 |-1.3381|1.6899 F1.9211
3/ -1.6351 |-1.82271.1099 {0.1799
CROWN  |-2.2324 |-2.0189/0.0 1.3658
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BOUNDARY CONDITIONS: CASE (V).
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HALF CENTRAL ANGLE #=80" , @A 22.

RADLUS | sPAN | @/, N, N, A N,
VALLEY | 0.0324 | -0.0158}1.2444 | 4.9898
% 0.0414 | -0.3572]1.2584 | 1.4952
10 30 % 0.0191 | -0.6421{1.2706 |-0.8545
L -0.0186 | -0.9509|1.2705 |-2.7776
CROWN |-0.0324 | -1,3519}1.2601 |-4.0583
VALLEY | 0.0324 | -0.0273|1.5103 | 9.1070
* 0.0602 | -0.3867|1.5255 | 2.8898
10 35 ¥ 0.0416 | -0.6900{1.5430 1.7510
¥4 -0.0093 | -1.0186(1.5481 -5.2632
CROWN |-0.0324 | -1,4409]1.5402 |-7.1416
~VALLEY | 0.0324 |-0.0450[1.8303 [L5.4335
* 0.0812 | -0.4327[1.8467 | 5.0242
10 40 % 0.0660 |-0.76461.8687 -3.1354
L 0.0004 |~1.1226|1.8781 F9.0747
CROWN |-0.0324 |-1.575111.8722 }-11.8594
VALLEY | 0.0324 |-0.0060|1.1889 |1.4276
2 0.0548 |~0.6566(1.2285 0.6109
20 30 % -0.0880 |-1.2042{1.2225 {0.2748
' 3/l -0.1237 |-1.7532[1.1289 |0.4044
CROWN _|-0.0324 |-2.432011.0776 +1.3814
VALLEY | 0.0324 |-0.00661.4031 |1.6754
* 0.0300 |-0.6616{1.4276 +0.5370
20 35 % -0.0889 |-1.2004{1.4123 {0.2830
' 34 -0.1098 {-1.7510(1.3388 |0.2642
BROWN  |-0.0324 |-2.45111.2985 +1.6834
VALLEY | 0.0324 [-0.0071(1.6106 |2.0126
i 0.0149 |-0.6631(1.6267 +0.3942
20 40 3 -0.0862 |-1.1978|1.6089 |0.2644
C 3 -0.0926 {-1.7520 (1.5500 [0.0261
CROWN -0.0324 {-2.4677 {1.5173 +2.0802
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MAXIMUM INTENSITY OF SNOW LOAD FOR
" DIFFERENT CASES OF BOUNDARY CONDITIONS

GA 22, ¢, = 80°
SPAN (feet) 15 20 25 30 35 40
RADIUS (feet) 10 10 10 10 10 15
LOAD (psf):
For CASE (I) 45 20 11 7 4 12
LOAD (psf): |
For CASE (II) 50 - 42 23 10 5 18
TABLE (A)
SPAN (feet) 30 40 20 30 40 50
RADIUS (feet) 10 10 15 15 15 15
LOAD (psf): .
For CASE (III) 13 6 44 22 12 "6
= O
9o 90
TABLE (B)
SPAN (feet) 30 35 40 30 35 40
RADIUS (feet) 10 10 10 20 20 20
LOAD (psf):
For CASE (Iv) 22.5 16 11 20 14 10
LOAD (psf): .
For CASE (V) 50 50 48 50 50 45
TABLE (C)
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Example:

_ The analysis of a simply supported cylindrical
shell by the use of tables will be illustrated in this
example.

Design a shell roof made of corrugated sheets
with longitudinal stiffeners at the valleys. The shell
has the following parameters:

Span = 20 Feet
Radius = 10 Feet
%= 80°

Maximum intensity of snow load is 15 psf.

Solution:

From table A, the roof with the given'dimensions
can be built with Gage 22 and can carry a maximum intensity
of 20 psf snow load. From table (I), the stress-resultants

can be calculated from the following formulae:

Nx = Ny . p - cos ox | | (b/in)
Ng = Ny P o IE (1b/in)
Neg = Nag. p- 5in % (Ib/in)
My = My P cosIL_ZC_ (/A/m)

wéere £ = /5 /057[’

Figures (a, b, ¢ & d) show the distribution of the stress-

resultants.

5 / /"
Area Of Stiffener = / "'—X_"‘ . 0'6‘565 - O'I/B a
X GK

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/"
—{ZEBT=Y

Ny~ Distribution (lb/in).
L S~ span.

F‘z' . (a)

(0°0)

Mf‘ — Distrrbulion ( /A.//'n/
at ,su/o/oort.
Frg. (c)
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Ny —~ Drs tribulion (Ib/in)
at - span.

Fl’z. (5)

M,s - Distribution (rb/rn)
at widf- span

/:‘,j Cd).
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APPENDIX (IV)

FLOW CHARTS
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(3”‘” ) - MASTER FLOW

Y CHART.
‘ INPUT ,
NL=1
/INITIA L1z ATION
Y - <

Vv

GENERATE RIGIDITIES KR : 4
Y Y
KR = 41 o

\ - KR=KR+I

RADIUS = RI(KR)
SrAaN = BL(NL)

A

NEL = NL+* [ | NL:S ez

CALCULATE ROOTS OF
CHARACTERIS TIC FRUATION,
CALCULATE MATRIX[A] &K
[B], CALL SUBROUTINE FOR
MATRIX INVERSION, END <

SOLUTION.
BY

<PR/N7‘ >
|
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A

FLOW CHART ' T
BETWEEN TERMINALS
AL B N MASTER
FLOW CHART .

CALCULATE ROOTS
OF CHARACTERIST/C
EQUATION.

GENERATE MATRICES L[A]

AND [BI1 FOR BOUNDARY
CONDITIONS.

f

CALL SUBROUTINE

FOR INVERSION OF -
M/ITR/){ [AJ.

SOLVE FOR CONSTANTS

A,B,C,D,E, F,G AND /.

l
[
=1

ol T i 10 Dy s

- Y

Fl1E = FIF(I)

CALCULATE STRESSES AND
4 DISPLACE MENTS.

g e
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