
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Plan B and other Reports Graduate Studies 

8-2017 

Efficiently representing the integer factorization problem using Efficiently representing the integer factorization problem using 

binary decision diagrams binary decision diagrams 

David Skidmore 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports 

 Part of the Algebra Commons, Discrete Mathematics and Combinatorics Commons, Information 

Security Commons, Number Theory Commons, Other Computer Sciences Commons, and the Other 

Mathematics Commons 

Recommended Citation Recommended Citation 
Skidmore, David, "Efficiently representing the integer factorization problem using binary decision 
diagrams" (2017). All Graduate Plan B and other Reports. 1043. 
https://digitalcommons.usu.edu/gradreports/1043 

This Creative Project is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Plan B and other Reports by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/127677199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/183?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/1043?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Efficiently representing the integer factorization

problem using binary decision diagrams

David Skidmore
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Abstract

Let p be a prime positive integer and let α be a positive integer greater
than 1. A method is given to reduce the problem of finding a nontrivial
factorization of α to the problem of finding a solution to a system of
modulo p polynomial congruences where each variable in the system is
constrained to the set {0, . . . , p − 1}. In the case that p = 2 it is shown
that each polynomial in the system can be represented by an ordered
binary decision diagram with size less than

20.25 log2(α)3 + 16.5 log2(α)2 + 6 log2(α)

whereas previous work on the subject has only produced systems in which
at least one of the polynomials has an ordered binary decision diagram
representation with size exponential in log2(α).

Using a different approach based on the Chinese remainder theorem we
prove that for α ≥ 4 there is an alternative system of boolean equations
whose solutions correspond to nontrivial factorizations of α such that
there exists a C > 0, independent of α, such that for any order σ on the
variables in the system every function in the system can be represented
by a σ-OBDD with size less than

C log2(log2(α))2 log2(α)4.

1



Contents

1 Introduction 3
1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Layout of Document . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background Information 10
2.1 Polynomial Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Miscellaneous Modular Arithmetic . . . . . . . . . . . . . . . . . 13
2.3 p-adic Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Binary decision diagrams . . . . . . . . . . . . . . . . . . . . . . 16

3 Results 20
3.1 Quotient and remainder . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Digit Recurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Digit Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 FACT as a System of Congruences . . . . . . . . . . . . . . . . . 32
3.5 FACT as a system of OBDDs . . . . . . . . . . . . . . . . . . . . 40

4 Open questions and directions for future work 49
4.1 Multiple-valued decision diagrams . . . . . . . . . . . . . . . . . 49
4.2 Reduced boolean system . . . . . . . . . . . . . . . . . . . . . . . 50

A Appendix 51

References 55

2



1 Introduction

For all positive integers x and p with p prime, x can be uniquely written in the
form

m∑
n=0

xnp
n

where m ∈ N0 = {0, 1, . . . }, xm 6= 0, and each xn ∈ {0, . . . , p − 1}. This
summation is called the base p expansion of x.

If p ∈ N = {1, 2, . . . } is prime then the base p expansions of the positive
integers can be extended to a field containing the rational numbers: Qp, the
field of p-adic numbers. For every x ∈ Qp, there exists an m ∈ Z and a sequence
(xn)∞n=m : {m,m+ 1, . . . } → {0, 1, . . . , p− 1}, n 7→ xn such that

x =

∞∑
n=m

xnp
n.

We call the sum in the preceding equality the p-adic expansion of x. If x ∈ N
then x has p-adic expansion x0+x1p+· · ·+xmpm+0pm+1+0pm+2+0pm+3+. . .
(for k > m the coefficient of pk is zero) where x0 +x1p+ · · ·+xmp

m is the base
p expansion of x.

For each x ∈ Qp and n ∈ Z the nth p-adic digit of x is defined to be the
coefficient of pn in the p-adic expansion of x. If x ∈ Qp is such that for all n ∈ Z
the nth p-adic digit of x is 0 whenever n < 0 then x is called a p-adic integer.
The collection of all p-adic integers is denoted by Zp and forms a subring of Qp.

In this document we are primarily concerned with two related issues. First,
for any prime p, representing the arithmetic operations of addition, multiplica-
tion, subtraction, and division on Zp as a sequence of multivariate polynomials
in the p-adic digits of their arguments. Second, the reduction of the integer
factorization problem (FACT) to the problem of solving a system of polynomial
equations.

1.1 Previous Work

In recent years there have been several studies concerned with both the reduc-
tion of FACT to the Boolean satisfiability problem (SAT) and the performance
of (modern day) SAT solvers in finding a solution to the resulting reduction,
[1, 2, 3]. All of these studies performed the reduction using recursive algorithms
obtained from modeling digital adder and multiplier circuits using a Boolean
algebra. The SAT solvers applied to the resulting reductions were general pur-
pose, rather than being designed for the specific problem of FACT.

Conjunctive Normal Form (CNF) is a particular type of normal form for
mathematical expressions representing elements of a Boolean algebra [4]. Ac-
cording to Gomes and others, CNF has a number of desirable characteristics
which has lead to it becoming the generally accepted input format for modern
SAT solvers [4]. As such, previous studies concerning FACT to SAT reduction
have made it a point that their algorithms produce output in CNF format.
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The relevance of this to the current paper is that the reductions performed
in aforementioned FACT to SAT studies were equivalent to reducing FACT
to a system of polynomials with coefficients taken from the prime field with
two elements. Similarly, due to the fact that multi-valued logic functions can be
represented by polynomials over finite fields [5, 6], converting FACT to a system
of polynomials over a finite field of prime order greater than two is equivalent
to reducing FACT to a multivalued logic satisfiability problem (MV-SAT).

A Boolean ring is a commutative ring with identity in which every element
is idempotent, i.e. every x in the ring satisfies x2 = x. Every Boolean ring
is equivalent to a Boolean algebra. Using a Boolean ring, in [7], Samuel J.
Lomonaco created FACT to SAT reduction algorithms with output in both
Algebraic Normal Form (ANF) and Disjunctive Normal Form (DNF), rather
than in CNF, and corresponding integer factorization algorithms that do not rely
on general purpose SAT solvers. Additionally, Lomonaco gave representations
of arithmetic operations in terms of polynomials defined by recurrence relations
inspired by common arithmetic algorithms, such as the standard algorithm for
multiplication, also called long multiplication. The work done by Lomonaco on
the reduction of FACT to DNF SAT was further studied and expanded on by
S. Bagde [8].

Both the studies utilizing CNF and those using ANF and DNF concluded
that their algorithms were far inferior to commonly used specialized FACT al-
gorithms such as the general number field sieve.

The following definitions, provided by Liska et al., can be found in [9]. They
represent performance measures of algorithms.

Definition. Expression Swell is a common phenomenon of exact computations
in which the size of numbers and expressions involved in a calculation grows
dramatically as the calculation progresses.

Definition. Intermediate Expression Swell is an important special case of ex-
pression swell in which, during the middle stages of a calculation, intermediate
expressions can expand substantially, but the final results of the calculation are
comparatively simple.

As an example of expression swell, interpret the following two expressions, in
indeterminates X = {x1, x2, x3, x4, x5, x6}, as sequential states of a calculation,
with the first line representing the initial state and the second line the final
state.

(x1 + x2)(x3 + x4)(x5 + x6)

x1x3x5 + x1x3x6 + x1x4x5 + x1x4x6 + x2x3x5 + x2x3x6 + x2x4x5 + x2x4x6

The first state of the calculation, considered as a term, contains 3 additions and
2 multiplications while the second contains 7 additions and 16 multiplications.
Using Polish notation, the first expression is equivalent to a string consisting
of 11 characters taken from the set X ∪ {+,×}, i.e. × × +x1x2+x3x4+x5x6.
However, using the same set of characters, the second expression is equivalent
to a string consisting of 47 characters.
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As an example of intermediate expression swell, interpret the following as
sequential states of a calculation with the first line being the initial state and
the third line being the final state.

(0 + 0)(0 + 0)(0 + 0)

000 + 000 + 000 + 000 + 000 + 000 + 000 + 000

0

Generally speaking, expression swell can lead to an exponential increase in
the sizes or numbers of expressions involved in a calculation. Therefore it is
not surprising that, in computer algebra, expression swell can lead to significant
increases in both the memory needed and CPU time required by a computer to
perform a given calculation.

In many cases converting a propositional expression to a particular normal
form such as CNF can lead to significant expression swell, either in the inter-
mediate stages of the conversion or in the final output. Previous studies have
only utilized recursive algorithms inspired by existing arithmetic algorithms to
generate an initial set of expressions which is then converted to the desired
normal form. The initial expressions resulting from these algorithms exhibit a
deeply nested structure not conducive to conversion. This suggests that expres-
sion swell had a major impact on the efficiency of the algorithms used in the
previously mentioned studies.

A boolean function is a {0, 1}-valued function in a finite number of {0, 1}-
valued (boolean) variables.

Example 1.1. The binary operation ⊕ : {0, 1} × {0, 1} → {0, 1} (exclusive
disjunction, boolean XOR, modulo-2 addition) is defined by

x⊕ y =

{
0 if x = y

1 if x 6= y
.

Every boolean function can be represented as a boolean polynomial : a poly-
nomial with coefficients taken from {0, 1}, with addition replaced by modulo-2
addition, and which is of degree at most 1 for any particular variable. Equiv-
alently, a boolean polynomial can be thought of as a typical polynomial with
integer coefficients interpreted over the integers mod 2, e.g. (f mod 2) where
f is a polynomial with integer coefficients.

Let α be a positive integer greater than 1 with binary expansion

α0 + 2α1 + · · ·+ 2β−1αβ−1

where β − 1 = blog2(α)c and for every real number t, btc represents the largest
integer u such that u ≤ t. For each nonnegative integer m let fm : {0, 1}2β →
{0, 1} be the boolean function such that fm(x0, x1, . . . , xβ−1, y0, y1, . . . , yβ−1)
(represented by fm(~x, ~y)) gives the the coefficient of 2m in the binary expansion
of the product

(x0 + 2x1 + · · ·+ 2β−1xβ−1)(y0 + 2y1 + · · ·+ 2β−1yβ−1).
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Every factorization of α corresponds to a solution to the system

α0 ⊕ f0(~x, ~y) = 0

α1 ⊕ f1(~x, ~y) = 0

...

αβ−1 ⊕ fβ−1(~x, ~y) = 0

fβ(~x, ~y) = 0

...

f2β−1(~x, ~y) = 0.

Let Sα denote the set of polynomials {αm⊕fm | m ∈ N0} where fm = fm(~x, ~y),
if m ≥ β then αm = 0, and if m ≥ 2β then fm = 0. We’ll refer to Sα as the
standard representation.

A boolean circuit is a directed acyclic graph with all nodes labeled by ele-
ments of a finite set. The labels consist of constants from {0, 1}, variables, and
operators, typically ∧, ∨, and ⊕. Nodes labeled by constants or variables have
an in-degree, also called fan-in, of 0 and any such node is referred to as an input
node. A node with out-degree, also called fan-out, 0 is an output node. Any
node with in-degree strictly greater than 0 is called a gate and is labeled by an
operator. Without loss of generality we will assume that every gate label corre-
sponds to a binary operator and that every node labeled with such an operator
has in-degree of exactly 2. If C is a circuit with n variable labels we will say
that C is a circuit in n variables.

The size of a boolean circuit is its number of gates. The depth of a circuit
is the length of one of its longest paths.

A boolean formula is a boolean circuit where all nodes have an out-degree of
at most 1. Boolean formulae may be thought of as a notationally independent
way of representing mathematical terms corresponding to boolean functions.

All previous work on the subject of representing integer factorization as a
system of boolean polynomials proceeds via finding different ways to represent
the elements of Sα. This is usually done by way of taking a boolean circuit
representing a binary multiplier and then representing that circuit as a collection
of single output boolean formulae the mth such formula corresponding to fm,
these formulae are then equated to the binary digits of α giving the equations
fm = αm or equivalently αm⊕fm = 0. We note that typically each αm⊕fm = 0
is replaced by 1 ⊕ αm ⊕ fm = 1 as most previous work tends to use boolean
algebras rather than boolean rings.

If the goal is simply to represent FACT as an instance of CNF SAT then it is
already known that this can be done efficiently using the Tseitin transformation
on a multiplier circuit to produce a 3-SAT instance with size linear in the size of
the input circuit [10]. For a pair of n-bit numbers there are multiplier circuits
with size O(n log2(n) log2(log2(n)) [11] so the boolean formula resulting from
the transformation is not very large. The result of the Tseitin transformation
is not equivalent to the original formula, it is equisatisfiable. For our intents
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and purposes two boolean formulae corresponding to boolean functions f and
g are equisatisfiable if and only if the equations f = 1 and g = 1 either both
have a solution or neither have a solution. By comparison the two formulae are
equivalent if and only if the equation f = 1 has the same solution set as g = 1.
For example, in the boolean variables x and y, f = x⊕ y is equisatisfiable, but
not equivalent, to g = xy since x = 1, y = 0 is a satisfying assignment for f
but not g and x = 1, y = 1 is a satisfying assignment for g. Furthermore 3-SAT
is NP-complete and all attempts to solve the SAT problem resulting from the
application of the Tseitin transformation to a multiplier circuit have met with
very little success regardless of what type of multiplier circuits have been used.

Another problem with using Sα as the base for a reduction algorithm is that
there is at least one boolean normal form for which it is infeasible to represent
the elements of Sα when α is large: the representation of a boolean function by
an ordered binary decision diagram (OBDD), a special type of labeled rooted
directed acyclic graph together with a total order on the labels of its nodes. In
2005 Philipp Woelfel showed that regardless of the linear order used, fn−1 will
have an OBDD representation with at least 2bn/2c/61− 4 nodes [12].

It is also worth noting that in all of the previously mentioned studies a well
known family of polynomials, the elementary symmetric polynomials, frequently
appear. This fact was noted by Lomonaco but not explored.

1.2 Problem Statement

Before giving the problem statement it is necessary to introduce a bit of notation.
For any set T , (xi)i∈T is used to denote the function with domain T which for
all i ∈ T maps i to xi. The codomain of such a function will be specified
in context if relevant. In the case that T is some finite product of totally
ordered sets, we may opt to use a subscript superscript notation that mimics
the indexing conventions of summations. For example, (xi,j)

2
i=1

i
j=0 has domain

{(u, v) | (u, v) ∈ {1, 2} × {0, 1, 2} , v ≤ u}. Sequences (tuples) fall under this
convention and so we emphasize here not to confuse sequence (tuple) evaluation
with component-wise multiplication by a scalar. For example, if x is a sequence,
say x = (xi)

∞
i=1, then for any k ∈ N, x(k) = xk. Lastly, if f is a function and

T is a set then f ⊆ T means that the image of f is contained in T and f ⊂ T
means that the image of f is contained in T but not equal to T .

Let p be a prime number. Every x ∈ Zp can be associated with a unique
sequence (xn)∞n=0 ⊆ {0, . . . , p− 1} where for each n ∈ N0, xn is the nth p-adic
digit of x; we call this sequence the p-adic digit vector associated with x.

We define the arithmetic operations on Zp to be the collection {+ ,×, − , /}
where + and × represent the field operations of addition and multiplication
restricted to Zp, − represents the binary operation of subtraction restricted to
Zp, and / denotes the partial binary function of division restricted to the set of
all (x, y) ∈ Z2

p such that the 0th p-adic digit of y is nonzero.
If ? ∈ {+ ,×, − , /} and f = (fn)∞n=0 is a sequence of integer valued polyno-

mial functions, each defined for all pairs of p-adic digit vectors, then f is called
a sequence of polynomials associated with ? if and only if for all x, y ∈ Zp and

7



n ∈ N0, if x ? y is defined then

(x~?y)(n) ≡ fn(~x, ~y) (mod p)

where ~x, ~y, and x~?y denote, respectively, the p-adic digit vectors associated with
x, y, and x ? y.

We can now give the formal problem statements.

• For each arithmetic operation on Zp can we obtain an associated sequence
of polynomials using a method that is not based upon simulating arith-
metic algorithms or digital adder and multiplier circuits?

• How are the elementary symmetric polynomials related to the sequences
of polynomials associated with the arithmetic operations on Zp?

• In the case that p = 2, given a positive integer α greater than 1, can the
problem of finding a nontrivial factorization of α be reduced to finding
a solution to a system of boolean polynomial equations such that each
polynomial in the system can be represented by an OBDD whose number
of nodes is less than some fixed power of log2(α)?

1.3 Significance

The questions asked in the problem statement are related to several important
mathematical and computational problems, in particular the integer factoriza-
tion problem.

Many cryptosystems in wide use today, such as RSA, are based on the pre-
sumed difficulty of integer factorization. The best known methods, such as the
general number field sieve, are subexponential time algorithms; incapable of
posing a threat to a system like RSA.

Secondly, the literature that is available on the subject is scarce and narrow
in scope. This indicates that it may not have received as much research attention
as it should have. For example, although previous studies have resulted in
algorithms which appear to take time exponential in the logarithm of the number
to be factored, nothing has been proven about their running times, with the
conjectures about them based purely upon data gathered via computational
experiments, that is to say by running the algorithms on a large amount of
numbers and recording the running times. Another point to be made is that
not very much has been said about the structure of the systems of equations
representing the integer factorization problem resulting from the transformation
methods used in previous studies. Part of the reason for this may be due to
the fact that the majority of previous studies on the subject have relied on
transformation algorithms that were based upon various recursions. This may
have served to obfuscate any structure that was present in the results, or at the
least present a viewpoint of said structure which may be particularly difficult
for humans to analyze compared to the viewpoint that a different, chiefly non-
recursive, approach may offer.
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1.4 Layout of Document

The background information section serves as a reference for various pieces of
background information utilized in this thesis.

We first define quotient and remainder functions which are then used to
obtain recurrence relations for sequences of polynomials associated with each
arithmetic operation on Zp. Sets of such recurrence relations are available from
previous work for Z2.

A solution for each of the recurrence relations is presented. Bits and pieces
of these solutions can be found in the literature, although not all in one place
as far as the author is aware.

We show how the factorization of α can be expressed as a system of poly-
nomials Sα obtained from the aforementioned recurrence relation solutions. A
method of reducing this system to a new system of polynomials Tα is given. The
reduction method used by the author and the resulting system of polynomials
is novel as far as the author can find.

We prove that when p = 2, the polynomials making up the system Tα can
each be represented by an OBDD with at most

20.25 log2(α)3 + 16.5 log2(α)2 + 6 log2(α)

nodes. We show that with the ordering used for each polynomial in the system,
there is an ordering of the polynomials of the system g0, g1, . . . such that for
each m ∈ N0 there is an ordering such that the OBDD size of gmgm+1 using
this ordering has size O(log2(α)6). Furthermore using a different approach
based on the Chinese remainder theorem we prove that for α ≥ 4 there is an
alternative system of boolean equations whose solutions correspond to nontrivial
factorizations of α such that there exists a C > 0, independent of α, such that
for any order C on the variables in the system every function in the system
can be represented by an OBDD using the total order C with size less than
C log2(log2(α))2 log2(α)4. This is a new result on the subject as far as the
author can tell and important because the ordering of the variables in an OBDD
can have a drastic effect on its size. That is to say, for large enough n, there is
a function in n variables which has one variable ordering for which the smallest
OBDD has size polynomial in n and has another variable ordering for which the
smallest OBDD has size exponential in n.

Lastly we discuss a possible factorization algorithm utilizing the system Tα
represented as a collection of OBBDs and discuss some open questions directions
for future work.
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2 Background Information

2.1 Polynomial Rings

Before getting started, we need to introduce a small bit of notation. If R is a
ring then 0R denotes the additive identity of R, and if R is a ring with unity
then 1R denotes the multiplicative identity of R.

This section gives a quick introduction to polynomials as they are frequently
used throughout this thesis informally with intended interpretation given by
context. The elementary symmetric polynomials are also defined as they have
appeared in previous research on the same subject as this thesis and are given
a generalization within this thesis. More information can be found in [13].

Let R be a ring and let X = {x1, . . . , xm} be a collection of m distinct
symbols disjoint from R. Let R[X], equivalently R[x1, . . . , xm], denote the set
of all functions mapping Nm0 → R with finite support. Define addition on R[X]
pointwise and define multiplication on R[X] by

∀f, g ∈ R[X] ∀i ∈ Nm0 (fg)(i) =
∑

j,k∈Nm0
j+k=i

[f(j)g(k)]

It follows that R[X] together with the above operations of addition and multi-
plication forms a ring. This ring is called the ring of polynomials in m indeter-
minates X with coefficients in R.

There is a more common and convenient notation with which to represent
the elements of R[X] which we describe here.

Let M denote the free commutative monoid generated by the set X; that
is, M is the set consisting of all equivalence classes of strings over X, where
two strings are equivalent if and only if one is a permutation of the other,
together with the binary operation of string concatenation on M . Without
loss of generality we assume that 1M is a symbol disjoint from X which we
let denote the identity element of M . If y ∈ M then we define y0 = 1M . If
y ∈ M and n ∈ N then we define yn = yn−1y. Let x = (x1, . . . , xm) and for
each i = (i1, . . . , im) ∈ Nm0 let xi = xi11 . . . x

im
m . Using these conventions, each

element of M can be uniquely written in the form xi where i ∈ Nm0 .
We will identify each pair consisting of an element of R and an element of

M with an element of RN
m
0 . Suppose that a ∈ R and y ∈ M . Let i ∈ Nm0 be

such that y = xi. Let ay and ya both denote the function mapping Nm0 into R
defined by

j 7→

{
a ⇐= i = j

0R ⇐= i 6= j

It follows that any f ∈ R[X] can be represented by an infinite formal sum∑
i∈Nm0

aix
i

10



where for each i = (i1, . . . , im) ∈ Nm0 , ai ∈ R and ai = 0 for all but a finite
number of i.

We observe the following notational conventions when working in R[X]: for
all a ∈ R, and i, j ∈ Nm0

• a1M = a

• If R has unity then for all i ∈ Nm0 , 1Rx
i = xi

In the context of R[X], for each i ∈ Nm0 , xi is called a monomial. If f ∈ R[X]
and

f =
∑
i∈Nm0

aix
i

where each ai ∈ R then for each i ∈ Nm0 , ai is called the coefficient of xi in f .
IfR does not have unity, thenR may be embedded in a ring with unity having

the same characteristic as R. Therefore, unless stated otherwise, whenever
working within a polynomial ring R[X] we will assume that R has unity, and
thus so too does R[X].

The map R → R[X] defined by r 7→ rx0 is a monomorphism of rings.
We identify R with its image under this map and so consider R a subring
of R[X]. Similarly, if X ′ = {xi1 , . . . , xil} ⊆ X has l elements then R[X ′]
embeds into R[X] under the ring monomorphism R[X ′] 7→ R[X] which satisfies
axj1i1 . . . x

jl
il
7→ axj1i1 . . . x

jl
il

for all a ∈ R and (j1, . . . , jl) ∈ Nl0 and so may be
considered as a subring of R[X]. Furthermore for each collection of m + n
indeterminates {x1, . . . , xm, y1, . . . , yn} the rings R[x1, . . . , xm][y1, . . . , yn] and
R[x1, . . . , xm, y1, . . . , yn] are isomorphic, and unless explicitly stated otherwise
we will consider them identical.

Suppose that R and S are commutative rings and R is a subring of S. Let
R[X] denote the ring of polynomials in m indeterminates x1, . . . , xm. Suppose
that (a1, . . . , am) ∈ Sm. Define φa : R[X]→ S by∑

i∈Nm0

bix
i 7→

∑
i ∈ Nm0 biai

where bia
i denotes the product in S, bi

∏m
j=1 a

ij
j . φa is a ring homomorphism

called evaluation at a. For each f ∈ R[X] and a ∈ Sm we let f(a) = φa(f) and
call f(a) the evaluation of f at a.

A polynomial function, f : Rm → R, is a function such that there exists a
polynomial g ∈ R[X] which satisfies

∀a ∈ Rmf(a) = g(a)

Suppose R is a commutative ring with unity and X = {x1, . . . , xm}. If
f, g ∈ R[X] then f divides g if and only if there exists an h ∈ R[X] such that
g = fh, in which case we write f | g. If f, g ∈ R[X] and f does not divide g
then we write f - g.

11



For all f, g ∈ Z[x1, . . . , xm], f is congruent to g modulo n, denoted by
f ≡n g or f ≡ g (mod n), if and only if the coefficients of the monomials in f
are congruent to the coefficients of the monomials in g. On the other hand f
and g are said to be equivalent or congruent as functions modulo n, if and only
if, for all a ∈ Zm

f(a) ≡ g(a) (mod n)

in which case we write f ∼n g. The relation ∼n is also defined in the same
way whenever f or g are integer valued polynomial functions on Zm rather than
formal polynomials. The relation ∼n is an equivalence relation compatible with
addition and multiplication.

For all p ∈ N, if p is prime and f, g ∈ Z[x1, . . . , xm] then

f ∼p g ⇐⇒ f ≡ g (mod p, xp1 − x1, . . . , xpm − xm)

For any function x, if x has finite support and codomain contained in a
commutative ring, R, with unity then for every m ∈ N0 we define the mth
elementary symmetric polynomial, em, by

em(x) =
∑

i∈{0,1}supp(x)
|i|=m

∏
j∈supp(x)

x(j)i(j)

=
∑

A⊆supp(x)
|A|=m

∏
a∈A

x(a)

Note that, by our notational conventions,

e0(x) = 1R

m > |supp(x)| =⇒ e0(x) = 0R

In the case that x = (x1, . . . , xn) for some n ∈ N, if m ∈ N then we have

em(x) =
∑

0<i1<···<im<n+1

xi1 . . . xim

Suppose R is a ring with unity, m ∈ N. If A is a finite set then

em((1R)a∈A) =
∑
B⊆A
|B|=m

1R

The above summation can be written as a sum of
(|A|
m

)
copies of 1R. Therefore

we define
(|A|
m

)
in R by (

|A|
m

)
= em((1R)a∈A)
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2.2 Miscellaneous Modular Arithmetic

This section presents the various pieces of modular arithmetic used within this
thesis. It is primarily intended to serve as a reference for various definitions
and theorems of elementary number theory. The only theorem presented in this
section that is not well-known is Lucas’ Theorem. Proofs can be found in [14]
and [15].

If a, b ∈ Z and there exists a c ∈ Z such that ac = b then we say that a
divides b, a is a divisor of b, a is a factor of b, or that b is a multiple of a. When
a divides b we write a | b and when a does not divide b we write a - b.

Any p ∈ N is said to be prime if and only if p > 1 and the positive divisors
of p consist of 1 and p.

For all a, b, c ∈ Z, if c | a and c | b then c is called a common factor or
common divisor of a and b.

For any a, b ∈ Z, the greatest common divisor of a and b, denoted gcd(a, b),
is the largest nonnegative integer which divides both a and b. If gcd(a, b) = 1
then a and b are said to be coprime or relatively prime.

Theorem 1 (Bezout’s Identity). If a, b ∈ Z are not both zero then there exists
x, y ∈ Z such that

ax+ by = gcd(a, b)

Theorem 2 (Fundamental Theorem of Arithmetic). For every n ∈ N if n > 1
then n can be expressed as a product of prime powers:

n = pm1
1 . . . pmll

where p1, . . . , pl are distinct primes and m1, . . . ,ml are positive integers; this
representation is unique up to permutation of the factors.

Given an a, b, c ∈ Z, if c|(a− b) then we say that a is congruent to b modulo
c and write

a ≡ b (mod c)

We may also opt to use the alternative notation a ≡c b in long calculations.
For each c ∈ Z, ≡c is an equivalence relation on Z; ≡c is called a congruence

relation or a congruence and is said to have modulus c. For fixed c ∈ Z, the
congruence ≡c is compatible with integer addition and multiplication.

If a, b ∈ Z and gcd(a, b) = 1 then, by Bezout’s Theorem, there exists a c ∈ Z
such that

ac ≡ 1 (mod b)

Whenever it appears in a congruence equation where the congruence has mod-
ulus b, we let a−1 denote the smallest positive integer c such that

ac ≡ 1 (mod b)

We let φ : N0 → N0 denote Euler’s totient function defined by

∀n ∈ N0 φ(n) = |{m ∈ N | m ≤ n ∧ gcd(m,n) = 1}|

13



That is, for each n ∈ N0, φ(n) is the number of positive integers less than or
equal to n which are coprime to n.

If p, n ∈ N and p is prime then φ(pn) = pn−1(p − 1). If m,n ∈ N0 and
gcd(m,n) = 1 then φ(mn) = (φ(m))(φ(n)).

Theorem 3 (Euler’s theorem). For all m ∈ Z and ∈ N, if m and n are coprime
then

mφ(n) ≡ 1 (mod n)

Theorem 4 (Lucas’s thoerem). For all p ∈ N such that p is prime, if l,m, n ∈
N0, m =

∑l
k=0mkp

k, n =
∑l
k=0 nkp

k, and for each k ∈ {0, . . . , l} mk, nk ∈
{0, . . . , p− 1} then (

n

m

)
≡

l∏
k=0

(
nk
mk

)
(mod p)

Theorem 5 (Chinese remainder theorem). If n1, . . . , nm are positive integers
all greater than 1 which are pairwise coprime and a1, . . . , am are integers then
there exists a unique nonnegative integer x such that

x <

m∏
l=1

nl

and

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ am (mod nm).

2.3 p-adic Numbers

This section provides a brief introduction to the p-adic numbers. The interested
reader can find additional information in [16].

Fix a prime number p. Define the function νp : Q → Z ∪ {∞} by the
following:

• if x ∈ Z \ {0} then νp(x) is the highest power of p which divides x

• if x = a/b and a, b ∈ Z \ {0} then νp(x) = νp(a)− νp(b).

• νp(0) =∞.

The field of p-adic numbers, Qp, is the completion of Q with respect to the
p-adic absolute value | · |p : Q→ Q defined by,

x 6= 0 =⇒ |x|p = p−νp(x).

x = 0 =⇒ |x|p = 0.

14



For all x, y ∈ Qp,
|x− y|p ≤ max(|x− z|p, |z − y|p).

Therefore Qp together with the metric induced by the p-adic absolute value,
(x, y) 7→ |x − y|p, forms an ultrametric space. We note two interesting conse-
quences of this fact.

1. A sequence (an)n∈N0
⊂ Qp is Cauchy if and only if

lim
n→∞

|an+1 − an|p = 0.

2. An infinite series
∑∞
n=0 an with (an)n∈N0

⊆ Qp is convergent if and only
if

lim
n→∞

an = 0,

in which case ∣∣∣∣∣
∞∑
n=0

an

∣∣∣∣∣
p

≤ max
n∈N0

|an|p.

If x ∈ Qp and νp(x) ≥ 0 then x is called a p-adic integer. The set of all
p-adic integers forms a ring and is denoted by Zp. If x ∈ Qp \{0} and x−1 ∈ Zp
then x is called a p-adic unit. The collection of all p-adic units forms a group
under multiplication and is denoted by Z×p . The set of all p-adic units is equal
to the set of all p-adic integers whose 0th p-adic digit is nonzero.

For each n ∈ N0 let Partn = {k ∈ Nn0 |
∑n
j=1 jkj = n}, where kj = k(j)

is the jth component of k and Part0 = N0
0 is the the singleton containing

the empty function with codomain N0. If (xn)n≥0 ⊆ Zp with x0 ∈ Z×p then∑
n≥0 xnp

n ∈ Z×p and∑
n≥0

xnp
n

−1 =
∑
n≥0

 ∑
k∈Partn

(−1)|k|
(
|k|
k

)
x
−(1+|k|)
0

n∏
j=1

x
kj
j

 pn


where
(
0
∅
)

:= 1 so the coefficient of p0 on the right hand side of the equality is

x−10 .
If x =

∑
n≥0 xnp

n ∈ Qp then

−x = 1 +
∑
n≥0

(p− 1− xn)pn.

Every x ∈ Qp can be written in the form

x =

∞∑
n=m

xnp
n

where m = νp(x) and (xn)n≥m ⊆ {0, . . . , p− 1}. This representation is unique.
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If we are given a p-adic number x in the form

x =

∞∑
n=m

(xnp
n)

then x ∈ Q if and only if the sequence (xn)n≥m is eventually periodic.
Since Z ⊆ Zp, congruence modulo p is a congruence relation on Zp. To be

explicit, if m,n ∈ Zp, the 0th p-adic digit of m is m0 and the 0th p-adic digit
of n is n0 then

m ≡ n (mod p) ⇐⇒ m0 ≡ n0 (mod p).

We note that Lucas’ Theorem holds for the p-adic integers. That is, if n ∈ Zp
and m ∈ N0 then (

n

m

)
≡
∏
k≥0

(
nk
mk

)
(mod p)

where nk and mk are, respectively, the kth p-digits of n and m, and the binomial
coefficients are defined in the usual way,(

n

m

)
=

∏m−1
k=0 (n− k)

m!
.

2.4 Binary decision diagrams

This section gives a very brief introduction to binary decision diagrams. For the
interested reader there are many books on the subject. A short introduction
to the subject by Henrik Reif Andersen is available for free online [17]. For
convenience, a url is available in the reference which is active as of the time of
this writing.

A binary decision diagram (BDD) is a labeled rooted directed acyclic graph
corresponding to an equivalence class of single output boolean formulae. Every
node in a BDD is labeled by a boolean variable or a constant from {0, 1}. Nodes
labeled by variables are called non-terminal and have outdegree two. Nodes
labeled by constants are called terminal and have outdegree zero. Every edge
in a BDD is one of two types: 0 (drawn dashed) and 1 (drawn solid). Two edges
leaving the same node must have different types.

Example 2.1.
Variables: {w, x, y}

w

x

y

1

0

1
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The graph shown above is a BDD with non-terminal nodes labeled by variables
from {w, x, y}. It has three terminal nodes, two of them labeled with 1 and the
last labeled with 0. Lastly, it has three edges of type 1 and three edges of type
0. This BDD corresponds to an equivalence class of boolean formulae which
contains

wx⊕ (w ⊕ 1)(y ⊕ 1).

The ternary if-then-else operator (· ·, ·) : {0, 1}3 → {0, 1} is defined by

(x y, z) = xy ⊕ (1⊕ x)z

where as per usual multiplication has higher precedence than addition. This
function returns the value of y if x = 1 and returns the value of z if x = 0. One
way of viewing binary decision diagrams is as a compressed way of representing
boolean formulae built from the if-then-else operator: as a directed acyclic graph
rather than as a tree.

Example 2.2.
Formula: (w (x (w 0, 1), (y 1, 0)), (y 0, 1))

w

x

y

w

y

1

0

The size of a BDD is its number of nodes. The BDD shown in Example 2.2
has size 7.

Example 2.3. The following BDD has size 4.

x

y 1

0

A BDD is ordered and called an ordered binary decision diagram (OBDD)
if all paths from its root to a terminal node respect a given linear order on its
variable labels. For example the BDD shown in example 2.3 is ordered with
respect to the ordering x < y but the BDD in example 2.2 is not ordered since
w appears twice in a path from the root to the 1-labeled terminal node.

OBDDs correspond to boolean functions in a manner which is similar to the
way that boolean functions correspond to boolean formulae. In an OBDD, every
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path from the root to a 1-labeled terminal node corresponds to an assignment
for which the corresponding boolean function evaluates to 1, and every path
from the root to a 0-labeled terminal node corresponds to an assignment for
which the corresponding boolean function evaluates to 0.

Example 2.4.
Order: w < x < y < z
Function: w ⊕ x⊕ y ⊕ z

w

x

x

y

y

z

z

1

0

The path w, x, y, z, 0 along only solid arcs corresponds to w = x = y = z = 1
and reflects 1⊕ 1⊕ 1⊕ 1 = 0.

An OBDD in the variables X = {x1, . . . , xm} with order x1 < · · · < xm
defines a boolean function f by the set of paths from its root to a terminal
node. If a1, . . . , am ∈ {0, 1} with ai the type of an edge ei leaving a node vi
with label xi and b is a terminal node then if v1e1v2e2 . . . vmemb is a path in
B then the value of f(a), the value of f with each ai substituted for xi, is
the constant labeling b. If vi1ei1 . . . vikeikb is a path from the root of B to a
terminal node b with xij the label of vij and aij the type of eij then the partial
evaluation of f with aij substituted for xij evaluates to the value of the constant
labeling b. Similarly paths from the root of B to some other non-terminal node
in B correspond to partial evaluations of f which do not necessarily evaluate
to a constant. As the following example shows, partial evaluation is one way in
which to build an OBDD for a specified boolean function.

Example 2.5 (Construction).
Order: w < x < y < z
Function: wx⊕ yz

wwx⊕ yz

x

x⊕ yz
y

1⊕ yz

y

yz

z

1⊕ z

z
z

1
1

0
0

The boolean formula next to each node is the result of the partial evaluation
of the function corresponding to the diagram at every partial evaluation corre-
sponding to a path from the root to that node.
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Given an order C on a set of boolean variables V , a C-OBDD on V is an
OBDD in the variables V using the order C. Similarly, a C-OBDD is an OBDD
using order C and whose non-terminal nodes are labeled by the elements of
some subset of V . If f(v1, . . . , vm) is a boolean function and g(vi1 , . . . , vik) is
a boolean function obtained from f by assigning constant values to a subset of
the variables v1, . . . , vm then g is called a subfunction of f .

Example 2.6. If
f(v1, v2) = v1 ⊕ v2

and
g(v1) = v1 ⊕ 1

then g is the subfunction of f
f(v1, 1).

Suppose that f = f(x1, . . . , xm) is some boolean function in the variables
x1, . . . , xm. Let < be the ordering on x1, . . . , xm given by x1 < x2 < · · · < xm.
For k ∈ {1, . . . ,m}, how many non-terminal nodes are labeled with xk in the
smallest <-OBDD for f? Due to the correspondence between paths in the <-
OBDD for f and partial evaluations of f , a partial answer to this question is
“at most |{f(a1, . . . , ak−1, xk, . . . , xm) : a1, . . . , ak−1 ∈ {0, 1}}|”. For example,
consider the boolean function f(w, x, y, z) = wx ⊕ yz whose smallest OBDD
using ordering w < x < y < z is given in Example 2.5. Since

f(0, x, y, z) = yz 6= x⊕ yz = f(1, x, y, z),

there are at most 2 nodes labeled with x in the OBDD. Similarly, since

f(0, 0, y, z) = f(1, 0, y, z) = f(0, 1, y, z) = yz 6= 1⊕ yz = f(1, 1, y, z),

there are at most 2 nodes labeled with y in the OBDD.
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3 Results

3.1 Quotient and remainder

Common integer addition and multiplication algorithms, as well as p-adic arith-
metic algorithms in general, use the concept of carrying. Carrying is based on
the idea of iteratively applying the following concept. Given a positive integer
N > 1 and a pair x, y each having an N -adic expansion, in order to find the
N -adic expansion of x+Ny do the following:

1. Find an a and b and such that a ∈ {0, . . . , N − 1}, b has an N -adic
expansion, and x = a+Nb.

2. Rewrite x+Ny to a+N(b+ y).

3. Find the N -adic expansion of b+ y.

This motivates us to define functions for each positive integer N > 1, rN and
qN , such that for any x which has an N -adic expansion, rN (x) ∈ {0, . . . , N−1},
qN (x) has an N -adic expansion, and x = rN (x) +NqN (x).

For every positive integer N let RN denote the set of all rational numbers
b/a with a, b ∈ Z such that gcd(a,N) = 1 and define the functions rN and qN
by the following:

• rN : RN → {0, ..., N − 1} and for all w, x, y ∈ Z such that gcd(x,N) = 1
and w ∈ {0, . . . , N − 1},

rN (y/x) = w ⇐⇒ y ≡ wx (mod N).

• qN : RN → RN and for all y ∈ RN

qN (y) =
y − rN (y)

N
.

For each x, qN (x) will be referred to as the quotient of x with respect to N
or simply the quotient of x if N is known from the context. Likewise, rN (x)
will be referred to as the remainder of x with respect to N or more simply the
remainder of x if N is understood.

The following proposition shows that quotient and remainder functions have
nice properties which allow us to efficiently apply them to the result of an arith-
metic operation provided we know their value on the inputs to the arithmetic
operation as well as a small bounded set of input values.

Proposition 1. For all N,α, β ∈ N and for all x, y ∈ RN , rN and qN satisfy:

1. rN (x± y) = rN (x± rN (y))

2. rN (xy) = rN (rN (x)y)

3. rNα(rNβ (x)) = rNmin(α,β)(x)
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4. qN (x± y) = qN (x± rN (y))± qN (y)

5. qN (xy) = qN (x)y + qN (rN (x)y)

6. qNα(qNβ (x)) = qNα+β (x)

7. x = NβqNβ (x) +
∑β−1
k=0 rN (qNk(x))Nk

8. (x, y ∈ Z ∧ x ≤ y) =⇒ (qN (x) ≤ qN (y))

9. rN (−1− x) = N − 1− rN (x)

If N is prime then the preceding holds for all x, y ∈ ZN and in addition if α ≤ β
then

qNα(rNβ (x)) = rNβ−α(qNα(x)).

Proof. Note that R1 = Q and for all w ∈ Q r1(w) = 0 and q1(w) = w. Thus if
N = 1 then 1 through 8 hold.

Suppose that N > 1 is a positive integer, x, y ∈ RN , and α, β ∈ N. State-
ments 1 and 2 follow from the fact that congruence mod N respects addition,
subtraction, and multiplication. If α ≤ β then it follows from 1 and 2 that

rNα(rNβ (x)) = rNα(rNβ (x) +NβqNβ (x))

= rNα(x)

= rNmin(α,β)(x).

If α > β then since {0, . . . , Nβ − 1} ⊂ {0, . . . , Nα − 1},

rNα(rNβ (x)) = rNβ (x)

= rNmin(α,β)(x).

Therefore 3 holds. To see that 4 holds, observe that

qN (x+ y) =
x+ y − rN (x+ y)

N

=
x+ y − rN (y) + rN (y)− rN (x+ rN (y))

N

=
x+ rN (y)− rN (x+ rN (y))

N
+
y − rN (y)

N
= qN (x+ rN (y)) + qN (y)

and

qN (x− y) =
x− y − rN (x− y)

N

=
x− (y − rN (y) + rN (y))− rN (x− rN (y))

N

=
x− rN (y)− rN (x− rN (y))

N
− y − rN (y)

N
= qN (x− rN (y))− qN (y).

21



The proof of 5 is another derivation similar to that for 4:

qN (xy) =
xy − rN (xy)

N

=
NqN (x)y + rN (x)y − rN (rN (x)y)

N

= qN (x)y +
rN (x)y − rN (rN (x)y)

N
= qN (x)y + qN (rN (x)y).

For the proof of 6 first observe that

x = rNβ (x) +NβqNβ (x)

= rNβ (x) +NβrNα(qNβ (x)) +Nβ+αqNα(qNβ (x)).

Therefore since

rNβ (x) +NβrNα(qNβ (x)) ≤ Nβ − 1 +Nβ(Nα − 1) = Nβ+α − 1

it follows that
rNβ+α(x) = rNβ (x) +NβrNα(qNβ (x)).

And so
qNα(qNβ (x)) = qNα+β (x).

We use statement 6 to prove 7 by induction. For the base case observe

x = rN (x) +NqN (x).

For the inductive step, suppose that m is a positive integer and

x = NmqNm(x) +

m−1∑
k=0

rN (qNk(x))Nk.

It follows that

x = NmqNm(x) +

m−1∑
k=0

rN (qNk(x))Nk

= Nm(NqN (qNm(x)) + rN (qNm(x))) +

m−1∑
k=0

rN (qNk(x))Nk

= Nm+1qNm+1(x)) +NmrN (qNm(x))) +

m−1∑
k=0

rN (qNk(x))Nk

= Nm+1qNm+1(x)) +

(m+1)−1∑
k=0

rN (qNk(x))Nk.
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For statement 8, observe that if w ∈ Z then

qN (w) =
⌊w
N

⌋
.

Since w 7→
⌊
w
N

⌋
is an increasing function, 8 follows immediately.

Finally, for statement 9 observe that for x ∈ RN since rN (x) ∈ {0, . . . , N−1},
N − 1− rN (x) ∈ {0, . . . , N − 1}, and so

N − 1− rN (x) = rN (N − 1− rN (x)) = rN (−1− x).

Suppose that N is prime and α ≤ β. It is evident from the preceding that
for x ∈ ZN

x =
∑
k≥0

rN (qNk(x))Nk,

rNα(x) =

α−1∑
k=0

rN (qNk(x))Nk,

and
qNα(x) =

∑
k≥α

rN (qNk(x))Nk−α.

A direct derivation gives, for α ≤ β,

qNα(rNβ (x)) = qNα

(
β−1∑
k=0

rN (qNk(x))Nk

)

=

β−1∑
k=α

rN (qNk(x))Nk−α

=

β−α−1∑
k=0

rN (qNk+α(x))Nk

=

β−α−1∑
k=0

rN (qNk(qNα(x)))Nk

= rNβ−α(qNα(x)).

Properties 1, 2, 4, 5, 6, and the last unnumbered property following 9 are
particularly important in proving results found in sections 3.4 and 3.5.

The following proposition establishes another property of the quotient and
remainder functions which is needed to prove a result in section 3.4.

Proposition 2. For all N ∈ N and for all x, y ∈ RN , rN and qN satisfy

qN (x) = qN (x− y) + qN (y + rN (−1− x)).

Furthermore if N is prime then the preceding equation holds for all x, y ∈ ZN .
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Proof. Let N ∈ N and x, y ∈ RN . If N = 1 then then

qN (x) = x = x−y+y+0 = qN (x−y)+qN (y+0) = qN (x−y)+qN (y+rN (−1−x)).

Suppose that N > 1. It follows from Proposition 1 and the fact that for all
w ∈ RN qN (rN (w)) = 0 that

qN (x− y) + qN (y + rN (−1− x)) = qN (x− y +NqN (y + rN (−1− x)))

= qN (x− y + y + rN (−1− x)− rN (y − 1− x))

= qN (x+ rN (−1− x)− rN (−1− (x− y)))

= qN (x+N − 1− rN (x)− (N − 1− rN (x− y)))

= qN (x− rN (x) + rN (x− y))

= qN (NqN (x) + rN (x− y))

= qN (x) + qN (rN (x− y))

= qN (x).

Since the preceding derivation only relied on the fact that N > 1 and x, y were
in the domain of qN and rN it holds when N is prime and RN is replaced by
ZN .

3.2 Digit Recurrences

Let p ∈ N be prime. We will refer to a recurrence relation for the nth p-adic
digit of the result of an arithmetic operation in terms of the p-adic digits of its
inputs as a p-adic digit recurrence relation.

In this section we present a collection of p-adic digit recurrence relations,
one for each arithmetic operation. It is shown how these recurrences can be
converted from equations interpreted in Q or Zp to congruences modulo p.
This generalizes previous work on the subject for the specific case that p = 2
[7].

First note that it is straightforward to obtain polynomials interpolating qp
and rp on

{a ? b | a, b ∈ {0, . . . , p− 1}}

where ? ∈ { + , − , × , /}. In addition, for t ∈ Zp and n ∈ N0, the nth p-adic
digit of t is given by rp(qpn(t)). Therefore given t ∈ Zp and a recurrence for
qpn(t), a recurrence for the nth p-adic digit of t is obtained immediately from
rp(qpn(t)).

Let x, y ∈ Zp, and let (xn)n≥0 and (yn)n≥0 be the p-adic digit vectors
associated to, respectively, x and y. For each m ∈ Z such that m < 0 define
xm = ym = 0.

In order to streamline the presentation of some of the recurrences we will
extend qpm and rpm to allow for negative integers m. For each m ∈ Z if m < 0
then for all t ∈ Zp let

qpm(t) = p−mt ∧ rpm(t) = 0
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Addition:

qpn(x+ y) = qpn(x) + qpn(y) + zn

zn = qp(xn−1 + yn−1) + qp(rp(xn−1 + yn−1) + 1)zn−1

n ≤ 0 =⇒ zn = 0

Subtraction:

qpn(x− y) = qpn(x)− qpn(y) + zn

zn = qp(xn−1 − yn−1)− qp(rp(xn−1 − yn−1)− 1)zn−1

n ≤ 0 =⇒ zn = 0

Multiplication:

qpn(xy) = qpn(x)y + an,n−1

am,n = am,n−1 + bm−n,n + cm,n

bm,n = qpm(y)xn + qp(xnym−1) + dm−1,n

dm,n = qp(rp(xnym−1) + qp(xnym−1)) + qp(rp(xnym−1 + qp(xnym−1)) + 1)dm−1,n

cm,n = qp(rp(am−1,n−1) + rp(bm−1−n,n)) + qp(rp(am−1,n−1 + bm−1−n,n) + 1)cm−1,n

n < 0 =⇒ am,n = 0

n < 0 =⇒ bm,n = 0

n ≤ 0 =⇒ cm,n = 0

n < 0 =⇒ dm,n = 0

b0,n = xny

c0,n = 0

d0,n = 0

Note that for any u, v ∈ {0, . . . , p− 1} qp(uv) ∈ {0, . . . , p− 2}.
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Division:

qpn
(y
x

)
=
z0,n
x

zm,n = zm+1,n−1 − am+1,n−1 + bm,n−1

am,n = qpm(x)rp

(
z0,n
x0

)
+ qp

(
xm−1rp

(
z0,n
x0

))
+ cm−1,n

cm,n = qp

(
rp

(
xmz0,n
x0

)
+ qp

(
xm−1rp

(
z0,n
x0

)))
+ qp

(
rp

(
xmz0,n
x0

+ qp

(
xm−1rp

(
z0,n
x0

)))
+ 1

)
cm−1,n

bm,n = qp(rp(zm,n)− rp(am,n))− qp(rp(zm,n − am,n)− 1)bm−1,n

m ≤ 0 =⇒ bm,n = 0

m ≤ 0 =⇒ cm,n = 0

zm,0 = qpm(y)

where it is assumed that gcd(x0, p) = 1.

We note that the recurrences for addition and subtraction are analogous to
equations describing a binary carry-save adder. The variable zn in the addition
and subtraction recurrences represents the carry to pn, i.e.

zn = qpn(rpn(x)± rpn(y)).

The multiplication recurrence corresponds to a method of multiplication
commonly taught in primary school which is sometimes referred to as long
multiplication. The variable am,n represents the quantity carried to pm from
An =

∑n
k=0[xkp

k]y, am,n = qpm(rpn+1(x)y). In order to calculate am,n we
rewrite An as the sum of two quantities, An = An−1 + xnp

ny, then apply the
addition recurrence. The variable cm,n tracks the carried quantities to pm in
the summation An−1 + xnp

ny while bm,n and dm,n are used in determining the
p-adic expansion of xnp

ny, as it is needed to determine cm,n.
The recurrence for division is based on the following: assuming that x is a

unit in Zp,
y/x = rpn(y/x) + pnzn/x ⇐⇒ zn = xqpn(y/x)

So let zn = xqpn(y/x) then

zn = xqpn(y/x)

= xqp(qpn−1(y/x))

= xqp(zn−1/x).

In the appendix it is shown that

xqp(zn−1/x) = qp(zn−1)− qp(rp(zn−1/x)x);
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so then zn = qp(zn−1)−qp(rp(zn−1/x)x). From this point we let zm,n = qpm(zn)
and then find a recurrence for zm,n. Like multiplication, this involves invoking
the recurrences for addition and subtraction, as well as for quantities of the form
qpm(au) where a ∈ {0, . . . , p− 1} and u ∈ Zp.

Derivations for the presented recurrence relations are rather straightforward,
following from properties of the rp and qp functions given in Proposition 1. For
completeness, an outline of their derivations can be found in appendix A.

Lucas’ Theorem allows us to convert these recurrences to congruences mod-
ulo p due to its implication that for each x ∈ Zp and n ∈ N0,

rp(qpn(x)) = rp

((
x

pn

))
or in other words

qpn(x) ≡
(
x

pn

)
(mod p).

Note that for m ∈ N0 if m ≤ p− 1 then(
x

m

)
≡p

∏m−1
k=0 [x− k]

m!
;

that is, we need not worry about division by zero mod p. Furthermore the
Chu-Vandermonde identity states that for c ∈ N0(

a+ b

c

)
=
∑
n≥0

(
a

n

)(
b

c− n

)

While the Newton series for
(
ab
c

)
implies that for all a, b, c ∈ N0,(

ab

c

)
=
∑
i,j∈N0

(
a

i

)(
b

j

) ∑
k,l∈N0

(−1)i+j−k−l
(
i

k

)(
j

l

)(
kl

c

)
,

noting that for all n and for all m ∈ Z, if m < 0 then
(
n
m

)
= 0. These facts

taken together have useful implications. For example,

qp(rp(x) + rp(y)) ≡p
(

rp(x) + rp(y)

p

)
=

p∑
k=0

(
rp(x)

k

)(
rp(y)

p− k

)

=

p−1∑
k=1

(
rp(x)

k

)(
rp(y)

p− k

)

≡p
p−1∑
k=1

(
x

k

)(
y

p− k

)
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and

qp(rp(x)rp(y)) ≡p
(

rp(x)rp(y)

p

)
=

p−1∑
i=1

p−1∑
j=1

(
rp(x)

i

)(
rp(y)

j

) p−1∑
k=1

p−1∑
l=1

(−1)i+j−k−l
(
i

k

)(
j

l

)(
kl

p

)

≡p
p−1∑
i=1

p−1∑
j=1

(
x

i

)(
y

j

) p−1∑
k=1

p−1∑
l=1

(−1)i+j−k−l
(
i

k

)(
j

l

)(
kl

p

)
.

Example 3.1. Suppose p = 2, then the recurrences for addition and subtraction
can be expressed as the following congruences.

Addition: (
x+ y

2n

)
≡2 xn + yn + zn

zn ≡2 xn−1yn−1 + (xn−1 + yn−1)zn−1.

Subtraction: (
x− y

2n

)
≡2 xn − yn + zn

zn ≡2 (1 + xn−1)yn−1 + (1 + xn−1 + yn−1)zn−1.

Furthermore the recurrence relations for multiplication and division sim-
plify a great deal since the range of r2 is {0, 1}. Notably for all x, y ∈ Z2

and n ∈ N0

q2n(r2(x)y) = r2(x)q2n(y),

q2(r2(x) + r2(y)) = r2(x)r2(y),

q2(r2(x)− r2(y)) = −(1− r2(x))r2(y).

This allows us to express the recurrences for multiplication and division
as the following congruences:

Multiplication: (
xy

2n

)
≡2 xny0 + an,n−1

am,n ≡2 am,n−1 + xnym−n + cm,n

cm,n ≡2 am−1,n−1xnym−1−n + (am−1,n−1 + xnym−1−n)cm−1,n

n < 0 =⇒ am,n ≡2 0

n < 0 =⇒ cm,n ≡2 0;
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Division: (
y/x

2n

)
≡2

z0,n
x

zm,n ≡2 zm+1,n−1 + xm+1z0,n−1 + bm,n−1

bm,n ≡2 xmz0,n(1 + zm,n) + (xmz0,n + 1 + zm,n)bm−1,n

zm,0 ≡2 ym

b0,n ≡2 0.

3.3 Digit Formulae

Before diving into this section it is necessary to introduce some notation. The
symbol ∅ is used to denote both the empty set as well as the empty function
whose codomain will be apparent from the context. For example N0 represents
the singleton containing the empty function with codomain N. Let T be a set
with finite cardinality. A summation over an empty indexing set is taken to
be 0 and a product taken over an empty indexing set is taken to be 1. Let
a, b : T → N0. When a and b are used to describe the indexing set of a
summation or product we will observe the following notational conventions:

ai = a(i) whenever i ∈ T,

a± b = (ai ± bi)i∈T ,

and
|a| =

∑
i∈T

ai where |∅| = 0.

We now show how binomial coefficients can be used to give an explicit de-
scription of the nth p-adic digit of an element z ∈ Zp whenever it is presented
as a series of the form

∑
k≥0 zkp

k where each zk ∈ Zp. Descriptions of solutions
to the p-adic digit recurrence relations follow from this as given x, y ∈ Zp with
associated p-adic digit vectors (xn)n≥0 and (yn)n≥0, we have

x± y =
∑
n≥0

(xn ± yn)pn,

xy =
∑
n≥0

n∑
m=0

xmyn−mp
n.

If x0 6= 0 then we have

y/x =
∑
n≥0

[
n∑

m=0

(
yn−m

∑
l∈Partm

[
(−1)|l|

(
|l|
l

)
x
−1−|l|
0

m∏
k=1

xlkk

])
pn

]
,

where Partm = {l ∈ Nm0 |
∑m
j=1 jlj = m}.
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Theorem 6. If z ∈ Zp, for every k ∈ N0 zk ∈ Zp, and

z =
∑
k≥0

zkp
k

then for all y,N ∈ N0 such that y ≤ pN+1 − 1,(
z

y

)
≡p

∑
i∈N{0,...,N}0∑N
j=0 ijp

j=y

N∏
j=0

(
zj
ij

)

Proof. We use Lucas’ Theorem together with the Chu-Vandermonde identity.
Note that for y,m, n ∈ N0, if n ≥ m then(

z

pm

)
≡p
(∑n

k=0 zkp
k

pm

)
, and(

pnz

pmy

)
≡p
(
pn−mz

y

)
.

The Chu-Vandermonde identity implies(
a1 + a2 + · · ·+ am

c

)
=

∑
n∈Nm−1

0

(
a1
n1

)(
a2
n2

)
. . .

(
am−1
nm−1

)(
am

c− n1 − n2 − · · · − nm−1

)

=
∑
n∈Nm0
|n|=c

m∏
j=1

(
aj
nj

)
,

which further implies that(
z

y

)
=

∑
i∈N{0,...,N}0

|i|=y

N∏
j=0

(
zjp

j

ij

)

≡p
∑

i∈N{0,...,N}0∑N
j=0 ijp

j=y

N∏
j=0

(
zj
ij

)
.

It follows that for each arithmetic operation ?, an associated sequence of
polynomials is given by

((xn)n≥0, (yn)n≥0) 7→


∑

i∈N{0,...,n}0∑n
j=0 ijp

j=pn

n∏
j=0

(
zj
ij

)
n≥0
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where for each n ∈ N0

zn =


xn ± yn ⇐= ? = ±∑n
m=0 xmyn−m ⇐= ? = ×∑n
m=0 xn−m

∑
l∈Partm(−1)|l|

(|l|
l

)
y
−1−|l|
0

∏m
k=1 y

lk
k ⇐= ? = /.

It should be noted that there are other choices of polynomial sequences we can
use. Since one will no doubt be working with congruences modulo p rather than
integer equalities, the exact choice of representative is not all that important.
Regardless, with this we have achieved the first goal of this research project,
which was to provide a method of obtaining an associated sequence of polyno-
mials for each arithmetic operation on Zp, in a manner distinct from simulating
arithmetic algorithms or digital adder and multiplier circuits.

Example 3.2. Take p = 2 and x, y ∈ Z2 with 2-adic digit vectors (xn)n≥0, and
(yn)n≥0. Note that for any (a1, . . . , an) ⊆ {0, 1} and m ∈ N0,(∑n

k=1 ak
m

)
= em(a1, . . . , an) =

∑
0<k1<···<km<n+1

ak1 . . . akm .

We calculate polynomials congruent to the 0th through 3rd p-adic digits of xy.(
xy

1

)
≡2

(
x0y0

1

)
≡2 x0y0(

xy

2

)
≡2

(
x0y0 + 2(x0y1 + x1y0)

2

)
≡2

∑
k0+2k1=2

(
x0y0
k0

)(
x0y1 + x1y0

k1

)
≡2

(
x0y1 + x1y0

1

)
≡2 x0y1 + x1y0(

xy

22

)
≡2

(
x0y0 + 2(x0y1 + x1y0) + 22(x0y2 + x1y1 + x2y0)

22

)
≡2

∑
k0+2k1+22k2=22

(
x0y0
k0

)(
x0y1 + x1y0

k1

)(
x0y2 + x1y1 + x2y0

k2

)

≡2

(
x0y1 + x1y0

2

)
+

(
x0y2 + x1y1 + x2y0

1

)
≡2 x0y1x1y0 + x0y2 + x1y1 + x2y0
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(
xy

23

)
≡2

(
x0y0 + 2(x0y1 + x1y0) + 22(x0y2 + x1y1 + x2y0) + 23(x0y3 + x1y2 + x2y1 + x3y0)

23

)
≡2

∑
k0+2k1+22k2+23k3=23

(
x0y0
k0

)(
x0y1 + x1y0

k1

)(
x0y2 + x1y1 + x2y0

k2

)(
x0y3 + x1y2 + x2y1 + x3y0

k3

)

≡2

(
x0y1 + x1y0

2

)(
x0y2 + x1y1 + x2y0

1

)
+

(
x0y2 + x1y1 + x2y0

2

)
+

(
x0y3 + x1y2 + x2y1 + x3y0

1

)
≡2 x0y1x1y0(x0y2 + x1y1 + x2y0) + x0y2x1y1 + x0y2x2y0 + x1y1x2y0 + x0y3 + x1y2 + x2y1 + x3y0

≡2 x0y1x1y0(y2 + 1 + x2) + x0y2x1y1 + x0y2x2y0 + x1y1x2y0 + x0y3 + x1y2 + x2y1 + x3y0.

With the preceding example in mind, it is clear how the elementary symmet-
ric polynomials are related to sequences of polynomials associated with arith-
metic operations on Zp. If m,n ∈ N0 then

(
n
m

)
= em[(1)nk=1]. The nth p-

adic digit of x ∈ Zp is congruent to
(rpn+1 (x)

pn

)
modulo p and rpn+1(x) ∈ N0.

Therefore the nth p-adic digit of x is congruent to em[(1)Nxk=1] modulo p where
Nx = rpn+1(x). With this relationship established we have now obtained an
answer to the second problem statement of this thesis.

3.4 FACT as a System of Congruences

In this section we give a flexible method of representing FACT as a system of
polynomial function congruences. Within this section p represents an arbitrary
prime.

Lemma 1. Suppose that z ∈ N0, for each n ∈ N0 bn, zn ∈ N0 and zn ≤ bn,
and

z =
∑
n≥0

pnzn.

For each m,n ∈ N0 ∪ {∞} such that m ≤ n let

Zm,n =

n∑
k=m

pk−mzk

and let
Zn+1,n = 0.

For each n ∈ N0 let un denote the largest m ∈ Z such that −1 ≤ m ≤ n and

m∑
k=0

pkbk < pn

where
−1∑
k=0

pkbk = 0.

For each n ∈ N0 if m ∈ Z is such that −1 ≤ m ≤ un then(
z

pn

)
≡p
(
Zm+1,n + qpm+1(rpn(−1− z))

pn−1−m

)
.
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Proof. Suppose that n ∈ N0 and m ∈ Z is such that −1 ≤ un. First notice that
it follows from the definition of un that

qpn(Z0,m) = 0.

It follows from propositions 1 and 2 of section 3.1 that

qpn(z) = qpn(z − pm+1Zm+1,∞) + qpn(pm+1Zm+1,∞ + rpn(−1− z))
= qpn(Z0,m) + qpn(pm+1Zm+1,∞ + rpn(−1− z))
= qpn(pm+1Zm+1,∞ + rpn(−1− z))
= qpn−1−m(qp1+m(pm+1Zm+1,∞ + rpn(−1− z)))
= qpn−1−m(Zm+1,∞ + qp1+m(rpn(−1− z))).

It follows from Lucas’ theorem that(
z

pn

)
≡p qpn(z)

= qpn−1−m(Zm+1,∞ + qp1+m(rpn(−1− z)))

≡p
(
Zm+1,∞ + qp1+m(rpn(−1− z))

pn−1−m

)
≡p
(
Zm+1,n + qp1+m(rpn(−1− z))

pn−1−m

)
.

Assume α ∈ N is relatively prime to p. Let Lα ∈ N and {α0, . . . , αLα} ⊆
{0, . . . , p− 1} be such that

α =

Lα∑
k=0

αkp
k

α0 6= 0 ∧ αLα 6= 0

For each k ∈ Z if k < 0 or k > Lα define αk = 0.

Theorem 7. Suppose x, y, Lx, Ly ∈ N, blogp(x)c ≤ Lx, blogp(y)c ≤ Ly, Lx +
Ly ≥ Lα − 1, z = xy, for each n ∈ N0 bn, zn ∈ N0 and zn ≤ bn, and

z =
∑
n≥0

pnzn =

Lx+Ly+1∑
n=0

pnzn.

For each m,n ∈ N0 such that m ≤ n let

Zm,n =

n∑
k=m

pk−mzk

and let
Zn+1,n = 0.
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For each n ∈ N0 let mn ∈ Z be such that −1 ≤ mn ≤ n and

mn∑
k=0

pkbk < pn

where
−1∑
k=0

pkbk = 0.

With these definitions it follows that α = xy if and only if for all n ∈
{0, . . . , Lx + Ly + 1}

p− 1 ≡p
(
Zmn+1,n + qp1+mn (rpn+1(−1− α))

pn−1−mn

)
.

Proof. Clearly α = xy if and only if for every n ∈ N0

αn ≡p
(
z

pn

)
.

However since Lα ≤ Lx + Ly + 1 and

blogp(xy)c ≤ blogp(x)c+ blogp(y)c+ 1 ≤ Lx + Ly + 1,

it follows that for every n ∈ N0 if n ≥ Lx + Ly + 1 then

αn ≡p 0 ≡p
(
z

pn

)
.

Thus α = xy if and only if for every n ∈ {0, . . . , Lx + Ly + 1},

αn ≡p
(
z

pn

)
.

By Lemma 1, for each n ∈ N0(
z

pn

)
≡p
(
Zmn+1,n + qpmn+1(rpn(−1− z))

pn−1−mn

)
.

Note that for every n ∈ N,

n−1∑
k=0

(p− 1− αk)pk ≡pn −1−
n−1∑
k=0

αkp
k,

and so for every n ∈ N,

rpn(−1− α) =

n−1∑
k=0

(p− 1− αk)pk.
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Suppose n ∈ N and for every m ∈ N0, if m < n then

αm ≡p
(
z

pm

)
.

It follows that rpn(z) = rpn(α) and so

αn ≡p
(
Zmn+1,n + qpmn+1(rpn(−1− α))

pn−1−mn

)
⇐⇒

p− 1 ≡p p− 1− αn +

(
Zmn+1,n + qpmn+1(rpn(−1− α))

pn−1−mn

)
⇐⇒

p− 1 ≡p p− 1− αn + qpn−1−mn (Zmn+1,n + qpmn+1(rpn(−1− α))) ⇐⇒
p− 1 ≡p qpn−1−mn (Zmn+1,n + pn−1−mn(p− 1− αn) + qpmn+1(rpn(−1− α))) ⇐⇒
p− 1 ≡p qpn−1−mn (Zmn+1,n + qpmn+1(rpn+1(−1− α))) ⇐⇒

p− 1 ≡p
(
Zmn+1,n + qpmn+1(rpn+1(−1− α))

pn−1−mn

)
.

Sections 3.2 and 3.3 show that(
Zmn+1,n + qpmn+1(rpn(−1− z))

pn−1−mn

)
is congruent to some polynomial in the xi,yj , and

(
z
pk

)
for k ∈ {0, . . . , n − 1}

and i, j ∈ {0, . . . , n− 1}. Therefore for each n ∈ N substituting αk for
(
z
pk

)
for

each k ∈ {0, . . . , n− 1} in(
Zmn+1,n + qpmn+1(rpn(−1− z))

pn−1−mn

)
is equivalent to doing a sequence of row reductions on the corresponding system
of polynomials. This means the solution set is unchanged.

Example 3.3. Suppose p = 2, Lx = 3, Ly = 4, Lα = 7, and

z0 = x0y0

z1 = x0y1 + x1y0

z2 = x0y2 + x1y1 + x2y0

z3 = x0y3 + x1y2 + x2y1 + x3y0

z4 = x0y4 + x1y3 + x2y2 + x3y1

z5 = x1y4 + x2y3 + x3y2

z6 = x2y4 + x3y3

z7 = x3y4

We take
(mn)8n=0 = (−1, 0, 0, 1, 1, 2, 3, 4, 5),
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(n− 1−mn)8n=0 = (0, 0, 1, 1, 2, 2, 2, 2, 2),

Subtracting 1 from both sides of each congruence in the system given by Theo-
rem 1, it follows that our system can be expressed as

z0 + α0 ≡2 0

z1 + α1 ≡2 0(
z1 + 2z2

2

)
+ (1− a1)z1 + α2 ≡2 0(

z2 + 2z3
2

)
+ (1− a2)z2 + α3 ≡2 0(

z2 + 2z3 + 22z4
22

)
+ (1− α3)

(
z2 + 2z3

2

)
+ (1− α2)z2(1− α3 +

(
z2 + 2z3

2

)
) + α4 ≡2 0(

z3 + 2z4 + 22z5
22

)
+ (1− α4)

(
z3 + 2z4

2

)
+ (1− α3)z3(1− α4 +

(
z3 + 2z4

2

)
) + α5 ≡2 0(

z4 + 2z5 + 22z6
22

)
+ (1− α5)

(
z4 + 2z5

2

)
+ (1− α4)z4(1− α5 +

(
z4 + 2z5

2

)
) + α6 ≡2 0(

z5 + 2z6 + 22z7
22

)
+ (1− α6)

(
z5 + 2z6

2

)
+ (1− α5)z5(1− α6 +

(
z5 + 2z6

2

)
) + α7 ≡2 0(

z6 + 2z7
22

)
+ (1− α7)

(
z6 + 2z7

2

)
+ (1− α6)z6(1− α7 +

(
z6 + 2z7

2

)
) ≡2 0.

Subtracting 1 from both sides of each congruence in the system given in
Theorem 1 and using the recurrence relations for addition and subtraction given
in section 3.2 it follows that for p = 2 and zn =

∑n
k=0 xkyn−k ≤ n+1, our system

is given for suitably chosen mn ≈ n− 1− dlog2(n)e by

αn+

(
Zmn+1,n

2n−1−mn

)
+

n−1−mn∑
k=1

(1 + αn−k)

(
Zmn+1,n−k

2n−1−mn−k

) k−1∏
j=1

[
1 + αn−j +

(
Zmn+1,n−j

2n−1−mn−j

)]
≡2 0,

where for every real number t, dte represents the smallest integer u such that
t ≤ u. Using this system, we can expect n − 1 −mn ≈ dlog2(n)e, and so the

above can be written as a sum of products of the
( Zmn+1,n

2n−1−mn−j

)
with no more

than some multiple of n ≤ 2blog2(α)c terms. However, if the
( Zmn+1,n

2n−1−mn−j

)
are

expanded and written as sums of products of binomial coefficients applied to the∑n
k=0 xkyn−k, then we would expect the number of terms to be subexponential

in log2(α) since the number of binary partitions of a positive integer, n, is

bounded above by 2log2(n)+log2(n)
2/2 and is eventually greater than 2log2(n)

2/2−1

for large enough n [18]. Unless some massive cancellation occurs between terms
in the sum, we would also expect that when the resulting boolean polynomial
is written in algebraic normal form as a sum of monomials in the xi and yj ,
that the number of terms would be subexponential or exponential in n for large
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enough n. But for the same reason, we would also expect this system in ANF
to be much smaller than the system without any reductions applied:

k ∈ N0

(
z

2k

)
+ αk ≡2 0.

Call this system the standard system and call the system given by Theorem 1
with p− 1 subtracted from both sides of each congruence the reduced system.

In the following example, for any {0, 1}-valued variable or quantity t we let
t̄ = 1− t, for each n ∈ N0,

sn =

(
z

2n

)
+ αn,

and

fn = 1 +

(
Zmn+1,n + qp1+mn (rpn+1(−1− α))

pn−1−mn

)
.

Example 3.4. Suppose that Lx = 3, Ly = 4, Lα = blog2(α)c = 7. In the
reduced system we use the following:

(mn)8n=0 = (−1, 0, 0, 1, 1, 2, 3, 4, 5)

and
(n− 1−mn)8n=0 = (0, 0, 1, 1, 2, 2, 2, 2, 2).

Standard

s0 ≡2 α0 + x0y0

s1 ≡2 α1 + x0y1 + x1y0

s2 ≡2 α2 + x0y2 + x1y1 + x2y0 + x0y1x1y0

s3 ≡2 α3 + x0y3 + x1y2 + x2y1 + x3y0 + x0y2x1y1 + x0y2x2y0 + x1y1x2y0 + x0y1x1y0 + x0y1x1y0y2

+ x0y1x1y0x2

s4 ≡2 α4 + x0y4 + x1y3 + x2y2 + x3y1 + x0x1y2y3 + x0x2y1y3 + x0x3y0y3 + x1x2y1y2 + x1x3y0y2

+ x2x3y0y1 + x0x1x3y0y1 + x0x1y0y1y3 + x0x1x2x3y0y1 + x0x1x2y0y1y2 + x0x1x2y0y1y3

+ x0x1x3y0y1y2 + x0x1y0y1y2y3

s5 ≡2 α5 + x1y4 + x2y3 + x3y2 + x0x1y1y2 + x1x2y0y1 + x0x1y2y3 + x1x2y1y2 + x2x3y0y1 + x0x1y3y4

+ x0x2y2y4 + x0x3y1y4 + x1x2y2y3 + x1x3y1y3 + x2x3y1y2 + x0x1x2y0y2 + x0x1x3y0y1 + x0x1x2y1y2

+ x0x1x2y1y3 + x0x1x3y0y3 + x0x2x3y0y2 + x1x2x3y0y1 + x0x1x2y2y3 + x1x2x3y0y2 + x0x2x3y1y3

+ x1x2x3y1y2 + x0x1y0y1y3 + x0x2y0y1y2 + x1x2y0y1y2 + x0x1y1y2y3 + x0x2y0y2y3 + x0x3y0y1y3

+ x1x3y0y1y2 + x0x2y1y2y3 + x2x3y0y1y2 + x1x2y1y2y3 + x1x3y0y2y3 + x0x1y2y3y4 + x0x2y1y3y4

+ x0x3y0y3y4 + x0x1x2x3y0y1 + x0x1x3y0y1y4 + x0x1x2y1y2y4 + x0x1x3y0y2y4 + x0x1x3y1y2y3

+ x0x2x3y0y1y4 + x0x2x3y0y2y3 + x1x2x3y0y1y3 + x0x1y0y1y2y3 + x0x1y0y1y3y4 + x0x1x2x3y0y1y2

+ x0x1x2x3y0y1y4 + x0x1x2y0y1y2y3 + x0x1x2y0y1y2y4 + x0x1x2y0y1y3y4 + x0x1x3y0y1y2y4

+ x0x1y0y1y2y3y4
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s6 ≡2 α6 + x2y4 + x3y3 + x0x1y3y4 + x1x2y2y3 + x2x3y1y2 + x1x2y3y4 + x1x3y2y4 + x2x3y2y3

+ x0x1x2y1y3 + x0x1x3y1y2 + x0x2x3y0y2 + x1x2x3y0y2 + x0x1x2y2y4 + x0x1x3y1y4 + x0x1x3y2y3

+ x0x2x3y1y3 + x0x1x2y3y4 + x1x2x3y1y3 + x0x2x3y2y4 + x1x2x3y2y3 + x0x2y0y2y3 + x1x2y0y1y3

+ x1x3y0y1y2 + x0x1y1y2y4 + x0x2y1y2y3 + x1x2y0y1y4 + x1x3y0y2y3 + x2x3y0y1y3 + x0x2y1y3y4

+ x0x3y1y2y4 + x1x2y1y2y4 + x1x3y1y2y3 + x0x2y2y3y4 + x2x3y1y2y3 + x1x2y2y3y4 + x1x3y1y3y4

+ x0x1x2x3y0y2 + x0x1x2x3y0y3 + x0x1x2x3y1y2 + x0x1x2x3y2y3 + x0x1x2y0y1y3 + x0x1x3y0y1y2

+ x0x1x2y0y2y3 + x0x2x3y0y1y2 + x0x1x3y0y2y3 + x0x2x3y0y1y3 + x0x1x3y1y2y4 + x0x2x3y0y2y4

+ x0x1x2y2y3y4 + x0x2x3y0y3y4 + x1x2x3y0y2y4 + x1x2x3y1y2y3 + x0x2x3y1y3y4 + x0x2y0y1y2y3

+ x0x2y0y1y2y4 + x0x3y0y1y2y3 + x1x2y0y1y2y3 + x1x2y0y1y2y4 + x0x1y1y2y3y4 + x0x2y0y2y3y4

+ x1x3y0y1y2y4 + x2x3y0y1y2y3 + x0x3y0y2y3y4 + x1x2y1y2y3y4 + x1x3y0y2y3y4 + x0x1x2x3y0y1y3

+ x0x1x2x3y0y1y4 + x0x1x2x3y0y2y3 + x0x1x2x3y0y2y4 + x0x1x2x3y1y2y3 + x0x1x2x3y1y2y4

+ x0x1x2y0y1y2y4 + x0x1x3y0y1y2y3 + x0x1x2y0y1y3y4 + x0x2x3y0y1y2y3 + x0x1x2y0y2y3y4

+ x1x2x3y0y1y2y3 + x0x1x2y1y2y3y4 + x0x2x3y0y1y3y4 + x1x2x3y0y1y2y4 + x0x1x3y1y2y3y4

+ x1x2x3y0y1y3y4 + x0x1x2x3y1y2y3y4 + x0x1x2y0y1y2y3y4 + x0x1x3y0y1y2y3y4

+ x0x2x3y0y1y2y3y4 + x0x1x2x3y0y1y2y3y4

s7 ≡2 α7 + x3y4 + x1x2y3y4 + x2x3y2y3 + x2x3y3y4 + x0x1x2y2y4 + x0x1x3y2y3 + x0x2x3y1y3

+ x1x2x3y1y3 + x0x1x3y3y4 + x0x2x3y2y4 + x1x2x3y2y4 + x1x2x3y3y4 + x1x2y0y1y4 + x1x3y0y2y3

+ x2x3y0y1y3 + x0x2y1y3y4 + x1x2y1y2y4 + x1x3y1y2y3 + x0x2y2y3y4 + x1x3y1y3y4 + x2x3y1y2y4

+ x1x3y2y3y4 + x2x3y2y3y4 + x0x1x2x3y0y3 + x0x1x2x3y1y3 + x0x1x2x3y1y4 + x0x1x2x3y2y3

+ x0x1x2x3y3y4 + x0x1x3y0y2y3 + x0x2x3y0y1y3 + x0x1x2y1y2y4 + x0x1x3y1y2y3 + x1x2x3y0y1y3

+ x0x1x2y1y3y4 + x0x1x3y1y2y4 + x0x2x3y1y2y3 + x1x2x3y0y2y3 + x0x1x3y1y3y4 + x0x2x3y1y2y4

+ x1x2x3y2y3y4 + x0x2y0y1y2y4 + x0x3y0y1y2y3 + x1x2y0y1y2y4 + x1x3y0y1y2y3 + x1x2y0y1y3y4

+ x2x3y0y1y2y3 + x0x2y1y2y3y4 + x0x3y0y2y3y4 + x0x3y1y2y3y4 + x1x2y1y2y3y4 + x1x3y0y2y3y4

+ x2x3y0y1y3y4 + x2x3y1y2y3y4 + x0x1x2x3y0y1y4 + x0x1x2x3y0y3y4 + x0x1x2x3y1y3y4

+ x0x1x2x3y2y3y4 + x0x1x2y0y1y2y4 + x0x1x3y0y1y2y4 + x0x2x3y0y1y2y4 + x0x2x3y0y1y3y4

+ x0x2x3y0y2y3y4 + x1x2x3y0y1y3y4 + x0x2x3y1y2y3y4 + x1x2x3y0y2y3y4 + x1x2x3y1y2y3y4

+ x0x2y0y1y2y3y4 + x1x2y0y1y2y3y4 + x1x3y0y1y2y3y4 + x2x3y0y1y2y3y4 + x0x1x2x3y0y1y2y4

+ x0x1x2x3y0y1y3y4 + x0x1x2x3y0y2y3y4 + x0x1x2x3y1y2y3y4 + x0x1x2y0y1y2y3y4

s8 ≡2 x2x3y3y4 + x0x1x3y3y4 + x0x2x3y2y4 + x1x2x3y2y4 + x1x3y1y3y4 + x2x3y1y2y4 + x1x3y2y3y4

+ x0x1x2x3y1y4 + x0x1x2x3y2y4 + x0x1x2x3y3y4 + x0x1x3y1y2y4 + x1x2x3y0y1y4 + x0x1x3y1y3y4

+ x0x2x3y1y2y4 + x0x1x3y2y3y4 + x1x2x3y1y2y4 + x0x2x3y2y3y4 + x1x2x3y1y3y4 + x0x3y0y2y3y4

+ x0x3y1y2y3y4 + x1x3y1y2y3y4 + x2x3y1y2y3y4 + x0x1x2x3y0y1y4 + x0x1x2x3y1y2y4

+ x0x1x3y0y1y2y4 + x0x1x3y0y2y3y4 + x1x2x3y0y1y2y4 + x0x1x3y1y2y3y4 + x0x2x3y0y2y3y4

+ x1x2x3y0y1y3y4 + x0x3y0y1y2y3y4 + x0x1x2x3y0y1y3y4 + x0x1x2x3y0y2y3y4

+ x0x1x2x3y1y2y3y4 + x0x2x3y0y1y2y3y4 + x1x2x3y0y1y2y3y4 + x0x1x2x3y0y1y2y3y4
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Reduced

f0 ≡2 α0 + x0y0

f1 ≡2 α1 + x0y1 + x1y0

f2 ≡2 α2 + x0y2 + x1y1 + x2y0 + x0y1x1y0 + ᾱ1x0y1 + ᾱ1x1y0

f3 ≡2 α3 + x0y3 + x1y2 + x2y1 + x3y0 + ᾱ2x0y2 + ᾱ2x1y1 + ᾱ2x2y0 + x0y2x1y1 + x0y2x2y0 + x1y1x2y0

f4 ≡2 α4 + x0y4 + x1y3 + x2y2 + x3y1 + ᾱ3x0y3 + ᾱ3x1y2 + ᾱ3x2y1 + ᾱ3x3y0 + ᾱ2ᾱ3x0y2 + ᾱ2ᾱ3x1y1

+ ᾱ2ᾱ3x2y0 + ᾱ2x0x1y2 + ᾱ2x1x2y1 + ᾱ2x2x3y0 + ᾱ2x2y0y1 + ᾱ2x1y1y2 + ᾱ2x0y2y3 + x0x1y1y2

+ x1x2y0y1 + x0x1y2y3 + x0x2y1y3 + x0x3y0y3 + x1x2y1y2 + x1x3y0y2 + x2x3y0y1 + ᾱ2x0x1y1y3

+ ᾱ2x0x2y0y3 + ᾱ2x0x2y1y2 + ᾱ2x0x3y0y2 + ᾱ2x1x2y0y2 + ᾱ2x1x3y0y1 + ᾱ3x0x1y1y2

+ ᾱ3x0x2y0y2 + ᾱ3x1x2y0y1 + x0x1x2y0y2 + x0x1x2y1y2 + x0x2x3y0y2 + x1x2x3y0y1 + x0x2y0y1y2

+ x1x2y0y1y2 + x0x1y1y2y3 + x0x2y0y2y3 + x0x1x2y0y1y3 + x0x1x3y0y1y2 + ᾱ2x0x1x2y0y1y2

f5 ≡2 α5 + x1y4 + x2y3 + x3y2 + ᾱ4x0y4 + ᾱ4x1y3 + ᾱ4x2y2 + ᾱ4x3y1 + ᾱ3ᾱ4x0y3 + ᾱ3ᾱ4x1y2 + ᾱ3ᾱ4x2y1

+ ᾱ3ᾱ4x3y0 + ᾱ3x0x1y3 + ᾱ3x1x2y2 + ᾱ3x2x3y1 + ᾱ3x3y0y1 + ᾱ3x2y1y2 + ᾱ3x1y2y3 + ᾱ3x0y3y4

+ x0x1y2y3 + x1x2y1y2 + x2x3y0y1 + x0x1y3y4 + x0x2y2y4 + x0x3y1y4 + x1x2y2y3 + x1x3y1y3

+ x2x3y1y2 + ᾱ3x0x1y2y4 + ᾱ3x0x2y1y4 + ᾱ3x0x2y2y3 + ᾱ3x0x3y0y4 + ᾱ3x0x3y1y3 + ᾱ3x1x2y1y3

+ ᾱ3x1x3y0y3 + ᾱ3x1x3y1y2 + ᾱ3x2x3y0y2 + ᾱ4x0x1y2y3 + ᾱ4x0x2y1y3 + ᾱ4x0x3y0y3 + ᾱ4x1x2y1y2

+ ᾱ4x1x3y0y2 + ᾱ4x2x3y0y1 + x0x1x2y1y3 + x0x1x3y0y3 + x0x1x2y2y3 + x1x2x3y0y2 + x0x2x3y1y3

+ x1x2x3y1y2 + x0x3y0y1y3 + x1x3y0y1y2 + x0x2y1y2y3 + x2x3y0y1y2 + x1x2y1y2y3 + x1x3y0y2y3

+ x0x1y2y3y4 + x0x2y1y3y4 + x0x3y0y3y4 + x0x1x2y1y2y4 + x0x1x3y0y2y4 + x0x1x3y1y2y3

+ x0x2x3y0y1y4 + x0x2x3y0y2y3 + x1x2x3y0y1y3 + ᾱ3x0x1x2y1y2y3 + ᾱ3x0x1x3y0y2y3

+ ᾱ3x0x2x3y0y1y3 + ᾱ3x1x2x3y0y1y2 + x0x1x2x3y0y1y2y3

f6 ≡2 α6 + x2y4 + x3y3 + ᾱ5x1y4 + ᾱ5x2y3 + ᾱ5x3y2 + ᾱ4ᾱ5x0y4 + ᾱ4ᾱ5x1y3 + ᾱ4ᾱ5x2y2 + ᾱ4ᾱ5x3y1

+ ᾱ4x0x1y4 + ᾱ4x1x2y3 + ᾱ4x2x3y2 + ᾱ4x3y1y2 + ᾱ4x2y2y3 + ᾱ4x1y3y4 + x0x1y3y4 + x1x2y2y3

+ x2x3y1y2 + x1x2y3y4 + x1x3y2y4 + x2x3y2y3 + ᾱ4x0x2y3y4 + ᾱ4x0x3y2y4 + ᾱ4x1x2y2y4

+ ᾱ4x1x3y1y4 + ᾱ4x1x3y2y3 + ᾱ4x2x3y1y3 + ᾱ5x0x1y3y4 + ᾱ5x0x2y2y4 + ᾱ5x0x3y1y4

+ ᾱ5x1x2y2y3 + ᾱ5x1x3y1y3 + ᾱ5x2x3y1y2 + x0x1x2y2y4 + x0x1x3y1y4 + x0x1x2y3y4

+ x1x2x3y1y3 + x0x2x3y2y4 + x1x2x3y2y3 + x0x3y1y2y4 + x1x3y1y2y3 + x0x2y2y3y4

+ x2x3y1y2y3 + x1x2y2y3y4 + x1x3y1y3y4 + x0x1x3y2y3y4 + x0x2x3y1y3y4 + x1x2x3y1y2y4

+ ᾱ4x0x1x2y2y3y4 + ᾱ4x0x1x3y1y3y4 + ᾱ4x0x2x3y1y2y4 + ᾱ4x1x2x3y1y2y3 + x0x1x2x3y1y2y3y4

f7 ≡2 α7 + x3y4 + ᾱ6x2y4 + ᾱ6x3y3 + ᾱ5ᾱ6x1y4 + ᾱ5ᾱ6x2y3 + ᾱ5ᾱ6x3y2 + ᾱ5x1x2y4 + ᾱ5x2x3y3

+ ᾱ5x3y2y3 + ᾱ5x2y3y4 + x1x2y3y4 + x2x3y2y3 + x2x3y3y4 + ᾱ5x1x3y3y4 + ᾱ5x2x3y2y4 + ᾱ6x1x2y3y4

+ ᾱ6x1x3y2y4 + ᾱ6x2x3y2y3 + x1x2x3y2y4 + x1x2x3y3y4 + x1x3y2y3y4 + x2x3y2y3y4 + ᾱ5x1x2x3y2y3y4

f8 ≡2 ᾱ7x3y4 + ᾱ6ᾱ7x2y4 + ᾱ6ᾱ7x3y3 + ᾱ6x2x3y4 + ᾱ6x3y3y4 + x2x3y3y4 + ᾱ7x2x3y3y4

As can be seen, it appears that the standard and reduced systems get very large
very quickly with increasing min(Lx, Ly, Lα) when each boolean function in each
system is expressed in algebraic normal form (ANF). For each k ∈ {0, . . . , 8}
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let s̃k denote the number of monomials appearing on the right hand side of the
congruence with sk on the left hand side in the standard system above and let
f̃k denote the number of monomials appearing on the right hand side of the
congruence with fk on the left hand side in the reduced system above. Using
this notation we have

(s̃0, . . . , s̃8) = (2, 3, 5, 11, 18, 57, 88, 76, 37)

and
(f̃0, . . . , f̃8) = (2, 3, 7, 11, 46, 69, 54, 24, 7).

The number of monomials in the algebraic normal form (ANF) of a boolean
function is roughly proportional to its size when stored in a computer as the
list of the monomials appearing in the sum defining its algebraic normal form.
Therefore the sum total s̃0 + · · ·+ s̃7 = 297 is a rough estimate of the size of the
standard system when each function in it is in ANF. Similarly f̃0+· · ·+f̃7 = 223
is a rough estimate of the size of the reduced system when each function in it is
in ANF. Therefore, in this case and using this notion of size, the reduced system
is smaller than the standard system.

3.5 FACT as a system of OBDDs

In this section we prove that each boolean polynomial in the system resulting
from Theorem 1 when p = 2 can be represented by an ordered binary decision
diagram (OBDD) with size less than 20.25 log2(α)3 + 16.5 log2(α)2 + 6 log2(α).
Furthermore we prove that there is an alternative system of boolean equations
whose solutions correspond to nontrivial factorizations of α such that there
exists a C > 0 such that, for any order C on the variables in the system, every
function in the system can be represented by a C-OBDD (an OBDD using total
order C) with size less than C log2(log2(α))2 log2(α)4.

Let α ∈ N with α > 1. Define Lα = blog2(α)c and choose Lx, Ly ∈ N such
that

Lα − 1 ≤ Lx + Ly ≤
3

2
Lα − 1.

For each k ∈ N0 let xk and yk be boolean variables and let αk = r2(q2k(α)).
For each n ∈ N0 let un be the largest integer m such that −1 ≤ m ≤ n and

m∑
k=0

2k(1 + k) < 2n.

Since
m∑
k=0

2k(1 + k) = m2m+1 + 1,

we have for n ∈ N
n− 1− log2(n) ≤ un ≤ n− 1.

40



Let
x =

∑
k≥0

2kxk

and
y =

∑
k≥0

2kyk.

For each n ∈ N let<n denote the partial order on the variables {y0, . . . , yn, x0, . . . , xn},

yn <n yn−1 <n · · · <n y2+un <n y1+un <n
x0 <n yun <n x1 <n yun−1 <n x2 <n yun−2 <n · · · <n xun−2 <n y2 <n xun−1 <n y1 <n xun <n y0 <n
xun+1 <n xun+2 <n · · · <n xn−1 <n xn.

In other words the first n − un variables in the order are yn . . . y1+un , the last
n− un are xun+1 . . . xn, and the rest of the variables composing the middle are
alternating between xk and yun−k.

The strategy we will employ to prove the following theorem is based on the
following observation: if f = f(v1, . . . , vm) is a boolean function,

f(v1, . . . , vm) = g(h(v1, . . . , vl), vl+1, . . . , vm),

and the image of h is contained in a set with cardinality k ∈ N then there are
at most k nodes with label vl+1 in the smallest OBDD for f which uses order
v1 < v2 < · · · < vm. The idea is to use functional decomposition in order to
bound the number of subfunctions resulting from assigning constants to the first
l variables (with respect to the order we are using) in the function for which we
are building the OBDD. For example, suppose m = 5 and

f(v1, v2, v3, v4, v5) = r2(r3(v1 + v2 + v3 + v4) + v5).

Let g : {0, 1, 2} × {0, 1} → {0, 1} be defined by

g(t1, t2) = r2(t1 + t2),

and let h : {0, 1}4 → {0, 1, 2} be defined by

h(v1, v2, v3, v4) = r3(v1 + v2 + v3 + v4).

It follows that

f(v1, v2, v3, v4, v5) = g(h(v1, v2, v3, v4), v5),

and so there are at most 3 nodes with label v5 in the smallest OBDD for f using
order v1 < v2 < v3 < v4 < v5.

Theorem 8. For each n ∈ N the boolean function

r2 q2n

r2n+1(−1− α) +

n∑
k=1+un

2k
k∑
j=0

xjyk−j
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has an OBDD using ordering <n with size at most

−1

3
+ 4n+

(
7 +

1

3

)
n2 + 6n3

.

Proof. Let
A = q21+un (r2n+1(−1− α)),

and for each m ∈ {0, . . . , n} let

sm = q2m

21+unA+

m−1∑
j=0

xj

n∑
k=max(j,1+un)

2kyk−j


and

s′m = r21+n−m(sm)

where
s0 = s′0 = 21+unA.

First note that

r2

q2n

r2n(−1− α) +

n∑
k=1+un

2k
k∑
j=0

xjyk−j

 = r2

q2n

21+unA+

n∑
k=1+un

2k
k∑
j=0

xjyk−j


= r2(y0xn + s′n).

If m ∈ {0, . . . , n} then

sn = q2n

21+unA+

n−1∑
j=0

xj

n∑
k=max(j,1+un)

2kyk−j


= q2n−m

q2m

n−1∑
j=m

xj n∑
k=max(j,1+un)

2kyk−j

+ 21+unA+

m−1∑
j=0

xj

n∑
k=max(j,1+un)

2kyk−j


= q2n−m

n−1∑
j=m

xj n∑
k=max(j,1+un)

2k−myk−j

+ q2m

21+unA+

m−1∑
j=0

xj

n∑
k=max(j,1+un)

2kyk−j


= q2n−m

n−1∑
j=m

xj n∑
k=max(j,1+un)

2k−myk−j

+ sm

 ,

where if m = n the summation from m to n− 1 is defined to be 0. This implies
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that for m ∈ {0, . . . , n}, we have

s′n = r2

q2n−m

n−1∑
j=m

xj n∑
k=max(j,1+un)

2k−myk−j

+ sm


= q2n−m

r21+n−m

n−1∑
j=m

xj n∑
k=max(j,1+un)

2k−myk−j

+ sm


= q2n−m

r21+n−m

n−1∑
j=m

xj n∑
k=max(j,1+un)

2k−myk−j

+ s′m


= r2

q2n−m

n−1∑
j=m

xj n∑
k=max(j,1+un)

2k−myk−j

+ s′m

 .

Additionally, since for N, k, j, t ∈ Z with 0 ≤ j ≤ k and 0 < N , we have

rNk(N jt) = N jrNk−j (t).

We also have

s′m = q2m

21+unr2n−un

m−1∑
j=0

xj n∑
k=max(j,1+un)

[2k−1−unyk−j ]

+A

 .

Hence every evaluation of s′m is contained in

{q2m(21+unk) | k ∈ {0, . . . , 2n−un − 1}},

a set with cardinality 2n−un ≤ 2n.
Using the relation between s′n and s′m and the upper bound on the cardinality

of the image of s′m we will prove that B, the <n-OBDD with minimum size for
r2(y0xn + s′n), uses at most O(n3) nodes. For each i ∈ N and OBDD C, let
level i of C be the set of nodes in C with variable label the ith highest ranked
variable in the ordering for C.

Suppose g = g(v1, . . . , vi) is a boolean function in i variables and σ is a total
order on v1, . . . , vi. For j ∈ {1, . . . , i} there are 2j binary strings of length j.
This means that there are at most 2j distinct subfunctions of g that can be
obtained by assigning zeroes and ones to the first j variables in the linear order
σ. It is also clear that g is the only subfunction of g that can be obtained by
not assigning any constants to any of the variables of g. Thus the first j levels
in the smallest σ-OBDD for g contain at most 2j − 1 nodes. It follows that the
first n− un + 1 levels of B have at most 2n−un+1 − 1 nodes.

Let f = r2(y0xn + s′n) and for each m ∈ {0, . . . , n} let

gm : {0, 1}2(n−m+1) ×N0 → {0, 1}
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be the {0, 1}-valued function defined by

gm(xm, . . . , xn, y0, y1, . . . , yn−m, t) =

r2

y0xn + q2n−m

n−1∑
j=m

xj n∑
k=max(j,1+un)

2k−myk−j

+ t

 .

Due to the previously established fact that for m ∈ {0, . . . , n}, we have

s′n = r2

q2n−m

n−1∑
j=m

xj n∑
k=max(j,1+un)

2k−myk−j

+ s′m

 ,

it follows that, for m ∈ {0, . . . , n},

f = gm(xm, . . . , xn, y0, y1, . . . , yn−m, s
′
m).

Suppose m ∈ {1, . . . , 1 + un}. We can write gm as

h(xm, . . . , xn, y0, . . . , y1+un−m, (y2+un−m, . . . , yn−m, s
′
m))

for some {0, 1}-valued function h, where if 2 + un = 1 + n then

(y2+un−m, . . . , yn−m, s
′
m) = (s′m).

Since s′m is a function of x0, . . . , xm−1, y2+un−m, . . . , yn, the function

(y2+un−m, . . . , yn−m, s
′
m)

is in the variables less than or equal to xm−1 with respect to the order <n, and
since s′m has image a subset of a set with cardinality 2n−un , it has image a set
with cardinality at most

2n−m−(2+un−m)+1 × 2n−un = 22(n−un)−1.

Hence there are at most 22(n−un)−1 nodes with label y1+un−m in B. Further-
more, xm is the successor of y1+un−m with respect to the order <n, and since
each node in B has at most 2 edges leaving it, it follows that there are at most
twice as many nodes with label xm as there are nodes with label y1+un−m in
B. Therefore, there are at most 22(n−un) nodes with label xm in B.

Suppose that m ∈ {2 + un, . . . , n}. Now s′m is a function in the variables

x0, . . . , xm−1, y0, . . . , yn.

We can write gm as

h(xm, . . . , xn, (y0, . . . , yn−m, s
′
m))

for some {0, 1}-valued function h. The function (y0, . . . , yn−m, s
′
m) is in the

variables less than or equal to xm−1 with respect to <n and since s′m has image
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a set with cardinality at most 2n−m+1 (since s′m = r2n−m+1(sm)), its image is a
set with cardinality at most

2n−m+1 × 2n−m+1 = 22(n−m+1).

Since 2 + un ≤ m, the successor of xm−1 is xm and so there are at most
22n−m−un+1 nodes with label xm in B.

Finally, there are at most two terminal nodes in B (since it’s possible that
B represents a constant function, in which case it would just consist of a single
terminal node). Thus, our upper bound on the size of B is equal to the number
of nodes in a full binary tree for the first n− un + 1 levels plus the bounds just
discussed for the rest of the levels labeled by variables plus two terminal nodes.
Hence an upper bound on the size of B is

2 + 2n−un+1 − 1 +

1+un∑
k=1

(22(n−un)−1 + 22(n−un)) +

n∑
k=2+un

22(1+n−k) =

1 + 2n−un+1 + 3(1 + un)22(n−un)−1 +

n−1−un∑
k=1

22k =

1 + 2n−un+1 + 3(1 + un)22(n−un)−1 +
22(n−un) − 22

3
=

−1

3
+ 2n−un+1 +

(
3(1 + un) +

2

3

)
22(n−un)−1 ≤

−1

3
+ 4n+

(
11

3
+ 3n

)
2n2 =

−1

3
+ 4n+

(
7 +

1

3

)
n2 + 6n3.

For the case when n = 0, we are looking at an OBDD for the function
r2(y0x0 + α). It’s easy to see that regardless of the variable ordering, this
function has an OBDD of size 4.

Now, if we are looking for a nontrivial factorization of α, then without loss
of generality we can, for each k > Lα/2, assign the value of 0 to xk and, for
each k > Lα − 1, assign the value of 0 to yk, because we require both x and y
be strictly less than α and one of x and y has to be less than or equal to

√
α.

With these assignments, the OBDD corresponding to the order <n derived in
the theorem can be used to obtain a new OBDD corresponding to <n, which is
either equal to the old one, or has size strictly less (if a node v has label t and
t was assigned 0 then remove v and redirect the old edges incident to v to the
node which was incident from the 0 edge of v). Our system corresponding to
the factorization of α is that obtained from Theorem 7 with Lx = bLα/2c and
Ly = Lα − 1. Since Lα ≥ 1 and we deal with n at most (3/2)Lα, the largest
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any OBDD could be in our system is

−1

3
+ 4

(
3

2
Lα

)
+

(
7 +

1

3

)(
3

2
Lα

)2

+ 6

(
3

2
Lα

)3

=

−1

3
+ 6Lα +

(
16 +

1

2

)
L2
α +

(
20 +

1

4

)
L3
α <

20.25L3
α + 16.5L2

α + 6Lα.

It should be mentioned that the s′m functions used in the proof of Theorem
8 satisfy the recurrence

s′m = r21+n−m

q2

xm−1 n∑
k=max(m−1,1+un)

[2k−(m−1)yk−(m−1)] + s′m−1

 .

This means, for n ∈ N, we can efficiently build a <n-OBDD for r2(y0xn + s′n)
with size at most

−1

3
+ 4n+

(
7 +

1

3

)
n2 + 6n3.

There is an alternative way of representing FACT as a system of OBDDs in
variables corresponding to the binary digits of x and y and in which each OBDD
uses the same linear order and has size bounded by O(log2(log2(α)) log2(α)).
What we trade for this is that all but 1 boolean function in the system is depen-
dent on every variable (assuming the system is built exactly as it is presented
here). For each positive integer n let pn denote the nth largest prime, i.e. p1 = 2,
p2 = 3, p3 = 5, etc... Let v be the smallest positive integer such that

(21+Lx − 1)(21+Ly − 1) <

v∏
k=1

[pk].

Since
(21+Lx − 1)(21+Ly − 1) < 2α3/2

and

2v ≤
v∏
k=1

[pk],

we have

v ≤ 1 +
3

2
log2(α).

A result by Rosser and Schoenfeld [19] states that for 6 ≤ n,

pn < n(ln(n) + ln(ln(n))).

With this result it’s easy to see that for α ≥ 4 there is a constant c > 0,
independent of α such that

pv ≤ c log2(log2(α)) log2(α).
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To be more specific, assuming that α ≥ 4 so that log2(α) ≥ 2, by checking those
cases when v ≤ 5, it’s easy to verify that

pv < 15 log2(log2(α)) log2(α).

For each k ∈ N, let

fk(x, y) = δ0(rpk(xy − α)) =

{
1 if xy ≡ α (mod pk)

0 if xy 6≡ α (mod pk)
.

Each fk is a boolean function and furthermore

fk(x, y) = fk(rpk(x), rpk(y)).

Assume that Lx = bLα/2c and Ly = Lα − 1. For every k ∈ N0 if k > Lx then
assign the value 0 to xk and if k > Ly assign the value 0 to yk. It follows from
the Chinese remainder theorem that the solutions to the system

f1 = 1

...

fv = 1

are precisely those pairs of positive integers (x, y) such that x ≤ y < α and
xy = α.

Theorem 9. For each n ∈ {1, . . . , v} for any linear order on {x0, . . . , xLx , y0, . . . , yLy}
there is an OBDD using that order representing fn with size strictly less than

p2n(1 + Lx)(1 + Ly).

Proof. Suppose n ∈ {1, . . . , v} and C is a linear order on {x0, . . . , xLx , y0, . . . , yLy}.
Let B be the smallest OBDD for fn using C.

Suppose that t is a non-terminal node in B. If a and b are two paths from the
root of B to t then the partial evaluation of fn at the assignment corresponding
to a is equal to the partial evaluation of fn at the assignment corresponding to
b. Since B is the smallest possible C-OBDD for fn, it is easy to see that the
number of nodes with the same label as t is equal to the number of distinct
functions resulting from the partial evaluation of fn at an assignment of values
to those variables less than the label of t with respect to C. Let x′ be the sum
over all the 2ixi making up x such that xi is less than the label of t with respect
to C, and let x′′ be the rest of the sum making up x. Let y′ be the sum over all
the 2iyi making up y such that yi is less than the label of t with respect to C,
and let y′′ be the rest of the sum making up y. Then

fn(x, y) = fn(rpn(x), rpn(y))

= fn(rpn(x′ + x′′), rpn(y′ + y′′))

= fn(rpn(rpn(x′) + x′′), rpn(rpn(y′) + y′′)).
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The size of the set {0, . . . , pn − 1}2 is p2n, and so there are at most p2n distinct
functions resulting from the partial evaluation of fn at an assignment of values
to those variables less than the label of t with respect to C. Therefore there are
at most p2n nodes with the same label as t in B.

Since t was an arbitrary non-terminal node, it follows that for each variable
there are at most p2n nodes with that label in B. However there is only 1
node with the label of the smallest variable with respect to C, the root of B.
Furthermore there are 2 terminal nodes in B, and so the total number of nodes
in B is at most

p2n((1 + Lx)(1 + Ly)− 1) + 1 + 2 = p2n(1 + Lx)(1 + Ly)− p2n + 3

< p2n(1 + Lx)(1 + Ly).

It follows from Theorem 9 that for α ≥ 4, regardless of what order we use,
every OBDD in the system obtained using the Chinese remainder theorem will
have size less than

p2v(1 + Lx)(1 + Ly) ≤ C log2(log2(α))2 log2(α)4

for some fixed C > 0.
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4 Open questions and directions for future work

4.1 Multiple-valued decision diagrams

By allowing more than two types of edges, more than two edges per node, and
more than two terminal node labels, binary decision diagrams can be general-
ized to multiple-valued decision diagrams (MDD). An MDD is a labeled rooted
directed acyclic graph where each node has finite number of edges leaving it,
each with a different label. Nodes with outdegree greater than 0 are called non-
terminal, while those with outdegree 0 are called terminal. The set of labels of
non-terminal nodes are disjoint from the set of labels of terminal nodes. If every
path from the root of an MDD to a terminal node respects a linear order on
the non-terminal node labels then the MDD is called an ordered multiple-valued
decision diagram (OMDD).

In the same way that BDDs can be used to represent boolean functions,
MDDs can be used to represent discrete functions with finite domain and codomain.

Example 4.1.

f : {0, 1, 2} → {0, 1, 2}, f(x) = 1 + x mod 3.

x

1

2

0

0

1

2

Using OMDDs it should be possible to generalize theorems 8 and 9 to an
arbitrary prime p in place of 2 and an OMDD with every non-terminal node
having out-degree p with edges labeled by 0, . . . , p− 1 and with terminal nodes
labeled by a subset of {0, . . . , p− 1} in place of BDDs.

For each i ∈ N let pi denote the ith largest prime. It follows from the
Chinese remainder theorem that for every nonnegative integer x if

x ≤ −1 +

n∏
i=1

pi

then x can be uniquely written in the form

n∑
i=1

xi ∏
j∈{1,...,n}\{i}

pj

− γ n∏
j=1

pj

where γ ∈ N0 and for each i ∈ {1, . . . , n} xi ∈ {0, . . . , pi − 1}. This is a
special case of the residue numeral system. Using the residue numeral system
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it should be possible to prove that the integer factorization problem for large
enough α ∈ N can represented as a small system of discrete functions with
each function having a small OMDD representation, whereby ‘small’ we mean
bounded by a power of log(α).

4.2 Reduced boolean system

For each n ∈ N0, let gn be the boolean function

r2 q2n

r2n+1(−1− α) +

n∑
k=1+un

2k
k∑
j=0

xjyk−j

 .

Using the orderings <n as defined in the previous section, if un+1 = un then
using ordering <n+1 for gn results in the same OBDD as constructed in the
proof of Theorem 7 and so typical OBDD manipulation algorithms give us an
upper bound of the product of the sizes of the OBBDs for gn and gn+1 for the
OBDD gngn+1, which in turn gives an upper bound of O(L6

α). If un+1 6= un
then un+1 = un + 1 and <n extended to include yn+1 < yn and xn < xn+1 can
be transformed into <n+1 or vice versa by un+2 transpositions, all of which are
transpositions occuring between x labels and y labels within the x, y alternating
section of the order. Since in an OBDD transposition is a local operation any
change in the number of nodes in the OBDD due to an order transposition will
only change the number of nodes in the transposed levels. Since each level of
each OBDD is at most 4(n+ 1)2, the number of nodes in the diagram increases
by at most c(n+ 1)2 where c is a fixed positive integer. So the size of one of the
OBDDs may increase by at most (2 + un)c(n + 1)2 ≤ c(n + 2)(n + 1)2, which
means both diagrams are still cubic in n and so their product will still be upper
bounded by a constant times L6

α. This means it’s possible to build an OBDD
for the conjunction of the gns by way of starting with gN , with N = Lx+Ly+1,
then building an OBDD for gNgN−1, then gNgN−1gN−2, and so on, where at
each step the size of the resulting product OBDD is bounded by the size of
the previous product OBDD and cL3

α for some fixed c > 0. If the number of
positive integers dividing α is small (e.g. α is the product of 2 primes) then we
also know that the conjunction of every OBDD in the system will be small. It
is unknown how much expression swell will come into play.

For p = 2, three other possible topics for future study are

1. Compare other normal form representations besides BDDs for the reduced
system to the standard system.

2. Compare the performance of some CNF SAT solvers on CNF SAT instances
obtained from the reduced system to those obtained from the standard
system.

3. Look for further row reductions which can be applied to the reduced sys-
tem.
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A Appendix

In addition to Proposition 1, the derivations for the p-adic digit recurrences
presented in section 3.2 use the following two facts. First, for each N ∈ N the
restriction of qN to Z is increasing; therefore for all N ∈ N \ {1} and x, y in the
domain of rN and qN :

0 ≤ rN (x) + rN (y) ≤ N +N − 2
0 ≤ qN (rN (x) + rN (y)) ≤ 1

−(N − 1) ≤ rN (x)− rN (y) ≤ N − 1
−1 ≤ qN (rN (x)− rN (y)) ≤ 0

0 ≤ rN (x)rN (y) ≤ N(N − 2) + 1
0 ≤ qN (rN (x)rN (y)) ≤ N − 2.

Second, if R is a commutative ring with unity 1R and additive identity 0R,
g : R→ R, and a ∈ {0R, 1R} then

g(a) = (1R − a)g(0R) + aRg(1R) = g(0R) + (g(1R)− g(0R))a

Derivation for Addition:

qpn(x+ y) = qpn(x) + qpn(y) + qpn(rpn(x) + rpn(y))

qpn(rpn(x) + rpn(y)) = qp[qpn−1(rpn(x) + rpn(y))]

= qp[qpn−1(rpn(x)) + qpn−1(rpn(y)) + qpn−1(rpn−1(rpn(x)) + rpn−1(rpn(y)))]

= qp[rp(qpn−1(x)) + rp(qpn−1(y)) + qpn−1(rpn−1(x) + rpn−1(y))]

xn = rp(qpn(x))

yn = rp(qpn(y))

zn = qpn(rpn(x) + rpn(y))

zn ∈ {0, 1}
zn = qp(xn−1 + yn−1 + zn−1)

= (1− zn−1)qp(xn−1 + yn−1) + zn−1qp(xn−1 + yn−1 + 1)

= qp(xn−1 + yn−1) + zn−1(qp(xn−1 + yn−1 + 1)− qp(xn−1 + yn−1))

= qp(xn−1 + yn−1) + zn−1qp(rp(xn−1 + yn−1) + 1).
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Derivation for Subtraction:

qpn(x− y) = qpn(x)− qpn(y) + qpn(rpn(x)− rpn(y))

qpn(rpn(x)− rpn(y)) = qp[qpn−1(rpn(x)− rpn(y))]

= qp[qpn−1(rpn(x))− qpn−1(rpn(y)) + qpn−1(rpn−1(rpn(x))− rpn−1(rpn(y)))]

= qp[rp(qpn−1(x))− rp(qpn−1(y)) + qpn−1(rpn−1(x)− rpn−1(y))]

xn = rp(qpn(x))

yn = rp(qpn(y))

zn = qpn(rpn(x)− rpn(y))

−zn ∈ {0, 1}
zn = qp(xn−1 − yn−1 − (−zn−1))

= (1 + zn−1)qp(xn−1 − yn−1)− zn−1qp(xn−1 − yn−1 − 1)

= qp(xn−1 − yn−1)− zn−1(qp(xn−1 − yn−1 − 1)− qp(xn−1 − yn−1))

= qp(xn−1 − yn−1)− zn−1qp(rp(xn−1 − yn−1)− 1).

Derivation for Multiplication:

am,n = qpm(rpn+1(x)y)

bm,n = qpm(xny)

cm,n = qpm(rpm(rpn(x)y) + rpm(pnxny))

dm,n = qp(rp(xnym) + qpm(xnrpm(y)))

qpn(xy) = qpn(x)y + qpn(rpn(x)y)

= qpn(x)y + an,n−1

am,n = qpm(rpn+1(x)y)

= qpm((rpn(x) + xnp
n)y)

= qpm(rpn(x)y + xnp
ny)

= qpm(rpn(x)y) + qpm(xnp
ny) + qpm(rpm(rpn(x)y) + rpm(xnp

ny))

= qpm(rpn(x)y) + qpm−n(xny) + qpm(rpm(rpn(x)y) + rpm(xnp
ny))

= am,n−1 + bm−n,n + cm,n.

The recurrence for cm,n follows immediately from the derivation for the
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recurrence for addition. For bm,n we have

bm,n = qpm(xny)

= xnqpm(y) + qpm(xnrpm(y))

qpm(xnrpm(y)) = qp[qpm−1(xnrpm(y))]

= qp[xnqpm−1(rpm(y)) + qpm−1(xnrpm−1(rpm(y)))]

= qp[xnrp(qpm−1(y)) + qpm−1(xnrpm−1(y))]

= qp[xnym−1 + qpm−1(xnrpm−1(y))]

= qp(xnym−1) + qp[rp(xnym−1) + qpm−1(xnrpm−1(y))]

= qp(xnym−1) + dm−1,n

bm,n = xnqpm(y) + qp(xnym−1) + dm−1,n.

Finally for dm,n note that xnrpm(y) ≤ (p−1)(pm−1) and so qpm(xnrpm(y)) ≤
p− 2. Therefore it follows that dm,n ∈ {0, 1} and so,

dm,n = qp[rp(xnym) + qpm(xnrpm(y))]

= qp(rp(xnym) + qp(xnym−1) + dm−1,n)

= (1− dm−1,n)qp(rp(xnym) + qp(xnym−1)) + dm,nqp(rp(xnym) + qp(xnym−1) + 1)

= qp(rp(xnym) + qp(xnym−1))

+ dm,n[qp(rp(xnym) + qp(xnym−1) + 1)− qp(rp(xnym) + qp(xnym−1))]

= qp(rp(xnym) + qp(xnym−1)) + dm,nqp(rp(xnym + qp(xnym−1)) + 1)

Derivation for Division:

y

x
= rp

(y
x

)
+ p

y − xrp
(
y
x

)
px

= rp

(y
x

)
+ p

qp
(
y − xrp

(
y
x

))
x

= rp

(y
x

)
+ pqp

(y
x

)
, and so

qp

(y
x

)
=

qp
(
y − xrp

(
y
x

))
x

.

We use the preceding identity to derive the recurrence. For each n ∈ N0

let
dn = xqpn

(y
x

)
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Then for n > 0

dn = xqpn
(y
x

)
= xqp

[
qpn−1

(y
x

)]
= xqp

(
dn−1
x

)
= xqp

(
dn−1
x

)

= x
qp

(
dn−1 − xrp

(
dn−1

x

))
x

= qp

(
dn−1 − xrp

(
dn−1
x

))
= qp (dn−1)− qp

(
xrp

(
dn−1
x

))
+ qp

(
rp(dn−1)− rp

[
xrp

(
dn−1
x

)])
= qp (dn−1)− qp

(
xrp

(
dn−1
x

))
+ qp

(
rp(dn−1)− rp

(
x
dn−1
x

))
= qp (dn−1)− qp

(
xrp

(
dn−1
x

))
.

For each m,n ∈ N0 let

zm,n = qpm(dn),

am,n = qpm

(
xrp

(
z0,n
x0

))
,

bm,n = qpm(rpm(z1,n)− rpm(a1,n)), and

cm,n = qp

(
rp

(
xmz0,n
x0

)
+ qpm

(
rpm(x)rp

[
z0,n
x0

]))
.

Then for n > 0 the desired recurrences follow from the recurrences already
derived for addition, subtraction, and multiplication. The recurrence for
am,n is derived in the same way as was done for the previous bm,n in the
derivation for multiplication.
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