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ABSTRACT

In this experimental investigation, the effects of the speed of
rotation of the cqndenser surface and the overall temp;arature difference
between the coolant and the vapour (AT) on the transfer of heat from the
vapour to the cooled surface, were studied. It was found that the heat

transfer coefficient (hp) was not affected at low rotational speedé

(Fr < 5). For Fr > 5, the heat trénsfer coefficient increased by 400%
from its stationary value for AT = 180°F and by 280% for AT = 110°F.
Also at AT = 110°F, the heat fransfer coefficient experienced a decline
for Fr > 68. Two distinet regimes were observed in the relationship
between Nusselt number and Weber number. For We < 500, it was found

that Nusselt number was a constant whereas for We > 500, the Nusselt

nunber increased.

iii
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NOMENCLATURE

A Condenser surface area (ft2)
cp Specific heat of condensate (Btﬁ/ib.°F)
Dos Di External and internal diameters of the condenser tube (ft.)
a | Distance from root of test section (in.)
. F Dimensionless factor to allow for
variation in tube temperature
Fr Froude number (Row2/g) ' L
g Gravitational constant (ft/hr2)
G - Condensate mass velocity (= 60 mw) (1b/br. £t.)
: o
by, by focal and mean heat transfer coefficients (Btu/hr. £t2°F)
hrg . Enthalpy of evaporation (Btu/1lb)
ke Thermal conductivity of condensate (Btu/hr. £t.°F)
kp ‘ Thermal conductivity of water at atmospheric )
conditions (Btu/hr. £t.°F)
my Cooling water flow rate (1b/min.)
my Steam flow rate (ozs/min.)

Nug, Nu, < Nu > ZIocal, mean and average value of Nusselt number (hDo/kf)

Nup Nusselt number (hpDs/2kp)
Pr Prandtl number (Cpl-l.f/kf)
Qv V Heat flux based on cooling water measurements (B’cu/hr.)
Ro kExternal tubé radius (ft.) |
Re Reynolds number (4G/ue)
Revy Reynolds number (VmyDo/ve)
Te - Mean film temperature (= Tgp + Ts)/2 (°F)
viii
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Ts

Tol’ To2s --- To10

Toa

4Ts

Tobs Tof
ATop

We

He
ve

Pr

Steam saturation temperature (°F)

Condenser surface’ temnerature at locations,
1/2 1- 1/2 2-1/2 eee 9- 1/2 inches from the
bottom of the test section, respectively (°F)

Average condenser surface temperature,
(To1 + To2 + --+ To10)/10 (°F)

Temperature dlfference between steam temperature Tg
and average condenser surface temperature Toa (°F)

Condenser surface temperature at top and bottom ( °F)

Temperature difference at the bottom of the
condenser (Ts - Tob) °F

Temperature difference at the top of the condenser

(Ts - Tot) °F

Cooling water temperature at locations, O, 1, 2, ... 10
inches from the bottom of the test sectlon,
respectively (°F)

Average cooling water temperature,
(T + To + ... + T17)/11  (°F)

Overall temperature difference (Tg - Ty) °F

Cooling water overall temperature rise (Tyq - T,) °F
Mean film velocity (wRy) ft/hr.

Angular velocity (REM)

Angular velocity (Hr.-1)

3

Weber number (Eiﬁfgg_)
. Loy

Dynamic coefficient of viscosity (1b/ft. hr.)

Kinematic coefficient of viscosity (ft2/hr.)
Specific weight of condensate (1b/ft3)
Surface tension (1b/ft.)

Film thickness (ft.)

Powsr index
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CHAPTER 1
INTRODUCTION

Since the original work by Nusselt in 1916, condensation studies
have been largely confined to the problgm of cooled, stationary surfaces
immersed in & vapour. Recently, however, methods of condehsate removal,
by means other than gravity alone have been considéred. When a vapbur
whose condensate has a very high viscosity is to be efficiently condensed
or when a condenser has to function in space where gravity is absent then
not only the practicality but the negessity of such methods become
apparent. Several methods of removal ﬁave been suggested:

1. Rotating the condenser surface to throw off
the liquid by centrifugal force

2. Imparting a large velocity to the vapour
tangential to the surface to blow off the
' condensate, and -

3. Mechanically removing the condensate by
scraping or other techniques. -

In this investigation, the condensate was removed by rotating
the condenser surface, thereby effectively réplacing gravitational force
by centrifugal force as the primary means of removal.

Three different héat fluxes were achieved by varying the overall
temperature difference between the coolant gnd the vapour, and by varying
_the rate of flow of the coolant. Cooling water at 50°F was circulated
through the condenser tube at 6,600 1b/hr. for one set of tests and at
3,600 1b/hr. for another. The third heat flux condition was achieved
by circulating 120°F cooling water through the condenser tube at

4,800 lb/hr. For all three of the tests the steam conditions were
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constant at 230°F and 21 psia. For each of the three combinations of
cooling water flow and temperature, the rotational speed of the condenser

tube was varied in random intervals between O and 2700 RPM.
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CHAPER 2
EXISTING THEORY AND EXFERIMENTAIL RELATTONS

Nusselt in 1916 made a theoretical estimate of the heat transfer
for the case of film condensation of a pure saturated vapour on station-
ary surfaces including vertical tubes. He assumed that when steady
state was reached, the thickness of the film of condensate increased
from the top to the bottom and was maintained By a balance between the
rate of condensation and the rate of draining due to gravity. He also
assumed that the flow of the condensate layer was laminar and that the
transfer of heat took place soleiy by conduction across it in a direction
perpendicular to the surface. The temperature of the surface of the
condensing film in contact with the vapour was assumed to be at the
saturation temperature, and the temperature of the surface of the film
in contact with the wall at wall temperature, which was assumed uniform.
The film of condensate was considered to be so thin that the temperature
gradient through it was a straight line. For vertical tubes he obtained
the following expression:

, 113 -1/3

Mr G)

hm (———) = 1.k (i—i— (1)

ke pfe £

Many research workers have found that Nusselt's expression agrees fairly
well with thelr experimental results; .although there is a tendency for

the measured results to be higher. M.cAdams(8 ) contends that Nusselt's
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assumption of uniform condenser wall temperature is one of the reasons
for this discrepancy. He therefore suggests the following empirical

relation:
(m)pryg = F (bm)NyssSELT ' (2)

where F is obtained as shown in Table I.

TABLE I
F ATop /ATt
0.96 0.5
1.0 1.0
1.06 2.0
1.15 5.0

Perhaps the more important reason for fhe discrepancy between the
results obtained using Nusselt's expression and the experimental results
is Nusselt's assumption that flow is laminar. Many workers(a’ 3, 6)
have obsérved that there are in fact waves formed at the condensate film
surface. The omission of the effect of these waves in Nusselt's investi-
gation would therefore cause his estimates to be low. |

Colburn(l) derived a theoretical relation in the turbulent range,

which was of the form:

1/3 1/3 0.2

2
Be = 0.056 (Pr) (Be) (3)

hm____—_.
(kf3 pfzg)

It is generally agreed that equation (3) should be used for values
of Reynolds number higher than 2100.

Since the original work by Nusselt, condensation studies have been
largely confined to the problem of cooled stationary surfaces immersed

in a vapour. Recently, however, methods of condensate removal from the
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condensing surface by means other than graviiy alone have been considered.
One of these is rotation of the condénser surface causing removal of the
liquid condensate by centrifugél force and this is the method proposed
fof the prgsent investigation.

| Although no work has been done on vertically rotating cylinders,
three studies have been reported on horizontally rotating.cylinders.
Each of these will be discussed separately and the aspects whiéh are
deemed applicable to the present investigatiop'will be stressed.

Yen(10) in 1953 did the pioneering work. ﬁis technique has been
criticized by subsequent Workers(9 ) and his resulis are considered
questionable. His work was carried out on a horizontally rotating

- ¢ylinder cooled on the inside by water and enclosed in a steam chamber.
The steam condensed on the outside of the cooled cylinder and the con-
densate was drained and collected. During the course of his wofk, Yeh
discovered that the flow and heat transfer characteristics of the system
went through three different phases. At low rotational speeds (Fr < 2.6),
the centrifugal force and the friction force between the shaft and the
condensate film tended to counteract the force of gravity and the con-
densate layer thickened causing a reduction in heat transfer. The second
phase occurred at higher rotational speeds (28 > Fr > 2.6) at which time
the liquid was sprayed off the cylinder in all directions causing the
liqﬁid film to become thinner and thus allow the heat transfer rate to
increase. At high rotational speeds (Fr > 28) the film became very
thin and droplets of the condensate appeared. Finally it became difficult
to find any evidence of a continuous film while the droplets elongated
and ultimately became streaks. During this last phase the heat transfer

rate became progressively smaller.
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Yeh proposed a model for the second phase only and derived the

following theoretical relation:

2
og

Experimentally, he discovered that the data could be correlated in the

three regimes thus:

I = Const. (Re)? (5)
Vy D
where I = hm/kf Py Vﬁ?/ag, Re = —=70
2 %
I
Tn the first regime n = - 1.k, 73.76.10% < ¢ < 102.7.10%.
In the second regime n = - 2.3, 36.42.108 < ¢ < 87.16.108.
In the third regime n = 3.3%, ¢ = 0.1956.1016,

This is a rather poor correlation since the values of the constant
C vary not only for different Reynolds numbers but also for different
pressures at the same Reynolds number. Moreover, the value of n also
varies with Reynolds number as shown above.

Singer and Preckshot(9 ) carried out heat transfer measurements on
apparatus similar to Yeh's with some modifications which probably made
their results more reliable. An interesting point in their experimental
techniguewas the fact that they did not measure the temperature on the
rotating shaft, thereby obviating any problems which might have been
encountered in using slip rings. They were able to measure the overall
temperature drop between the cooling water and the steam atmosphere by

means of stationary probes. Knowing the heat flux, from water flow and
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temperature rise measurements, they were able to calculate the overall
heat transfer coefficient. They determined the water side heat transfer
coefficient from the results of Kuo et al(lg). Knowing the overall
and the water side coefficients, they were able to calculate the steam

- side coefficient.

They also reported the presence of the threé regimes described by

Yeh. They, however, also presented physical models and theoreticél

. estimates of the heat transfer for two of the regimes. In the first
regime, they were able to show that the condensate film thickness
increased with rotational speed and hence that the heat flux decreased.

Their theoretical estimate of heat transfer in this regime was of the

form:
hy Do 2 /% g po3 hrg (pr-pv) 3 Cp AT 1/ . -1/2
Nuy = = (“) (1 + —__.....—_) (5 ) (6)
kr 3 ve ke (Tg - To) Bhrg
where 8t = f (8) and can be evaluated.

The average value of Nusselt number is then:
2n

1
<> = fh (#) Do/ks)a @ (72)
o
and the mean value is:

Nu = %;/; Nu > 4L (7p)

Values of Nusselt number as obtained from equation (Yb) were found to he
13.9% below the experimental values in the same regime. For moderate
rotational speeds the theoretical estimate of heat transfer was of the form:

hX DO
ke

2 (l + 2We ) / (8)

l\

| S __J
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For very high rotational speeds the authors suggest that Nusselt numﬁer
is a function of (We )1/2 rather than We 1 as is the case for lower
speeds, indicating a levelling off of the heat transfer.

Presenting the experimental data in the form suggested by
equation (8) (i.e., plotting Nusselt number versus Weber number) proved
40 be unsatisfactory since the exberimentai data not only disagreed with
the theoretical estimate but also the:e appeared to be a definite
family of curves fof varying values of overall temperature difference
(AT). For this reason the authors proposed an empirical correlation

of the form:

-1/

Nu (g Dy> pr heg/ve ke AT) = Constant . We © (9)

As justification for the use of the modified Nusselt number, they cite the

fact that for a stationary condenser the following relation holds true:

Nu = C (g D03 pf'hfg/kaf AT)+1/)+ 3 (10)

where C is a constant. Their data when plotted according to equation (9)
yielded:

0.735 for 250 < We < 900

Q
0

I

0.01370, n

and c 27.206, n 0.385 for 900 < We < 17,000

Hoyle and MatthewJS) investigated the effect of diameter size as
well as the speed of rotation on the transfer of heat from steém to
ho;izontally mounted, water cooled cylinders. Their apparatus was
similar to that used by Singer and Precpshot except that provisions had

to be made for using cylinders of different diameters. They also had
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to make provisions for measuring the surface temperature on a rotating
cylinder. The cylinders used in théir‘study were of 4, 8 and 10" out-
side diameters. Based on photographic studies, they contended that the
condensate layer was in laminar flow throughout all the tests. Based

on fhese observations, they made a theoretical estimate of the heat trans-

fer and obtained the following reiationship:

) 2
Ty D, - -0.19 . Dow /2
2 = 0.5 [2fee /o] Y (1.9 - 0.9/1.095%" /28
T 1k
2 X
(ke” & ps” cp Do fup kp')  (ngg/ep ATS) (11)

The experimenfal results for the 4, 8 and 10" cylinders varied
from equation (11) by 15.5, 12.9 and 16.8 percent, respectively.

In order to compare their results with those of Yen(10) and Singer
and Preckshot(9 ) they expressed them in terms of the variation of
Nusselt number (h Do/2 kp) with the Weber number (Dg pf/c)2 (Dow2/29)/2.
Hoyle and Matthews' resulis formed series of curves corresponding_to
different cylinders such that Nusselt number varied directly with Weber
number for all values of Weber number. This of course is unlike the
results of Yeh where the Nusselt number experienced a décline for Weber
number greater than 1700 or Singer and Preckshot who reported a decline.

in Nusselt number for values of Weber number greater than 900.
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CHAPTER 3
APPARATUS AND INSTRUMENTATION

The apparatus and instruments required to conduct the experiments
will be described under eight separate headings: Steam Supply; Cooling
Water Supply and Me;surement; Driving Mechanism; Steam Chamber;
Condensate Collecting and Weighing; The Condenser Tube; Slip-ring
Assembly; Thermocouple Circuit and Thermocoupie Output Measuring and
Recording'lnstruments. letter reference is to items in Figure 1 unless

otherwise stated.

éteam Supply

The steam required for the experiment was generated by a 25 H.P.
Napanee Automatic Boiler (4) which delivered 99% dry steaﬁ at any
pressure between O and 125 psig. The steam from the boiler was con-
veyed by means of 1-1/L" lagged steel pipes to the steam chamber (®).
Before entering the steam-chamber it had to pass through a flow control
valve and a pressure regulating valve (C) and (D), respectively.. A%
the low point of the piping a Sarco BMS-L Steam Trap was installed (B)
in order to drain off any condensate that may have fo;med in the pipes
up to that point and allow condensate-free steam to enter the steam

chamber.

Cooling Water Supply and Measurement
Cooling water was obtained from the building mains. Cold water

and hot water were piped to a 3-way mixing valve (F) which could supply

10
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50 gal/ﬁin. of water at any temperature between 130°F and 50°F which wereA
the hot and cold water temperatures, respectively. From the mixing
valve water entered a receiving tank (G) where it was mixed further by
means of baffles. The receiving tank also serfed.és the anchoring
base for the packing housing (K), a bearing (L) and the ﬁousing for
~the cold water temperature probe (H). From the receiving tank water
entered the condenser tube (M) from which it was ejected through three
radial holes into the emptying tank (N). This tank'also served as

a recepticle for the packing housing (P). By means of the probe (H)
which housed a copper-constantan thermocouple wire, the temperature of
the cooling water at any position inside the condenser tube (M) could
be measured. The condenservtube and the probe are also shown.in mofe
detail in Figuré 3. From the emptying tank (N) water was piped to
the weighing mechanism (Q). As can be seen from the figure it was
possible to discharge the water directly into the drain or to collect
and weigh it and then discharge it. The weigh tank had a capacity

of 45 gallons and the Toledo Scale used, Model 2181, had a capacity of

725 1bs. and wasaccurate to within 0.10 1lbs.

Driving Mechanism
The condenser tube was rotated by means of an l/h H.P., D. C.
Motor. The power from the motor to the tube was transmitted by means
of pulleys and a belt. The motor torque and speed were controlled by
an S.C.R. Dodge Control Unit. The power for the control unit was
obtained from an ordinary 110 volt, 15 amp. wall outlet. The rated

maximum speed of the motor was 1725 R.P.M. but a speed variation on
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12

the condenser tube from O - 2700 R.P.M. was achieved by reducing the

pulley size from the motor to the tube.

Steam Chamber

The position of the steam chamber with respect to the other equip-
ment is shown In Figure 1, Item (D). In Figure 2, the chamber is shown
in more detail. All the important dimensions are given in Figure 2 and
will not be repeated here. |

As can be seen from figure 2, the chamber consisted of two coﬁcentric
boxes. Each box was made in two halves and put together by means of
vertical flanges with the inner box secured to the outer. Steam
entered the outer box through the opening in the back and was deflected
by a baffle so that it diffused evenly through all four sides of the
inner box. Slots in the side walls of the inner box have a combined
area more than twice the surface area of the condenser tube to ensure -
minimum steam velocity as it diffused towards the condenser. Louvres
covering the slots were installed to prevent droplets.of condensate from
being thrown from the tube and out through the slots. Stéam that con-
densed on the walls of the outer box was drained off through the
secondary condensate outlet (See Figure 1) and discarded, and the con-
densate which formed on the condenser tube was collected and weighed
at the primary condensate outlet.

Where the condenser tubg emerged from the outer box, top and bottom,
there was a sealed bearing fitted over the tube and attached to the box,
which served both as a bearing and a seal. The outer box was also
equipped with a pressure gauge and a steam temperatﬁre probe (see V,

and T in Figure 1).
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Condensate Collecting aﬁd Wéighing
A high pressure boiler glass tube was installed in the priméry
condensate outlet line and by means of the two valves (See Figure 1),
the condensate level inside the glass tube was held‘bonstant when it
was being collected for weighing. Thercondensate was collected in a
covered beaker and weighed on a sﬁall Central Scientific Company

scale which was accurate to within 0.0l oz.

Condenser Tuﬁe

The éondenser tube can be seen in Figure 2 and also in more
detail, in some respects, in Figure 5 (see also Appendix C). The tube
was made from ASE60-61 aluminum tube 1" 0.D. x 1/)" wall x 4' long.
Three grooves 1/8" x 1/8" were milled on the outside of the tube at 120°
intervals, running the whole length of the tube except for 5" at one
end. Starting at the bottom of the groove and moving up (1" at a time),
10 circumferential slots were ground, perpendicular to each groove,
approximately 1/16" wide and such that the bottom of the slot was 1/8"
below the surface (i.e., same depth as the grooveé) at the end which
intersected the groove and then the bottom slanted up so that it was
at the outer surface of the tube when the slot was 1/4" long, as shown

in Figure 3-1.

FIG. 3-1: GROOVE AND
S1LOT DETAIL
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Holes =040 in diameter were drilled at the ends of the slots starting
in the slanted bottom of the slots, far enough from the shallow end so
"that the drill could be started without splitting the surface. Holes
were drilled in the same circumferential direction és the slots and were
terminated when the drill Just emgrged'from the surface 3/32" beyond the
end of the slot. The welded junction of each copper-consténtan thermo -
couple was inserted inside a circumferential hole (at the end df each
slot). The wires were then pressed insidé the slots and laid along the
bottom of the grooves until they emerged at the end of the tube. The
wires were packed (10 in each groove) so that they filled approximately
2/3 of the groove depth. The remainder of the groove was filled with
Deveon Aluminum Paste which consists of 80% aluminum powder and 20%
plastic filler. When the aluminum filler dried, portions of it that
protruded above the surface of the tube were machined off so that the
grooves again assumed a texture very nearly the same as the remainder
of the tube. Two discs (See Figure 2) made of alumipum were next
fitted to the tube 10" apart at the section qf the tube where the
thermocoupie junctions were. These discs effectively defined the test
section and also prevented leakage of unwanted condensate into or out
of the inner box. The discs were insulated from the tube by means of
Teflon sleeves. The tube was then installed into the steam chamber‘as
shown in Figure 2.
Slip Ring Assembly

In order to convey the thermocouplé emf. signal from the shaft when

the latter was rotating to the stationary measuring and recording

instruments, it was necessary to employ slip rings. Based on reported
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difficulties of otﬁef researcheré‘TJ iO, é;)-who attempted to make their
own slip-ring assemblies, it was decided-to buy a readmeade slip-ring
unit for the present investigation. A 10 ring unit, manufactured by
Michigan Scientific Company, was purchased. This uﬁit is shown
installed in Figure 1.
Thermocouple Circults and the
Measurin'g & Recording Instruments

The thermocouple circuit for the wires attachéd to the condenser
tube wﬁs originally made up as shown in Figure 4(a). Originally, it
had been planned that all of the thermocouples attached to the condenser
tube (30 of them) would be connected to the measuring instfuments.
However, the cost of a slip-ring unit having thirty-one (31) rings was
prohibitive and hence a ten ring unit was purchased which ﬁade it
possible to monitor the signals from only nine of the thirty thermo -
couples. All the copper leads (9 of them) were soldered together and
then attached to a single lead on the ring side of the slip-ring unit.
The nine constantan leads were attached singly to the remaining leads
on the rihg side of the slip-ring unit. On the brush side of the slip-
ring wunit, a copper lead was attached to‘the brush corresponding to the
ring to which all the copper leads were attached; and a constantan lead
was attached, one to each brush, such that the brushes mated with the
rings which had constantan wires attached tq them. The copper lead and
the constantan leads were then attached to a Thermovolt Instrument
Company multiple switch. From the output terminals of the switch, a

copper lead was sttached to the common copper side, and a constentan

lead was attached to the other terminal. The other end of the constantan
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lead was joined to a copper lead to comprise the reference junction (See
Figure Ut (a)). The two free copper leads were then connected across a
potentiometer and also across a recorder. The potentiometer used was a
Honeywell Potentiometer Model No. 2745. The continuous pen recorder
Model T7100B was manufactured by Hewélett Packard.

It was suggested that a différent circuit should be used to obviate
the possibility of an error arising from, e and —el’ and, e, and o,
(See Figure La) not cancelling. Several of the thermocouple circuits
were then changed to the configuration shown in Figure 4 (b). The
méjor change was the elimination of the Emf''s e, and -ep, However, it
was still necessary to compensate for Emf. ey and therefore the compen-
sating circuit shown in Figure L (b) was included. There was no
significant difference in the potentiometer (and/or recorder) reading
when the two circuits were interchanged for any one thermocouple. It
was felt, nevertheless, that the circult shown in Figure 4(b) was more
reliable and this one was used.

All other thermocouples which measured temperatures on §tationary
members were cqnnected to the measuring instruments using a cifcuit
identical to that in Figure 4 (a), when the latter has the slip-ring

portion of the circuit removed.
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CHAPTER L
EXPERIMENTAI PROCEDURE

The principal objective of this investigation was to study the effect
of the rotation of a condenser tube on the outside or steam side heat
transfer coefficient. The effect of the overall temperature difference
(rg - T,) was also investigated.

Before the apparatus was assembled, the outside surface af the test
section was thoroughly cleaned using steel wool; it was then polished
ﬁsing abrasive powder and finally washed with alcohol. This was done
in order to ensure complete wetting of the condensing surface. Then the
steam chamber was closed. At the beginning of each experiment the equip-
ment was allowed to operate with the steam and cooling wate£ turned on
for at legst 30 minutes before the first readings were recorded. Also,
when the steam first entered the chamber, a valve at the high point of
the chamber was opened to allow the removal of air from the chamber.

The steam pressure at the boiler was adjusted so that when this source
steam was throttled to test conditions of 6.3 psig it was also super-
heated by 2 F°. At the start of each experiment the barometric pressure
was recorded.

The first run was repesated after 30 minutes to ensure that steady
state was achieved, and then the speed of rotation was changed (in every
instance the speed of rotation was increased, in random intervals from
zero RFM to 2700 RPM). fter each speed change the equipment was allowed

to operate for 30 minutes before the next set of readings was recorded.

17
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For each run two sets of readings were recorded and averaged. The
parameters metered were:

1. Cooling water temperature at 11 pointé along the length
of the test section one inch apart, starting at the top.

2. Steam side condenser surface temperature at 10 points
one inch apart, starting 1/2 inch from the top.

3. Cooling water flow rate.

k. Condensate flow rate.

5. Steam temperature.

6. Steam pressure.

T. Speed of rotation of the condenser tube.

All the temperatures were measured using copper-constantan thermo-
couples., The thermocouplé signals from the wires attached to the rotat-
ing shaft wére conducted to the stationary instruments by means of slip
rings. These and all other thermocouple signals were either recorded by
a strip chart recorder or measured manually on a potentiometer.

Cooling water temperature was measured by‘meané of a thermocouple
inserted into a 1/16" 0.D. x 0.048" I.D. stainless steel tube, (H) in
Figure 1, which was itself inserted inside the condenser tube from the
bottom and secursd to the stationary tank, (G) in Figure 1. One inch
from the thermocouple junction, a small propeller was attached to the
stainless éteel tube to ensure thorough mixing of the cooling water.

The thermocouple then measured the bulk temperature of thé water.

During the waiting period required for steady state to Occﬁr, the probe

was pushed in so that the propeller was well downstream of the test
section. In order to leave the flow, upstream of the point where measure-

ments were being recorded, unaffected, the first reading taken was at a
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test section location farthest downstream. The ﬁrobe was then moved
upstream one inch at a time until the whéle length of the test section
was covered.

The temperature of the cooling water wﬁs measufed to within i_b.lo F°
Eleven temperature readings were plotted against their appropriate
location on the shaft and a line drawn through them in order to establish
a continuous curve. Average temperature rise o? the cooling water
between stations 1 and 11 was 4.5 F°. Since the temperature is measured
to within + 0.10 F°, the resuléing error in T is 2.0%. |

Cooling water and condensate flow rates were measured by collecting
and weighing the quantities involved.

The weigh scale used for cooling water measurements was accurate to
within + 0.10 1b. The least weight of water collected was'60 1b/min.
Hence, the maximum error resulting from this measurement was 0.2%. Then,
the maximum error which could arise in evaluating heat flux, and hence
the»heat transfer coefficient, by multiplying the cooling water mass
flow rate and temperature rise would be 2.2%.

The heat transferred to the cooling water was compared to the hea%
required to condense the condensate collected, and it was found that
the difference between the two was never greater than 5%.

Steam pressure was measured by means of a pressure gauge which
was accurate to within 1 oz/inz, between zero and 10 psig.

The rotational speed of the condenser tube was measured using a
tachometer and a stroboscope.

Seventy-six (76) expériments were performed, varying the rotational
speed from zero to 2700 RPM and the cooling water temberature and flow

from L45°F to 120°F and 3600 1lb/hr. to 7200 lb/hr. respectively.
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CHAPTER 5
DISCUSSION OF RESULTS

Some of the experimental data for the test series, I, IT and IIT,
is shown in its elemental form in Figures 5, 6 and T, respectively. No
temperature readings were recorded for location d = 6.5 because the
thermocouple at that location couid not be accommodated on the slip-
ring. The readings from the thermocouple located at d = 7.5 were not
recorded because they were obviously in ‘error. All three of the figures
(5, 6, T) exhibit the same trend. As the speed of rotation was
inéreased, the surface temperature of the condenser tube also increased.
Also evident in all three of the figures is the temperature drop from
the centre to the ends of the test section. This was caused by end heat
losses. TFrom Figure 5 it can be seen that the temperature difference AT
varies from 70 F° at zero RPM to 30 F° at 2610 RPM. This of course .
implies that, over the same speed range, the heat transfer coefficient
should increase by more than 100%, if the heat flux is held constant. In
fact, the heat transfer coefficient increased by more than EQO% (See
Figure 12) since the heat flux was also increasing with rotatiénal speed.
Since the heat flux was not constant, then the condenser surface temp-
erature, being a dependent parameter, is not a true indication of the
change in heat transfer coefficient. Nevertheless, it is obviously a
good qualitative indication of £he phenomenon and Jjustifies further
discussion. For test series II, Figu;e 6, AT dropped from 90 F° to 25 F°
as the rotational speed was increased from zero RPM to 2460 RPM, implying
an almost 300% increase in hm, where, in fact, h, increased by almost L00%.
For test series III, Figure 7, AT drops from 110 F° to 4O F° implying an

almost two fold increase in hm, where, ir fact, hy increased by almost L00%.

- 20 -
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In both the latter cases the reason for the discrepancy is the same as
cited for test series I; the fact thét Té is a'dependent parameter makes
it relatively insensitive to a change in heat flux, since this latter
change causes a combined change in both hp and AT.

Also evident in Figures 5, 6and T is a consistent trend foﬁ the
surface temperature at the top of the test section to change from a
value less than the average at zero RPM to a value well above or the
same as the average at the same rotational speed above 1000 RPM. This
indicatés that the film of condensate is thinner at the upper end of the
condenser tube. As the speed is increased, the temperature of the
remainder of the tube rises to equal that at the topmost thermocouple
position. The temperature at the bottom of the test section never
reaches the same value as that at the top, except at zero RPM when both
positions have a temperature far below the average. Also evident from
the three figures (5, 6 and T) is the fact that the uppermost temperature
reading changes very little at high speeds, indicating a levelling-off
of the surface temperature. This is more evident in the three figures
8, 9 and 10.

Figures 8, 9 and 10 were drawn assuming a constant condenser surface
temperature at any one rotational speed and plotting the actual tempera-
tures against the corresponding speed. By doing this and by drawing a
line through the most frequently occurring temperature points, it is
Implied that'the average temperature is thevmost frequently occurring
femperature rather than the conventionally accepted average. It was
felt that this wes an accéptable mode of drawing the curves since in fact,

the majority of the temperatures were almost the same and the ones that
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were not (normally the end temperatures) whgn averaged in with the rest
in the éonventional manner resulted-in an error in hym of 1ess than 5%
in the worst case.
Figures 8, 9 and 10 show;the data in a much more meaningful form,

in some respects, than Figures 5, 6 and 7 since now all the data are
presented and the ovgrall trend can be followed. Now, however,
(in Figures 8, 9 and 10) the temperature change along the length of
the condenser tube is somewhat camouflaged. Figures 8, 9 and 10
all show basically the same tfend in the data: the condenser surface
temperature initially drops as the rotational speed i1s increased up to
a certain rotational speed and then the temperature suddenly rises.
The only difference between the figures lies in the amount.of the tempera-
ture drop and the speed location at which the temperature begins'to rise.
The fact_that the temperafure initially drops indicates that a £ilm
of condensate forms on the condenser surface and becomes thicker as the

. speed of rotation increases. When the condense; is rotated, the result-
ing éentrifugal force tends to throw the condensate off tangentially.
However, the surface tension force between the adjoining liquid molecules
tends to keep the condensate layer attached to the tube. When this
layer gets large enough, the surface breaks down and the liquid is
thrown off in all directions. Although in fact the surface tension
force varies inversely with thé fluid temperature, this is not borne
out very clearly by the expsriments. At a surface temperature of
approximately.170°F, the surface temperature declined until a rotational

speed of 850 RPM (Fr = 10.05) was reached, at which time the temperature
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suddenly roée. For a condenser tube at 130°F, this occurred at 450 RPM
(Fr = 2.85). Iooking at these results i1t would seem that the surface
tension force is larger at 170°F than at 130°F. However, examining the
curves more closely, it becomes apparent that at 130°F the condenser
surface tempefature drops by more than 20 F° in the interval O - 450 REM,
whereas in the case where the condenser surface is 170°F wﬁen'stationary,
this same temperature drops by approximately 8 F° when the rotational
speed is 850 RPM. These last observations indicate that the condensate
film thickness increases more quickly when the condenser tube is at
130°F than when it is at 170°F. The resulting thicker film is then
thrown off at a lower rotational speed than the much thinner film formed
on the tube whose surface is at 130°F.

When the condenser surface femperature is at 170°F, thé temperature
difference between 1t and the surrounding steam causes a film of con-
densate to be deposited on the condenser surface. This film then grows
to a thickness at which very little additionél steam is being condensed.
This thickness then persists and grows slightly as the speed of rotation
is increased until the centrifugal force overcomes the tensioh force and
the film breaks down. When the condenser surface is at 130°F when
stationary, the initial rate of condensation is much greater than when
that surface is at 170°F, and the temperature difference between the
surface and the steam is now lérge enough so that condensation persists
and an even thicker £ilm is built up which then has to be thrown off at much
lower rotational speeds. An intermediate run was performed in which
the condenser surface temperature was initially set at 150°F. In this

case, the condensate layer thickmness, as implied by the surface
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temperature; was greater than that for the run where the condenser sur-
face was held at 170°F but less than the condensate thickness in the

case where the condenser surface was initially at 130°F. The rotational
speed of 550 RFPM, at which the surface temperature stopped falling and
suddenly rose, was aléo intermediate between those for the other two
runs. The results of the three‘runs are plotted together in Figure 1l.
The only curve which exhibits a levelling;off and perhaps even a decline
of the surface temperature at high rotational speeds is the one for which
the initial surface temperéture was 1L70°F. However, the levelling-off
and the decline occur just at thg limiting speed and thus make it diffi-
cult to make any definite conclusions. The otﬂer two curves show no
trace of a decline.

Figures 12, 13 and 1k shOW'the‘effect of rotational épéed on the
heat transfer coefficient. All three figures Imply that there is an
initial regime at low rotatiopal speeds in which hy is affected very
little. After this initial regime hy rises to a maximum of 500% of
its initial value. Figure 12 shows the results for test series I
(T = 120°F). In addition to the two regimes described abové, hy in
this case also goes into another regime. At approximately 2200 RFM
(Fr = 68) hy reaches a peak value and for additional speed increase
appears to decrease. However, the results can not be accepted as
conclusive without performing édditional runs at even higher speeds.

The results for test series II (Ty = 45°F, my = 3600 1b/hr.) are showm
in Figure 13. The peak value of hp in this case occurs at approximately

2500 RPM (Fr = 88). However, the decline of hp (if any) is even less
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evident in this case than for test series I. Test series IIT results
are showﬁ in Figure 1k, Ih this case hy shows no signs of a décline
at a rotational speed of 2700 RPM. It would obviously be desirabie
to extend the rofational speed for all three test series.~

The best correlation of the results was obtained when the data
were plotted as Nusselt number (Nu) against Weber number (We) as in
Figure 15. From Figure 15, it is clearly evident that there exist
two distincet regimes. Up to a value of We = 500, Nusself number is
essentially constant at a value of 220. For values of Weber number
higher than 500, Nusselt number increases. In this region the

relation between Nusselt number and Weber number is of the form:
Nu = 11.56 WeO.4886

It is also evident from Figure 15 that Nusselt number does not
experience a decline for high values of Weber number. It is difficult,
however, to predict what wouid have happened had it been possible to
go to higher values of rotational speed.

In order to compare the results with those of other wérkers,
they were plotted as shown in Figure 16. Again, the two regimes
mentioned above were evident. Up to a value of We = 500, Nusselt
number (Nup) had a constant value of 120. For We > 500, the relation

between Nup and We was of the form:

NHA = 6 .13 Weo 'l{'957
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The straight line correlation as obtaingd in Figure 16 was then
drawn -on a gréph showing some of the‘results of other workers. .

There are eésentially three major differences between the author's
results and those of other workers. Whereas in the presept investigation
there was a regime of constant Nupy up to a value of We = 500, none of
the other workers observed this. 'Singer and Yéh reported an initial
deéline_in Nup but this reportédly occurred at values of Weber number
well below 100. Another difference is a lack of a decling in Nup for
large values of We (We >900 for Preckshot and We >1700 for Yeh).
Hoyle's results reported here are his results for a 4" ).D. condenser
which was the closest in size to the condenser used for the present
investigation. Moreover, Hoyle's curve was drawn as a straight line
for the purpose of comparison where in fact it was not exactly a
straight line. The third difference is the obviously large difference
invNuA between the present results and those of other workers at low
rotational speeds. This difference was not totally unexpected since
it was known that the heat transfer coefficient is higher for horizonfal
than for vertical tubes.

Garrett and Wighton (4) and Hassan and Jakob(n) report values of hy
to be almost twice as high for horizontal tubes as for vertical tubes.
For this reason, it is expected that at low rotational speeds, the results
of the present investigation shbuld be well below those reported by other
workers (5, 9 and 10), since all of their results were for horizontal
tubes. Moreover, it is observed from Figure 17 that the results of the
present investigation do indeed reach the same order of magnitude as
those of other workers at high rotationsl speeds when the effects of

gravity become insignificant compared to centrifugal force.
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Stationary results for the present investigation varied from
+ 3% to - 15% from those predicted by Nusselt's theory for stationary

vertical tubes (equation 1).
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CHAPTER .6
CONCLUSTIONS

6.1 It was found that the condenser surface temperature inifially
dropped while the speed of rotation was increased and then rose
suddenly, approaching more and more closely the steam temperature.
‘The initial drop was attributed to a condensate build-up made
possible by surface tension forces which prevented the condenéate
ffom being thrown off at low Froude numbers.» When the surface
tension force was overcome, the condensate was sprayed out

tangentially in all directions.

6.2 The heat transfer coefficient did not vary from its "stationary"
value at low speeds of rotation. However, when the rotational
spéed was increased, the heat transfer coefficient also increased
until it became equal to 500% of its statlionary value for AT = 185°F.
For AT = 110°F, the maximum value of hy.was equal to 380% of its
stationéry value. Also at AT = 110°F, there was a hint of a drop

of hy for values of We > 2200 RFM.
6.3 The data were successfully correlated in the form
Nu = 11.56 weO-4886

for values of Weber number We > 500. For valuves of Weber number

< 500, Nusselt number was found to be a constant (220).
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Section A-A
DETATL OF THERMOCOUPLE GROOVES (Seale 1" = 1/2")

AND COOLING WATER TEMPERATURE

PROBE
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APPENDIX A

DIMENSIONAL ANALYSIS

In order to Jjustify the use of the dimensionless groups used in
Figures 15, 16 and 17, the following was performed.
It was assumed that for the present investigation, the following
relationship was true:
hy = _Q"“= f(WJ'DO) ke, pr, g,0)
ANT
In the F, L, T, 9, system of units, i;he dimensional matrix for

the parameters is:

1 2 3 4 5 6 7

W hy, Dy ke Pr g o
F 0] 1 0 1 1 0 1 -
L 0 -1 1 0] -3 1 -1
T -1 -1 0] -1 0] -2 0
2] 0 -1 0] -1 0 0 0

It is apparent that the rank (r) of the matrix is four (4) and since
there are seven (7) variables, the number of dimensionless groups is
7T-4 = 3.

The homogeneous linear aléebraic equatioﬁs whose coefficients are

the numbers in the rows of the dimensional matrix are the following:

50
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K2 + Kb + K5 + KT

- K2 + K3‘— 3K5 + K6 - KT~

Il

- KL - K2 - Kb - 26

—KQ-KLL_ . =

Setting K4 through K7 in terms of K1

relations are obtained:

Kb = -K2

K5 = - 1/2K2 + 1/2K3 - 1/bK1
K6 = - 1/eKk1

K7 = 1/bx1 + 1/2k2 - 1/2K3

Hence the matrix of solutions is:

1 2 3 L
w by Do ke
nl 1 0 0 0
n2 0 1 o -1

n3 .0 0 1 0

and the dimensionless groups are:

) v ol/“
- -
pf1-/1; g1/2

hm . 0'1 /2

ke pfl 2

Do DPl/e

3 = ——

i/

ceeesiaans (1)
ceseen eee. (2)
cetrenenns (3)
.......... ()

through K3, the following

6 T

g o
-1/2 1/4

0 1/2

0 - 1/2
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The product n2 . n3 ylelds the familiar dimensionless group

" bm Do _
e (<)
2.3
2 3 .. W Dg
The product (xl)T . (n3)° yields pp —
o
. g

The two resulting groups then are:

7l .= hp Dy/ke

DfW2D03

R o= -
%

and the relationship between them is assumed to be of the form:b

o) w2D 3
hm]:’o/ ke = f ("%—O—)
g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B

SAMPIE CAT.CULATIONS

The experimental values of heat flux gy, for both the stationary
and the rotational cases were found from the following expression for

the heat transferred to the cooling water,
gy = 60 . Cp . my . AT

where AT, is the cooling water temperature difference as measured at
the exit and entrance to the test section, and m& is the measured
cooling water flow.

In order to check the accuracy of the cooling water flow and
temperature measurements, the heat load was also calculatea from the

steam and condensate measurements thus:

15
qV = I‘.— . mv . hfg

where hrg is the enthalpy of evaporation and was evaluated at the steam
temperature and pressure, and my 1s the measured condensate flow.
The experimental heat transfer coefficient was obtained using the

following expressions:
hy = qu/A ATs

vhere ‘ATs is the temperature difference between the steam temperature

Ty and the average condenser surface temperature Tgg.

53
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5k

The mean value of Nusselt number was then evaluated in two

different ways:
Nu = hy Do/ks

where kg is the thermal conductivity of condensate evaluated at mean

film temperature Ty, where:

Te (Toa + Ts)/2

and Nup hp D0/2 ka

where KA is the thermal conductivity of water at atmospheric conditions.

Weber number was calculated using the following expression:
o .
We = (Do~ ep/o) (Do wo/2 g)/2

where py and ¢ are evaluated at the mean film temperature Tg.
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APPENDIX C

VARIATION OF MEASURED AND CALCULATED PARAMETERS WITH ROTATIONAL SPEED
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PHOTOGRAPH A: COMPOSITE OF ALL THE EQUIFMENT
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PHOTCGRAPH B: STEAM CHAMBER CLOSE-UP
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