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ABSTRACT 

An Approach to Selection of Variety and Planting 

Date in Corn Silage Production 

by 

Carlos A. Luna-Gonzalez, Master of Science 

Utah State University, 1982 

Major Professor: Dr. Jay C. Andersen 
Department: Agricultural Economics 

vi 

The major purpose of this study is to make additional information 

available to the farm manager to improve the decision-making process 

relating to corn silage production. This study is primarily concerned 

with factors that influence planting date and variety selection. With-

in the framework of decision theory analysis, a Bayesian approach is 

employed to calculate the best time to plant and the best variety to 

plant. The approach is used both with and without the possible occur-

rence of harmful spring frosts. The 11seventy growing degree day11 

method is employed as a criterion for planting date selection. The 

planting dates are matched with four different season length corn va-

rieties to formulate the courses of action available to the farm mana-

ger. The states of nature that may confront a grower are the degrees 

of damage associated with various frost intensities. 

The decision theory approach of this study identifies the short to 

medium season variety as the optimal corn crop for Cache Valley. This 
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study indicates that planting a shorter season variety than some Cache 

Valley farmers have been using in the past would be profitable. 

The problem of a short water supply adds a constraint as to what 

varieties can be planted where the time required to reach the third 

stage of growth is most critical in obtaining potential yields. 

(67 pages) 



INTRODUCTION 

This study is an update and refinement of a previous study on 

this topic by James L. Anderson (1976). Risk and uncertainty are 

conditions that are encountered frequently as part of agricultural 

life. The farm manager may improve his success by using a systematic 

scientific approach when dealing with weather conditions. The sys-

tematic approach employed in this study is that of Bayesion decision 

theory. Corn silage production in short-season areas is a process 

that could benefit by the use of this systematic approach. 

The growing season for corn silage in Northern Utah is ham-

pered by late spring and early fall frosts. Because corn silage is 
L 

well adapted as a livestock feed, however, the farm~r is willing to 

take some risk. This study is mainly concerned with Cache County be-

cause of data availability and because the frost constraints that are 

present there are a significant factor to be reckoned with in the de-

cision process. 

There are several decision points faced in corn silage produc-

tion. Among them are: (1) selecting an optimal planting date, 

(2) choosing the best variety of corn to be used, and (3) deciding 

on a harvest date. 



STATEMENT OF THE PROBLEM 

Justification 

Decision theory as a method takes advantages of the most up-to­

the-minute information as the time for each decision approaches. 

Since there is some uncertainty involved, special methods must be 

employed to handle the process. 

A purpose of this paper is to show if a systematic approach 

will yield better results than relying merely on past experience or 

intuitive feelings as to what the best decision might be. 

Objectives 

The objectives of this study are: 

1. To determine the best variety of corn to be used, given the 

information that is available at the time the decision must 

be made, 

2. To determine an optimum planting date, 

3. To determine the optimal time of harvest, 

2 

4. To provide for the changes that might be necessary in any of 

these decisions due to changes in the states of nature. 

Methods of Procedure 

The following are the steps in the decision theory method as out­

lined in the work by Anderson (1976): 

1. Determine the available actions that can be taken. 
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2. List the various states of nature which can occur. 

3. Consider the consequences (gain, losses) of each combination 

of action and state of nature (state-act pair). 

4. Design a procedure for obtaining knowledge about the state of 

nature. The procedure consists of: 

a. Possible observations that may forecast the true state of 

nature and which are observable at the time a decision is 

made. 

b. Estimation of a relationship that shows the dependence of 

the observations upon the states of nature in probablistic 

terms. 

5. Evaluate the available strategies or recipes telling the de­

cision maker which action to take in the event of a particular 

observation from the experiment. 

6. Study the consequences of each strategy for each state of 

nature, as determined by the action probabilities. 

7. Establish a choice criterion by which the decision maker 

solves the final problem. 

This approach is designed to solve for the most economically ef­

ficient operation. This point is by no means fixed; as the states of 

nature continue to vary, the choices will also vary. 

There are several available actions that must be given consider­

ation. One of the most important variables is the variety of corn to 

be planted. The available varieties can be categorized according to 

length of season required for maturity such as: long, medium, short, 

and very short. Another action that is open to the farm manager is to 

vary the planting dates. 
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The states of nature are almost as complex as the available ac­

tions open to the farm manager. The length of season is to be con­

sidered with a relative heat factor added, measured in growing degree 

days. Frosts at the beginning and end of the season are significant 

factors in Northern Utah. The next general state of nature to consider 

is the amount of water available excluding irrigation. This includes 

the spring water storage in the soil and the rainfall, both quantity 

and timing. 

The remaining steps three to seven are those where the actual 

work of the decision process takes place. A major portion of the in­

put for this model will be drawn from information, experimentation, 

and data gathered in other projects. With minor adjustments, such a 

management system could also be applied to other areas and crops. 



APPLICATION 

For a description of the area under discussion and a review of 

literature, please see the work by James L. Anderson (1976). 

Feeding Value of Corn Silage 

5 

Although the world literature on corn culture is voluminous, most 

of the published information pertains to warmer climates with longer 

growing seasons than those of Northern Utah. In order to make rational 

management decisions pertaining to practices followed within a corn 

silage enterprise, it is advantageous for farmers to know the factors 

associated with success in the production of corn. 

As with any crop, attention must be given to all management prac­

tices. However, in the production of silage corn in short-season areas, 

two things seem obvious: first, there is need for more precise manage­

ment information, and second, due to the short season, there is less 

room for error in the management of the crop relative to more favorable 

environments. 

Corn silage is an important crop in states with large dairy in­

dustries. In some areas, the season is too short for grain production, 

in others grain can be produced but silage is preferred because of its 

higher nutrient yield. In areas where both grain and silage production 

are possible, many growers use later hybrids for silage than for grain 

because late hybrids will produce more tons of fresh silage than early 

ones. Much of the extra fresh weight of late hybrids is due to higher 

moisture content. However, many growers believe, and data from some 



works confirm, that the late hybrids also produce more dry matter per 

unit of land. 
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Growth is restricted in the short-season areas by a number of 

factors. Low spring temperatures in all regions, and rain, result in 

cool, wet soils delaying early working of the land, as well as reducing 

percent germination, emergence, and early growth. Lower accumulated 

corn heat units (or growing degree days) delay maturation of the crop 

during the season. Early fall frost reduces the effective growing 

season by severely restricting or halting growth prior to physiological 

maturity, and harvesting is often difficult due to inclement fall 

weather. 

Early planting would be expected to improve maturity through a 

longer growth period, but extremely slow germination reduced the ex­

pected advantages of early planting. Because of the short, low-heat­

unit season, it is difficult to consistently obtain whole plant dry 

matter (DM) levels above 25 percent at the time frost normally kills 

the corn crop (White, 1978). 

Early frost does not always kill the growing point protected be­

low the soil even though it may kill most leaves. Often partially­

frosted corn will outperform later planted corn (Aldrich & Leng, 1965). 

Planting dates are basically governed by soil temperatures. 

Early planting should effectively lengthen the growing season, 

but does so only if the early seedings germinate and emerge as rapidly 

as do later plantings, and if early growth is not restricted. White 

(1978) reported that the longer germination periods of the mid- to late­

May plantings reduced the actual number of days from emergence to frost 

from those expected by early planting. 



The strong correlation between emergence and soil temperature 

demonstrate the problem of determining the optimum time to plant corn. 

One finds little published data on the effect of planting dates on 

silage corn production in the northern states. Data from Charlotte­

town (Canada) over a four-year period (White, 1977) indicated signi­

ficant yield differences each year due to planting dates, with the 

latest planting always giving the lowest yield. A maturity advantage 

for earlier plantings is clearly indicated for whole- plant silage. A 

progressive decline in whole-plant dry matter (OM) content occurred 

each year as planting is delayed. Such a decline is very detrimental 

to silage quality. 

If one considers the amount and maturity of the grain in silage 

important, early planting is also advantageous, as indicated by the 

relative grain component yields. Later plantings greatly reduced 

grain yields, and the maturity of the grain component also declined 

rapidly with delayed planting each year. Overall, a definite maturity 

advantage to early planting occurred even when yields were not in ­

creased. 

In a work conducted by White (1977), the earliest plantings gave 

a distinct maturity advantage as indicated by greater whole plant and 

grain OM contents, but there was no significant yield advantage. 

Greater maturity would be expected, since the actual days from emer­

gence to harvest increased with earlier planting. One might, however, 

have expected a greater maturity advantage from the early plantings 

considering the differences in total days between planting and harvest 

resulting from different planting dates; but, the considerable longer 

germination periods reduced the overall advantage of early planting. 

7 
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In 1973, 12 days' earlier planting added only 5 extra days be­

tween emergence and harvest; in 1974, a 15-day planting advance re­

sulted in only a 7-day growth period advantage. Even though the 

earliest plantings were not made until the soil temperature had reached 

or exceeded 10° C., these low temperatures, coupled with rain, pro­

duced cold, wet soil conditions unfavorable to germination and early 

growth (Beauchamp & Lathwell, 1966; Gubbels, 1974; Free et al., 1966). 

Bunting (1968) reported as many as 40 days required for emergence from 

March plantings in England, with decreasing emergence periods for later 

plantings. Marley and Ayres (1972) also reported an increasing number 

of days to emergence with earlier plantings in Iowa. 

But, once the plants emerged, only slight differences occurred 

in the time required to reach silking. Under farm conditions, ger­

mination problems might affect yields if plant stands are not adequate. 

Osafo and Milbourn (1975) suggested that early planting leads to 

higher grain yields because the production of the peak vegetative 

weight occurring near the time of silking allowed DM produced after 

that stage to be moved directly into the ears rather than into the 

stalks and leaves as occurred with later plantings. Since whole 

plants are harvested in silage production, whether the photosynthate 

has been transferred into stored grain or remains in the stalk may not 

be as important as it is in grain production (Daynard & Hunter, 1975). 

Early planting may also be related to maximum DM production in that 

a greater portion of the vegetative period occurs during longer day 

lengths. More DM was produced under long-day conditions than under 

short-day conditions in a study by Hunter et al. (1974). However, suf­

ficient time after planting is required to allow the plants to reach 
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their maximum OM production before frost, and this requires as much of 

the available season as possible with the hybrids currently grown. Ger­

mination is the most serious problem on the earliest plantings. Since 

obtaining sufficient maturity to produce a silage with a high OM con­

tent is a major problem, the maturity advantage of the early plantings 

becomes very important for silage quality. However, due to slow ger­

mination and growth of mid-May plantings, the benefits were not as great 

as expected. Early plantings took much longer to emerge and gave evi­

dence of poorer germination. 

Obviously, spring weather controls how early land can be tilled. 

Fall plowing with a single working in the spring, spring plowing with 

minimum tillage, no-till planting, or spring discing of corn stubble 

may permit earlier planting than the traditional multiple working of 

the land in the spring. 

Because emergence and early growth are strongly linked to soil 

temperatures, increasing spring soil temperatures should improve yield 

and maturity. In Michigan, Lucus et al. (1976) reported that conven­

tional plowing resulted in a 1° - 2° C. higher soil temperature (15 cm.) 

up to 14 days after plowing than did chisel plowing or no-tillage. At 

another location the increase was from 0° to 1° C. 

Depth of planting for optimum performance varies with conditions 

(Aldrich & Leng, 1965). Since temperature decreases with soil depth, 

early plantings should be relatively shallow (4-6 cm.) whereas with 

later plantings, especially where the potential for a drying seedebed 

exists, deeper plantings (7-13 cm.) may be required to maintain moist 

conditions for germination. Stubble mulching, used to prevent wind 

erosion in the drier regions, may reduce soil temperatures. 
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However, some foreign workers have improved soil conditions with 

different mulching techniques. In France, Ballif and Dutil (1974) ob­

tained earlier emergence, lower grain moisture, and higher grain yields 

by covering the soil with a plastic film directly after planting. 

Other French workers reported that a black plastic mulch increased 

growth, yield, and the N, P, K, and S contents of corn (Simon-Sylvestre 

& Chabannes, 1976). Jurgens et al. (1978) showed that during dry con­

ditions, photosynthesis is more inhibited than translocation of photo­

synthate within the plant. Thus, translocation of photosynthate to 

the grain continues even when total accumulation of photosynthate is 

restricted as a result of soil water stress. 

In short-season areas, growth is usually arrested by frost at 

some point prior to physiological maturity. However, prediction of the 

exact date that this will occur is difficult. To obtain as much ma­

turity as possible, growers are reluctant to harvest prior to frost, 

and some wait until long after frost so the plant will be much drier. 

The effect of delayed harvesting on silage corn yields in a two-year 

harvest date study (White et al., 1976) showed that average OM yields 

increased rapidly during September until the harvest on 25 September. 

In both years, a frost that killed the leaves occurred on the day be­

fore this late September harvest . 

A progressive decrease in OM yield of up to 2 t/ha occurred after 

frost as harvest was delayed. Daynard and Hunter (1975) report that 

the in vitro digestibility of corn is constant over a wide range of 

maturity. Harvesting in late September, just prior to frost, when 

the highest or1 yield occurred would give a good quality feed as long 

as there is sufficient OM content. 



In addition to OM yield losses, considerable tissue nutrient 

losses were also measured with delayed harvests. The K content de­

creased from 2.4 percent in early September to 1.85 percent at frost 

and then to about 1.45 percent in November. The percent N also de­

creased, but at a much slower rate. Calcium and Mg levels also de­

creased (White et al., 1976), with Mg dropping to below 0.2 percent 

in the tissue shortly after frost. Such low levels are very important 

from an animal feed standpoint. 

11 

Feeders using frosted corn with reduced levels of Mg and Ca should 

alter rations accordingly. Phosphorus levels were not seriously af­

fected by harvest date. Depressed tissue nutrient levels coupled with 

decreasing OM yields represent substantial losses from the nutrients 

available in silage corn harvested prior to frost or just after being 

frozen. Thus corn should be harvested as soon as possible after being 

frozen. 

Daynard and Hunter (1975) noted that maximum dry matter (OM) yield 

in Ontario occurred at 66-70 percent whole plant moisture. They sug­

gested that neither seepage from the silo nor the ability of animals 

to consume sufficient feed were serious enough reasons to delay har­

vesting after whole plant moisture content was below 70 percent. They 

also reported that the in vitro OM digestibility (IVD), that is, actual 

value as a livestock feed, of the whole plant was essentially constant 

for corn over a wide range of maturity, as reflected in harvest dates, 

and thus would not influence choice of harvest date. Thus, the di­

gestibility was constant as maturity and TDNs increased. In a two-

year study in Indiana, Cadwell and Perry (1971) reported that OM yield 

of corn decreased after the middle of October, but there was no observed 
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decrease in percent crude protein content. Maximum OM yield occurred 

at a whole plant content of 33 percent. In Ohio, Jurgens et al . (1978) 

observed maximum OM yields early in September when corn was between the 

dent and glaze stage. Total yield as well as leaf and stalk yields de­

clined thereafter, apparently due to losses of crude protein and sol­

uble carbohydrates from the plants. In Georgia, Cummings (1970) ob­

served maximum corn OM yields in mid-September at 35-37 percent OM 

content with lower yields occurring at later harvests. Whole plant 

IVD values declined with late harvest in one of the three years studied. 

The feeding value of corn silage prepared at various stages of 

plant maturity has been evaluated in numerous studies (Bryant et al., 

1965; Johnson & McClure, 1968). Although differences in feeding value 

were reported, a major problem with early cut silage was the low OM 

intake due to the excessive amount of water consumed by animals eating 

the high moisture silage (Bryant et al., 1965). Huber (1975) sug­

gested that the high acid content of silage made from immature corn 

rather than the low OM content restricts animal intake . 

The declining whole plant yields which occurred after frost is 

apparently the result of a number of factors. Direct losses of plant 

parts such as leaves and tops of plants would account for part of the 

yield decrease, especially at the later dates when the plants are dry 

and brittle. 

Deterioration of the plant through tissue breakdown and rotting 

of the stalks increased with time. At later harvests the pith of the 

stalks is jelly-like, an indication of decomposition . Loss of leaves 

and decomposition within the stalk could account for some nutrient loss 

and the relative increase in the percent cellulose at later harvest. 
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It is also possible that the first frost which killed the leaves, but 

not necessarily the whole plant, permitted continued respiration with 

little or no photosynthesis, thus utilizing plant reserves and reducing 

OM yields. This may also have allowed continued carbohydrate transfer 

to and filling of the grain component, which might explain the higher 

grain yields recorded after frost in 1974 (White et al., 1976). The 

IVD declined with time after frost in 1973, yet in 1974 this trend did 

not occur. The 1973 data do, however, suggest that loss in feed quality 

may be of concern in late harvested silage. In considering the IVDDM 

(in vitro digestibility dry matter) data, it is obvious that the quan­

tity of digestible material harvested was greatest at the time of frost 

and declined thereafter. Daynard and Hunter (1975) reported changes in 

the relative IVD of different parts of the corn plant with time, but 

the overall IVD remained constant. However, their corn was not frozen. 

It is possible that freezing, and possible decomposition in parts of 

the plant after frost, could account for the decreasing IVD levels. 

Decreasing N, P, and K contents in the plant tissue are a normal 

situation in maturing corn, since growth is increasing more rapidly at 

this time than is nutrient uptake. This is the situation observed prior 

to frost in various years. However, after frost, uptake of these 

nutrients apparently ceased since both yields and total nutrient con­

tent on a per hectare basis declined. It is not clear whether the 

nutrient losses are due to losses in plant parts or whether there are 

losses of nutrients directly from the plants themselves. 

The work by White et al. (1976) found that in 1973 the loss in 

total OM yield between frost and the latest harvest amounted to about 

25 percent, while the losses in N, P, and K amounted to 26, 26 and 39 
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percent respecitvely, of the amounts at frost. In 1974 the OM yield 

loss was about 12 percent, yet the N, P, and K losses were 22, 21, and 

39 percent respectively. This suggested that the nutrient losses were 

not only directly related to the physical loss of plant parts, but were 

due as well to decomposition and/or leaching of soluble portions from 

the plants. The high Kloss is understandable since this nutrient 

exists in a water-soluble form in the plant. Once frost killed the 

living cells, the K would be easily leached from the plants by rain. 

Johnson and McClure (1968) also reported lower contents of K, Ca, and 

Mg in late harvested, frozen silage corn compared with earlier harvests. 

Nitrogen losses after frost, as indicated by a decrease in plant 

N content, are in agreement with the crude protein losses reported by 

Bryant et al. (1965), but disagree with the results of Cadwell and 

Perry (1971) and Johnson and McClure (1968), who found no decline in 

crude protein content with time of harvest. Various plant parts con­

tain different concentrations of nutrients. Leaf nutrients accounted 

for 15, 10, and 20 percent of the whole plant N, P, and K nutrient con­

tents respectively. Thus, leaf loss should be prevented if possible. 

The stalk below the ear is very rich in N and K whereas the ear con­

tains most of the plant 1 s P. Decomposition and loss of the interior 

of the lower stalk could thus release both N and K, accounting for some 

of the nutrient losses observed. 

Growing Degree Days 

Growing degree days takes into consideration the heat factor since 

growth is dependent upon heat over a restricted temperature range. The 

growing degree days calculation used in this model is that referred to 
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as the U.S. Weather Bureau 50-86 method suggested by Gilmore and Rogers 

in 1958 and expressed as: 

where 

GOD= (TH/2 + TL/2) - 50 

GOD= growing degree days for a given day in degrees Fahrenheit. 

TH= maximum daily temperature in °F. (If TH 2_ 86° , then TH= 

86° .) 

TL= minimum daily temperature in °F. (If TH..::_ 50° , then TL= 

50° .) 

Since the corn plant begins growth at about 50° Fahrenheit, this 

temperature is used as the lower limit in the equation. Growth of the 

corn plant tapers off above an upper limit set at 86° F. Growing de­

gree days are cumulative from the date of planting through maturity . 

Total Digestible Nutrients 

It is not sufficient when considering feasibility and profit to 

look only at tons per acre yields since the value of a ton of corn 

silage can vary significantly . Two of the more important factors are 

percent dry weight and degree of maturity. In this study, these fac­

tors will be taken into account by use of a term called Total Digestible 

Nutri ents (TON). As silage corn becomes more mature, it increases in 

percent dry weight and in TON, thus becoming more nutritious and 

yielding more feed value to animals . 

An index of the maturity values for field trials on corn is re­

corded in Appendix, Table 24. 



For purposes of this study, TON rather than total tons of silage 

per acre is considered in order that benefits may be more properly 

assigned. 
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THEORETICAL FRAMEWORK 

Decision Model 

This section contains an outline of the general decision theory 

process. This will follow the same seven general steps described 

earlier. The text and notation closely follow the works of Anderson 

(1976), Halter and Dean (1971), and Chernoff and Moses (1959). 

The first step includes the list of available actions open to 

the farm manager: 

Some actions as well as possible states of nature are excluded for 

simplicity as the model can become too complicated. 

Step two is the listing of the states of nature: 

In the third step, a gai n-loss table (Table 1) is generated to 

show the consequences of each combination of action and state of na­

ture. In this table, the values of U = Utility are listed. These are 

the gains or losses relative to each combination of available action 

and state of nature. 

Step four separates what is known as the 11data 11 problem from the 
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11no data 11 problem. An experiment or other device is organized to gain 

information about the states of nature. Observations are made in the 

experiment that are related to the states of nature. It is then possible 



States of 
Nature 

n1 

n2 

n· J 

TABLE 1 

GAIN-LOSS RELATIONSHIP FOR EACH COMBINATION OF 
ACTION AND STATE OF NATURE 

Available Actions 

al a2 

U(nl' a1) U(n1, a2) 

U(n2, a1) U(n2, a2) 

a. , 

U(nl' ai) 

U(n2, ai) 

U(n., a.) J , 

to make those same observations just prior to the actual decision. An 

actual relationship in probablistic terms between the observations and 
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the states of nature is made, thus making is possible to draw some con-

clusions about what the state of nature will be depending on the obser-

vation. If it is not possible to conduct such an experiment or make 

observations just prior to the decision, then the only choice is to 

deal with the situation as a 11no data" decision problem. 

As the experiment is conducted and the observations are made, the 

probabilities given in Table 2 are generated. 



States of 
Nature 

n1 

n2 

n ­
J 

TABLE 2 

PROBABILITY OF MAKING OBSERVATION ok WHEN j 
IS THE STATE OF NATURE 

Observations 

01 02 

P(nl' o1) P(nl' o2) 

P ( n2' ol) P(n2, o2) 
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Ok 

P(n1, ok) 

p ( n2' Ok) 

These probabilities are then used to calculate the optimal strategy in 

the steps to follow. This table can be updated as more information be-

comes available. 

The "No Data II Decision Problem. Even in the case where it is not 

possible to make an observation that yields an updated prediction on 

the state of nature, decision-making ability may be improved by using 

~ priori probabilities. This is called the "no data" problem. In 

other words, the probability of a state of nature may be formulated by 

using the data of all past periods. An example of this in weather data 

is the~ priori probability of frost occurring on a certain spring day 



calculated by the Weather Bureau from the data of past years. Proba­

bilities of nj states of nature may be stated as in Table 3. 

TABLE 3 

A PRIORI PROBABILITIES(~-) 
J 
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With the use of the gain-loss table and the~ priori probabilities, it 

i s now possible to arrive at the best option under available actions 

or the best decision of an available action. See Table 4. 

After conducting the operations in these tables, it is possible 

to pick the optimal action. If it is a loss table, the optimal action 

will be the minimum of the sums from a1 to ai' 

B(~ , a.)= Min 
l 

j 
I: 

n=l 
w - U(n-, a . ) 

J J l 

If it is a gain table, the optimal action will be the maximum value 

in the sums. In any case, the optimal action is indicated. 
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TABLE 4 

CALCULATION OF THE "NO DATA" PROBLEM 

Loss-Gain Table Probabilitt Table 

States of 
Nature 

nl 

nz 

n· 
J 

Available Actions 

al az 

U(nl' a1) U(n1, a2) 

u ( n2, a1) U(n2, a2) 

a. 
1 

U(nl' ai) 

U(n2, ai) 

U(n-, a.) 
J l 

Loss-Gain Table with Probabilities Considered 

Avail able Actions 

i j i j i j 

A Priori 
Probabilities 

P ( nj) 

P ( n1) 

P ( nz) 

I I [P( nJ·)][U(nJ·,a1)J I I [P(n.)][U(nJ· ,az)] I I [P(n.)][U(n . ,a .)J 
a=l n=l a=l n=l J a=l n=l J J 1 



The "Data" Decision Problem. Now that the "no data" situation 

has been discussed, the "data 11 problem will be considered with the 

commencement of step five. The available strategies are tabulated, 

including all possible combinations of actions which the decision 

maker might have, given the observations o1 through ok (see Table 5). 

TABLE 5 

LIST OF POSSIBLE STRATEGIES 

Actions Taken with Given Observations 

Strategies 

a. 
l 

a . 
1 

a . 
1 

The sixth step determines the consequences of each strategy for 

each state of nature as determined by the probabilities in Table 2. 

This computation gives the expected gain or loss for each strategy and 

the possible states of nature (see Table 6). 

The last step includes multiplying the expected gains or losses 
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of each state of nature in the preceding step by its respective~ priori 

probability and totaling the results to yield one gain or loss figure 



for each strategy. This approach has the advantage of including all 

possible solution strategies. It may be a disadvantage to calculate 

all strategies if only the optimal one is wanted. In this case, there 

is a short-cut using what is called the~ posteriori probabilities. 

No new information is needed to calculate the~ posteriori probabili­

ties. The 1 etters w1 to wj wi 11 represent these ~ posteriori proba­

bilities. 

States 
of 

Nature 

TABLE 6 

EXPECTED UTILITY FOR EACH STRATEGY AND 
RESPECTIVE STATE OF NATURE 

Strategies 

n1 P( n1 ,o1) ·U( nl'ai )+P( n1 ,o2) ·U( nl'ai )+ ... +P( n1 ,ok) ·Li( nl'ai) 

n2 P(n2,o1)·U( n2,ai)+P( n2,o2)·U( n2,ai)+ ... +P(n2,ok)·U( n2,ai) 

n · P(n .,o 1)·U( n . a . )+P(n .,o 2)·U( n. ,a.)+ ... +P(n .,ok)·U( n . a.) 
J J J, 1 J J 1 J J, 1 

•••• Sm 

The first step in calculating the~ posteriori probabilities is 

to multiply the probability of states of nature with respect to the 

observations by the corresponding~ priori probabilities (Table 7). 

The resulting sums of the products relative to each observations are 

then totaled. The sums corresponding took are divided into the 

23 
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TABLE 7 

COMPUTATION OF THE A POSTERIORI PROBABILITIES 

Observations A Priori 
Pr(nj,ok) Probabilities 

States of 
Nature 01 02 Ok P(n.) 

J 

nl P(n1,o1) P(n1,o2) P(n1,ok) P(n1) 

n .... 
l. 

P(n2,o1) P(n2,o2) P(n2,ok) P(n2) 

n. 
J 

Joint Probabilities 
P(nj) P(nj,ok) 

01 02 Ok 

P(n1) P(n1,o1) P(n1) P(n1,o2) P(n1) P(n1,ok) 

P(n2) P(n2,o1) P(n2) P(n2,o2) P(n2) P(n2,ok) 

j j j 
E P(n.) P(n.,ol) E P(n.) P(n.,02) 

n=l J J n=l J J 
E P(n.) P(n.,ok) 

n=l J J 



relative members of the joint probabilities matrix as performed in 

Table 8. The~ posteriori probabilities are then multiplied by the 

corresponding figures in the loss-gain table (Table 1) . These values 

are then totaled for each available action as shown in Table 9. 

If a loss table is used, the object is to find the minimum 

B(w", a), or Bayes strategy for the observations. If a gain table is 

used, then the maximum should be found. The above procedure may be 

followed to find the optimal course of action for each observation 

o1 through ok. These optimal available actions for each observation 

become the Bayes strategy. 
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A Posteriori 
Probabilities 

w. 
J 

P(n1) P(n1,o1) 

j 
n:

1
P(nj) P(nj,o 1) 

P(n2) P(n2,o1) 
j 

n:
1
P(nj) P(nj,o 1) 

P(nj) P(nj ,o1) 
j 

n:
1
P(nj) P(nj,o 1) 

TABLE 8 

A POSTERIORI PROBABILITIES 

P(n1) P(n1,o2) 
j 

n:
1
P(nj) P(nj,o 2) 

P(n2) P(n2,o2) 

j 
n:

1
P(nj) P(nj,o 2) 

Observations 

P(n1) P(n1 ,ok) 
j 

n:
1
P(nj) P(nj,ok) 

P(n2) P(n2,ok) 
j 

n:
1
P(nj) P(nj,ok) 



B(;:;, a) 
j 
I: wJ· U( nJ· ,a 1) 

n=l 

TABLE 9 

BAYES STRATEGY 

Observation o1 

j 
I: wJ· U( nJ· ,a 2) 

n=l 

j 

a . 
1 

I: w . U(n .,a . ) 
n=l J J 1 
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USE OF THE DECISION MODEL 

Planting Date Criteria 

The decision model described is applied to the date of planting 

and best variety of corn. A method of determining an optimal planting 

date consists of determining the first seven consecutive spring days 

for which the growing degree days (GOD) as computed according to the 

formula on page 15 total 70. The earliest planting date would be the 

day on which the cumulative GOD for the previous 7 days reaches this 

total. Optimal planting dates determined according to this method for 

the years 1959-1966 are presented in Table 18 of the Appendix. These 

years are selected because they are the ones for which the yield data 

of Nielson (Corn Trials published for the years between 1953 and 1966) 

and the climate data are available. 

Some indication of the relative success of this method of planting 

date selection can be gained by examining the records of spring frost 

activity for the eight years in question. Table 20 of the Appendix 

gives the dates and intensities of late spring frosts for those eight 

years. Using the figure of about seven days to emergence, the degree 

of frost damage that the crops received can be noted. 

Another method of planting date selection is the use of mean soil 

temperature. This method recommends planting when the mean soil tem­

perature reached 50° F. Although the data for this method are rela­

tively recent, some conclusions can be drawn. Table 18 (Appendix) 

gives those dates for the years 1969-1975 when the spring mean soil 
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temperature for Cache Valley first reached 50° F. According to the 

data of Table 18, this method would have the farmer in Cache Valley 

plant earlier, on or about May third. A direct comparison cannot be 

made, however, since data are not available for those years. Applying 

this criterion for planting to the years 1969-1975, it can be noted 

from the data of Table 19 (Appendix) that 1970 crops would have re­

ceived some frost damage and those for 1975 would have had major frost 

damage. 

It is not immediately apparent which is the better of these two 

methods; however, it appears that the GOD method provides a safer 

margin for avoidance of frost damage. Comparing the two methods for 

the years 1969 to 1975, one sees that the 70 GOD method is a little 

more conservative. 

An examination of the growing degree day method is of some inter­

est. By applying the criterion of 70 GOD in seven consecutive days 

and calculating the corresponding date of emergence, the severity of 

frosts affecting corn silage crop planting could be more closely quan­

tified . From the information on maturity and the formulation of growth 

stages in Appendix, Table 24, it is possible to predict the time of 

emergence once the planting date has been selected . The corn plant 

will emerge 80 GOD after planting. Suppose that the various planting 

dates or courses of action are labeled a1 through ai' where 

al = May 2-7 

a2 = May 8-13 

a3 = May 14-19 

a4 = May 20-25 



a5 = May 26-31 

These courses of action are applied in the data of Table 10. 

Conclusions can be drawn as to the relative success of this criterion 

for determining the course of action for planting dates relative to 

past experiences. 

The states of nature n1 ... nj in Table 10 reflect the state 

of nature with respect to frost, where: 

n1 = no frost 

n2 = mild frost ( 32° - 29° F.) 

n3 = hard frost (28° F. and below) 

It is evident from Table 10 that the GOD method is successful in 
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the avoidance of frost in seventeen out of twenty-three years from 

1952, the first full year when data were recorded at the Utah State 

University Experimental Farm, until 1974. A record of 83 percent suc­

cess in avoiding major frost damage but with early planting would be 

desirable. As a general rule, then, the GOD method is more reliable 

in selection of the optimum planting date to avoid these frosts. 

There is, of course, the constraint of field conditions due to wet 

or adverse weather to be considered. Some information relative to how 

wet the soil generally will be is in the precipitation data presented 

in Table 25 (Appendix). 

Planting Decisions 

In addition to planting date, variety is an important decision. 

Hybrid corn offers a wide range of growing season varieties by which 

farm managers may optimally match growth to climate conditions for 



Year 

1974 

1973 

1972 

1971 

1970 

1969 

1968 

1967 

1966 

1965 
1964 
1963 

1962 

1961 
1960 

1959 

1958 

1957 

1956 

1955 

1954 

1953 
1952 

TABLE 10 

70 GOD PLANTING DATES AND POTENTIAL 
DATES OF EMERGENCE 

Planting Date Emerge 
70 GOD Action 80 GOD 

Days 
to 

Reached a. 
1 

After Plant Emerge 

May 5 al May 11 6 
May 12 a2 May 18 6 

May 7 al May 16 9 
May 5 al May 14 9 
May 7 al May 19 12 
May 6 al May 12 6 
May 7 al May 18 11 

May 20 a4 May 25 5 
May 3 al May 8 5 

May 16 a3 May 24 8 

May 15 a3 May 21 6 
May 6 al May 14 8 
May 6 al May 12 6 
May 22 a4 May 27 5 

May 10 a2 May 16 6 
May 14 a3 May 30 16 

May 6 al May 16 10 

May 5 al May 15 10 

May 8 a2 May 19 11 

May 10 a2 May 19 9 

May 8 a2 May 14 6 

May 31 a5 June 9 9 

May 4 al May 12 8 
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States of 
Nature 

n · 
J 

n1 

n1 

n1 

n1 

n1 

n1 

n1 

nl 

n3 

n1 
n1 
nl 
n2 
n1 

n3 

n1 
nl 

n1 

n1 

n2 

n3 
n1 

n3 
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their areas. Most regions presently enjoy the options of long, medium, 

short, and very short season varieties. 

Four such hybrids were selected for purposes of this study and 

applied to growing conditions for Cache Valley. These varieties are: 

Utah Hybrid 680 (long season, 2550 GOD), Utah Hybrid 544 (medium season, 

2450 GOD), Utah Hybrid 330 (short season, 2250 GOD), and Utah Hybrid 

216 (very short season, 2150 GOD). These designations are of one par­

ticular company. Others have similar selections. In the decision 

model, these four varieties will be labeled vi , where: £ = 1, 2, 3, 4. 

vl = Utah Hybrid 680 

v2 = Utah Hybrid 540 

V3 = Utah Hybrid 330 

V4 = Utah Hybrid 216 

In the following analysis, potential green weight yields (based 

on Table 24, Appendix) were assumed to be twenty-six tons per acre for 

Utah Hybrid 680, twenty-five tons per acre for Utah Hybrid 544, twenty­

three tons per acre for Utah Hybrid 330, and sixteen tons per acre for 

Utah Hybrid 216. The prices used in figuring the profit or loss are 

taken from Table 22 in the Appendix. The budget cost information comes 

from budgets worked out at Utah State University (Table 27, Appendix). 

Both prices and budget information are for the year 1981. 

Allowing for all possible combinations of planting dates and 

varieties, there are twenty courses of action open to the farm manager. 

Using the growth data in Table 24, Appendix, the GDDs to maturity for 

each variety, and the above assumptions, values of TON per acre may be 

calculated for each combination of course of action and state of nature 
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(Table 11). This table is the profit or gain table as referred to in 

the decision model. The growing degree days in Table 11 are figured 

from Utah State University Experiment Station data recorded during the 

years 1959-1966. 

In the first planting period, a1, if there is no frost, Utah 

Hybrid 544 yields the highest profit, but by the next planting period, 

a2, Utah Hybrid 330 has a higher profit yield. Hard frosts that af­

fect the first planting period would also give the advantage to Utah 

Hybrid 330 over 544. It can be concluded from the foregoing that it 

is best to use the corn hybrid with the longest possible growing season 

and still come close to the potential of the crop. Thus, it can be 

seen that the grain development during the final growth stage is quite 

important. 

The data of Table 12 have been prepared to show the possibility 

of each state of nature occurring in combination with the possibility 

of potential observation (for calculation procedure, see Table 20 in 

the Appendix). These are frequency of potential observation for 

various states of nature given any one planting date a1 to ai' figured 

on the basis of the thirty-year period 1931-1960. (Note: Planting 

dates (a1 ... a5) are implicit in ok's.) 

Where there are no experimental means of predicting with any de­

gree of accuracy the state of nature that will affect the decision in 

the immediate future, the situation becomes a "no data" problem to be 

solved by use of the~ priori probabilities and the profit or gain 

table. Table 13 gives the results of this process as calculated from 

the data in Tables 11 and 12. 



Courses 
of 

Action 

alvl 

alv2 

alv3 

alv4 

a2vl 

a2v2 

a2v3 

a2v4 

a3vl 

a3v2 

a3v3 

a3v4 

a4vl 

a4v2 

a4v3 

a4V4 

a5vl 

a5v2 

a5V3 

a5V4 

TABLE 11 

PROFIT TABLE WITH ALL POSSIBLE COMBINATIONS OF PLANTING 
DATES, VARIETIES, AND STATES OF NATURE 

(BASED ON 1981 PRICES AND COSTS) 

States of Nature 
No Frost Mild Frost Hard Frost 

1 2 3 

Profit Profit Profit 
in in in 

GOD TON* $/acre GOD TON* $/acre GOD TON* $/acre 

2318 5.67 199.66 2278 5.56 192.71 2220 5.41 183.23 

2318 5.70 201.56 2278 5.60 195.24 2220 5.44 185 .13 

2318 5.59 194.61 2278 5.59 194.61 2220 5.51 189.56 

2318 3.89 87 .19 2278 3.89 87 .19 2220 3.89 87.19 

2259 5.51 189.56 2219 5.40 182.61 2158 5.24 172 .49 

2259 5.55 192.08 2219 5.43 184.50 2158 5.26 173.76 

2259 5. 59 194.61 2219 5.51 189.56 2158 5.33 178.18 

2259 3.89 87.19 2219 3.89 87 .19 2158 3.89 87 . 19 

2199 5.35 179.45 2159 5.24 172 .49 2091 5.07 161. 75 

2199 5.39 181. 97 2159 5.26 173.76 2091 5.08 162.38 

2199 5.46 186.40 2159 5.33 178 .18 2091 5.15 166.81 

2199 3.89 87.19 2159 3.89 87 .19 2091 3. 77 79.62 

2137 5.18 168. 71 2097 5.07 161. 75 2015 4.87 149.12 

2137 5.21 170.59 2097 5.10 166.94 2015 4.88 149.75 

2137 5.27 174.39 2097 5.16 167.44 2015 4.93 152.90 

2137 3.86 85.29 2097 3.78 80.24 2015 3.61 69.50 

2065 4.99 156.69 2025 4.89 150.38 1935 4.66 135.85 

2065 5.02 158.59 2025 4.9 2 152.28 1935 4.6 8 137 .11 

2065 5.07 161.75 2025 4.96 154.80 1935 4. 72 139.64 

2065 3. 71 75.82 2025 3.63 70. 77 1935 3.45 59.39 

SOURCE: GOD taken from Appendix Table; prices taken from 
Appendix Table 22; costs from L. H. Davis, CroQ Enter~rises Budgets 
For F.carm and Ranch Planning in Utah, Appendix, Table 27. 

* TDNs in tons/acre. 
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States of 
Nature 

nl 

n2 

n3 

TABLE 12 

FREQUENCY OF POTENTIAL OBSERVATION FOR VARIOUS 
STATES OF NATURE IN RELATION TO POSSIBLE 

COURSE OF ACTION (BASED ON 
1941-1971 NORMALS) 

Pr( ok/ nj) 

Potential Observation on Planting Date 
n* n* n* n* 

01 02 03 04 

.30 .45 .60 .70 

.05 .05 .05 .05 

.65 .50 .35 .25 

n* 
05 

.85 

.025 

.125 

*n = 1, 2, 3, 4 corresponding to each corn variety (v1, v2, v3, 

From Table 13, the optimal time to plant would be the first 

period in May, a1. It would be unwise to plant prior to May in Cache 

Valley as the probabilities of a killing frost are too high and the 

GOD or heat units decrease rapidly. 

Now, turning to a discussion of the 11data 11 problem, observa-

tions are taken and E.. posteriori probabilities are calculated. The 

first is to obtain the probability of success of the observation over 

an experimental period. From 1952-1974, there were seventeen years 

in which the frost damage was successfully avoided (n1), two years 

with minor frost damage (n2), and four years with major frost damage 

(n3). (See Table 10.) The probability of each state of nature 

35 
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TABLE 13 

11NO DATA11 PROFIT TABLE 

States Available Actions 

of 
Nature alvl alv2 alv3 alv4 

nl 199.66 201. 56 194.61 87.19 

n2 192.71 195.24 194.61 87 .19 

n3 183. 23 185.13 189.56 87 . 19 

a2vl a2v2 a2V3 a2v4 

nl 189.56 192.08 194.61 87 .19 

n2 182.61 184.50 189. 56 87 .19 

n3 172.49 173.76 178.18 87 . 19 

a3vl a3v2 a3V3 a3v4 

nl 179.45 181.97 186.40 87 .19 

n2 172.49 173.76 178 .18 87 .19 

n3 161.75 162.38 166.81 79.6 2 

a4vl a4v2 a4V3 a4V4 

nl 168. 71 170.59 174.39 85.29 

n2 161. 75 166.94 167.44 80.24 

n3 149.12 149. 75 152.90 69.50 

a5vl a5v2 a5V3 a5V4 

nl 156.69 158.59 161. 75 75.82 

n2 150.38 152.28 154.80 70. 77 

n3 135.85 137 .11 139.64 59.39 



These observation probabilities are multiplied by the corre­

sponding probabilities (frequency of potential observation) of Table 

12 to derive the joint probabilities shown in Table 14. The columns 

have also been summed. Each a., n· value in the matrix of Table 14 
1 J 

is divided by its corresponding sum at the bottom of each column to 

generate the values for the~ posteriori probabilities (Table 15). 

States 
of 

Nature al 

n1 .2218 

n2 .0043 

n3 .1130 

Total Pr(O) .3391 

TABLE 14 

JOINT PROBABILITIES 

Pr( nj) · Pr(Ok/n) 

a2 a3 

.3326 .4435 

.0043 .0043 

.0869 .0608 

.4238 .5086 

a4 a5 

.5174 .6283 

.0043 .0022 

.0391 .0217 

.5608 .6522 
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TABLE 15 

A POSTERIORI PROBABILITIES 

Available Actions 

States of 
Nature al a2 a3 a4 a5 

A Posteriori 
Probabilities 

n1 .6541 .7848 .8720 .9226 .9633 w k 
1 

n2 .0127 .0101 .0085 .0077 .0066 w k 
2 

n3 .3332 .2051 .1195 .0697 .0301 w k 
3 

Total 1.0000 1.0000 1.0000 1.0000 1.0000 

It now becomes a simple operation to replace the~ priori probability 

column from above with the~ posteriori probability values from Table 

15. A linear transformation would generate our base table. Through 
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thi s process the smallest value of all possible actions given the states 

of nature, (av/ nj)' are selected as a base. Then, all other entries 

in Table 16 given the relative states of nature will be transformed 

downward accordingly (Table 16). (Note: In Table 13 (a5v4/ n1), 

(a5v4/ n2), and (a5v4/ n3) are our respective bases.) 

At this stage, we multiply those values (Table 16) by the corre-

sponding ~ posteriori probabilities from Table 15 to generate our ad­

justed pay-off table (Table 17). 

From the entries in Table 17 denoted by(*), the action which 

maximizes the value of B(;:,a 1) is as follows: 



States 
of 

Nature 

n1 

n2 

n3 

n1 

n2 

n3 

n1 

n2 

n3 

n1 

nz 

n3 

n1 

n2 

n3 

TABLE 16 

BASE TABLE, GIVEN THE POSSIBLE PLANTING 
DATES AND VARIETIES 

A Posteriori 
Available Actions Prob. 

alvl alv2 alv3 alv4 
k 

W · 
J 

123.84 125.74 118. 79 11. 37 .6541 

121. 94 124.47 123.84 16.42 .0127 

123.84 125.74 130.17 27.80 .3332 
/ 

a2vl a2v2 a2v3 a2v4 
........ 

113.74 116. 26 118. 79 11.37 .7848 

111.84 113. 73 118. 79 16.42 .0101 

113 .10 114.37 118. 79 27.80 .2051 

a3vl a3V2 a3V3 a3V4 

103.63 106.15 110. 58 11. 37 .8720 

101. 72 102.99 107.41 16.42 .0085 

102.36 102.99 107 .42 20.23 .1195 ,,.. 
a4v1 a4V2 a4V3 a4V4 

92.89 94. 77 98.57 9.47 .9226 

90. 9,8 96.17 96.67 9.47 .0077 

89.73 90.36 93.51 10.11 .0697 -
a5vl a5v2 a5V3 a5V4 

80.87 82. 77 85.93 0.0 .9633 

79.61 81. 51 84.03 0.0 .0066 

76.46 77. 72 80.25 0.0 .0301 
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Appro-
priate 

Planting 
Date 

a1v£ 

a2v£ 

a3v£ 

a4v£ 

a4v£ 



B (-z;) = 

where 

B (-z;, al ) 

B (w, a2) 

Time of 
Attaining 
GOD 70 

Criterion 

al 

a2 

a3 

a4 

a5 

Max B(-z;,a 1), B (-z;,a2), B(-z;,a), B (-z;,a4), 

= 

= 

alv2 

B (w,a3) = B(w,a4) = B (w,a5) = alv3 

TABLE 17 

ADJUSTED PAY-OFF TABLE: 
*MAXIMIZING ACTION CRITERION 

Available Actions 

aivl aiv2 aiv 3 

123.81 125. 72* 122.64 

113. 59 115 .85 118. 78* 

103.45 105.74 110.21* 

92.65 94.47 98.20* 

80. 72 82.61 85.73* 

B (-z;, a5) 

aiv4 

18.91 

14.78 

12.47 

9.51 

0.00 

If the seven consecutive days GOD total reaches seventy in the 

first planting period, then Utah Hybrid 544 would be the recommended 

crop for planting. If the seventy growing degree days are reached in 
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the later periods in May, then Utah Hybrid 330 would be the recommended 

variety to plant. 
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Harvest Considerations 

There has been much discussion about the best time for harvesting 

corn. Some of the key areas for consideration are: precipitation, 

fall frosts, maturity, and silage moisture content. 

Precipitation. Snow and rain are possible constraints on the 

growing season. Although it could be a problem, snow does not gener­

ally stay on the ground long enough to interfere with the harvest. 

Snow in Cache Valley does not begin to accumulate until late November 

or early December, and frosts would have stopped the growth of the 

plant long before that time. 

Rain is more of a problem than snow. The rain itself does not 

damage the corn, but if the soil gets too wet, the heavy equipment 

used for harvesting is unable to function properly. Table 25 (Ap­

pendix) gives moisture accumulations in the fall months near an ex­

pected normal harvest time. From these data, it is evident that there 

are not too many times when the farm manager can harvest and avoid the 

heavy moisture. Harvesting early would minimize the risk of wet 

weather but would also shorten the growing season. The farm manager 

takes more of a risk by waiting until the last week of September to 

harvest. If harvest is delayed past the first few days of October, 

the risk factor is greatly increased. After the first ten days of 

the month, precipitation begins to accumulate more rapidly (Table 25, 

Appendix). 

Fall Frosts. Cool nights can be expected in the fall months in 

the valleys of Northern Utah. By the last week in September, the 



probability of a 32° F. frost is 50 percent, and by October 11, the 

probability of a 28° F. frost is 50 percent. In selecting a harvest 

date, DeVere R. McAllister, Extension Agronomist at Utah State Uni­

versity, suggests three procedures that will help: 

1. If the corn was in the early glaze stage when frosted, 
harvest as soon as possible as further drying will 
make packing more difficult. 

2. If the corn is immature (milk, early dough--partially 
dented), let it be, if the frost nips only the tops 
above the ears. Periodically check for the early 
glaze stage and harvest when ready. More growth will 
occur. 

3. If corn is immature (milk or early dough--partially 
dented), and is frosted to below the ears or to the 
ground, let it dry several days in the field under 
bright, clear weather or a week in damp, cloudy 
weather. There will be no further growth during this 
delay, but the moisture level in the stalks and ears 
will decrease allowing better storage and diminished 
leakage from the silage mass. The leaves on a mature, 
unfrosted corn plant make up only 15 percent of the 
total weight. Should they frost and blow off, you 
still have from 85 to 90 percent of the total left 
(McAllister, 1974, p. 3). 

One of the real danger of frost is that too much drying can take 

place. Most sources have stated that the ideal moisture level is be-

tween 60 and 70 percent for compacting and storage. 
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Maturity. Determining the proper degree of maturity is an impor­

tant factor in optimizing crop yield. There have been several methods 

suggested for testing maturity. The Northrup King Company, for ex-

ample, suggests: 

One good way to determine whether or not your crop has 
matured is to split a kernel from tip to top. It has 
completed its growth cycle when a tough black layer has 
formed just above the tip, which seals off the embryo and 



starchy endosperm. Once it reaches this state, corn will 
start to dry out naturally. No further grain development 
occurs. 
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McAllister makes the following suggestion on how to tell the corn 

is mature: 

The ideal time to harvest for safe storage and maximum milk 
or meat per acre is when the kernels begin to glaze, which 
is well past the time when kernels are just dented. It is 
later than you think by just looking at the plant and the 
outside of the ears. You can afford to let some of the 
lower leaves die and fall off rather than rush harvesting 
the crop with the grain still growing. In late August or 
early September, go into the field at least once a week and 
break the upper half off of several ears from scattered lo­
cations leaving the butt of the ear on the plant. Now ex­
amine the kernels around the ring of the broken upper half 
of each ear. Using your fingernail, a pencil, a nail, or 
other pointed object, pierce the lower part of each kernel 
around the ring. If juice comes out, you are too early as 
starch is still being deposited in the kernels and maximum 
starch accumulation has not occurred. When the kernels have 
reached the hard-dough or early glaze stage, no juice will 
be evident and growth will have ceased--go ahead and harvest 
(McAllister, 1974, p. 1). 

Another method that has proven accurate and that is easy to use 

is the accumulation of growing degree days. This measure gives the 

farm manager up-to-date information as to how his crop is maturing. 

Through the accumulation of heat units, it can be noted whether or 

not the season has been as hot or as long as normal. From Table 24 

in the Appendix, it is possible to predict the time of maturity by 

accumulating heat units. 



SUMMARY AND CONCLUSIONS 

This paper has been performed for the purpose of helping the 

farm manager in making better decisions with regard to the choices 
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of action that will yield the best results in corn silage production, 

when some constraints of variable nature are imposed. A foreknowledge 

of the states of nature that can occur is an exigency for improving 

the decision process. 

The farm manager does not know when or how nature is going to 

move to frustrate or to aid him, but by studying the alternatives and 

planning a strategy for each, he stands a much better chance of making 

the correct move when a given constraint is imposed at random. 

Specifically, this work has considered the various states of na­

ture that are likely to occur in any given year that will condition 

corn silage production in the Cache Valley area. 

An excellent water supply reading, from the observation of snow­

pack and water storage, such as is normal in Cache Valley, has no ef­

fect at all upon the action to be taken. 

The seventy growing degree days accumulated in seven days method 

as a criterion for planting date selection is reliable and can be ap­

plied with little training. Only one piece of equipment is needed 

for collecting data, a minimum-maximum thermometer. 

The farmer can improve the safety margin of the method by allowing 

a few days between when the 70 GOD are reached and the planting date 

if the 70 GOD date is unusually early, as in 1952 and 1966 (see Table 

10). 
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Along with the planting date, it is important to select an appro­

priate variety of silage corn to plant. Within the limits imposed, 

the best variety would be Utah Hybrid 330 or Utah Hybrid 544. Modern 

technology applied to the breeding of the corn silage plant has made 

significant improvement in productivity, offering a wide range of 

varieties which may optimally be matched to climate conditions. 

This study recommends the use of the accumulated growing degree 

days (GOD) to maturity for determining the approximate date of maturity. 

GOD are measurable and can provide up-to-date prospects at decision 

time. 

By applying the right data to the decision theory model, more 

efficient decisions should be applied to the production of corn silage 

in Northern Utah. With minor adjustments, this farm management system 

could be applied to other areas and to other crops . 
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APPENDIX 



cal 

TABLE 18 

DATES WHEN THE SUM OF GOD FOR SEVEN CONSECUTIVE SPRING 
DAYS FIRST REACHED 70 AS RECORDED AT U.S.U. 
AGRICULTURAL EXPERIMENT STATION, 1959-1966 

Year Date 

1959 May 14 
1960 May 10 
1961 May 22 
1962 May 6 
1963 May 6 
1964 May 15 
1965 May 16 
1966 May 3 

Daily mean 1959-1966 reached on May 16 

DATES WHEN THE SPRING MEAN SOIL TEMPERATURES EQUAL 
50° F. AT U.S.U. AGRICULTURAL EXPERIMENT 

FARM, 1969-1975 (DEPTH= 4 IN.) 

Year Date 

1969 May 1 
1970 May 4 
1971 May 2 
1972 May 3 

1973 May 6 
1974 May 2 
1975 May 3 

50 

SOURCE: U.S. Department of Commerce, Weather Bureau, Climatologi-
Data (Utah, 1952-1975). 



TABLE 19 

YIELDS COMPARED WITH FROST DATES AND THEIR INTENSITIES FOR THE YEARS 1959-1966 

GOD GOD Yield (Tons/Acre) Variety Between Last Between 
Spring and Planting & 

Frost Temp. 1st Fa 11 Planting Emerg- Harvest Harvest 680 544 330 216 
Dates (OF) Frosts Date ence Date Dates ow TON ow TON ow TON ow TON 

1966 May 23 27 2177. 5 May 3 May 8 Sep 21 2412.0 6.4 4.2 - - - - 3.8 2.7 
1966 May 23 27 2177. 5 May 24 May 29 Sep 21 2177. 5 6.7 4.4 - - - - 4.4 3.0 
1965 May 3 30 1962.5 May 3 May 16 Sep 21 1985.0 8.3 5.5 6.9 4.5 7.0 4.9 4.6 3.2 
1964 May 2 30 1771.0 May 11 May 17 Sep 14 1992.5 6.5 3.8 5.9 3.8 6.2 4.3 5.5 3.9 
1963 Oct 24 29* 2381. 0 May 8 May 17 Oct 2 2381.0 9.4 6.5 7.2 5.0 7.1 5.0 5.7 4.0 
1962 May 1 30* 1769.0 May 4 May 10 Sep 10 1990.5 7.1 4.0 6.6 4.3 6.6 4.4 4.9 3.4 
1961 May 3 31* 2222.0 May 4 May 16 Sep 24 2288.0 7.9 5.5 8.3 5.8 9 .1 6.4 7.9 5.5 
1960 May 18 32 1735.5 Jun 21 Jun 26 Sep 23 1735.5 - - 5.3 2.8 5.6 3.2 4.7 3.1 
1959 May 3 28* 2019.0 May 8 May 16 Sep 17 2125.5 5.8 3.7 6.0 4.1 6.2 4.3 4.8 3.4 

SOURCE: Data compiled from: Rex F. Nielson, Corn Trials 1953--1966, (Logan, Utah: Department of Soil 
Science and Biometeorology, Utah State University); U.S. Department of Commerce, Weather Bureau, Climato-
logical Data, Utah--1952-1975; E. Arla Richardson, Utah State Climatologist, Dept. of Soil Sciences and 
Biometeorology, Utah State University. 

*Locally heavy frosts. 
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Average* 
a' 

a' 1 

a' 2 

a' 3 

a' 4 

a' 5 

TABLE 20 

PROBABILITY OF LOWER AND UPPER BOUND (TEMP. F0
) 

FOR 130 DAYS FROST-FREE SEASON FOR 
EARLY SPRING FROST 

Date of 
Pr( n2 & n3) 

Emergence Pr 32° < 

May 12 0.7 

May 18 .55 

May 24 .40 

May 30 .283 

June 5 .15 

Pr(n3) 

Pr 28° < 

.65 

.50 

.35 

.225 

. 125 

*~verage a• 1 is calculated as follows; a'i is the emergence 
where 1 = 1, . .. , 5. 

a1 = May 2-7, average required number of days for emergence 
is equal to 8 days (Table 14). So, the emergence interval 
will be 10-15 May and the average May 12 is chosen as a 
base. 

Using the following formulas : 

Pr( n2/ai) = P(n2/ai & n3/ai) - Pr( n3/ai) 

Pr( n1/ai) = 1 - P(n2/ai & n3/ai) 

where n1, n2, n3 are the states of nature, ai planting date and p's 
represent tne respective probabilities. 
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TABLE 20--Continued 

A 130 DAY FROST-FREE GROWING SEASON FROST PROBABILITY TABLE 

Prob. Prob. Prob. Prob. Prob. Prob. Prob. Prob. 
of of of of of of of of 

May 32° 28° June 32° 28° Sept 32° 28° Oct 32° 28° 

1 .55 1 1 1 
2 2 .20 2 2 .65 .25 
3 .50 3 3 3 
4 .85 4 . 15 4 4 .70 .30 
5 .45 5 5 5 
6 6 6 .05 6 . 75 .35 
7 .80 .40 7 7 7 
8 8 8 8 .80 .40 
9 .75 .35 9 .10 9 9 

10 10 10 10 .85 .45 
11 . 30 11 11 .10 11 .50 
12 . 70 12 12 12 .55 
13 13 13 13 .90 
14 .65 .25 14 14 . 15 14 .60 
15 15 .05 15 15 
16 .60 .20 16 16 .20 16 .65 
17 17 17 17 
18 .55 18 18 .25 18 . 95 .70 
19 .15 19 19 19 
20 .50 20 20 .30 .05 20 .75 
21 21 21 21 
22 .45 22 22 .35 22 .80 
23 .10 23 23 23 
24 .40 24 24 .40 24 .85 
25 25 25 .10 25 
26 .35 26 26 .45 26 
27 27 27 .50 27 .90 
28 .30 28 28 .55 .15 28 
29 . 05 29 29 29 
30 30 30 .60 .20 30 
31 .25 31 

SOURCE: E. Arlo Richardson and Gaylen L. Ashcroft, Freeze-Free 
Seasons of State of Utah--Map and Table, published jointly by Utah 
Agricultural Experiment Station, Utah State University, Logan, Utah, 
and Department of Commerce, ESSA, Environmental Data Services . 



~Jeek 
Begins 

Apr 5 
Apr 12 
Apr 19 
Apr 26 
May 3 
May 10 
May 17 
May 24 
May 31 
Jun 7 
Jun 14 
Jun 21 
Jun 28 
Jul 5 
Jul 12 
Jul 19 
Jul 26 
Aug 2 
Aug 9 
Aug 16 
Aug 23 
Aug 30 
Sep 6 
Sep 13 
Sep 20 
Sep 27 
Oct 4 
Oct 11 
Oct 18 
Oct 25 

54 

TABLE 21 

MEAN GROWING DEGREE DAYS USING THE 50°-86° F. 

Lewiston 
Mean 

26 
41 
44 
45 
58 
66 
69 
82 
77 
91 

101 
110 
118 
126 
130 
132 
136 
131 
129 
126 
119 
114 
107 
95 
81 
75 
65 
53 
40 
29 

METHOD, FOR VARIOUS TIME PERIODS AND 
STATIONS IN UTAH 

Growing Degree Days - Base 50° F. 

Logan Rich- Day Mean GOD 1959-1966 
usu field of USU Experiment Station 
Mean Mean Month May Jun Jul Aug Sep 

25 1 9.4 13.3 19.1 
40 2 8.9 13.6 19.3 
44 3 7.5 12.7 20.3 
45 4 8.4 10.9 18.4 
59 74 5 8.3 11.8 18.2 
64 77 6 8.3 13.6 19.6 
67 84 7 9.6 13.9 20.3 
84 97 8 8.8 12.0 18.3 
80 97 9 10.1 14.1 20.4 
94 109 10 9.6 13.8 19.7 

107 116 11 9.7 14.8 19.4 
119 121 12 9.6 14.6 20.9 
128 128 13 11.0 16.2 20.4 
144 132 14 10.1 15.8 20.4 
152 134 15 9.4 14.1 18.9 
158 135 16 10.3 14.0 19.5 
159 138 17 9.8 14.3 20.8 
152 135 18 9.3 15.4 21.3 
148 132 19 10.8 20.3 
149 129 20 11.8 20.3 
134 125 21 10.9 21.2 
125 121 22 10.0 21.5 
114 115 23 8.9 21.2 
97 111 24 10.4 20.8 
79 97 25 10.9 20.6 
75 91 26 11.4 19.8 
60 80 27 10. 7 21.1 
49 67 28 10. 9 20.9 
36 62 29 12.4 20.5 
28 53 30 13.1 21. 9 

31 13.2 23.1 

Monthly Totals 314 454 626 575 409 

SOURCE: Drawn from U.S. Department of Commerce, Weather Bureau, 
Climatological Data, Utah--1952, 1975. 



TABLE 21--Continued 

Growing Degree Days, 50° F. Base, 86° F. Maximum 

Sil age Corn 
May 3 - Sep 13 

22 Weeks 
County Community Elevation 133 Days 

Cache Lewiston 4480 2059 

Logan 4785 2275 

Sevier Richfield 5270 2236 

SOURCE: E. Arlo Richardson, Utah State Climatologist, Depart­
ment of Soil Science and Biometeorology, Utah State University. 
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Year 

1953 

1954 

1955 

1956 

1957 

1958 

1959 

1960 

1961 

1962 

1963 

1964 

1965 

1966 

TABLE 22 

PRICES FOR CORN SILAGE IN UTAH 
FROM 1953 THROUGH 1980 

$ Value/Ton Year 

7.00 1967 

7.50 1968 

7.50 1969 

7.00 1970 

6.50 1971 

6.50 1972 

7.00 1973 

8.00 1974 

8.00 1975 

7.40 1976 

7.60 1977 

8.20 1978 

8.40 1979 

9.80 1980 

$Value/Ton 

8.60 

8.10 

8.30 

9.80 

10.00 

11.50 

14-. 50 

17.20 

15.90 

17.30 

17.20 

15.80 

18.30 

21.10 

SOURCE: Statistical Reporting Service, U.S. Department of 
Agriculture, Utah Agricultural Statistics--1981. Salt Lake City, 
Utah. 
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TABLE 23 

GROWTH STAGES OF CORN IN 
GROWING DEGREE DAYS 

Varieties 

Basic Utah Hybrids 
Stages Model* 216 330 544 680 

---------------Growing Degree Days -------------------
Plant 

Emerge 80 80 80 80 80 

Tassel 850 800 838 916 955 

Silk 370 348 365 398 415 

Milk 140 132 138 151 157 

Mature 840 790 829 905 943 

Totals 2280 2150 2250 2450 2550 

*Model and Program developed by Dr. R. J. Hanks, and P. V. 
Rasmussen, Utah State University. 
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TABLE 24 

SILAGE YIELD DATA FOR UTAH HYBRID CORN TRIALS 
IN THE YEARS 1953 THROUGH 1966 

Yield in 
Tons Per Percent 
Acre Dry Dry 

Variety Weight Maturity* Weight 

Utahybrid 680 7.8 
544 8.4 
330 6.8 

Utahybrid 680 9.1 1.3 
544 7.3 2.0 
330 7.0 1.0 

Utahybrid 680 7.4 1.3 
544 7.9 2.0 
330 7.6 1.3 
216 6.1 1.0 

Utahybrid 680 8.6 1. 9 
544 7.8 1.8 
330 6.7 1.1 
216 5.7 1.0 

Utahybrid 680 7.8 1.6 
544 7.7 2.1 
330 6.8 1.1 
216 5.1 1.0 

Utahybrid 680 9.6 1.0 
544 8.2 1.0 
330 7.9 1.0 
216 4.8 1.0 

Utahybrid 680 5.8 2.8 
544 6.0 1. 5 
330 6.2 1.0 
216 4.8 1.0 

Utahybrid 544 5.3 4.4 20 
330 5.6 3.9 22 
216 4.7 2.4 23 
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Year 

1953 

1954 

1955 

1956 

1957 

1958 

1959 

1960 
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TABLE 24--Continued 

Yield in 
Tons Per Percent 
Acre Dry Dry 

Variety Weight Maturity* Weight Year 

Utahybrid 680 7.9 1.0 30 1961 
544 8.3 1.0 30 
330 9.1 1.0 38 
216 7.9 1.0 41 

Utahybrid 680 7.09 3.9 27 1962 
544 6.57 2.9 30 
330 6.58 2.1 34 
216 4.85 1.0 38 

Utahybrid 680 9.40 1. 2 29.4 1963 
544 7. 20 1.0 31.4 
330 7.10 1.0 37.6 
216 5. 72 1.0 39.1 

Utahybrid 680 6.5 3.7 22.9 1964 
544 5.9 3.0 22. 5 
330 6.2 1. 2 29. 0 
216 5. 5 1.0 32.0 

Utahybrid 680 8.3 2.1 29 1965 
544 6.9 2.4 27 
330 7.0 1.0 36 
216 4.6 1.0 46 

Utahybrid 680 6. 4 2.0 27 1966 
544 5.5 1.0 29 
216 3.8 1.0 36 
216 4 .4 1.4 26 
544 5.8 1.6 28 
680 6. 7 2.0 25 

SOURCE: Rex F. Nielson, Corn Trials, 1953-1966, (Logan, Utah: 
Department of Soil Science and Biometerology, Utah State University). 

*Key: 1.0 Dent 
2.0 Hard Dough 
3.0 Soft Dough 
4.0 Milk 
5.0 Kernels Not Formed 



Dates 

May 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

TABLE 25 

PRECIPITATION ACCUMULATED OVER THE 14-DAY PERIOD ENDING 
WITH THE DATES LISTED, (IN INCHES), AT UTAH 

STATE UNIVERSITY EXPERIMENT STATION 

Preci~itation in Inches 
Years 

1959 1960 1961 1962 1963 1964 1965 

1.81 1.30 .41 1.63 2.10 1.26 .29 
1.03 1.30 .31 1.63 2.06 1.82 .21 

.73 1.07 .31 1.63 1.86 1.69 .21 

. 71 1. 28 .35 1. 54 1.39 1. 57 .21 

. 71 1. 28 .35 .82 .89 2.28 .51 

. 71 1. 28 .08 .82 .89 2.28 .41 

. 71 1.01 .18 .82 .89 2.28 .41 

. 71 .84 .18 .82 .92 1. 97 .68 

. 71 .84 .18 .82 .97 1. 97 .81 

. 21 .84 .18 .69 .68 1. 77 .81 

.00 .84 .18 .69 .26 1. 98 .81 

.00 .56 .18 .01 .30 1. 98 .81 

.00 .42 .18 .15 .30 1. 98 .81 

.00 .42 .21 .27 .30 1. 98 1.07 

.00 .42 .41 .44 .23 1. 76 1.07 

.26 .42 .53 .53 .23 1.15 1.07 

. 26 .22 . 53 .53 .23 1.10 1.07 

.30 .06 .52 .53 .23 1.10 1. 07 

.30 .06 .52 .53 .23 .21 . 77 

.30 .06 .52 .56 .23 .21 .88 

.30 .06 .38 1.26 . 23 .21 .88 

.50 .05 .38 1.35 .20 .21 .55 

.54 .05 .38 1.35 .15 .21 .42 

.54 .05 .38 1.42 .15 . 21 .99 

.61 .05 .38 1.45 .14 .00 .99 
1.05 .05 .38 1. 51 .10 .00 1.00 
1. 78 .19 .38 2.04 .00 .30 1.00 
1. 78 .19 .35 1. 97 .00 .37 .74 
1. 78 .19 .15 1. 92 .00 .94 .74 
1.54 .19 .13 1. 92 .00 .97 .74 
1. 54 .19 .13 2.22 .00 .97 .74 

60 

1966 

.82 

.22 

.13 

.13 

.13 

.08 

.08 

.08 

.30 
1.02 
1.12 
1.12 
1.12 
1.12 
1.12 
1.12 
1.12 
1.12 
1.12 
1.12 
1.12 
1.17 

.95 

.15 

.05 

.05 

.05 

.05 

.05 

.05 

.05 
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TABLE 25--Continued 

Precipitation in Inches 

Years 

Dates 1959 1960 1961 1962 1963 1964 1965 1966 

Sep 14 .00 .44 .04 .00 .47 .04 1.62 .79 
15 .51 .09 .04 .00 .47 .08 1.62 .64 
16 .56 .07 .06 .00 .47 .04 2.35 .59 
17 .56 .16 .18 .00 1.86 .04 2.35 .59 
18 .61 .16 1.08 .00 1.86 .10 2.35 .59 
19 .67 .12 1. 75 .00 2.18 .10 2.27 .59 
20 .93 .12 1.80 .00 2.19 .10 1.01 .59 
21 1.07 .12 1.80 .02 2.30 .10 .98 .59 
22 1.07 .22 1.80 .02 2.34 .10 .80 .59 
23 1.07 .22 1.85 .02 2.34 .10 .73 .59 
24 1.09 .22 1.85 .02 2.34 .10 .73 .59 
25 1.45 .22 1.85 .02 2.34 .10 .73 .54 
26 1.62 .22 1.85 .02 2.34 .10 .73 .55 
27 1. 74 .20 1.85 .08 2.04 .10 .73 .65 
28 2.02 .20 1.85 .25 2.04 .10 .73 .32 
29 1. 59 .20 1.85 .31 2.04 .06 .86 .21 
30 1. 54 .20 1. 79 .31 .65 .06 .13 .21 

Oct 1 1. 54 .10 1.67 .31 .65 .06 .13 .21 
2 1.49 .10 .77 .31 .33 .00 .13 .21 
3 1.43 .10 .10 .31 .32 .00 .13 .21 
4 1.17 .10 .05 .31 .15 .00 .13 .21 
5 1.03 .10 .05 .68 .00 .00 .13 .21 
6 1.03 .00 .05 .76 .00 .00 .13 .21 
7 1.19 .06 .14 .84 .00 .00 .13 .21 
8 .17 .58 .15 .84 .00 .00 .13 .21 
9 .95 1.07 .21 .84 .00 .00 .13 .19 

10 .78 1.14 .46 .78 .00 .00 .13 .10 
11 .66 1.26 .46 .61 .00 .00 .13 .00 
12 .38 1.28 .46 .55 .19 .00 .17 .00 
13 .30 1.64 .46 .55 .83 .00 .04 .41 
14 .30 1.64 .46 1.03 .83 .00 .04 .41 
15 .30 1.64 .46 1.04 .83 .00 .04 .41 
16 .30 1.64 .46 1.04 .83 .00 .04 .41 
17 .30 1.64 .46 1.04 .83 .00 .04 .41 
18 .30 1.64 .46 .65 .83 .00 .04 .41 
19 .30 1.64 .46 .57 .83 .00 .04 .41 
20 .30 1.64 .46 .49 .83 .00 .04 .41 
21 .14 1.58 .32 .49 .83 .00 .04 .41 
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TABLE 25--Continued 

Precipitation in Inches 

Years 

Dates 1952 1953 1954 1955 1956 1957 1958 

Sep 14 .15 .00 .26 .00 .06 .00 .50 
15 .15 .00 .26 .00 .06 .00 .50 
16 .15 .00 .14 .00 .06 .00 .50 
17 .15 .02 .14 .03 .06 .00 .50 
18 .15 .02 .14 .03 .06 .05 .50 
19 .15 .02 .14 .36 .06 .62 .50 
20 .15 .02 .14 .36 .06 .62 .50 
21 .13 .02 .14 .36 .06 .62 .50 
22 .13 .02 .14 .36 .06 .62 .50 
23 .13 .02 1.85 .36 .06 .62 .44 
24 .13 .02 1.85 .39 .05 .62 .49 
25 .05 .02 1. 71 .69 .00 .62 .46 
26 .03 .02 1. 71 1. 22 .00 .62 .33 
27 .03 .02 1. 71 1. 22 .00 .62 .05 
28 .00 .02 1. 71 1.22 .00 .62 .05 
29 .00 .02 1. 71 1.22 .00 .62 .05 
30 .00 .02 1. 71 1.22 .00 .62 .05 

Oct 1 .00 .00 1. 71 1.19 .00 .62 .05 
2 .00 .00 1. 71 1.19 .00 .66 .05 
3 .00 .00 1. 71 .86 .00 .31 .05 
4 .00 .00 1. 74 .86 .00 .57 .05 
5 .00 .00 1. 79 .86 .00 .57 .05 
6 .00 .00 .08 .86 .00 .57 .05 
7 .00 .00 .08 .86 .00 . 57 .05 
8 .00 .00 .08 .83 .00 .57 .00 
9 .00 .00 .08 .53 .00 .57 .00 

10 .00 .00 .08 .00 .00 .57 .00 
11 .00 .00 .08 .17 .00 .57 .00 
12 .00 .00 .08 .17 .30 .57 .00 
13 .00 .00 .34 .17 .31 .57 .00 
14 .00 .00 .34 .17 .31 .63 .00 
15 .00 .17 .34 .17 .31 .63 .00 
16 .00 .17 .34 .17 .31 .54 .00 
17 .00 .17 .34 .17 .31 .32 .00 
18 .00 .17 .31 .17 .31 .06 .00 
19 .00 .17 .26 .35 .31 .06 .00 
20 .00 .17 .26 .64 .31 .06 .03 
21 .00 .17 .26 .74 .31 .06 .03 

SOURCE: U.S. Department of Commerce, Weather Bureau, Climatologi-
cal Data, Utah--1952 - 1975. 



Dates 

1959 Sep 
Oct 
Nov 

1960 Sep 
Oct 
Nov 4 

5 
9 

1961 Sep 
Oct 
Oct 22 

28 
29 

Nov 

1962 Sep 
Oct 
Nov 

1963 Sep 
Oct 
Nov 7 

16 
17 
18 

1964 Sep 
Oct 
Nov 11 

12 
13 
14 

1965 Sep 
Oct 
Nov 24 

25 
26 

TABLE 26 

SNOW FALL DATA, 1959-1974, AT UTAH STATE 
UNIVERSITY EXPERIMENT STATION 

Snow Max. Snow 
Total Depth Fall 

(Inches) (Inches) (Inches) 

0 0 
0 0 
0 0 

0 0 
0 0 

3.6 
.5 

1.0 

0 0 
19.0 

4.5 
6.2 
5.3 

3.3 

0 0 
0 0 
0 0 

0 0 
0 0 
T T 4.0 

3.5 

0 0 
0 0 
1.0 1.0 3.0 

T 
2.0 

T 0 
0 0 
6.7 5.0 3.4 

5.6 
.8 

63 

On Ground 
(Inches) 

4.0 

5.0 
6.0 
9.0 

4.0 
3.0 
2.0 
1.0 

3.0 
1.0 
3.0 
2.0 

3.0 
7.0 
6.0 
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TABLE 26--Continued 

Snow Max. Snow 
Total Depth Fall On Ground 

Dates (Inches) (Inches) (Inches) (Inches) 

1966 Sep 0 0 
Oct 0 0 
Oct 13 .5 1.0 

14 4.5 5.0 
21 T T 

Nov 3.0 3.0 
Nov 8 8.5 9.0 

9 .3 7.0 
10 .3 5.0 
11 T 3.0 

1967 Sep 0 0 
Oct 0 0 
Nov 0.4 1.0 

1968 Sep 0 0 
Oct 0 0 
Oct 17 T 
Nov 12.8 6.0 

1969 Sep 0 0 
Oct 0 0 
Oct 11 T 

13 T 
Nov T 0 
Nov 16 T 

18 0.5 1.0 

1970 Sep 0 0 
Oct 2.0 
Oct 7 T 

10 T 
11 T 
27 T 

Nov T T 

1971 Sep 0 0 
Oct 4.0 
Oct 1 2.0 2.0 

18 5.0 5.0 
19 T 3.0 
27 T T 
28 6.0 6.0 
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TABLE 26--Continued 

Snow Max. Snow 
Total Depth Fall On Ground 

Dates (Inches) (Inches) (Inches) (Inches) 

1971 (cont'd) 
Oct 29 2.0 

31 3.0 3.0 
Nov 3.0 
Nov 1 2.0 3.0 

2 T 1.0 
3 1.0 

1972 Sep 0 0 
Oct T 
Oct 29 1.2 2.0 

30 T 1.0 
31 T 

Nov 1.0 29.0 
Nov 15 T 

27 0.3 T 
29 0.8 

1973 Sep 0 0 
Oct 0 0 
Oct 29 .1 

30 .2 
Nov 3.0 26.0 
Nov 5 1.4 

22 2.8 3.0 

1974 Sep 0 0 
Oct 0 0 
Oct 22 T 
Nov 0 0 
Nov 28 T 

SOURCE: U.S. Department of Commerce, ~Jeather Bureau, Clima­
tological Data, Utah--1952-1975. 



TABLE 27 

ESTIMATED RECEIPTS, COSTS, AND NET RETURN FOR CORN SILAGE PRODUCED 
ON CLASS II IRRIGATED CROPLAND, UTAH, 1981 

Item 

Receipts: 
Corn silage, 17 tons 

Variable Costs: 
Fertilizer, 150 units N 

50 units P 
Fertilizer application 
Water, operation, & maintenance 
Plowing--4 acres/hr 
Disking, harrowing (land prep.) 
Planting--5 acres/hr 
Seed, 25# 
Irrigation 
Cultivation & furrowing 
Spraying 
Chopping--20 tons/hr 
Hauling & packing 
Interest 

Total 
Fixed Costs: 

Land taxes 
Other 

Total 

Rate 

$20/ton 

$.31/unit 
$.24/unit 

$2/ton 
$2.75/ton 
18%@ 6 mo. 

Times 
Operation 
Performed 

1 

1 
1 
1 

4 
2 
1 
1 
1 

Power Materials 
and and 

Labor1 Machinery Service Total 

------------- $/acre-------------------

2.00 12.00 
1.00 6.00 
1.00 4.00 

8.00 
2.00 6.00 

3.00 
8.00 26.00 

16.75 30.00 

46.50 
12.00 
2.00 

10.00 

17.00 
8.00 

5.00 

$340.00 

46.50 
12.00 
2.00 

10.00 
14.00 
7.00 
5.00 

17.00 
16.00 
8.00 
8.00 

34.00 
46.75 
17.25 

$226.00 

$80 assessed@ 70 mills 5.60 
10.50 

$ 16 .10 



Item 

Total Costs 

Net Returns to Land and 
Operator Management 

TABLE 27--Continued 

Rate 

Times 
Operation 
Performed 

Power Materials 
and and 

Labor1 Machinery Service 

SOURCE: Dr. Lynn H. Davis, Professor of Economics, Utah State University. 

1Labor charged at $5 per hour. 

· Total 

$242 .10 

$ 97.90 
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