# Differential subtypes of sinistral learning disabled children: A neuropsychological, taxonomic approach. 

Jerel E. Del Dotto<br>University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

## Recommended Citation

Del Dotto, Jerel E., "Differential subtypes of sinistral learning disabled children: A neuropsychological, taxonomic approach." (1982). Electronic Theses and Dissertations. 6126.
https://scholar.uwindsor.ca/etd/6126

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

## NOTE TO USERS

## This reproduction is the best copy available.

## UMI

DIFFERENTIAL SUBTYPES OF SINISTRAL LEARNING DISABLED CHILDREN: A NEUROPSYCHOLOGICAL, TAXONOMIC APPROACH
by

Jerel E. Del Dotto<br>M.A., University of Windsor, 1978

A Dissertation
Submitted to the Faculty of Graduate Studies
through the Department of Psychology
in Partial Fullfillment of the
Requirements for the Degree
of Doctor of Philosophy at the University of Windsor

Windsor, Ontario, Canada
1982

## INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

## UMI

UMI Microform DC53219
Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346


$$
\text { C. } \overline{2}
$$

This study had a two-fold purpose. First an attempt was made to isolate systematically and report on the adaptive similarities and dissimilarities between subtypes of left- and right-handed learning disabled children. Toward this end multivariate quantitative taxonomic procedures were applied to the scores collected from a battery of neuropsychological measures. The typology of cognitive strengths and weaknesses associated with learning disabilities in these two particular groups of children originated from the burgeoning documented evidence suggesting that handedness and the organization of higher cognitive abilities are correlated to some extent with each other. A second aim of the investigation was to offer some evidence to show that similar subtypes could be generated in a reliable fashion through the application of different classification techniques.

The performance measurements collected on 161 sinistral and 161 dextral children referred to the neuropsychological service of an urban children's clinic because of learning, behavioural, or perceptual handicaps were classified statistically by several multivariate procedures. Hand dominance was determined initially on the basis of preferred name writing extremity. Children within these two target samples met the following criteria: they were between the chronological ages of 108 to 179 months, had obtained a WISC Full Scale IQ in the range of 85 to 115, and were free of sensory acuity defects, primary socioemotional disturbance, or evidence of compromised environmental
influences.
Initial application of the $Q$ technique of factor analysis to each handedness sample independently generated seven factors for each data set. Three factors from each target sample were found to be highly correlated with each other. For the left-handed sample, one other fairly meaningful factor emerged, while the remaining three factors exhibited membership assignments that were of small magnitudes. On the other hand, for the right-handers a sizeable number of children were classified into each of the remaining factors. Subsequent application of several cluster algorithms to the same data sets resulted in four-cluster classification solutions that were in perfect agreement with the Q factors for the left-handed sample, and seven-cluster classification solutions that were in fairly close agreement for the right-handed group of children. Subgroup compositions across such variables as intensity of left-handedness (including an analysis of hand preference vs hand proficiency), as well as familial handedness tendencies was also analyzed through the application of a series of Chi-Square analyses. Principal findings of this phase of the study revealed that there were no particular subgroups that exhibited either an unusually large or small number of congruent, incongruent or mixed-proficient lefthanders (as defined by their performances on two skilled psychomotor tasks), pure or mixed-preference left-handers (as defined by their responses to seven hand questionnaire items), or subjects with mostly sinistral or dextral biological family members (i.e., L+, L-, R+, R-).

The profiles of test performance associated with the derived factors and clusters, correlation values computed between clusters and factors, and the results of a series of misclassification analyses were interpreted to define three highly similar and reliable subtypes of left- and right-handed learning disabled children. In addition, four other interpretable, but less welldefined subgroups emerged. Characteristics of the subgroups identified are described, and comparisons are made to other subtypes reported in the literature. The usefulness and suitability of multivariate classification instruments for providing a reliable taxonomy of learning disabilities is discussed. Finally, implications of the findings as they relate to the issue of handedness are addressed in some detail, including their obvious assessment and diagnostic considerations. Directions for future research are also provided.
. I am unable to express properly within the existing space limitations the indebtedness owing to my chairman and mentor, Dr. Byron Rourke, for his guidance, critical suggestions, and judicious counsel throughout all phases of this project. I can think of no other person who has had more of an impact on the nurturing and developing of my understanding and appreciation for the complexities as well as the subtleties involved in neuropsychological pursuits of a research and/or clinical nature.

I would also like to express my appreciation to Dr. A. Smith, Dr. C. Holland, and Dr. H. Van Der Vlugt for not only providing their time, but also their helpful comments and suggestions.

A special word of gratitude is extended to Ms. S. Turner and to Ms. M. Lalli for the many arduous hours they contributed in the typing of the manuscript. I gratefully acknowledge Dr. Kenneth Adams and Dr. Gregory Brown for their assistance in providing the neccessary computer resources for conducting the data analyses.

Finally, one sure test of the strength of a relationship clearly resides in its ability to weather or endure the trials and tribulations that have accompanied completion of a project of this magnitude. Unquestionably, no one other individual has yielded more uncompromising loyalty, has shared more intimately my moments of elation and frustration, and has had to render more personal sacrifices during the course of this project, as well as throughout my entire graduate career than my personal confidant, best friend, and partner in life.

To you, Kathy, I owe what I have achieved today.
ABSTRACT ..... i
ACKNOWLEDGEMENTS ..... iv
LIST OF TABLES ..... vii
LIST OF FIGURES ..... xi
Chapter
I INTRODUCTION ..... 1
Models of Hand Preference ..... 3
Handedness and Cerebral Organization in Adult Populations ..... 11
Handedness and Learning Difficulties ..... 31
Multivariate Classification of Learning Problems ..... 44
Summary and Statement of Problem ..... 52
Expectations ..... 55
II METHOD ..... 58
Subjects ..... 58
Test Measures ..... 64
Procedure ..... 72
Q Technique of Factor Analysis ..... 73
Cluster Analytic Classification Procedures ..... 79
Subtype Analyses ..... 88
III RESULTS ..... 90
Variable Selection ..... 90
Q Type Factor Analyses Solutions ..... 91
Cluster Analyses Solutions ..... 134
Left-Handed Cluster Solutions ..... 134
Validation of Left-Handed Clusters ..... 157
Right-Handed Cluster Solutions ..... 170
Validation of Right-Handed Clusters ..... 220
Chi-Square Analyses ..... 237
IV DISCUSSION ..... 241
Methodological Considerations ..... 243
Description of Subtypes ..... 248
Type I ..... 248
Type II ..... 251
Type III ..... 254
Type IV ..... 258
Type V ..... 259
Type VI ..... 260
Type VII ..... 261
Evaluation of Expectations ..... 262
Implications ..... 265
REFERENCE NOTES ..... 271
REFERENCES ..... 272
Appendix
A Parent Questionnaire ..... 299
B Description of Tests Included in the Neuropsychological Battery ..... 308
C Factor Loadings of Subjects in the Left- Handed Sample ..... 318
D Factor Loadings of Subjects in the Right- Handed Sample ..... 324
E Four-Cluster Classification Arrays pro-duced by Group Average, Centroid Sorting,Group Average Relocate, Centroid SortingRelocate, Group Average Relocate (Random)and Centroid Sorting Relocate (Random)330
F Sinistral Split-Sample Validation Results ..... 334
G Seven-Cluster Classification Arrays pro-duced by Group Average, Centroid Sorting,Group Average Relocate, Centroid SortingRelocate, Group Average Relocate (Random)and Centroid Sorting Relocate (Random347
HDextral Split-Sample Validation Results351
VITA AUCTORIS ..... 385
Table Page
1 Harris Inventory Hand Preference Patterns for the Group of Left-Handed Children ..... 61
2
Classification of Sinistral Family Members for the Left- and Right-Handed Samples ..... 63
3
Chronological Age, Sex, WISC Full Scale IQand WRAT Reading, Spelling, and ArithmeticCentile Specifications for Left-Handed andRight-Handed Samples65
WRAT Subtest Performance Patterns for Left- Handed and Right-Handed Samples ..... 66
List of Dependent Test Measures Grouped Into Adaptive Skill Areas ..... 68
Pearson Product Moment Correlation Coeffi- cients for Auditory-Perceptual Measures ..... 92
Pearson Product Moment Correlation Coeffi- cients for Sequential Processing Measures ..... 93
Pearson Product Moment Correlation Coeffi- cients for Visual-Perceptual Measures ..... 94
Pearson Product Moment Correlation Coeffi- cients for Tactile-Perceptual Measures ..... 95
10
Pearson Product Moment Correlation Coeffi- cients for Motor Measures ..... 96
11
Pearson Product Moment Correlation Coeffi- cients for Conceptual Reasoning Measures ..... 97
12
$\underline{R}$ Type Factor Analysis Solutions ..... 9813
Factor Analysis Solutions for Left-Handed and Right-Handed Samples ..... 99
Number of Classified (Single Factor Loadings $\geq .50)$, Multiple Loadings, and Unclassified Subjects for Sinistral and Dextral Samples ..... 101
T Score Means and Standard Deviations of Variables for Each Sinistral Q Type Factor ..... 103

$16 \quad$| T Score Means and Standard Deviations of |
| :--- |
| Variables for Each Dextral Q Type Factor . . . 110 |

17 Pearson Product Moment Correlation Coefficients for Left-Handed and Right-Handed Q Factors132
$18 \quad \mathrm{~T}$ Score Means and Standard Deviations of Clustering Variables for the Left-Handed Sample135

19 Cluster Coefficients of Group Average and Centroid Sorting Hierarchical Agglomerative Methods for the Left-Handed Sample139

20 Comparison of Relocate Cluster Solutions for Sinistral Sample from Different Starting Classifications (Shape Difference Classification vs Random Start)143

21 Number of Left-Handed Children in Each Cluster for 8, 7, 6, 5, 4, 3, and 2 Relocate Cluster Results144
$22 \quad \mathrm{~T}$ Score Means and Standard Deviations of Variables for Each Sinistral Cluster Group146

23 Pearson Product Moment Correlation Coefficients for Sinistral and Dextral Q Factors and Sinistral Cluster Groups155

24 Number of Left-Handed Children from Each of the Q Type Factors Misclassified by Cluster Analytic Methods156

25 Split Design Validation Clustering Coefficients of Group Average and Centroid Sorting Hierarchical Agglomerative Methods Applied to Two Sinistral Subsamples163

26 Number of Left-Handed Children in Each Cluster for $8,7,6,5,4,3$, and 2 Relocate Cluster Results for Subsample 1 of the Split Sample Validation Procedure168

27 Number of Left-Handed Children in Each Cluster for $8,7,6,5,4,3$, and 2 Relocate Cluster Results for Subsample 2 of the Split Sample Validation Procedure169
28 Number of Left-Handed Children in Sub-
29 Number of Left-Handed Children in Subsample 2 from Each of the Cluster Groups Misclassified by the Split Sample Validation Procedure17230 T Score Means and Standard Deviations of$\bar{C}$ lustering Variables for the Right-Handed Sample173
31
Cluster Coefficients of Group Average andCentroid Sorting Hierarchical Agglomera-tive Methods for the Right-Handed Sample177
Comparison of Relocate Cluster Solutionsfor Dextral Sample from Different StartingClassifications (Shape Difference Classi-fication vs Random Start)18133 Number of Right-Handed Children in EachCluster for 8, 7, 6, 5, 4, 3 and 2 Relo-cate Cluster Results182
34
T Score Means and Standard Deviations ofVariables for Each Dextral Group AverageCluster183
T Score Means and Standard Deviations ofVariables for Each Dextral Centroid Sor-ting Cluster190
36
Pearson Product Moment Correlation Coeffi-cients for Sinistral and Dextral Q Factorsand Cluster Groups213Number of Right-Handed Children from Eachof the Q Type Factors Misclassified by Clus-ter AnaTytic Methods219
Split Design Validation Clustering Coeffi-cients of Group Average and Centroid Sor-ting Hierarchical Agglomerative MethodsApplied to Two Dextral Subsamples225

39 Number of Right-Handed Children in Each Cluster for $8,7,6,5,4,3$ and 2 Relocate Cluster Results for Subsample 1 of the Split Sample Validation Procedure231

40 Number of Right-Handed Children in Each Cluster for 8, 7, 6, 5, 4, 3 and 2 Relocate Cluster Results for Subsample 2 of the Split Sample Validation Procedure232

41 Number of Right-Handed Children in Subsample 1 from Each of the Cluster Groups Misclassified by the Split Sample Validation Procedure . . . . . . . . . . . . . . . 233

42 Number of Right-Handed Children in Subsample 2 from Each of the Cluster Groups Misclassified by the Split Sample Validation Procedure . . . . . . . . . . . . . . . 234

43 Composition of Left-Handed Subjects for Hand Preference, Hand Proficiency, and Familial Handedness Variables for Each Q Factor and Cluster Grouping . . . . . . . . . 235

44 Comparison of Right-Handed Subjects for Familial Handedness Variable for Each Q Factor and Cluster Grouping236

Summary of Goodness-of-Fit $\chi^{2}$ Values for the Hand Preference, Hand Proficiency, and Familial Handedness Variables for Each Sinistral Q Factor and Cluster Grouping 238

Summary of Goodness-of-Fit $\chi^{2}$ Values for the Familial Handedness Variable for Each Dextral Q Factor and Cluster Grouping 240

Figure
1 Illustration of subtypes expected to be generated by multivariate statistical classification analyses76

Illustration of the steps involved in the Q type and cluster analytic classification procedures89

Plot of $I$ score means for Factor 1 of sinistral sample 118

Plot of I score means for Factor 2 of sinistral sample 119
$5 \quad$ Plot of I score means for Factor 3 of sinistral sample. ................. 12

6 Plot of I score means for Factor 4 of sinistral sample .................. 121

Plot of $I$ score means for Factor 5 of sinistral sample 122

8 Plot of I score means for Factor 6 of sinistral sample . . . . . . . . . . . . . 123

Plot of $T$ score means for Factor 7 of sinistral sample . . . . . . . . . . . . . . . 12Plot of $\frac{T}{}$ score means for Factor 1 of dex-tral sample125
Plot of $I$ score means for Factor 2 of dex- tral sample ..... 126
12 Plot of I score means for Factor 3 of dex- tral sample ..... 127
13
Plot of I score means for Factor 4 of dex- tral sample ..... 128
14
Plot of $I$ score means for Factor 5 of dex- tral sample ..... 129
15 Plot of $I$ score means for Factor 6 of dex- tral sample ..... 130
Figure
16 Plot of T score means for Factor 7 of dex- tral sample ..... 131
17 Hierarchical tree using group average on sin- istral sample ..... 137
Hierarchical tree using centroid sorting on sinistral sample ..... 138
Plot of group average hierarchical clus- ter coefficients ..... 140
Plot of centroid sorting hierarchical clus- ter coefficients for sinistral sample ..... 141
Plot of I score means for Cluster 1 of sin- istral sample ..... 151
Plot of I score means for Cluster 2 of sin- istral sāmple ..... 152
Plot of $T$ score means for Cluster 3 of sin- istral sample ..... 153
24
Plot of $T$ score means for Cluster 4 of sin- istral sample ..... 154
25 Split sample validation hierarchical tree using group average on sinistral subsample 1 ..... 15926 Split sample validation hierarchical treeusing centroid sorting on sinistral sub-sample 1160
27
Split sample validation hierarchical treeusing group average on sinistral sub-sample 2161
Split sample validation tree using centroid sorting on sinistral subsample 2 ..... 162
Plot of group average hierarchical clustering coefficients for split sample validation proce- dure using sinistral subsample 1 ..... 164Plot of centroid sorting hierarchical clus-tering coefficients for split sample vali-dation procedure using sinistral subsample 1 . 165

$31 \quad$| Plot of group average hierarchical clus- |
| :--- |
| tering coefficients for split sample vali- |
| dation procedure using sinistral sub- |
| sample 2 ................... 166 |

32
Plot of centroid sorting hierarchical. clustering coefficients for split sample validation procedure using sinistral subsample 2 167

Hierarchical tree using group average on dextral sample 175

Hierarchical tree using centroid sorting on dextral sample 176Plot of group average hierarchical clustercoefficients for dextral sample178
Plot of centroid sorting hierarchical clus-ter coefficients for dextral sample179
Plot of I score means for Cluster 1 ofgroup average solution for dextral sample199
Plot of I score means for Cluster 2 ofgroup avērage solution for dextral sample . . . 200
Plot of $I$ score means for Cluster 3 ofgroup average solution for dextral sample201
Plot of $I$ score means for Cluster 4 of group average solution for dextral sample ..... 202
Plot of I score means for Cluster 5 of group average solution for dextral sample ..... 203
Plot of I score means for Cluster 6 ofgroup average solution for dextral sample204
Plot of I score means for Cluster 7 of group average solution for dextral sample ..... 205
Plot of I score means for Cluster 1 of cen- troid sor̄ing solution for dextral sample ..... 206
Plot of I score means for Cluster 2 of cen-troid sor̄ting solution for dextral sample . . . 207
Plot of I score means for Cluster 3 of cen-troid sorting solution for dextral sample208Figure
47
Plot of $T$ score means for Cluster 4 of centroid sorting solution for dextral sample ..... 209Plot of $T$ score means for Cluster 5 ofcentroid sorting solution for dextralsample21049 Plot of I score means for Cluster 6 ofcentroid sorting solution for dextralsample21150 Plot of I score means for Cluster 7 ofcentroid sorting solution for dextralsample212
51
Split sample validation hierarchicaltree using group average on dextralsubsample 1221
52
Split sample validation hierarchicaltree using centroid sorting on dextralsubsample 1222
53
Split sample validation hierarchicaltree using group average on dextralsubsample 2223
Split sample validation hierarchicaltree using centroid sorting on dextralsubsample 2224
55 Plot of group average hierarchical clus- tering coefficients for split sample validation procedure using dextral sub- sample 1 ..... 226
56 Plot of centroid sorting hierarchical clustering coefficients for split sample validation procedure using dextral sub- sample 1 ..... 22757 Plot of group average hierarchical clus-tering coefficients for split samplevalidation procedure using dextral sub-sample 2228
58 Plot of centroid sorting hierarchicalclustering coefficients for split samplevalidation procedure using dextral sub-sample 2229

## Figure

| 59 | Type I . . . . . . . . . . . . . . . . . . . . |
| :--- | :--- | :--- | :--- |
| 60 | Type II . . . . . . . . . . . . . . . . . . . |
| 61 | Type III . . . . . . . . . . . . . . . . . . . |

## CHAPTER I

## INTRODUCTION

The problem of delineating the nature of the organization of the cerebral hemispheres in man has intrigued researchers for many years. A review of the literature reveals a voluminous number of reports that have been generated on the issue of cerebral specialization and functional asymmetry of higher cognitive abilities. At the most simplistic interpretive level, the research findings have posited the generally accepted view that the left cerebral hemisphere tends to process information sequentially and is specialized for more verbal and language-related functions. The right cerebral hemisphere, on the other hand, is seen as a parallel processor specialized for more visual-spatial perceptual organizational processes (Krashen, 1976; Milner, 1970; Sperry, Gazzaniga \& Bogen, 1969; Warrington \& Taylor, 1973).

While the above conceptualization of hemispheric organization is presumably thought to hold true for most right-handed individuals, the picture for left-handers is not as clear-cut. In the case of the lateralization of language functions, for example, some $98-99 \%$ of dextrals are thought to possess left hemispheric dominance for language functions. Figures for left-handed individuals,
on the other hand, range somewhere from 65-70\% (Gloning, 1977; Zangwill, 1964). The remainder of the sinistral population are considered to show evidence for either right hemispheric dominance for language functions or some degree of bilaterality language representation (Hardych \& Petrinovich, 1977; Hecean \& de Ajuriaguerra, 1964; Hicks \& Kinsbourne, 1978). Furthermore, although the most compelling evidence concerning differences in brain lateralization as a function of preferred handedness has occurred in the area of language functions, a variety of other processes have been posited to differ in regards to cortical representation as well (Hardyck \& Petrinovich, 1977; Hecean \& de Ajuriaguerra, 1964; Levy \& Reid, 1976; Varney \& Benton, 1975). In general, it would seem that left-handers, as a group, constitute a much more heterogeneous population regarding patterns of cerebral functioning than do right-handers.

In the sections to follow, the relation between handedness and cognitive functioning is examined in more detail. Initially, this includes a brief account of some of the theories of the origin of hand preference. Next, research carried out primarily on adults utilizing a variety of experimental techniques is reviewed. An attempt is made to identify and describe more fully the host of variables felt to be important in regard to cerebral specialization of cognitive abilities. Following this, research conducted with children is examined, with a particular emphasis on delineating the importance of preferred handedness in children who are encountering learning or academic-related difficulties.

Finally, the multivariate statistical procedure as applied to the identification of subtypes of learning disabled children is described, and the purpose and design of the present study is discussed.

## Models of Hand Preference

Estimates of the incidence of left-handedness in the general population have varied largely because of differences in the method of determination. One common means for determining an individual's hand preference has been by simple self-report. This has included an assessment of preferred handedness by selfproclamation or through means of a hand preference questionnaire (Hardyck \& Petrinovich, 1977; Hecean \& de Ajuriaguerra, 1964). Choice of writing hand has been equally utilized as a means of assessing preferred handedness as well. Over the years, however, an emphasis has been placed on viewing handedness in terms of performance measures. That is to say, it is thought that a more accurate account of hand proficiency could be ascertained by viewing an individual's performance on a variety of behavioural measures (e.g. manual speed, strength, and dexterity). The idea, of course, is that handedness not be viewed as a simple unitary construct (i.e. as a right versus left dichotomous variable), but rather that proficiency of hand usage may vary along a continuum (Barnsley \& Rabinovitch, 1970; Johnstone, Galin \& Herron, 1979; Palmer, 1974). In general, the incidence of left-sided hand preference in the general population (based on a compilation of the various methods of measuring preferred handedness) is reported
by most researchers to be somewhere in the range of 5-10\% (Hardyck \& Petrinovich, 1977; Hecean \& de Ajuriaguerra, 1964).

A review of the literature on the theories of hand preference reveals several different explanations for the origin of preferred handedness. Factors such as anatomical asymmetries (e.g. differences in organ size, hemispheric weight, and hemispheric blood supply), social and cultural influences, presence of a genetic or hereditary component (i.e., Mendelian recessive trait), and brain injury (i.e., 'pathological' sinistrality) have all been proposed as causative agents or`explanations for left-handedness (Hardyck \& Petrinovich, 1977; Harris, 1980; Hecean \& de Ajuriaguerra, 1964). In regard to the first of these explanations, some rather convincing evidence has been documented recently to suggest that anatomical asymmetries exist between right-handed and left-handed individuals. (Witelson, 1980). However, as Witelson (1980) points out, although the existence of an association between neuroanatomical asymmetry and hand preference appears fairly clear, the relationship between structural asymmetry and functional asymmetry (i.e., hemispheric cognitive specialization) is not as clearly defined. There are extensive accounts in the literature on the remaining explanations of handedness and a complete review of the theories is beyond the scope of the present discussion. Furthermore, since this study is not intended to be a treatise on the ontogeny of handedness, a detailed discussion of the various models is not warranted. Be that as it
may, I will limit myself to a brief description of each of the theories.

Perhaps the most prolific writings concerning a genetic explanation of handedness have been generated by Annett (1964, 1967, 1970, 1972, 1973, 1975, 1978, 1979). In her original conceptualization of the inheritance of handedness and cerebral dominance, Annett (1964) argued that hand preference was determined by two allcles: $D$ (which is usually dominant) that manifests right-handedness, and $R$ (which is usually recessive) that manifests left-handedness. In her single gene, two allele model, dominant homozygotes ( $D D$ ) were thought to be right-handed with language functions lateralized to the left cerebral hemisphere. Recessive homozygotic individuals (RR), on the other hand, were thought to be consistent left-handers with right hemispheric language specialization. To explain mixed handedness, there was postulated to be a partial penetrance of $R$ in heterozygotes (DR). Consequently, such individuals could develop preference for either hand for skilled activities, and language may specialize in either hemisphere. However, Annett argued that with the exception of only a small number of heterozygotes who will develop ipsilateral hand and language lateralization (i.e., right handedness with right hemispheric language specialization), most heterozygotic individuals will develop as preferred right handers with contralateral left hemispheric language lateralization. In a series of subsequent articles, Annett (1972, $1973,1975,1978$, 1979) studied the distribution of hand prefer-
ences in several samples of individuals, and concluded that the proportions of right, mixed, and left hand preference in the human population followed a binomial distribution with corresponding values of $66 \%, 30 \%$ and $4 \%$, respectively. Since the mean of this distribution favoured a right hand preference, Annett suggested that most people inherit a "right-shift" factor (i.e., a bias toward right handedness and left hemispheric language specialization). Thus, the role of heredity in human handedness, according to Annett, involves essentially the hypothesized presence of a specific genetic factor that influences a shift toward dextrality. In the absence of this "right-shift" factor, the proportions of handedness (i.e., right, left, and mixed), would be expected to vary from that seen when hand preference was distributed binomially. That is to say, either hemisphere may serve speech and either hand develop greater skill.

A second, more comprehensive genetic model of preferred handedness is the one offerred by Levy \& Nagylaki (1972, 1976, 1977). They proposed a two-gene, four allelle model whereby one gene was thought to determine hemispheric language dominance and the other determined whether hand preference was contralateral or ipsilateral to the controlling hemisphere. The pair of alleles determining hemispheric dominance were identified as $L$ (dominant) and 1 (recessive), and those governing hand preference as $C$ (dominant) and c (recessive). To account for the differences in degree of lateral specialization between sinistrals and dextrals (including differences concerning unilateral versus bilateral.
language representation, frequency of aphasia, and recovery from aphasia), the authors postulated that full expression of the alleles occurred only when a dominant allele was present, in homozygous or heterozygous conditions, at each of the two loci. The model was criticized by Hudson (1975) on the grounds that it was originally based on a single data set only (Rife, 1940), and subsequent testing of the model revealed that it was unable to fit additional data (i.e., account for the observed distributions of handedness in separate population samples).

In contrast to the genetic explanations for the causation of handedness are those that posit that hand preference is the result of social and cultural influences. Earlier proponents of a sociocultural theory of handeness have suggested that factors such as the handling practices of mother and nurses (i.e., "infant-holding" position), the holding of a soldier's shield in his left hand so as to better protect the heart (i.e., "warfare shield" theory), and the lack of clear hand differentiation at birth were important in the establishment of hand preference (Harris, 1980). More recently, Collins (1970, 1975) has ar.wed that handedness is essentially a learned behavism. rea conditioning and practice. In his latter studv, Collins (1975) suagested that right sided hand preFrence couid be attributed to cultural and environmental influences. largely on the basis that mice developed a right paw preference if exposed to an environment that favoured right-pawedness. The results of another recent study, conducted on the parents and
offspring of forty-nine families, suggested that speech lateralization may, in large part, be determined by environmental factors as well (Bryden, 1975). In this study, two separate dichotic listening tasks (one employing pairs of consonant-vowel syllables, and the other employing lists of numbers) were administered to each subject. Based on the familial correlations computed on the laterality scores obtained from the tests, the results showed that the children's laterality scores could be predicted from those of the mother, but between-sibling correlations were negative. According to the author, the dissonance between the between-sibling and parent-child correlations suggested the absence of a genetic mechanism. The existence of the parent-child correlations, however, suggested the importance of environmental factors in the lateralization of language, at least as assessed by means of dichotic listening laterality.

Attempts to sort out the relation between genetic and nongenetic influences on preferred handedness have included a closer examination of Annett's conceptualization of heterożygosity (Satz, Fenne11 \& Jones, 1974), studies of handedness in monozygotic and dizygotic twins (Corballis, 1980; Kovac \& Ruisel, 1974; Springer \& Searleman, 1978, 1980), an investigation of familial preferences for handedness, arm folding and arm clasping (Ferranato, Thomas \& Sodava, 1974), comparisons between hand preferences in biological and adoṕtive families (Hicks \& Kinbourne, 1976; Saltzman, 1980), and a rather intriguing examination of hand, eye and auditory dominance in several cultural groups (Dawson, 1977a, 1977b).

A final theory of the causation of handedness posits that sinistrality is a manifestation of brain pathology. Advocates of such a position suggest that, in some cases, left hemispheric brain damage sustained pre-, peri- or postnatally results in a lessened tendency to engage the right hand for skilled activities, and thus, a 'shift' to a left-sided hand preference (Annett, 1964; Bakan, 1971, 1977; Bakan, Dibb \& Reed, 1973; Hecaen \& de Ajuriaguerra, 1964; Satz, 1972, 1973). In support of the pathology view, researchers site the higher incidence of manifest left-handedness in certain clinical populations, including language disorders, reading difficulties, mental retardates, epileptics and even schizophrenics (Gordon, 1920; Gur, 1977; Harris, 1980; Hecean \& de Ajuriaguerra, 1964; Hildreth, 1949; Silva \& Satz, 1979). Figures for the incidence of sinistrality in these groups are generally double the estimate of left-sided hand preference within the normal population.

Perhaps the most detailed and comprehensive model of 'pathological' left-handedness is the one presented by Satz (1972, 1973, 1979). At its most elementary level, the model simply suggests that the frequency of left-handedness in presumably braininjured populations increases as a function of early left brain injury occurring to natural right-handers. Using hypothetical data, Satz was able to demonstrate mathematically the twofold increase of sinistrality in retarded and epileptic groups. Furthermore the model generated several testable hypotheses. Some of these were logically derived from, while others were indirectly
related to the model. Finally, the model suggested that the converse condition, 'pathological' right-handedness, is rarely seen because of the lower frequency of natural left-handedness in the general population. Additional support for a transfer of manual preference because of early left hemispheric insult has been reported in a more recent study by Satz and his colleaques in which the relationship between manifest left-handedness and unilateral brain injury or EEG abnormality was investigated in four cross-cultural studies of epileptic and mentally retarded subjects (Satz, Baymur, \& Van Der Vlugt, 1979).

Related to a neuropathological view of left-handedness, Bakan (1971, 1973, 1977, 1978a, 1978b) has argued that the incidence of sinistrality may be correlated with birth trauma. More specifically, left-handedness was thought to be associated with birth order, and that it was the result of left hemisphere pyramidal motor dysfunction following perinatal hypoxia. In support of his claim, Bakan has demonstrated a raised incidence of manifest left-handedness in individuals who were either first born or born fourth or later in the familial order. He suggested that such individuals were more likely to experience birth complications as a result of primiparous births (longer labour and increased application of instruments), and births to older mothers. Furthermore, while a change in hand preference is typically the most overt residual symptom of hypoxia-induced pathology, Bakan has hypothesized that perhaps the increased incidence of right hemispheric or bilateral mediation of language functions, more often
seen in left-handers, reflects hypoxia-induced deviations from the pattern of cerebral organization normally seen in the righthanded individual. Recently, Christian, Hunter, Evans \& Standeford (1979) were able to demonstrate a significant relationship between birth order and handedness in monozygotic twins (i.e., there was an increased incidence of sinistrality among first born twins), but no such association was found in dizygotic twin pairs. While Bakan's explanation of 'pathological' lefthandedness is certainly of heuristic value, most attempts to replicate his findings on independent samples have been unsuccessful (Annett \& Ockwell, 1980; Hicks, Evans \& Pellegrini, 1978; Hicks, Pellegrini \& Evans, 1978; Hicks, Elliott, Garbesi, \& Martin, 1979; Hubbard, 1971; Kocel, 1977; Teng, Lee, Yong \& Chang, 1976). Critics of the model have suggested that perhaps the most parsimonious explanation for Bakan's birth order findings is that they simply reflect sampling error.

Handedness and Cerebral Organization in Adult Populations
As mentioned earlier, a buraeoning number of articles have appeared aimed at identifying different patterns of cortical organization and extent of cerebral specialization in relation to handedness. Historically, the earliest research on cerebral organization attemptes. $\pm 0$ identify differences between left and right hemispheric participation in the area of language functions as inferred from unilateral brain damage (Hardyck \& Petrinovich, 1977; Hecaen \& de Ajuriaguerra, 1964; Hicks \& Kinsbourne, 1978). In addition to the information gathered by lesion-produced deficits, the recent introduction of a number of methodological tactics
(including dichotic listening techniques, visual half-field stimulation, application of electroconvulsive therapy, spectral analysis of visual and auditory evoked potentials, intracarotid injection and regional cerebral blood flow analyses) have enabled experimental investigation into other cognitive concomitants of handedness.

The earliest published reports on lesion-produced deficits in language functions can be traced back to the nineteenth century (Hardyck \& Petrinovich, 1977; Broca, 1861 and Dax, 1865 as cited in Hecaen \& de Ajuriaguerra, 1964). Since that time, the literature within the field has mushroomed. The last four decades, in particular, has witnessed the proliferation of a number of classical studies concerning cortical language representation in sinistrals, beginning with Brain's (1945) review of some of the more salient issues regarding the relation between language and handedness: A complete review of the studies concerning unilateral brain injury and language disturbance is an arduous task beyond the scope of this study. However, a look at several of the more contemporary reports on this issue should provide some understanding and appreciation for the extent and degree of language lateralization in sinistrals.

The results of several lesion studies have suggested that the mechanisms underlying language may be less lateralized in left-handed than in right-handed individuals. For example, Humphrey \& Zangwill (1952) in their study of ten selected cases of sinistrals with unilateral brain insult (five left-sided, five right-sided) reported the presence of dysphasic symptoms in all
cases of left hemispheric injury and in all but one individual who had sustained right hemispheric damage. Although there was marked individual variation in the severity of the dysphasic symptoms, the authors suggested that language dominance in sinistrals may be less well developed than in dextrals. Goodglass and Quadfasel (1954) reviewed a total of 123 left-handed individuals with unilateral lesions of either hemisphere. Based on the findings of the presence or absence of aphasia after left- or right-sided lesions, 53 and $47 \%$ of the sinistrals were posited to have left hemispheric and right hemispheric language specialization, respectively. From these findings, Goodglass and Quadfasel posited that language was represented bilaterally in sinistrals and language disturbance was more likely to accompany lesions of either hemisphere. A study of 10 cases of unilateral brain injury in left-handed individuals by Ettlinger, Jackson \& Zangwill (1956) suggested that while a unilateral representation of language functions (most often left- but occasionally rightsided) is typically found in left-handed individuals, some degree of bilateral language representation may occur in a certain number of cases. Finally, Hecaen \& Sauquet (1971) compared the frequencies of disturbances of language, gestures and perception in groups of left- and right-handed patients with unilateral lesions of both hemispheres. The results showed that there was less difference between frequency of symptoms when comparisons were made between left and right hemisphere syndromes in left-handers compared to the same comparisons in right-handers. Hecaen \& Sanguet argued that the results supported a certain degree of cerebral ambilaterality in sinistrals.

Another area where the evidence supports the hypothesis that differences exist between sinistral and dextral concerning the cerebral organization of language functions is in the amelioration from aphasic deficits. Many authors have suggested that, in general, left-handers as a group are more likely to exhibit both language disturbances that are transitory in nature, as well as a more complete recovery from their aphasic symptomatology (Gloning, 1977; Gloning, Gloning, Haub \& Quatember, 1969; Gloning \& Quatember, 1966). Subirana (1964), in fact, suggested that 'the more basically right-handed an aphasic patient was, the less likely would be the regression of his aphasic losses' (p. 228). Both Subirana (1969) in his review on handedness and cerebral dominance, and Gloning (1977) in his report on the relationship between language disturbance and unilateral hemispheric damage in 57 rightand 57 left-handed patients, explained the increased incidence of aphasic-like symptoms, the transitory character of the language disturbance, and the rapid amelioration of the dysphasic symptoms in the left-handed (as compared to the right-handed individual) as reflecting some degree of bicerebrality or a lessened development of language lateralization in sinistrals. Related to this, Zangwill (1964) has suggested that sinistrals may differ from dextrals primarily in the rate, as well as in the completeness with which the lateralization of cerebral functions are established. That is to say, because the process of cerebral lateralization may be slower and less complete in the left-hander, the right cerebral hemisphere in particular, may retain a greater capacity
to subserve language after unilateral brain damage. Besides positing differences between sinistrals and dextrals in regard to language lateralization, Gloning (1977) also has suggested that the fact that some left-handers suffered from severe and long-lasting aphasias following unilateral injury to either hemisphere meant that sinistrals were more likely to exhibit subgroups with respect to their aphasic symptomatology.

Not all lesion studies aimed at delineating the relation between language lateralization and handedness have been able to demonstrate unequivocally that differences exist between sinistrals and dextrals concerning cerebral organization. For example, Penfield and Roberts (1959) in their study of 522 patients operated upon for the treatment of intractable seizures found no difference in the frequency of aphasia between patients classified as leftor right-handed following a left-sided or right-sided operative procedure. Based on these findings, the authors suggested that the left hemisphere was dominant for language, regardless of handedness. In another detailed study of well lateralized brain wounds in left-handed patients, Russell and Espir (1961) reported that approximately 38 and $17 \%$ of those individuals with left-sided and right-sided cerebral damage, respectively, developed aphasic symptoms. Although Russell and Espir suggested that right hemispheric language dominance was apt to occur more often in sinistrals than dextrals, the failure to find both a higher incidence of aphasia and a more rapid recovery pattern amongst the left-handers was inconsistent with the notion of a bilateral representation of language functions in sinistrals.

Recently, Satz $(1979,1980)$ has formulated some hypothetical models of cerebral speech organization in the left-handed individual. According to Satz, while the unilateral lesion data to date certainly suggests that the pattern of language representation is different in left-handers than in right-handers, the type of hemispheric speech lateralization in the former group is yet to be clearly ascertained (i.e. is the pattern of language lateralization in sinistrals compatible with a variable unilateral representation (left- or right-sided) or a more complex form of bilateral and variable unilateral speech (left- or right-sided, and bilateral)). One way to delineate the type of organization, according to Satz, would be to determine the upper limit of aphasia that would be expected after unilateral brain damage (i.e., the maximum frequency of aphasia expected assuming that aphasia always occurred following random unilateral damage to the dominant language hemisphere). Satz argued that if these upper limits could be quantitatively established, then one could use the observed data on the incidence of aphasia after unilateral hemispheric damage in left-handers reported in the literature to ascertain the pattern of hemispheric language lateralization involved. When Satz computed the upper limit of aphasia that could be expected for each model and compared these values with the observed data for 12 published studies, a different model of hemispheric speech lateralization existed for left-handers and right-handers. Whereas a unilateral model represented the best estimate of brain lateralization in right-handers, the model that 'best fit' the observed incidence of aphasia in left-handers across studies was
one that posited bilateral and variable unilateral speech representation. It would seem, according to Satz, that sinistrals constitute a much more heterogeneous group in regard to hemispheric brain lateralization than do right-handers.

Additional evidence that buttresses the notion that differences exist between left- and right-handers concerning patterns of language specialization comes from studies that have employed a variety of other experimental methods. For example, a number of studies utilizing an approach of dichotically presenting verbal information to normal, neurologically intact subjects have demonstrated smaller recall difference scores between the two ears for the left-handed individual as compared to the normal right ear advantage manifested by a right-handed person (Bryden, 1965; Curry \& Rutherford, 1967; Geffen \& Traub, 1979; Lishman \& McMeekan, 1977; Satz, Achenbach, Pattisball \& Fennell, 1965). Two studies have reported a left ear advantage for some lefthanders; one utilizing a dichotic listening task (Knox \& Boone, 1970), and the other employing a dichotic monitoring task (Geffen \& Traub, 1980). The results of the above-mentioned studies have been interpreted by most authors as indicating that the mechanisms underlying language may be less lateralized in the left-handed.

Other studies of normal, neurologically intact individuals employing visual half-field preference measures have yielded findings that have been, for the most part, compatible with the concept of different types of functional brain lateralization in left-handers. Most dextrals are known to exhibit a right visual
semi-field-left hemisphere advantage for verbal stimuli. Several studies with sinistrals, on the other hand, have shown a greater overall recognition in the left visual field, a right visual field superiority that is less marked, or have failed to show any consistent visual field differences in the perception of tachistoscopically presented verbal information (Beaumont \& Dimond, 1973; Bradshaw, Gates \& Nettleton, 1977; Bryden, 1965; Hines \& Satz, 1974; McKeever, \& Gill, 1972; Orbach, 1967). Again, the evidence from these studies has been interpreted as relecting a language system that is more diffusely represented within the cerebral hemispheres of left-handers.

Recently, the growing adoption of several other methodological strategies for the study of handedness and language lateralization have been cited in support of the hypothesis that sinistrals may differ from dextrals concerning cerebral organization. Thus, a series of studies (Fleminger \& Bruce, 1975; Pratt, Warrington \& Halliday, 1971; Warrington \& Pratt, 1973) have demonstrated that language functions were more likely to be disturbed following unilateral electroconvulsive therapy delivered to either hemisphere in left-handers as compared to right-handers, although left hemispheric language representation appeared to be the rule. Using an approach based on the spectral analysis of visual and auditory evoked potentials, Davis \& Wada (1977) demonstrated that most right-handed epileptic patients (approximately $86 \%$ ) exhibited left hemisphere speech dominance, while left- and mixed-handed patients were evenly divided between left and right
hemispheric speech representation (approximately $50 \%$ in each group). Finally, hemispheric lateralization of language functions in sinistrals has been inferred through the inducement of hemispheric anesthesia secondary to intracarotid injection of sodium amytal or the faster acting barbiturate methohexital (Milner, Branch \& Rasmussen, 1966; Willmore, Wilder, Mayersdorf \& Sypert, 1978). All of these studies have provided another source of evidence to support the notion that the pattern of language lateralization in the left-handed individual is different from that typically observed in the right-handed person.

Much of the research on the cognitive concomitants of left-handedness has centered on identifying differences between left-handers and right-handers with regard to the direction and the degree of hemispheric specialization for language functions. It has also been demonstrated that, at least for some left-handers, . the hemispheres may be organized differently for a variety of other cognitive capabilities. Several studies have reported a poorer performance for the left-handed on a variety of perceptual tasks (Flick, 1966; Nebes, 1971; Silverman, Adevai \& McGough, 1966), and that left-handers as a group tend to be more 'field dependent'. than right-handed individuals (Dawson, 1977a, 1977b; 01 tman \& Capobianco, 1967; Silverman, et al, 1966). However, some attempts to replicate the former studies have been unsuccessful (Hardyck, 1977; Kutas, McCarthy \& Douchin, 1975). Levy (1969) posited that since left-handers were more likely to possess bilateral language centres or perhaps some degree of language competency in
both hemispheres, they may be expected to perform relatively poorer than right-handers in tests of perceptual function. The hypothesis was simply that a bilateral language representation would tend to interfere with abilities normally thought to be subserved by the nondominant hemisphere. To test her hypothesis, Levy administered the Wechsler Adult Intelligence Scale to 10 left-handed and 15 right-handed postgraduate students and the results confirmed her expectations: dextrals were found to exhibit only an 8 point discrepancy while sinistrals were found to exhibit a 25 point difference between Verbal and Performance IQ scores (i.e., high Verbal IQ- low Performance IQ). These findings were interpreted by Levy as evidence to support the notion that right hemispheric participation in language processes interferes with the development of adequate right hemisphere visual perceptual and visual spatial abilities. Over the subsequent years, attempts at replicating the notion of a relative impairment of perceptual or spatial ability among left-handers has met with mixed success. Thus, several authors have demonstrated that verbal functions undertaken by the right hemisphere in left-handers can only occur at the expense of the spatial functions normally subserved by that hemisphere (Hicks \& Beveridge, 1978; Johnson \& Harley, 1980; McGlone \& Davidson, 1973; Miller, 1971). At the same time, the hypothesized spatial impairment in the left-handed individual has not been able to endure the rigors of experimental replication by a number of other authors (Bryden, 1973; Carter-Saltzman, ScanSlapatek, Barker \& Katz, 1976; Fennel, Satz, Van Den Abel7, Bowers
\& Thomas, 1978; Heim \& Watts, 1976; McKeever \& Van Deventer, 1977; Yen, 1975). For the most part, these studies have reported the absence of any compelling evidence to support a superiority of spatial or verbal abilities for either right- or left-handers. One intriguing alternative hypothesis expounded upon by De Freitas \& Dubrovsky (1976) suggests that perhaps in a left-handed population with language most likely lateralized to the right hemisphere, spatial analysis may be more effeciently performed in the left hemisphere. Evidence to support this possibility, however, is lacking. Generally speaking, it has been difficult to demonstrate without a doubt that hemispheric organization of spatial processing abilities may differ as a function of handedness. As Marshall (1974) has suggested, perhaps part of the problem may lie in our lack of understanding concerning the information processing skills required on tasks of a presumably linguistic and/or visuo-spatial nature. That is to say, little can be concluded in regard to differences in brain organization between dextrals and sinistrals until one knows more precisely what a particular behavioural task is intended to measure. Furthermore, the Levy model of 'intrahemispheric competition' suffers from a failure to provide more conclusive evidence that left-handers indeed possess bilateral language representation. Finally, since it is known that left-handers may constitute a more heterogeneous group concerning their hand preferences, an accurate identification of the "left-handers" becomes difficult. As Wang (1980) points out, there is a problem of defining dominance in regard to hand preference,
since the dominant hand does not necessarily dominate every function. The hand superiority for a given performance seems to be determined by the degree of cerebral dominance for that particular function.

Other ability differences of various types have been postulated to exist as a function of preferred handedness. For example, left-handers have been found to exhibit reverse or smaller between ear difference scores when dichotically presented with auditory information of a nonverbal nature (Curry, 1967). Mixed left-handers, in particular, have been reported to exhibit faster reaction times to nonverbal auditory stimulation delivered to the right ear (Klisy \& Parsons, 1975), and have been found to outperform other handedness groups in making pitch recognition judgements (Deutsch, 1980). When tested for differences in somatic pressure sensitivity after stimulating various body parts, a greater proportion of right-handers than left-handers were found to have greater sensitivity on the left side of the body (Weinstein \& Sersen, 1961). In regard to motor skills, Kimura (1973) has demonstrated that left-handers tended to make more free hand movements during the act of speaking than right-handers, a finding she argued was indicative of bilateral representation of expressive language functions in sinistrals. More recently, Whilke \& Sheeley (1979) studied the circular index finger movements in various handedness groups and concluded that strong right-handers tended to move both their left and right index fingers in the same directions. Finally, differences have also been reported concerning lateral eye
movement directionality and saccadic eye movement latencies in response to various cognitive task demands as a function of preferred handedness (Gur \& Gur, 1980; Pirozzola \& Rayner, 1980).

It has been suggested by several authors that lefthanders may not represent a single group, but may differ amongst themselves concerning patterns of hemispheric specialization. The most salient variables thought to differentiate between sinistrals have included hand posture during writing, degree of hand preference, and familial history of left-handedness. In regard to the first of these, Levy (1973) postulated that the position of the hand during writing may be an index of the lateral relationship between the dominant writing hand and the hemisphere specialized for language. That is to say, a normal posture (in which the hand lies below the line of writing) was thought to be indicative of a contralateral hemispheric language representation, and an inverted or "hooked" posture (in which the hand lies above the line of writing) indicated an ipsilateral language specialization. Subsequent studies conducted by Levy (Levy \& Reid, 1976, 1978) in which comparisons were made between hand orientation during writing and performance on several tachistoscopic tests of cerebral lateralization have tended to confirm her expectations. In general, both dextrals and sinistrals that exhibited a normal writing posture manifested a strong lateral differentiation between the hemispheres, while 'inverted' left-handers exhibited a weak degree of lateral differentiation. In partial support of Levy's hand orientation theory, Gregory \& Paul (1980) have recently demonstrated that normal
and inverted left-handers differed in their performances on a battery of neuropsychologic tests in that the latter group performed more poorly on tasks involving oral vocabulary skills, alertness to visual detail and visual sequencing abilities. The mild performance decrements exhibited by left-handers with an inverted handwriting posture was interpreted by the authors as possibly reflecting some degree of neuropsychological skill deficiency as a result of a different pattern of cerebral organization in these individuals. On the other hand, two other studies employing dichotic and tachistoscopic indices of hemispheric language lateralization have failed to find a significant difference in level of performance between inverted and noninverted left-handers on these tasks (Herron, Galin, Johnstone \& Ornstein, 1979; McKeever \& Van Deventer, 1980).

Several studies have suggested that there is a relation- ship between the intensity of left-handedness and the type of organization of language representation. However, the studies of hemispheric specialization that have compared the consistency and degree of left-handedness have not been in agreement. On the one hand, there have been those who have suggested that strongly left-handed individuals possess left hemispheric language representation (weak left-handers are thought to possess right hemisphere language dominance)(Dee, 1971; Hecaen \& Sauguet, 1971), whereas others believe that strong left-handers have reduced lateralization or bilateral representation of language (Knox \& Boone, 1970; Lishman \& McKeekan, 1977; Satz, Achenbach \& Fenne11, 1967; Sealeman, 1978; Shankweiler \& Studdert-Kennedy, 1975). One study reported
a tendency for less strongly left-handers to exhibit poorer performances on language-related tasks (e.g. spelling, object naming) compared to 'pure' left-handers (Newcombe \& Ratcliff, 1973). Finally, two studies found strength of handedness to be a nonsignificant variable for differentiating between subgroups of left-handed individuals (Jackson, 1978; Schlichting, 1978). To summarize, it would appear that the relationship between the intensity of left-handedness and patterns of hemispheric specialization is an unresolved issue. It is unclear as to what extent differences in criteria for degree of hand preference as well as differences in selected brain lateralization measures can adequately account for the reported discrepancies. Perhaps, at best, the evidence indicates that the pattern of hemispheric specialization is different between strongly left-handed individuals and weak left-handers; however, the type or pattern of brain lateralization is yet to be defined.

The final factor thought to be important in elucidating subtypes of left-handedness is the presence or absence of a familial history or sinistrality. Over sixty years ago Kennedy (1916), in his study of six selected cases of lesion-produced deficits in language functions, suggested that the pattern of cerebral organization may be dictated more by 'the trend of an individual's stock rather than by his own peculiarities' (p. 859). Since that time, numerous studies of the language deficits in patients with brain injury, right-left perceptual asymmetries on dichotic stimulation and tachistoscopic tasks, and differences exhibited on tasks intended to measure various other cognitive abilities (e.g., simple
motor and tactile-perceptual skills, visual perceptual abilities and intellectual functioning) have indicated that familial handedness may be a relevant factor in distinguishing between sinistrals with different patterns of hemispheric specialization. Of studies of unilateral brain damage, some have reported that it is the group of left-handers with a positive family history of sinistrality who have reduced lateralization or bilateral representation of language (Hecaen \& Sauguet, 1971; Lishman \& McMeekan, 1977), whereas another study has indicated that left-handers with a family history of left-handedness are more likely to have language represented predominantly in the left hemisphere (Newcombe \& Ratcliff, 1973). Studies with hemiplegic children have also reported an association between familial handedness and cognitive functioning. Thus, Annett (1973) indicated that in a group of children with rightsided hemiplegia and a nonfamilial history of left-handedness, verbal and performance IQs were more highly correlated with the speed of peg moving by the affected hand than with that of the intact, better hand. Annett suggested that such a finding was consistent with the notion that there was a greater dependence on the left hemisphere in those individuals without familial sinistrality. In a related study, O'Malley \& Griffith (1977) reported that hemiplegic children with a history of familial left-handedness had a higher incidence of language-related problems (including auditory language and speech delay difficulties). The authors suggested that the different pattern of deficits exhibited by children with a history of familial sinistrality may reflect an anomalous type of cerebral organization in such individuals.

Studies conducted with normal subjects have also reported differences on commonly used measures such as dichotic listening and tachistoscopic hemifield stimulation as a function of familial handedness. Of studies of right-left perceptual asymmetries with right-handers, several have reported that it is the dextral with no family history of left-handedness that exhibits the greatest superiority of the right visual field (Endress, 1974; Hannay \& Malone, 1976; Hines \& Satz, 1971; McKeever, et al, 1973). Another study (McKeever \& Jackson, 1979) reported a clear familial sinistrality effect in colour-naming; subjects with a positive family history of left-handedness were significantly less right visual field superior for naming latencies than those lacking such a history. Studies conducted with left-handed individuals comparing familial sinistrals with those who have a negative history of left-handedness in the family have not been in agreement. On the one hand, there have been those who have reported that familial left-handers demonstrate the right visual field superiority indicative of relative left hemisphere dominance, while nonfamilial sinistrals exhibit reduced right-left perceptual asymmetry (Bradshaw \& Taylor, 1979; McKeever, 1979; McKeever \& Van Deventer, 1977; Satz, et al, 1967; Schlichting, 1978). On the other hand, several studies (Andrews, 1977; Bryden, 1965; Piazza, 1980; Schmuller \& Goodman, 1979; Zurif \& Bryden, 1969) have indicated that the left-handed with a family history of lefthandedness tend to show a stronger left visual field superiority or a reduced right-left discrepancy. Some studies (Bryden, 1973;

Higenbottom, 1973; Jackson, 1978) have found that familial and nonfamilial sinistrals cannot be differentiated based on visual field preference scores.

Research relating dichotic recognition scores to brain organization has reported results similar to the visual hemifield findings. For example, several studies (Geffen \& Traub, 1979, 1980; McKeever \& Van Deventer, 1977; Satz et. al., 1967) have indicated that familial sinistrals were more likely to reveal left hemisphere language dichotically than nonfamilial left-handers. Other studies have reported that the left-hander with a positive history of sinistrality in the family tended to exhibit anomalous patterns of right-left ear difference scores (i.e. bilateral or atypical left ear superiorities) (Bryden, 1965; Lake \& Bryden, 1976; Piazza, 1980; Zurif \& Bryden, 1969). Finally, there have been those who have failed to uncover any clearcut relationship for family sinistrality and left-handedness (Briggs \& Nebes, 1976; Schlichting, 1978).

Additional evidence to buttress the claim that there may be a relation between a family history of left-handedness and brain organization has been derived from studies that have examined a variety of other cognitive abilities. For example, within the tactile-perceptual realm, Fennell, Satz \& Wise (1967) found that familial sinistrals exhibited a significantly greater incidence of lower pressure sensitivity thresholds on the right hand than did nonfamilial sinistrals, and Varney \& Benton (1975) demonstrated that left-handers with a history of familial sinistrality showed a
clear right hand superiority in detecting the direction of tactile stimulation applied to the palms of the hands; dextrals with a family history of left-handedness exhibited no lateral asymmetry in performance. In the area of motor functioning, McKeever \& Van Deventer (1977) indicated that finger tapping scores were higher with the left hand for a group of familial left-handers compared to nonfamilial left-handers, whereas Annett (1974) reported an equal division between the two hands on measures of motor speed in a group of children having two sinistral parents. Also, Wolff \& Cohen (1980) recently studied the interference effects from language-based tasks (reciting nursery rhymes or reading unfamiliar text) on manual performance (tapping in synchrony with a metronome) in a group of right-handers, and found that dextrals with a family history of sinistrality showed less overall and less lateralized dual task interference than dex-. trals with a negative familial sinistrality history. On auditory tasks of a nonverbal nature, Byrne \& Sinclair (1979) demonstrated that familial left-handed subjects exhibited higher levels of performance on both subtests of the Seashore Rhythm Test than a group of nonfamilial sinistrals, and another study (Kellar \& Bever, 1980) found that family handedness background significantly influenced ear preference scores on a task requiring the categorization of musical intervals (two-note chords) in a group of trained musicians. One study reported the presence of a diminished facial recognition ability in the familial left-handed (Gilbert, 1977). Finally, studies on intellectual functioning have reported both the
occurrence of a lower Full Scale WAIS IQ in left-handers with a positive family history of sinistrality (Briggs \& Nebes, 1976), and the presence of a complex interaction between handedness, familial sinistrality and sex on spatial and verbal abilities, while memory and perceptual speed abilities appeared not to be influenced by the interactions of these factors (Kocel, 1977, 1980).

In summary, a number of factors have been proposed as having some importance for delineating different patterns of organization and lateralization of cognitive functions, one of which is the presence or absence of a family history of left-handedness. It would appear that the effects of familial sinistrality on cortical organization are controversial, and the issue is far from being resolved. Be that as it may, there seems to be a trend in the literature that suggests that it may be the familial lefthanded individual who is most likely to exhibit an anomalous type of cerebral organization. Taken together, the findings from a large number of studies of lesion-produced deficits, right-left perceptual asymmetries, and differences manifested on tasks intended to measure various other cognitive capabilities have been consonance with the notion that there is an association between the presence of sinistral tendencies within the family and the liklihood of a bicerebrality cortical representation. In this regard, Hardyck (1977) has proposed a model of hemispheric functioning that takes into account the familial handedness component. Essentially, Hardyck has argued that hemispheric specialization is organized along a continuum that ranges through two extremes. On one end of the continuum, representing the extreme lateralization position, are
the right-handers with no family history of left-handedness. The other end of the continuum, representative of the bicerebrality point of view, are the left-handed individuals with a positive history of familial sinistrality. Finally, between these two groups, representing a lesser degree of bilaterality of cerebral functions, are the dextrals with a family history of left-handedness. While it would seem that researchers have made considerable progress in their attempts to identify how patterns vary for cerebral organization as a function of familial handedness, a great deal remains to be learned regarding this relationship. To complicate matters further, researchers have only begun to unravel the nature of the complex interrelationships that appear to exist between a variety of variables thought to be important for determining patterns of brain lateralization (e.g., familial handedness history, intensity of handedness, writing posture, task selection and sex) (Kocel, 1977, 1980; Searlemen, Tweedy \& Springer, 1979).

## Handedness and Learning Difficulties

Included in the literature postulating ability differences of various types for left-handed individuals is the claim that sinistrality is related to a variety of behavioural deficits. Most of the information pertaining to this issue has been generated from the performances of children in a number of clinical populations. Thus, some investigators have argued for an association between handedness and language problems (Barry \& James, 1978; Boucher, 1977; Calnan \& Richardson, 1976; Colbe \& Parkison, 1977;

Gordon, 1921; Hecaen \& de Ajuriaguerra, 1964; McBurney \& Dunn, 1976), intellectual deficiency (Barry \& James, 1978; Berman, 1971; Fagin-Dubin, 1974; Flick, 1966; Porac, Coren \& Duncan, 1980; Richlin, Weinstein \& Weisinger, 1976) and aca-demic-related difficulties (Annett \& Turner, 1974; Ayres, 1972; Bryden, 1970; Dean, 1981; Harris, 1957; Schevill, 1980; Shankweiler, 1964; Shearer, 1968; Stein, Gibbons \& Meldman, 1980). Of studies of language disturbance, Gordon (1921) reported that the incidence of left-handedness was higher in 'mental defective' schools than in regular elementary schools ( $18.2 \%$ to $7.3 \%$, respectively), and that sinistrality was more frequently associated with speech-related defects. Incidentally, Gordon further suggested that left-handedness was a manifestation of brain pathology, a view consonant with the 'pathological' lefthandedness model. Hecaen \& de Ajuriaguerra (1964) in their study of stammerers, dyslexics and normals demonstrated that the relative number of left-handed subjects was much greater in the stutterers than in the group of normal children. More recently, McBurney \& Dunn (1976) reported that children whose handeness was other than strongly right or who exhibited a mixed laterality pattern (e.g. hand and foot preference different from eye) were more likely to be achieving below age-expectancy levels on various language skilled tasks. Studies of autistic children have also revealed marked differences concerning preferred handedness. Thus, Colby \& Parkison (1977) reported that the incidence of left-handedness was $12 \%$ in normal children whereas it was
$65 \%$ in autistic children. Boucher (1977) indicated that autistic children as a group exhibited a small increase in preferred left-handedness, and Barry \& James (1978) reported a significant increase in the variance of dominant-hand usage from normals to autistics. Finally, in contrast to the studies cited above, Calman \& Richardson (1976) were unable to find an increased incidence of speech disorders in children who were leftor mixed-handed.

Of studies of psychometric intellegence, some have reported the absence of any significant difference between lefthanded and right-handed individuals (Fagin-Dubin, 1974; Hardyck, Petrinovich \& Goldman, 1976; Keller, Crooke \& Riesenman, 1973; Miller, 1971). On the other hand, Flick (1966) showed that left-handed-left-eyed dominant individuals exhibited poorer performances on intellectual measures than all other hand-eye dominant groups with the exception of left-handed-right-eyed subjects. Moreover, McBúrney \& Dunn (1976), in their investigation of the association between language skills and laterality, reported that most sinistral groups obtained lower mean WISC Verbal and Performance IQs than dextrals. One study (Berman, 1971) indicated the need to examine a variety of body laterality measures (e.g. hand, foot, eye, ear) rather than attempting to correlate handedness alone with intellectual functioning. Furthermore, another more recent study (Swanson, Kinsbourne \& Horn, 1980) emphasized the importance of age as a crucial variable in assessing the relationship between handedness and intellectual impairment. In their
longitudinal study of elementary school children, Swanson and his colleagues found that a group of non-right-handed individuals could exhibit no difference in intellectual abilities from a group of dextrals at one stage in their life span (i.e., when assessed in 4 th grade), yet when tested three years later (i.e., in 7 th grade) were found to score lower than right-handers in overall intellegence. Finally, the relationship between lateral preference patterns and mental retardation has been studied as well. Again, it has been reported (Wilson \& Bruce, 1955) that there is a twofold increase in the incidence of sinistrality amongst retardates as compared to normals. Also, a more systematic study of lateral preference patterns (hand, eye, foot, and ear) in a group of high-trainable and low-educable mental retardates revealed a significantly greater incidence of left-sided or mixed-sided behaviours on each of the preference dimensions when compared against two non-retarded groups (Porac, Coren \& Duncan, 1981). Moreover, visual evoked potentials have been recorded from both hemispheres in a group of normal dextrals, dextral retardates and sinistral retardates (Richlin, Weinstein \& Weisinger, 1976). The results of this study indicated that there existed an asymmetry between the hemispheres for the $N_{1}-P_{2}$ amplitude. For dextral retardates, the left hemisphere amplitude was greater than that of the right hemisphere; in sinistral retardates as well as normals the asymmetry was reversed-right hemisphere amplitude greater than left. The authors argued that handedness appeared to be one of several variables seemingly important
in determining the kinds of electrical activity seen secondary to visual stimulation.

The notion that left-handedness may be related to learning deficits in general, and reading disability in particular, is certainly not a recent one. Ever since Orton (1937) suggested that the lack of consistent laterality preference reflected some degree of mixed cerebral dominance and, in turn, resulted in learning disability, researchers have been interested in the relationship between patterns of lateral preference, cerebral dominance and learning difficulties. However, as typically seen in so many areas of study concerning left-handedness, results have not been in agreement. On the one hand, some investigators have argued that there is no difference between dextrals and sinistrals in reading ability. Thus, Balow (1963) reported that mixed-handed children exhibited scores comparable with those obtained by children with consistent hand preference on a variety of reading achievement measures. Coleman \& Deutsch (1964) indicated that there were no differences between a group of normal readers and a group of retarded readers on one standard measure of hand preference (e.g., Harris Tests of Lateral Dominance), and Hecaen \& de Ajuriaguerra (1964) reported similar findings in their study of the index of laterality of children who have reading difficulties. At the same time, the latter authors did report that children who present with difficulties in learning to read were more often poorly lateralized (i.e., in terms of the relative
proportions of the lateral dominances). In a study of good and poor readers (as assessed with four tests of reading ability), Belmont \& Birch (1965) found that preferential hand usage did not differ between the two groups. One study (Clark, 1970) enlisted a population sample of over 1500 children and failed to find any evidence that reading achievement level could be predicted reliably on the basis of the presence of left-handedness. Wussler \& Barclay (1970) indicated that a group of children with reading difficulties were not significantly different from one another in terms of patterns of psycholinguistic functioning when classified as either lateralized or mixed dominant, while another study (Ginsburg \& Hartwick, 1971) rejected crossed hand-eye dominance as a sign of reading difficulties. Finally, one study of rightleft perceptual asymmetry on visual hemifield stimulation (Olson, 1973) reported that both a group of right-handed children and a group of left-handed or ambidextrous children exhibited a right visual field preference for word recognition. Unfortunately, a second part of the study aimed at investigating visual field preferences in a group of poor readers did not report any handedness data.

On the other hand, there have been several reports that have indicated that an association exists between hand preference and specific reading disability. For example, Harris (1957) reported a much higher incidence of mixed-hand dominance and a trend towards greater left-handedness in a group of reading disabled children as compared against a group of normal readers, and
this finding was confirmed by Shearer (1968) in his study of a group of 'backward' readers. Consonant with these findings, Ayres (1972) has reported a $16.9 \%$ incidence of sinistrality in a group of children having learning disorders, and Annett \& Turner (1974) found an excess of children with sinistral tendencies among those with specific reading disabilities. At the same time, the findings of the latter study indicated that both leftor mixed-handed children and right-handed children exhibited similar levels of performance on several verbal and nonverbal tasks. On tests of right-left perceptual asymmetries, Bryden (1970) studied dichotic listening laterality in children at three grade levels (2, 4 and 6) and reported a developmental trend: for right-handers, the number of right ear dominant subjects increased with grade level, whereas the opposite finding was seen for a group of left-handed children. Moreover, good readers were found to exhibit an uncrossed dominance pattern (i.e., having a dominant hand ipsilateral to the dominant ear), and poor readers were much more likely to show crossed ear-hand dominance, although this finding was most evident in boys at all grade levels, but in younger girls only. Another dichotic listening study by Zurif \& Carson (1970) demonstrated that poor readers exhibited a slight trend towards a left ear superiority in their recall for digits, and that the group of dyslexics, in relation to the good readers, were much less adept with either hand, and poorer with their preferred hand on one manual dexterity measure (i.e., circle-cutting task). Finally, Shankweiler (1964) has suggested that familial
sinistrality may be a more important variable than the individual's handedness per se for determining the association between sinistrality and problems in learning to read. That is to say, of twelve cases of reading disability investigated by Shankweiler, only two cases were left-handed, however, six (50\%) of the children reported left-handedness within the family history. Recently, some studies have investigated lateral eye movement asymmetry and lateral preference patterns in heterogeneous populations of learning disabled children (Dean, Schwartz \& Smith, 1981; Stein, et. al., 1980). Thus, in the latter study, Stein and his colleagues offerred some indirect support for Orton's (1937) contention that a relationship exists between inconsistent lateral preference and educational difficulties by demonstrating that a group of mostly right-handed disabled children exhibited left lateral eye movements, whereas normal readers showed. a higher incidence of right eye movements. Incidentally, there was no significant difference between learning disabled and normal children concerning incidence of left-handedness. In the farmer study, Dean et. al. (1981) presented a detailed report of the lateral preference patterns for children with learning problems as inferred from a self-report instrument thought to predict reliably the actual preference for activities involving the eyes, ears, feet and hands. The hand preference schedule was composed of 49 items that represented six factors isolated on the basis of a multivariate classification procedure. Initially, the lateral preference patterns for a group of normal and a group of learning disabled
children were studied. The results indicated that the children with specific learning problems exhibited more bilateral or mixed dominance than normal children on the following factors: visually-guided fine motor activities (Factor 2); auditory preference or ear use (Factor 4) and; fine motor tasks involving the feet (Factor 6). In the second part of the study, two groups of learning disabled children were identified who differed in their lateral preferences: one group exhibited a more consistent cerebral laterality, while the second group displayed a mixed preference pattern. The two groups were then compared on tasks intended to assess their verbal and spatial abilities. Comparisons between the two groups revealed that mixed dominant children diagnosed as learning disabled exhibited spatial processing deficits, whereas learning disabled children with consistent laterality preference showed a deficiency in verbal knowledge. Based on these findings, the authors suggested that there would appear to be at least two distinct types of learning disabled children who differ, as a function of lateral preference patterns, in their verbal and spatial ability structure.

Interest in evaluating the performances of left-and right-handed learning disabled children on tasks of a tactileperceptual nature has provided another source of evidence for an association between lateral preference, hemispheric specialization and academic-related difficulties. For example, Bakker (1972) found that dextrals showed a left hand superiority in the ability to
perceive a series of tactile sensations delivered to three fingers on each hand separately, whereas both sinistrals and reading disabled children exhibited a smaller between hand difference score. More recently, Schevill (1980) conducted a study intended to measure differences between left- and righthanded children in tactile letter decoding skills. More specifically, the study was aimed at investigating the transfer of learning that took place when children were trained in tactile letter discrimination on one body location (e.g., the chest area or the palm of the hand), and then were subsequently tested on both locations. Tactual-perceptual performances were evaluated in reading disabled dextrals and sinistrals (defined more precisely as 'slow and severely disabled' readers). The main purpose of the study was to examine the effect of handedness on bilateral transfer and learning within children who exhibit reading difficulties. It was thought that demonstrable differences between reading disabled dextrals and sinistrals in the ability to store and transfer tactile skin writing images bilaterally may reflect differences in brain organization between the two groups. In the first part of the study, bilateral transfer was studied following extended tactile instruction on the chest area, or on the preferred hand. In both cases, left-handers were found to be more accurate naming letters delivered tactually to the untrained left hand than in their identification of stimulations delivered to either the trained chest or the trained right hand. For Schevill, these findings suggested that sinistrals, at least those who have
reading-related difficulties, possess a different type of cerebral organization from that for dextrals. That is to say, since dextrals were able to decode letters tactually on the chest and then transfer the learning bilaterally, they must possess better spatial and directional skills on that body location. On the other hand, since sinistrals exhibited poor decoding ability on the trained body area, but were still able to learn from the training, they must have been utilizing coding processes relating to the cerebral area subserving their left hands. In effect, sinistrals tend to use a greater degree of dominant hemisphere bias in processing tactileverbal information. A second part of the study was intended to examine whether visual memory was important in interhemispheric transfer of information. More specifically, the interaction between handedness and visual memory in both the verbal and visual responses to the same tactile letters was investigated. A group of seventy-five reading disabled children ( 60 right- and 15 lefthanded), and a group of forty normal readers ( 33 dextrals, 7 sinistrals) were given extended tactile training on the nonpreferred hand, and then were asked to identify stimulus letters written on both hands by oral response (tactile-verbal condition) or by visual selection (visual matching condition). The results showed that within the tactile-verbal condition reading disabled sinistrals were more accurate than dextrals on the untrained preferred hand, whereas normal sinistrals learned and stored the tactile-verbal images bilaterally. Within the tactile-visual matching condition, it was found that left-handed reading disabled children with an
adequate visual memory were more accurate on the untrained preferred hand, whereas left-handed children with reading difficulties and a deficient visual memory system were poor in discriminating letters with both hands. On the other hand, dextrals with either good or poor visual memory skills were found to transfer the tactile-visual information bilaterally. In other words, left-handed children with reading problems who possess adequate visual memory abilities tend to use the same hemispheric bias for verbal and visual coding strategies, whereas reading disabled sinistrals with less than adequate visual memory skills tend to use a unilateral bias for verbal coding strategies, and display a diffuse tendency in selecting a visual code for a visual matching response (i.e., neither hand is accurate in responding). In Schevill's words 'left-handed children may be partially disregarding the nondominant spatial function and using a dominant bias for both spatial and verbal processing (p. 350).

To summarize, as in investigations of left-handers in general, studies attempting to link left-handedness to cognitive inefficiencies and, more specifically, to academic-related difficulties have not been in agreement. In order to make progress in understanding the relationship between handedness and learning problems, several issues have yet to be resolved. First, there is the problem of how to determine accurately the classification of sinistrality. In particular, the necessity for delineating more precisely different types of left-handers cannot be overemphasized. Several studies have illustrated that an individual classified as
left-handed solely on the basis of preferred writing hand may be entirely different from one who has been identified as such by his/her performances on a number of other behavioural indices (Bannatype \& Wichiarajote, 1969; Hardyck et. al, 1976; Johnstone, et. al., 1979; Satz et. al., 1967; Zurif \& Carson, 1970). To complicate matters further, the establishment of hand preference is not only dictated by various criterion adopted for classifying manual dexterity, but is also prone to variation as a function of the age of the child (Belmont \& Birch, 1963; Gesell \& Ames, 1947). Moreover, developmental considerations become of crucial importance when attempting to interpret differences in cognitive performance between dextrals and sinistrals (Kaufman, Zalma \& Kaufman, 1978; Kocel, 1977, 1980).

Secondly, there is the issue of discerning in more detail the importance of congruous and incongrous patterns of lateral preference. While acknowledging the significant advancement in describing the interrelationships between hand, foot, eye and ear dominance already made over the past several decades (see Hecaen \& de Ajuriaguerra, 1964 for a review of this topic), recent research on this issue has stimulated new thoughts concerning the significance of 'mixed versus pure' laterality dominance as well as identifying the patterns of hemispheric organization that can be inferred from the discrepancy between preference patterns (Dean et. a1., 1981; Kershner, 1975; Porac et. al., 1980).

Finally, most of the studies examining differences in learning patterns between left- and right-handers have dealt with
a heterogeneous group of children. For the most part, research in the area has dealt almost exclusively with reading impairment per se, and information regarding the child's level of achievement in other academic-related areas (e.g., spelling, arithmetic) has not been reported. Moreover, the number and types of tasks used to assess reading impairment have been as diverse as the authors who have reported on them. The point is simply that children who have been classified as exhibiting a learning disability, or even more specificālly a reading problem, may well be composed of a heterogeneous group of individuals who possess different learning styles or learning strategies.

Be that as it may, it would appear that there has been just enough evidence generated to buttress the claim that an association exists between hand preference and reading ability to warrant further investigation into the issue. Furthermore, the studies reviewed earlier of lesion-produced deficits, right-left perceptual asymmetries on dichotic listening and tachistoscopic stimulation tasks, and the differences exhibited in cognitive performance as a function of handedness provide rather convincing evidence that left- and right-handers may possess different adaptive ability structures which, in turn, may reflect different patterns of cerebral organization. Multivariate Classification of Learning Problems

Over the past two decades, research into the nature of reading retardation has posited the view that children may encounter difficulties in learning to read for a variety of reasons. Thus,

Shankweiler (1964), while stressing a visual-perceptual or visual organizational skill deficiency for reading disability, acknow7edged three groups of reading impaired children ("pure" dyslexia, dyslexia secondary to spatial and constructional disability, and reading disability as an expression of language disturbance) Vernon (1971) has suggested that problems in reading acquisition may reflect deficiencies in visual-perceptual processes, auditory-linguistic deficits, inadequate intellectual processes (including poor problem solving or conceptual reasoning skills), or an inadequate motivational system. Moreover, both Benton (1975) and Vernon (1977) have stressed the necessity of identifying groups of reading disabled children who may exhibit different cognitive skill deficits rather than continuing to search for one unitary cause (i.e., some basic deficiency) for reading impairment, while Rourke, in a series of articles (1978a, 1978b, 1981a, 1981b, 1981c; but see also Rourke \& Strana, 1981d and Rourke \& Gates, 1981e), has argued quite adamently that retarded readers are not a homogeneous group in terms of their neuropsychological adaptive ability structure. In general, the main purpose of a 'subtyping' approach, of course, is to delineate with more precision the sorts of deficiencies that may account for a child's inability to acquire normal reading habits and, in turn, promote academic remedial programmes tailored to the individual's specific cognitive strengths and weaknesses.

The fact that reading disabled children may constitute a heterogeneous population in regard to their cognitive
inefficiencies has been the focus of attention for several investigators who have employed both clinical inferential methods (Boder, 1973; Mattis, 1978; Mattis, French \& Rapin, 1975), and multivariate classification procedures (Doehring, Hoshko \& Bryans, 1979; Doehring \& Hoshko, 1977; Fisk \& Rourke, 1979; Petrauskas \& Rourke, 1979). In the first of these methods, for example, Boder (1973) evaluated the performances of children referred to a clinic for learning problems on a diagnostic screening battery intended to determine a child's overall reading and spelling pattern (i.e., the number and kinds of errors exhibited by him/ her on reading and spelling tasks). Included in the battery were a word recognition inventory, a written spelling task, recitation and writing of the alphabet, and a paragraph reading task. The screening procedure yielded three distinctive patterns of reading and spelling that were thought to reflect three subtypes of dyslexic children: dysphonetic dyslexia (children whose readingspelling pattern reflected a primary deficit in symbol-sound integration), dyseidetic dyslexia (children whose reading-spelling pattern reflected a primary deficit in the ability to perceive letters and whole words as configurations), and mixed dysphoneticdyseidetic (children who were both unable to integrate symbols with their sounds, and perceive letters and whole words as configurations). All children classified as severely retarded readers exhibited one or other of the patterns, whereas none of these patterns were found among children reading at an age-expectancy or above level. Moreover, it was found that even though improvement
was seen in level of performance of reading and spelling over the course of several years, the patterns of reading and spelling remained fairly consistent. Finally, Boder suggested that since the patterns represented the reading disabled child's total performance in the reading and spelling tasks (i.e., his achievements as well as characteristic errors), the patterns had important prognostic and therapeutic implications.

In an attempt to isolate the clusters of cognitive deficiencies thought to limit the acquisition of reading skill, Mattis et. a1. (1975)evaluated clinically the performances for three groups of children (brain damaged with no dyslexia; brain damaged with dyslexia; neurologically intact with dyslexia) on an extensive battery of neuropsychological tests. Based on the specific patterns of deficits exhibited on the testing, three different 'syndromes' or subgroups of reading disabled children were identified that accounted for $90 \%$ of the dyslexic children. These included a language disorder subtype (children who presented with an anomia and disorders of comprehension, imitative speech, and speech sound discrimination), an articulatory and graphomotor dysco-ordination group (children who exhibited an assortment of gross or fine motor coordination disorders, including a buccallingual dyspraxia with resultant poor speech and graphomotor dyscoordination), and a visuoperceptual déficit subtype (children who exhibited poor constructional ability and poor visual discrimination skills). The authors argued that the results of the study supported the view that dyslexia may be the result of multiple
independent cognitive deficiencies rather than from a single causal defect. A cross validation study recently conducted by Mattis (1978) isolated the same three dyslexic syndromes, although the percentage of children presenting each syndrome and the total number of children accounted for by these syndromes differed from that found in the initial study. For the earlier study (Mattis et. al., 1975), $39 \%$ of the dyslexic children presented the language disorder syndrome, $37 \%$ the articulatory and graphomotor dysco-ordination syndrome, and $16 \%$ the visual-perceptual disorder. The comparable percentages in the more recent study (Mattis, 1978) were 63,10 and $5 \%$ respectively.

The application of multivariate statistical classification techniques have provided another source for delineating subgroups of reading disabled children. Recently, for example, Doehring \& Hoshko (1977) attempted to statistically classify reading problems by the use of the $Q$-technique of factor analysis. Thirty-one tests of reading-related skills were administered to two somewhat different groups of children with reading problems: Group R, composed of children in a summer programme for reading problems, and; Group M, composed of children in a summer programme for learning disorders, or in public school special classes for children with learning disorders, language disorders and mental retardation. Application of the statistical profile analysis method to each group revealed that children could be classified into subgroups which represented different patterns of reading deficits. For Group $R$, three subgroups were generated: one was characterized
by slow oral word reading, a second by slow auditory-visual letter matching, and a third by slow auditory-visual association of words and syllables. For the Group M children, the statistical classification procedure identified two subgroups that were very similar to the last two subgroups generated for the Group R children, and a third subtype that was characterized by slow visual matching.

In another study employing the Q-technique of factor analysis, Petrauskas \& Rourke (1979) attempted to identify subtypes of reading-disabled children based on their differential patterns of performance on a battery of neuropsychological measures. A total of 160 children ( 133 retarded readers, 27 normal readers) between the ages of 84 and 107 months were randomly divided into two subsamples with normal readers equally represented in each group. Both subsamples were then subjected to the factor analytic procedure (a total of twenty measures were selected for statistical treatment) separately as well as factor analysis of the total population. The results of the $Q$ factor analyses revealed that six factors were generated for each of the data groups, and that three of the factors were quite reliable (based on high correlation coefficients calculated between the factors as well as a high degree of visual similarity observed between the plotted factor profiles). The profile for the first type revealed good performance on visual spatial, eye-hand coordination, tactile-perceptual and some problemsolving tasks, whereas deficiencies were exhibited on several audi-tory-verbal and language-related tasks. The profile for the second type was characterized by a combination of verbal and psycho-
linguistic, sequencing, and tactile finger localization deficits. Children in the third type exhibited deficiencies primarily on tasks involving the generating of verbal information and verbal coding. Finally, a fourth type, that failed to emerge reliably from the classification procedure, was composed mostly of normal readers.

In a related study, Fisk \& Rourke (1979) analyzed the performances of learning disabled children at three different age levels ( $9-10$ years, $11-12$ years, $13-14$ years) on a broad range of neuropsychological measures by means of the Q-type multivariate classification procedure. The main purposes of the study were to define subtypes of learning disabled children at each of the age levels, and to determine whether some of the subtypes would be replicated from one age level to another. Separate factor analyses were calculated for each age-based sample, and then the factor profiles generated at each age level were compared by correlational analyses and by visual inspection of the similarity of the plotted factor profiles to identify replicated subtypes. The results revealed three subtypes, two of which were replicated across three of the age levels and one that was replicated across two of the age levels (i.e., 11-12 years, 13-14 years). The first subtype exhibited deficiencies on some auditory-verbal and languagerelated tasks, some finger dysgraphesthesia, and pronounced finger agnosia. The second subtype exhibited deficiencies primarily on auditory-verbal and psycholinguistic tasks (involving mostly phoneme-grapheme matching and sound blending). The final subtype also exhibited deficits on some auditory-verbal tasks, and marked
finger dysgraphesthesia. The authors concluded that learning disabled children indeed appear to constitute a heterogeneous group in terms of their neuropsychological adaptive ability structure, and that cognitive deficiencies seen at one age during the life span may persist across several developmental periods, although the cross-sectional nature of the study made interpretations regarding developmental trends somewhat guarded.

A final study illustrating the application of multivariate statistical classification procedures to determine subtypes of reading disabled children was conducted by Doehring et. a1. (1979). The study had two parts: first, the Q-type factor analytic procedure was applied to a combined group of retarded and normal readers in an attempt to identify subtypes of reading problems, and secondly, the stability of the $Q$-technique was investigated by determining the subtypes that would be generated for the same children by means of another statistical classification procedure (cluster analysis). For the first part of the study, the results of the Q-technique revealed the same three subtypes of reading problems that were reported on in an earlier study by Doehring \& Hoshko (1977). That is to say, the first subtype exhibited poor oral reading of syllables, words and sentences, the second subtype exhibited slow matching of spoken and written letters, and the third subtype exhibited poor matching of written syllables and words. For the second part of the study, several cluster analytic procedures were employed that represented the utilization of different types of distance-function indices
(i.e., squared Euclidean distance coefficients or shape difference coefficients). In general, the results showed that the subtypes generated with the Q-type factor analytic procedure also emerged when the same data was treated to several cluster analytic classification procedures, with one particular cluster method (i.e., McQuitty's) demonstrating a remarkably high degree of congruity with the Q -technique in the sorts of subtypes identified. The authors emphasized that the results of the cluster analysis buttressed the application of statistical classification procedures in delineating different cognitive deficits associated with reading impairment.

Summary and Statement of Problem
Several perspectives on the origin of sinistrality and the relationship between handedness and cortical organization have been reviewed. To recapitulate, the studies of lesionproduced deficits, right-left perceptual asymmetries, and cognitive performance differences reported in the literature have implied that patterns of hemispheric specialization vary more among sinistrals that among dextrals. In the case of the lateralization of language functions, for example, nearly all righthanded individuals are thought to possess left hemispheric language dominance, whereas left-handers may exhibit left hemispheric, right hemispheric, or some degree of bilaterality language representation. Other cognitive abilities may be organized differently in the cerebral hemispheres of sinistrals as well, although the evidence to support such an assertion has been much less convincing.

It has also been suggested by several authors that lefthanders may not constitute a homogeneous group, but may differ amongst themselves concerning patterns of hemispheric organization. Some of the variables thought to differentiate between sinistrals have included hand posture during writing, intensity of left-handedness, and familial history of sinistrality. Thus, it is the left-hander with a normal writing posture, or with an almost complete sinistral hand preference tendency, or with a family history of sinistrality who is most likely to exhibit an anomalous type of cerebral organization.

Emerging from the investigations into the types of ability differences for left-handed individuals is the claim that sinistrality is related to a variety of behavioural deficits. Several investigators have argued for an association between handedness and language problems, intellectual deficiency, and academic-related difficulties. The last of these has dealt mostly with the performances of children with reading impairment in particular. Most studies attempting to link sinistrality and reading disability have generated conflicting results. At the same time, studies dealing specifically with tactile discrimination skills in reading impaired children appear to offer some rather convincing evidence that left-handed children may be processing information in a manner different from their right-handed age-mates.

Finally, the application of multivariate statistical classification procedures appear to provide a precise method for identifying and describing subgroups of learning disabled children. In particular, both Q-type factor analysis as well as several cluster
analytic procedures have been found to isolate subtypes of reading problems in a reliable fashion. It is clear that a reliable taxonomy of reading and other learning disabilities could offer potentially useful information regarding remedial management of such children. At the same time, most of the 'subtyping' resarch repcrted o: in the literature has investigated adaptive skill deficiencies associated with adademic retardation in the righthanded learning disabled child. In turn, these adaptive skill deficits are thought to be related to specific patterns of cerebral organization and reflect areas of compromised brain functioning. A clarification and differentiation of the quality of cognitive impairment associated with learning disabilities in the lef.thanded child appears especially warranted, particularly in light of some rather convincing documented evidence to buttress the notion that left-handed individuals are more apt to exhibit an anomalous type of cerebral organization (i.e., one that is less clearly lateralized than that seen in the right-handed individual.

The purpose of the present study, therefore, was to isolate and define subgroups of left-handed learning disabled children. The performances of a group of sinistrals on a comprehensive battery of neuropsychological measures that included an assessment of hand preference patterns were analyzed by means of multivariate statistical classification methods. The measures chosen for study were essentially the same as those selected by Fisk \& Rourke (1979) in their study of right-handed learning disabled children, and included tasks of a auditory-verbal, sequencing,
visual-perceptual, tactile-perceptual, simple and more complex psychomotor, and conceptual reasoning nature. The rationale for selecting tasks within these neuropsychological skill areas was twofold: (1) there is documented evidence that the measures reflect behavioural functions that are thought to be subserved by various cortical systems and, in turn, are sinsitive to cerebral dysfunction (Reitan, 1966; Reitan \& Davidson, 1974; Rourke, 1975), and (2) the measures are thought to reflect the nature of an individual's adaptive ability structure by providing information regarding areas of cognitive strength and weakness. Moreover, adopting tasks identical to those utilized by Fisk \& Rourke (1979) enabled comparisons to be made of performance differences between left- and right-handed learning disabled children.

## Expectations

The intended application of multivariate classification methods in the current study was viewed within an exploratory context. That is to say, the Q-technique of factor analysis as well as three cluster analytic procedures (i.e., average linkage, centroid sorting, iterative relocation) were used to analyze the performance measurements collected on a large number of children with the aim of discovering groups (or 'clusters') which would appear to belong together based on particular characteristics of the data set (Everitt, 1974; Maxwell, 1977; Wishart, 1978). The objective of the analysis was to see whether some underlying patterns of relationships exist within the data, with a view to the disclosure of subtypes of left-handed learning disabled children.

Although the generating of specific hypotheses was considered to be rather difficult, the evidence that has been reviewed concerning the relationship between preferred handedness and patterns of hemispheric specialization did suggest that certain predictions may be advanced regarding the identification of subgroups of left-handed disabled children. The following were a number of tentative expectations:
(1) First, if the brain of the sinistral is less clearly lateralized than that of the dextral, then it was expected that the number and type of cognitive deficits associated with learning disability in the left-handed individual would be different from that seen in the right-handed child (Hypothesis 1).
(2) Secondly, if the variable of familial handedness is indeed a relevant factor in distinguishing between sinistrals with different patterns of hemispheric specialization, then the subtypes generated from the left-handed learning disabled should reflect the presence or absence of left-handedness in the biological relatives of the group members (Hypothesis 2). Moreover, one may expect that cerebral laterality is affected by sinistral tendencies within the family of a right-handed person as well.
(3) Thirdly, if variation in cognitive organization in the sinistral were influenced by the intensity of left-handedness, then one might expect that the derived subgroups should manifest different measureable variations in the consistency and degree of left-handed preference (Hypothesis 3). In this regard, it has become increasingly clear that a distinction must be made between
hand preference and hand proficiency. Any attempt to identify subtypes of left-handers solely on the basis of preferred writing hand may be misleading. Discrete groups of sinistrals may only be uncovered by viewing the consistency of hand usage across a variety of behavioural tasks involving speed, strength, and manual dexterity.

Finally, in regard to the issue of the subtyping of learning disabled children, it was expected that the subgroups generated by means of one multivariate statistical procedure should be able to be detected through the application of several other classification methods as well. Indeed, this could only serve to buttress the claim that learning disabled children constitute a heterogeneous population in regard to the number and type of cognitive deficiencies they possess.

## CHAPTER II

## METHOD

## Subjects

A total of 322 children were drawn from a population pool of over 3500 individuals who were referred to a large, urban children's clinic for a comprehensive neuropsychological evaluation. The complete battery of neuropsychologic measures were administeredin a standardized manner by a trained psychometrist. The reasons for selecting the target population in this manner were twofold: (1) since the administration and scoring of the test battery required approximately eight hours per child, an unreasonable amount of time would have been needed in order to collect the necessary data on the rather large number of subjects utilized in the present study, and (2) it was felt that the monetary costs required to collect the data by any other means would have been substantial, and thus, would have posed severe limitations on the size of the target sample. Most of the children selected for study were referred to the clinic because they were thought to:be suffering from some type of learning, behavioural, or "perceptual" handicap to which it was believed that cerebral dysfunction might be a contributing factor.

In drawing the sample for study, all subjects had to be between the chronological ages of 108 to 179 months, and must have exhibited an Intelligence Quotient in the range of 85 to 115 on one standard measure of psychometric intelligence, i.e., Wechsler Intelligence Scale for Children (Wechsler, 1949). Moreover, subjects were excluded if they failed to meet any one of the following selection criterion: (1) exhibited a greater than 25 decibel hearing loss with either earwithin the frequency range of 500 to 4000 Hz . on a standardized Sweep Hearing Test, (2) medical evidence existed of a visual anomaly, (3) were judged by a professional to be in need of some form of psychotherapeutic intervention, or the interpretation of the neuropsychological test findings suggested the strong possibility of a socio-emotional disturbance, (4) spoke a primary language other than English in the home environment, or (5) there was rather convincing evidence of the presence of compromising environmental influences (e.g., inadequate food, shelter, clothing, and/or stimulation). Information pertaining to points (2), (3), and (5) above were obtained from past medical and social histories, while details regarding point (4) were derived from the results of a questionnaire the parents were requested to complete (see Appendix A).

As part of the assessment procedure, the subjects were administered the Harris Tests of Lateral Dominance
(Harris, 1947). Included on this inventory are a series of questions regarding preferred hand usage for the following seven manipulative tasks: throwing a ball, harmering a nail, cutting with a knife, turning a door knob, using a scissors, using an eraser, and name-writing. Initially, all subjects were classified as right- or left-handed on the basis of choice of writing hand. Thus, of the total 322 subjects, onehalf (161) reported a left-handed name writing preference, whereas the remaining half (161) claimed to engage their right hand for the writing of their name. Moreover, of the total 161 left-handed writers, 86 were found to use their left hand on all seven of the Harris Inventory items, whereas the remaining 75 reported a tendency to use their right hand on one or more of the remaining questionnaire items. A more detailed account of the various hand preference patterns for the group of left-handed children is provided in Table 1. Right-handed writers, on the other hand, were composed almost entirely ( $n=151$ ) of individuals who reported the use of their right hand solely for the inventory items.

One of the main reasons for the inclusion of a group of right-handed children in this study, apart from identifying differences that may exist between sinistral and dextral subtype profiles, was to act as a control for the effects of a positive and negative familial sinistrality history. That is to say, it was felt that if the variable of familial handedness per se was an important component in being

## TABLE 1

Harris Inventory Hand Preference Patterns for the Group of Left-Handed Children

| L-R Pattern | $n$ | $\%$ Sample |
| :--- | :---: | :---: |
| $7-0$ | 86 | $53 \%$ |
| $6-1$ | 24 | $15 \%$ |
| $5-2$ | 17 | $11 \%$ |
| $4-3$ | 8 | $5 \%$ |
| $3-4$ | 6 | $4 \%$ |
| $2-5$ | 8 | $5 \%$ |
| $1-6$ | 12 | $7 \%$ |
| TOTALS | 161 | $100 \%$ |
|  |  |  |

$$
\text { N.B. } \begin{aligned}
L & =\text { Left Hand } \\
R & =\text { Right Hand }
\end{aligned}
$$

able to distinguish between individuals with different patterns of hemispheric specialization, then it might be expected that the subtypes generated for the sample of learning disabled children should reflect the presence or absence of sinistral tendencies within an individual's biological family members, irrespective of the individual's preferred handedness. The left- and right-handed groups were matched with regard to age distributions (i.e., there were 75 9-10 year olds, 56 11-12 year olds, and 30 13-14 year olds in each group), and a breakdown of the familial handedness component revealed that 65 left- and 64 right-handed children reported the presence of left handedness within the family, whereas 75 sinistrals and 92 dextrals reported the absence of sinistrality tendencies among family members. Data was missing on the remaining 21 left- and 5 right-handers. A more precise count of which family members were reported to exhibit sinistral tendencies is provided in Table 2. Information pertaining to the handedness of family members was derived from the same parent questionnaire referred to earlier (see Appendix A). Thus, children who reported the presence of at least one immediate family member (i.e., mother, father, sibling) as being lefthanded constituted the positive familial sinistrality condition, whereas children who reported no immediate biological family members as being left-handed constituted the negative familial sinistrality condition.

## TABLE 2

Classification of Sinistral Family Members for the Left- and Right-Handed Samples

| Family Member | Sample |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Left-Handers |  | Right-Handers |  |
|  | $n$ | \% Sample | n | \% Sample |
| Sibling Only | 39 | 60\% | 42 | 65\% |
| Father On7y | 9 | 14\% | 8 | 13\% |
| Mother Only | 6 | 9\% | 7 | 11\% |
| Father and Mother | 4 | 6\% | 0 | 0\% |
| Mother and Sibling | 4 | 6\% | 4 | 6\% |
| Father and Sibling | 3 | 5\% | 3 | 5\% |
| Total N | 65 | 100\% | 64 | 100\% |

Table 3 presents the composition of subjects as well as the descriptive statistics for age, sex, and WISC Full Scale IQ. As can be see from Table 3, left-handers were comprised of 136 males and 25 females, whereas there were 134 male and 27 female right-handers. Moreover, it was clear that the groups were closely matched with regard to mean age and mean WISC Full Scale IQ.

One final note. Also listed on Table 3 are the mean Wide Range Achievement Test (WRAT; Jastak \& Jastak, 1965) Reading, Spelling, and Arithmetic centile scores for each handedness sample. Even though no specific WRAT "cutoffs" were utilized in the selection of subjects, it was clear that the groups were closely equated on this basis as well. Moreover, Table 4 presents a more detailed account of the various WRAT subtest performance patterns for each handedness sample. Briefly, left-handers were composed of 147 subjects who had obtained at least one WRAT centile score of 30 or below, and 14 individuals with Reading, Spelling, and Arithmetic scores all above the 30 th centile. Of the right-handed sample, there were 148 and 13 who met the above criterion, respectively. Test Measures

Included among the tests that compile the comprehensive neuropsychological test battery were forty-two measures presumably thought, to represent various adaptive skill areas as outlined by Reitan (1974). These skill areas

TABLE 3

Chronological Age, Sex, WISC Full Scale IQ and
WRAT Reading, Spelling, and Arithmetic Centile Specifications for Left-Handed and Right-Handed Samples

|  | Left-Handers | Right-Handers |
| :---: | :---: | :---: |
| Sex Composition |  |  |
| Males | 136 | 134 |
| Females | 25 | 27 |
| Total | 161 | 161 |
| Age (in years) |  |  |
| Mean | 11.45 | 11.28 |
| SD | 1.60 | 1.48 |
| Range | 9.03-14.98 | 9.06-14.06 |
| WISC Full Scale I2 | , |  |
| Mean | 97.81 | 98.73 |
| SD | 7.47 | 7.76 |
| Range | $85.00-115.00$ | 85.00-115.00 |
| WRAT Centile |  |  |
| Reading | 27.09 | 25.13 |
| SD | 26.20 | 23.40 |
| Spelling | 17.63 | 16.33 |
| SD | 19.10 | 11.72 |
| Arithmetic | 16.33 | 20.01 |
| SD | 11.72 | 12.95 |

## TABLE 4

WRAT Subtest Performance Patterns for
Left-Handed and Right-Handed Samples

|  | Samples |  |
| :--- | :---: | :---: |
| Pattern | Left-Handed | Right-Handed |
| R,S,A $\leq 30$ | 99 | 99 |
| R, S $\leq 30$ | 13 | 7 |
| S, A $\leq 30$ | 16 | 15 |
| R,A $\leq 30$ | 0 | 2 |
| R | $\leq 30$ | 2 |

N.B. R, S, and A refer to the Reading, Spelling and Arithmetic Subtests of the WRAT, respectively. The 30 represents the 30 th centile.
included: (1) tactile-perceptual and tactile-kinesthetic abilities, (2) visual-motor, visual-perceptual and visual-spatial skills, (3) sequential processing abilities, (4) auditoryperceptual and language-related abilities, (5) simple motor and psychomotor skills, and (6) conceptual reasoning and non-verbal problem-solving capabilities. A listing of the test measures categorized into their respective skill areas is provided in Table 5. The sorting of tests into these particular areas of neuropsychological functioning was based primarily on face validity. At the same time, these classifications were found to exhibit a reasonably high degree of congruity with the categorization of performance measures generated by a preliminary R-type factor analysis conducted on the test battery (Gates, Note 1). By way of comparison, the R-type factor analytic classification procedure (conducted on children in the age range of 9 to 12 years) isolated seven interpretable factors: a perceptual organizational and non-verbal problem-solving factor, a verbal comprehension factor, a sequential processing or code-guided behaviour factor, a speech-sounds factor, an immediate verbal memory factor, a simple motor factor, and a complex motor factor.

Included within each of the six adaptive skill
areas outlined by Reitan were the following performance measures:

TABLE 5
List of Dependent Test Measures Grouped
Into Adaptive Skill Areas

| Test Measures | Skill Area |
| :--- | :--- |
| 1. Tactile Imperception and Suppression-Right Hand (TACR) | Tactile-Perceptual |
| 2. Tactile Imperception and Suppression-Left Hand (TACL) | Tactile-Perceptual |
| * 3. Tactile Finger Recognition-Right Hand (FAGNR) | Tactile Perceptual |
| 4. Tactile Finger Recognition-Left Hand (FAGNL) | Tactile-Perceptual |
| * 5. Fingertip Number Writing-Right Hand (FTWR) | Tactile-Perceptual |
| 6. Fingertip Number Writing-Left Hand (FTWL) | Tactile-Perceptual |
| 7. Tactile Coin Recognition-Right Hand (ASTR) | Tactile-Perceptual |
| 8. Tactile Coin Recognition-Left Hand (ASTL) | Tactile-Perceptual |
| *9. Tactual Performance Test-Right Hand (TPTDT) | Tactile-Perceptual |
| *10. Tactual Performance Test-Left Hand (TPTNDT) | Tactile-Perceptual |
| 11. Tactual Performance Test-Both Hands (TPTBT) | Tactile-Perceptual |
| *12. WISC Picture Completion Subtest (PICCOM) |  |
| 13. WISC Picture Arrangement Subtest (PICARR) | Visual-Perceptual |
| *14. WISC Block Design Subtest (BLKDES) | Vidual-Perceptual |
| *15. WISC Object Assembly Subtest (OBJASS) | Visual-Perceptual |
| 16. Visual Imperception and Suppression-Right Hand (VISR) | Visual-Perceptual |
| 17. Visual Imperception and Suppression-Left Hand (VISL) | Visual-Perceptual |
| *18. Target Test (TARGET) |  |


| Test Measures | Skill Area |
| :--- | :--- |
| *19. WISC Arithmetic Subtest (ARITH) | Sequential Processing |
| *20. WISC Digit Span Subtest (DIGITS) | Sequential Processing |
| *21. WISC Coding Subtest (CODING) | Sequential Processing |
|  |  |
| *22. WISC Information Subtest (INFO) | Auditory-Perceptual |
| *23. WISC Comprehension Subtest (CoAP) | Auditory-Perceptual |
| 24. WISC Similarities Subtest (SIMIL) | Auditory-Perceptual |
| 25. WISC Vocabulary Subtest (VOCAB) | Auditory-Perceptual |
| 26. Peabody Picture Vocabulary Test (PPVTIQ) | Auditory-Perceptual |
| 27. Auditory Imperception and Suppression-Right Hand (AUDR) | Auditory-Perceptual |
| 28. Auditory Imperception and Suppression-Left Hand (AUDL) | Auditory-Perceptual |
| *29. Speech-Sounds Perception (SSPER) | Auditory Perceptual |
| *30. Auditory Closure (AUDCLO) | Auditory-Perceptual |
| 31. Sentence Memory (SENMEM) | Auditory-Perceptual |
| 32. Verbal Fluency (VFLU) | Auditory-Perceptual |
|  |  |
| *33. Finger Oscillation-Right Hand (TAPR) | Motor |
| *34. Finger 0scillation-Left Hand (TAPL) | Motor |
| 35. Foot Tapping-Right Foot (FTAPR) | Motor |
| 36. Foot Tapping-Left Foot (FTAPL) | Motor |

TABLE 5 (cont'd)

| Test Measures | Skill Area |
| :---: | :--- |
| 37. Grip Strength-Right Hand (GRIPR) | Motor |
| 38. Grip Strength-Left Hand (GRIPL) | Motor |
| *39. Grooved Pegboard-Right Hand (PEGSRT) | Motor |
| *40. Grooved Pegboard-Left Hand (PEGSLT) | Motor |
| *41. Category Test (CATTOT) | Conceptual Reasoning |
| $* 42 . ~ T r a i l s ~ B ~ T e s t ~(T R S B T) ~$ | Conceptual Reasoning |

[^0](1) Tactile-perceptual and tactile-kinesthetic skills

Tactile Imperception and Suppression Test; Tactile Finger Recognition Test; Fingertip Number-Writing Perception Test; Coin Recognition Test; Tactual Performance Test (Reitan \& Davidson, 1974).
(2) Visual-motor, visual-perceptual, and visual-spatial abilities

The Picture Completion, Picture Arrangement, Block Design and Object Assembly subtests of the WISC (Wechsler, 1949); Visual Imperception and Suppression Test; Target Test (Reitan, 1969).
(3) Sequential processing abilities

The arithmetic, Digit Span, and Coding subtests of the WISC (Wechsler, 1949).
(4) Auditory-perceptual, auditory-verbal and language-related abilities

The Information, Comprehension, Similarities and Vocabulary subtests of the WISC (Wechsiler, 1949); Peabody Picture Vocabulary Test (Dunn, 1965); Auditory Imperception and Suppression Test; Halstead Speech-Sounds Perception Test as modified for use with younger children by Reitan (Reitan \& Davidson, 1974); Auditory Closure Test (Kass, 1964); Sentence Memory Test (Benton, 1965); Verbal Fluency Test (Strong).
(5) Simple motor and psychomotor skills

The Finger Oscillation Test; Foot-Tapping Test; Grip Strength Test; Grooved Pegboard Test (Reitan \& Davidson, 1974).
(6) Conceptual reasoning and non-verbal problem-solving
capabilities
The Category Test; Trails B Test (Reitan \& Davidson, 1974). A more comprehensive description of each of these measures is provided in Appendix B.

## Procedure

Of the forty-two dependent measures listed in Table 5, twentyone (those denoted by an asterisk next to the variable name) were selected for data analyses treatment. As mentioned previously, these test measures comprise the same ones used by Fisk \& Rourke (1979) in their study of right-handed learning disabled children. The main purpose for selecting identical dependent measurements was to enable more direct comparisons to be made of performance differences between left- and right-handed learning disabled children (i.e., do the same 'subtypes' of cognitive deficiencies exist for learning disabled children irrespective of handedness?). At the same time, these twenty-one variables were compared against those selected by means of a Pearson product moment correlational analysis (SAS Procedure CORR; Helwig \& Council, 1979) conducted on the pool of forty-two test measures. The criteria for selecting variables by a correlational analysis technique have been outlined in Fisk \& Rourke (1979) and included the following: (a) selected variables were to represent the lowest possible intercorrelations between test measures within each adaptive skill area, (b) the number of test measures selected were to be approximately the same within each adaptive skill area, and (c) selected variables were to reflect a reasonably high degree of clinical explanatory potential.

Discussion on the statistical treatment of the data is conducted in three phases. The first phase includes a description of the steps involved in the application of the $Q$ technique of factor analysis to the left-handed and right-handed graups of children independently. In the second phase, the steps involved in the application of different cluster analytic classification procedures to the two target samples is outlined. Briefly, two hierarchical agglomerative algorithms (i.e., average linkage, centroid sorting) combined with a iterative relocation procedure were utilized in the treatment of the data. Finally, phase III describes the statistical analyses used to compare the composition of subgroups generated by the multivariate quantitative taxonomic procedures across such variables as intensity of sinistral preference or proficiency, and history of familial handedness.

## Q Technique of Factor Analysis

For the purpose of enabling comparisons to be made between the many different test measures, raw scores collected on each of the dependent measures were converted to $I$ scores based on a fund of normative data supplied by Wechsler (1949), Knights \& Moule (1967) and Knights (1970). The transformed I score distribution was based on a mean of 50 and a standard deviation of 10.

Briefly, the Q type factor analytic procedure involves the following computational format: preparation of the correlation matrix, extraction of the initial factors, and rotation to a terminal solution (Nie, Bent, \& Hull, 1970; Lawlis \& Chatfield, 1974). As a basic input to the factor analysis; I scores were transposed and
product moment correlation coefficients were calculated between each pair of subjects in the target sample. Next, factor analysis was applied to the correlational matrix using an iterated principal axis solution (communality estimates based on 1.00 in the diagonals initially). The purpose of this stage was to explain the interrelationships existing in the data by means of a minimum number of common factors or components. To achieve simpler, and hopefully, theoretically more meaningful factor patterns, the initial extracted factors that yielded eigenvalues greater than or equal to the ratio of number of subjects/number of variables were then retained and rotated orthogonally to varimax criterion (SAS PROC FACTOR, Method $=$ Prinit; Helwig \& Council, 1979).

The decision was made to retain subjects who exhibited a single factor loading of . 50 or greater, mainly because this criterion was adopted both by Fisk \& Rourke (1979) and by Doehring and his associates (1979). At the same time, since the factor loading is indicative of the correlation coefficient between subject and factor (Lawlis \& Chatfield, 1974), a value of .50 would seem to represent a moderately strong degree of association between the two. Thus, children were assigned to each subtype in terms of the factor for which they showed the highest factor loading above . 50. For each group of individuals who constituted a subtype, I score means for the twenty-one variables used in the factor analysis were calculated. These values were then plotted to enable graphical presentation of the factors or 'subtypes' determined by the factor analytic procedure.

This computational format was applied in a similar manner to the left- and right-handed children independently. Analyses of the similarities and differences between factor solutions generated for the left- and right-handed samples were conducted in the following two ways: (1) through visual inspection of the factor profiles, and (2) by means of pearson product moment correlational analysis between each plot separately.

At this point it would be worthwhile to review the expectations outlined in Chapter I. Perhaps this may be best accomplished by viewing a pictorial representation of the subtypes expected to be generated through the application of the $\underline{0}$ type multivariate classification technique. In Figure 1, you can see that initially the total population $(N=322)$ has been partitioned into two handedness samples (based on choice of name-writing hand), with 161 subjects within each group. For the left-handers, the boxes labelled pure and mixed-preference are intended to illustrate two expected subtypes that manifest different measurable variations in the consistency and degree to which they report the use of their left hand on a series of hand preference questionnaire items. Thus, the former subgroup is composed of members who report a tendency to engage the left hand for all seven of the manipulative tasks listed on the Harris inventory, whereas the latter subgroup is made up of individuals who demonstrate deviations from a consistent sinistral tendency for the preference items (e.g., a person who writes his name with the left hand but throws a ball with the right). Moreover, it was pointed out earlier that a distinction should be


Figure 1. Illustration of subtypes expected to be generated by multivariate statistical classification analyses (see text for explanation of partitions and notations).
made between hand preference and hand proficiency. The three boxes located directly beneath the pure and mixed-preference partitions are intended to represent three expected subtypes of lefthanded writers who manifest variations in consistency of hand usage across two behavioural tasks: one involving gross motor speed, and a second involving fine manipulative dexterity. As part of the neuropsychological assessment proceedings all subjects were also administered both a speeded fine eye-hand coordination task involving the placement of small steel pegs into slots or holes varying in directional orientation (i.e., Grooved Pegboard Test), and a simple motor speed task involving the rapid tapping of a key with the index finger (i.e., Finger Oscillation Task). On the basis of an individual's performances on these two behavioural measures, it was thought that the following three subtypes may emerge: (1) congruous left-handers, those individuals who write with the left hand, and who also exhibit a higher level of performance with the left hand as compared to the right hand on both the Grooved Pegboard and Finger Oscillation Tasks, (2) incongruous left-handers, those individuals who write with the left hand, but who demonstrate a higher level of performance with the right hand on both behavioural measures, and (3) mixed-proficient left-handers, those individuals who prefer to write with the left hand, but who exhibit a mixed proficiency pattern on the two behavioural tasks (i.e., left-handed performance superior to right-handed performance on one task, and vice versa). Initial accounts of these hand proficiency patterns within the total sinistral sample $(N=161)$ revealed 64,36 and 61 congruous, incongruous, and mixed-proficient left-handers, respectively.

One final note on this issue. It was thought that the emergence of discrete hand preference and hand proficient subtypes would hopefully aid in detecting differences that may exist between the classification of sinistrality by means of a hand preference inventory as compared against demonstrated left-handed performance proficiency on behavioural tasks involving simple motor speed and fine manipulative dexterity. As well, it was felt that it would permit an investigation into the importance of 'degree or intensity' of sinistrality as measured by two separate methods.. Finally, it should be pointed out that even if hand proficiency is found to be a more important consideration in delineating subtypes of lefthanders, the location of the congruous, incongruous and mixedproficient partitions on Figure 1 (i.e., beneath both hand preference markers) is intended to illustrate the fact that each of these three categories could well include both pure and mixed preference individuals as subtype members.

The remaining boxes, labelled L+ on Figure 1, are intended to reflect detected subtypes of sinistral learning disabled children who manifest variations in hand preference tendencies within the child's biological family members. Thus, the $L+$ (positive familial sinistrality) partition consists of those children who report the presence of at least one immediate family member (e.g., mother, father, sibling) as being left-handed, whereas left-handed writers who report no immediate biological relatives as exhibiting sinistral tendencies constitute a separate (negative familial sinistrality) subtype identified as L-. To control for the effects of a positive and
negative familial sinistrality history, a comparable group of right-handed writers ( $N=161$ ) was factor analyzed as well. From such an analysis it was felt that a similar classification for right-handed learning disabled children should emerge (i.e., a subtype composed of members with familial left-handed tendencies ( $\mathrm{R}+$ ), and a separate subgroup whose members report a nonfamilial sinistrality history ( $R-$ )). In each case, the reporting of familial lefthandedness was accomplished by having the two parents document, by means of a Parent Questionnaire, their own hand preferences as well as those of their offspring (see Appendix A). Cluster Analytic Classification Procedures

To reiterate, the main reason for utilizing multivariate cluster analytic techniques in the present study was to confirm the existence of subtypes that had been identified by the $\underline{Q}$ type factor analytic procedure. That is to say, it was expected that the subgroups generated by means of one multivariate statistical procedure should be able to be detected through the application of several other classification methods as well. As Doehring et. al. (1979) so aptly stated, (at least in regard to reading impairment), '. . . subtypes which had previously been identified by the $\cap$ technique (and continue to) remain well-defined when the data were re-examined using the technique of cluster analysis . . . confirms the usefulness of statistical classification procedures in identifying the patterns of reading problems' (p. 1, Italics added). Stated another way, the occurrence of consonant subtypes isolated by means of several different classification methods will serve to buttress the claim that learning
disabled children constitute a heterogeneous population in regard to the number and type of cognitive deficiencies they possess.

The number and variety of cluster analytic techniques is overwhelming. Even Everitt (1974) in his detailed comprehensive review of cluster analysis admitted to the fact that attempts to list and describe clustering techniques currently available cannot keep pace with the mushrooming literature on the development of new classification techniques. To complicate matters further, numerous methodological considerations surround the use of cluster analysis. Thus, Blashfield (1980) points out that the choice of clustering method, the similarity measure, the computer programme, and the procedure for estimating the number of clusters must be clearly defined. Moreover, adequate evidence of a cluster solutions validity should be provided as well (e.g., replicating a solution across different cluster analytic methods or across a different collection of variables). Morris, Blashfield and Satz (1981) add to this list the fact that most cluster methods cannot be formulated in precise mathematical terms. Because the technique demands some familiarity with a number of complicated parameters, both Morris et al. (1981) and Doehring et al. (1979) have cautioned against the selection and application of cluster analysis without first consulting an expert in the field.

Be that as it may, some of the bewilderment surrounding the selection of an 'appropriate' clustering method can be alleviated somewhat by the fact that most cluster analysis techniques can be organized or arranged into categories. Thus, Everitt (1974) suggests the following five part classification scheme: hierarchical tech-
niques; optimization-partitioning techniques; density or modeseeking techniques; clumping techniques; and others (the reader is referred to Everitt (1974) for a detailed discussion on the particulars that distinguish between these classes of clustering methods). Morris, Blashfield and Satz (1981) report a similar classification arrangement but define 'others' more clearly to include 'factor analysis variants' and 'graphic techniques'. In general, in most clustering procedures, measurements collected on a number of individuals (or objects) are examined through the use of ad-hoc algorithms, with a view to the disclosure of subgroups or 'clusters' that would appear to belong or 'hold' together based on particular characteristics of the data set (Everitt, 1974; Lawlis \& Chatfield, 1974; Maxwe11, 1977). Members (individuals or objects) of a group or cluster share a high degree of association between each other while, at the same time, demonstrate low associative values with members of a different cluster. In general, the aim is to discover clusters or categories that exist in the data rather than allocate individuals to known groups, which is the purpose of an 'assignment or identification' procedure such as discriminant function analysis (Maxwell, 1977; Morris et al., 1981).

The advent of computer software programmes dealing specifically with a variety of cluster analytic methods has enabled the application of multiple techniques (Wishart, 1978). The Clustan 1C User Manual provides a comprehensive compilation of the clustering programmes available. In approaching the problem of the application of cluster analytic procedures, a certain amount of care needs to
be exercised in regard to subject and variable selection, choice of similarity measure, determination of the number of clusters existing in the data, and validation of the solution (Morris et al., 1981). For the first of these issues, some authors (Everitt, 1974; Wishart, 1978) have suggested that when dealing with a large number of dependent measures, one may want to perform a principle components analysis on the data, and use the first few principle component scores as input variables to the clustering procedure. This is a useful way of reducing the number of variables. However, since one objective of this study was to compare classifications derived from different taxonomic procedures, a decision was made to apply cluster analyses to the same twenty-one I score measures collected on the same target populations used in the factor analytic procedure. Besides, these measures have already been shown to load highly on factors found in a factor analysis of the test battery. Moreover, following the recommendation of Morris and his colleagues (1981) I score were chosen over factor score matrices as inputs to the clustering procedures. According to these authors, since factor scores are normally distributed, they are thought to be limiting in a clustering problem. The remaining issues, similarity measure and cluster method selection, criterion for termination of the clustering procedure, and validation of the cluster solution are discussed in more detail below.

For many clustering methods, the first stage in the computational format involves a conversion of a matrix of data into a matrix of interindividual similarities or dissimilarities (Everitt, 1974;

Maxwe11, 1977; Morris et al., 1981). Basically, this refers to a measure of the relationships or associations between pairs of individuals, given the value of a set of variables common to both. Two measures of interindividual similarity are typically considered in cluster analysis. The first of these is correlation, a measure usually adopted when one is particularly interested in the similarity of profile shapes or patterns. The most commonly used correlation measure is the product moment correlation coefficient. The second measure, distance, is thought to be more appropriate when elevation across variables is of particular interest. The best known distance measure is, of course, Euclidean. The choice between correlations and distances measures in clustering is difficult to make, and a case can be made for the selection of either one. In the present study, it was felt that the similarity of profile shapes, rather than how far apart the profiles were, was more important in identifying different subtypes of left-handed learning disabled children. Thus, the product moment correlation coefficient was selected as the measure of similarity between subjects.

The next stage in the cluster analysis is to select the clustering technique(s). Most researchers agree that there is no one technique that can be judged to be "best" in all circimstances. A single set of scores analyzed by two different techniques can result in entirely different solutions or groupings of the data (Everitt, 1974). At best, Everitt suggests that several techniques should be used to lessen the possibility of accepting misleading solutions. It is for this reason primarily that two clustering methods were chosen
to analyze the data in the present study. Because the hierarchical agglomerative techniques are accepted as the clustering methods of choice in a number of investigations, a decision was made to adopt two hierarchical techniques, group average or average linkage (CLUSTAN, version IC2, procedure HIERARCHY, method GROUP AVERAGE, Wishart, 1978). and centroid sorting (CLUSTAN, version 1C2, procedure CENTROID, Wishart, 1978). Moreover, the results of another recent cluster analysis study of learning disabled children (Joschko, Note 2) suggested the use of these two particular techniques following a systematic analysis of a variety of clustering . methods.

The basic procedure with hierarchical agglomerative methods is as follows: beginning with the computation of a interindividual similarity matrix members are grouped together by a series of successive 'fusions' which culminate at the point where all individuals. are in one group (Everitt, 1974; Maxwell, 1977). The clustering methods unite individuals or groups of individuals which are most similar. Differences between the various agglomerative methods arise because of the differing ways of defining similarity between an individual and a group containing several individuals or between two groups of individuals. For the group average method, similarity between clusters is defined as the average similarity of all pairs of individuals in the two clusters. For the centroid sorting analysis, the similarity between two clusters is computed using the two centroid vectors representing the clusters.

To clarify further the cluster solutions derived by means of the two hierarchical methods, a iterative relocation procedure was applied to both (CLUSTAN, version 1C2, procedure RELOCATE, Wishart, 1978). The initial clustering solution was reexamined to see if any of the classified subjects should be reallocated to another group. The technique simply removes each subject from its assigned group and compares its similarity to each other cluster with the objective of determining the one to which it is most similar (Everitt, 1974; Morris et al., 1981). Statistically, the technique attempts to minimize within-cluster variance and maximize betweencluster variance. Moreover, as Morris et al. state, '. . .(the relocation method) also allows the investigator to examine the number of 'relocated' subjects which could give some idea of the stability of the solution. If many subjects are changing clusters during each iteration, one must wonder about the adequacy of the results'. (p. 89, Italics added). One final note on the relocation procedure. Some authors (Wishart, 1978) have suggested that it is often difficult to find a 'global optimum' solution when clustering very large populations (e.g., $N$ 150). To help circumvent this problem, Wishart (1978) has suggested that different 'starting configurations' (e.g., shape difference, size difference, or random classification arrays) should be utilized in the RELOCATE step. If the same cluster solution is replicated from say a random start as from a shape difference classification array, then a 'global optimum' solution is likely to have been achieved. In the current study, iterative relocation analyses was performed utilizing the shape difference classification array, and a random initial configuration.

A persistent problem in cluster analysis is the difficulty of deciding as to the correct nember of groups to consider for a given set of data. Two commonly used methods or indicators for the number of cluster present in the data include an examination of the dendrogram or mapping of the data, and an analysis of the clustering coefficients (Everitt, 1974; Morris et al., 1981). In the first of these methods, hierarchical tree-like plots of the clustering solutions enable detection of a phenomenon known as "chaining" in the data (i.e., a tendency to cluster together entities linked by chains of intermediates), as well as detecting multilevel clustering solutions (Everitt, 1974; Morris et a1., 1981). With the second of these methods, clustering coefficients (i.e., measures of variance) are computed during the course of the clustering process. A precipitous change observable in a plot of these values from one grouping to the next suggests that two clusters were combined to form a heterogeneous cluster (i.e., one with a high degree of within-cluster variability). Both criterion were employed in the present study, although some indication of the correct number of clusters was presumably provided by the $\underline{Q}$ type factor analytic solution.

Validation is the last step in the clustering procedure. Several methods for determining the stability and usefulness of the clustering solutions are reported on the literature. Some of these procedures include the following: (1) randomly dividing the sample into two and performing separate analyses on each (clearly structured data should produce similar solutions for the partitioned samples as that found for the entire population), (2) removal of a few variables from the analysis ('real' clusters should be altered little
in the process), (3) demonstrating that clusters have predictive value with respect to variables not included in the original clustering procedure, and (4) analyzing the same data set by several different clustering techniques (widely divergent solutions call into question the existence of well-defined clusters) (Everitt, 1974; Maxwell, 1977; Morris et al., 1981). Criterion (4) was partially satisfied in the present study by the utilization of two different clustering methods. In addition, a split-sample design was employed which randomly divided the 161 children into two subsamples and each half was clustered independently. Membership assignment in the partitioned samples was checked against the cluster solutions derived for the standard.

Finally, the solutions derived from the cluster analyses were compared against the subtypes generated by the Q-technique or factor analysis. This was accomplished in three ways. First, for each group of individuals who constituted a cluster, I score means for the variables used to define the cluster were calculated. These values were then plotted graphically to enable visual inspection of the similarity between intercluster profiles, and between $\mathbb{Q}$ type and cluster analysis profiles. Secondly, Pearson product moment correlational analyses were conducted between each plot separately. Finally, following the criterion outlined in Doehring et al. (1979) the results of the cluster analyses were evaluated and interpreted with reference to the classification obtained in the $\underline{Q}$ type analysis, (i.e., the number of subjects from each of the $Q$ technique subtypes who were not classified together by a given method of cluster analysis).

Figure 2 presents an illustration of the steps involved in the $\underline{Q}$ type factor analytic and cluster analysis procedures. Subtype Analyses

Subgroup composition across such variables as intensity of left-handedness (including analyses of hand preferences and hand proficiency), as well as familial handedness tendencies was analyzed through the application of a series of Chi-Square ( $\chi^{2}$ ) Goodness-ofFit tests (Yamane, 1967). The distribution of scores for the hand preference, hand proficiency and familial handedness variables for each $\underline{Q}$ type factor and cluster analytic group were compared against their respective hypothetical distributions, and a measure of agreement or conformity ( $\mathcal{X}^{2}$ ) was generated for each.


Figure 2. Illustration of the steps involved in the $\mathbb{Q}$ type and cluster analytic classification procedures.

RESULTS

The results of this study are presented in three phases. The first phase reports on the selection of appropriate variables on which to factor and cluster analyze the target samples. The second phase describes the $\underline{Q}$ type factor analyses solutions. Finally, the last phase discusses the cluster analyses results and includes a report on the validation procedures used to assess the adequacy and stability of the clustering solutions. It also gives an account of the degree of conformity or agreement between the subtypes derived from the different multivariate taxonomic procedures.

## Variable Selection

In any multivariate taxonomic procedure the choice of variables will obviously determine the classification found, and it is important that the measures selected are relevant to the type of classification being sought. For example, in their attempts at describing the adaptive ability makeup of children who were encountering learning problems, both Petrauskas and Rourke (1979) and Fisk and Rourke (1979) utilized a broad range of neuropsychologic measures aimed at delineating areas of normal and compromised brain functioning. For reasons already noted, the twenty-one dependent measures employed by the latter authors in their $\underline{Q}$ typing of right-handed learning disabled children were also utilized in the present study.

At the same time, following the procedure outlined in the Fisk and Rourke (1979) investigation, product moment correlations were computed between the forty-two test measures listed in Table 5. The results of these analyses are presented in Tables $\overline{0}$ to 11. An asterisk next to the variable name denotes those test measures selected by Fisk and Rourke (1979) and utilized in the present study as input variables to the multivariate classification procedures. ${ }^{1}$ Moreover, by way of comparison, Table 12 presents the results of an $\underline{R}$ type factor analysis of the test battery conducted on a group of children within the age range of $9-12$ years. It is clear from Table 12 that those variables selected as dependent measures on the basis of a 'rational grouping. procedure' so employed in the present study follows fairly closely. the factor solutions generated by.a formalized $\underline{R}$ type analysis.

## Q Type Factor Analyses Solutions

The results of the factor analyses by the $\underline{Q}$ technique applied to the scores of the 161 left- and 161 right-handed children independently are presented in Table 13. The eigenvalue limitation used to
$1_{\text {Applying the criterion that selected variables were to represent }}$ the lowest possible intercorrclations between test measures within each adaptive skill area, an argument could perhaps have been made for the selection or inclusion of certain other variables as dependent measures (c.!!, YFIM, SEN:EM, and VOCAB within the AuditoryPerceptual realm; FAGNL and FTWL within the Tactile-Perceptual area; and GRIPR and GRIPL among the Motor measures). However, as stated earlicr, one intention of this study was to compare directly the subtypes gencrated for a sample of left-handed children to those already reported on for a similar group of right-handed apemates (i.c., Fisk \& Rourke, 1979). Thus, dependent measures were duplicated.

TABLE 6
Pearson Product Moment Correlation Coefficients
for Auditory-Perceptuál Measures.

|  | INFO | COMP | SIMIL | VOCAB | PPVTIO | AUDR | AUDL | SSPER | AUDCLO | SENMEM | VFLU |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| * INFO | 1.00 | .34 | .33 | .50 | .41 | .17 | -.07 | .30 | .35 | .41 | .15 |
| * COMP |  | 1.00 | .23 | .32 | .33 | .05 | -.08 | .14 | .12 | .23 | .13 |
| SIMIL |  |  | 1.00 | .43 | .37 | .13 | .03 | .13 | .13 | .28 | .15 |
| VOCAB |  |  |  | 1.00 | .56 | .09 | .01 | .22 | .38 | .46 | .16 |
| PPVTIQ |  |  |  |  | 1.00 | .01 | .01 | .18 | .25 | .38 | .10 |
| AUDR |  |  |  |  |  | 1.00 | .05 | -.07 | .01 | .06 | -.08 |
| AUDL |  |  |  |  |  |  | 1.00 | .02 | -.05 | .04 | -.08 |
| *SSPER |  |  |  |  |  |  |  | 1.00 | .15 | .34 | .34 |
| * AUDCLO |  |  |  |  |  |  |  |  | 1.00 | .29 | .18 |
| SENMEM |  |  |  |  |  |  |  |  |  | 1.00 | .33 |
| VFLU |  |  |  |  |  |  |  |  |  |  | 1.00 |

## TABLE 7

## Pearson Product Moment Correlation Coefficients for Sequential Processing Measures

|  | ARITH | DIGITS | CODING |
| :--- | ---: | :---: | :---: |
| * ARITH | 1.00 | .2 .4 | .04 |
| * DIGITS |  | 1.00 | .07 |
| * CODING |  |  | 1.00 |

TABLE 8

Pearson Product Moment Correlation Coefficients
for Visual-Perceptual Measures

| * PICCOM | 1.00 | -.01 | .27 | .18 | -.07 | -.11 | .16 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| PICARR |  | 1.00 | .20 | .19 | .01 | -.01 | .23 |
| * BLKDES |  |  | 1.00 | .39 | .09 | -.02 | .27 |
| * OBJASS |  |  |  | 1.00 | -.03 | -.04 | .18 |
| VISR |  |  |  | 1.00 | .19 | -.03 |  |
| VISL |  |  |  | 1.00 | .01 |  |  |
| * TARGET |  |  |  |  | 1.00 |  |  |

TABLE 9

Pearson Product Moment Correlation Coefficients for Tactile-Perceptual Measures

|  | TACR | TACL | FAGNR | FAGNL | FTWR | FTWL | ASTR | ASTL | TPTDT | TPTNDT | TPTBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TACR | 1.00 | . 48 | -. 16 | -. 12 | -. 04 | -. 06 | -. 02 | -. 13 | -. 21 | -. 12 | -. 11 |
| TACL |  | 1.00 | -. 19 | -. 08 | -. 09 | -. 13 | -. 14 | -. 16 | -. 36 | -. 19 | -. 12 |
| * FAGNR |  |  | 1.00 | . 56 | . 21 | . 19 | . 06 | . 10 | . 23 | . 16 | . 10 |
| FAGNL |  |  |  | 1.00 | . 16 | . 13 | -. 01 | . 04 | . 12 | . 17 | . 05 |
| * FTWR |  |  |  |  | 1.00 | . 83 | . 06 | . 16 | . 13 | . 27 | . 11 |
| FTWL |  |  |  |  |  | 1.00 | . 06 | . 14 | . 16 | . 23 | . 12 |
| ASTR |  |  |  |  |  |  | 1.00 | . 58 | . 07 | . 12 | . 02 |
| ASTL |  |  |  |  |  |  |  | 1.00 | . 15 | . 28 | . 06 |
| * TPTDT |  |  |  |  |  |  |  |  | 1.00 | . 46 | . 35 |
| * TPTNDT |  |  |  |  |  |  |  |  |  | 1.00 | . 33 |
| TPTBT |  |  |  |  |  |  |  |  |  |  | 1.00 |




|  |
| :---: |
|  |  |
|  |  |



OT $378 \forall 1$
Pearson Product Moment Correlation Coefficients
for Motor Measures
呆 은

TAPR
1.00


## TABLE 11

# Pearson Product Moment Correlation Coefficients for Conceptual Reasoning Measures 

|  | CATTOT | TRSBT |
| :--- | :---: | :---: |
| * CATTOT | 1.00 | .16 |
| * TRSBT |  | 1.00 |

TABLE 12
R Type Factor Analysis Solutions

| Factor 1 |  | Factor 2 |  | Factor 3 |  | Factor 4 |  | Factor 5 |  | Factor 6 |  | Factor 7 |  | Factor 8 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *OBJASS | . 74 | VOCAB | . 78 | TRSAT | . 61 | MAZCM | . 83 | VFLU | . 52 | *DIGITS | . 62 | GRIPM | . 58 | PEGSM | . 32 |
| *BLKDES | . 66 | SIMIL | . 67 | *TRSBT | . 57 | MAZSM | -. 38 | *AUDCLO | . 49 | SENMEM | . 44 | TAPM | . 57 | CATTO | -. 30 |
| PEGSM | . 51 | *INFO | . 66 | *CODING | . 52 | HOLCM | . 37 | FAGM | . 38 | *ARITH | . 39 |  |  |  |  |
| *PICCOM | . 48 | PPVTIQ | . 66 | *SSPER | . 39 |  |  | *SSPER | . 31 | ASTM | . 38 |  |  |  |  |
| TPTM | . 45 | *COMP | . 59 | *TARGET | . 36 |  |  |  |  | *CATTOT | . 31 |  |  |  |  |
| PICARR | . 45 | SENMEM | . 56 |  |  |  |  |  |  |  |  |  |  |  |  |
| *TARGET | . 34 | *ARITH | . 44 |  |  |  |  |  |  |  |  |  |  |  |  |
| TPTMEM | . 33 | *PICCOM | . 33 |  |  |  |  |  |  |  |  |  |  |  |  |
| *CATTOT | . 32 | PICARR | . 29 |  |  |  |  |  |  |  |  |  |  |  |  |

* Denotes variables used in the current study.
N.B. Some of the variable abbreviations listed on this Table differ from those listed on Table 5. The meaning of these abbreviations are not particularly important for the purposes of the present study. However, if the reader is interested, the signification of these labels can be ascertained elsewhere (Gates, personal communication).

TABLE 13

## Factor Analysis Solutions for Left-Handed and Right-Handed Samples

|  | Factors |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Data | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Sinistrals |  |  |  |  |  |  |  |
| $\quad$ Eigenvalues | 33.399 | 22.619 | 16.102 | 15.471 | 11.361 | 9.052 | 8.273 |
| $\quad$ Variance | 0.276 | 0.187 | 0.133 | 0.128 | 0.094 | 0.075 | 0.068 |
| Cum Variance | 0.276 | 0.462 | 0.595 | 0.723 | 0.816 | 0.891 | 0.959 |
|  |  |  |  |  |  |  |  |
| Dextrals |  |  |  |  |  |  |  |
| $\quad$ Eigenvalues | 34.926 | 24.756 | 17.648 | 12.538 | 11.010 | 10.232 | 8.386 |
| $\quad$ Variance | 0.285 | 0.202 | 0.144 | 0.102 | 0.090 | 0.083 | 0.068 |
| Cum Variance | 0.285 | 0.487 | 0.631 | 0.733 | 0.083 | 0.906 | 0.975 |
|  |  |  |  |  |  |  |  |

terminate factoring was 7.66 for both handedness samples. This value yielded seven factors for each of the factor analyses that accounted for $95.9 \%$ and $97.5 \%$ of the common variance for the leftand right-handed samples, respectively.

The number of children in each handedness sample exhibiting factor loadings of .50 or more on only one of the factors, high loadings on more than one factor, and factor loadings less than . 50 on all of the factors is shown in Table 14. For the left-handed sample, 110 (68\%) of the 161 children demonstrated single factor loadings of .50 or more, 15 ( $9 \%$ ) of the children exhibited multiple factor loadings, and the remaining 36 ( $23 \%$ ) children (i.e., unclassified subjects) were found to have low factor loadings on all seven factors. For the right-handed group of children, the corresponding values were 116 ( $72 \%$ ), $20(12 \%$ ) and 25 ( $16 \%$ ), respectively. Only individuals with a high factor loading on only one factor were considered in the determination of subtypes, and only those with a high positive loading. A sizeable number of subjects exhibited negative factor loadings, and 12 of the left- and 3 of the right-handed individuals were found to have single factor loadings below -. 50. However, these children were excluded from subtype classification. Likewise, when a person has a sizeable factor loading on more than one factor, classification is difficult. Thus, subjects exhibiting multiple factor loadings were excluded from subtype determination as well. A complete listing of all of the individual factor loadings is provided in Appendix $C$ for the left-handed sample, and Appendix $D$ for the right-handed sample.

## TABLE 14

Number of Classified (Single Factor Loadings $\geq .50$ ), Multiple Loadings, and Unclassified Subjects for Sinistral and Dextral Samples

|  | Sample |  |
| :---: | :---: | :---: |
| Loadings | Sinistrals | Dextrals |
| Single Loadings |  |  |
| 1 |  | 20 |
| 2 | 26 | 26 |
| 3 | 19 | 18 |
| 4 | 9 | 11 |
| 5 | 6 | 18 |
| 6 | 4 | 8 |
| 7 | 5 | 110 |
| Total | $68 \%$ | 116 |
| $\%$ Sample |  | $72 \%$ |
| Multiple Loadings | 15 | 20 |
| Total | $9 \%$ | $12 \%$ |
| $\%$ Sample | 36 | 25 |
| Unclassified | $23 \%$ | $16 \%$ |
| Total |  |  |
| $\%$ Sample |  |  |

The I score means and standard deviations of variables used in the factor analyses procedure for each sinistral and dextral $\underline{Q}$ type factor are shown in Tables 15 and 16. An asterisk next to the variable name denotes those measures used in the factor analytic procedure. The other measures listed on the Tables include the $I$ score means and standard deviations of variables not utilized in the $Q$ technique, as well as descriptive information on the mean age (CAGE), mean WISC VIQ, PIQ and FSIQ, and mean WRAT Reading (RPERC), Spelling (SPERC), and Arithmetic (ARPERC) centile scores for each factor. Briefly, for the left-handed sample, Factors 1, 2, 4, 5 and 6 exhibited fairly similar mean age values (11.09, $10.73,10.94,10.34$ and 11.46 , respectively). The mean age for Factor 7 was slightly higher (12.66), while Factor 3 exhibited the highest mean age value (13.46). It was also clear from Table 15 that the mean WISC FSIQs were fairly uniform across the seven factors. When the discrepancies between mean WISC VIQs and PIQs were examined, all of the factors showed a similar lower VIQ-higher PIQ pattern, with the exception of Factor 4. The magnitude of this discrepancy was the least for Factor 6, whereas the greatest mean difference occurred within the group of children who constituted Factor 2. A reverse pattern was seen for Factor 4 where the mean VIQ value exceeded the mean PIQ. Finally, on the WRAT, the mean Reading, Spelling and Arithmetic subtest scores were all below the 30 th centile for Factors 1, 2, 3 and 7. For Factors 4 and 6, the mean subtest scores for Reading and Spelling exceeded the 30 th centile, while Arithmetic was below this value. Finally, Factor 5 exhibited a mean Reading

TABLE 15

I Score Means and Standard Deviations<br>of Variables for Each Sinistral Q Type Factor



TABLE 15 （cont＇d）

Factor 2

| VARIABLE | N | MEAN | STANCAFD DEVIATION |
| :---: | :---: | :---: | :---: |
| ＊INFO | 2 E | 35．015ココ462 | C．t2164234 |
| ＊comp | 2.6 | 47.05128205 | 9．15675455 |
| SIMIL | $2 E$ | ¢C．76523077 | E．3St 17E32 |
| VOCAG | $\underline{2}$ | 49.10256110 | 6．22237485 |
| PpVTIG | 26 | 47.94871795 | S．G597Eころ7 |
| AUDR | 26 | $0.03 E 46154$ | 0.19611614 |
| AUDL | 26 | 0.07652308 | C． 27174649 |
| ＊SSPER | 26 | 12.39842657 | 17．50ع11193 |
| ＊a uoclo | 2e | 47.05480769 | 11.931 čec4 |
| SENMEA | 成 | $\geq 1.01003344$ | $14.21024 C 50$ |
| VFLU | 26 | こ6．31593407 | 8．7152C307 |
| ＊ARITH | 26 | 41.66666667 | 7.19567771 |
| ＊DIGITS | 26 | $43.4015384 \epsilon$ | E．072こ1493 |
| ＊coolis | 26 | 45.87279487 | G．212cer93 |
| ＊pICCUM | 26 | 56．75427179 | 10.20237006 |
| PICARR | E 6 | 52．435E9744 | 9．5012こと39 |
| ＊BLKDES | 26 | 52．43589744 |  |
| ＊otjass | 26 | 56.41025641 | 4．3757ES29 |
| $V I S R$ | 26 | 0.03846154 | O．19E11614 |
| VISL | 26 | 0.23076923 |  |
| ＊target | 26 | 41.21040513 | $10.5456 こ 626$ |
| TACR | 26 | $0.723 C 7692$ | 0．9454 5437 |
| TACL | 26 | 0.30769231 | 0．¢70ミ2S05 |
| ＊FAGNR | 26 | 54.00 Ccocoo | 12．84990572 |
| FAGNL | 26 | 44.87179487 | 15．74EEE410 |
| ＊FTWR | 26 | 54.10144603 | 11．92S2CE10 |
| FTKL | 26 | 50.42948728 | $13.9016=789$ |
| ASTR | $2 \epsilon$ | $44.552140 こ 2$ | 12.57462718 |
| ASTL | 26 | 44.82325262 | $11.8215 c 792$ |
| ＊tprot | 26 | ¢こ．925c882a | 9．60354E52 |
| ＊tptndt | 20 | ¢2．27EE0501 | E．7920¢cy？ |
| TPTBT | 26 | 41.17 ¢¢6722 | 31.61257324 |
| TPTME：d | 26 | 52．48C76923 | c．39245E10 |
| tpti＿de | 20 | 47.60550111 | 10．20¢E1326 |
| ＊tapr | 26 | E2．664446ご2 | $11 . C 77$ CCSS |
| ＊tapl | 26 | $42.774 こ 2012$ | 11.13751547 |
| rFADR | 25 | 三1．11コECCOO | 5．23E24E13 |
| FTAPL | 2 E | コ1．00ccocoo | $6.273 \varepsilon 7507$ |
| GRIPR | $2 \%$ | $45.06882 \leq 91$ | 10.33375771 |
| GRIPL | 20 | 44.07279 ¢67 | $11.4 C 57 \in 299$ |
| ＊Pegsrt | 26 | 4 －62こ67450 | $10.32 \Xi$ ct54t |
| ＊PEGSLT | 26 | $46.03 E 46154$ | 9．22485263 |
| ＊cattot | 26 | 51．72ヒ42502 | 2． 60404603 |
| ＊trSer | 26 | 3e．43Ectyos | 16.20503211 |
| CAGE | 26 | 10.73 EEGE15 | 1．29345075 |
| $\checkmark 10$ | 26 | $44.15324 \in 15$ | 5－223こここ31 |
| PIa | 26 | E4．76523077 | 7.0847 こ742 |
| FSIO | 26 | 45.07692308 | 5.41255481 |
| KPERC | 26 | 11.19230769 | 11.45721561 |
| SPERC | 26 | $8.384 \in 1538$ | ¢．94C12246 |
| ARPERC | 26 | 15．65こと4E15 | 12．712C1733 |

## TABLE 15 （cont＇d）

Factor 3

| VARIABLE | $N$ | NEAN | STANCAFD DFVIATION |
| :---: | :---: | :---: | :---: |
| $\star$ INFO | 19 | 42.28070175 | 4.57557386 |
| ＊Camp | 19 | 50.00000000 | 10.71516751 |
| SIMIL | 19 | ¢こ．50と77193 | C． $710 \equiv \varepsilon 299$ |
| VOCAB | 19 | 46.84210526 | 5.49676495 |
| pputia | 19 | 51.64912281 | G．59CC3707 |
| AUDR | 19 | 0.05263158 | 0.22941573 |
| AUDL | 19 | 0.10526316 | $0.45 E \varepsilon \equiv 147$ |
| ＊SSPER | 19 | － 38.32421053 | $16 \cdot 73934199$ |
| ＊a uoclo | 19 | $42.75 \leq 26316$ | 21.40512266 |
| SEN：AEM | 19 | $36.4713558 \varepsilon$ | 12.89354457 |
| VFLU | 19 | 41.50751830 | 10．72¢¢E571 |
| ＊ARITH | 19 | 42.28070175 | 5．2172C323 |
| ＊DIGITS | 19 | 45.96491228 | G．G11Es256 |
| ＊codinc | 19 | 46.14035080 | G．37G7E三20 |
| ＊piccua | 15 | ¢3．50¢77193 | G．4596EE03 |
| pICARK | 19 | 50．350¢7719 | 7.27711530 |
| ＊3Lídes | 19 | 5コ．63421053 | 7．769： 507 |
| ＊Qbjass | 19 | 54.56140351 | 1 C 0120 ¢ ？こ |
| VISR | 19 | 0.10526316 |  |
| VISL | 19 | 0.05263158 | O． 2294 ¢ \％＂ |
| ＊target | 19 | 29．39050558 | 18.93364813 |
| TACR | 19 | 0.05263158 | 0.22941573 |
| TACL | 19 | 0.05263158 | 0.22941573 |
| ＊FAGNR | 19 | 42．52Eこ 2579 | 24.38434531 |
| FAGNL | 19 | 37．96491228 | 31．22162762 |
| ＊FTWR | 19 | －17．42¢こ6239 | 51．26792394 |
| F，TWL | 19 | －24．980 3059 | 97.64518761 |
| A＇STR | 19 | 41.63855793 | 19－1557ES85 |
| ASTL | 19 | $4 E .57157600$ | 17．70236122 |
| ＊TPTDT | 19 | 51．15こ0322c | 5．94905441 |
| ＊tpTNDT | 19 | 42．12121212 | 24．224e1479 |
| TPTET | 19 | 37.04815063 | 20.03214895 |
| TPTMEM | 19 | 47.50 ¢77192 | 12.13205041 |
| TPTLOC | 19 | 42．25199362 | 9．634c4320 |
| ＊tapri | 19 | 50．692te50t | ：2．16741297 |
| ＊TAPL | 19 | 47.15555556 | $16.61396 C 57$ |
| FTADR | 19 | 35．40105ごろ | 5．054 4 ¢54 |
| FTAPL | 19 | 36．72210526 | 4．eajccso3 |
| GRIPK | 7 | 48.32244298 | 12.48156570 |
| GRIPL | 7 | 41.36874209 | 14.49811564 |
| ＊PEGSRT | 19 | 49.0248457 | 19.12501191 |
| ＊PEGSL | 19 | 45.56483897 | 11.93378064 |
| ＊cattor | 19 | 43.65036707 | S．485¢ 022 |
| ＊trsitr | 19 | ＝1．04655579 | 20．28930296 |
| CAGE | 19 | 13.26426316 | 1． 19 LSt425 |
| $\checkmark 10$ | 19 | 45.92982456 | 6.06505773 |
| PIG | 19 | c2．38556491 | 8．44536776 |
| FSIO | 19 | 40.91228070 | 5．24091466 |
| RPERC | 19 | 27.63157295 | $21 \cdot 35730 \leq 61$ |
| SPERC | 19 | 15.68421053 | 15.28 ¢71584 |
| ARPERC | 19 | 12.47363421 | 8．81519157 |

TABLE 15 （cont＇d）

Factor 4

| VARIABLE | $N$ | MEAA | STANCAFD DEVIATION |
| :---: | :---: | :---: | :---: |
|  | 9 | $50.37 \mathrm{C}=7 \mathrm{CJ7}$ | 2．73124091 |
| ＊COMP | 9 | ¢4．44444444 | 11.66686667 |
| SIMIL | 5 | Eこ・コミコミココ33 |  |
| VOCAb | 9 | 51．85185185 | 6.68577477 |
| PPVTIQ | 5 | $50.22<2<2222 ~$ | E．259E7446 |
| AUDR | 9 | $0.000 c 0000$ | $0.00 C C C O O O$ |
| AUDL | S | C．000c0000 | 0.00 CCCOOO |
| ＊S SPER | 9 | 45.92222222 | 7．13855619 |
| ＊a UDCl．o | 5 | 65.29444444 | S．C95EESO9 |
| SENYEM | S | 38.99510908 | 3．9104ES27 |
| VFLU | 5 | 42.14285714 | 0.50236254 |
| ＊ARITH | 5 | 50．000cccoo | 6．E7124E71 |
| ＊DIGITS | 5 | $45.555 \leqslant 5 \leq 5 c$ | 7．637E天616 |
| ＊COOING | $s$ | 43．333ココミミコ． | 8．33コココ333 |
| ＊ficcoir | 5 | 5 ¢．59259259 | G．E20¢CE4S |
| plCAFPr | 5 | $48.51 E \leq 18 \leq 2$ | 7－637C7554 |
| ＊ElKDES | $s$ | 48.14914815 | 5．2Gctez23 |
| ＊cirjJass | 9 | 47.037 C 3704 | C．545¢Cこ4J |
| VISR | 5 | 0.00 C C0000 | c．00cocoso |
| $\checkmark 15$ | 5 | 0．22うこ2 222 | $0.66 t \in E \in O ?$ |
| ＊targer | 9 | 45．07G141E0 | $7.1367 ¢ ¢ 71$ |
| TACR | 5 | 0.000 COOOO | $0.000 c c c o o$ |
| tacl | 5 | C．OOCCOOOO | $0.00 C C C C O O$ |
| ＊FAGNR | 9 | 46.44444444 | 17.28518555 |
| FAGNL | 9 | ᄃ0．51851852 | 7.40703703 |
| ＊FTiNR | 9 | 55．08951643 | 7.557413 E6 |
| FTWL | 9 | 49.09259259 | 2．48941780 |
| AS＇R | 9 | 41.562 こ9316 | 14.03075266 |
| ASTL | 9 | 50.18051665 | 7－957ことを33 |
| ＊trirot | G | 55．0ヶ920448 | 8．64845510 |
| ＊TPTNDT | 9 | E1．53209877 | 10．25E04E60 |
| TPTBT | 9 | 49.64462081 | 11.8 czel75？ |
| TPT：AEM | 9 | 50．42592593 | 11．099CE120 |
| TPTLOC | $G$ | 47.12457912 | 13.16574642 |
| ＊TAPP． | 9 |  | 11.340525036 |
| ＊TAPL | 5 | 42.96543210 | 12.13470236 |
| FTAPR | 5 | ここ．7255cs5e | 7．46C95639 |
| FTAPL | 9 |  | 8．652tS 30 |
| GRIPR | 5 | 40.63492063 | 17．3日E¢5451 |
| GRIPL | 9 | 33.06760542 | 17．00745537 |
| ＊PEGSRT | S | 16.36156079 | 23．C7954275 |
| ＊PEGSLT | 5 | 12.23148148 | 29．9¢R¢コロ29 |
| ＊cattut | 9 | c2．0cees464 | 5．933¢5E53 |
| ＊trsbt | 9 | $46.22 ¢ 23504$ | e．9040三c73 |
| CAGE | S | $10.94 \equiv 22222$ | 0．704ご「557 |
| VIO | S | 51．18510519 | 7－02scict3 |
| P10 | 9 | 46．8cegsc89 | 4．70224E33 |
| FSto | 5 | 49．3ココココ333 | 4．70224E33 |
| RPERC | 9 | 61.00000000 | 38.67 ec 1551 |
| SPERC | 5 | 34．66E6E6E7 | 22．87C40007 |
| ARPERC | 9 | 20．55555556． | 11．25956384 |

TABLE 15 （cont＇d）

## Factor 5

|  | VARIAELE | $N$ | MEAN | STANCAFD <br> DEVIATION |
| :---: | :---: | :---: | :---: | :---: |
| ＊ | INFO | $\epsilon$ |  | 3．896E1731 |
| ＊ | comp | 6 | 49.44444444 | E．4693C072 |
|  | SIMIL | 6 | 50．cooccoco | G．66CS1783 |
|  | VOCAB | 6 | 5こ．222こ2 222 | 5．443コ1054 |
|  | ffVtio | 6 | E2．666E6667 | 10．EG4Ez602 |
|  | AUDR | $E$ | 0.000 CCOOO | 0.00000000 |
|  | AUDL | C | 0.000 COOOO | 2．00CCCCOO |
| ＊ | SSPER | 6 | E2．26666607 | 16．9312ミこヶ7 |
| ＊ | auoclo | C | 74．3コこココミ33 | 7．5277EES3 |
|  | SENMEM | 6 | 40.14492754 | 10.53095775 |
|  | VFLU | 6 | 40.47619048 | $14 . \operatorname{cocs~j403~}$ |
| $*$ | ARITH． | $\epsilon$ | 4 こ．222こ2222 | E．01E4E435 |
| ； | DIGITS | 6 | $4 \epsilon \cdot 11111111$ | $8 \cdot 27755135$ |
| ＊ | cooling | 6 | 45．5§5G5556 | $10.680 \leq 4 \in 53$ |
| ＊ | piccun | $E$ | 51．11111111 | 2．3444ミ705 |
|  | picarr | 6 | ᄃ2．E2うこここ22 | E．とひ5ご 373 |
| ＊ | GLKOES | 6 | 56．ECCCutor | $6.5 \in \in \in \in \in G 7$ |
| ＊ | OyJass | 6 | $50.55 ¢ 5 ¢ 556$ | 8．004 E Ee2c |
|  | VISR | 6 | C．000cc：00 | C．OOCCCCOO |
|  | VISL． | 6 | C．OOCCCCOC | $0.00 C C C C O O$ |
| ＊ | targer | $\varepsilon$ | $49.2753623{ }^{\text {2 }}$ | 5．77EGE711 |
|  | TACR | $\epsilon$ | 0．16GEGE． | C．4082as2c |
|  | TACL | 6 | O．00600U00 | $0.000 C C O 00$ |
| ＊ | FAGNR | 6 | ¢2．66EEGEET | ¢． 164 SEESI |
|  | FAGNL | $\epsilon$ |  | 5．44331054 |
| ＊ | FTVR | 6 |  | 11．200e2t41 |
|  | FTWL | $\epsilon$ | 45.27777778 | e．27755135 |
|  | ASTR | 6 | 41.53846154 | 10.60311442 |
|  | ASTL | $\epsilon$ | 50.53223529 | C． 16946381 |
| ＊ | TPTDT | 6 | 54.81818182 | 6．26521285 |
| ＊ | TPTNDT | $\epsilon$ | 56．73コミココココ | 3．21C3¢¢77 |
|  | TPJAT | $t$ | 55．5cccccoo | 10．52153476 |
|  | TPTMEM | $\epsilon$ | 49.44444444 | 10.09216785 |
|  | tPtLuc | $\epsilon$ | 45.55555556 | 12．54E天1C33 |
| ＊ | tapr | c | $44.40 \in \in \subset \in \in 7$ |  |
| ＊ | tapl | 6 | こ6．32592593 | 5．3067Eこ74 |
|  | FTAPR | $\varepsilon$ | 30．0．3コこコココ3 | 2．5675\％533 |
|  | FTAPL | $\epsilon$ | 29．40ccocoo | 3．464 7 ¢ EG2 |
|  | GFP IPR | $\epsilon$ | ミ9．75コミココ33 | 11．2も31三195 |
|  | GRIPL | $\epsilon$ | 29．16666667 | 11．2455ce40 |
| ＊ | PEGSRT | $E$ | c3．36C23104 | 4．58¢C5795 |
| ＊ | PEGSLT | $\epsilon$ | 45.5 CCCCOOO | 5.82237065 |
| ＊ | cattat | $\epsilon$ | 54．05こ40563 | E．771CCC83 |
| ＊ | trsebt | $E$ | 28．6645E333 | 29．88へ32560 |
|  | CAGE | 6 | 10.34 SE3333 | C． 15217413 |
|  | $\checkmark 10$ | $\epsilon$ | 46.77777778 | 2．94217462 |
|  | P10 | $\epsilon$ | ¢1．77777778 | C．24914809 |
|  | FSIO | 6 | 4 C 11111111 | 5.071342 E 7 |
|  | RPERC | 6 | 4 E .00 CcOcoo | 31．79Gこ7106 |
|  | SPERC | $E$ | 27．COCCOOOO | 20．464EC359 |
|  | ARPERC | 6 | と2．コココミココココ | 21．8693CE78 |

TABLE 15 （cont＇d）

Factor 6

| VARIASLE | $N$ | NEAN | STANCAFD DEVIATION |
| :---: | :---: | :---: | :---: |
| ！ |  |  |  |
| ＊INFO | 4 | 47.50000000 |  |
| ＊COMP | 4 | 57.50 CCOOOO | 11.97092147 |
| SIMIL | 4 | $48 . コ$ ミミココココ3 | E．38224739 |
| VDCAB | 4 | 55.00000000 | 7.93492048 |
| PPVTIQ | 4 | $56.83 コ$ こ3ミ33 | 12.04155453 |
| AUDF | 4 | C． 00000000 | $0.00 C C O 000$ |
| AUDL | 4 | 0.50 C COOOO | 1．COCCCCOO |
| ＊SSPER | 4 | 52．58409091 | 14．E7E3C224 |
| ＊a udClo | 4 | 52．43750coo | 14．G16CCe47 |
| －SENMEM | 4 | 35.65217391 | $12.46545 シ 21$ |
| VFLU | 4 | $37.6975 C C O 0$ | 4．2053こ¢c3 |
| ＊ARITH | 4 | $40.835 こ ゙ こ 33$ | $7 \cdot 39116 \leqslant 94$ |
| ＊DIGITS | 4 | $45.00 C C O 000$ | 10.36375450 |
| ＊COUINO | 4 | 52．5CCCOC00 | 11.34476548 |
| ＊pICCOM | 4 | ¢2．50000000 | 13．70¢G5e53 |
| picarir | 4 | 5 Sc 00000000 | 7．20C82300 |
| ＊BLKUES | 4 | 45.00060000 | c．32284739 |
| ＊CBJASS | 4 | E4．15660667 | 1 C ¢ 618737.3 |
| VISR | 4 | $0.25 c c 0000$ | O－5OCCCOOO |
| VISL． | 4 | 0.50060000 | $0 \cdot 57735 C 27$ |
| ＊target | 4 | 25．49C76923 | 21.93312422 |
| TACR | －4 | C．OOCCOOOO | C．OOCCCOOO |
| tacl | 4 | $0.000 C 0000$ | $0.000 C C C O O$ |
| ＊FAGNR | 4 | £ 8.000 COOOO | 43.01537542 |
| FAGNL | 4 | 15.50000000 | $45.8512 C E 64$ |
| ＊FTWR | 4 | 4 4．95E57383 | $12.586 コ 4720$ |
| FTWL | 4 | 43.77309682 | 27．07704333 |
| A STR | 4 | 51.19505455 | 7－571こ1095 |
| ASTL | 4 | 42.12301587 | 12.53723354 |
| ＊TPTOT | 4 | 55．93773011 | 4.67818124 |
| ＊tPrnot | 4 | $40.9556 ¢ 829$ | 17.87514844 |
| TPTET | 4 |  | 6．314EGくG4 |
| TPTIAEM | 4 | $46.20 \varepsilon こ 3333$ | 10.43047126 |
| TPTLJC | 4 | 45.26298701 | $11.4514 C C 73$ |
| ＊tapr | 4 | 6G．67155531 | $12.10 E T 5230$ |
| ＊tapl | 4 | C6．35871212 | 7．42CE7809 |
| FTAPR | 4 | 4 C .73 CCCOOO | 1．6451 ¢ 502 |
| FTAPL | 4 | $41 . \therefore$ SCCCOOO | 4．34012289 |
| GRIPi | ב | 40.55 E 39698 | $10.123 \in 5122$ |
| GRIPL | 3 | $4 玉 .75297376$ | $14 \cdot 3394 \epsilon \equiv 77$ |
| ＊PEGSRT | 4 | 55．79く48236 | 15．94161894 |
| ＊pegslr | 4 | 55.03472222 | 10.43447553 |
| ＊cattat | 4 | $43.150<5212$ | $15 \cdot 32573871$ |
| ＊tribt | 4 | －4．95745c98 | 55．8895¢681 |
| －CAGE | 4 | 11．46325COC | $1.844 \geq 7459$ |
| $\checkmark 10$ | 4 | 48.83333333 | 9．0164459日 |
| PIO | 4 | 51.16666667 | S．398GC249 |
| FSia | 4 | $49.83 ミ ミ 3 ミ 33$ | 5.82141640 |
| RPERC | 4 | 52．75000000 | 51.23394057 |
| SPERC | 4 | 32.50 CcO 000 | 34.31714229 |
| ARPERC | 4 | 16.50000000 | 20.72840241 |

TABLE 15 （cont＇d）

Factor 7

|  | VARIABLE | $N$ | MEAN | STANCAFD DEVIATIOH |
| :---: | :---: | :---: | :---: | :---: |
| ＊ | INFO | 5 | $38.000 c 0000$ | 6．0553CC71 |
| ＊ | comp | 5 | 39．3コココココココ | 5.47722558 |
|  | SIMIL | 5 | E4．00ccccoo | 4．3461こ494 |
|  | VUCAB | 5 | 44.00 CCOCOO | 5.47722558 |
|  | PPVTIQ | 5 | $48.533=3333$ | 10.00444346 |
|  | AUDR | 5 | 0.000 COOOO | 0.00000000 |
|  | AUOL | 5 | C．OOCCOOOO | $0.00 C C C O O O$ |
| ＊ | GSPER | 5 | 50．8ccaccoo | 7.52163546 |
| ＊ | audclu | 5 | 三e．040COCOO | 9．60692459 |
|  | SENMEM | E | 30.57391304 | 14．71372699 |
|  | VFLU | 5 | 51．38571429 | $13.68492 C 20$ |
| ＊ | ARITH | 5 | $44.000 C O C O O$ | $6.831=0051$ |
| ＊ | OIGITS | c | 46．OEEEEG67 | E．6GEEEEG7 |
| ＊ | cooing | 5 | $446000 C O 000$ | ¢． $2999 \pm 307$ |
| ＊ | pICCOM | 5 | $49 \cdot 333 ミ 3 ミ 33$ | 6.41176469 |
|  | prcapr | 5 | 56．00060000 | G．8315ECSO |
| ＊ | BLKDES | 5 | 56．00CC0000 | 12．337¢ 3702 |
| ＊ | objass | 5 | 5e．ooccocoo | E．497EE290 |
|  | $\checkmark$ ISR | 5 | C． 20000000 | 0.447 ¢ 1360 |
|  | VISL． | 5 | C－OJOCOCOO | C．DOCCCCOO |
| ＊ | target | 5 | E¢．83865546 | 3.53120778 |
|  | rACR | 5 | $0.205 C 0 C 00$ | 0.447 こ1玉6C |
|  | tACL | 5 | C．OOCCOOOO | $0 \cdot \operatorname{cotcccou}$ |
| ＊ | FAGNR | 5 | ᄃ0．000cccoo | 8.944 E 7191 |
| $\stackrel{*}{*}$ | FAGNL | 5 | E2．000cccoo | 9．94427191 |
| \％ | Frivr | 5 | $58.00 C C O 000$. | $12.70127214$ |
|  | FYWL | 5 | 56.84146341. | 2C．364Eこcs9 |
|  | ASTR | 5 | $60.33142 E 57$ | 1.0015458 |
|  | ASTL | 5 | 6C．OUCCOOOO | 4．E643E465 |
| ＊ | TPTST | 5 | 55.83419089 | 5．2022 3763 |
| ＊ | TPTNDT | 5 | ¢2．23ミコミミコ3 | 4.902 CL 100 |
|  | TPYST | 5 | ㄷ‥84675325 | 2．69G11875 |
|  | TPTMEM | 5 | 57．90ccoojo | 3．6414E578 |
|  | tptloc | 5 | 65.94545455 | 12.11678707 |
| $*$ | IAPR | 5 | $50.763 \in 36 \pm{ }^{\circ}$ | 5．16949092 |
| $\stackrel{+}{+}$ | TAPL | S | 44.35111111 | 6．23671660 |
|  | FTAPR | 5 | こ9．520c0000 | 1－5875¢コ7月 |
|  | FTA以L | 5 | こ7．24Ccocoo | 3．342．76E32 |
|  | GPIPR | 3 | $4 \equiv .0 \div 7 \in 1505$ | 7．73196228 |
|  | GRIPL | 3 | 38．62745093 | 2．39544936 |
| ＊ | PEGSSt | 5 | ¢2．24580013 | 11.38256799 |
| ＊ | pegislt | 5 | $45.7 \therefore$ ¢ 66007 | 5．313cE193 |
| ＊ | cattet | 5 | 54.33 .7574793 | 5． $205 \in C=93$ |
| $\stackrel{ }{*}$ | IRSET | 5 | $43.34 \in 15305$ | $7.730 \in 7355$ |
|  | CAGE | E | $12.663 C 0 c o 0$ | $0.5615 シ 71$ d |
|  | $\checkmark 10$ | 5 | 42.80600000 | 三－105E5C59 |
|  | P10 | 5 | ¢3•7ココニア333 | 5．15536399 |
|  | FSIO | 5 | 47.36666667 | 4．03n7C160 |
|  | Prenc | 5 | 2コ．0才OCOCCO | 10.79751657 |
|  | Sf ERP | 5 | 14.40060000 | 14.39751652 |
|  | ARPERC | 5 | $1 こ .200 c 0 c 00$ | セ．37も¢4403 |

[^1]TABLE 16

## I Score Neans and Standard Deviations

of Variables for Each Dextral Q Type Factor

## Factor 1



TABLE 16 （cont＇d）

Factor 2

|  | VAPIAFLE． | $N$ | H：AN | STAMUAFO CEVIATICR |
| :---: | :---: | :---: | :---: | :---: |
|  | 1以F0 | 26 | 4 ¢•334\％15こと | 5．662かのに6T |
|  | cisar | 25 | イヲ．1025ビ1C | 9．407こ1672 |
|  | S IM IL | 26 | E4．1C？5e41C | 7.19924023 |
|  | vocas | 26 | 47.36769531 | 5.65836496 |
|  | ppvrid | 25 | 47．44717947 | 7 － 93374 272 |
|  | AUCi？ | 20 | 0．11 53046 | 0.32531259 |
|  | auel | 20 | C． 23 C75923 | 0.42906392 |
|  | SSPER | 26 |  | 16．82 7415 S |
|  | AUCC－D | ¿6 | 4こ． 51114615 | 15.11689 Uus |
|  | SER：ME？ | $2 \epsilon$ |  | 13.06035154 |
|  | VFLU | 26 | 35．81131319 | 9． 73736943 |
|  | AワITH | 26 | 4 ¢．EtEjctet | 7．18031974 |
|  | DICITS | Et | 4E．7Eくころう77 | 7．0274：383 |
|  | couinc | 26 | 5c．（CCOCeco | 10.54092553 |
|  | －I CCos | $\hat{2} 6$ |  | ¢． 77337203 |
|  | PICARFR | T． 6 | 念C．0¢74359C | 8．1）86，07540 |
|  | Flkグ， | 2 ${ }^{\text {c }}$ |  | 9.14183778 |
|  | QEJAS | 26 |  | 10.33120530 |
|  | $\checkmark$ IS？ | $2 \epsilon$ |  | C． 55933785 |
|  | $\checkmark$ Y | 26 | c．r2コc7éc | 2． 2436,2344 |
|  | T AMきET | －$t$ | 4 ¢．6．JE3 E41C | 10.07476456 |
|  | T．acip | $2 \epsilon$ | C．9t 153P46 | 1．58696514 |
|  | TACL | 2\％ |  | 1．29377200 |
| ＊ | Fagv？ | ¢ 6 | －$-\operatorname{cccoccos}$ | 39．89こR6704 |
|  | farsal | 2.6 | 16．41J2¢ヒ41 | 2E．6Eと72．139 |
| ＊ | FTidR | 26 | ムこ．4アど大フCを | 12.02513822 |
|  | Frul | 26 | 41.69512125 | 18．61669829 |
|  | ASTR | ¢ ${ }^{\text {c }}$ | 35．72772612 | 15.35790547 |
|  | ASTL | 25 | 40.94124329 | 13．86624828 |
| ＊ | rotid | 2.6 |  | 6.13303695 |
| ＊ | TBTVİT | E 6 |  | B． 6.6593400 |
|  | TPTAT | ze | 4 ¢．E40¢5E13 | $12 \cdot 69306074$ |
|  |  | $\overline{C 6}$ |  |  |
|  | TFM，jC | 76 | 4ヶ，75ここム675． | 11．23415796 |
|  | Tap．z | cif | EM．©0773．44 | 9．17922365 |
|  | TV边 | 25 |  | 3．333707：57 |
|  |  | 26 | $\because 0.53 C 76023$ | $4.3100357 \times$ |
|  |  | 26 | 二E．Cこ1153EG | 6．ç741400 |
|  | （2）${ }^{\text {coin }}$ | 34 | ¢C．çsacicf | 14.21530075 |
|  | G：12 | $: 4$ | 14．555‘5400 | 13.53703702 |
| ＊ | やことらい | 36 |  | 11．37202790 |
| ＊ | prersr | $\bigcirc 6$ | 78．¢572¢325 | 14．25336634 |
| ＊ | cattot | 26 | EC．C742072E | 8． 35263230 |
| ＊ | trabt | －6 | $40.4 \epsilon$ ECCE3E | 12.69466353 |
|  | cace | Et | 1C．7EC11539 | 1．276636？ |
|  | VIT | $2 \epsilon$ | 47．61E3E4 62 | 5.21254240 |
|  | PIO | P6 | ¢ごミこころこころ3 | 8.22796593 |
|  | Fcio | 26 | c；0．3 5807436 | 4.75247124 |
|  | OpERC | 26 |  | 20．50429599 |
|  | Sワシにく | ？ 6 | 1く．E0765？ | 15.85435346 |
|  | ARPERS | 26 | 2三•384E153タ | 14.00021978 |

TABLE 16 （cont＇d）

Factor 3

|  | VARIAELE | N | NEAM | STANDARD UFVIATICN |
| :---: | :---: | :---: | :---: | :---: |
| ＊ | 10¢FO | 19 | 4C．9259259．3 | 5．6 94.344 .91 |
| ＊ | cove | 15 | 4¢．18¢19519 | 7．34 3 ¢，57836 |
|  | $5 \times 1 \mathrm{ll}$ | 18 | ミ1．セ51251を | 9．3040311？ |
|  | vacas | 18 |  | 8．24467590 |
|  | PrVTio | $1 \varepsilon$ | 5c． 2 ¢222222． | $8 \cdot 034520.33$ |
|  | Aljer | 19 | 0．05555556 | 0.23570226 |
|  | AUCL | 18 | C． $0 \leq 55555 ¢$ | $0 \cdot 23570226$ |
| ＊ | SSPER | 18 | $4 \mathrm{COS5O5051}$ | 18.08345504 |
| ＊ | aurcio | 17 | 46．\＆¢ 647055 | 10.19371157 |
|  | SEVAEM | 17 | 33．64143223 | 1？－1506ß573 |
|  | VFlu | 17 | 3f：02531cca | ＇3．40535510 |
| ＊ | ARITH | 18 | 44.07407407 | 7．54555＞78 |
| ＊ | DICITS | 18 | 46.11111111 | 8.94792487 |
| ＊ | CODIN | 18 | $4 \varepsilon . ミ こ 332333$ | 7． 5417816.3 |
| ＊ | picco：d | 18 | ᄃこ．1を¢18¢1¢ | 7．18．315224 |
|  | Mi carir | 18 | c1．11111111 | 11.23043452 |
| ＊ | ELくJES | 19 | ¢C．CCCJOOOO | 7．047932 1 Af |
| ＊ | OEJASS | 13 |  | 3．55：585？64 |
|  | $\checkmark$ ISR | 12 | C． 414444444 | 0.85558526 |
|  | $V$ ISI． | 12 | 0． 5777776 | 1．42－76369 |
| ＊ | t atget | 18 | 40．©CEl E 7 7 | ：－．－6263603 |
|  | TACP | 18 | C． $5 \leq 555556$ | 0.78382338 |
|  | tacl | 18 |  | 0.54831885 |
| ＊ | Facilr | 18 |  | 14.55573013 |
|  | Facinl | 18 | $37 . C C C O C C C O$ | 33.21410048 |
| ＊ | FTwR | 18. | －ב． 91240447 ． | 34．684 26334 |
|  | FTivL | 18 | IC．OSEEI4 $60^{\circ}$ | $50.30 \Xi 69270$ |
|  | ASTO | 18 | 35．36681319 | 13.38143773 |
|  | ASTL | 1 1 | 41．42E57143 | 16.24115574 |
| ＊ | tPrdt | 13 | 5C．50E3E1C7 | 5．93715195 |
| ＊ | TPTNidt | 18 | 4 ¢．4E319133 | 11.7512033 .6 |
|  | TrTET | 10 |  | 16．02606856 |
|  | TPTイEV | 18 |  | 9．31174070 |
|  | trtarc． | $1 \%$ | ¢1．¢ ¢ Elfle？ | $13.6505 ? 631$ |
| ＊ | TADR | 18 | ¢2．65273a33 | 12.70021611 |
| ＊ | 1 $\because ⿰ 口 口$ | 11 | $\because$－．C7C25E14 | 8.70770145 |
|  | FT，ハiJ？ | 12 | $\because$－．scraccco | 7.34936072 |
|  | FTA\％ | 18 | 21．ça33333 | 7.33019774 |
|  | GRIn？ | 7 |  | 12．75050905 |
|  | GR1．0 | $\because$ |  | 11.34419413 |
| ＊ | PECSI？ | 17 | 4 ¢－י742 2032 | 14．756，07597 |
| ＊ | PEG3－T | 17 | ？ニ． 07847137 | 50．92418750： |
| ＊ | catrot | $11!$ | 4C．cESG76C7 | 7.35917171 |
| $\div$ | Tra3t | 18 | 44． 27 E119E3 | 8.17211353 |
|  | CACE | 18 | lc． $2170 c o c c$ | 1.40144 .858 |
|  | $\checkmark$ ： | 19. | 44. ecessaseg | －．6．26641635 |
|  | い！ | 12 | ¢1．14814215 | 8．06770551 |
|  | FSIO | 18 | 4 E．Cccococo | 5.25407259 |
|  | FiPERC | 19 | 16．94444444 | 11.80762329 |
|  | SDETS | 1 13 |  | 15．205455．49 |
|  | ARPERC | $18^{\circ}$ | 1\％． 5 E5555 | 10.45503300 |

## TABLE 16 （cont＇d）

Factor 4

|  | VARIAELE | is | $\therefore$ AN | STANJAFID DEVIATICN |
| :---: | :---: | :---: | :---: | :---: |
| ＊ | INF： | 11 | 44．EイE4．9455 | 7．6：541379\％ |
| ＊ | cnip | 11 | 人f．efecerser | $6 \cdot 3215353 ?$ |
|  | SI：41－ | 11 | ᄃ 4.24242424 | 5.97976 .335 |
|  | vocam | 11 | 45.75757576 | 6.34050630 |
|  | ppVtia | 11 | ᄃC． 72727273 | 7.54515029 |
|  | allca | 11 | C． 37272727 | 0.44656979 |
|  | Al）CL | 11 | C．cococacs | 0.30151134 |
| ＊ | SSrim？ | 11 |  | 8.74017357 |
| ＊ | ajucco | 11 | $45.51130 \pm 6$ ¢ | 10.97503277 |
|  | S三人X494 | 11 | 41.960 ¢ 4 5t | 9．09592．575 |
|  | $\checkmark \mathrm{F}$ LU | 11 | ？F．67E57143 | $6.9993622 ?$ |
| ＊ | ARITH | 11 | 47．67 ¢ $7575 \%$ | 7．16331840 |
| \％ | $0.161 T S$ | 11 |  | 6.95315934 |
| ＊ | C．jul：c | 11 | 44.54545455 | 9．34108733 |
| ＊ | piccom | 11 | ¢c．jc3c5c3c | 8．75013077 |
|  | Flcarr | 1 c | E？．etccicco | 11－5゙2 2？429 |
| $\because$ | \％KDEs | 11 | $\cdots$ C．Cccosooc | 5．1．3c977？ |
| ＊ |  | 11 | $47.5 \overline{5} 75750$ | 11.104611 |
|  | VI32 | 11 | c．ccroccoo | C．OCOOOOOO |
|  | $\checkmark$ I SL | 11 | C．1518181E | 0．4045159？ |
| ＊ | TA：」cet | 11 | 二7． 21442286 | 13．20こ？ちつ34 |
|  | Tacr | 11 | C． $54 \leq 45455$ | 1．23333953 |
|  | TACL | 11 | C．Csccicsur | 0.30151134 |
| ＊ | FAEM？ | 11 | ¢z．cccccooc | 6.13155338 |
|  | Facivl | 11 |  | 20．99351303 |
| ＊ | Frivis | 11 | ¢ 4．ここ こ0 C．C7． | 10．0．367054？ |
|  | FTML | 11 | 5¢．15857c97 | 1，6．92707073 |
|  | ASTR | 11 | ¢三－US1948C5 | 7.15048092 |
|  | ASTL | 11 | 与た． 5 ¢イ3476¢ | 7．17204695 |
| ＊ | Tprot | 11 | ¢下．2¢ $22335 \%$ | 6.75728114 |
| ＊ | torvot | 11 | $\leftrightarrows 1 . E 7 ¢ 4 \leq 6 \in ?$ | 5．70563950 |
|  | TOrfit | 11 | 17． $7601 \leq 557$ | H．614n45？ 3 |
|  |  | 11 |  | 10．0153035\％ |
|  | TiPrig C | 11 |  | 10．70137919 |
| ＊ | tapr | 11 | ¢¢．fe2secsc | 6．R9070799 |
| ＊ | TAOL | 11 | 35．847987¢7 | $9.2=131679$ |
|  | FT Arse | ： 1 | $34 \cdot 16 \in 3 \in 364$ | 6．79715297 |
|  | Fra：－ | 11 | ご，44E4E455 | 勺•0ヘ5ラ5955 |
|  | Gis 1．32 | \％ | ！1．1¢1：12¢ | 11.23565071 |
|  | Grind | c | 隹－¢040207 | 12•65n234ちう |
| ＊ | PF¢5\％t | 11 | ¢\％．ce： 134045 | 14.7 a！t 61347 |
| $\therefore$ | $\bigcirc$ ロrjuT | 11 | \％r．e4393339 | 10．05357422 |
| ； | cattot | 11 | 5¢． 5 ¢C7E21 | 8．07667465 |
| ＊ | ThSET | 11 | $\therefore C .4062544$ | 7.34060170 |
|  | CACF | 11 | 11． | 1.24283356 |
|  | $\checkmark 12$ | 11 | 47.75757570 | 5.13179828 |
|  | OIT | 11 | 4と，4243424？ | 7.40734007 |
|  | F510 | 11 |  | 6.35332390 |
|  | FiPERC | 11 | iC．45454545 | 32．82183309 |
|  | SRERC | 11 |  | 33.01624944 |
|  | ARPER | 11 |  | 21．96507570 |

TABLE 16 （cont＇d）

Factor 5

|  | VARIAELE | $N$ | SAEAN | STANDAFO OF：VIATICN |
| :---: | :---: | :---: | :---: | :---: |
| ＊ | I VF゙） | 18 | 4こ． 51 ¢¢1ヶ5 | 7．45112：17？ |
|  | CJMp | 18 |  | H．54cobsiol |
|  | SIMIL | 1 \％ | －こ． 7777778 | 7.85905249 |
|  | vocnis | 18 | ¢c．1851851c | 7.09157857 |
|  | PPVTIO | 18 | 50.15148148 | B． 450720005 |
|  | AUCR | 18 | C．CCCOCCOC | C． 00000000 |
|  | －AUCL | 10 | C．CCCCCOOO | 0.00000000 |
| ＊ | S Snel？ | 1 l |  | 16.29797873 |
| ＊ | aucclo | 10 | 45．25305556 | 13．73117031 |
|  | SENATM | 18 | $\therefore 5.50115$ | 11.43100401 |
|  | $\checkmark$ FL． | 13 | 4 4．¢295714J | 6.39176310 |
|  | ARITH | 18 | 4 C ．GE゙心 52593 | －．02985822 |
|  | CIGITS | $1 \%$ |  | 7．140055it 7 |
|  | Coride | 13 | $4 E . ¢ \in 2 ¢ 62 ¢ ¢$ | 6．1451313？ |
| ＊ | piccoid | 118 | c．ic37c37c | 0．48651135 |
|  | pICARR | 10 | ${ }_{5} \mathrm{C} \cdot \mathrm{CCOOCOO}$ | ？1055．5664 |
| ＊ | PLくJES | 10 | ¢ E ． 4 M 14814 ¢ | $9.100^{27} 403$ |
| ＊ | niajas S | 19 |  | 9．7331870」 |
|  | V15i2 | $1 \pm$ | C．ミこミコミコミ3 | C． 97014250 |
|  | VISL | 18 | C． 1 EEEEGE7 | C． 51449576 |
| ＊ | TAっzここ | $1 \varepsilon$ |  | 10.77008719 |
|  | rac？ | 18 | －．2－777778 | 0.32644209 |
|  | T＾CL | 18 | C．0SE5¢55c | 0.23570226 |
| ＊ | FAGVi | 19 | E3．41444444 | 12.362 L 5591 |
|  | FAGINL | 18 | SC．14814815 | 3．87082640 |
| ＊ | FT：UI？ | $1 F$ | 41．322 2 cos | 21．3839 ？ 226 |
|  | FTVL | 18 | 37．56c4coth | 15．048itici ${ }^{\text {co }}$ |
|  | ASTP | 18 |  | 15．62648259 |
|  | ASTL | 10 | 42．18202055 | 14．22こ7052？ |
| ＊ | tritot | 18 | $5 C .57 C 6 C 409$ | 9.39179253 |
| ＊ | rつTvis | 18 | 4 ¢． 27 Cre？3E | 7.23734950 |
|  | Tم\％it | 13 | 4 C－Cちゃっことこ7 | 13.60974400 |
|  | T $\cap$ TMF゙M | 18 |  | 9．57533767 |
|  | roilic | 15 | 4 ¢．¢f1uニsra | 10.524333825 |
| ＊ | TADE | 15 | C．C．E？t！ 5244 | ©． 7770 ¢397 |
| ＊ | TM：L | $1 ?$ | $4 \%$ ¢ Ectilc？ | $3.92+18700$ |
|  | Frapis | 119 | こん．1ころEEらES | $4.982 .44:$－ |
|  |  | 13 |  | 6.5243 מas |
|  | C．P．10：2 | 14 |  | 11．08510872 |
|  | gotni． | 14 | $41.66 ¢ 30: 10$ | 2． 6 ¢575\％ |
| ＊ | Degesiz | 13 | ¢2．1104j315 | 10．35530944 |
| ＊ | prgil | 1： | F7．6¢7E3C7 | 13．14531342 |
| ＊ | cattot | 18 | 4 E．4tcl72ご | 6．613 1724.40 |
| ＊ | tesser | 12 | C． 14 ¢EE216 | 29．93773492 |
|  | cace | 18 | 11.13627778 | 1.49840096 |
|  | $\checkmark 10$ | 10 | $45: 77777776$ | 6．36164980 |
|  | PIC | 18 |  | $0.5656735 ?$ |
|  | FS 10 | 13 | $48.9 さ$ ごり25G3 | $5.37 \mathrm{C6} \mathrm{\% 104}$ |
|  | RPEIRC | 18 |  | 18.59729758 |
|  | SPERC | 18 | 1三－5ccccccc． | 14.95188301 |
|  | AIRPERC． | 18 | 1 ¢． $5 \subseteq 555555$ | 12.13270845 |

TABLE 16 （cont＇d）

## Factor 6

|  | VARIAELE | N | MEAN | stanuard deviatica |
| :---: | :---: | :---: | :---: | :---: |
| ＊ | ［ivf | $?$ | 44．¢ ¢コここうご | 3．05375127 |
| ＊ | c．3：ip | E | $5 C .414 .06667$ | 8．6．65．31 94！ |
|  | SIMIL | 8 |  | 4.71404521 |
|  | VOCAB | $\underline{8}$ | 4 ¢．L E EGEEE？ | 4.6 .2910050 |
|  | prVTI？ | e |  | 8.979607471 |
|  | nucrs． | 8 | C．CCCCCCCC | G． 00000000 |
|  | n＇jEL | 8 | C．CCCrccec | 0．00000500 |
| ＊ | ScOEr | $\varepsilon$ | $4 \%$ EG37 5CCO | 9．26，4567．31 |
| ＊ | aucclio | 8 |  | $15.03 ¢ 27027$ |
|  | SON：IE．1 | $?$ |  | 11.02972073 |
|  | VFI．J | 2 | \％－EE303571 | 10.05702468 |
| ＊ | ARITH | c |  | Ci．006．37473 |
| ＊ | DICITS | 3 | 4\％．Ecccceco | 8．11621931 |
| ＊ | C：3：）In | ？ | $5 ミ . C 5333333$ | 12．2C68307 |
| ＊ | PICCMiA | 3 |  | 12．81730384 |
|  | WICAFIR | $\varepsilon$ | ¢E． 7 Scouoc C | 11．67510697 |
| ＊ | ［1．kO「S | 8 | ¢e．Etectiof 7 | 9．92031746 |
| ＊： | Sfuns | $\varepsilon$ | r．f．jecccrcc． | 7．54 5154.20 |
|  | $\checkmark 13$ ？ | ¢！ | C．ccccccco | 0.00000000 |
|  | V191 | $\varepsilon$ | C． $25 C O C O C C$ | 0.7071067 .3 |
| ＊ | TAFCET | 月 |  | 7．3091123． |
|  | Ticis | ¢ | C．12 SCCCCo | 0.35355334 |
|  | TACl． | ¢！ | C．25lcccoc | 0.70710 －73 |
| ＊ | FAJu？ | F | ＋C．5coocccc | 7．01021040 |
|  | FACNL | $8:$ | $53 \cdot(5333.333$ | 7.09198717 |
| ＊ |  | 9 | $5 弓 .62447321$. | $5 \cdot 36737093$ |
|  | FY： | ＋ | 50．2cc75758 | 11.96172831 |
|  | AStra | E |  | 9．42301113 |
|  | ASTL | 8 | $44.6 こ ゙ 419301$ | 10.91673060 |
| ＊ | tprot | 8 |  | 3．75984753 |
| ＊ | TכוNT | 8 | －c．（rç 7 ¢11 | 4．375197：79 |
|  | TOTMT | $\varepsilon$ | ¢三．¢ ¢ ¢ ¢ ¢ C3 | 7．87916313 |
|  | TロTイE゙兄 | $\bigcirc$ |  | 12．cial？ 2001 |
|  | TrTLDC | $\varepsilon$ |  | 11．20376692 |
| ＊ | Tar？ | $\%$ | $44 . C C 4 G 6857$ | 2.67334440 |
| ＊ | TA゚。 | 8 | zイ．41792929 | 7．264590n5 |
|  | FTa．うr | 4 | Fr．ficl25cro | 4．5400757？ |
|  | FT Mid | 5 |  | 2.40374533 |
|  | Gral戸iz | a |  | 10．7．4）19030 |
|  | Gつ1Fl． | $\cdots$ |  | 11.13413635 |
| ＊ | F［ES： | 2 | ¢7．$\%$ \％CCOC3 | 7．21391921 |
| ＊ | CECS＿T | 8 |  | 13．60136510 |
| ＊ | cnrsjo | $\varepsilon$ | ：1．EE55344\％ | 8．19791433 |
| ＊ | TRSUT | $\varepsilon$ | SC． 23568615 | 10.42915520 |
|  | CAEE | ค | 1C．7C725C00 | 0.93891210 |
|  | $\checkmark 10$ | 8 | 47 －¢3ゴアコゴ3 | 1．70606295 |
|  | $\bigcirc 10$ | $\varepsilon!$ | ¢¢．Sccucccc | 8．17079535 |
|  | Frsid | $\varepsilon$ | ऽこ．cccoccco | 3.03509597 |
|  | Rrac | $\Omega$ | 27．ETECCOCC | 31．76175170 |
|  | SPERC | $\varepsilon$ | 22． 2500 CCCC | 27．51493101 |
|  | ARDERC | 8 | 2б•f250CCLO | 7.35470741 |

TABLE 16 （cont＇d）

Factor 7

| VARIAELE | $N$ | $M=A N$ | STAN：DAFD CEVIATICN |
| :---: | :---: | :---: | :---: |
|  | 15 | いごくこえことこご？ | 5．nçsid 307 |
| ＊CJッロ | 15 |  | ．．6．93604 0.935 |
| SIM IL | 15 | 52．t¢retcet | －6．57073840 |
| VOCAH | 15 |  | 7.11210311 |
| PPVTIO | 15 | リt． 44444444 | $155.9394003 \%$ |
| AuJ | 15 | C．Cccccccc | ．．．C．00000000 |
| Aijlil | 15 | C．ccccccc | C．000000003 |
| ＊S SIS | 15 |  | 7． 375.3 6．956 |
| ＊Ajcclo | 15 | $45.1 .75 C C C O 0$ | 8．500455：37 |
| SENTEM | 15 |  | 14．306：3470日． |
| VFlu | 15 | 40.73 ミ®ç5こ | 7．31140ヵ20 |
| ＊APITH | 15 |  | 0.32301957 |
| ＊Derits | $1:$ | $44 .(C C O C C O C$ | 83.37008034 |
| ＊cocive | 15 |  | ．7．5YU25440 |
| ＊PlCCus | 15 | c．e．çécers 7 | 0.575141639 |
| P！Cafp | 15 | 4く．7シテアフワンを | 9． 7155305 |
| ＊BLKDES | 15 | $54 . \operatorname{cccccoo}$ | 6.442 .32172 |
|  | $1:$ |  | C．475：52．33 |
| VISR | 15 | C．DCEGE欠O゙ | 0.25219939 |
| $\checkmark 151$ | 15 | C．（cccccec | C． 00000000 |
|  | 15 | ¢1．1c¢G2954 | 7．4084ら114 |
| $T A C ?$ | 15 | C． $1=333335$ | ． 0.35126578 |
| TACL | 15 | C．123．3233． | 0.35185578 |
| ＊FASN？ | 15 | 57•7ミこコミころ3 | 7．77756848 |
| FAGNL | 15 | ¢\％eccccccc | $8 \cdot 65350431$ |
| ＊FT：MR | 15 |  |  |
| FTivi． | 15 | EJ．6ACS7214 | 18.45090372 |
| As P | 15 | S1．41arscate | 12．04H34098 |
| Asti | 15 | 4 ¢．El6çi22 | 10.75631576 |
| ＊tordt | 15 | $51 . C 81078 C$ | 7．49769735 |
| * TOTVOT | 15 |  | 7．CG4i0906， |
| TRTMT | 15 |  | 12.130076 .35 |
| rorisen | 15 | ¢7．41111111 | ¢．44：320？5：3 |
| T：OTLOC | 15 | $48 \cdot$ a．zar 2 20：！ | 9． 56744736 |
| ＊taras | 15 | 6？． 5 ？ 507 F 3 C | 9．51356351 |
| ＊rail． | 15 |  | 7．010．30147 |
| FYAJ？ | 15 | さイ・1575ここご | 5．3cc3921う |
| 「「Api． | 16 | 2．－67コ3ご33 | 5.6 .9314935 |
| 6？${ }^{\text {a }}$ | 1 C |  | 8．05703901 |
| ¢\％14 | 10 |  | 11．79：510201 |
|  | 15 | Se．rostiocas | 11.06145421 |
| ＊reremi－T | 15 |  | 15.93302157 |
| ＊¢ へ̇тijt | 15 |  | 7.45417402 |
| ＊rkJat | 15 | セ0．77251403 | 7.034864 .31 |
| CACE： | 15 | 11．72EAEOET | 1．0゙9719000 |
| V10 | J 5 | 4コ．Єとをとをる89 | 4.76672772 |
| PIS | 15 | 55．つ5¢5¢55¢ | 5．71529092 |
| FGI？ | 15 |  | 4.82629482 |
| Feperic． | 15 | くごミささコミコア3 | 14.82104410 |
| SJERC | 15 | $14 \cdot 1 玉 \equiv 3333$ | $12.99377140$ |
| ARPERC | 15 | $15.2 \in E 56667$ | 10：06739196 |

＊Denotes dependent measures used in statistical treatment of data．
subtest score that was above the 30 th centile, whereas both the Spelling and Arithmetic mean subtest scores were below this centile leve?.

For the right-handed sample, Table 16 indicates that the mean ages, save one (Factor 3), were quite similar across factors. The corresponding values for Factors 1, 2, 4, 5, 6 and 7 were $10.72,10.73,11.79,11.13,10.70$ and 11.72 , respectively. Factor 3 exhibited the oldest mean age value at 12.81. On the WISC, Factor 1 exhibited the lowest mean FSIQ, Factors 2, 3, 4, 5 and 7 were fairly similar and exhibited slightly higher mean FSIQs, and Factor 6 showed the highest mean FSIQ. In all cases, mean PIQ exceeded mean VIQ, although by varying amounts. For example, the smallest difference between the two was found for Factors 1 and 4. Factors 2, 3 and 5 exhibited very similar and slightly larger VIQ-PIQ discrepancies. Finally, the largest VIQ-PIQ differences were seen for the group of children who constituted Factor 6, and for those individuals who madeup Factor 7. On the WRAT, with the exception of Factor 4, all of the factors exhibited Reading, Spelling, and Arithmetic subtest scores that were all below the 30 th centile ranking. For Factor 4, Reading and Spelling subtest scores were above the 30 th centile, while Arithmetic was below this value.

Plots of the I score means of the variables used in the factor analyses procedures for each left- and right-handed Q factor are shown in Figures 3 to 16 . Visual inspection of the factor profiles suggested that Factors 1, 2, and 3 of the sinistral sample exhibited almost identical characteristics to Factors 2, 1, and 3 of the dextral sample, respectively. Table 17 contains the Pearson


TEST MEASURES
Figure 3. Plot of I score means for Factor 1 of sinistral sample.


TEST MEASURES
Figure 4. Plot of $I$ score means for Factor 2 of sinistral sample.


Figure 5. Plot of I score means for Factor 3 of sinistral sample.


Figure 6. Plot of I score means for Factor 4 of sinistral sample.


TEST MEASURES
Finure 7. Plot of I score means for Factor 5 of sinistral sample.


Figure 8. Plot of $I$ score means for Factor 6 of sinistral sample.


Figure 9. Plot of I score means for Factor 7 of sinistral sample.


Figure 10. Plot of $I$ score means for Factor 1 of dextral sample.


Figure 11. llot of $I$ score means for Factor 2 of dextral sample.


Figure 12. Plol of $I$ score means for Factor 3 of dextral sample.


Figure 13. Plot of $I$ score means for Factor 4 of dextral sample.

test measures
Figure 14. Plot of $I$ score means for Factor 5 of dextral sample.


Figure 15. Plot of I score means for Factor 6 of dextral sample.


Figure 16. Plut of $\frac{1}{4}$ score means for Factor 7 of dextral sample.

|  | TABLE 17 <br> Pearson Product Moment Correlation Coefficients for Left-Handed and Riọht-Handed Q Factors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\rightharpoonup}{尹}$ |  | Left-Handed Factors |  |  |  |  |  |  | Right-Handed Factors |  |  |  |  |  |  |
| $\sum_{\bar{\omega}}^{0}$ |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| $\stackrel{7}{5}$ | Left-Handed Factors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\overline{\overline{\vec{\nabla}}}$ | $1$ | 1.00 | . 02 | . 20 | . 06 | . 03 | . 34 | -. 01 | -. 01 | . 94 | . 12 | -. 12 | . 03 | -. 22 | -. 16 |
| $\stackrel{\text { T }}{0}$ | 2 |  | 1.00 | . 08 | . 16 | . 16 | . 11 | . 28 | . 84 | . 26 | . 07 | . 01 | . 55 | . 46 | . 37 |
| ò | 3 |  |  | 1.00 | -. 16 | . 14 | . 30 | -. 19 | . 08 | . 18 | . 84 | -. 04 | . 41 | -. 01 | -. 00 |
| $\overline{\hat{訁}}$ | 4 |  |  |  | 1.00 | . 29 | -. 08 | -. 11 | . 21 | . 07 | . 11 | . 20 | . 11 | . 16 | -. 08 |
| $\frac{\overrightarrow{0}}{0}$ | 5 |  |  |  |  | 1.00 | . 29 | . 19 | . 07 | . 02 | . 13 | . 13 | . 52 | . 49 | . 01 |
|  | 6 |  |  |  |  |  | 1.00 | -. 02 | -. 01 | . 31 | -. 01 | . 13 | . 66 | -. 30 | . 06 |
| $\begin{aligned} & \text { ®o } \\ & \equiv \end{aligned}$ | 7 |  |  |  |  |  |  | 1.00 | . 19 | . 13 | -. 06 | . 21 | . 30 | . 46 | . 55 |
| $\begin{aligned} & \stackrel{\rightharpoonup}{\overrightarrow{0}} \\ & \text { O} \end{aligned}$ | Right-Handed Factors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\frac{\stackrel{3}{3}}{\stackrel{\rightharpoonup}{e n}}$ | $1$ |  |  |  |  |  |  |  | 1.00 | . 2.6 | . 25 | . 14 | . 48 | . 47 | . 42 |
| $\stackrel{0}{9}$ | 2 |  |  |  |  |  |  |  |  | 1.00 | . 17 | -. 06 | . 17 | -. 03 | -. 04 |
|  | 3 |  |  |  |  |  |  |  |  |  | 1.00 | . 11 | . 33 | . 26 | . 19 |
|  | 4 |  |  |  |  |  |  |  |  |  |  | 1.00 | . 21 | . 24 | . 33 |
|  | 5 |  |  |  |  |  |  |  |  |  |  |  | 1.00 | . 32 | . 36 |
|  | 6 |  |  |  |  | $\cdots$ |  |  |  |  |  |  |  | 1.00 | . 36 |
|  | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 |

product moment correlations based on comparisons between mean I scores for all variables between all possible pairs of subtypes. Indeed, as can be seen from this table, the correlation coefficient between Factor 1 of the left-handers and Factor 2 of the righthanders was 0.94; between left-handed Factor 2 and right-handed Factor 1 it was 0.84; and between left-handed Factor 3 and righthanded Factor 3 it was again 0.84. These values are indicative of the high degree of similarity between the pattern of mean I scores for these factors. The profiles of test performances associated with the factors, as well as the correlation coefficients between factors were interpreted to define three highly similar subtypes of left- and right-handed children. The three factors from each handedness sample accounted for a total of 86 (78\%) of the lefthanded and $64(55 \%)$ of the right-handed classified children (Table 14).

Comparisons between the remaining factors revealed that Factors 5 and 6 from the left-handed sample correlated with Factor 5 from the right-handed sample at 0.52 and 0.66 , respectively. Factors 7 from each handedness sample were found to correlate with each other at 0.55 . Factors 4 from each handedness sample exhibited very low intercorrelations with all of the remaining left- or right-handed factors. Visual inspection of the I score plots for all of the above comparisons revealed factor profiles that were, for the most part, quite dissimilar. Finally, the number of children who constituted Factors 4, 5, 6 and 7 for the left- and righthanded samples differed considerably. The membership distributions
can be ascertained from Table 14. For the left-handed sample, Factor 4 was comprised of 9 children, while Factors 5, 6 and 7 had only a small number of subjects within each ( 6,4 and 5 children, respectively). On the other hand, for the right-handed sample, the smallest factor (Factor 6) included 8 children as members, while each of Factors 4,5 and 7 were seen to have a sizeable number of classified subjects (11, 18 and 15 children, respectively). On the basis of the factor analyses solutions, the righthanded sample of children would appear to constitute a much more heterogeneous population regarding patterns of performances on the battery of neuropsychologic measures administered.

## Cluster Analyses Solutions

The results of the multivariate cluster analyses procedures are reported on as follows: (1) cluster solutions derived from the left-handed sample; (2) validation of the sinistral classifications; (3) cluster solutions derived from the right-handed sample; (4) validation of the dextral cluster results. Included within the discussions on the cluster solutions are reports on the Pearson product moment correlation coefficients based on comparisons between mean $I$ scores for all variables between all possible pairs of factors and clusters. Also, the results of misclassification comparisons between $\underline{Q}$ type factors and cluster groups for each handedness sample are reported.

## Left-Handed Cluster Solutions

The I score means and standard deviations of clustering variables for the left-handed sample are presented in Table 18.

TABLE 18

I Score Means and Standard Deviations of Clustering Variables for the Left-Handed Sample

| Variable | Mean | S. D. |
| :--- | ---: | ---: |
|  |  |  |
| INFO | 42.960 | 6.616 |
| COMP | 47.701 | 9.513 |
| SSPER | 36.026 | 20.729 |
| AUDCLO | 49.989 | 15.771 |
| ARITH | 43.167 | 6.688 |
| DIGITS | 44.553 | 8.588 |
| CODING | 48.218 | 9.591 |
| PICCOM | 53.891 | 9.462 |
| BLKDES | 51.427 | 8.037 |
| OBJASS | 53.353 | 9.104 |
| TARGET | 41.337 | 13.511 |
| FAGNR | 31.306 | 34.838 |
| FTWR | 37.865 | 30.838 |
| TPTDT | 50.328 | 9.664 |
| TPTNDT | 48.198 | 14.028 |
| TAPR | 50.974 | 11.291 |
| TAPL | 46.765 | 12.660 |
| PEGSRT | 45.133 | 17.018 |
| PEGSLT | 43.615 | 15.757 |
| CATTOT | 49.798 | 9.287 |
| TRSBT | 38.521 | 21.122 |
|  |  |  |

It was clear that many of the measures deviated significantly from a normal distribution, suggesting the presence of multiple populations (i.e., subgroups or clusters) within the data (Morris et al., 1981).

The hierarchical trees (dendrograms) obtained by applying the group average and centroid sorting agglomerative hierarchical techniques to the sinistral data set are presented in Figures 17 and 18 , respectively. Both dendrograms indicated clearly that the data was structured and contained several clusters. To aid in identifying the number of clusters present in the data, Table 19 presents the clustering coefficients (i.e., an indication of the amount of variance accounted for at each step of the clustering process) of the group average and centroid sorting methods. Plots of these values against the number of clusters are seen in Figures 19 and 20. The sharp decrease from a four-cluster to a three-cluster solution depicted on Figure 19 suggested that two clusters were combined to form a heterogeneous cluster (i.e., one with a high degree of within-cluster variability). Thus, the more homogeneous four-cluster solution previous to this fusion was chosen as the terminal solution. The number of clusters present in the centroid sorting results was not as clear-cut. The graph of the clustering coefficients for this method (Figure 20) did not reveal any significant precipitous changes in the plots of these values. Most changes were quite minimal and of similar magnitude. However, since the Q technique of factor analysis applied to the same sinistral data set suggested what appeared to be the presence of four reasonably


Figure 17 . Hierarchical tree using group average on sinistral sample.


Figure 18. Hierarchical tree using centroid sorting on sinistral sample.

TABLE 19

| Cluster Coefficients of Group Average and <br> Centroid Sorting Hierarchical Agqlomerative Methods <br> for the Left-Handed Sample |  |  |
| :---: | :---: | :---: |
|  |  |  |
| n of <br> Clusters | Group | Average |
| 10 | .213 | Centroid |
| 9 | .187 | .330 |
| 8 | .157 | .316 |
| 7 | .153 | .326 |
| 6 | .141 | .290 |
| 5 | .128 | .266 |
| 4 | .124 | .225 |
| 3 | .054 | .237 |
| 2 | .045 | .218 |
| 1 | .012 | .213 |



Fiqure 19. Plot of group average hierarchical cluster coefficients for sinistral sample.


Figure 20. Plot of centroid sorting hierarchical cluster coefficients for sinistral sample:
strong and interpretable factors, a four cluster solution was felt to be a plausible criterion to adopt for termination of the clustering process.

In an attempt to correct for poor initial partitions, the initial cluster solutions from the group average and centroid sorting methods were each subjected to a iterative relocation procedure. The method attempted to clarify the cluster solutions by searching for subjects which should be reallocated to another group. An index of the stability of the solution was also provided by examining the number of subjects that changed clusters during iteration. For the four-cluster solutions from the group average and centroid sorting analyses, only $7 \%$ and $9 \%$ of the subjects, respectively, were actually placed in a different cluster. To improve further upon the corrected solutions and to increase the likelihood that 'global optimum' solutions had been reached, the relocate procedure was repeated using a different starting configuration. Table 20 indicates that the same four-cluster solutions were replicated perfectly i.e., $100 \%$ agreement) from different starting classifications. The four-cluster classification arrays produced by group average, centroid sorting, group average relocate, centroid sorting relocate, group average relocate (random) and centroid sorting relocate (random) are presented in Appendix E.

The group membership distributions for the four-cluster relocate solutions can be ascertained from Table 21. The number of subjects classified into eight clusters down to two are provided in Table 21 so the reader is able to view the incorporation of clusters

| Cluster Analysis Method | Starting Classification |  |  |
| :---: | :---: | :---: | :---: |
| Group Average |  |  |  |
| 1 | 49 | 49 |  |
| 2 | 26 | 26 |  |
| 3 | 51 | 51 |  |
| 4 | 35 | 35 | 100\% |
| Centroid Sorting |  |  |  |
| 1 | 51 | 51 |  |
| 2 | 35 | 35 |  |
| 3 | 49 | 49 |  |
| 4 | 26 | 26 | 100\% |

## TABLE :21

> Number of Left-Handed Children in Each Cluster for $8,7,6,5,4,3$, and 2 Relocate
> Cluster Results

| Cluster Analysis <br> Method | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| Croup Average |  |  |  |  |  |  |  |
| 1 | 45 | 45 | 45 | 48 | 49 | 64 | 72 |
| 2 | 20 | 20 | 22 | 20 | 26 | 31 | 89 |
| 3 | 14 | 14 | 14 | 47 | 51 | 66 |  |
| 4 | 11 | 24 | 28 | 28 | 35 |  |  |
| 5 | 38 | 39 | 39 | 18 |  |  |  |
| 6 | 7 | 10 | 13 |  |  |  |  |
| 7 | 24 | 9 |  |  |  |  |  |
| 8 | 2 |  |  |  |  |  |  |
| Centroid Sorting |  |  |  |  |  |  |  |
| 1 | 34 | 38 | 38 | 48 | 51 | 66 | 72 |
| 2 | 14 | 15 | 15 | 16 | 35 | 64 | 89 |
| 3 | 19 | 29 | 30 | 30 | 49 | 31 |  |
| 4 | 46 | 46 | 46 | 49 | 26 |  |  |
| 5 | 14 | 14 | 18 | 18 |  |  |  |
| 7 | 14 | 14 | 14 |  |  |  |  |
| 7 | 5 | 5 |  |  |  |  |  |

during the fusion process. It also allows for the detection of outliers (unique individuals within the sample or viewed as resulting from measurement errors) in the data. In the current study, no children were removed from the analyses. As indicated in Table 21, the group average and centroid sorting relocate methods generated identical four-cluster solutions. Cluster sizes were 49, 26, 51 and 35 children.

The I score means and standard deviations of variables used in the cluster analyses procedures for each sinistral cluster group are shown in Table 22. Again, an asterisk next to the variable name denotes those measures used in the clustering methods. Other pertinent measures listed on the table include CAGE, WISC VIQ, PIQ and FSIQ, and WRAT RPERC, SPERC and ARPERC values for each cluster. For the CAGE variable, Clusters 1,2 and 3 exhibited similar mean ages (11.14, 11.24 and 11.18 , respectively), while Cluster 4 exhibited the oldest mean age (12.43). Clusters 1, 2 and 3 also exhibited very similar mean WISC FSIQs (48.14, 48.12 and 48.60, respectively), whereas the mean WISC FSIO for Cluster 4 was slightly higher (49.31). Similar lower mean VIQ-higher mean PIQ patterns were seen across all clusters, although the discrepancy was significantly smaller between the two values within Cluster 2 relative to the other groups. Finally, Clusters 1 and 3 were found to have mean WRAT Reading, Spelling and Arithmetic scores that were all below the 30th centile. For Clusters 2 and 4, RPERC exceeded the 30 th centile (somewhat moreso within the former group), while both SPERC and ARPERC were below this value.

TABLE. 22

## T Score Means and Standard Deviatios

of Variables for Each Sinistral Cluster Group



TABLE 22 (cont'd)

## Cluster 2

| VARIABLE | N | MEA:V | STANCARD DEVIATIUN |
| :---: | :---: | :---: | :---: |
|  | 26 | 44.87179487 | 7.7305034 |
| * COMP | 26 | 43.97435097 | 9.83279008 |
| SIMIL | 26 | 51.92307092 | 7.12885074 |
| vacab | 20 | $45.23076 \% 3^{3}$ | a.28962599 |
| PPVTIQ | 26 | 50.38461533 | 8.15003783 |
| AUJR | 20 | 0.03846154 | 0.19611614 |
| avol | 26 | 0.00000000 | 0.00000000 |
| * SSpER | 26 | $\uparrow 5.81713287$ | 14.40574944 |
| * a udclo | 26 | 60.27500000 | 13.96991410 |
| SENMEM | 26 | 38.66555184 | 10.95000337 |
| VFLU | 26 | 40.24450544 | 11.56448068 |
| * Arith | 26 | 45.70923077 | 7.57526339 |
| * DIGITS | $2{ }^{\circ}$ | 44.74350974 | 8.70111497 |
| * COUING | 26 | 45.02564103 | 9.61569230 10.28150775 |
| * piccom | 26 | 53.58574353 | 10.28150775 |
| picarr | 26 | 48.71794372 | 7.72105343 |
| * blkdes | 26 | 40.84615385 | 7.05170102 |
| * objass | 26 | 51.02564103 | $7.8750-327$ |
| VIISR | 20 | 0.03846154 | 0.19611014 |
| VISL | 20 | U.1153cio? |  |
| tarzGet | 26 | 44.12158282 | 10.05092488 |
| tack | 26 | 0.23070923 | $0 \cdot 31523946$ |
| tacl | 26 | 0.11538462 | O.3251259 |
| * fagnr | 26 | 47.30769231 |  |
| FAGNL | 26 | 45.74353974 | 17.67184903 |
| * FTwr | 26 |  | 12.20085137 |
| FTWL | 26 | 42.61369322 | 20.67271579 |
| ASTR | 26 | 46.41330891 | 11.11706896 |
| * tptot | 26 | 51.87539227 | 6.78408752 |
| * TPTNDT | 26 | 46.78002919 | 13.07677862 |
| TPTBT | 20 | $47.0 \div 309501$ | 13.89460584 |
| tptmem | 26 | 49.33333333 | 10.15480182 |
| TPTLOC | 26 | $43.25740 \% 20$ | 11.18444569 |
| * tapr | 26 | 47.54822303 | 10.31945142 |
| * tapl | 26 | 42.72136752 | 10.86502110 |
| FTAPR | 26 | 32.03cistic | 7.40667285 |
| FTAPL | 26 | 33.02192 .303 | 8.23705335 |
| GRIPF. | 22 | 39.03907724 | 13.61427531 |
| GRIPL | 22 | 32.01441460 | 12.06065729 |
| * PEGSRT | 26 | 2 c .86574804 | 22.36311675 |
| * pegslt | 26 | 25.40975181 | 22.74026772 |
| * cattot | 26 | 50.08390436 | 8.96293836 |
| * TRSB | 26 |  |  |
| CAGE | 26 | 11.24126923 | 1.54340671 0.8434092 |
| $\checkmark 1.2$ | 26 | 47.05128205 |  |
| $\begin{aligned} & \text { Pio } \\ & \text { FSIo } \end{aligned}$ | 26 26 | 49.43585744 49.12820513 | 4.78151712 |
| FSIO | 26 | 47.70923077 | 33.10867885 |
| SPERC | 26 | 29.00000000 | 21.66297146 |
| ARPERC | 26 | 17.961538400 | 9.11034914 |

TABLE 22 （cont＇d）

## Cluster 3

|  | VARIAEBLE | $N$ | MEAN | STANCARD DEVIATION |
| :---: | :---: | :---: | :---: | :---: |
| ＊ | 1 NFO | 51 | 40.45751634 | 6.21 ¢95339 |
| ＊ | COMF | 51 | 47.13954248 | 8.49503251 |
|  | SIMIL | 51 | 51.24185007 | 7.97103063 |
|  | VCICAB | 51 | 48.36001307 | 5．93941819 |
|  | PPVTIO | 51 | 48.13071895 | 3.54168301 |
|  | AUOR | 51 | 0.07843137 | 0.44014258 |
|  | AUDL | 51 | 0.07843137 | 0.27152438 |
| ＊ | SSPER | 51 | 22.61145733 | 22．16923153 |
| ＊ | AUDCLO | 51 | 47.77 892157 | 14.07743351 |
|  | SENMEM | 51 | 33.51065644 | 12．93977278 |
|  | VFLU | 51 | 37．24859944 | 9．30654247 |
| ＊ | Arsith | 51 | 42.35294118 | 6.40465517 |
| $\stackrel{ }{*}$ | OIGITS | 51 | 44.31372549 | 8.41411823 |
| $\cdots$ | CODING | 51 | 47.77777778 | 9.46729202 |
| ＊ | PICCOM | 51 | 55.09303922 | 9.55342734 |
|  | －ICARK | 51 | 52.41330065 | 9.93490412 |
| ＊ | GLKDES | 51 | 51.96078431 | 7.48855336 |
| $\because$ | USJASS | 51 | 55.29411765 | 8.97345395 |
|  | VISR | 31 | 0.05882353 | 0.23763541 |
|  | VISL | 51 | 0.13725490 | 0.40057919 |
| ＊ | tarcet | 51 | 45.70378509 | 11.32 c 25057 |
|  | YACR | 51 | $0.39215680^{\circ}$ | 0.98137550 |
|  | TACL | 51 | $0.15686{ }^{\prime \prime} 75$ | 0.70349265 |
| ＊ | FAGNR | 51 | 50.50980392 | 14.18643373 |
|  | FAGNL | 51 | 43.23529412 | 12.34701334 |
| ＊ | FTWR | 51 | 55.91984460 | 11.71856870 |
|  | FTWL | 51 | 51.20173030 | 14.92317 ごd8 |
|  | ASTE | 51 | 4 c .89464914 | 12.58034541 |
|  | ASTL | 51 | 47.73576097 | 13.11852654 |
| ＊ | tPTDT | 51 | 52.83299703 | 7－7サ455646 |
| ＊ | TPTNDT | 51 | 52.04691975 | 8．75219927 |
|  | TPTET | 51 | 42.91784628 | 20．685 Stiou |
|  | TPTMEM | 51 | 53．09303922 | 7．02583933 |
|  | TPTLOC | 51 | 50.14854427 | 11.59092074 |
| $\stackrel{\square}{+}$ | TApp | 51 | $52 \cdot 25840157$ | 10.54131400 |
| ＊ | TAOL | 51. | $4 \mathrm{4.11042723}$ | 10.47149745 |
|  | FTADR | 50 | 31.95540300 | 5.25650827 |
|  | FTAFL | 50 | －1．4うS30000 | 5．79575565 |
|  | GPIPR | 47 | 4 － 93022556 | 12．21196475 |
|  | GOIPL | 47 | ＋3．16159700 | 12．6076575゙ |
| ＊ | ；：3SNT | 51 | 50.34326200 | $14.21977 \pm 20$ |
| $\because$ | PESSLT | 51 | 48.53933589 | 10.71258059 |
| ＊ | CATTOT | 51 | 51.40672094 | 8.65770289 |
| ＊ | TRSET | 51 | $3 E \cdot 24822023$ | 18.56736162 |
|  | CAGE | 51 | 11.18111755 | 1．39142365 |
|  | $\checkmark 10$ | 51 | 44.64052288 | 5.25434979 |
|  | 010 | 51 | 53.38562092 | $6.97276370$ |
|  | FSIO | 51 | 48.60130719 | 5．15407912 |
|  | RPERC | 51 | 12.93039216 | 12.70067572 |
|  | SPERC | 51 | 9．78431373 | 10.94771890 |
|  | ARPERC | 51 | 13.84313725 | 11.15414282 |

TABLE 22 (cont'd)

## Cluster 4


*
*Denotes dependent measures used in statistical treatment of data.
N.B. The four cluster solution listed on this table represents the results of both the Group Average and Centroid Sorting Methods, since identical solutions were generated from each.

Graphic illustrations of the mean I scores for each variable for each sinistral cluster are presented in Figures 21 to 24. Inspection of these Figures indicated that there was a high degree of visual similarity between these cluster profiles and the four sinistral factor profiles depicted in Figures 3 to 6 , as well as the three dextral factor profiles shown in Figures 10 to 12. Table 23 contains the Pearson product moment correlations based on comparisons between mean I scores for all variables between all possible pairs of left- and right-handed $Q$ factors, and left-handed cluster groups. Examination of Table 23 revealed that the correlation values between sinistral Clusters 1, 2, 3 and 4, and left-handed Factors 1, 4,2 and 3 were $0.99,0.94,0.97$ and 0.99 , respectively. These correlation values attest to the near perfect match between performance patterns generated from the $Q$ technique of factor analysis, and performance patterns derived from the cluster analytic methods following the application of both procedures to a sample of lefthanded children. Comparisons between Clusters 1, 3 and 4, and dextral Factors 2, 1 and 3 revealed very high correlation values between these pairs of $T$ score plots as well. The respective correlation coefficients were $0.93,0.81$ and 0.83 .

Misclassification analysis was the last method used to compare the cluster and factor analytic solutions derived from the left-handed data set. Table 24 shows the number of children from each of the $\underline{Q}$ type factors who were not classified together by a given method of cluster analysis. As can be seen from Table 24, all of


Figure 21. Plot of I score means for Cluster 1 of sinistral sample.


TEST MEASURES
Figure 22. Plot of I score means for Cluster ? of sinistral sample.


Fisure 23. Plot of $I$ score means for Cluster 3 of sinistral sample.


Figure 24. Plot of $I$ score means for Cluster 4 of sinistral sample.
TABLE 23
Pearson Product Moment Correlation Coefficients for
Sinistral and Dextral Q Factors and Sinistral Cluster Groups

|  | Sinistral Factors |  |  |  |  |  |  | Dextral Factors |  |  |  |  |  |  | Sinistral clusters |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{1}$ | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 |
| Inistral Factors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1.00 | . 02 | . 20 | . 06 | . 03 | . 34 | -. 01 | $\because 01$ | . 94 | . 12 | -. 12 | . 03 | -. 22 | -. 16 | . 99 | . 09 | . 09 | . 15 |
| 2 |  | 1.00 | . 08 | . 16 | . 16 | . 11 | . 28 | . 84 | . 26 | . 07 | . 01 | . 55 | . 46 | . 37 | . 06 | . 14 | . 97 | . 12 |
| 3 |  |  | 1.00 | -. 16 | . 14 | . 30 | -. 19 | . 08 | . 18 | . 84 | -. 04 | . 41 | -. 01 | -. 00 | . 25 | . 04 | . 03 | . 99 |
| 4 |  |  |  | 1.00 | . 29 | -. 08 | -. 11 | . 21 | . 07 | . 11 | . 20 | . 11 | . 16 | -. 08 | . 05 | . 94 | . 05 | -. 19 |
| 5 |  |  |  |  | 1.00 | . 29 | . 19 | . 07 | . 02 | . 13 | . 13 | . 52 | . 49 | . 01 | . 08 | . 44 | . 25 | . 11 |
| 6 |  |  |  |  |  | 1.00 | -. 02 | -. 01 | . 31 | -. 01 | . 13 | . 66 | -. 30 | . 06 | . 41 | . 03 | . 19 | . 33 |
| 7 |  |  |  |  |  |  | 1.00 | . 19 | . 13 | -. 06 | . 21 | . 30 | . 46 | . 55 | -. 01 | -. 06 | . 41 | -. 15 |
| xtral Factors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  | 1.00 | . 26 | . 25 | . 14 | . 48 | . 47 | . 42 | . 01 | . 13 | . 81 | . 11 |
| 2 |  |  |  |  |  |  |  |  | 1.00 | . 17 | -. 06 | . 17 | -. 03 | -. 04 | . 93 | . 06 | . 29 | . 13 |
| 3 |  |  |  |  |  |  |  |  |  | 1.00 | . 11 | . 33 | . 26 | . 19 | . 14 | . 27 | -. 01 | . 83 |
| 4 |  |  |  |  |  |  |  |  |  |  | 1.00 | . 21 | . 24 | . 33 | -. 11 | . 24 | . 01 | . 04 |
| 5 |  |  |  |  |  |  |  |  |  |  |  | 1.00 | . 32 | . 36 | . 10 | . 23 | . 60 | . 43 |
| 6 |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 | . 36 | -. 23 | . 25 | . 49 | . 01 |
| 7 |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 | -. 14 | . 04 | . 41 | . 10 |
| nistral clusters |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 | . 09 | . 12 | . 19 |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 | . 05 | . 01 |
| 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 | . 05 |
| 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 |


the children classified together by the $Q$ technique of factor analysis were also classified together by cluster analysis. In other words, on the basis of subgroup membership the classification solutions generated from the two different multivariable taxonomic methods were in perfect agreement with each other.

Taken together, the visual similarity findings between cluster and factor profiles, correlation values between clusters and factors, and the results of the misclassification analyses seemed to support the notion that there were four distinct subtypes of left-handers within the data set, three of which were highly similar to three subgroups of age equivalent right-handers that had been derived by means of the $Q$ technique of factor analysis.

## Validation of Left-Handed Clusters

To determine the stability and usefulness of the sinistral clustering solutions, two methods were chosen. First, it has been suggested that similar solutions generated by different clustering techniques tends to support the presence of well-defined clusters within the data. Along this line, analyses of the membership assignments within clusters between the group average relocate and centroid sorting relocate solutions revealed that very few subjects were placed in a different cluster for the eight-cluster down to the five-cluster solutions, with identical assignment of subjects into clusters being achieved at the four-cluster solution level.

Second, a split-sample design was employed which randomly divided the total sinistral data set into two subsamples, and each
half was then clustered independently. The expectation was that if the clusters were stable, then membership assignment in the partitioned samples would be similar to the results derived for the entire sample.

The hierarchical trees (dendrograms) obtained by applying the group average and centroid sorting techniques to the two sinistral subsamples are presented in Figures 25 to 28 . The dendrograms can be seen to demonstrate clearly that both subsample data sets contained group structure. The clustering coefficients of the group average and centroid sorting methods applied to the two subsamples are listed in Table 25, and the corresponding plots of these values against the number of clusters are seen in Figures 29 to 32. Inspection of the dendrograms and clustering coefficients for subsample 1 suggested a range of clustering solutions. From an analysis of these results for subsample 2, a four-cluster group average solution appeared plausible, while the centroid sorting method suggested a three-cluster terminal solution. Since a range of clustering results appeared to emerge from the split-sample replication procedure, a subjective decision was made to examine the four-cluster terminal solutions within each subsample data set. The final group membership distributions for the four-cluster solutions for each subsample following iterative partitioning of the initial group average and centroid sorting results can be ascertained from Tables 26 and 27. As was found in the standard, the group average and centroid sorting relocate methods generated identical four-cluster solutions in the case of both subsample analyses. For subsample 1 , cluster sizes


Figure 25. Split sample validation hierarchical tree using group average on sinistral subsample 1.


Figure 26. Split sample validation hiomarchical tree using centroid sortingon sinistral subsample 1.


Figure 27. Split sample validation hierarchical tree using group average on sinistral subsample 2.


Figure 28. Split sample validation tree using centroid sorting on sinistral subsample 2.

TABLE 25

> Split Design Validation Clustering Coefficients of Group Average and Centroid Sorting Hierarchical Agglomerative Methods Applied to Two Sinistral Subsamples

| $n$ of | Subsample 1 |  | Subsample 2 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Group | Centroid | Group | Centroid |
| Clusters | Average | Sorting | Average | Sorting |
| 10 | . 285 | . 355 | . 245 | . 303 |
| 9 | . 242 | . 350 | . 200 | . 287 |
| 8 | . 214 | . 293 | . 191 | . 234 |
| 7 | . 136 | . 249 | . 137 | . 223 |
| 6 | . 106 | . 237 | . 130 | . 220 |
| 5 | . 093 | . 227 | . 120 | . 204 |
| 4 | . 068 | . 208 | . 092 | . 184 |
| 3 | . 059 | . 185 | . 045 | . 147 |
| 2 | . 011 | . 142 | . 034 | -. 089 |
| 1 | -. 063 | -. 275 | -. 035 | -. 352 |



Figure 29. Plot of group average hierarchical clustering coefficients for split sample validation procedure using sinistral subsample 1.


Figure 30. Plot of centroid sorting hierarchical clustering coefficients for split sample validation procedure using sinistrà subsample 1.


Figure 31. Plot of aroup average hierarchical clustering coefficients for split sample validation procedure using sinistral subsample 2.


Figure 32. Plot of centroid sorting hierarchical clustering coefficients for split sample validation procedure using sinistral subsample 2.

TABLE `26

Number of Left-Handed Children in Each Cluster for 8, 7, 6, 5, 4, 3 and 2 Relocate Cluster Results for Subsample 1 of the Split Sample Validation Procedure

| Cluster Analysis | Clusters |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Method | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
|  |  |  |  |  |  |  |  |
| Group Average | 4 | 7 | 6 | 6 | 29 | 33 | 44 |
| 1 | 7 | 7 | 10 | 13 | 14 | 15 | 37 |
| 2 | 23 | 22 | 30 | .30 | 31 | 33 |  |
| 3 | 22 | 22 | 23 | 25 | 7 |  |  |
| 4 | 11 | 5 | 5 | 7 |  |  |  |
| 5 | 5 | 7 | 7 |  |  |  |  |
| 6 | 6 | 11 |  |  |  |  |  |
| 7 | 3 |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |  |
| Centroid Sorting |  |  |  |  |  |  |  |
| 1 | 5 | 5 | 5 | 5 | 29 | 33 | 44 |
| 2 | 3 | 3 | 3 | 12 | 14 | 15 | 37 |
| 3 | 24 | 23 | 31 | 31 | 31 | 33 |  |
| 4 | 22 | 23 | 26 | 26 | 7 |  |  |
| 5 | 10 | 9 | 9 | 7 |  |  |  |
| 6 | 7 | 7 | 7 |  |  |  |  |
| 7 | 7 | 11 |  |  |  |  |  |
| 8 | 3 |  |  |  |  |  |  |

TABLE 27

Number of Left-Handed Children in Each Cluster for 8, 7, 6, 5, 4, 3 and 2 Relocate Cluster Results for Subsample 2 of the Split Sample Validation Procedure

| Cluster Analysis <br> Method | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Croup Average |  |  |  |  |  |  |  |
| 1 | 24 | 25 | 26 | 27 | 27 | 31 | 55 |
| 2 | 3 | 3 | 3 | 5 | 8 | 21 | 25 |
| 3 | 4 | 16 | 16 | 15 | 23 | 28 |  |
| 4 | 9 | 10 | 6 | 12 | 22 |  |  |
| 5 | 14 | 1 | 21 | 21 |  |  |  |
| 6 | 1 | 22 | 8 |  |  |  |  |
| 7 | 22 | 3 |  |  |  |  |  |
| 8 | 3 |  |  |  |  |  |  |
| Centroid Sorting |  |  |  |  |  |  |  |
| 1 | 22 | 20 | 27 | 27 | 27 | 31 | 55 |
| 2 | 17 | 10 | 11 | 15 | 23 | 28 | 25 |
| 3 | 9 | 5 | 5 | 5 | 8 | 21 |  |
| 4 | 3 | 1 | 1 | 12 | 22 |  |  |
| 5 | 1 | 21 | 21 | 21 |  |  |  |
| 6 | 21 | 14 | 15 |  |  |  |  |
| 7 | 4 | 9 |  |  |  |  |  |
|  | 3 |  |  |  |  |  |  |

were $29,14,31$ and 7 subjects. For Subsample 2, clusters consisted of $27,8,23$ and 22 children.

To assess the degree of comparability between the splitsample and standard results, a count was made of the number of subjects within split-samples 1 and 2 who changed from their original clusters. Table 28 indicates that for subsample 1 there were a total of 16 misclassifications, equivalent to $11 \%$ of the sample. For subsample 2, Table 29 shows that there were 17 misclassifications within this data set, equivalent to $21 \%$ of that sample. Between the two subsamples $16 \%$ of the subjects changed from their original clusters, leaving $84 \%$ of the subjects who clustered together in both procedures.

Finally, the I score means and standard deviations of variables used in the split-sample cluster analyses procedures for each subsample cluster are shown in Appendix F. Plots of the mean I scores for each variable for each subsample cluster are also presented in Appendix F。 For the most part, gross inspection of these graphs revealed a high degree of visual similarity between profile characteristics of the standard and split-sample clusters. Because of the small number of subjects in two of the clusters (Cluster 9 subsample 1 and Cluster 2 subsample 2), the actual cluster profiles did show some differences in their characteristics.

## Right-Handed Cluster Solutions

The I score means and standard deviations of clustering variables for the right-handed sample are presented in Table 30.

Number of Left-Handed Children in Subsample 1 from Each of the Cluster Groups Misclassified by the Split

Sample Validation Procedure

| Cluster Analysis Method | No. of Clusters | Clusters |  |  |  | Total Misclassifications$(n=81)$ | \% Sample |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 1 \\ (n=29) \end{gathered}$ | $\begin{gathered} 2 \\ (n=14) \end{gathered}$ | $\begin{gathered} 3 \\ (n=31) \end{gathered}$ | $\begin{gathered} 4 \\ (n=7) \end{gathered}$ |  |  |
| Group Average | 4 | 9 | 1 | 6 | 0 | 16 | 11\% |
| Centroid Sorting | 4 | 9 | 1 | 6 | 0 | 16 | 11\% |

Number of Left-Handed Children in Subsample 2 from Each of the Cluster Groups Misclassified by the Split

Sample Validation Procedure

| Cluster Analysis Method | No. of Clusters | Clusters |  |  |  | Total <br> Misclassifications $(n=80)$ | \% Sample |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 1 \\ (n=27) \end{gathered}$ | $\begin{gathered} 2 \\ (n=8) \end{gathered}$ | $\begin{gathered} 3 \\ (n=23) \end{gathered}$ | $\begin{gathered} 4 \\ (n=22) \end{gathered}$ |  |  |
| Group Average | 4 | 4 | 4 | 6 | 3 | 17 | 21\% |
| Centroid Sorting | 4 | 4 | 4 | 6 | 3 | 17 | 21\% |

TABLE 30

I Score Means and Standard Deviations of
Clustering Variables for the Right-Handed Sample

| Variables | Mean | S.D. |
| :--- | ---: | ---: |
| INFO | 43.684 | 6.054 |
| COMP | 47.411 | 8.030 |
| SSPER | 36.965 | 20.387 |
| AUDCLO | 45.419 | 13.928 |
| ARITH | 44.761 | 7.284 |
| DIGITS | 45.858 | 8.292 |
| CODING | 49.150 | 9.780 |
| PICCOM | 52.090 | 9.897 |
| BLKDES | 52.338 | 8.557 |
| OBJASS | 53.477 | 10.177 |
| TARGET | 42.494 | 13.055 |
| FAGNR | 42.514 | 27.202 |
| FTWR | 40.645 | 24.575 |
| TPTDT | 52.248 | 8.418 |
| TPTNDT | 49.874 | 14.156 |
| TAPR | 56.130 | 10.742 |
| TAPL | 42.570 | 9.529 |
| PEGSRT | 52.406 | 13.843 |
| PEGSLT | 36.295 | 23.841 |
| COTTOT | 50.745 | 7.636 |
| TRSBT | 41.307 | 18.553 |

Clearly, the frequency distribution for many of these variables deviated significantly from the normal I score distribution. Again, this finding suggests the presence of multiple populations within the data set.

The hierarchical trees (dendrograms) summarizing cluster solutions obtained by applying the group average and the centroid sorting agglomerative techniques to the dextral data set are presented in Figures 33 and 34 , respectively. These figures clearly showed clusters in the data. The clustering coefficients of the group average and centroid sorting methods are shown in Table 31. Figures 35 and 36 represent graphs of these data. From an analysis of the changes in cluster coefficients depicted in Table 31, and from inspections of the clustering coefficient plots, a sevencluster solution appeared plausible.

A provision for the reallocation of subjects who may have been poorly classified during the initial cluster analysis was provided by subjecting the group average and centroid sorting solutions to a iterative relocation procedure. For the seven-cluster group average solution, $17 \%$ of the subjects were found to be placed in a different cluster. However, for the seven-cluster centroid sorting results, $38 \%$ of the children were reallocated to a different cluster. The rather large number of subjects found to be changing clusters during the latter procedure does tend to call into question both the stability and adequacy of the centroid sorting results.


Figure 33. Hierarchical tree using group average on dextral sample.


Fioure 34. liferarchiral tree using centroid sorting on dextral sample.

TABLE 31

## Cluster Coefficients of Group Average and Centroid Sorting Hierarchical Agglomerative Methods for the Right-Handed Sample

| $n$ of <br> Clusters | Group Average | Centroid Sorting |
| :---: | :---: | :---: |
| 10 | .265 | .387 |
| 9 | .246 | .391 |
| 8 | .226 | .375 |
| 7 | .205 | .360 |
| 6 | .179 | .310 |
| 5 | .174 | .304 |
| 4 | .149 | .294 |
| 3 | .141 | .232 |
| 2 | .138 | .142 |
| 1 | .068 | -.022 |



Figure 35. Plot of group average hierarchical cluster coefficients for dextral sample.


Fiqure 36. Plot of centroid sorting hierarchical cluster coefficients for dextral sample.

An attempt was made to improve upon the relocate solutions, as well as to increase the likelihood of obtaining 'global optimum' solutions by repeating the relocate procedure using a different starting configuration. Table 32 indicates that there was a $96 \%$ conformity rate between solutions derived from the different starting points. The seven-cluster classification arrays produced by group average, centroid sorting, group average relocate, centroid sorting relocate, group average relocate (random), and centroid sorting relocate (random) are presented in Appendix G.

Membership distributions for the seven-cluster relocate solutions can be ascertained from Table 33. The number of subjects classified into eight clusters down to two are provided in Table 33 in order to view the cluster fusions and detect outliers in the data set. For the right-handed sample, no children were removed from the analyses. As can be seen in Table 33, cluster sizes between the group average and centroid sorting relocate methods were very close. Cluster sizes were $24,30,31,21,12,10$ and 23 children for the group average method, and $30,40,22,22,15,9$ and 23 subjects for the centroid sorting results.

The $T$ score means and standard deviations of variables for each dextral group average and centroid sorting cluster are shown in Tables 34 and 35 , respectively. Again, mean cluster age, mean WISC VIQ, PIQ and FSIQ, and mean WRAT RPERC, SPERC, and ARPERC values are provided in these tables as well. Briefly, for the group average relocate solutions, Clusters 2, 3 and 6 exhibited fairly similar mean age values (10.64, 10.76 and 10.42 , respectively).

TABLE 32
Comparison of Relocate Cluster Solutions for Dextral Sample from Different Starting Classifications (Shape Difference Classification vs Random Start)

| Cluster Analysis <br> Method | Starting Classification <br> Shape <br> Difference | Random | \% Agreement |
| :---: | :---: | :---: | :---: |
| Group Average |  |  |  |
| 1 | 24 | 40 |  |
| 2 | 30 | 29 |  |
| 3 | 41 | 7 |  |
| 4 | 21 | 23 |  |
| 5 | 12 | 23 |  |
| 6 | 10 | 20 |  |
| 7 | 23 | 19 |  |
| Centroid Sorting |  |  |  |
| 1 | 30 | 40 |  |
| 2 | 40 | 29 |  |
| 3 | 22 | 7 |  |
| 4 | 22 | 23 |  |
|  | 15 | 20 |  |

TABLE 33

Number of Right-Handed Children in Each Cluster for $8,7,6,5,4,3$ and 2 Relocate Cluster Results

| Cluster Analysis |  |  |  | Clusters |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Method | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
| Group Average |  |  |  |  |  |  |  |
| 1 | 19 | 24 | 31 | 31 | 64 | 43 | 109 |
| 2 | 29 | 30 | 32 | 36 | 40 | 47 | 52 |
| 3 | 37 | 41 | 43 | 46 | 30 | 71 |  |
| 4 | 18 | 21 | 21 | 24 | 27 |  |  |
| 5 | 20 | 12 | 10 | 24 |  |  |  |
| 6 | 9 | 10 | 24 |  |  |  |  |
| 7 | 9 | 23 |  |  |  |  |  |
| 8 | 20 |  |  |  |  |  |  |
| Centroid Sorting |  |  |  |  |  |  |  |
| 1 | 31 | 30 | 32 | 36 | 40 | 44 | 52 |
| 2 | 23 | 40 | 43 | 46 | 63 | 44 | 109 |
| 3 | 18 | 22 | 21 | 24 | 29 | 73 |  |
| 4 | 20 | 22 | 24 | 31 | 29 |  |  |
| 5 | 12 | 15 | 31 | 24 |  |  |  |
| 6 | 9 | 9 | 10 |  |  |  |  |
| 7 | 25 | 23 |  |  |  |  |  |
| 8 | 23 |  |  |  |  |  |  |

TABLE 34

## I．Score Means and Standard Deviations

of Variables for Each Dextral Group Average Cluster

| Cluster 1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | VARIABLE | $N$ | A ciA． | ETANrario DEVJATIUN |
|  | INFO | 24 | 4 ¢－U） | t．0：j927339 |
|  | COMP | 24 | 4と．うこ777718 | 7.51475530 |
|  | SIMIL | 24 | 33．14444444 | 3.37264518 |
|  | VOCAB | 24 | 47．77777778 | E．70334 17 |
|  | ppVTIO | 24 | $48.83 d 8 d 889$ | 7．47987100 |
|  | AUDrs | 24 | 0.033333351 | $0 \cdot 24232985$ |
|  | AUDL | 24 | 0.00000000 | 0.00063000 |
|  | SSPEK | 24 | $41 \cdot 15314394$ | 15．7＇55三1410 |
|  | AUDCLU | 24 | 4今•03¢54107 | $14.144 E 0332$ |
|  | SENMEM | 24 | 36．35E0¢505 | 13．20430933 |
|  | VFLU | 24 |  | 7．60462417 |
|  | ARITH | 24 | 45.433333315 | $6.313 C 3740$ |
|  | digits | 24 | 47.77777773 | $8 \cdot 32124727$ |
|  | coulag | 24 | $40 \cdot 11111111$ | S．Gちゃ6ったg9 |
|  | fic．cuin | 24 | 4 E － 700 ¢000 | 4.67153800 |
|  | pichra | 24 | $43.5 \cdot 3373333$ | －3JJCrisio |
|  | BlkDES | 24 | 5こ．15444＋44 |  |
|  | cBJass | 24 | 51．bらutugot | ¢－512ごら31 |
|  | VISTR | $\bigcirc$ | C．033．333．1 |  |
|  | $V I S L$ | 24 | U．1E＇360007 | 0．4915＋341 |
| ＊ | target | 24 |  | $15.156=7049$ |
|  | TACR | 24 | 0.41 véEG67 | 0．65326255 |
|  | tacl | 24 | $0.3750 こ 000$ | 0．76560561 |
| ＊ | FAjNR | 24 | E1．4 40 cicio | 1̇．51944306 |
|  | FASNL | 24 |  | 20．30こ 70446 |
| ＊ | FTWH | 34 | 40．616．35731 | $17 \cdot 106502.5$ |
|  | FTWL | 24 | 3ع．00033 こ75 | 22．75043785 |
|  | ASTR | 24 |  | 14.67160514 |
|  | ASTL | 24 | 43.57590250 | 15.43223305 |
|  | TPTOT | 24 | 52.51444157 | 7．5208u434 |
|  | TPTNOT | 24 | 40.67410 ミミら | 29.95346150 |
|  | TPTE3T | 24 | $43.345 ¢ く 075$ | 25.06145703 |
|  | TRTIAEM | 24 |  | 10．70272278 |
|  | tiotluc | 24 | 4 ¢．うioje：14\％ | 13.83767801 |
| ＊ | TAこに | 21 | ¢－1 S000495 | 10．3こ7E1374 |
| ＊ | TAPL | 24 | －5．4－311195 | 10．2312744 |
|  | FTAFR | 24 | $31 \cdot 3 \leq 53 c c o s$ | 5．52240401 |
|  | FTADL | ${ }^{1} 4$ |  | 7．3120¢5¢ |
|  | $G F I \rho R$ | 17 |  | 10．2！30304 |
| ＊ | $\begin{aligned} & \text { GRIPL } \\ & \text { PEGSHT } \end{aligned}$ | 17 |  |  |
| ＊ | PEGSLT | 24 | 4.49225400 | $42.41 \pm 53020$ |
| ＊ | cattut | 24 | j0．91001227 | 7.43575318 |
| ＊ | TRSET | 24 |  | 12.00070222 |
|  | CAGE | 24 | 1．1．57255933 | 1．63351500 |
|  | V10 | 24 | 47.25000000 | 5．ヲ9939610 |
|  | PIO | 2.4 | 49．9722ごここ | 7.61762301 |
|  | FSIO | 24 | $42 \cdot 33$ ¢8¢ysy | $4.61845350$ |
|  | RPERC | 24 | 3ミ．©tGicici | 24．9ら722465 |
|  | SPERC | 24 | 21.70833333 | 24.55950232 |
|  | ARPERC | 24 | 25．04106667 | $14 \cdot 302500041$ |

TABLE 34 （cont＇d）

## Cluster 2

| VARIfible | iN | AEAS | STANEAMD DEVIATICN |
| :---: | :---: | :---: | :---: |
| ＊INFO | 30 | 4 E．43：3333． | 5． 713 ¢0act |
| ＊comp | 30 | 45.11111111 |  |
| SI：1IL | 30 | 5こ．44464444 | E．15776070 |
| vocis | 30 | 47.44444444 | 5．91ćl945 |
| PPVTIO | 30 | 40．c，． 73.3 33\％ | 8．47473675 |
| AUDR | 30 | c． 1 couonoo | 0．30512358 |
| AUDL | 30 | －．EfGitces | C．52083046 |
| ＊SSprer | ． 30 | 22.90100061 |  |
| ＊audclo | 30 | 44．403こ0こ0 | $14.95 \pm 70515$ |
| SENPEM | 30 | 36.97971014 | 12.03442190 |
| －vFlu | 3 J | 3t．5Ecitaju | 3．104ccoes |
| ＊arith | 30 | 45．44\％44444 | 7．19100157 |
| ＊Digits | 30 | 44．7777777！ | 8．10254550 |
| ＊CUDING | 30 | 4 ¢．？2せ22くて？ | 13．56573415 |
| ＊piccua | 30 | こ3．565555to | 10．31acjal7 |
| picaris | 30 |  | 7．56003745 |
| ＊blkdes | 30 | Sc．11111111 | ¢0．）．1367．j－J |
| ＊objass | 30 |  |  |
| visr | 3 | C．－i）000000 | Ј．3044「71\％ |
| ＋VISL | 30 | 0．getece67 | 2．09cミ2140 |
| ＊target | 3 |  |  |
| tack | 30 | c． 9 ciectec 7 | 1－54212870 |
| ＋TACL | 30 | C．U6ece6ety | 1．19577301 |
| ＊Faginr | 30 | －-0.00000000 | 37.7970 .3594 |
| fagivl | 30 |  | く́C．710．j3070 |
| ＊FTwr | 30 | 40.75594423 | 12．931527 ${ }^{\text {a }}$ |
| FTWL | 30 | 41.04663547 | 19.3 －901130 |
| astr | 30 | 34．07098901 | 14.72525174 |
| ASTL | 30 | 35．26314570 | 12．45001598 |
| ＊tptot | 30 |  | 11.41575735 |
| ＊rptnut | ． 30 | 45.37041853 | 9．76445910 |
| TPTHT | 30 | 47．05019340 | 11.762 .2954 .3 |
| tptMry | 30 |  | 11.26 ¢＇4E！ 7 |
| TPTLOC | 3 3 | ＋e．7c177409 | 12.26464553 |
| ＊tapr | 30 | うこ．ど17ç71 | 10．24：373774 |
| ＊TAPL | 30 | 41.0201 cebs | 3.42433015 |
| FTApR | 30 | 30．6．9253335 | ＋．774549＋0 |
| FTADL | 30 | 2と．07300 00 | －97：32374 |
| GRIPR | 23 |  | 19．521675き） |
| GRIPL | ごす | 41.3 BEEE 54 y | $14.347 \times 14+3$ |
| ＊péssry | 30 | $50.0941514 \%$ |  |
| ＊pegslt | 30 | 37．014 1431 | 13．426＋0240 |
| ＊cattijt | 30 | $45.776 \in 1 ; 77$ | 5．0372＋735 |
| ＊TRS 3 T | 30 | 40.17328777 | 13．79421550 |
| cage | 30 | 10.64610000 | 1.22020011 |
| $\checkmark$ vo | 30 | 47.17777773 | $5.30 \dot{4} 49377$ |
| fio | 30 | 51.77777773 | 9．7073．3546 |
| FSIO | 30 | 49.31111111 | 5.02402911 |
| RPERC | 30 | 15.2 こ33こ333 | 19.10257316 |
| SPERC | 30 | $11.36 ¢ 6 \in 607$ | 13.43049370 |
| ARPERC | 30 | 20．6こコこ3333 | 12.27573754 |

TABLE 34 （cont＇d）

## Cluster 3

| VARIABLE | N | $\mathrm{A} \because \mathrm{A}$ ¢ |
| :---: | :---: | :---: |
| ＊INFO） | 41 |  |
| ＊comp | 41 | 4 E .04570404 |
| Simil | 41 | 51．5．4471．j45 |
| VOCAB | 41 | 48．455284．55 |
| pputio | 41 | $48.6 \geq 414634$ |
| AUDR | 41 | 0.00000000 |
| AUDL | 41 | O．00000000 |
| ＊ssizer | 41 | 27.576164033 |
| ＊auoclis | 41 |  |
| SENMEA | 41 | 32．15094592 |
| VFlu | 41 | 36．20034643 |
| ＊aritr | 41 | 41．36951870 |
| ＊DIGITS | 41 | 41．7cestlog |
| ＊cojing | 41 | 4 A 2113 4 211 |
| ＊ PICCO | 41 | 53．1707217 |
| picaria | 41 |  |
| ＊flkots | 41 | 54－55く ¢4．323 |
| ＊uejass | 41 |  |
| visi | 41 | 0．10312195 |
| VISL | 41 | $0 \cdot 363$－5360 |
| ＊target | 41 | $43.4 \equiv \varepsilon \mathrm{ccosm}$ |
| tacr | 41 | C． 34116341 |
| tacl | 41 | 0．2．300293 |
| \％FA：NR | 41 | 57．1こ13ミ122 |
| ＊Faunil | 41 | 52．27642270 |
| ＊f Tuir | 41 | 47.0 ¢2．22y |
| FTWL | 41 | $45.7326 E 747$ |
| ASTR | 41 | 45.36935150 |
| ASTL | 41 | 40.45435904 |
| ＊tptut | 41 |  |
| ＊TPTNDT | 41 | 51.43053740 |
| tPtibt | 41 | $450.44^{2} 33000$ |
| tPTMESA | 41 | 4 ceots |
| tidtloc | 41 |  |
| ＊TARE | ＋ 1 |  |
| ＊tapl | 41 | 47.15446535 |
| Ftador | 41 | 32．2！304 $=14$ |
| FTAPL | 41 | 30．4272070．3 |
| GRIPR | 30 | 43.40021324 |
| GRipl | $3 i$ | $41.53592 \geqslant 00$ |
| ＊pegsfit | 41 | $54.930 .55 \% 00$ |
| ＊pegslit | 41 | $41.34 c^{\text {cidar }}$ |
| ＊cattrit | 41 | $4509734^{11} 5$ |
| ＊trset | 41 | 25．72240619 |
| cage | 41 | 10.76217073 |
| $\checkmark 11$ | 41 | 44.5 EE 6 ES5 |
| PIO | 41 | 5Е．30894309 |
| FSio | 41 |  |
| RPEかC | 41 | $13.140341 \% 6$ |
| SPERC | 41 | 11．04073049 |
| ARPERC | 41 | 17．292cacys |

## ＝TANCARO DEVIATIUN

ミ． 004 ヒ1f， 72
7．03174743
5．377と7こころ
6.54461445

5：32574653
0.00000000
0.0 .0000000
$17.0 \leq 1917$ ら7
1 C －94 OOGCう7
1つ．た1137こ07
B．J 7 HC731e
5.27303310
7.26450050

5． 7590.440
$10 \cdot 6066043 \mathrm{j}$
－． 5 50～．
7．ソ4ップラ


$11.5 \div 473773$

C． 92354463
11.503 .9016

1．3．0175：553
17．2948．2304
16.04951052

14．5276も729
$13.458109 O H$
$6.75313 \% 30$
6.44683137
11.0 内431351

4．（） 1414 ＊is こ
11．2ご：77えは4
10.09 25340

8．430915？5
E．0ご：414．27
5．マ


7.14052302

11．20765110
7•3y 3 374＋1
23．3585＋599
$1.3421<004$
4.04473623
7.54546292
5.13930600

14．55854300
11．3069t554
11.10740144

TABLE 34 （cont＇d）


## Cluster 4

| VARIABLE | N | Mr：Mn |  LEVIATIUN |
| :---: | :---: | :---: | :---: |
| ＊INFO | 21 |  | E． $7+9+-853$ |
| ＊Covip | 21 | 45.39632540 | $6.62 \lll 1703$ |
| SIMIL | 2.1 | S1．2c小s412．7 | ¢．31407810 |
| VOCAE | 21 | 46．©icocuant | 8．31917154 |
| PPVTİd | 21 | 4 E Se41～ço | 8：545t5343 |
| AUDR | 21 | 0.04761505 | 0.21821785 |
| AUOL | 21 | 0.047 E150う | $0.21 \leqslant 21785$ |
| ＊SSPER | 21 | З 7 ¢ |  |
| ＊A UOClu | 20 | 41.27 ciztcou | 13.37572053 |
| SENMEM | 20 | $31.417: 36130$ | 11.03615790 |
| VFLU | 20 | 37．：）7557143 | 7．114470351 |
| ＊ARITH | 21 | 4\％．7610c47e | $9.036,24122$ |
| $\because$ DIEITS | 21 | 47.30158730 | 9．22e71529 |
| ＊COOINE | 21 | Э1．5973015\％ | ¢．52301584 |
| ＊PICCUH | 21 | $44^{4}$ | 6．8544．3634 |
| PICARF： | 21 | 4 ¢．6a2sj503 | 11．245c2isi |
| ＊3LKロEう | 21 | 4 －0552．4＜10 | ¢．fこうこったく00 |
| ＊U⿴JASS | 21 |  | 6．3487143 |
| $\checkmark$ ISit | 21 | 0．4？と兰7143 | C．97？？${ }^{\text {cte }} 7$ |
| VISL | 21 | 0． 3 S．33333 | $0.7 \geq 02 r, \in 7.4$ |
| ＊targeit | 21 |  | 10．6506コ052 |
| TAC？ | 21 | O．5こ3 d ¢ ¢ ，？ | 1．1070J075 |
| TACL | 21 | 0．4\％957143 | 1．1212．382 |
| ＊Faginf？ | 21 | $41.4 ¢ ら 5714.2$ | 16.0017551 |
| FAGNL | 21 | 33．ヶ．47619う | 27．4才ご 7 ¢123 |
| ＊FTWH | 2.1 | －1．7885540； | コ2•15゙14731 |
| FTWL | 21 | －0．142Jecci | 49.54041031 |
| ASTiर | 21 | 35．0306jc40 | 14．34．330913 |
| ASTL | 21 | 4三．2¢305502 | $13.0263 こ 350$ |
| ＊tridot | 21 | 4 E －8230csis | 8．45341101 |
| ＊TPTNOT | 2.1 | 44.92448502 | 11.17707911 |
| TPTDT | 21 | 43．20055034 | $16 \cdot 32454755$ |
| TPTAEH： | 21 | 三こ．とこと「E4 | G．47ヶミ1934 |
| TPTLOC | 21 |  | 12．j6011321 |
| ＊Tヘロト | 21 | ちむ．191509\％ |  |
| ＊TAPl | 2： 1 | 32．651a0こ74 | 10.57 アeJO2も |
| FTABH | 21 |  | 7．556\％．」6：」こ |
| FTAHL | 2.1 |  | 6．35．ject 27 |
| GiरI F （ | 11 | $46.1337 \pm 200$ | 15．32三ミごE 75 |
|  | 11 |  | 13．tこくつ1と／ |
| $\therefore$ PEG： | $2 J$ | 三c． $301: 4.20 \cdot 5$ | 10．gigeliajす |
| $\therefore$ PEGSLI | a， | 41.06444444 | $12 \cdot 65777441$ |
| ＊CATTOT | $\therefore 1$ |  | 6．72ミコン心年 |
| ＊tRSBt | 21 | $46.0410<541$ | 5．91453592 |
| CAGE＊ | C1 | 12．30452331 | 1．44577431 |
| $\checkmark 10$ | 21 | 45.63253000 | 6．95250939 |
| PIU | 21 | 50.34920635 | 7．64373419 |
| FSIO | 21 | $48.0 こ 174603$ | 5．20032559 |
| RPEMC | ここ | 17.40000000 | 13．23631363 |
| SPERC | 2 C | 15.30000000 | 16.64521426 |
| ARDERC | 20 | 16.40000000 | 12.90013089 |

TABLE 34 （cont＇d）

## Cluster 5

|  | VARIABLE | N | MiEAB | STAMVAHU <br> UEVIATIUN |
| :---: | :---: | :---: | :---: | :---: |
| ＊ | INFU | 12 | $44 \cdot 1$ cetcetr |  |
| ＊ | COMP | 12 | $43.333 \therefore 333$ | り・V：こ 3 ¢ ⿺ 34 |
|  | SIMIL | 12 | 54．1尤と尤し7 | S．તe1 1 ： 301 |
|  | VOCAE | 12 | 47.51500000 | $7 \cdot 53773301$ |
|  | PFVTIO | 12 | 50．383 ¢ ¢ 3 ¢\％ | $7 \cdot 1$ こ765563 |
|  | AUDFR | 12 | O．063 5330 |  |
|  | AUDL | 12 | O．0と3333．3 | 0．299c7513 |
| ＊ | SSHER | 12 | $5 \pm . \dot{4}$ ¢0151 | $7.3017 \% 7$ \％ |
| ＊ | AUDCLU | 12 |  | 9．09：5：1070 |
|  | SENMEM | 12 | く5．7．3513．34 |  |
|  | VFLU | 12 | $40.74702 \pm 81$ | 0． 44 ¢ 2151 |
| ＊ | ARITH | 12 | 46.36444441 | C．5か4．3：3447 |
| ＊ | DIGITS | 12 | 4 H．61111111 | 7.31103125 |
| $\dot{\times}$ | COJING | 12 | $43 \cdot 53 \cdot 3 \times 8835$ | 2．SO3 ¢¢4 45 |
| ＊ | PICCOn | 12 | $54 \cdot 1066 \in<6$ | $9 \cdot 2250 \div 037$ |
|  | PICAKi？ | 11 |  | －1773 2761 |
| $\star$ | BLKUES | 12 | 50.35555556 | 5．ミ344うc74 |
| ＊ | OHJASS | 12 | 5̈． 0.5000 CO | 11．90ご3071 |
|  | VISR | 12 | －．リココつらJUつ | 0．う」せ」うつ00 |
|  | VISL | 12 | 0.00000100 | 0.1003000 |
| ＊ | TADEET | 12 | ご，3世0こ5：4 |  |
|  | TACis | 12 | j． 33333333 |  |
|  | TACL． | 12 | 0．0533 53.1 | O－23：67513 |
| $\cdots$ | FAG：iR | 12 | 34．0333333 | ¢．07：317072 |
|  | FAGNL | $1:$ | 47.01111111 | 13．34J 5i ju4 |
| ＊ |  | 12 | 5j．774COClU | $11.7077 .143 c^{2}$ |
|  | FTWL | 12 | 4 ¢．9695434 | $24 \cdot 24100 \times 0$ 2 |
|  | ASTR | 12 | ju．04516850 | E．94c．3．3 37 |
|  | ASTL | 12 | $52 \cdot 34433220$ | $10.44 \div 50155$ |
| ＊ | TPTOT | 12 | $45 \cdot 3!37+201$ | G．11063467 |
| ＊ | TPTNUT | 12 | 51.41 ¢1 こ143 | う．75ソ ¢ 703 |
|  | TPTET | 12 | 41.53975370 | $13 \cdot 5103337$ |
|  | TPT：IEP号 | $1:$ | $6 ¢ 11111111$ |  |
|  | TPTL．OC | 12 |  | 10．54．31：4 |
| ＊ | TAPR | 12 | ¢¢－¢ ：J ，16：0 | 7．4い1㖪ごき |
| ＊ | TANL | $1 \because$ |  | $10 \cdot 61.27475$ |
|  | 1．T入った | 12 |  | $6 \cdot 62 \% 1: 521$ |
|  | FTADL | $1:$ | 32．30250UCu | 5．033－44 0 ¢ 0 |
|  | GriPR | $1 \%$ |  | 12．63ここうくらす |
|  | いだ： | 1 j | 41 ¢355r107 |  |
| ＊ | HEC；SHAT | $1{ }^{\circ}$ |  | 3．654475：0 |
| $\pm$ | FEGSLT | 12 |  | 8.0717 .767 |
| $\star$ | C．ATTOT | 12 | $52 \cdot 31$ dc．sets | 6－70＊ن1703 |
| ＊ | TRSOT | $1 \%$ | 44.6531 ¢U4 i | 10.91261742 |
|  | CAEE | 12 | $11.4 \subset 916007$ |  |
|  | VIO | 12 | $4 \mathrm{C}, 50000000$ | 5．52034370 |
|  | F12 | 12 | 50．3363EG459 | 7 －1 12733．33 |
|  | FSI2 | 12 | 49.3 ¢8《dés） | 0.51002352 |
|  | KPETRC | 12 | 50．0と33333こ | $31 \cdot 19202605$ |
|  | SPERC | 12 | 30.083333 .33 | 27.07047460 |
|  | ARPEFRC | 12 | 22．41566667 | 21.33055143 |

## Cluster 6


iv
MEA：d

## STANCNはD DLVIATli心

4．7271 $\because 18$.
5．5171349：4
コ．ちゃことこうもう
5.22340412

8．40
0.00000000
0.0 .0000000

$14.03 \% 7 \div 5$
17．37MS：311．
¢．5cis．toss
$9.32274 \pm . \vdots$

10.0921476 J
$4.45+24324$

¢．©


$0.6745435:$
9.41446127

1．こ6451100
－． 31 n 2 c 777
10．91うとうすロ

7．735 dこと 13
$11.4844 .: 776$
12．らけシううろして

 6．50371569 12．（ر1）1．）هó
12・ご124こ0．21 1ヶ・11\％10らた7
10.5 3心С7：4 7

7．ビふい07ア11
4•：7 4 13：311
4.0430 .2709
$11.7 \% 1690$

5．432心の97
9．075いう101


1．193759ご
4.87067314
0.03357153
4.4 し 7 16415
25.94433490
$23.43525: 60$
$7.72473420^{\circ}$

## Cluster 7

|  | VARIABLE | $N$ | HEAN |
| :---: | :---: | :---: | :---: |
|  | INFO | 23 | 42．75352319 |
| ＊ | COMP | 23 | 17．97101449 |
|  | SIイIL | 23 | 53．75811594 |
|  | vocas | 23 | 47.132008695 |
|  | PPVTIQ | 23 | 75．36231884 |
|  | AUDP | 23 | 0.13043478 |
|  | AUDL | 23 | 5．04347826 |
| ＊ | SSPER． | 23 | 52．41307233 |
| ＊ | A UDCLO | 23 | 42.0717 E913 |
|  | SENMEM | 23 | 37．4706994．3 |
|  | VFLU | 23 | 3？．71429571 |
| ＊ | ARITH | 23 | 45.91159420 |
| ＊ | DIGITS | 23 | 47.68115042 |
| ＊ | COSING | 23 | 51．84405797 |
| ＊ | PICこOM | 23 | 54．4つ？ 75362 |
|  | PICARR | 23 | 55.713710145 |
| ＊ | blKDES | 23 | 54．？ 0239555 |
| ＊ | OBJASS | 23 | 55．0．0．9565？ |
|  | VISR | 23 | コ．20つ0つコ0） |
|  | $V 15 L$ | 23 | $0.0769565 ?$ |
| ＊ | TARGET | 23 | 50.7201 C 343 |
|  | TACR | 23 | 0.21730130 |
|  | TACL | 23 | 0．04347876， |
| ＊ | FAgnR | 23 | 51.04347820 |
|  | FAGNL | 23 | 42.43479261 |
| ＊ | FTWR | 23 | 56.91542094 |
|  | F Tivl | 23 | 49.60574071 |
|  | ASTE | 2.3 | 53.90 ）532． |
|  | ASTL | 23 |  |
| ＊ | TPTOT | 23 | 53.74352637 |
| ＊ | TPTNDT | こコ | 55．17782895 |
|  | TOTGT | 23 | $413.6324295 ?$ |
|  | TDTMEM | 2.3 | シこ． 5 こ31号241 |
|  | torlda | 23 | ヶコ．17447770 |
| ＊ | TADR | 23 | 5ア．01こヶ7215 |
| ＊ | tapl． | 2． 3 | 23．2：512077 |
|  | FTAPR | 23. |  |
|  | FTAPL | 2.2 | 3．3．1304．34655 |
|  | GRIDR | 18 | $50.3 \therefore 414360$ |
|  | GRIDL | 13 | 41.434 .34264 |
| ＊ | PEGSRT | 23 | 66.25496205 |
| ＊ | PEGSLT | 23 | 52．74033016 |
| ＊ | cattot | 23 | 53.42874001 |
| ＊ | TPSAT | 23 | 51.91547642 |
|  | CAGE | 23 | 1 ？．13つ0434R |
|  | $\checkmark 10$ | 23 | 47.53623184 |
|  | PI0 | 23 | 56． 28985507 |
|  | FSia | 23 | 51.82602696 |
|  | RPERC | 23 | 29.73913043 |
|  | SPERC | 23 | 20.17391304 |
|  | ARPERC | 23 | 13.43478261 |

[^2][^3]TABLE 35

I Score Means and Standard Deviations of Variables for Each Dextral Centroid Sorting Cluster

| Cluster 1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | VARIABLE | $N$ | MEA：I | STANC：Ki） DEVIATION |
| ＊ | INFD | 30 | 45.33333333 | 5.71345464 |
| ＊ | COMP | 30 | 49.11111111 | －9．21989076 |
|  | SIMIL | 30 | 53．44444444 | 6.15779070 |
|  | VOCAB | 30 | 47.4 ¢444447 | 5．91うく1く45 |
|  | PPVTIO | 30 | 46．933333う | 3.44472075 |
|  | A UDR | 30 | C． 16000000 | $0.30 \leq 12653$ |
|  | AUDL | 30 | 0.2 cićróó | 0.52033040 |
| ＊ | SSPER | 30 | 22．93105061 | 24.65239386 |
| ＊ | AUJCLO | 30 | 44.40250000 | 14．95：70515 |
|  | SFEVMEM | 30 | 36.97971214 | 12.034 블 90 |
|  | VFLU | 30 | 36．59214206 | 8．10：4 ¢ ¢ ¢ ¢ |
| ＊ | ARYTH | 30 | 4 5.44444444 | 7.171261 \＃7 |
| ＊ | DIGITS | 30 | 仿出 77777773 | $9.10: 2545 \%$ |
| ＊ | CODING | 30 |  | 10.56575413 |
| ＊ | PICCDM | 30 | ¢3．55ちらずらうい | 10.310 çis 17 |
|  | PICARR | 30 | 51.33333333 | 7.56073745 |
| ＊ | BLKDES | 30 | 50.11111111 | 9.03307390 |
| ＊ | OBJASS | 30 | 52．22222222 | $12.075: 08 \geq 5$ |
|  | $V$ ISR | 30 | 0.60000000 | 0.39442719 |
|  | VISL | 30 | J．3r：t65667 | 2．09652143 |
| ＊ | TARGET | 30 | 43.90525116 | 10．4 Scizjoj |
|  | TACR | 30 | 0．9Ecgeré | 1.54212870 |
|  | TACL | 30 | 0.80055067 | 1．19577501 |
| $\stackrel{ }{*}$ | FAGNR | 30 | －5．00000000 | 37.79704470 |
|  | FAGNL． | 30 | 16.77777778 | 26．7109307J |
| ＊ | F THP | 30 | 40.79554823 | 12.93192790 |
|  | FrwL | 30 | 40.04165587 | 19.39001100 |
|  | ASTR | 30 | 34．97053501 | 14．72525174 |
|  | ASTL | 30 | 34．25？ 14970 | 12.35601 ¢9と |
| ＊ | TPTDT | 30 | \％1．36754201 | 11．41：37573 |
| ＊ | TPTNDT | 30 |  | 4.76440013 |
|  | TOTBT | 30 | 47.05015340 | $11: 76323543$ |
|  | TPTMEM | 30 | So．45う5 555： | 11．Tricestas\％ |
|  | THTLOC | 30 | ¢6． 7 71776：39 | $13 . \therefore \because \therefore \%$ |
| ＊ | TAPR | 30 | $52 . \cup 2174071$ | $10 . \therefore$－ 7377 |
| ＊ | TAPL | 30 | 41.53218055 | $\cdots$ ．－\％$\because 0015$ |
|  | FTAPR | 30 | 30.5223333 .3 | 4．77：・ソ号 |
|  | FTAPL | 30 | 2：3．07000000 |  |
|  | GRIPR | 23 | 48.30092251 | 1＋．：$\therefore 16059$ |
|  | GRIPL | 24 | ¢1．33663496 | －14．347614S3 |
| ＊ | PEGSRT | 30 | 50．99419127 |  |
| ＊ | PEGSLT | 30 | 37.01481481 | 13.42 ¢ 4.540 |
| ＊ | CATTOT | 30 | 49.77661577 | 9．03724735 |
| ＊ | TRSET | 30 | 40.17328777 | 13.79421550 |
|  | CAGE | 30 | 10.04610000 | 1．2209）011 |
|  | $\checkmark 10$ | 30 | 47.17777773 | 5．3064：3377 |
|  | PIO | 30 | 51.7777777 ¢ | 9．70733946 |
|  | FSIQ | 30 | $49: 31111171$ | $5 \% 02402911$ |
|  | RPERC | 30 | 15.23333333 | 15.16297316 |
|  | SPERC | 30 | 11.36566667 | 13.43049370 |
|  | ARPERC | 30 | 20．03333333 | $1 こ .27973754$ |

TABLE 35 (cont'd)

| Cluster 2 |  |  |  |
| :---: | :---: | :---: | :---: |
| VARIABLE | v | ME:AN | stancarid DEVIATIUN |
| * INFO | 40 | 42.25000000 | 5.31713257 |
| * COMP | 40 | 48.25000000 | 8.63925640 |
| SIMIL | 40 | 52.25000000 | 5.86590419 |
| vocab | 40 | 42.33333333 | 6.42954363 |
| ppetio | 40 | 48.33333333 | 0.24950191 |
| AUDR | 40 | 0.00000000 | $0.0,000000$ |
| $\therefore$ AUDL | 40 | 0.00000000 | $0.0) 000300$ |
| * SSPER | 40 | 23.37575545 | 13.61053248 |
| * A UDC LO | 40 | 43.65437500 | 10.72471069 |
| SENMEM | 40 | 32.77608695 | 11.00371791 |
| VFLU | 40 | 39.77232143 | 8.14910540 |
| * ARITH | 40 | 42.03333353 | 5.53\%20106 |
| *OIGITS | 40 | 42.33333333 | 7.51425.536 |
| *CODING | 40 | 47.5 .7002000 | y. 20.240134 |
| * PICCCM | 40 | 54.16 ¢60060 | 10.56117709 |
| PICARR | 40 | 49.75000003 | 3.76042318 |
| * HLKDES | 40 | 5.5 .25000000 | 7.31417460 |
| *OBJASS | 40 | 55.25000000 | $\bigcirc .02315792$ |
| VISR | 40 | 0.20000003 | 0.58687326 |
| * ISL | 40 | 0.37500 .000 | 1.37164505 |
| * target | 40 | 41.41363713 | 12.5342436 |
| racr | 40 | 0.32503003 | 0.83431445 |
| * TACL | 40 | 0.27500000 | 0.93335623 |
| * FAGNR | 40 | 56.30000000 | 1.1 .97801244 |
| FAGNL | 40 | 52.08333333 | 12.96692044 |
| *FTWR | 40 | 47.40645451 | 17.00595693 |
| FTWL | 40 | 45.91601123 | 15.67828729 |
| ASTR | 40 | 44.98576923 | 14.1354337.4 |
| A STL | 40 | 40.59544500 | 13.58064435 |
| * TPTDT | 40 | 52.80252538 | 8.04535261 |
| * TPTNDT | 40 | 51.510312104 | C.0703550y |
| TPTHT | 40 | 49.51793141 | 11.32499113 |
| TPTMEM | 40 | 43.22910667 | ¢. 36076050 |
| TPTLOC | 40 | 47.2555154 .3 | 11.25553437 |
| * TAPR | 40 | 61.6.0075755 | 10.13550732 |
| * rapl | 40 | 47.32979783 | 3.388515312 |
| FTAPR | 40 | 32.46 .775000 | 9.90035572 |
| FTAPL | 40 | 30.64175000 | 5.50643674 |
| GRIPR | 35 | 47.5105643 .2 | 9.78.997407 |
| GRIPL | 35 | 40.46963184 | 10.30725568 |
| * PEGSRT | 40 | 55.04656340 | 7.43090553 |
| * PEGSLT | 40 | 42.13055556 | 10.85915696 |
| * cattot | 40 | 45.96995317 | 27.33033121 |
| CAGE | 40 | 10.00522500 | 27.326712 ${ }^{4}$ |
| $\checkmark 10$ | 40 | 45.05000000 | 4.08467222 |
| PIO | 40 | 53.03333333 | 7.37277000 |
| FSIQ | 40 | $48 \cdot 73333333$ | 5.4135000\% |
| RPERC | 40 | 13.32500000 | 14.60485957 |
| SPERC | 40 | 11.32500000 | 11.75909359 |
| ARPERC | 40 | 17.55000000 | 11.05916490 |

TABLE 35 （cont＇d）

## Cluster 3

VARIABLE
iv

|  | INFO СОМр SIMIL vDCAB PPVTIa AUDP |
| :---: | :---: |
|  | AUDL |
| ＊ | SSPER |
| ＊ | AUDCLO |
|  | SENMEM |
|  | VFLU |
| ＊ | ARITH |
| ＊ | DIGITS |
| * | CODING |
| ＊ | pICCOIA |
|  | PICAFR |
|  | BLKDES |
|  | OBJASS |
|  | VISR |
|  | VISL |
| ＊ | T |
|  | TACR |
|  | TACL |
| $\times$ | FAGNR |
|  | FAGNL |
| $\star$ | FTWR |
|  | FTWL |
|  | ASTR |
|  | ASTL |
|  | TPTOT |
| ＊ | TPTNDT |
|  | TPTET |
|  | TPTMEM |
|  | TPTLOC |
| ＊ | TADR |
| ＊ | TAPL |
|  | FTAPR |
|  | FTAPL |
|  | GRIPR |
|  | GRIPL |
|  | PEGS： |
| ＊ | PEGSL |
|  | cattot |
| ＊ | TRSST |
|  | CAGE |
|  | $\checkmark 10$ |
|  | P10 |
|  | FSia |
|  | RPER C |
|  | SPERC |
|  | ARDERC |




## STANOARD DEVIATION

6．1662月640
7.93795081

7．05805335
6．5 $207700 \%$
$178 \cdot 18545290$
0．40ノ562らこ
0.21320072
10.23455315
8.74127085
13.06479907
7.53764828

7．55252374
7．575 54112
S．634：931

－：．76666089
$\therefore .94642275$
y． 2113 2373
0.00000000

0．2542．4454


0．21ミスう？
$8.9171260=$
20.79047065
9.07924402
25.40040545
5.30740454
$10.2411 * 090$
$6.777 \dot{5} 88$
6.07734336
14.24171696

10．2254065
10．9．3770598
7．1）4175460

4.573 2a341

（1．）．1）2．5－407
10.93431537

7．21137267 6．66567370

5．Yis．5304a3
$0.945+3 \mathrm{coc} 0$
3.370130064
6.09047050
4.94960551
27.41120942
25.36633347

10．34 557334

TABLE 35 （cont＇d）

Cluster 4

|  | VARIABLE | $N$ | MFEAN | STANEARU DEVIATIUN |
| :---: | :---: | :---: | :---: | :---: |
|  | INFO | 22 | 43.33333333 | 6．92355089 |
|  | COMP | 22 | 45.30909091 | －6．06125321 |
|  | SIMIL | 22 | 51．0006C000 | O．3j70¢469 |
|  | vocab | 22 | 46．51515152 | 5．81780742 |
|  | PPVTIO | 22 | 49.06050006 | －．35117354 |
|  | A UDR | 22 | 0.04545455 | 0.21320072 |
|  | AUDL | 22 | 0.0454545 .5 | $0 \cdot 21320572$ |
| ＊ | SSPER | 22 | 37．55082645 | 13.98350390 |
|  | a ujelo | 21 | $41 \cdot 33333333$ | 12.94260594 |
|  | SENMEM | 21 | 31.71304343 | 11.00170992 |
|  | VFLU | 21 | 37.60714200 | 0.03771271 |
| ＊ | ARITH | 22 | 44．94842455； | －．41277 |
| $\star$ | DIGITS | 22 | $46.5151515:$ | 9．2¢心70ッ40 |
| $\stackrel{ }{*}$ | CODING | 22 | 51.60666067 | －12さ7ゴっだ |
| ＊ | PICCOM | 22 |  | 7．6Uう7つ0こ？ |
|  | PICARR | 2.2 | 50.00000000 | $11.1744 \geq 230$ |
| ＊ | 3lkdes | $2 \%$ | $4 \because .33333333$ | 6．150 ec50́4 |
| ＊ | OBJASS | 22 | 51． 56060 Gic 7 | 9.7700 cos 7 |
|  | $V I S R$ | 22 | $0.4 J \ni \cup \subseteq 091$ | 0．95912117 |
|  | VISL | 22. | O．3131E13？ | $0.71 \pm 23112$ |
| ＊ | TARGET | 22 | 37.74441900 | 12．29802020 |
|  | tACR | 22 | リ．¢ ）Jo o 20.0 | 1．14434427 |
|  | TACL | 22 | 0.40039091 | 1．09 31075 |
| ＊ | FAGNR | 22 | 42．72727273 | 15． 32698665 |
|  | FAGNL | 22 | 35．09090909 | 27．30934403 |
| ＊ | FTWR | 22 | 0．14495818 | 32．45031251 |
|  | FTWL | 22 | －2．22989531 | 47.70361943 |
|  | ASTR | 22 | 36.72470562 | 14．95： 03735 |
|  | ASTL | 22 | 44．10072490 | 13.37654118 |
| ＊ | tProt | 22 | 4 － $00255 \div 72$ | H． $25 \div 42 \div 30$ |
| ＊ | TPTNDT | 22 | $4 \pm .87475235$ | 10．4114ct403 |
|  | TPTET | 22 | 41.40675357 | 17．29870370 |
|  | TPTMEM | 22 | 51.99242424 | 5．92120002 |
|  | TPTLOC | 2 | 5J．59249327 | $12.3252: 391$ |
| $\div$ | TAOR | 22 | 53.23464023 | 11.4 －300̇341 |
| ＊ | TAPL | 22 | 35.23024604 | 10.54492175 |
|  | FTAPR | 22 | 32．416：101＊ | 7．30464103 |
|  | FTAPL | 22 | 3こ．177：7：7： | $6.4290 こ 130$ |
|  | GRIPR | 12 | 43．0ن7754） | 1 ミ． 77767951 |
|  | GRIPL | 12 | 34：52997082 | 18.25052841 |
| ＊ | ＊PEGSRT | 21 | 55.34122461 | 10.07133002 |
|  | ＊PEGSLT | 21 | 43.31216931 | 10.47021755 |
|  | ＊cattot | 22 | $4 を .88393909$ | －0．01491521 |
| ＊ | －trsbt | 22 | 45.935 ¢379\％， | 8．92571024 |
|  | cage | 22 | 12.16054545 | 1．01441483 |
|  | $\checkmark 10$ | 22 | 45.87878783 | 6． 31932005 |
|  | PIO | 22 | 50.33333333 | 7.73257755 |
|  | FSIO | 22 | －49\％12121212． | －5：23980033 |
|  | RPERC | 21 | 20．80952381 | 16.22842891 |
|  | SPERC | 21 | 15.57142057 | 16.01115682 |
|  | ARPERC | 21 | 16.28571429 | 12.74810 .910 |

TABLE 35 （cont＇d）

## Cluster 5

|  | VARIABLE | N | ME ATV | STANCARD OEVIATION |
| :---: | :---: | :---: | :---: | :---: |
|  | INFO | 15 | 44．44444444 | －6．56221153 |
|  | COMP | 15 | 44.444 .44444 | － 8.51351040 |
|  | SIMIL | 15 | 53.11111111 | $5 \cdot 337=0024$ |
|  | VOCAB | 15 | 48.22222222 |  |
|  | PPVTIO | 15 | 49.55555556 | 7.03524117 |
|  | AUDR | 15 | 0.00000000 | 0.05000000 |
|  | AUDL | 15 | 0.03000000 | 2．0000．7000 |
| ＊ | SSPER | 15 | 43．10454545 | 11.95566501 |
| ＊ | a udclo | 15 | 41.42500000 | 10.465 S1237 |
|  | SENMEM | 15 | 39.53623163 | 11．134－2703 |
|  | VFLU | 15 | ．39．1106E667 | 8．69436439 |
| $\therefore$ | ARITH | 15 | 4く．22．222322 | 6.55077471 |
| ＊ | DIGITS | 15 | $\mathrm{c}_{51.77777775}$ | ¢－ 24.377737 |
| $\therefore$ | COOING | 15 | 52.00000000 |  |
| $\therefore$ | PICCOM | 15 | 47.11111111 | 4．716．5\％Suj |
|  | PICARR | 15 | 51.33333333 |  |
| ＊ | ALKDES | 15 | $47.5333333 \%$ |  |
| ＊ | OSJASS | 15 | 44.5 ¢ち6とすく7 | 7.43623353 |
|  | VIS？ | 15 | 0．Jécióój？ | け． 25310 ¢ 3 |
|  | $\checkmark$ ISL | 15 | －．n）juoous | $0.0000 こ 000$ |
| ＊ | target | 15 | $\therefore \ldots: 145054$ | 10.3 344773？ |
|  | TACR | 15 | 0．1333333 | フ． 351 こから78 |
|  | TACL | 15 | 0．20000000 | 0.56001191 |
| ＊ | FAGNR | 15 | 60．13333333 | 8．39C54547 |
|  | FAGNL | 15 | 50.53333333 | 13.31951065 |
| $\star$ | FTWR | 15 | 58.49146224 | 3.57627201 |
|  | FTWL | 15 | 56．65300720 | 6.29510130 |
|  | ASTR | 15 | 51．42ヵ9042 | 9．60204i52 |
|  | ASTL | 15 | 52.05291005 | ¢．514C8131 |
| $\dot{*}$ | TPTDT | 15 | 5こ．U1034EO1 | 7．－0才411 5：3 |
| $\dot{\%}$ | TPTNDT | 15 | 50.58751251 | i）－is 5： $7 \times 710$ |
|  | TPTET | 15 | 50.47241038 | 7.43555903 |
|  | TPTMEM | 15 | 49.03333333 | 10.174 ascug |
|  | TPTLOC | 15 | 49.77744313 | 12－2 +32574 a |
| ＊ | TADF | 15 | ¢0． 22.257935 | $6.1151: 3790$ |
| ＊ | TへアL | 15 | 43.73010101 | B．JEE27C0J |
|  | FTAPR | 15 | 3こ． 78000003 | i）－－tts 7 ミこ\％ |
|  | FTAPL | 15 |  | ！－730．1742 |
|  | GRIPR | 12 | 47.42637045 | $10.40: 45161$ |
|  | GKIPL | 12 | 4.3 .40635323 | 9．97こ71176 |
| ＊ | PFGSRT | 15 | 42.31421058 | c．90710133 |
| ＊ | PEGSLT | 15 | －1．09703704 | $12.4359=444$ |
| $\stackrel{*}{*}$ | CATTOT | 15 | 53．10793319 | 5．92834549 |
| $\stackrel{+}{*}$ | TRSBT | 15 | 52．3320．364 | 7．－2：20150 |
|  | CAGE | 15 | 11.26053333 | 1．20704270 |
|  | $\checkmark 10$ | 15 | 47.00200090 | 5．24207c41 |
|  | Fia | 15 | 47.91111111 | 7．36こ3．337t |
|  | FSia | 15 | 47.4660 cert 7 | 4.74353472 |
|  | RPERC | 15 | 45.40000000 | 27.09160091 |
|  | SPERC | 15 | 32.86065067 | 20.07236144 |
|  | ARP ERC | 25 | 24.46006067 | 15.52810182 |

TABLE 35 （cont＇d）

## Cluster 6

|  | VARIABLE | $N$ | リーA | STANOARO DEVIATION |
| :---: | :---: | :---: | :---: | :---: |
| ＊ | INFO | 9 | 44.44444444 | 5.02000000 |
| ＊ | COMP | 9 | 43.70370370 | 5.63827309 |
|  | SIMIL | 9 | 51.35135185 | 3.37721250 |
|  | VOCAB | 9 | ¢ ع．14814815 | 5.275 ¢62 23 |
|  | fPVTIO | 9 |  | E．79535546 |
|  | AUDR | 9 | 0.00000000 | 0.00000000 |
|  | AUDL | 9 | 0.03003000 | 0.55000500 |
| ＊ | SSPER | 9 | 50．90309081 | 7.34920546 |
| ＊ | a uoclo | 9 | 63．66666607 | 14.03560585 |
|  | SENMEM | 9 | 41.01445275 | 17.69837003 |
|  | VFLU | 9 | 41.50000000 | 9.20407103 |
| ＊ | ARITH | 9 | $4 \equiv .73370$－ 70 | C．こ458：10こ |
| ＊ | digits | 9 | 50.37037037 | 7．71002444 |
| ＊ | CODING | 9 | 50.29625 ¢ 30 |  |
| ＊ | piccom | $\dot{4}$ | $47.0=733714$ | 2．40703109 |
|  | PICARF | 9 | 54．31701431 | 6．89才20317 |
| ＊ | BLKDES | 9 | 53.3333333 .3 | $9.5742710 \varepsilon$ |
| ＊ | OBJASS | 9 | 5ع．14 514 －315 | 11．6738830s |
|  | VISR | 9 | －．22222ご22 | 0.44555855 |
|  | VISL | 9 | 0.33533333 | 0.70710078 |
| ＊ | target | $\bigcirc$ | 47.952 acc 1 | －． 31744585 |
|  | TACR | 9 | －Gticicesot | 1．322e？7506 |
|  | TACL | 9 | 0.11111111 | 0.33333333 |
| ＊ | FAGNR | 9 | 59．77777774 | 11．50545100 |
|  | FAGNL | 9 | 49.92592593 | 9＋2こ222222 |
| ＊ | F THR | 9 | 50.67099446 | 7．91592981 |
|  | FTWL | 9 | 50.82344707 | 11.53593348 |
|  | ASTR | 9 | 34.09849410 | 13．61146537 |
|  | ASTL | 9 | 35.659362014 | 7．00135．307 |
| ＊ | TRTDT | 9 | 53.96003805 | 7．75193346 |
| ＊ | TPTNDT | 9 | 53．67550．33\％ | c． 3513.3425 |
|  | TPT3T | 9 | 45.27506397 | 12.67543563 |
|  | TPTMEM | 9 | 55．11111111 | 9．34109853 |
|  | TPTLDC | － | 52．76719577 | 13.18334079 |
| ＊ | TAPR | 9 | 4 ¢．1017E500 | 11.15109447 |
| ＊ | TAPL | 7 | 35.33221100 | E． $1+42+779$ |
|  | FTAPR | 9 | 31.7 大hé6riot | 4.76 c11477 |
|  | FTAPL | 9 |  | 4.76459239 |
|  | GRIPR | 8 | 44.05154211 | $11.40=15333$ |
|  | GRIPL | 8 | 34．75545451 | 14.08573400 |
| ＊ | PEGSRT | 9 | 50.10000 こう1 | 5．76053303 |
|  | DEGSLT | 9 | 43.172 33－351 | 8．37047328 |
|  | $\because \therefore T T O T$ | 9 | 4 F．3うつらこ7こ7 | 7.60113356 |
| ＊ | TRSET | 9 | 48.73660151 | 3．22175700 |
|  | CAGE | 9 | 10.45788369 | 1．26225101 |
|  | $\checkmark 10$ | 9 | 46.29029030 | 5.16517302 |
|  | PIO | 9 | 55．4314 4143 | 3.29174309 |
|  | FSio | 9 | 50：5925925s． | 4.64811126 |
|  | RPERC | 9 | 40.22222222 | 26.43951575 |
|  | SPERC | 9 | 25：77777778 | 24.21145275 |
|  | ARPER | 9 | 25.00000000 | 8．17006732 |

TABLE 35 （cont＇d）

Cluster 7

|  | VARIABLE | $N$ | MEAN | STANGAKD LEVIATION |
| :---: | :---: | :---: | :---: | :---: |
| ＊ | INFO | 23 | 44．0376®116 | 5．750 3724 |
| ＊ | CDMP | 23 | $47 \cdot 24637041$ | 6.55370447 |
|  | SIMIL | 23 | 52．75362319 | 3．68357043 |
|  | VOCAB | 23 | 46.95652174 | 6.26945307 |
|  | pPVTIO | 23 | 45.73913045 | 7.302 こら323 |
|  | AUDR | 23 | C． 13043473 | 0．3443ういこ2 |
|  | AUDL | 23 | $0.043 \% 7820$ | 0．20851＋41 |
| ＊ | SSPER | 23 | ＋1．59604743 | 10．05479742 |
| ＊ | a UDCLO | 23 | 54．10465555 | $13.3471+153$ |
|  | SENMEM | 23 | 36．j162570\％ | 12．t1956＋39 |
|  | VFLU | 23 | 36．947こC497 | 2． 33657091 |
| ＊ | ARITH | 23 | $4 \epsilon \cdot 3705115.3$ | E．50ç43j4 |
| ＊ | DIGITS | 23 | 45.74202609 | 7．103t．0001 |
| ＊ | CODING | 23 | $42 \cdot 31$ cisu Or， | 7．43こらi204 |
| ＊ | PICCOM | 23 |  | 9．3061905こ |
|  | PICARK | 22 | 43.35393539 | 4．2703こ456 |
| ＊ | BLKDES | 23 |  | 9．056．51524 |
| ＊ | C！jJASS | 23 |  | 9．0792ロお51 |
|  | VISR | 23 |  | －． 30851441 |
|  | VISL | 23 | $0.173 \div 1.304$ | c．4ッ102015 |
| ＊ | TARGET | 23 | 35．0¢313Ev4 | $13.2011 \% 330$ |
|  | TACR | 23 | 0．5052173才 | 0．447． 2.3 .37 |
|  | TACL | 23 | 0.34732009 | 0.71403932 |
| ＊ | FAGNR | 23 | 47.65217391 | 11．35025056 |
|  | FAGNL | 23 | 42.347 .32609 | 20．03720732 |
| ＊ | FTWR | 23 | 35.17149272 | 16．56592445 |
|  | FTWL | 23 | 36.36509243 | 22．31500395 |
|  | ASTR | 23 | 42.43446400 | 14．783J＋393 |
|  | A STL | 23 | 41.20923 c 3 3 | 15．1120．3242 |
| ＊ | TPTDT | 23 | 53．33793072 | 6.75513160 |
| ＊ | TPTNDT | 23 | 41.03797331 | 3J．65．30J769 |
|  | TPTBT | 23 | 42.45814094 | 25.53349173 |
|  | TPTMEM | 23 | $45 \cdot 72023930$ |  |
|  | TPTLOC | 23 | 46.36796537 | 14．c32i32432 |
| ＊ | tADR | 23 | $52.68934+52$ | $9.9905+237$ |
| ＊ | TADL | 23 | $30.5 こ 1971037$ | 10．こ心らいつ504 |
|  | FTAPR | 23 | $31.3143478 \%$ | $\therefore .3954 .3002$ |
|  | FTAPL | 2． |  | ¢． 77 ¢03514 |
|  | GRIPR | 17 |  | 11．767どり可 |
|  | GRIPL | 17 | 41.38903108 | 11.23220415 |
| ＊ | PEGSRT | 23 | 35．20057349 | 17.76030709 |
| $\pm$ | PEGSLT | 23 | 4．72363054 | 43.46761110 |
| ＊ | CATTOT | 23 | 51.00617224 | 7－75025301 |
| ＊ | TRSET | 23 | 41.91201344 | 11.90350156 |
|  | CAGE | 23 | 11.53239130 | 1.57932787 |
|  | $\checkmark 10$ | 23 | 46.73260870 | 5.00411036 |
|  | PIO | 23 | 51.39130435 | 7.2300 .2950 |
|  | FSiO | 23 | 48.92753623 | 5.29050657 |
|  | RPERC | 23 | 31.00000000 | 27.13434590 |
|  | SPERC | 23 | 12．60869565 | 22.89052827 |
|  | ARPERC | 23 | 23.91304348 | 17.35174354 |

＊Denotes dependent measures used in statistical treatment of data．

The mean ages for Clusters 1 and 5 were slightly higher (11.57 and 11.46, respectively), while Clusters 4 and 7 exhibited the highest mean age values (12.30 and 12.13, respectively). For the centroid sorting relocate solution, Clusters 1,2 and 6 had similar low mean age values ( $10.64,10.80$ and 10.45 , respectively), while the mean age values for Clusters 5 and 7 were slightly higher (11.26 and 11.58 , respeçtively). Finally, Clusters 3 and 4 exhibited the highest mean age values (12.23 and 12.16, respectively). It was also clear from Tables 34 and 35 that the mean WISC FSIQs were fairly uniform across the seven group average relocate and centroid sorting relocate clusters. When the discepancy between mean WISC VIQs and PIQs were examined, all of the clusters, save one (centroid sorting Cluster 5), exhibited a similar lower VIQhigher PIQ pattern. For Cluster 5 of the centroid sorting solution, VIQ equalled PIQ. Differences between VIQ and PIQ scores within each cluster of the group average relocate solution were as follows: Cluster 1 and 5 exhibited very minimal discrepancies; Clusters 2 and 4 were found to show moderate differences; and Clusters 3, 6 and 7 exhibited the largest VIQ-PIQ discrepancies. For the centroid sorting relocate solution, Table 35 indicates that Clusters 1, 4 and 7 exhibited similar moderate VIQ-PIQ score differences, while Clusters 2, 3 and 6 each demonstrated fairly large VIQ-PIQ discrepancies. Of course, as already mentioned, there was virtually no difference between the two values within Cluster 5.

Finally, an examination of the WRAT subtest scores listed on Tables 34 and 35 revealed that the mean RPERC, SPERC, and ARPERC performances were all below the 30th centile for clusters 2, 3, 4 and 7, and Clusters 1, 2, 3 and 4 of the group average and centroid sorting relocate solutions, respectively. RPERC was the sole score above the 30 th centile within Clusters 1 and 6 of the group average relocate solution, and within Clusters 6 and 7 for the centroid sorting relocate results. Finally, RPERC and SPERC exceeded the 30 th centile while, ARPERC was below this value within Cluster 5 of both the group average and centroid sorting relocate solutions.

Plots of the $I$ score means of the variables used in the cluster analysis procedure for each centroid sorting and group average cluster are shown in Figures 37 to 50 . To begin with, inspection of these figures indicated that there was a high degree of visual similarity between group average relocate and centroid sorting relocate cluster profiles. Table 36 contained the Pearson product moment correlations based on comparisons between mean $T$ scores for all variables between all possible pairs of left- and righthanded $Q$ factors, and left- and right-handed cluster groups. Examination of Table 36 revealed that the correlation values between group average relocate Clusters 1, 2, 3, 4, 6 and 7, and centroid sorting relocate Clusters 7, 1, 2, 4, 6 and 3 were 0.97, 1.00, $0.99,0.99,0.99$ and 0.99 , respectively. These values provide evidence of the stability and validity of the cluster classifications,


Figure 37. Plot of I score means for Cluster 1 of group average solution for dextral sample.


「i!ure 38. Plot of I score means for Cluster 2 of group average solution for dextral sample.


Figure 39. Plot of I score means for Cluster 3 of group average solution for dextral sample.

test measures
Figure 40. Plot of I score means for Cluster 4 of group average solution for dextral sample.


TEST MEASURES
Figure 41. Plot of I score means for Cluster 5 of group average solution for dextral sample.


Figure 42. Plot of I score means for Cluster 6 of group average solution for dextral sample.
test measures
Figure 43. Plot of I score means for Cluster 7 of group average solution for dextral sample.


TEST MEASURES
Figure 44. Plot of $I$ score means for Cluster 1 of centroid sorting solution for dextral sample.


Figure 45. Plot I score means for Cluster 2 of centroid sorting solution for dextral sample.


Figure 46. Plot of I score means for Cluster 3 of centroid sorting solution for dextral sample.


Figure 47. Plot of I score means for Cluster 4 of centroid sorting solution for dextral sample.


Figure 48. Plot of I score means for Cluster 5 of centroid sorting solution for dextral sample.


TEST MEASURES
Figure 49. Plot of $I$ score means for CTuster 6 of centroid sorting solution for dextral sample.

test measures
Figure 50 . Plot of $I$ score means for Cluster 7 of centroid sorting solution for dextral sample.

Pearson Product Moment Correlation Coefficients for Sinistral and Dextral 0 Factors and Cluster Groups

|  | Sinistral Factors |  |  |  |  |  |  | Dextral Factors |  |  |  |  |  |  | Sinistral Clusters |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 |
| Enistral Factors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1.00 | . 02 | . 20 | . 06 | . 03 | . 34 | -. 01 | -. 01 | . 94 | . 12 | -. 12 | . 03 | -. 22 | -. 16 | . 99 | . 09 | . 09 | . 15 |
| 2 |  | 1.00 | . 08 | . 16 | . 16 | . 11 | . 28 | . 84 | . 26 | . 07 | . 01 | . 55 | . 46 | . 37 | . 06 | . 14 | . 97 | . 12 |
| 3 |  |  | 1.00 | -. 16 | . 14 | . 30 | -. 19 | . 08 | . 18 | . 84 | -. 04 | . 41 | -. 01 | -. 00 | . 25 | . 04 | . 03 | . 99 |
| 4 |  |  |  | 1.00 | . 29 | -. 08 | -. 11 | . 21 | . 07 | . 11 | . 20 | . 11 | . 16 | -. 08 | . 05 | . 94 | . 05 | -. 19 |
| 5 |  |  |  |  | 1.00 | . 29 | . 19 | . 07 | . 02 | . 13 | . 13 | . 52 | . 49 | . 01 | . 08 | . 44 | . 25 | . 11 |
| 6 |  |  |  |  |  | 1.00 | -. 02 | -. 01 | . 31 | -. 01 | . 13 | . 66 | -. 30 | . 06 | . 41 | . 03 | . 19 | . 33 |
| 7 |  |  |  |  |  |  | 1.00 | . 19 | . 13 | -. 06 | . 21 | . 30 | . 46 | . 55 | -. 01 | -. 06 | . 41 | -. 15 |
| extral Factors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  | 1.00 | . 26 | . 25 | . 14 | . 48 | . 47 | . 42 | . 01 | . 13 | . 81 | . 11 |
| 2 |  |  |  |  |  |  |  |  | 1.00 | . 17 | -. 06 | . 17 | -. 03 | -. 04 | . 93 | . 06 | . 29 | . 13 |
| 3 |  |  |  |  |  |  |  |  |  | 1.00 | . 11 | . 33 | . 26 | . 19 | . 14 | . 27 | -. 01 | . 83 |
| 4 |  |  |  |  |  |  |  |  |  |  | 1.00 | . 21 | . 24 | . 33 | -. 11 | . 24 | . 01 | . 04 |
| 5 |  |  |  |  |  |  |  |  |  |  |  | 1.00 | . 32 | . 36 | . 10 | . 23 | . 60 | . 43 |
| 6 |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 | . 36 | -. 23 | . 25 | . 49 | . 01 |
| 7 |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 | -. 14 | . 04 | . 41 | . 10 |
| inistral clusters |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 | . 09 | . 12 | . 19 |
| 2 |  |  |  |  |  |  | $\because$ |  |  |  |  |  |  |  |  | 1.00 | . 05 | . 01 |
| 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 | . 05 |
| 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 |

TABLE 36 (cont'd)

TABLE 36 (cont'd)

|  | Dextral Group Average Clusters |  |  |  |  |  |  | Dextral Centroid Sorting Clusters |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Dextral Group Average Clusters |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 1.00 | . 12 | . 36 | -. 19 | . 45 | . 40 | -. 06 | . 12 | . 35 | -. 07 | . 17 | . 64 | . 34 | . 97 |
| 2 |  | 1.00 | . 21 | . 29 | -. 09 | -. 15 | . 18 | 1.00 | . 21 | . 18 | . 27 | -. 23 | -. 19 | . 21 |
| 3 |  |  | 1.00 | . 26 | . 34 | . 21 | . 44 | . 21 | . 99 | . 46 | . 28 | . 31 | . 20 | . 36 |
| 4 |  |  |  | 1.00 | . 01 | . 14 | . 11 | . 29 | . 25 | . 11 | . 99 | -. 20 | -. 20 | . 30 |
| 5 |  |  |  |  | 1.00 | . 28 | . 29 | -. 08 | . 38 | . 28 | . 03 | . 50 | . 50 | . 54 |
| 6 |  |  |  |  |  | 1.00 | . 20 | -. 15 | . 22 | . 19 | . 12 | . 19 | . 19 | . 45 |
| 7 |  |  |  |  |  |  | 1.00 | . 18 | . 44 | . 99 | . 13 | . 24 | . 24 | -. 04 |
| Dextral Centroid Sorting clusters |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  | 1.00 | . 21 | . 18 | . 27 | -. 23 | -. 19 | . 21 |
| 2 |  |  |  |  |  |  |  |  | 1.00 | . 45 | . 27 | . 26 | . 22 | . 37 |
| 3 |  |  |  |  |  |  |  |  |  | 1.00 | . 13 | . 21 | . 23 | -. 05 |
| 4 |  |  |  |  |  |  |  |  |  |  | 1.00 | -. 19 | . 10 | . 27 |
| 5 |  |  |  |  |  |  |  |  |  |  |  | 1.00 | . 21 | . 49 |
| 6 |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 | . 38 |
| 7 |  |  |  |  |  |  |  |  |  |  |  |  |  | 1.00 |

and will be commented upon further within the subsequent discussion on validation of the right-handed cluster results. Intercorrelations for Cluster 5 of both the group average relocate and centroid sorting relocate solutions were rather low. The highest correlation for Cluster 5 of the group average relocate results occurred with Cluster 7 of the centroid sorting relocate solution ( $r=0.54$ ). Cluster 5 of the centroid sorting relocate solution correlated highest ( $r=0.64$ ) with Cluster 1 of the group average relocate solution.

One final note on the group average relocate and centroid sorting relocate cluster comparisons. Since inter-correlations were so high between the group average relocate and centroid sorting relocate solutions, only the former results were compared against the left- and right-handed factor profiles generated by the $Q$ technique, and the left-handed cluster profiles derived from cluster analysis. The only exception to this was in regard to Cluster 5 of both the group average relocate and centroid sorting relocate solutions, where rather low inter-correlations were seen between these and other dextral clusters.

From Table 36, it was ascertained that Cluster 2 of the group average relocate solution for the dextral sample correlated highest with Factor 2 from the dextral sample ( $r=0.99$ ), with Factor 1 from the sinistral sample ( $r=0.93$ ), and with Cluster 1 from the sinistral sample ( $r=0.92$ ). These values would suggest that the pattern of mean scores for these profiles were quite similar. Cluster 3 of the group average relocate solution for the dextral
sample correlated highest with Factor 5 from the dextral sample ( $r=0.86$ ), with Factor 1 from the dextral sample ( $r=0.83$ ), with Factor 2 from the sinistral sample ( $r=0.80$ ), and with Cluster 3 from the sinistral sample ( $r=0.83$ ), indicating a high degree of similarity in the pattern of scores for these profiles. Cluster 4 of the group average solution for the dextral sample correlated highest with Factor 3 from the dextral sample ( $r=0.92$ ), with Factor 3 from the sinistral sample ( $r=0.92$ ), and with Cluster 4 from the sinistral sample $(r=0.91)$. These values would indicate that the pattern of mean I scores for these profiles were quite similar as well. The profiles of performances associated with these factors and clusters, as well as the correlation coefficients between factors and clusters were interpreted as evidence to validate the existence of three highly similar subtypes of left- and right-handed children.

The following intercorrelation values were obtained for the remaining dextral group average relocate clusters. Cluster 1 from this sample correlated highest with Cluster 2 from the sinistral sample ( $r=0.79$ ), and with Factor 4 from the sinistral sample $(r=0.76)$. The similarities in these profiles may represent another similar subgroup of left- and right-handed children. Cluster 6 from the group average relocate solution for the dextral sample correlated highest with Factor 6 from the dextral sample ( $r=0.75$ ), and with Factor 5 from the sinistral sample ( $r=0.67$ ). Again, these profiles may well represent another similar subgroup of sinistral and dextral children, despite the fact that Factor 5 from the lefthanded sample included only a total of six children. Cluster 7
from the group average relocate solution for the dextral sample correlated at a 0.68 level with both Factor 7 from the dextral sample and Factor 7 from the sinistral sample. Finally, there was a high correlation ( $r=0.92$ ) between Cluster 5 from the group average relocate solution and Factor 4 from the dextral sample, suggesting that these profiles may represent a separate righthanded subgroup. However, cluster 5 from the dextral group average relocate solution was the group that failed to exhibit any significant correlation values with any of the centroid sorting relocate clusters. Thus, this cluster was only replicable across one clustering method. Intercorrelations between Cluster 5 from the dextral centroid sorting solution and the remaining clusters and Q factors were all fairly low.

The results of a misclassification analysis used to compare the cluster and factor analytic solutions derived from the right-handed data set are summarized in Table 37. A total of thirtyfive children ( $30 \%$ of the total sample) classified together by the Q technique of factor analysis were not classified together by the group average method of cluster analysis, leaving 81 subjects (70\% of the data set) that were classified into the same groups. Agreement between the centroid sorting method and the $Q$ technique was slightly lower, with a total of forty subjects ( $35 \%$ of the sample) misclassified, and 76 of the children ( $65 \%$ of the data set) classified together.

Number of Right-Handed Children from Each of the ㄹ Type Factors Misclassified by Cluster Analytic Methods

| Cluster Analysis Method | 11 of Clusters | Q Factors |  |  |  |  |  |  | Total Misclassifications$(n=116)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 1 \\ (n=20) \end{gathered}$ | $\begin{gathered} 2 \\ (n=26) \end{gathered}$ | $\begin{gathered} 3 \\ (n=18) \end{gathered}$ | $\begin{gathered} 4 \\ (n=11) \end{gathered}$ | $\begin{gathered} 5 \\ (n=18) \end{gathered}$ | $\begin{gathered} 6 \\ (n=8) \end{gathered}$ | $\begin{gathered} 7 \\ (n=15) \end{gathered}$ |  |
| Group Average | 7 | 7 | 3 | 6 | 3 | 4 | 4 | 8 | 35 |
| Centroid Sorting | 7 | 10 | 3 | 7 | 4 | 2 | 5 | 9 | 40 |

## Validation of Right-Handed Clusters

Following the recommendation that a good solution should reappear under different clustering methods (Everitt 1974; Morris et. al., 1981), the results of the group average relocate and centroid sorting relocate procedures were compared. An analysis of the membership assignments within clusters revealed almost perfect agreement between the two methods. More specifically, the results showed that less than $5 \%$ of the subjects were placed into a different cluster for the seven-cluster solution. The extremely high correlation coefficients presented in Table 36 between the clusters generated from each method attests to the high degree of similarity between the two clustering solutions as well.

A split-sample desig̣n was again employed as a second validation procedure (i.e., the right-handed data set was randomly divided into two subsamples, and each half was clustered independently). The hierarchical trees obtained by applying the group average and centroid sorting methods to the two dextral subsamples are shown in Figures 51 to 54 . Visual inspection of these figures indicated that both data sets were clearly structured. The clustering coefficients derived through the application of the group average and centroid sorting methods to the two subsamples are listed in Table 38, and graphs of these data are shown in Figures 55 to 58. In three out of four instances, a search for precipitous changes on these plots failed to reveal one acceptable or terminal solution. In the remaining case (Figure 58), inspection of the graph suggested that a three-cluster solution was


Figure 51. Split sample validation hierarchical tree using group average on dextral subsample 1.


Figure 52. Split sample validation hierarchical tree using centroid sorting on dextral subsample 1.


Figure 53. Split sample validation hierarchical tree using group average on dextral subsample 2.


Figure .54. Split sample validation hierarchical tree using centroid sorting on dextral subsample 2.

TABLE 38

Split Design Validation Clustering Coefficients of Group Average and Centroid Sorting Hierarchical
Agglomerative Methods Applied to Two Dextral Subsamples

| n of <br> Clusters | Subsample 1 <br> Group <br> Average | Centroid <br> Sorting | $c$ <br> Group | Subs <br> Average |
| :---: | :---: | :---: | :---: | :---: |
| 10 | .243 | .386 | .303 | .410 |
| Centroid |  |  |  |  |
| 9 | .234 | .382 | .256 | .395 |
| 8 | .220 | .370 | .252 | .408 |
| 7 | .181 | .357 | .210 | .373 |
| 6 | .180 | .352 | .199 | .362 |
| 5 | .159 | .322 | .179 | .348 |
| 4 | .128 | .312 | .163 | .320 |
| 3 | .116 | .244 | .122 | .318 |
| 2 | .081 | .189 | .097 | .201 |
| 1 | -.005 | -.043 | .064 | .165 |



Finure 55. Plot of aroup averaqe hierarchical clustering coefficients for split sample validation procedure using dextral subsample 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Number of Clusters
Figure 57. Plot of group average hierarchical clustering coefficients for split sample validation procedure using dextral subsample 2.


Figure 58. Plot of centroid sorting hierarchical clustering coefficients for split sample validation procedure using dextral subsample 2.
plausible. From Table 38 and Figures 55 to 58 , it was clear that several different cluster solutions were possible. However, to be able to adequately assess the number of subjects who changed from their original clusters, a seven-cluster result was chosen as the terminal solution for both subsample data sets.

The final cluster membership distributions for the seven-cluster solutions for each subsample following the application of a iterative relocation procedure to both are provided in Tables 39 and 40. For subsample 1 , identical seven-cluster solutions were derived from the group average and centroid sorting results following iterative partitioning of both. Cluster sizes for this sample were $14,14,11,6,18,16$ and 2 subjects. On the other hand, the iterative relocate results for the seven-cluster solutions of the group average and centroid sorting methods applied to Subsample 2 varied slightly. In the case of the former, clusters consisted of $16,26,4,11,6,4$ and 13 children, whereas the latter method generated cluster membership totals of $24,4,8,11,17,8$ and 8 subjects.

Next, the results of the split-sample validation procedure was compared against the standard solution by means of misclassification analysis. Table 41 indicates that for subsample 1 there were a total of 13 children who changed from their original clusters. This was equivalent to $16 \%$ of subsample 1 . In the case of subsample 2 (Table 42), the group average relocate method resulted in 30 misclassifications ( $38 \%$ of the sample) whereas the centroid sorting relocate procedure misclassified 22 children, equivalent to $27 \%$ of subsample 2. In total, less than $30 \%$ of the subjects, using any

TABLE 39
Number of Right-Handed Children in Each Cluster for $8,7,6,5,4,3$ and 2 Relocate Cluster Results for Subsample 1 of the Split Sample Validation Procedure

| Cluster Analysis |  |  |  | Clusters |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Method | 1 | 7 | 6 | 5 | 4 | 3 | 2 |
| Group Average |  |  |  |  |  |  |  |
| 1 | 18 | 14 | 14 | 18 | 23 | 45 | 43 |
| 2 | 14 | 14 | 19 | 17 | 13 | 15 | 38 |
| 3 | 11 | 11 | 11 | 12 | 20 | 21 |  |
| 4 | 5 | 6 | 19 | 19 | 25 |  |  |
| 5 | 17 | 18 | 16 | 15 |  |  |  |
| 6 | 5 | 16 | 2 |  |  |  |  |
| 7 | 9 | 2 |  |  |  |  |  |
| 8 | 2 |  |  |  |  |  |  |
| Centroid Sorting |  |  |  |  |  |  |  |
| 1 | 18 | 14 | 14 | 18 | 23 | 45 | 43 |
| 2 | 9 | 11 | 11 | 12 | 13 | 15 | 38 |
| 3 | 11 | 14 | 19 | 17 | 20 | 21 |  |
| 4 | 14 | 18 | 19 | 19 | 25 |  |  |
| 5 | 17 | 16 | 16 | 15 |  |  |  |
| 6 | 5 | 6 | 2 |  |  |  |  |
| 7 | 5 | 2 |  |  |  |  |  |
| 8 | 2 |  |  |  |  |  |  |

TABLE 40

Number of Right-Handed Children in Each Cluster for 8, 7, 6, 5, 4, 3 and 2 Relocate Cluster Results for Subsample 2 of the Split Sample Validation Procedure

| Cluster Analysis | Clusters |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Method | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
| Group Average |  |  |  |  |  |  |  |
| 1 | 14 | 16 | 17 | 18 | 18 | 20 | 25 |
| 2 | 21 | 26 | 27 | 26 | 29 | 38 | 55 |
| 3 | 12 | 4 | 11 | 11 | 20 | 22 |  |
| 4 | 4 | 11 | 6 | 13 | 13 |  |  |
| 5 | 9 | 6 | 5 | 12 |  |  |  |
| 6 | 5 | 4 | 14 |  |  |  |  |
| 7 | 4 | 13 |  |  |  |  |  |
| 8 | 11 |  |  |  |  |  |  |
| Centroid Sorting |  |  |  |  |  |  |  |
| 1 | 23 | 24 | 24 | 24 | 29 | 38 | 55 |
| 2 | 4 | 4 | 7 | 18 | 20 | 20 | 25 |
| 3 | 8 | 8 | 9 | 13 | 18 | 22 |  |
| 4 | 11 | 11 | 14 | 18 | 13 |  |  |
| 5 | 17 | 17 | 18 | 7 |  |  |  |
| 6 | 6 | 8 | 8 |  |  |  |  |
| 7 | 3 | 8 |  |  |  |  |  |
| 8 | 8 |  |  |  |  |  |  |

Number of Right-Handed Children in Subsample 1 from Each of the Cluster Groups Misclassified by the Split Sample Validation Procedure

| Cluster Analysis Method | n of Clusters | Clusters |  |  |  |  |  |  | Total Misclassifications$(n=81)$ | \% Sample |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 1 \\ (n=14) \end{gathered}$ | $\begin{gathered} 2 \\ (n=14) \end{gathered}$ | $\begin{gathered} 3 \\ (n=11) \end{gathered}$ | $\begin{gathered} 4 \\ (n=6) \end{gathered}$ | $\begin{gathered} 5 \\ (n=18) \end{gathered}$ | $\begin{gathered} 6 \\ (n=16) \end{gathered}$ | $\begin{gathered} 7 \\ (n=2) \end{gathered}$ |  |  |
| Group Average | 7 | 1 | 3 | 0 | 3 | 2 | 3 | 1 | 13 | 16\% |
| Centroid Sorting | 7 | 1 | 3 | 0 | 3 | 2 | 3 | 1 | 13 | 16\% |

Number of Right-Handed Children in Subsample 2 from Each of the Cluster Groups Misclassified by the Split Sample Validation Procedure

| Cluster Analysis | $n$ of | Clusters |  |  |  |  |  |  | Total <br> Misclassifications | \% Sample |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Method | Clusters | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |  |
| $n$ |  | (16) | (26) | (4) | (11) | (6) | (4) | (13) | $n=80$ |  |
| Group Average | 7 | 5 | 5 | 1 | 6 | 5 | 1 | 7 | 30 | 38\% |
| n |  | (24) | (4) | (8) | (11) | (17) | (8) | (8) | $n=80$ |  |
| Centroid Sorting | 7 | 1 | 1 | 5 | 6 | 6 | 2 | 1 | 22 | 27\% |

TABLE 43
Composition of Left-Handed Subjects for Hand Preference, Hand Proficiency, and Familial Handedness Variables for Each Q-Factor and Cluster Grouping

| Variable | Q Factors |  |  |  | Clusters |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 1 \\ (n=41) \end{gathered}$ | $\begin{gathered} 2 \\ (n=26) \end{gathered}$ | $\begin{gathered} 3 \\ (n=19) \end{gathered}$ | $\begin{gathered} 4 \\ (n=9) \end{gathered}$ | $\begin{gathered} 1 \\ (n=49) \end{gathered}$ | $\begin{gathered} 2 \\ (n=26) \end{gathered}$ | $\begin{gathered} 3 \\ (n=51) \end{gathered}$ | $\begin{gathered} 4 \\ (n=35) \end{gathered}$ |
| Hand <br> Preference |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Pure | 19 | 19 | 13 | 6 | 23 | 15 | 27 | 21 |
| Mixed | 22 | 7 | 6 | 3 | 26 | 11 | 24 | 14 |
| Hand Proficiency |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Congruous | 21 | 11 | 7 | 2 | 26 | 9 | 17 | 12 |
| Incongrous | 7 | 3. | 5 | 3 | 7 | 9 | 12 | 8 |
| Mixed | 13 | 12 | 7 | 4 | 16 | 8 | 22 | 15 |
| Familial Sinistrality |  |  |  |  |  |  |  |  |
| Positive | 19 | 4 | 8 | 6 | 25 | 13 | 15 | 12 |
| Negative | 17 | 18 | 7 | 3 | 19 | 10 | 30 | 16 |
| No Data | 5 | 4 | 4 | 0 | 5 | 3 | 6 | 7 |
| N.B. The four cluster solution listed on this table represents the results of both the Group Average and Centroid Sorting Method, since identical solutions were generated from each. |  |  |  |  |  |  |  |  |

TABLE 44

| Familial Sinistrality |  |  |  |
| :---: | :---: | :---: | :---: |
| Method | Positive | Negative | No Data |
| 2 Type |  |  |  |
| 1 | 12 | 8 | 0 |
| 2 | 11 | 15 | 0 |
| 3 | 9 | 9 | 0 |
| 4 | 3 | 8 | 0 |
| 5 | 5 | 13 | 0 |
| 6 | 5 | 3 | 0 |
| 7 | 3 | 12 | 0 |
| Group Average |  |  |  |
| 1 | 10 | 12 | 0 |
| 2 | 15 | 15 | 0 |
| 3 | 12 | 29 | 0 |
| 4 | 10 | 10 | 1 |
| 5 | 3 | 9 | 0 |
| 6 | 5 | 5 | 0 |
| 7 | 9 | 12 | 2 |
| Centroid Sorting |  |  |  |
| 1 | 15 | 15 | 0 |
| 2 | 12 | 28 | 0 |
| 3 | 10 | 11 | 1 |
| 4 | 9 | 11 | 2 |
| 5 | 4 | 11 | 0 |
| 6 | 4 | 5 | 0 |
| 7 | 10 | 11 | 2 |

of the methods, changed from their original clusters.
Finally, the I score means and standard deviations of variables used in the split-sample design for each subsample cluster are shown in Appendix H. Graphic illustrations of the mean I scores for each variable for the clusters derived in splitsamples 1 and 2 are also included in Appendix $H$. In most cases, visual inspection of these graphs revealed a high degree of similarity between profile characteristics of the solutions derived from split-samples 1 and 2 and the results obtained from clustering the entire sample together. Again, the most notable differences in cluster patterns occurred in subsample clusters of small size.

## Chi-Square Analyses

The distribution of scores for the hand preference, hand proficiency, and familial handedness variables for each Q type factor and cluster analytic group were compared against their respective hypothetical distributions, and a measure of agreement or conformity $(\mathcal{X})^{2}$ was generated for each. Tables 43 and 44 summarize the subgroup composition for each Q factor and cluster subgroup across the hand preference, hand proficiency, and familial handedness variables. In sum, for each sinistral Q factor and cluster grouping (Table 45), only the set of scores for the familial handedness variable within Factor 2 was found to deviate significantly from the respective hypothetical distribution (p <.05). However, the lack of any significant differences between distributions on this variable within other subgroups

TABLEE 45
Summary of Goodness-of-Fit $\mathcal{X}^{2}$ Values for the Hand Preference, Hand Proficiency, and Familial Handedness Variables for Each Sinistral Q Factor and Cluster Grouping

|  | Q Factors |  |  |  | Clusters |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variable | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| Hand |  |  |  |  |  |  |  |  |
| Preference | 0.61 | 3.14* | 1.32 | 0.11 | 0.51 | 0.04 | 0.00 | 0.26 |
| Hand |  |  |  |  |  |  |  |  |
| Proficiency | 2.56 | 2.00 | 0.38 | 1.83 | 3.47 | 2.00 | 0.74 | 0.60 |
| Familial <br> Handedness | 0.45 | 7.78** | 2.44 | 2.25 | 2.12 | 0.69 | 2.21 | 1.09 |

${ }^{*} \mathrm{p}<.10 \quad * * \mathrm{p}<.05$
N.B. Following the recommendation outlined in Yamane (1967), $\chi^{2}$ values for cases involving only one degree of freedom (i.e., Hand Preference) were computed using Yates' correction for continuity.
found to be highly similar to sinistral Factor 2 (i.e., sinistral Cluster 3, dextral Factor 1, dextral group average Cluster 3, and dextral centroid sorting Cluster 2), suggesting that this may have been an isolated finding. The hand preference distribution within sinistral Factor 2 was also found to be significant at p<.10. Again, however, this finding was thought to be rather meaningless.

Table 46 summarizes the Goodness-of-Fit Chi-Square values for the familial handedness variable for each dextral $Q$ factor and cluster grouping. All of the values on this table were found to be statistically nonsignificant.

In sum, the results of these series of analyses would seem to indicate that subgroups cannot be differentiated from one another on the basis of hand preference, hand proficiency, and familial handedness composition. That is to say, there were no particular subgroups that exhibited either an unusually large or small number of congruent, incongruent or mixedproficient left-handers, pure or mixed-preference left-handers, or subjects with mostly sinistral or dextral family members.

## TABLE 46

Summary of Goodness-of-Fit $\chi^{2}$ Values for the
Familial Handedness Variable for Each Dextral
Q Factor and Cluster Grouping
Factor or cluster $\quad X^{2}$ Value

| 2 Type |  |
| ---: | :--- |
| 1 | 3.82 |
| 2 | 0.00 |
| 3 | 1.67 |
| 4 | 1.47 |
| 5 | 2.47 |
| 6 | 2.13 |
| 7 | 2.50 |

Group Average
$1 \quad 0.29$
$2 \quad 1.99$
$3 \quad 4.57$
4 0.83
5 1.37
$6 \quad 0.42$
$7 \quad 1.13$

Centroid Sorting
1
1.99
$2 \quad 3.09$
3
1.42

4
0.31

5
1.11

6
0.00

7
0.42

## CHAPTER IV

## DISCUSSION

This study had a two-fold purpose. First, an attempt was made to investigate systematically, isolate and report on the adaptive similarities and differences between left- and righthanded learning disabled children based on a multivariate quantitative taxonomic analysis of their performances on a battery of neuropsychological measures. A systematic study of the typology of cognitive impairment associated with learning disabilities in these two particular groups of children originated from the burgeoning documented evidence suggesting that handedness and the organization of higher cognitive abilities are to some extent correlated with each other. The second aim of the investigation was to offer some evidence to show that similar subtypes could be generated in a reliable fashion through the application of different classification techniques.. It was felt that a reliable taxonomy of learning disabilities could offer potentially useful information regarding the remedial management of such children.

The performance measurements collected on an equivalent number of left- amd right-handed children referred to the neuropsychological service of an urban children's clinic because of
learning, behavioural or perceptual handicaps were classified statistically by several multivariate procedures. Initial application of the $Q$ technique of factor analysis to each handedness sample independently generated seven factors for each data set. Three factors from each target sample were highly correlated with each other. For the left-handed sample, one other fairly meaningful factor emerged, while the remaining three factors exhibited membership assignments that were interpreted to be of inconsequential magnitude. On the other hand, for the righthanders, a sizeable number of children were classified into each of the remaining factors. These findings suggest the following: (1) certain similar subtypes would appear to exist for leftand right-handed learning disabled children, and (2) lefthanders appear to constitute a much more homogeneous population in regard to their performances on a battery of neuropsychologic measures than a similar group of right-handers. Subsequent application of several cluster algorithms to the same data sets resulted in classification solutions that were in perfect agreement with the $\underline{Q}$ factors for the left-handed sample, and solutions that were in fairly close agreement for the right-handed group of children. This finding suggests that subgroups generated by means of one multivariate statistical procedure could be reliably detected through the application of several other classification methods as well.

In this chapter, a more detailed and comprehensive discussion of the findings outlined above are preceded by a section
on some methodological considerations of the study. Next, characteristics of the subgroups identified are described, and comparisons are made to other subtypes reported in the literature. Included here is some discussion on the reliability and stability of the isolated subgroups. Finally, the implications of the findings as they relate to the issue of handedness are addressed in some detail, including their obvious assessment and diagnostic considerations. Directions for future research are also provided. Methodological Considerations

The present investigation compared the adaptive ability profiles between independent groups of left- and right-handed subjects who were selected from a clinical rather than from a normal population of school-age children. Undougtedly, quite different sets of conclusions regarding the relation between handedness and neuropsychological ability structure may be drawn from the two population samples, one based on the normal population of school children and one based on children referred to clinics for learning difficulties. It is within the latter type of sample, in particular, where anomalies of laterality (i.e., a higher incidence of sinistrality or mixed-handedness) are sometimes, but not always, detected. In a review of over 3500 clinic cases from which the samples in this study were drawn, approximately $14 \%$ were found to exhibit sinistral tendencies, a sizeable increase in the incidence of left-handedness reported in the general population.

Other clinically-affected samples - for example those exhibiting psychometric intelligence values outside of the range
utilized within this investigation (i.e., below 85) - may demonstrate very different patterns of cognitive abilities and deficits as a function of preferred handedness. The findings from this study should not be construed as representative, therefore, of a general typology of cognitive strengths and weaknesses associated with lateral hand preference patterns per se. Instead, they should be viewed within the context of the limitations imposed by sampling considerations.

Despite similar mean WRAT Reading, Spelling and Arithmetic centile scores between the two handedness samples (see Table 3), no attempt was made in this study to match the groups on the basis of an academic achievement criterion. However, an analysis of the WRAT subtest performance patterns within each handedness sample (see Table 4) indicated that the between-group composition was quite similar. Nevertheless, some variability was noted in the distributions of scores, suggesting that the populations differed to some degree on this dimension. This may be one reason for the differences witnessed in regard to the number of interpretable groups (i.e., factors or clusters) generated for each handedness sample by the multivariate procedures.

As mentioned earlier, a number of methodological
issues surround the use of cluster analysis. The selection of variables, the choice of similarity measure, the determination of the clustering method, and the procedure for estimating the number of clusters within the data must be clearly defined. Moreover, adequate evidence of a cluster solutions validity should be provided as we11. Each of these considerations can affect the derived subtype structure.

In most clustering attempts there generally exists the problem of deciding on how many variables are appropriate for study. In turn, these input measures should fulfill the obvious requisite that they be relevant to the classification being sought. To minimize test redundancy and to maximize cluster interpretability, it is generally desireable to seek to reduce the number of input variables. In many accounts of clustering, measurements that have been amassed on a sizeable number of variables are reduced through principal components analysis. The first few principal component scores are then used as input variables to the clustering procedure. However, in the present study variables were duplicated from those utilized in the factor analyses. These variables were originally selected on the bases of a 'rational grouping' procedure and were, in turn, checked against the results of a formalized $\underline{R}$ type analysis of the complete test battery. I score matrices of these variables were then analyzed by the different clustering algorithms. Everitt (1974) suggests that similar classifications should emerge by using either the first few principal component scores or the complete set of data, provided the data is well structured. On the other hand, widely divergent solutions may be derived when the groups are not as clearly defined within the data set. In the present study, applying clustering algorithms to the raw data may have produced solutions quite different from those obtainable if the data derived from the raw data (i.e., factor scores) had been used as input to the clustering method. Since this study was interested in elucidating the similarities and differences in adaptive ability profile shapes between
left- and right-handed learning disabled children, correlation coefficients were calculated between individuals. On the contrary, distance measures are felt to be a more appropriate metric when one is interested in the similarity of the average profile levels. That is, two profiles may exhibit very similar patterns of performance, but be quite far apart in level of performance. These two different ways of defining similarity between subjects can result in different, yet clinically meaningful, interpretations.

It is not uncommon in clustering problems to find that a single set of scores analyzed by several different techniques may result in entirely different solutions or groupings of the data. Despite the fact that several clustering algorithms were utilized in the present study (in an attempt to lessen the possibility of accepting spurious or misleading solutions), other types of group structure may have emerged through the application of different clustering techniques. Indeed, the clustering algorithms utilized in the present investigation were chosen somewhat arbitrarily and there is no reason to believe that the results derived from them are the only types of structure present in the data. As pointed out earlier, a persistent problem in cluster analysis is the difficulty of deciding as to the correct number of groups to consider for a given set of data. A review of both mappings of the data (i.e., hierarchical trees) and clustering coefficient results provided some idea of the number of clusters suitable for representation of the data matrices in the current study. However, inspection of these two sets of results did not always provide an unequivocal answer to this question. In fact, in
several cases a range of clustering solutions appeared to be quite plausible, and decisions regarding the appropriate number of groups to consider were usually made on a highly subjective basis. It is clear that a host of interpretations or judgements could have eventuated in regard to the subtype structure existing within the data had an examination been made of other partitioning results.

Finally, the application of validation procedures helps to buttress the existence of "real" subgroups within the data. The Q type solutions generated in this study were validated by ithe clustering results and these findings, in turn, were validated through the application of a split-sample procedure to the data set. However, given the fact that different clustering techniques could likely give different solutions, validation becomes especially important. In this regard, several other alternative ways of validating the clustering results derived in this study could have been employed as well (e.g., altering the input data matrix through the omission or deletion of variables, or demonstrating that clusters have predictive value with respect to variables not included in the original clustering procedure).

One final note on this issue. The ultimate test of a
factor or clustering solutions validity would seem to lie in its usefulness and meaningfulness from a clinical point of view. That is to say, are the characteristics of the derived subgroup interpretable, and are they reasonably consonant with those that one would expect to find within the data. The features and characteristics of the derived subtypes are outlined in the next section. Upon
inspection of these descriptions, it will become clear that the subgroup compositions reflect cognitive ability profiles that can indeed be associated with learning problems in a viable and predictable fashion.

Description of Subtypes
The profiles of test performance associated with the derived factors and clusters, the correlation values between clusters and factors, and the results of the misclassification analyses were interpreted to define three highly similar and reliable subtypes of left- and right-handed learning disabled children. In addition, four other interpretable, but less well-defined subgroups emerged. In this section, subgroup composites are described, and comparisons are made to other subgroups reported in the literature. Type I

This group is composed of children who constituted Factor $1^{\prime}(n=41)$ and Cluster $1(n=49)$ from the left-handed sample, and Factor $2(n=26)$, group average Cluster $2(n=30)$ and centroid sorting Cluster $1(n=30)$ from the right-handed sample. A graphic illustration of this subtype is depicted in Figure 59. Since the factor and cluster intercorrelations were so remarkably high within this group (i.e., $r=0.92$ or above), a composite of all mean $I$ score profiles (i.e., Figures 3, 21, 11, 38 and 44) is presented in Figure 59. The dashes on this figure as well as on two subsequent graphs represent the various independent factor and cluster I score means for each variable.
CONCEPTUAL
REASONING
MOTOR
TACTILE-
PERCEPTUAL
Moto

1
test measures


Children in this group exhibited the following profile characteristics: (1) poor performances on several auditorylinguistic and sequential processing types of tasks involving phoneme-grapheme matching, sound-blending, general fund of information, "mental" numerical reasoning, and immediate recall for sequences of digits; (2) roughly normal performances on a task intended to determine understanding of social conventionality and social judgment (as assessed through a person's verbal reports), and on an associative learning task involving speed and accuracy of symbolic transcription; (3) age-appropriate or better performances on tasks intended to assess appreciation for visual-spatial relationships, and involving visual perceptual skill participation; (4) well developed motor manipulatory and tactually-guided problem-solving ability, as well as adequate non-verbal reasoning skills with visually- or spatially-presented stimuli; (5) some difficulties remembering sequences of visual stimuli, and performing visual sequencing types of tasks involving symbolic shifting; (6) haptic deficiencies involving mild right-sided finger dysgraphesthesia, and marked right-sided finger agnosia; and (7) normally developed simple motor speed and fine finger dexterity with the right hand, but reduced motoric celerity and manipulative dexterity with the upper left extremity. In sum, Type I children were distinguished by the presence of a normally developed visual information processing system, rather good non-verbal problem-solving capabilities, some mild auditory information processing deficits and pronounced haptic deficiencies, especially tactile finger localization. Moreover,

Type I children exhibited a mean WISC PIQ that exceeded the mean VIQ, and mean URAT Reading, Spelling and Arithmetic scores that were all below the 30th centile.

The test profile for Tupe 1 is strikingly similar to the tactile finger localization group (Subtype A) of Fisk and Rourke (1979). Subtype $A$ in that investigation was derived from a $\underline{Q}$ type multivariate correlational analysis conducted on a sample of 264 right-handed learning disabled children. Type 1 also bears some relation to the group of children of the Satz, Friel \& Rudegair (1974) study who encountered problems identifying simple tactile stimulations delivered to the fingers, and to the haptic disturbance group (Type 2) of Petrauskas and Rourkè (1979). Both of these investigations utilized exclusively populations of dextral subjects as well.

The patterns of adaptive deficiencies exhibited by the Subtype A subjects of Fisk and Rourke (1979) and the Type 2 subjects of Petrauskas \& Rourke (1979) were interpreted by both sets of authors to be reflective of compromised brain functioning and tended to raise some question regarding the functional integrity of the posterior portions of the left cerebral hemisphere. It is hypothesized that a similar area of compromised brain functioning exists in T!pe I children of the current study. Tinpe 17

This group is composed of children who constituted Factor $2(\mathrm{n}=26)$ and Cluster $3(\mathrm{n} \equiv 51)$ from the left-handed sample, and Factor $1(n=20)$, group average cluster $3(n=41)$ and centroid sorting Cluster $2(\mathrm{n}=40$ ) from the right-handed sample. Figure

60 is a graphic representation of Type II. Again, this figure represents a compositive of all mean I score profiles constituting this subgroup (i.e., Figures 3, 23, 10, 39 and 45).

The Type II profile was characterized by the following: (I) clear impairment on some auditory-verbal and psycholinguistic tasks involving the associating of sounds and symbols, assessing of general knowledge (as is normally acquired through everyday activities), "mental" numerical reasoning, and amnestic skill participation (e.g., immediate memory for series of numbers) as well as some mild difficulty blending sounds to form words; (2) relatively better but slightly depressed performances on a test intended to assess understanding of social conventionality and social judgment, and on a task requiring the associating of symbols to their appropriate numerical counterparts; (3) well developed visual-perceptual and spatial visualization abilities; (4) some difficulty reproducing graphically sequences of visual stimuli, and negotiating visual-spatial arrays on the basis of numerical and alphabetical sequences; (5) age-appropriate tactile- and kinestheticperceptual skills, including well developed nonverbal tactuallyguided problem-solving abilities; (6) adequate performance on a task involving inductive and deductive reasoning with visually- or spatially-presented stimuli; and (7) normally developed simple motor speed bilaterally, and fine manipulative dexterity with the right hand, but fine finger dexterity deficits with the left hand. In sum, Type II children manifested well-developed visual and tactile information processing systems, appeared to be good problem-


TEST MEASURES
Figure 60. Type II.
solving strategists, and presented with reasonably welldeveloped simple and more complex psychomotor skills. Conversely, they exhibited clear weaknesses in their ability to process information of an auditory linguistic nature and demonstrated some verbal coding or labelling deficiencies. Children in this group were also seen to exhibit the largest mean WISC low VIQ-high PIQ discrepancy, and mean WRAT Reading, Spelling and Arithmetic subtest performances were all we.ll below the 30 th centile ranking.

These children bear a striking resemblance to the poor auditory-verbal processing group (Subtype B) of Fisk and Rourke (1979), and to the language disturbance group (Type I) of Petruaskas and Rourke (1979). They also seem most similar to the language disorder groups of Kinsbourne and Warrington (1963) and Mattis et al., (1975), and the sound-symbol integration deficiency group (i.e., dysphonetic dyslexia) of Boder (1973). Again, all of these investigators employed samples of right-handed children.

The functional intergrity of some of those abilities normally thought to be subserved by the temporal region of the left cerebral hemisphere was hypothesized by both Fisk and Rourke (1979) as well as by Petrauskas and Rourke (1979) as being somewhat compromised in their Subtype B and Type I children, respectively. A similar area of dysfunction is likely to be present in Type II children of the present study.

## Type III

Included in this group are children who constituted Factor $3(n=19)$ and Cluster $4(n=35)$ from the left-handed
sample, and Factor $3(n=18)$, group average Cluster $4(n=21)$ and centroid sorting Cluster $4(n=22)$ from the right-handed sample. Once again, the test profile for this group is plotted in terms of a composite of all mean I score patterns (i.e., Figures 5, 24, 12, 40 and 47) in Figure 61.

Visual inspection of the profile for Type II children revealed the following characteristics: (1) some auditoryverbal processing weaknesses involving a limited acquisition of general information, deficient sound-symbol matching skills, poor sound blending abilities, and somewhat underdeveloped "mental" numerical reasoning skills; imediate recall for short bursts of non-redundant auditory-verbal information (e.g., sequences of digits) as well as understanding of social conventionality and social judgment were both mildly impaired; an associative learning task involving speed and accuracy of symbolic transcription was performed in an age-appropriate manner; (2) normally developed visual-perceptual, perceptual organizational and visual-spatial skills; (3) poor performance on one visual-spatial sequential memory task; (4) mild finger agnosia and pronounced finger dys raphesthesia with the upper right extremity; average and belowaverage tactually-guided problem-solving capabilities with the dominant and nondominant hands, respectively; (5) normally developed simple motor speed and speeded eye-hand coordination with the right hand, but clearly impaired skills within these areas with the left hand; and (6) slightly impoverished nonverbal reasoning capabilities, and clear difficulties performing visual sequencing tasks
CONCEPTUAL
REASONING
MOTOR
TACTILE-
PERCEPTUAL
VISUAL-
PERCEPTUAL
SEQUENTIAL
PROCESSING

TEST MEASURES

Figure 61. Type III.
involving symbolic shifting. Children in this group seemed to possess a reasonably well-developed visual-information processing system, and normally developed simple motor skills and motor manipulatory problem-solving abilities with the upper right extremity. On the contrary, children in this subgroup could be described as having some poor auditory-verbal and psycholinguistic skills, mild right-sided finger recognition deficits, and pronouned haptic deficiencies involving the detection of numbers written on the fingertips of the right hand. For Type III children, mean WISC PIQ exceeded VIQ, and mean WRAT Reading, Spelling and Arithmetic subtest scores were all below the 30 th centile ranking. However, one of the members of this group (Cluster 4 from the sinistral sample) exhibited a WRAT subtest performance pattern of Reading above the 30 th centile level, while both Spelling and Arithmetic were below this value.

The adaptive profile which characterized the Type III children was quite similar to the fingertip number writing deficit group (Subtype C) of Fisk and Rourke (1979). In fact, Type III children exhibited the highest mean age (12.59) of all of the groups, a finding consonant with the fact that Subtype $C$ only emerged in the two oldest age-based samples (i.e., 11 to 12 years and 13 to 14 years) of the Fisk and Rourke investigation.

The preceding three groups of children appeared to be the most reliable subtypes, having been generated across all possible factor and clustering procedures. Four other less reliable (in the sense of having been only partially replicated) subgroups of
learning disabled children emerged. A brief description of each of these is provided below.

Type IV
This group is composed of Factor $4(\mathrm{n}=9)$ and Cluster $2(\mathrm{n}=26)$ from the left-handed sample, and group average Cluster 1 ( $n=24$ ) and centroid sorting Cluster $7(n=23)$ from the righthanded sample. A comparable group did not appear to exist within the dextral factor structure.

Visual inspection of Figures 6, 22, 37 and 50 revealed that Type IV children were characterized by a slight reduction in general fund of information, and mild phoneme-grapheme matching skill deficiencies; a well developed understanding of social conventionality, and exceptionally good sound blending skills; mildly impaired arithmetic reasoning, auditory-verbal amnestic skills, and symbolic transcribing capabilities; a relatively good visual information processing system; mildly impaired performances on immediate memory for visual sequences, and on a visual sequencing task requiring the ability to shift "mental" set; normally developed right hand tactile finger localization, and dominant hand tactuallyguided problem-solving skills; mild right-sided finger dysgraphesthesia, and weak tactually-guided behaviour with the non-dominant extremity; adequate nonverbal reasoning abilities; average and mildly deficient simple motor speeds with the right and left hands, respectively; and bilateral fine finger dexterity deficits, somewhat moreso with the left hand. The distinguishing feature of Type IV children centered around deficiencies in fine eye-hand
coordination under speeded conditions. Children in this group were more apt to exhibit a very small WISC VIQ-PIQ discrepancy or, in some cases, a higher VIQ-Tower PIQ pattern. Reading performance on the WRAT was more likely to exceed the 30th centile, while both Spelling and Arithmetic subtest scores were below this value.

This particular group bears some resemblance to Type 3 of Petrauskas and Rourke (1979), and is similar in some ways to the dyscoordination group of Mattis et al. (1975).

Type V
Included in this group are children who constituted Factor $5(\mathrm{n}=6)$ from the left-handed sample, and Factor $6(\mathrm{n}=8)$, group average Cluster $6(n=10)$ and centroid sorting Cluster $6(n=9)$ from the right-handed sample. However, intercorrelations between left- and right-handers within this group were rather low, whereas comparisons amongst the dextral sample yielded higher, more reliable intercorrelations. Thus, it would appear that this type may constitute an independent right-handed subgroup.

Examination of Figures 15,42 and 49 suggested that Type $V$ children are characterized by the following: (1) inconsistent performance on auditory-linguistic tasks involving understanding of social conventionality, phoneme-grapheme matching, and sound blending, while both general fund of information and arithmetic reasoning were consistently depressed; performances on immediate recall for digits and on an associative learning task involving speed and accuracy of symbolic transcription were roughly age-appropriate;
(2) normally developed visual and tactile perceptual information processing systems; (3) good nonverbal problem-solving skills, as well as the ability to moderate performances when the task required conceptual shifting; and (4) mildly and moderately deficient simple motor speeds with the right and left hands, respectively; average and mildly impaired fine manipulative skills with the dominant and non-dominant hands, respectively. These subjects also exhibited a fairly appreciable low VIQ-PIQ discrepancy on the WISC. While their WRAT subtest performance patterns were somewhat inconsistent, there was a trend for Reading to be somewhat higher than either Spelling or Arithmetic.

## Type VI

This group contains children who constituted sinistral Factor $7(n=5)$, dextral Factor $7(n=15)$, dextral group average Cluster $7(n=23)$ and dextral centroid sorting Cluster $3(n=22)$. While there was some degree of visual similarity between factor and cluster plots within this group (see Figures 16, 43, 46 and 9), most intercorrelation values were rather low. This would suggest that this type is the most unreliable. Briefly, however, with the exception of some inconsistency amongst performances within the auditory-linguistic and sequential processing realms, most neuropsychological adaptive skill areas yielded ageappropriate or better levels of performance. A low VIQ-high PIn discrepancy of fairly large magnitude was exhibited by these children as well.

Type VII
This final group is composed of children who constituted Factor $4(n=11)$ and group average Cluster $5(n=12)$ from the right-handed sample. Type VII would appear to represent another independent right-handed subgroup, despite the fact that it did not emerge during the centroid sorting clustering procedure.

Inspection of Figures 13 and 41 suggested that Type VII children were characterized by some mild auditory perceptual deficiencies involving a reduced store of general information, underdeveloped sound-blending skills, and a somewhat limited understanding of social conventionality; "mental" numerical reasoning skills and auditory-verbal amnestic abilities that were roughly normal, while performance on the Coding subtest was mildly deficient; well-developed visual and haptic information processing systems; good nonverbal reasoning capabilities; inconsistent performances on visual-sequencing tasks requiring symbolic shifting; normally developed simple motor speed and speeded fine eye-hand coordination with the upper right extremity, while performances with the left hand within these same areas were clearly deficient; and pronounced difficulties in immediate memory for sequences of visual stimuli. The distinguishing feature of Type VII children centered around deficiencies on the Target Test, a finding that may be reflective of a compromised ability in these children to apply verbal coding or labelling strategies efficiently. This group exhibited a minimal VIQ-PIQ discrepancy on the WISC. It should
also be noted that this type obtained mean WRAT Arithmetic scores that were below the 30 th centile level, while both Reading and Spelling scores were above this value.

## Evaluation of Expectations

Hypothesis 1 suggested that different patterns of adaptive strengths and weaknesses may emerge in left- and right-handed learning disabled children as a function of manifest differences in specific patterns of cerebral organization that have been posited to exist between the handedness groups. This expectation was clearly not supported. In fact, the sorts of adaptive deficiencies exhibited by the group of left-handed children who were encountering learning problems in the present study were found to be remarkably similar to the types of cognitive deficiencies seen in a comparable group of right-handed age-mates included in the investigation, as well as to several other dextral learning disabled subgroups reported in the literature. However, the results of the quantitative classification analyses did suggest that the left-handers as a group appeared to constitute a more homogeneous population in regard to their patterns of performance on the battery of neuropsychological measures administered than did the similar group of righthanded children.

Failure to confirm the expectation that there are disparaties associated with sinistrality in regard to adaptive ability structure may be reflective of the problems in identification or the difficulty in constructing a workable definition of sinistrality (i.e., on what basis is preferred handedness determined?). In the
current study, name-writing hand was chosen as an initial index of hand dominance. Left-handers identified on this basis were then examined more closely to determine their demonstrated hand proficiency on two skilled manual dexterity tasks: simple motor speed, and speeded fine eye-hand coordination. Neither one of these considerations appeared to influence the patterns of performance seen within the population of children assessed. Perhaps different methods of handedness determination (or classification) would reveal measurable differences between dextral and sinistral learning disabled children (Roszkowski, Snelbecker, \& Sacks, 1981). In addition, a closer examination of hand, foot and eye dominance may eventuate in findings that are consistent with ability differences as a function of lateral preference patterns (Dean et al., 1981).

Hypotheses 2 and 3 dealt with two issues, one focussing on the importance of an individual's familial handedness history and one focussing on the significance of degree or intensity of an individual's left-handedness. Both of these factors have been posited as possessing predictive value in terms of being able to distinguish between sinistrals with different patterns of hemispheric specialization. In the present study, it was felt that if these particular variables were related to cerebral laterality, then the multivariate classification methods should generate subgroups that have members who report mostly sinistral or mostly dextral biological relatives and/or subtypes that exhibit a membership composition reflective of different measurable variations in
consistency and degree of hand usage across a variety of manipulative and behavioural tasks. Neither of these expectations was supported by the data. That is to say, the results of a series of nonparametric analyses indicated that subgroups could not be distinguished from one another on the basis of hand preference, hand proficiency and familial handedness composition.

The meaningfulness of the familial sinistrality findings, in particular, can be challenged quite easily. There were at least two problems in obtaining an accurate assessment of familial handedness tendencies. First, since this study tended to regard familial sinistrality as positive if at least one parent or sibling was left-handed, a large number of "false positives" could have been easily reported. For instance, $60 \%$ of the leftand $65 \%$ of the right-handed sample were considered to be familial sinistral subjects based on a single sibling criterion (see Table 2). However, included within these values were several very young siblings reported as exhibiting a left-sided preference despite the likelihood that hand dominance had not yet been clearly established in these children. Moreover, Bishop (1980) has recently suggested that family size may be an important factor to consider when assessing familial sinistrality. According to Bishop, the problem is that the a priori probability that an individual will have a sinistral relative increases with the number of relatives he has. Thus, adopting a single parent or sibling criterion could possibly confound the effects of familial sinistrality and family size.

Finally, it has been demonstrated rather convincingly that subgroups generated by means of one multivariate statistical procedure can be reliably detected through the application of several other classification methods as well. Indeed, $\underline{Q}$ type and cluster analyses solutions were in perfect agreement for the left-handed sample of children, while solutions remained fairly well-defined across taxonomic procedures for the right-handed data set. These findings along with the success Doehring and his associates (1979) have experienced in their application of multiple classification methods confirms the usefulness and suitability of these instruments for providing a reliable taxonomy of learning disabilities.

Implications
One purpose of this study was to isolate and define systematically the sorts of adaptive similarities and dissimilarities that may exist between left- and right-handed learning disabled children. Toward this end a multivariate quantitative taxonomic procedure was used to delineate distinct subgroups of children who had been encountering learning problems. Secondly, an attempt was made to validate the existence of subtypes by assessing their preservation across different classification methods.

Several conclusions or generalizations can be drawn from the results of the study.
(1) Left- and right-handed children with learning problems would appear to exhibit very similar adaptive ability profiles. The classification analyses suggested the presence of at least
three highly similar subtypes of learning disabled children within two age-equivalent handedness-based samples. In turn, the subgroups were found to bear a striking resemblance to other dextral subtypes reported in the research literature (Boder, 1973; Fisk \& Rourke, 1979; Mattis et al., 1979; Petrauskas \& Rourke, 1979; Satz et al., 1974). While these findings support the notion that learning disabled children constitute a heterogeneous group in regard to their adaptive ability structures (Benton, 1975; Rourke, 1978a, 1978b, 1981a, 1981b, 1981c; Vernon, 1977), it would appear that handedness per se may not be an especially important consideration in the search for types of ability differences in learning disabled children. This finding would appear to be in agreement with several studies that have reported the absence of any significant ability differences between left- and right-handed individuals (Annett \& Turner, 1974; Hardyck, Petrinovich \& Goldman, 1976; Kocel, 1977), but seems to be at odds with other studies that have reported the existence of information processing differences between the handedness groups (Bakker, 1972; Schevill, 1980).
(2) To aid in subtype interpretability, the independent factor and cluster graphs that madeup each of the Type I, Tupe II and Type III children were combined and an overall mean I score illustration was provided for each group. However, it was interesting to note that closer visual inspection of the independent factor and cluster profiles within each group revealed one feature that distinguished sinistral and dextral children. In all cases,
dextrals exhibited a clearly better right hand than left hand performance on the two psychomotor tasks (i.e., Finger Tapping and Grooved Pegboard), whereas sinistrals were found to demonstrate a smaller between-hand discrepancy. Most of the difference between the two handedness groups on this dimension occurred within the right-handed performances where dextrals were clearly more proficient with the use of this extremity. Left-handed performances were usually quite similar between the two samples. The differences seen on tasks of a motoric nature could suggest one of two alternative states of affairs. First, within the group of left-handers, the left-handed performances on skilled motor tasks could reflect some "shift" in handedness as a consequence of having sustained some degree of left hemispheric dysfunction. This would imply that the sinistral tendencies seen in these children are a manifestation of brain pathology, a view expounded upon by a number of investigators (Annett, 1964; Bakan, 1971, 1977; Satz, 1972, 1973). However, this possibility seems rather remote since there was little evidence to suggest that left-handers in this study encountered any particular difficulties with their right hand that would have caused them to engage the use of their left hand as the dominant extremity (i.e'., Finger Tapping and Grooved Pegboard scores were usually within an age-approriate range with the right hand). A second more parsimonious possibility is that the motor performances within the ability repertoires of both handedness groups represent the results of social conditioning and practice (Collins, 1970,1975 ). That is, perhaps sinistrals exhibit a smaller between-hand discrepancy because they are natural left-
handers who have been actively taught to use their right hand as a result of social and cultural influences. The same social conditioning in natural right-handers, of course, would result in a larger difference score between the extremities.
(3) The results of this study should not be construed as suggesting that left-handedness and its associated characteristics are unworthy of further exploration. Indeed, the results of studies of lesion-produced deficits and right-left auditory and visual perceptual asymmetries have provided a source of strong support for a relation between handedness and cerebral organization, despite the lack of consistent agreement amongst researchers within the area. The discrepancy between these findings and the current results invites further study into the relation between handedness, adaptive ability structure, and performance on visual half-field, dichotic listening, or dichotic monitoring types of tasks.
(4) Related to (3) above, an obvious research direction to pursue is to obtain some further information on the possible neurological determinants underlying the different subtype structures. Neurophysiological investigations involving visual or auditory evoked potentials would seem to be especially valuable in this regard (Hughes, 1978).
(5) An internal validation method (e.g., split-sample replication) was employed in the present study to determine the stability and usefulness of the clustering solutions. As an alternative, it would be of interest to see whether one subtype can be distinguishable from other subtypes on a wide variety of measures
and attributes not included in the initial classification process (i.e., externally validating the derived solutions). For example, subtype differences across such variables as academic achievement level (WRAT Reading, Spelling and Arithmetic), presence of learning problems among other family members, prevalence and/or type of birth complication, or birth order could be assessed through the application of parametric (MANOVA, ANOVA) or nonparametric (ChiSquare) statistical methods.
(6) The clarification and differentiation of the quality of cognitive impairment associated with learning difficulties has obvious remedial management implications. Since one important therapeutic objective is to promote academic remedial programmes tailored to the individual's specific cognitive strengths and weaknesses, identification of the "patterning" of adaptive skill deficits becomes especially important. Indeed, clinical experience has suggested that a remedial management intervention that fails to "fit" the adaptive ability makeup of the child can, in effect, be counterproductive in respect to the acquisition of basic academicrelated skills, with consequent (often negative) impact on personality development.
(7) Finally, there has been a persistent tendency to attribute a variety of behavioural deficits to sinistrality. Researchers continue to argue for an association between deficit and lefthandedness, despite the burgeoning amount of evidence to disclaim any significant link between cognitive deficiency and handedness. Moreover, it is probably not too presumptuous to hypothesize that
the tendency to believe that sinistrality is a sign of possible deficit likely pervades much of the clinical practice as well. At least in regard to the clinical populations studied within the confines of this investigation, the results would suggest that left-handedness more often times than not should be viewed as a "red herring", not worthy of the pathognomonic importance attributed to it.

## REFERENCE NOTES

1. Gates, R., Personal communication, 1981.
2. Joschko, M., Personal communication, 1981.

## REFERENCES

Andrew, R. J. Aspects of language lateralization correlated with familial handedness. Neuropsychologia, 1977, 15, 769-778 Annett, M. A model of the inheritance of handedness and cerebral dominance. Nature, 1964, 204, 59-60.

Annett, M. The binomial distribution of right, mixed and left handedness. Quarterly Journal of Experimental Psychology, 1967, 19, 327-333.

Annett, M. A classification of hand preference by association analysis. British Journal of Psychology, 1970, 61, 303-321. Annett, M. The distribution of manual asymmetry. British Journal of Psychology, 1972, 63, 343-358.

Annett, M. Handedness in families. Annals of Human Genetics, 1973, 37, 93-105.

Annett, M. Laterality of childhood hemiplegia and the growth of speech and intelliqence. Cortex, 1973, 9, 4-33.

Annett, M. Handedness in the children of two left handed parents. British Journal of Psychology, 1974, 65, 129-131.

Annett, M. Hand preference and the laterality of cerebral speech. Cortex, 1975, 11, 305-328.

Annett, M. Genetic and non-genetic influences on handedness. Behavioral Genetics, 1978, 8, 228-249.

Annett, M. Family handedness in three generations predicted by the right shift theory. Annals of Human Genetics, 1979, 42, 479-491.

Annett, M. \& Ockwell, A. Birth order, birth stress and handedness. Cortex, 1980, 16, 181-188.

Annett, M. \& Turner, A. Laterality and the growth of intellectual abilities. British Journal of Educational Psychology, 1974, 44, 37-46.

Ayres, A. J. Types of sensory integrative dysfunction among disabled learners. The American Journal of Occupational Therapy, 1972, 26, 13-18.

Bakan, P. Handedness and birth order. Nature, 1971, 229, 195.
Bakan, P. Left handedness and birth order revisited. Neuropsychologia, 1977, 15, 837-839.

Bakan, P. Why left-handedness? The Behavioral and Brain Sciences, 1978(a), 2 , 279-280.

Bakan, P. Handedness and birth order: A critical note on a critical note. Perceptual and Motor Skills, 1978(b), 46, 556.

Bakan, P., Dibb, G., \& Reed, P. Handedness and birth stress. Neuropsychologia, 1973, 11, 363-366.

Bakker, D. Temporal order in disturbed reading. Rotterdam: Rotterdam University Press, 1972.

Barlow, I. H. Lateral dominance characteristics and reading achievement in the first grade. The Journal of Psychology, 1963, 55, 323-328.

Bannatyne, A. D. \& Wichiarajote, P. Hemispheric dominance, handedness, mirror imaging, and auditory sequencing. Exceptional Children, 1969, 36, 27-36.

Barnsley, R. H. \& Rabinovitch, M. S. Handedness: Proficiency versus stated preference. Perceptual and Motor Skills, 1970, 30, 343-362.

Barry, R. J. \& James, A. L. Handedness in autistics, retardates and normals of a wide age range. Journal of Autism and Childhood Schizophrenia, 1978, 8, 315-323.

Beaumont, J. G. \& Dimond, S. J. Transfer between the cerebral hemispheres in human learning. Acta Psychologia, 1973, 37, 87-91.

Belmont, L. \& Birch, H. G. Lateral dominance and right-left awareness in normal children. Child Development, 1963, 34, 257-270.

Belmont, L. \& Birch, H. f. Lateral dominance, lateral awareness and reading disability. Child Development, 1965, 36, 57-71.

Benton, A. L. Sentence Memory Test. Iowa City, Iowa: Author, 1965.

Benton, A. L. Developmental dyslexia: Neurological aspects. In W. J. Friedlander (Ed.), Advances in Neurology, Vol. 7, New York: Raven Press, 1975.

Berman, A. The problem of assessing cerebral dominance and its relationship to intelligence. Cortex, 1971, I, 372-386.

Bishop, D. V. M. Measuring familial sinistrality. Cortex, 1980, 16, 311-313.

Blashfield, R. K. Propositions regarding the use of cluster analysis in clinical research. Journal of Consulting and Clinical Psychology, 1980, 48, 456-459.

Boder, E. Developmental dyslexia: A diagnostic approach based on three atypical reading-spelling patterns. Developmental Medicine and Child Neurology, 1973, 15, 663-687.

Boucher, J. Hand preference in autistic children and their parents. Journal of Autism and Childhood Schizophrenia, 1977, 7, 177-187.

Bradshaw, J. L., Gates, A., \& Nettleton, N. C. Bihemispheric involvement in lexical decisions: Handedness and a possible sex difference. Neuropsychologia, 1977, 15, 277-286.

Bradshaw, J. L. \& Taylor, M. J. A word-naming deficit in nonfamilial sinistrals? Laterality effects of vocal responses to tachistoscopically presented letter strings. Neuropsychologia, 1979, 17, 21-32.

Brain, W. R. Speed and handedness. The Lancet, 1945, 2, 837-842. Briggs, G. G. \& Nebes, R. D. The effects of handedness, family history and sex on the performance of a dichotic listening task. Neuropsychologia, 1976, 14, 129-133.

Briggs, G. G., Nebes, R. D., \& Kinsbourne, M. Intellectual differences in relation to personal and family handedness. Quarterly Journal of Experimental Psychology, 1976, 28, 591-601

Bryden, M. P. Tachistoscopic recognition, handedness and cerebral dominance. Neuropsychologia, 1965, 3, 1-8.

Bryden, M. P. Laterality effects in dichotic listening: relations with handedness and reading ability in children. Neuropsychologia, 1970, 8, 443-450.

Bryden, M. P. Perceptual asymmetry in vision: relation to handedness, eyedness and speech lateralization. Cortex, 1973, 9, 419-435.

Bryden, M. P. Speech lateralization in families: A preliminary study using dichotic listening. Brain and Language, 1975, 2, 201-211.

Byrne, R. \& Sinclair, J. Memory for tonal sequence and timbre: A correlation with familial handedness. Neuropsychologia, 1979, 17, 539-542.

Calman, M., \& Richardson, K. Speech problems among children in a national survey: Associations with hearing, handedness and therapy. Community Health, 1976, 8, 101-105.

Carter-Saltzman, L., Scan-Slapatek, S., Barker, W. B., \& Katz, S. Left-handedness in twins: Incidence and patterns of performance in an adolescent sample. Behavior Genetics, 1976, 6, 189-203.

Christian, J. C., Hunter, D. S., Evans, M. M., \& Standeford, F. M. Association of handedness and birth order in monozygotic twins. Acta Genetica Medica Gemellol, 1979, 28, 67-68.

Clark, M. M. Reading difficulties in schools. Baltimore: Penguin Books, 1970.

Colby, K. M., \& Parkison, C. Handedness in autistic children. Journal of Autism and Childhood Schizophrenia, 1977, 7, 3-9.

Coleman, R. I., \& Deutsch, C. P. Lateral dominance and rightleft discrimination: A comparison of normal and retarded readers. Perceptual and Motor Skills, 1964, 19, 43-50.

Collins, R. L. The sound of one paw clapping: An inquiry into the origin of left-handedness. In G. Lindzey \& D. D. Thiessen (Eds.), Contributions to behavior-genetic analysis -- the mouse as a prototype. New York: Meredith Corporation, 1970.
Collins, R. L. When left-handed mice live in right-handed worlds. Science, 1975, 187, 181-184.
Corballis, M. C. Is left-handedness genetically determined? In J. Herron (Ed.), Neuropsychology of left-handedness. New York: Academic Press, 1980.
Curry, F. K. W. A comparison of left-handed and right-handed subjects on verbal and non-verbal dichotic listening tasks. Cortex, 1967, 3, 343-352.
Curry, F. K. W., \& Rutherford, D. R. Recognition and recall of dichotically presented verbal stimuli by right- and lefthanded persons. Neuropsychologia, 1967, $\underline{5}, 119-126$.

Davis, A. E. \& Wada, J. A. Lateralization of speech dominance by spectral analysis of evoked potentials. Journal of Neurology, Neurosurgery and Psychiatry, 1977, 40, 1-4.

Dawson, J. L. M. Alaskan eskimo hand, eye, auditory dominance and cognitive style. Psychologia, 1977(a), 20, 121-135.
Dawson, J. L. M. An anthropological perspective on the evolution and lateralization of the brain. Annals New York Academy of Science, 1977(b), 299, 424-447.
Dean, R. S., Schwartz, N. H., \& Smith, L. S. Lateral preference patterns as a discriminator of learning difficulties. Journal of Consulting and Clinical Psychology, 1981, 49, 227-235.

Dee, H. L. Auditory asymmetry and strength of manual preference. Cortex, 1971, 7, 236-245.

DeFreitas, B., \& Dubrousky, B. Lateralization of language and spatial functions in left-handed populations. International Journal of Neuroscience, 1976, 7, 35-36.

Deutsch, D. Handedness and memory for tonal pitch. In J. Herron (Ed.), Neuropsychology of left-handedness. New York: Academic Press, 1980.

Doehring, D. G., \& Hoshko, I. M. Classification of reading problems by the Q-technique of factor analysis. Cortex, 1977, 13, 281-294.

Doehring, D. G., Hoshko, I. M. \& Bryans, B. N. Statistical classification of children with reading problems. Journal of Clinical Neuropsychology, 1979, $1,5-16$.

Dunn, L. M. Expanded manual for the Peabody Picture Vocabulary Test. Minneapolis, Minnesota: American Guidance Service, 1965.

Endress, T. F. The relationship between handedness and visual cerebral dominance in language processing. Unpublished Doctoral dissertation, University of Maryland, 1974.

Ettlinger, G., Jackson, C. V., \& Zangwill, O. L. Cerebral dominance in sinistrals. Brain, 1956, 79, 569-588.

Everitt, B. Cluster analysis. London: Heinemann Educational Books Ltd., 1974.

Fagin-Dubin, L. Lateral dominance and development of cerebral specialization. Cortex, 1974, 10, 69-74.

Fennell, E., Satz, P., \& Wise, R. Laterality differences in the perception of pressure. Journal of Neurology, Neurosurgery and Psychiatry, 1967, 30, 337-340.

Fenne11, E., Satz, P., Van Den Abel1, T., Bowers, D., \& Thomas, R. Visuospatial competency, handedness and cerebral dominance. Brain and Language, 1978, 5, 206-214.
Ferronato, S., Thomas, D., \& Sadava, D. Preferences for handedness, arm folding and hand clasping in families. Human Heredity, 1974, 24, 345-351.

Fisk, J. L., \& Rourke, B. P. Identification of subtypes of learningdisabled children at three age levels: a neuropsychological, multivariate approach. Journal of Clinical Neuropsychology, 1979, 1, 289-310.

Fleminger, J. J., \& Bruce, L. Investigation of cerebral dominance in 'left' handers and 'right' handers using unilateral electroconvulsive therapy. Journal of Neurology, Neurosurgery and Psychiatry, 1975, 38, 541-545.

Flick, G. L. Sinistrality revised: A perceptual-motor approach, Child Development, $1966,37,613-622$.

Geffen, G., \& Taub, E. Preferred hand and familial sinistrality in dichotic monitoring. Neuropsychologia, 1979, 17, 527-531. Geffen, G., \& Taub, E. The effects of duration of stimulation, preferred hand and family sinistrality in dichotic monitoring. Cortex, 1980, 16, 83-94.

Gesell, A., \& Ames, L. B. The development of handedness. Journal of Genetic Psychology, 1947, 70, 155-175.

Gilbert, C. Non-verbal perceptual abilities in relation to lefthandedness and cerebral lateralization. Neuropsychologia, 1977, 15, 779-791.

Ginsburg, G. P., \& Hartwick, A. Directional confusion as a sign of dyslexia. Perceptual and Motor Skills, 1971, 32, 535-543. Gloning, K. Handedness and aphasia. Neuropsychologia, 1977, 15, 355-358.

Gloning, I., Gloning, K., Haub, G., \& Quatember, R. Comparison of verbal behavior in right-handed and non-right-handed patients with anatomically verified lesion of one hemisphere. Cortex, 1969, 5, 43-52.

Gloning; K. \& Quatember, R. Statistical evidence of neuropsychological syndromes in left-handed and ambidextrous patients. Cortex, 1966, 2, 484-488.

Goodglass, H., \& Quadfasel, F. A. Language laterality in lefthanded aphasics. Brain, 1954, 77 521-56£.

Gordon, H. Left-handedness and mirror writing, especially among defective children. Brain, 1921, 43, 313-368.

Gregory, R., \& Paul, J. The effects of handedness and writing posture on neuropsychological test results. Neuropsychologia, 1980, 18, 231-235.

Gur, R. E. Motoric laterality in schizophrenia: A possible concomitant of left hemispheric dysfunction. Archives of General Psychiatry, 1977, 34, 33-37.

Gur, R. C., \& Gur, R. E. Handedness and individual differences in hemispheric activation. In J. Herron (Ed.), Neuropsychology of left-handedness. New York: Academic Press, 1980.

Hannay, H. J., \& Malone, D. R. Visual field recognition memory for right-handed females as a function of familial handedness. Cortex, 1976, 12, 41-48.

Hardyck, C. Handedness and part-whole relationships: A replication. Cortex, 1977, 13, 177-183.

Hardyck, C. A model of individual differences in hemispheric functioning. In H. Whitaker \& H. Whitaker (Eds.), Studies in neurolinguistics: Vol. 3, New York: Academic Press, 1977. Hardyck, C., Petrinovich, L. F., \& Goldman, R. O. Left-handedness and cognitive deficit. Cortex, 1976, 12, 266-279.

Hardyck, C., \& Petrinovich, L. F. Left-handedness. Psychological Bulletin, 1977, 84, 385-404.

Harris A. J. Harris Tests of Lateral Dominance, Manual of Directions for Administration and Interpretation. New York: Psychological Corporation, 1947.

Harris, A. J. Lateral dominance, directional confusion and reading disability. The Journal of Psychology, 1957, 44, 283-294.

Harris, L. J. Left-handedness: Early theories, facts and fancies. In J. Herron (Ed.), Neuropsychology of left-handedness. New York: Academic Press, 1980.

Hecaen, H., \& de Ajuriaguerra, J. Left-handedness: Manual superiority and cerebral dominance. New York: Grune \& Stratton, 1964.

Hecaen, H., \& Sanguet, J. Cerebral dominance in left-handed subjects. Cortex, 1971, ㄱ, 19-48.

Heim, A. W., \& Watts, K. P. Handedness and cognitive bias. Quarterly Journal of Experimental Psychology, 1976, 28, 355-360.

Helwig, J. T., \& Council, K. A. (Eds.), SAS Users Guide 1979 Edition. Cary, North Carolina: SAS Institute Inc., 1979. Herron, J., Galin, D., Johnstone, J., \& Ornstein, R. E. Cerebral specialization, writing posture, and motor control of writing in left-handers. Science, 1979, 205, 1285-1289.

Hicks, R. E., \& Kinsbourne, M. Human handedness: A partial crossfostering study. Science, 1976, 192, 908-910.

Hicks, R. E., \& Kinsbourne, M. Human handedness. In M. Kinsbourne (Ed.), Asymmetrical function of the brain. Cambridge: Cambridge University Press, 1978.

Hicks, R. A., \& Beveridge, R. Handedness and intelligence. Cortex, 1978, 14, 304-307.

Hicks, R. A., Elliott, D., Garbesi, L., \& Martin, S. Multiple birth risk factors and the distribution of handedness. Cortex, 1979, 15, 135-137.

Hicks, R. A., Pellegrini, R. J., \& Evans, E. A. Handedness and
birth risk. Neuropsychologia, 1978, 16, 243-245. Hicks, R. A., Evans, R. A., \& Pellegrini, R. J. Correlation between handedness and birth order: Compilation of five studies. Perceptual and Motor Skills, 1978, 46, 53-54. Higenbottom, J. A. Relationships between sets of lateral and perceptual preference measures. Cortex, 1973, 9, 403-410.

Hildreth, G. The development and training of hand dominance:
Part I. Journal of Genetic Psychology, 1949, 75, 197-220.
Hines, D., \& Satz, P. Superiority of right visual half-fields in right-handers for recall of digits presented at varying rates. Neuropsychologia, 1971, 9, 21-25.

Hines, D., \& Satz, P. Cross-modal asymmetries in perception related to asymmetry in cerebral functions. Neuropsychologia, 1974, 12, 239-247.

Hubbard, J. I. Handedness not a function of birth order. Nature, 1971, 232, 276-277.

Hudson, P. T. W. The genetics of handedness -- a reply to Levy and Nagylaki. Neuropsychologia, 1975, 13, 331-339.

Hughes, J. R. Electoencephalographic and neurophysiological studies in dyslexia. In A. L. Benton \& D. Pearls (Eds.), Dyslexia: An appraisal of current knowledge. London: Oxford University Press, 1978.

Humphrey, M. E., \& Zangwill, 0. L. Dysphasia in left-handed patients with unilateral brain lesions. Journal of Neurology, Neurosurgery and Psychiatry, 1952, 15, 184-193.

Jackson, T. L. Tachistoscopic assessments of cerebral dominance in left-handers: effects of sex, familial sinistrality and hand writing posture. Unpublished Doctoral Dissertation, Bowling Green State University, 1978.

Jastak, J. F., \& Jastak, S. R. The Wide Range Achievement Test. Wilmington, Delaware: Guidance Associates, 1965.

Johnson, 0., \& Harley, C. Handedness and sex differences in cognitive tests of brain laterality. Cortex, 1980, 16, 73-82.

Johnstone, J., Galin, D., \& Herron, J. Choice of handedness measures in studies of hemispheric specialization. International Journal of Neuroscience, 1979, 9, 71-80.
Kass, C. E. Auditory Closure Test. In J. J. O1sen \& J. L. O1sen (Eds.), Validity studies on the Illinois Test of Psycholinguistic Abilities. Madison, Wisconsin: Photo Press, 1964.

Kaufman, A. S., Zalma, R., \& Kaufman, N. L. The relationship of hand dominance to the motor coordination, mental ability and right-left awareness of young normal children. Child Development, 1978, 49, 885-888.

Kellar, L. A., \& Bever, T. G. Hemispheric asymmetries in the perception of musical intervals as a function of musical experience and family handedness background. Brain and Language, 1980, 10, 24-38.

Keller, J. F., Croake, J. W., \& Riesenman, C. Relationships among handedness, intelligence, sex and reading achievement of school age children. Perceptual and Motor Skills, 1973, 37, 159-162.

Kennedy, F. Stock-brainedness, the causative factor in the socalled "crossed aphasia". American Journal of Medical Science, 1916, 152, 849-859.

Kershner, J. R. Reading and laterality revisited. Journal of Special Education, 1975, 9, 269-279.

Kimura, D. Manual activity during speaking II. Left-handers. Neuropsychologia, 1973, 11, 51-55.

Kinsbourne, M., \& Warrington, E. K. Developmental factors in reading and writing backwardness. British Journal of Psychology, 1963, 54, 145-156.

Klisz, D. K., \& Parsons, 0. A. Ear asymmetry in reaction time tasks as a function of handedness. Neuropsychologia, 1975, 13, 323-330.

Knights, R. M. Smoothed normative data on tests for evaluating brain damage in children. Unpublished paper, March, 1970.

Knights, R. M., \& Moule, A. D. Normative and reliability data on finger and foot tapping in children. Perceptual and Motor Skills, 1967, 25, 717-720.

Knox, A. W., \& Boone, D. R. Auditory laterality and tested handedness. Cortex, 1970, 6, 164-173.

Kocel, K. M. Cognitive abilities: handedness, familial sinistrality and sex. Annals of the New York Academy of Science, 1977, 299, 233-243.

Kocel, K. M. Age-related changes in cognitive abilities and hemispheric specialization. In J. Herron (Ed.), Neuropsychology of left-handedness. New York: Academic Press, 1980.

Kovac, D., \& Ruisel, I. Are monozygotic twins identical as regards lateral preference. Studia Psychologia, 1974, 16, 217-219.

Krashen, L. D. Cerebral asymmetry. In H. Whitaker \& H. A. Whitaker (Eds.), Studies in neurolinguistics, Vol. 2. New York: Academic Press, 1976.

Kutas, M., McCarthy, G., \& Douchin, E. Differences between sinistrals' and dextrals' ability to infer a whole from its parts: a failure to replicate. Neuropsychologia, 1975, 13, 455-464.

Lake, K. A., \& Bryden, M. P. Handedness and sex differences in hemispheric asymmetry. Brain and Language, 1976, 3, 266-282.

Lawlis, G. F., \& Chatfield, D. Multivariate approaches for the behavioral sciences: A brief text. Lubbock, Texas: Texas Tech Press, 1974.

Levy, J. Possible basis for the evolution of lateral specialization of the human brain. Nature, 1969, 244, 614-615.

Levy, J. Lateral specialization of the human brain. Behavioral manifestations and possible evolutionary basis. In J. Kiger (Ed.), The biology of behavior. Corvallis: Oregon State University Press, 1973.

Levy, J. Review of evidence for a genetic component in the determination of handedness. Behavior Genetics, 1976, 6, 429-453.

Levy, J. A reply to Hudson regarding the Levy-Nagylaki model for the genetics of handedness. Neuropsychologia, 1977, 15, 187-190.

Levy, J., \& Nagylaki, T. A model for the genetics of handedness. Genetics, 1972, 72, 117-128.

Levy, J., \& Reid, M. Variations in writing posture and cerebral organization. Science, 1976, 194, 337-339.

Levy, J., \& Reid, M. Variations in cerebral organization as a function of handedness, hand posture in writing and sex. Journal of Experimental Psychology, 1978, 107, 119-144.

Lishman, W. A., \& McMeekan, E. R. L. Handedness in relation to direction and degree of cerebral dominance for language. Cortex, 1977, 13, 30-43.

Marshall, J. C. Some problems and paradoxes associated with recent accounts of hemispheric specialization. Neuropsychologia, 1973, 11, 463-470.

Mattis, S. Dyslexia syndromes: A working hypothesis that works, In A. L. Benton \& D. Pearls (Eds.), Dyslexia: An appraisal of current knowledge. London: Oxford University Press, 1978. Mattis, S., French, J. H., \& Rapin, I. Dyslexia in children and young adults: three independent neuropsychological syndromes. Developmental Medicine and Child Neurology, 1975, 17, 150-163. Maxwell, A. E. Multivariate analysis in behavioral research. New York: Halstead Press, 1977.

McBurney, A. K., Dunn, H. G. Handedness, footedness, eyedness: A prospective study with special reference to the development of speech and language skills. In R. M. Knights \& D. J. Bakker (Eds.), Neuropsychology of learning disorders: Theoretical approaches. Baltimore, Maryland: University Park Press, 1976.

McGlone, J., \& Davidson, W. The relation between cerebral speech laterality and spatial ability with special reference to sex and hand preference. Neuropsychologia, 1973, 11, 105-113.

McKeever, W. F. Handwriting posture in left-handers: sex, familial sinistrality and language laterality correlates. Neuropsychologia, 1979, 17, 429-444.

McKeever, W. F., \& Gill, K. M. Visual half-field differences in masking effects for sequential letter stimuli in the rightand left-handed. Neuropsychologia, 1972, 10, 111-117.

McKeever, W. F., \& Jackson, T. L. Cerebral dominance assessed by object- and color-naming latencies: sex and familial sinistrality effects. Brain and Language, 1979, 7, 175-190.

McKeever, W. F., Van Deventer, A. D., \& Suberi, M. Avowed, assessed and familial handedness and differential hemispheric processing of brief sequential and non-sequential visual stimuli. Neuropsychologia, 1973, 11, 235-238.
McKeever, W. F., \& Van Deventer, A. D. Familial sinistrality and degree of left-handedness. British Journal of Psychology, 1977, 68, 469-471.

McKeever, W. F., \& Van Deventer, A. D. Failure to confirm a spatial ability impairment in persons with evidence of right hemisphere speech capability. Cortex, 1977, 13, 321-326.
McKeever, W. F., \& Van Deventer, A. D. Visual and auditory language processing asymmetries: Influences of handedness, familial sinistrality and sex. Cortex, 1977, 13, 225-241.

McKeever, W. F. \& Van Deventer, A. D. Inverted hand-writing position, language laterality and the Levy-Nagylaki genetic model of handedness and cerebral organization. Neuropsychologia, 1980, 18, 99-102.

Miller, F. Handedness and the pattern of human ability. British Journal of Psychology, 1971, 62, 111-112.

Milner, B. Memory and the medial temporal regions of the brain. In K. H. Pribram \& D. E. Broadbent (Eds.), The biology of memory. New York: Academic Press, 1970.
Milner, B., Branch, C., \& Rasmussen, T. Evidence for bilateral speech representation in some non-right-handers. Translations of the American Neurological Association, 1966, 91, 306-308.

Morris, R., Blashfield, R., \& Satz, P. Neuropsychology and cluster analysis: Potentials and problems. Journal of Clinical Neuropsychology, 1981, 3, 79-99.

Nebes, R. D. Handedness and the perception of part-whole relationships. Cortex, 1971, 7, 350-356.

Newcombe, F., \& Ratcliff, G. Handedness, speech lateralization and ability. Neuropsychologia, 1973, 11, 399-407.

Nie, N., Bent, D. H., \& Hill, C. H. Statistical Package for the Social Sciences. New York: McGraw-Hill Book Company, 1970.

Olson, M. E. Laterality differences in tachistoscopic word recognition in normal and delayed readers in elementary school. Neuropsychologia, 1973; 11, 343-350.

01 tman, P. K., \& Capobianco, F. Field dependence and eye dominance. Perceptual and Motor Skills, 1967, 25, 645-646.

O'Malley, P. J., \& Griffith, J. F. Perceptuo-motor dysfunction in the child with hemiplegia. Developmental Medicine and Child Neuroloay, 1977, 19, 172-178.

Orbach, J. Differential recognition of Hebrew and English words in right and left visual fields as a function of cerebral dominance and reading habits. Neuropsychologia, 1967, 5, 127-134.

Orton, S. T. Reading, writing and speech problems in children. New York: W. W. Norton, 1937.

Palmer, R. D. Dimensions of differentiation in handedness. Journal of Clinical Psychology, 1974, 30, 545-552.

Penfield, W., \& Roberts, L. Handedness and cerebral dominance. In Speech and brain-mechanisms. Princeton: Princeton University Press, 1959.

Petrauskas, R. J., \& Rourke, B. P. Identification of subtypes of retarded readers: A neuropsychological multivariate approach. Journal of Clinical Neuropsychology, 1979, 1, 17-37.

Piazza, D. M. The influence of sex and handedness in the hemisphereic specialization of verbal and non-verbal tasks, Neuropsychologia, 1980, 18, 163-176.

Pirozzolo, F. J., \& Rayner, K. Handedness, hemispheric specialization and șaccadic eye movement latencies. Neuropsychologia, 1980, 18, 225-229.

Porac, C., Coren, S., \& Duncan, P. Lateral preference in retardates: Relationships between hand, eye, foot and ear preference. Journal of Clinical Neuropsychology, 1980,_3 173-188.

Pratt, R. T. C., Warrington, E. K., \& Halliday, A. M. Unilateral ECT as a test for cerebral dominance, with a strategy for treating left-handers. British Journal of Psychiatry, 1971, 119, 79-83.

Reitan, R. M. A research program on the psychological effects of brain lesions in human beings. In N. R. Ellis (Ed.), International review of research in mental retardation, Vol. 1. New York: Academic Press, 1966.

Reitan, R. M. Manual for administration of neuropsychological test batteries for adults and children. Seattle, Washington: Author, 1969.

Reitan, R. M. Psychological effects of cerebral lesions in children of early school age. In R. M. Reitan \& L. A. Davidson (Eds.), Clinical neuropsychology: Current status and applications. New York: John Wiley \& Sons, 1974.

Reitan, R. M., \& Davidson, L. A. Clinical neuropsychology: Current status and applications. New York: John Wiley \& Sons, 1974.

Richlin, M., Weinstein, S., \& Weinstein, M. Development of neuropsychological indices of retardation: Interhemispheric asymmetry of the visual evoked cortical response. International Journal of Neuroscience, 1976, 6, 257-261,

Rife, D. C. Handedness, with special reference t.n twins. Genetics, 1940, 25, 178-186.

Roszkowski, M. J., Snelbecker, G. E., \& Sacks, R. Childrens', adolescents' and adults' reports of hand preference: homogeneity and discriminating power of selected tasks. Journal of Clinical Neuropsychology, 1981, 3, 199-213.

Rourke, B. P. Brain-behavior relationships in children with learning disabilities: A research program. American Psychologist, 1975, 30, 911-920.

Rourke, B. P. Neuropsychological research in reading retardation: A review. In A. L. Benton \& D. Pearl (Eds.) Dyslexia: An appraisal of current knowledge. London: Oxford University Press, 1978(b).

Rourke, B. P. Reading, spelling, arithmetic disabilities: A neuropsychologic perspective. In H. R. Myklebust (Ed.), Progress in learning disabilities, Vol. IV. New York: Grune \& Stratton, 1978(b).

Rourke, B. P. Child clinical neuropsychology: Assessment and intervention with the disabled child. Symposium presented at the Paedologisch Instituut - Amsterdam, Amersfoort, The Netherlands, 1981(a).

Rourke, B. P. Outstanding issues in learning disabilities research. In M. Rutter (Ed.), Behavioural syndromes of brain dysfunction in children. New York: Guilford, 1981(b).

Rourke, B. P. Reading and spelling disabilities: A developmental neuropsychological perspective. In U. Kirk (Ed.), Neuropsychology of language, reading and spelling. New York: Academic Press, 1981(c).

Rourke, B. P., \& Strang, J. D. Subtypes of reading and arithmetic disabilities: A neuropsychological analysis. In M. Rutter (Ed.), Behavioural syndrome of brain dysfunction in children. New York: Guilford, 1981(d).

Rourke, B. P., \& Gates, R. D. Neuropsychological research and school psychology. In G. W. Hynd \& J. E. Orbzut (Eds.), Neuropsychological assessment and the school-age child: Issues and procedures. New York: Grune \& Stratton, 1981(e).

Russell, W. R., \& Espir, M. L. E. Cerebral dominance and handedness. In Traumatic aphasia: A study of aphasia in war wounds of the brain. London: Oxford University Press, 1961.

Saltzman, L. C. Biological and sociocultural effects on handedness: comparison between biological and adoptive families. Science, 1980, 209, 1263-1265.

Satz, P. Pathological left-handedness: An explanatory model. Cortex, 1972, 8, 121-135.

Satz, P. Left-handedness and early brain insult: An explanation. Neuropsychologia, 1973, 11, 115-117.

Satz, P. A test of some models of hemispheric speech organization in the left- and right-handed. Science, 1979, 203, 1131-1133.

Satz, P. Incidence of aphasia in left-handers: A test of some hypothetical models of cerebral speech organization. In J. Herron (Ed.), Neuropsychology of: left-handedness. New York: Academic Press, 1980.

Satz, P., Achenbach, K., Pattisball, E., \& Fennell, E. Order of report, ear asymmetry and handedness in dichotic listening, Cortex, 1965, 1, 377-396.

Satz, P., Achenbach, K., \& Fennell, E. Correlations between assessed manual laterality and predicted speech laterality in a normal population. Neuropsychologia, 1967, 5, 295-310.

Satz, P., Baymur, L., \& Van Der Vlugt, H. Pathological handedness: cross-cultural tests of a model. Neuropsychologia, 1979, 17, 77-81.

Satz, P., Fennell, E., \& Jones, M. B. Comments on: A model of the inheritance of handedness and cerebral dominance. Neuropsychologia, 1969, ㄱ, 101-103.

Satz, P., Friel, J., \& Rudegair, F. Differential changes in the acquisition of developmental skills in children who later become dyslexic: A three-year follow-up. In D. Stein, J. Rosen \& N. Butters(Eds.), Plasticity and recovery of function in the central nervous system. New York: Academic Press, 1974.

Schevill, H. S. Tactile learning, handedness and reading disability. In J. Herron (Ed.), Neuropsychology of: lefthandedness. New York: Academic Press, 1980.

Schlichting, C. The pattern of hemispheric specialization and its relationship to handedness and family sinistrality. Unpublished Doctoral Dissertation, University of Connecticut, 1978.

Schmuller, J., \& Goodman, R. Bilateral tachistoscopic perception, handedness and laterality. Brain and Language, 1979, 8 , 81-91.

Searleman, A. Subject variables as predictors of cerebral organization for language: Evidence from dichotic listening. Dissertation Abstracts International, 1978, 39, (6-B), 3027-3028.

Searleman, A., Tweedy, J., \& Springer, S. P. Interrelationships among subject variables believed to predict cerebral organization. Brain and Language, 1979, 7, 267-276.

Shankweiler, D. A study of developmental dyslexia. Neuropsychologia, 1064, 1, 267-286.

Shankweiler, D., \& Studdert-Kennedy, D. A continuum of lateralization for speech perception. Brain and Language, 1975, 2, 212-225.

Shearer, E. Physical skills and reading backwardness. Educational Research, 1968, 10, 197-206.
Silva, D. A., \& Satz, P. Pathological left-handedness: evaluation of a model. Brain and Language, 1979, 7, 8-16.

Silverman, A. J., Adevai, G., \& McGough, E. Some relationships between handedness and perception. Journal of Psychomatic Research, 1966, 10, 151-158.

Sinclair, C. Dominance patterns of young children, a follow-up study. Perceptual and Motor skills, 1971, 32, 142.

Sperry, R. W., Gazzaniga, M. S., \& Bogen, J. E. Interhemispheric relationships: The neocortical commissures; syndromes of hemisphere disconnection. In P. J. Vinken \& G. W. Bruyn (Eds.), Handbook of clinical neurology: disorders of speech; perception and symbolic behavior, Vol. 4. Amsterdam: North Holland Publishing Company, 1969.

Springer, S. P., \& Searleman, A. Laterality in twins: The relationship between handedness and hemispheric asymmetry for speech. Behavior Genetics, 1978, 8, 349-357.

Springer, S. P., \& Searleman, A. Left-handedness in twins: Implications for the mechanisms underlying cerebral asymmetry of function. In J. Herron (Ed.), Neuropsychology of lefthandedness. New York: Academic Press, 1980.

Stein, G. M., Gibbons, R. D., \& Meldman, M. J. Lateral eye movement and handedness as measures of functional brain asymmetry in learning disability. Cortex, 1980, 16, 223-229.

Strong, R. W. Verbal Fluency Test. Phoenix, Arizona: Author.
Subirana, A. The prognosis in aphasia in relation to cerebral dominance and handedness. Brain. 1958, 81, 415-425.

Subirana, A. The relationship between handedness and language function. International Journal of Neurology, 1964, 4, 215-234.
Subirana, A. Handedness and cerebral dominance. In P. J. Vinken \& G. W. Bruyn (Eds.), Handbook of clinical neurology: dis-. orders of speech, perception and symbolic behavior, Vol. 4. Amsterdam: North Holland Publishing Company, 1969.

Swanson, J. M., Kinsbourne, M., \& Horn, J. M. Cognitive deficit and left-handedness: A cautionary note. In J. Herron (Ed.), Neuropsychology of left-handedness. New York: Academic Press, 1980.

Teng, E. L., Lee, P., Yong, K., \& Chang, P. C. Handedness in a Chinese population: Biological, social and pathological factors. Science, $1976,193,1148-1150$.

Trotter, R. J. Sinister psychology. Science News, 1974, 106, 220-222.

Varney, N. R., \& Benton, A. L. Tactile perception of direction in relation to handedness and familial handedness. Neuropsychologia, 1975, 13, 449-454.

Vernon, M. D. Reading and its difficulties: A psychological
study. Cambridge: University Press, 1971.
Vernon, M. D. Varieties of deficiency in the reading process. Harvard Educational Review, 1977, 47, 396-410.

Warrington, E. D., \& Pratt, R. T. C. Language laterality in lefthanders assessed by unilateral ECT. Neuropsychologia, 1973, 11, 423-428.

Warrington, E. K., \& Taylor, A. M. The contribution of the right parietal lobe to object recognition. Cortex, 1973, 9, 152-164.

Wang, P. L. Interaction between handedness and cerebral functional dominance. International Journal of Neuroscience, 1980, 11, 35-40.

Wechsler, D. Wechsler Intelligence Scale for Children. New York: Psychological Corporation, 1949.

Weinstein, S., \& Sersen, E. A. Tactual sensitivity as a function of handedness and laterality. Journal of Comparative and Physiological Psychology, 1961, 54, 665-669.
Wilke, J. T., \& Sheeley, E. M. Muscular or directional preferences in finger movement as a function of handedness. Cortex, 1979, 15, 561-569.

Willmore, L. J., Wilder, B. J., Mayersdorf, A., Ramsay, R. E., \& Sypert, G. W. Identification of speech lateralization by intracarotid injection of methohexita. Annals of Neurology, 1978, 4, 86-88.
Wilson, S. A. K., \& Bruce, A. N. Neurology. Baltimore: Williams Wilkins, 1955.

Wishart, D. Clustan 1C Release 2 User Manual. London: University College, 1978.

Witelson, S. Neuroanatomical asymmetry in left-handers. In J. Herron (Ed.), Neuropsychology of left-handedness. New York: Academic Press, 1980.

Wolff, P. H., \& Cohen, C. Dual task performance during bimanual coordination. Cortex, 1980, 16, 119-133.

Wussler, M., \& Barclay, A. Cerebral dominance, psycholinguistic skills and reading disability. Perceptual and Motor Skills, 1970, 31, 419-425.

Yamane, T. Statistics; an introductory analysis. New York: Harper \& Row Publishers, 1967.

Yen, W. M. Independence of hand preference and sex-linked genetic effects on spatial performance. Perceptual and Motor Skills, 1975, 41, 311-318.

Zangwill, 0. L. The current status of cerebral dominance. Research Publications Association for Research in Nervous and Mental Disease, 1964, 42, 103-118.

Zurif, E. B., \& Bryden, M. P. Familial handedness and left-right differences in auditory and visual perceptual. Neuropsychologia, 1969, 7, 179-187.

Zurif, E. B., \& Carson, G. Dyslexia in relation to cerebral dominance and temporal analysis. Neuropsychologia, 1970, 8 , 351-361.

## APPENDIX A

## Parent Questionnaire

## QUESTIONNAIRE

Date
Child NAME

AGE $\qquad$ DATE OF BIRTH $\qquad$
$\operatorname{SEX}$ $\qquad$ EDUCATION $\qquad$ SCHOOL $\qquad$

Father
dame $\qquad$ Age $\qquad$ Date of Birth $\qquad$
Countiry of Birth $\qquad$ Education $\qquad$ Occupation $\qquad$
i:muledness (please underline)
RIGHT
LEFT

## hother

 Name $\qquad$ Age $\qquad$ Date of BirthCountry of Birth $\qquad$ Education $\qquad$ Occupation $\qquad$
Handedness (please underline) RIGHT LEFT

Religion $\qquad$
Language Spoken in Home $\qquad$
Family Doctor's Name $\qquad$
Is child adopted?
Is child presently on medication?
Kind?
For what reason?

Number of Children
This child's position in birin order

## CHIIDREN'S NAMES

(1) $\square$ Age $\qquad$ Grade $\qquad$ (Handedness 'underline')
(2) $\square$ Age Grade RIG_ RIGHT LEFT
(3) $\qquad$ Age ___ Grade
(cont'd on next page)


Relationship to child

Please make a complete description of your child's difficulties includin ${ }_{8}$ : the reason why your child was referred to this unit.

Does your child wear glasses?
If so, for what reason?
Is he wearing glasses during the administration of these tests?

Please answer the following questions as fully as possible. If there is not enough room, use the back of the page.
l. Birth waight Comment

## 2. Premature (Underline) Yes No If yes, how many days premature? Comment

3. Difficulty at birth If yes, please comment
". Anemia or jaundice Curment

Yes No
6. Meningitis

Yes No
If yes, what age? Comment
7. Polio Yes No

If yes, what age? Comment
9. High Blood Pressure Age?

Yes No 20. Heart Disease
Age?
Comment

| 11. | Rheumatic Fever Age? $\qquad$ Comment | Yes | No | 12. | Chorea Age? Comment | Yes | No |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23. | Scarlet Fever <br> Age? <br> comment $\qquad$ | Yes | No | 14. | Measles <br> Age? <br> Comment | Yes | No |

15. Abnormal movements, Yes No 16. Other Illnesses sensations
Age? $\qquad$
$\begin{array}{lll}\text { 17. } \begin{array}{l}\text { High Fever (over 104) Yes No } \\ \text { Length of fever }\end{array} & \begin{array}{l}\text { Headaches } \\ \text { Age? } \\ \text { Comment }\end{array} & \begin{array}{l}\text { Frequency } \\ \text { Age? } \\ \text { Comment }\end{array}\end{array}$
$\therefore$ Cona
Yes No
16. Dizziness

Yes No
Duration? $\qquad$
Cause? $\qquad$
Age?
Comment
?l. Lons periods of
Yes No nausea
Age?
Comment
23. Partially drowned

Age?
Comment
Yes No
24.

Dazed or unconscious
Yes No
from sport, fight, fall struck by object, automobile accident. Duration
Age?
Comment
25. Epilepsy or convulsions Type
Frequency
Controlled witn drugs

Tes No Comments
27. Sun Stroke Age? Comment

Yes No
28. Foot, Arm, Hand, Wrist Yes No Injuries
Age? Comments

PLEASE ANSWER ALL QUESTIONS
During imeals
2y. Up and Down at table
30. Interrupts without regard

3]. Wriggling
32. Fiddles with things
33. Talks excessively

|  | Yes-A <br> Little <br> Bit | Yes <br> Very <br> Much | $=$ |
| :--- | :--- | :--- | :--- |
| $=$ | $=$ | $=$ | $=$ |
| $=$ | $=$ | $=$ | $=$ |

B. Television
$34 \cdot$ Gets up and down during program
35. Wriggles
36. Manipulates objects or body
37. Talks incessantly
38. Intermupts
C. Doing Home-iJork
39. Gets up and down
40. Wriggles
41. Manipulates objects or body
42. Talks incessantly
43. Requires adult supervision or attendance
D. Play
44. Is unable to play
45. Inability for quiet play
46. Constantly chanjing activity

4\%. Seeks parental attention
4ठ. Talks excossively
49. Disrupts other's play
E. Sleep
. 5J. Has difficulty settling down for sleep
51. Inadequate amount of sleep
52. Is restless during sleep
$=\square=\square=\square=$

## $=\square=\square=\square=\square=$ <br> 





## -

$\square=\square=$
$=\square=$
——
————n

$$
5
$$

52.Is restles during
Yes-A Yes
F. Behaviour Away Prom Home (Except School) No 53. Is restless during travel Little Bit Much 54. Is restless. during shopping (includes touching everything)
55. Is restless during church, movies —— Much Yes

- Behaviour Away Trom Home (Except School) No
Yes-A Very --
Remark:

56. Is restless during visiting friends, relatives, etc.
G. School Behaviour
57. Op and dow
58. Fidgets, wriggles, touches
二 $=$
59. Interrupts teacher or other children excessively
60. Constantly seeks teacher's attention —
TOTAL SCORE

## PLEASE ANSWER ALL QUESTTOHS

61. Thumb sucking
62. Restlessness, inability to sit still
63. Attention-seekj.ne, "show-off" behaviour
64. Skin aliergy
65. Doesn't know ho: to have fun; behaves like a ijetra aduit.
66. Self-consciousnec:: asily embarrosed
67. Headaches
68. Disruptiveness; tendency to annoy and bother others.
69. Feelings of inferjority
70. Dizziness, vertigo
71. Boisterousness, rowdiness
72. Crying over minor annoyances and hurts
73. Preoccupation; "in a vicrle oí his own".
74. Shyness, Bashfulness
75. Social withdrawai, preference for solitary activities.
76. Dislike for school
77. Jealousy over attention paid to other children
78. Difficulty in bowel control, soiling
79. Short attention span
80. Prefers to play with younger children
81. Lack of self-confidence
82. Inattentiveness to what others say

|  |  | No | Yes-A <br> Little <br> Bit | Yes Very Much | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 83. | Easily flustered and confused |  |  |  |  |
| 84. | Lack of interest in environment, generally "bored" attitude |  |  |  |  |
| 85. | Fighting |  |  |  |  |
| 86. | Nausea, vomiting |  |  |  |  |
| 87. | Temper, tantrums |  |  |  |  |
| 88. | Reticence, secretiveness |  |  |  |  |
| 89. | Truancy from school |  |  |  |  |
| 90. | Hypersensitivity; feelings easily hurt |  |  |  |  |
|  | Laziness in school and in performance of other tasks. |  |  |  |  |
| 92. | A.nxiety, chronic general fearfullness |  |  |  |  |
| 93. | Irresponsibility, undependability |  |  |  |  |
| 94. | Excessive daydreaming |  |  |  |  |
| 5 | l'asturbation |  |  |  |  |
| 96. | Hay fever and/or asthma |  |  |  |  |
| 97. | Tension, inability to relax |  |  |  |  |
| 98. | Disobedience, difficulty in disciplinary control |  |  |  |  |
| 99. | Depression, chronic sadness |  |  |  |  |
| 100. | Unco-operativeness in group |  |  |  |  |
|  | situations |  |  |  |  |
| 101. | Aloofness, social reserve |  |  |  |  |
| 102. | Passivity, suggestibility, easily led by others |  |  |  |  |
| 103. | Clumsiness, awkwardness, poor muscular co-ordination |  |  |  |  |
| 104. | Stuttering |  |  |  |  |
| 105. | Hyperactivity; always on the go". |  |  |  |  |
| 106. | Distrastibility |  |  |  |  |
| 107. | Destructiveness in regard to his own and/others'property. |  |  |  |  |
| 108. | Negativism, tendency to do the opposite of what is required. |  |  |  |  |
| 109. | Impertinence, sauciness |  |  |  |  |
| 110. | Sluggishness, lethargy |  |  |  |  |
| 111. | Drowsiness |  |  |  |  |
| 112. | Profane language, swearing, cursing |  |  |  |  |
| 113. | Prefers to play with older children |  |  |  |  |
| 114. | Nervousness, jitteriness, jumpiness; easily startled. |  |  |  |  |
| 115. | Irritability; hot-tempered, easily aroused to anger |  |  |  |  |
| 116. | Eneuresia, bed-wetting |  |  |  |  |
| 117. | Stomach-aches, abdominal pain |  |  |  |  |
| 118. | Specific fears, e.g., of dogs, of the dark. |  |  |  |  |
| 119. | Seizures |  |  |  |  |
| 120. | Bizarre content of thought |  |  |  |  |
| 121. | Fluctuating performance |  |  |  |  |



## APPENDIX B

## Description of Tests Included in the Neuropsychological Battery ${ }^{1}$

[^4]
## DESCRIPTION OF TESTS

TESTS ADMINISTERED TO ALL CHILDREN (AGES 5-15).

WECHSLER INTELLIGENCE SCALE FOR CHILDREN. (Wechsler, 1949)
Full Scale IQ. A composite score derived from the total scaled subtest scores. Indicative of overall"intellectual" functioning.

Verbal IQ. A composite score derived from the total scaled scores of six Verbal subtests. Indicative of overall "verbal" functioning.

Performance IQ. A composite score derived from the scaled scores of the five Performance subtests (excluding the Mazes test). Indicative of overall nonverbal, "visual-perceptual" functioning.

## Verbal Subtests

Information. 30 questions. Involves elementary factual fnowledge of history, geography, current events, literature, and general science. Score: number of items correct. Task Requirement: retrieval of acquired verbal information. Stimulus: spoken question of fact. Response: spoken answer.

Comprehension. 14 questions. Involves the ability to evaluate certain social and practical situations. Score: number of items correct. Task Requirement: evaluation of verbally formulated problem situations. Stimulus: spoken request for opinion. Response: spoken answer.

Arithmetic. 16 arithmetic problems of increasing difficulty. Score: number of problems correctly solved, with time credit. Task Requirement: arithmetic reasoning. Stimulus: spoken (first 13 items) or printed (last 3 items) question. Response: spoken answer.

Similarities. 16 pairs of words. The most essential semantically common characteristic of word pairs must be stated. Score: number correct. Task Requirement: verbal abstraction. Stimulus: spoken question. Response: spoken answer.

Vocabulary. 40 words. Spoken definition of words. Score: number of words correct. Task Requirement: varbal definition. stimulus: spoken word. Response: spoken definition.

Digit Span. Repetition in forward order of threc- to nine-digit numbers and repetition in reversed order of two- to eight-diait numbers. Score: simple total of forward and reversed digit span. Task requirement: short-term memory for digits. Stimulus: spoken numbers. Response: spoken numbers.

## Performance Subtests

Picture Completion. 20 pictures of familiar objects, each with a part missing. The missing part is identified from simple line drawings.

Score: number of missing parts correctly identified. Task requirement: location of missing part on the basis of memory of the whole object. Stimulus: picture. Response: spoken name of missing part.

Picture Arrangement. 11 series of picture cards. pictures are sequentially arranged to form a story. Score: total credits for speed and accuracy of arrangement. Task Requirement: manipulation of the order of picture cards to form the most probable sequence of events. Stimulus: picturcs. Kesponse: simple motor manipulation.

Block Design. 10 designs. Arrangement of coloured blocks to form designs which match those on printed cards. Score: total score for speed and accuracy of block placement. Task requircment: arrangement of blocks to match a printed design. Stimulus: printed geometric desigr. kesponse: manipulation and arrangement of blocks.

Object. Assembly. 4 formboards (puzzles). Parts of each formboard are to be arranged to form a picture. Score: total score for speed and accuracy of assembly. Task Requirement: spatial arrangement of parts to form a meaningful whole. Stimulus: disarranged parts of picture. Response: complex manipulation and arrangement of parts.

Coding. 93 digits, preceded by a code which relates digits to symbols. Symbols are to be written below digits as rapidly as possible. Score: number of symbols correctly written within a fixed time. Task requirement: association of digits and symbols by direct visual identification or by short-term memorization. Stimulus: printed digits and symbols. Response: rapid co-ordination of visual identification with a complex writing response.

PEABODY PICTURE VOCABULARY TES'T FORM A. (Dunn, 1965)
Picture Vocabulary, Oral Raw Score, Oral IQ. 150 sets of 4 line drawings, with which 250 words of increasing difficulty are to be associated. The words are those of Form A of the Peabody Vocabulary Test. Score: total correct picture-word associations. Task requirement: selection of picture most appropriately related to the spoken word. Stimulus: 4 visual pictures, 1 spoken word. Response: simple pointing response. Oral io is the transformation of the oral raw score to an $1 \Omega$ score on the basis of test norms.

WIDE RANGE ACHIEVEMENT TEST. (Jastak a Jastak, 1965)
Reading. Standardized test of oral word reading achievement. Scorc: centile score based on total number of words correctly read aloud. Task requirement: association of printed letters with spoken word. stimulus: printed word. Response: spoken word.

Spelling. Standardized test of written spelling achievement. Score: centile score based on total number of words correctly spelled. Task requirement: written production of spoken word. Stimulus: spoken word. Response: written word.

Arithmetic. Standardized test of written arithmetic achicvement. Score: centile score based on total number of correct solutions to progressively more difficult arithmetic problems. Task requirement: solution of arithmetic problems. Response: written answers.

OLDER CUILDREN'S BATTERY (AGES 9-15)
TESTS FOR SENSORY-PERCERTUAL DISTURBANCES. (Rcitam, 1965)
Tactile Perception
After determining $\underline{S}^{\prime}$ 's ability (without vision) to perceive unilateral stimulation delivered to the right and left hand and face, unilateral stimulation is interspersed with simultaneous bilateral hand stimulation and simultaneous contralateral hand-face stimulation. The score is the number of errors for each hand and each side of the face under all conditions.

## Auditory Perception

S is required to correctly identify (without vision) the ear to which an auditory stimulus is presented. The stimulus is produced by rubbing the fingers together lightly. Following this determination of S's ability to perceive unilateral stimulation, bilateral stimulation is interspersed with the unilateral stimulation. The score is the number of errors for each ear under all conditions.

## Visual Perception

S is required to identify correctly slight finger movements presented in a confrontation manner to the visual fields. Stimulation is presented initially unilaterally and then simultaneous bilateral stimulation is interspersed with the unilateral trials. The score is the number of errors made within the quadrants of the visual fields.

## Finger Agnosia

S is required to identify (without the aid of vision) the finger which has been touched. Each of the five fingers is stimulated four times in an unsystematic order. First the right hand and then the left hand is stimulated. The score is the number of crrors made with each finger for each hand.

## Finger-qip Number Writing Perception

S is required to verbalize (without the aid of vision) which of the numbers 3, 4, 5 or 6 has been written on his finger tips. A different finger of the right hand is used for each trial until four trials had been given for each finger. The procedure is then repeated for the left hand. The score is the number of errors made with each finger for each hand.

## Coin Recognition

S is required to identify, by tactile perception only, 1-, 5-, and lo-cent pieces placed in his right hand, then his left hand, and then each
coin placed simultaneously in both hands. The order of presentation is unsystematic. The score is the number of errors mate with each hand under each condition.

TARGET TEST. (Reitan, 1970)
S is required to make a delayed response in reproducing visual-spatial configurations of increasing complexity tapped out by the examiner. The score is the number of items out of 20 correctly reproduced.

SPEED OF VISUAL PERCEPTION. (Doehring, 1968) Underlining Lest These tests are intended to assess speed and accuracy of visual discrimination for various kinds of verbal and nonverbal visual stimuli presented singly and in combination. In general, the visual stimulus becomes more verbal and more complex with each succeeding sub-test. The first and the last sub-tests involve the same task in order to permit assessment of practice effect. A short practice item is given for each sub-test.

Single Number. $\underline{S}$ is required to underline the number 4 each time it appears on a printed page containing a random sequence of 360 single numbers. An example of the number to be identified is printed at the top of the page. A short practice test is given. Score: total numbers correctly underlined minus total incorrectly underlined in 30 seconds. Task requirement: locating and underlining a particular number interspersed among other numbers. Stimulus: random sequences of printed numbers. Response: simple underlining response to identify single numbers.

Single Geometric Forms. $\underline{S}$ is required to underline a Greek cross with a pencil each time it appears in random sequence among a series of 235 geometric forms, including squares, stars, circles, triangles, etc. The forms are about 4 " in height. Score: total crosses underlined minus total errors in 30 seconds. Task requirements: as in previous sub-test, but for identification of a geometric form.

Single Nonsense Letter. A single nonsense letter is interspersed among 10 structurally similar nonsense letters in a random sequence of 126 letters. Score: total correct minus incorrect underlined letters. Task requirement: as in previous sub-test, but for identification of a nonsense letter.

Gestalt Figure. The figure to be identified is a diamond about lh" in height containing a square which in turn contains a diamond. This figure
is interspersed among similar figures in a random scquence of 168 figures. Score: total correct minus incorrect urderlined figures in 60 seconds. Task Requirement: as in previous sub-test, but for identification of a complex figure.

Single Letter. The letter "s" is interspersed anvong 360 randomized letters. Score: number underlined minus number of errors in 30 seconcls. t'ask requirement: as in previous sub-test, but for a single letter.

Single Letter in Syllable Context. 162 four-letter nonsense syllables are presented, 47 of which contain the letter "e". S is required to underline each syllable containing "e". Scorc: total correct minus incorrect in 45 seconds. Task requirement: as in previous sub-test, but for a letter in syllable context.

Two Letters. The letters " $b$ " and " $m$ " are interspersed among 360 randomized letters. Score: number underlined minus number of errors in 45 seconds. Task requirement: as in previous sub-test, but for two letters.

Sequence of Geometric Forms. Four geometric forms (triangle, Greek cross, circle, crescent) are presented in various orders for a total of 65 triangle, cross, crescent, and circle. Score: total groups correctly underlined minus errors in 60 seconds. Task requirement: same as in previous sub-test, but for groups of geometric figures.

Four Letter Nonsense Syllable, Unpronounceable. $S$ is required to underline a four-letter nonsense syllable (fsbm) interspersed among l4G four-letter nonsense syllables. All syllables are made up of consonants, which renders them unpronounceable. Score: total correct minus incorrect in 60 seconds. Task requirement: same as in previous sub-test, but for nonsense syllables.

Four Letter Nonsense Syllable, Pronounceable. This task is the same as in the previous sub-test except that it involves the identification of a pronounceable nonsense syllable (narp) instead of an unpronounceable nonsense syllable. This syllable is interspersed among other nonsense syllables made up of the letters $n, a, r, p$. The time limit is 60 seconds.

Four Letter Word. The word "spot" is interspersed among 146 four-letter syllables made up of the letters, s, p, o, t. Score: total correct minus incorrect in 60 seconds. Task requirement: same as in previous sub-test, but for a four-letter word.

Unspaced Four Letter Word. The word "spot" is interspersed among the letters
$12 \mathrm{~s}, \mathrm{p}, \mathrm{o}, \mathrm{t}$, in various orders, with no syllabic spacing. score: total correct minus incorrect. Task requirement: same ass in previous sub-test, but for an unspaced word.

Single Number. This task is exactly the same as that involved in the first sub-test except that the number to be underlined is 5 instead of 4 .

TRAIL MAKING TEST. (Reitan \& Heineman, 1968)
The Trail Making Test consists of two partis, $n$ and $B$. In Trails $A$, $S$ is required, under time pressure, to connect the numbers 1 to 15 arranged on a page. The requirements are essentially similar in lrails $B$ eycept that it is necessary to alternate between the numeric and the alphabetic series. The scores recorded are the number of seconds required to finish each part plus the number of errors made on each part.

MALSTEAD-NEPMAN APHASIA SCREENING TEST. (Reitan A Hoincman, 196日)
Naming (Dysnomia). Five items which require $\underline{S}$ to name familiar objects. Score: number of errors.

Spelling (Spelling Dyspraxia). S is required to spell orally three spoken words. Score: number of errors.

Writing (Dysgraphia). Two items. S is requized to write a word and a sentence which are presented to him orally. Scorc: number of errors.

Enunciation (Dysarthria). Three items. $S$ is required to repeat three increasingly complex words spoken to him by the eximiner. Score: number of errors.

Reading (Dyslexia). Six items. $S$ is required to read numbers, letters, and words. Score: number of errors.

Reproduction of Geometric Forms (Constructional D;spraxia). Four items. $S$ is required to copy a square, a triangle, a Greel: cross, and a key. score: number of errors.

Arithmetic (Dyscalculia). Two items. S is required to solve two problems: one subtraction (written) and one multiplication (oral). Score: number of errors.

Understanding Verbal Instructions (Auditory-Verbal icgnosia). Four items. S is required to demonstrate an understanding of four verbal items. Score: number of errors.

SEASHORE RHYTHM TEST. (Reitan \& Ileineman, 1968)
The Rhythm Test is a sub-test of the seashore Tests of Musical Talent. $\underline{S}$ is required to differentiate between 30 pairs of rhythmic patterns which $\overrightarrow{a r e}$ sometimes the same and sometimes different. lhe score is the number of errors.

SPEECII SOUNDS PERCEPTION TF.ST. (Reitan \& Heincman, 1968)
$\underline{S}$ is required to attend to 30 tape-recorded uonsense syllables and to select the correct response alternative from among three printed choices. The score is the number of sounds corrcctly identificd.

AUDITORY CLOSURE. (Kass, 1964)
S is required to blend into words 23 progressively longer chains
of sound elements presented on tape. The score is the number of words correctly identified.

SENTENCE MEMORY. (Benton, 1965)
S is required to repeat sentences of gradually increasing length (from 1 to $\overline{2} 6$ syllables). These are presented on a tape recorder. The score is the number of sentences correctly repeated.

VERBAL FLUENCY. (Strong)
$\underline{S}$ is required to name as many words as he can, within 60 seconds, which begin with the sound " $p$ ", as in pig. This is repeated with the sound "C" as in cake. The score is the mean number of corrcct words for the two trials.

TESTS FOR LATERAL DOMINANCE. (Harris, 1947; Miles, 1929)
Hand preference. S is required to denonstrate the hand used to throw a ball, hamer a nail, cut with a krife, turn a doorknob, use scissors, use an eraser, and write his name. The number of tasks performed with each hand is recorded.

Eye Preference. $S$ is required to demonstrate the manner in which he would look through a telescope and use a rifle. The eye used for each task is recorded. In addition, $S$ is given the Miles ABC Test for Ocular Dominance, in which (without ordinarily realizing that he is doin, so) he has to choose one eye or the other to look through a conical appartus to identify a visual stimulus. The eyंe chosen on each of 10 trials is recorded.

Foot Preference. $\underline{S}$ is asked to demonstrate the manner in which he would kick a football and step on a bug. The foot used on earch trial is recorded.

RIGHT-LEFT AWARENESS. (Piaget, 1928)
Twenty-six items on increasing difficulty desiqued to assess right-left order and memory with respect to parts of the body and objects arranged before S. Score: number correct.

STRENGTH OF GRIP. (Reitan, 1966)
The Smediey Hand Dynamometer is used to measure strength of arip. S is required to squeeze the dynamometer three times with his dominant hand and three times with his nondominant hand, alternating between hands on each trial. The mean pressure which he exerts on the three trials is recordec (in kqs) for each hand.

VRITING SPEED. (Reitan, 1966)
first with his preferred hand and then with his non-p:eferred hand. The score is the time taken for each hand.

FINGER TAPPING. (Reitan, 1966); FOOT TAPRING. (!aights \& Moule, 1957)
For finger tapping $s$ uses alternately the inder: :inqer of the dominant hand and of the nondominant hand. S is civen four trials of 10 seconds each for both hands. The foot taping test employs the same principles and instructions, but this time $\underline{s}$ uses his feet, alternaiing between the dominant foot and the nondominañt foot. Your trials of 10 seconct; are given for each foot. The score for both finger and foot tanjing is the average of the best three out four trials.

MAZE TEST. (Klove, 1963; Knights \& Noule, 1968)
S is required to run a stylus through a maze which has the blind alleys filled and is placed at a 70 degree angle (on the ractual Performance Test stand). Three scores are obtained: the number of contacts with the side of the maze, the total amourt of time during which the stylus contacts the side of the maze, and the speed (total time from start to finish). These are electrically recorded. There are two successive trials with the dominant hand followed by two successive trials with the nondominant hand. The scores are the totals for the two trials with the dominant hand and the two trials with the nondominant hand.

GRADUATE HOLES TEST. (Kleve, 1903; Knights \& Moule, 1968)
S is required to fit a stylus into a series of progressively smaller holes. S is required to hold the stylus in the centre of the holes for a 10-seconत period without contacting the edge. Two scores are obtained: the number of contacts with the edge of the hole, and the duration of the contact. These are recorded electrically. The test is performed once with the right hand and once with the left hand.

GROOVED PEGBOARD TEST (Klove, 1963; Knights \& Houle, 1968)
S is required to fit keyhole-shaped pegs into similarly shaped holes on a 4 -in. $x$ 4-in. board beginning at the left side with the rioht hand and at the right side with the left hand. $\underline{s}$ are urged to fit all 25 pegs in as rapidly as possible. Ss perform one trial with the dominant hand followed by one trial with the nondominant hand. The scores obtained are the length of time required to complete the task with each hand and the total number of times the pegs are dropped with each hand.

TACTUAL PERFORMANCE TEST. (Reitan, 1966)
This test is Reitan's modification for chilciren of the test developed by Halstead (1947). Halstead's test was based in turn, upon a modification of the SequinGoddard formboard. $\underline{s}$ is blindfolded and not permitted to see the formboard or blocks at any time. The formboard is placed in a vertical disposition at angle of 70 degrees on a stand situated on a table immediately in front of $S$. $\underline{S}$ is to fit six blocks into the proper spaces with the dominant hand, then with the nondominant hand, and a third time using both hands. After the board and
blocks had been put out of sight, the blindfold is removed and $\underline{S}$ is required to draw a diagram of the board representing the blocks in their proper spaces. In all, six measures are obtained. $S$ is scorcd for the time needed to place the blocks on the board with the dominant, the nondominant, and both hands. A fourth measure is the sum of the time taken with the right, left and both hands. The Memory component of this test is the number of blocks correctly reproduced in the drawing of the board; the Location component is the number of blocks correctly localized in the drawing.

HALSTEAD CATEGORY TEST. (Reitan \& Heineman, 1968)

[^5]
## APPENDIX C

Factor Loadings of Subjects in the Left-Handed Sample

FACTOR ANALYSIS OF SINISTIRAL


























|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  <br>  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |






 -0.500000000000500000000000












|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  <br>  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  <br>  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 1111 |  |  |  |  |  |  |  |






 i）










 $0 \cdot 000 \mathrm{~mm}$








 $\because \because N N ー \rightarrow!\sim N O M O \because G \rightarrow ? \rightarrow M O O R J N$ $2 p_{1}=20000000020000000000$














[^6]


MATHIX$x$


 $00002000=000000002020$




 OOOF:OOTOOCNOOOOUOOUO



 111

7V:NDEMHIUO

## APPENDIX D

Factor Loadings of Subjects in the Right-Handed Sample

ROTATED FACTOR PATTERN

FACTOR1 FACTOR2

| FACTOR3 | FACTOR4 |
| :---: | :---: |
| -0.10994 | 0.25843 |
| 0.06493 | 0.01156 |
| -0.18690 | 0.35169 |
| -0.18407 | 0.69926 |
| -0.03240 | 0.07576 |
| 0.37839 | 0.1036 .1 |
| 0.43623 | 0.02097 |
| 0.23298 | -0.06718 |
| -0.22783 | 0.33757 |
| 0.18481 | -0.00342 |
| 0.05372 | -0.11224 |
| 0.08830 | 0.21214 |
| -0.17908 | 0.75022 |
| -0.05492 | -0.29650 |
| 0.30019 | 0.08538 |
| 0.42551 | 0.07150 |
| 0.45517 | -0.14451 |
| 0.02013 | 0.01449 |
| -0.09917 | 0.12449 |
| 0.01389 | 0.11504 |
| -0.05240 | 0.09511 |
| -0.24087 | 0.14284 |
| 0.06254 | $0 \cdot 03638$ |
| -0.04619 | 0.30616 |
| -0.30279 | 0.11599 |
| 0.31195 | 0.08525 |
| 0.31343 | 0.69070 |
| 0.37734 | -0.02002 |
| 0.94571 | -0.18572 |
| -0.29422 | 0.11145 |
| 0.53272 | -0.00730 |
| -0.03044 | -0.16038 |
| 0.46640 | 0.34108 |
| -0.17030 | -0.16035 |
| 0.03487 | 0.04157 |
| -0.16732 | -0.06056 |
| 0.34324 | -0.19450 |
| -0.06707 | 0.22413 |
| 0.86491 | -0.28699 |
| 0.37368 | 0.59445 |
| 0.03020 | -0.09639 |
| 0.22457 | 0.63393 |
| 0.24555 | 0.16627 |
| 0.58453 | -0.14965 |
| 0.01520 | -0.23049 |
| -0.06701 | -0.00487 |


| FACTORS | FACTORO | FACTUR 7 |
| :---: | :---: | :---: |
| 0.26473 | 0.59543 | -0.05114 |
| 0.08635 | -0.00528 | -0.24978 |
| -0.07651 | -0.03832 | 0.15417 |
| 0.09522 | 0.22109 | 0.28731 |
| 0.21085 | 0.28055 | 0.34152 |
| -0.0.2823 | 0.10758 | 0.03791 |
| 0.06593 | -0.14957 | -0.06823 |
| 0.70041 | 0.38003 | $0.10650^{\circ}$ |
| 0.18742 | 0.47059 | 0.46282 |
| 0.05993 | 0.09966 | 0.09859 |
| 0.07980 | 0.35908 | 0.40147 |
| 0.81861 | -0.01047 | -0.11380 |
| -0.09875 | -0.03014 | 0.09039 |
| 0.14039 | -0.16579 | 0.27414 |
| 0.07130 | -0.08239 | 0.23984 |
| -0.16923 | -0.07977 | -0.25120 |
| 0.49820 | 0.36419 | 0.13386 |
| 0.76383 | 0.18171 | 0.19394 |
| 0.24774 | -0.0505s | 0.43190 |
| 0.40616 | -0.04007 | -0.17396 |
| -0.12043 | -0.10907 | 0.42453 |
| 0.05855 | 0.15102 | 0.52360 |
| 0.56310 | -0.13635 | -0.06013 |
| 0.15725 | 0.25773 | 0.03874 |
| 0.22838 | 0.33428 | 0.30367 |
| 0.09210 | 0.42509 | 0.05589 |
| 0.28301 | 0.32801 | -0.13148 |
| 0.79276 | -0.11034 | -0.04545 |
| -0.03227 | -0.04414 | -0.15382 |
| 0.63831 | -0.07506 | -0.01935 |
| -0.24538 | 0.10051 | -0.21597 |
| 0.18319 | 0.31720 | 0.43407 |
| -0.27045 | 0.1933 J | 0.02029 |
| 0.80114 | 0.17708 | -0.02383 |
| -0.00670 | -0.05269 | 0.22611 |
| 0.20720. | 0.38103 | 0.60922 |
| 0.05280 | 0.55774 | 0.25314 |
| -0.13533 | 0.66582 | 0.15926 |
| 0.23579 | 0.25759 | -0.06479 |
| 0.23603 | -0.40215 | -0.04238 |
| -0.34956 | 0.55879 | -0.01098 |
| 0.15413 | $0 \cdot 19127$ | $0 \cdot 10585$ |
| 0.30196 | 0.33242 | -0.01735 |
| 0.49746 | 0.16398 | 0.37448 |
| 0.50101 | 0.03089 | 0.12717 |
| 0.14879 | -0.152.34 | -0.25404 |

MOMーかのNのNのONOーNOODOON？mN



 $\therefore 0000000000000000000000$




 $\rightarrow \rightarrow 00 N N O O \rightarrow-1$ ONOールONOOールー 00000000000000000000000011111




 クMNNOONOONNーONサクロールNMーはO ○OODODOOOOOOD5000000000






| FACTOR1 | FACTOR2 | FACTOR3 | FACTOR4 | FACTURS | FACTIHG | FACTUR 7 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.78760 | -0.29267 | -0.03339 | 0.13231 | 0.14703 | -0.05068 | -0.02444 |  |
| 0.19622 | 0.16489 | 0.06930 | 0.67904 | -0.06614 | 0.33091 | -0.16828 |  |
| -0.14856 | 0.16074 | 0.12438 | 0.18437 | -0.27802 | 0.42315 | 0.51527 |  |
| 0.24015 | 0.26612 | 0.28187 | -0.17160 | 0.60534 | 0.33318 | $0 \cdot 14754$ |  |
| 0.42503 | -0.30703 | 0.13960 | 0.27420 | -0.10004 | -0.22419 | 0.65908 | - |
| 0.18323 | 0.09976 | 0.68207 | 0.13522 | -0.05371 | 0.07196 | 0.34764 |  |
| 0.19963 | 0.03080 | 0.66746 | -0.01683 | -0.02227 | 0.44416 | -0.27405 |  |
| 0.04699 | $-0.12745$ | 0.85635 | -0.28250 | -0.01573 | 0.26710 | -0.07078 |  |
| 0.16163 | 0.81751 | 0.34930 | -0.08997 | 0.02634 | -0.18793 | $0 \cdot 19093$ |  |
| 0.00358 | $-0.20350$ | -0.14470 | 0.04290 | -0.28069 | 0.45402 | -0.05764 |  |
| 0.44891 | 0.00456 | 0.06513 | -0.19049 | 0.44801 | 0.53530 | 0.09513 |  |
| -0.21771 | -0.05099 | 0.78649 | -0.23785 | -0.09397 | 0.29059 | 0.06193 |  |
| 0.44453 | -0.21414 | 0.13129 | 0.09794 | 0.64830 | 0.19392 | 0.24171 |  |
| 0.21289 | 0.48317 | 0.46049 | -0.06013 | 0.31920 | -0.11088 | -0.40749 |  |
| 0.59691 | 0.71907 | 0.20495 | 0.07506 | 0.12151 | -0.00921 | $0 \cdot 12642$ |  |
| 0.15140 | -0.06753 | -0.45369 | 0.44698 | 0.10679 | 0.01879 | 0.10281 |  |
| -0.14575 | 0.82558 | 0.14375 | -0.06655 | -0.17062 | -0.12940 | $0 \cdot 32133$ |  |
| 0.37783 | 0.57456 | 0.12067 | -0.16478 | 0.28797 | -0.43433 | -0.10189 |  |
| 0.81002 | 0.21899 | 0.00662 | -0.06608 | 0.08885 | 0.37594 | -0.01730 |  |
| -0.19418 | 0.26378 | 0.76155 | 0.32332 | 0.16955 | $0 \cdot 08000$ | -0.08451 |  |
| 0.23216 | -0.10792 | -0.33735 | 0.63823 | 0.08476 | 0.15753 | 0.31611 |  |
| 0.30829 | 0.85289 | 0.18671 | -0.23585 | -0.11088 | 0.16299 | -0.07431 |  |
| 0.23482 | 0.88157 | 0.13317 | 0.18297 | -0.04630 | 0.11466 | -0.04433 |  |
| -0.24459 | 0.49804 | -0.21561 | 0.34235 | 0.24127 | -0.03019 | -0.32216 |  |
| -0.15271 | 0.55432 | -0.12922 | -0.20594 | 0.22447 | 0.43261 | 0.03523 |  |
| -0.47240 | -0.29673 | 0.55137 | 0.26632 | -0.16931 | 0.29671 | -0.08526 |  |
| 0.03940 | -0.23115 | 0.23856 | -0.04756 | 0.01453 | 0.21300 | 0.68790 |  |
| -0.00404 | 0.18091 | 0.89697 | -0.03145 | -0.02110 | -0.11917 | $0 \cdot 10171$ |  |
| -0.14501 | -0.25015 | -0.26737 | $0 \cdot 56333$ | 0.19765 | -0.10548 | $0 \cdot 06097$ |  |
| 0.51821 | 0.49234 | 0.15908 | -0.03843 | 0.31116 | 0.30295 | -0.36567 |  |
| 0.17180 | 0.91549 | -0.07555 | -0.16801 | -0.03884 | 0.17220 | 0.01744 |  |
| -0.10981 | -0.03244 | -0.30388 | 0.15869 | 0.26389 | 0.42762 | 0.17085 |  |
| 0.53209 | 0.28283 | 0.10210 | -0.25230 | 0.24705 | -0.08705 | -0.37813 |  |
| -0.12114 | -0.03758 | -0.18625 | 0.52503 | -0.22138 | 0.30845 | 0.50608 |  |
| 0.15547 | -0.05741 | 0.42009 | $0 \cdot 20623$ | -0.04477 | 0.29312 | 0.60391 -0.15512 | $\omega$ |
| 0.19565 | 0.80663 | 0.07011 | -0.39996 | 0.06077 | 0.04271 | -0.15512 | N |
| 0.28704 | -0.06504 | 0.79413 | $0 \cdot 15287$ | 0.15669 | -0.04175 | 0.04751 | $\checkmark$ |
| -0.10663 | -0.04080 | 0.00110 | 0.15580 | 0.09498 | 0.084496 | 0.68390 |  |
| 0.65218 | -0.27965 | 0.01880 | 0.30460 | 0.22938 | 0.12645 | 0.41033 |  |
| 0.47528 | 0.41595 | 0.10613 | -0.11856 | 0.65816 | 0.04307 | -0.12352 |  |
| 0.77595 | 0.15138 | -0.22083 | 0.05043 | 0.00140 | 0.35740 | 0.11682 |  |
| 0.67324 | -0.31327 | -0.13000 | 0.16044 | 0.24175 | 0.10516 | $0 \cdot 02759$ |  |
| 0.05672 | 0.25290 | 0.93077 | -0.11886 | 0.12906 | -0.01627 | -0.15354 |  |
| 0.57715 | 0.47197 | 0.00956 | -0.33103 | 0.17081 | -0.08781 | -0.25453 |  |
| 0.44859 | $-0.12275$ | 0.44150 | $0 \cdot 03231$ | $0 \cdot 25143$ | -0.46380 | 0.02303 |  |
















 \＆NMーONONGOWMIMONMHMNWNON


ロのゅMNMNMNONいのルMのかー－MMDNー －$\ddagger$ OONONOOUNNON甘のनーNMいMい

 OM－1－O－0ONNNNUMm－00MmNOON


N\＆NホのMのルONいいOONONON\＆NOーッ


 जMOOUOONONMOHDOOM\＆OHOWNO



 ○NかれMNMい\＆ $\rightarrow-00 N \mathrm{~N} \rightarrow \mathrm{OH}_{-1-1}+\mathrm{O}+00+N+000-0 \mathrm{~N}$





 000000000000000
FACTOR ANALYSIS OF DEXTRALS




MローペいのNーNへONDいMNOMM

 ーNOOOOーONーーーNOOOJONNに －OODOOOOOOOOODOOOOOOO



 $\rightarrow$－HONOMOOMMーNONOMホNM OOOOOOOOOOOOOOOOOOOOO


 サMーHOMn NHMOONONOH20O 000000000000000000000








 $\therefore 00000000000000000000$


 ひNかNONは いクロMーMN －000000
－2010：0020 No oman mNNTO
NOSNNOO
 $\therefore 00000$

の Mーコーのホの MOOMNーロ －000のば nのロースのNm さNコーロホー OOOQOOO
＊－NOOM』M －ロ ロ ○ ロ か ーのはなMO～
 －000000 1

M DONONOO うOいいうOな がかけへのが －NかなONに ャロ๙ロローロ －OOOOOO 111

－NMO～O\＆ル OMn0～o a かNNMーのM かOMnनール ナナM\＆ナNN －000000 1

## APPENDIX E

Four-Cluster Classification Arrays produced by Group Average, Centroid Sorting, Group Average Relocate, Centroid Sorting Relocate, Group Average Relocate (Random) and Centroid Sorting Relocate (Random)


Group Average Relocate（Random）
$N m m \omega N$ niv

ハNMルッッール

n
m n n
$m m \sim N m N \pi$
ツーNルーがが

－mmNLNWm
HNHmmmum
$n m \pi n m \sim n$


－un

MNN：moners，
ルレル
$--m m \in-u m$
Centroid Sorting

のぃmmぃn $n \rightarrow m$
Nの円のNNWか
HunnNmmum


Mm－$\quad$ Funn

Centroid Sorting Relocate


Centroid Sorting Relocate（Random）

NNmmmesm
rvNNぃmNeか
$\square-m m \omega-\omega m$
$10 \mathrm{~N} \omega 1 \mathrm{~nm}$
$r m$


$N$ ロmFRmN
$m-m N-N W N$



# APPENDIX F <br> Sinistral Split-Sample Validation Results 

TABLE 1

## I Score Means and Standard Deviations of Variables for Each Cluster Group for Sinistral Split Sample 1

## Clusters

## Cluster 1


iv

29


STANCARD
DEVIATIGN
1507．30263517
6． 30012507

2C．83622037
14.52054454
－9．9ご246770
B． 200 COS 17
10．219ごプ30
1C． $32 \mathrm{CB710<0}$

10．330373
12.65155002

15．71513ESE
17．：1321214
$9.05 \% 17377$
10．3F 3EUXGO
9．926 こ107
11.9114 .3225
$8.747 E 2540$
e．352E5079
$G .18513764$
$9 \cdot 18313764$
$1 \varepsilon .29852829$

## Cluster 2

iv


14

|  |
| :---: |
|  |
| ¢S．J235714？ |
| ヒ3．1くさを6714 |
| 44.7 ci 42cら7 |
| 44．32214 20ic |
| 44．29642457 |
| 55．47642どう |
|  |
| 4どう714くどう |
| $4 \mathrm{C.OEら2}$ |
| 44．771420゙ら7 |
| $47.4235714 \pm$ |
| ぢ007714200 |
| 50.49500000 |
| 4E．79857143 |
| 40.50 ¢5 143 |
| 32－62357143 |
| 2E．79500000 |
| 50.69142257 |
| 43．65571429 |

STANCARU
DEVIATIUIV

7．21095065
10.710 © 1 ¿と9
15.67690191

1 Ј．7g5た15ヶ4
7．24543250
E．351612け7
7．59E79472
9．10215：3435
G． 0004 2595
E．4GSE1635
8．001コ1234
21．0日4Ei255
11.02141912

13.45141443

11． 1 179C8172
12.41120774
22.64544431

22．21755777
G． 75670374
12.39533207

## Clusters

## Cluster 3

VARIAESLE

NFILE：
INFい
CEMF
SSPE：R
AUUCLO
ARITH
DIEITS
c（i）Irse
FICCC：1
BLKUFS
コロコンS
TARGET
FAGTim
FTIVR
TPTOT
thtnut TAFPR

PEGSHT
PEGSLT
CATTUTT
TRSUT
iv

31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
$=1$
31
31
31
31

$$
\begin{aligned}
& \text { Mrind }
\end{aligned}
$$

4．3．441012け0
$44.30161 \approx 50$
41.14000005
4 \＆．2日コロ 7057
42.53004516
44.73000000
45.35451013
$51.2912903 ⿺$
37.59838710
$0.5 \mathrm{FS1E12G}$
$2 \ddot{4} \cdot 4903205$
$4 \mathrm{c} \cdot 4$ 483 4710
$47 \cdot 12$ ：コヒ71 ن
51．216451《1
4 ※． 31774194
42•5とUG6774
41．jミ705t77

## Cluster 4

VARIABLE
NF：LE
（ NF
CCMP
5S：～．
Aしいこに曻
AF111－
じっこ丁，
Coid
－！CCCOM

じルコンS：
TAFBit
Fの日には
FTbが

TPTNDT
TAPF
TADL
PEGSIRT
PEGSLT
cattut
TRSITT

N

180の．2714cと57 40.752 s 5714 4！．2うとっ 7143 GN． 29571429
 $\therefore \therefore 1000000$
 SO． 47428 ⑦1 51.90571429 0.66571429 －． 3 عCOOOCO دと．© 2000000 ち4．2000C000
 5ミ． 3028 c 714 57．27571429 50.54571429 4 E．UG57142す 67．0－42E571 $5 \varepsilon \cdot 0+142$ どヶ 7 55．5ジ571424


| Ais |
| :---: |
|  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

STAincarod DEVIATION

| $\begin{array}{r} 977.07739842 \\ 6-23505542 \\ 8.95=535 E \end{array}$ |
| :---: |
| 17.006 ć9á2 |
| 7.33877003 |
| 8.37942003 |
| 10.52000142 |
| E．658こ22\％ |
| 7．96959728 |
| 9．2958749 |
| 13．87207724 |
| 3E．012937．37 |
| 44．261E2S98 |
| $13.20 \leq 15545$ |
| 12．©i．u こうこ60 |
| 12.03710910 |
| $15.310 \mathrm{CJE:14}$ |
| 1ヶ．011．うこ35 |
| 1サ．37＊ここ182 |
| 8．7J0ここさせ3 |
| 7．334 ¢ こら66 |

6－23505541
8.95 ปЕdecz
14.65142041
7.006 ć9ás2 －3794う003
10.52000142 E．658こ22ッ1 7．969557ट8 9．2．25ع749
13．87207725
に．012ヶ37，


1E．310Cue：：
1 c－010．0235
8．7J0 ごここと
17．3346es66

## STAINCATO deviaticin

12C4．529ヒケ874 ら．9つシ4ち7ら4
10.33 .351000
6.19413125

12．171Cタコ7

11．574を！5ロ2 F．$\because=3291196$ $\therefore$ •cヒラこ1767 t：•－67EつO4：
 シ．リッフ70739 0．03000000 $4 \cdot 45150574$ 7．01054．37i 6．476C1435
10.51957443 5．7772352』 1月．40t104Est
11．4495351 $8.030 c 4351$
7.40563480

N．B．The four cluster solution listed on this table represents the results of both the Group Average and Centroid Sorting Methods， since identical solutions were generated from each．

TABLE 2

# I Score Means and Standard Deviations <br> of Variables for Each Cluster Group <br> for Sinistral Split Sample 2 

| Clusters |  |  |  |
| :---: | :---: | :---: | :---: |
| Cluster 1 |  |  |  |
| VARIABLE | N | MEAN | STANCARD OEVIATION |
| NFILE | 27 | 1992．94444444 | 1666．E15çel？ |
| 1030 | 57 | 44．50740741 | 6.34753047 |
| cc．ar | 27 | $45.6414 E 143$ |  |
| SSルも゙R | 27 | 37.09851852 | 16.79505225 |
| AUJCLU | 27 | 51．37555556 | 17．03220599 |
| AR I 7 H | 27 | 4 E． 70444444 | 7.00023475 |
| DIEITS | 27 | 45.43222222 | S． 077 ¢ 6367 |
| cursims | ？ 7 | 47.16037037 | 9．94445515 |
| HICCL： | －7 | 94．44こ7C：70 | 8．72151455 |
| ひしべけES | $\div$ |  | $8 \cdot 2.3072$ Eti |
| CibJaj3 | 27 | こた．UGどイゼ， | 6．4 2072651 |
| tairciet | 27 |  | 12.77754709 |
| FAGNK | 27 |  | ＝7．664 12.54611611 |
| F：Tinh | 27 27 |  | 12.54611611 10.113 13216 |
| TPTOT | 27 27 | $4.604 C 7407$ $4.020 \leq 7537$ | 10．969C2e？ 4 |
| TABM | 27 | ＋E．3こUOCCOE | 9．4926： 750 |
| TAつL | 27 | 4－．3こUOCOOJ | 12.63740145 |
| PEESRT | 27 | ＋1．dSEEが吅\％ | 17．92¢20225 |
| PEGSL．T | 27 | 42.7244444 \％ | 16.742 E9385 |
| CATTOT | 27 | EC．is902S63 | 9.23555774 32.26898326 |
| TRSET | 27 | 29．32\％¢ESc3 | 32．2689832t |

## Cluster 2

VARIABLE

NH：IL．
INF：
COMO
S Sットに
ヘソンでレに
AWIIF
DIGITS
COU1T：G
riccom
HLKOES
CESJASS
TARGET
FAGNF
FTbry
TジTOT
TPTNDT
TAPF
TAPL
PEGSRT
PEGBLT
CATTOT
TRSET
$N$

$$
\begin{aligned}
& \text { 207C.2ラ750UJC }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \therefore .42020 j 00 \\
& \text { a 2.7a!ccoou } \\
& \text { 44.107ッしうい」 } \\
& \text { 4モ.0』25CJU0 } \\
& 45.10750000 \\
& \text { 52・シ17シンうつう } \\
& 5 \text { C. 3ココ75000 } \\
& 50.83250000 \\
& 44.71250000 \\
& : 1.00000000 \\
& \text { is 0.177375000 } \\
& 54.47500003 \\
& \text { 54. 34250000 } \\
& 48.31000000 \\
& 45.1512500: \\
& 4 \text { C. 35875000 } \\
& 44.70250000 \\
& 51.0 \text { を } \ddagger 75002 \\
& 45.97250000
\end{aligned}
$$

STANCARO DEVIATIJN
515.063585 S2

4．03510073
$5.0377 \% 412$
ヶ．07もミ10：31
$11.490^{\circ} \mathrm{c}=6$
4．272cj307
5．35こと2432
G．55443913
7．35019819
7.50715202

6． 60747574
14.53110429
11.85028224 ¢．11726610 3．ふO7E1152 ع． $391 c \in 735$ 5．もごGOG217 6． 02644145
14.93028 こ21 6．07C42929 7．d33c1510 4．75225586

## Clusters

## Cluster 3



N
M－A：
 $44.3473200 \div$ SC．2SOCOこO： 4 2．615 5 도17 $4 \varepsilon .7900 \operatorname{cou}$ 43.47 民ら́ 565 $44 \cdot 927351310$ $45.2750 \leq 217$ 51．7 591 こU4～ 51.53347320
 54．792cct70 5Е．04．34742e 13．43735130
 42 － 5 \＆ 735130
 4E．5E7ご130 4 4．51652174 $42.867: こ 00$ $45-41 \in 050 \subset 0$ 34．255：ごく17

STANGARD DEVIATION
 6．05594964 3．68733449
15.05820701
14.00310164 E． 3932679 2 e．520EO354 G．4UJ00752
1 C．91179333 8.21003202 G． 26044655
16.03510388

5．10223802
41.4 以 17153 6.47651263
23.11554539 14.13572374 14.01083675
14.27142052 12．5引EE1O31 9.55563951
21.03932375

## Cluster 4

| VAIRIABLE |
| :---: |
| NFILE |
| I：N：U |
| CCOM |
| ららアには |
| AuJCLO |
| A＜ITM |
| 1）EITS |
| CCJING |
| トごくご |
| 3Lくけご， |
| Ci？JSS |
| TA×心E7 |
| facivid |
| ¢ 7 ：18 |
| T－P1／T |
| tativot |
| 1 A ご： |
| Tが宜 |
| みだられT |
| P：¢GLT |
| CATTOT |
| TRSBT |

iv


MEA．V

25G5．G7：3727
 4 स． 7 ？ 7273




 ち6．21191＝10 55．0いの日）（0）
 50．072．2127」 51.54 \＃4与 3.701 9151：3 53．4こらヨコラロッ 52.19409051 52．79ラときもうこ 46.951 E131＂ 5C．9590G0cil 4 4． 6113 E364 $51 \cdot 12000.000$

STANCARG）
UEVIATIUN
1765.37645909 7.51 ث24545 C．571三：42：24
22．203E5001 14．91733751 6.55053494 c．011．20457〔．3942ラ4？ E．94454－© 6． 95430035 8． 376 cis125 7．59こ5 7710 15． 380 C 342 C
10.63135194
 7．19829847
11.03726917
10.47211292
13.47960320
$11.2 e 17201 H$
3.47670190

21．13133037

N．B．The four ciuster solution listed on this table represents the results of both the Group Average and Centroid Sorting Methods， since identical solutions were generated from each．


Figure 1. Plot of I score means for Cluster 1 of sinistral split sample 1.


「igure 2. Plot of $I$ score means for Cluster 2 of sinistral split sarple 1.


Figure 3 . Plot of I score means for Cluster 3 of sinistral split sample 1.


Figure 4. Plot of I score means for Cluster 4 of sinistral split sample 1.


Figure 5. Plot of $T$ score means for Cluster 1 of sinistral split sample 2.


Figure 6 . Plot of $I$ score means for Cluster 2 of sinistral split sample 2.


Figure 7. Plot of $I$ score means for Cluster 3 of sinistral split sample 2.


Figure 8. Plot of $I$ score means for Cluster of sinistral split sample 2.

## APPENDIX G

Seven-Cluster Classification Arrays produced by Group Average, Centroid Sorting, Group Average Relocate, Centroid Sorting Relocate, Group Average Relocate (Random) and Centroid Sorting Relocate (Random)



$\infty \infty=\backsim \infty \mathrm{mND}$
nin $\boldsymbol{\sim}$ $\infty$ シルnñルのカールーゴロ

NormmNo＝
$\infty \infty \times m=m n \infty$
m＝ーテmmNN
$\infty \leftharpoondown=\backsim \vdash m=\square$
$N N \infty N \sim+\infty$
$n m=n \rightarrow m N N$

NNMm－NNN
ommininin -N
nNmonn＝n

चmmNNNN



$$
r=-r=-m N
$$

Centroid Sorting Relocate
$ー \infty N=\rightarrow$－
 ョrNイルコロ いNNのNコト

जinrrnir


$m=\rightarrow \infty \infty \infty$
$r-\exists m \ln r$

「ゴートー・

「ールーNかめ

## APPENDIX H

## Dextral Split-Sample Validation Results

# T Score Means and Standard Deviations of <br> Variables for Each Cluster Group for Dextral Split Sample 1 

## Clusters

## Cluster 1

VABIABLE
N

NFILE
I ivi＝ن
Ci．Mi
SらつE\＆，
AUつCLO
Aid ITHi
DIU1TS
COOI ：ic
Piccoim
！し K U ご
〔いうからす
TATGBT
1 シ．．小い
1－T：n
7ッ「！
Tistiver
TAr：

PG：SにT
JE゙らLT
cattut
Tにないた
$\begin{array}{lll}1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & i \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \\ 14 & 4 \\ 1 & i\end{array}$
$4 \div .285714$ 2
$\begin{aligned} & 44.04042457 \\ & 31.7235714 .\end{aligned}$
4 i．1．3000000
54.04755714
50．1ン0714ご
Se．©0ラ00000
$4=.2 \leqslant{ }^{2} 1425 \mathrm{H}$
うごく1442E57
－2．16こ14ことか
34．90714て0と

## sTANCAfD DEVIATIUN

④7．20コ2279を
7.44450637

4．745424c5
15．5455 तं520
9．21うと1153
5．G3～C0 73 3
6．0773シ1 こ 2
a． 13353166
$1.109 E 7553$
9.32425959

10．396421c5

1このちら心4 3 78C

 $5 \cdot 07163488$ S． 69777705

 8－857 $2754 \frac{2}{3}$

## Cluster 2

| $\checkmark$ A．：i Mi！ | 1 | MEA： | STANUGズ̈ ふとVIATIGN |
| :---: | :---: | :---: | :---: |
| ． | 1.4 |  |  |
|  | $1 \%$ |  | C．11，－\％ 7 ， |
| i． 1 | $1 \therefore$ | $4 \therefore \because \because: \therefore 14=6$ | 7．0．tara |
|  | 14 | 4 ¢00？ | $16,52 \mathrm{EDO}+$ |
|  | 14 | ¢3．350 couou | 14．05254111 |
| Ab： 11 | 14 | 4 4．810UGUVO | 60．250314．73 |
| （）10： 5 | 14 | 44．65こ2E571 |  |
| C．．．1 \％ | 14 | $4 \pm .0542 c 57$ | 13．496567－3： |
| －16：3 1 | 1：4 | ふこ．09E714¢！ | 3．40゙ア7j314 |
| －L－．1： | 14 |  | 1う．415cıご |
| wasays | 14 | 54．04732714 |  |
| insat | 14 | こ5． $514 \pm$ ES 71 | 15.553 こ012t |
| Faciord | 14 | 52．42357143 | 8．93472452 |
| F．Tion | 17 | 3¢． 3 こ2c5714 | 1 E .225 Es 7 C 2 |
| T：つTコ1 | 14 | 51.037 こE714 | 6．21925004 |
| T13T10） | 14 | $46.63=71429$ | 9．5634 3723 |
| 7 AiPs： | 14 | うこ．ここつ00000 | 12．523070c7 |
| 1 APL． | 14 | 3¢．ご7000000 | 11．35175184 |
| WEGSQT， | 14： | ．．こ． | $15.0 .84 .598=7$ |
| ¢EGSLT | 14 | 7．77E57143 | 22.75529257 |
| CATTCT | 14. | 49.09500000 | $7.13753167$ |
| TRSET | 14 | 42.97000000 | 12.777745 分こく |

## Clusters

## Cluster 3

| VATXIAGLE | N | MEAN | Standard DEviATion |
| :---: | :---: | :---: | :---: |
| NFILE | 11 | 1377．05454545 | 7E2．104E5975 |
| 1： | 11 | $41.6101+102$ | 0．21）35794 |
| CC．？ | 11 | 44.24272727 | B．03598592 |
| SStrot | 11 |  | 21．94463407 |
| atucti | 11 | 34．1963 536.4 | 15．22\％19779 |
| AEITH | 11 | 42.73000000 | 8.6695169 |
| 01G1TS | 11 |  | 12.11032647 |
| CODING | 11 | 5J．941E1810． | 12：00238211 |
| PICCC： | 11 | 50：00000000 | 5.57813230 |
| OLK）ES | 11 | 40.06090907 | 5.33919905 |
| 6：3Jajo | 11 | 52．12191819 | 3．59953002 |
| 74．069 | 11 | 37.11636364 | 13.30791940 |
| FAspl： | 11 | 41.27292727 | 1 c －73571969 |
| FT．． | 11 | －11．3634545\％ | 3¢1．5565\％091 |
| Tッ\％ア | 11 | 40.63454545 |  |
| TET：UT | 11 | $4 \%$ 01727273 | 12.33367431 |
| Tniri | 11 | 50.04505091 | 10．225550i3 |
| －A | 11 | 33．0＇31：11：313 |  |
| pせらう．it | 11 |  | ¢．23637309 |
| W¢\％sir | 11 | 4 ¢．0．3727？ | $\mathrm{rj}_{5}$ E1415902 |
| citloit | 11 | 47.3436 .3 ¢） | 7．j0r3tyes |
| 70， 9 | 11 | 4 ¢．Jこ2727く7 | 10．55こと7ç4 |

## Cluster 4

| VAs： 1 AtL | N | H：A：${ }^{-1}$ |
| :---: | :---: | :---: |
| $\because 1 .:$ | 12 |  |
| 1 ＇ir＇， | 6 | 49.443533 .1 |
| Cこ．： | 6 | う0．0こコことうご |
| S Siz： | 6 | $j^{\prime}=15 \therefore 33333$ |
| 心」入しょ | ． | 73.1 ：cciector |
| 或1711 | ＇ | 47.7 yOUCU |
| ，iji $\mathrm{T}^{\text {\％}}$ | 1. | 3－3333 3.3 |
| C．．11：． | $i$ | ＇t：－11 j S 3 S ： |
| 1．16： |  | 41．ilictic！ 7 |
|  | ， |  |
| 1！！．j $\therefore$ ， | ． |  |
| T $\wedge=\cdots \cdots$ | ¢ |  |
| TAn时 | $u$ |  |
|  | $i$ | $\because 5 \cdot 7+530000$ |
| TOTij T | 0 |  |
|  | 0 | S4．34うこ0J5j |
| TArn | 6 | $44 \cdot 3650000$ |
| TAدL | 0 | 57－37،333． |
|  | － | \％－ 373 COJJ． |
| $P$ PGSLT | 6 | 35．05500000 |
| CATTUT | 0 | 51．j26ć6u7 |
| TRS．3 | $\dot{4}$ | 34.1200000 |

STANCARU deviaticn

C13．07442ツ17
5.34 .221552

ㄴ․ $57 \leq 1-330$
10.25505540

－．34ミ．4 J0ッ
$5 \cdot 1!2.250445$
a．$\therefore 7 . \therefore \therefore \because: 3$
11．Ju7 $7: 10 \mathrm{C}$
$12.213 \div 5: 4$
$12.54712 \because$
10．7．37：うジー

7．7751＇557
9．327こ9353
1．2301773：
5．06C24ごさ4
7．000910430

10．51656552
9．0860ゥ772
¿．27271902

## Clusters

## Cluster 5


id


STANDARD コニVIATICN

1955．32201756
5．0゙2094071
10.43727505
$17.971=3030$
10.55514402
0.55514402
7.43143007
7.43143007
$9: 58341473$
7：631 10104
9.23840758

12． 66859892
$11.04 \% 13015$ $20.765 C 1131$
16．04245304 0.13515606 c． 53040111
12.3 ©゙4 $4+059$
？． 33510641


－31172ご9！
$1: 0.30012910$

## Cluster 6

VAIAムHLE

NFIL：
15 Cl
CLIM
s心．．．「。
$\therefore$ ：Cいー
が泣：11
1） $1: 111$ j
C．．．＇l•：
$\because i c i t$
1：しく！！

ヶ！いった
FAnsi．
riní
TコT：
THリN：
TA． 2
TAML
以たGB：
PE心SLT
CATTUT
TRSET
iv

16
16
10
$1 i$
1 c
$1 』$
1 1t
11
1

10
10
10
1－
耍
1 ij
10
10
16



1t je．0050050J
16 57．201 $57 E 00$
 $42.5176: \therefore 00$ $4 \begin{gathered}4 \\ 5\end{gathered}$
 4 4．こクほど心ごい $4 シ .1256<500$

 54.24000000」3．93：575000 5 c .935000100 4天．くもき75000 くこ．42000000． 47.51002500 52．2边ごこ000 ！ic．c：56a7．200

STA．．$\because$ かiか LLV：ATION
$2105.4534 \therefore 502$


11．27350652 9．11～ら7316



12．23c4404：


$10.25 \div 955 j 2$
5．403こ4041
8． 7 © 2.3340 6． 390 ご0046
$\epsilon .351$ E61；
1C．90ざがづコ 9.40464341

1C．72061905 8.79715626 5．00025654

TABLE 3 （cont＇d）

|  | Clusters |  |  |
| :---: | :---: | :---: | :---: |
|  | Cluster 7 |  |  |
| VARIABLE： | $N$ | MEAN | STANDARD ．UEVLAIION． |
| NFILE | 2 | $455.65000000$ | $122 \cdot 25975247$ |
| INHO | 2 | 55.00000000 | 2． 30173065 |
| C0．41 | 2 | .50 .00000000. | － 4.7 .0953116 |
| SSiPal | 2 | 52.65000000 | 0.94594949 |
| AUJELO | 3 | 4E．5\％000000 | 10.69145453 |
| AFITH1 | 8 | 61.67000000 | 7.07100731 |
| UISITS | $?$ | 60.03000003 | ． 4.70933116 |
| COIING | $\stackrel{\rightharpoonup}{2}$ | 46.6000000 | 4．71040223 |
| PIGCLM | 2 | 35.00000000 | 2.36173065 |
| いしにけ！S | i？ | コع•3．3500002 | 11.78747004 |
| U13へ53 | $\stackrel{\square}{2}$ | 40.00000000 | 0.00000000 |
| TAR「云T | $\underline{\square}$ | ちi）．185CCOUJ | 0.61513230 |
| FAらけ | 2 | 62.0500 .00 J | 11.31370 350 |
| F7 \％ | 2 | 46.21511000 | L心．73721751 |
| Ti T J T | $\because$ | 4－6．5Jこ心うこう | 1J．54．1．こう3 |
| tiretot | 2 | 4．4． 51000.003 |  |
| T A $\rightarrow$ ！ | $\because$ | $\therefore=.35 E 0000$ | 4．154ヒうら54 |
| $\bar{\therefore} \cdot L$ | － | 4－－ 200000 | O．57．3c＜${ }^{0} 56$ |
| PEGSNT | \％ | $42 \cdot 25200000$ | $12 \cdot 841005915$ |
| PEGSLT | 2 | 47.1330000 | 13．5552j700 |
| CATTAT | 2 | 55.52500000 | 4.03000613 |
| TRSいT | 2 | 5\％．14000000 | 0.00000000 |

N．B．The seven cluster solution listed on this table represents the results of both the Group Average and Centroid Sorting Methods，since identical solutions were generated from each．

# T Score Means and Standard Deviations of Variables for Each Group Average Cluster Group for Dextral Split Sample 2 

## Clusters

| Cluster 1 |  |  |  |
| :---: | :---: | :---: | :---: |
| VARIABLE | is | －1ビッ | STANCARU JEVIATION |
| iffl！E | 10 |  | 305． 5 5076めdく |
| 1 $\mathrm{N}_{\text {－}}^{\text {：}}$ | 16 | 4：1．7－9000J： | 4．70 ¢ ¢97yi |
| （ 3.15 | 10 |  | 7．7ヶl2̇136 |
| S3：3E： | 16 | 13．4．2625000 | 23．20133635 |
| AvOCLu | 16 | $35.4512 \leqslant 000$ | 14.75743734 |
| Asitit | 14 |  | 0．74517704 |
| ！1：177S | 12 | －+7.75006000 | 7.034 E 7300 |
| Cu， | 16 | $\therefore 7.70 ¢ 37500$ | 10．730U5353 |
|  | 10 |  | 12．10ヶ」コ3さ4 |
| $\cdots$－$\because 6 \leq$ | 10 |  | G． $01.1+045$ |
|  | 10 |  | $10.11 \%$ ¢3125 |
| フ分！，旨T | 10 | 44.05125002 | 9．07487072 |
| FABin | $1 \%$ | C．2500000． | $=0.93972635$ |
|  | $1 i$ | 40.67062500 |  |
| SPT：T | 10 | 47.33 .375000 | $13.4930598 \%$ |
| Tッじい | 10 |  |  |
| TAM， | 10 | 51.77375000 | 3．5うG17004 |
| TA以！ | 10 |  |  |
| リごらい1．T | 10 | $53 \cdot 175 ¢ 2500$. | 1う．4535うごら |
| Hegsit | 10 | 40.70125000 | 13.29530989 |
| cittot | 10 | $52 \cdot 1: 3312500$ | 4．17775000 |
| TRSET | 10 | ：32．2712500才 | 14．25412403 |

## Cluster 2


1.1
 $1:$

30 －5507もみかく 7． $70 \div 597$－ 7．7ビにう130 23．20133635 －757＋3734 7.0 .34 E 7300 10．730Uラシ53

G．J1！ $1+645$
10．11 ことシ115
$=0.93972635$
15．20969517
$13.4930558:$
※．

13.29530989

14．20412403

| 11： $0 \cdot \mathrm{v}$ | stanliado LEVIAT1C： |
| :---: | :---: |
|  |  |
|  | 4．35：55096 |
|  | 8． 47.950746 |
|  | 1：3．1？ 320370 |
|  | $11.13 \pm 6541 \%$ |
|  |  |
|  | ＿E．JE154 ${ }^{\text {E }}$ |
| 4 4 ¢＇t6076523 | 10.164 EBEO5 |
| 勺ذ． 7401508 | 11.52561772 |
| ¢ごー717092J1 | 6.02145743 |
|  | S．01！ 15590 |
| $\cdots 1.1$ ¢Sこa4E2 | 12.4180005 |
|  | 10．1GEESDOG |
| $4:$－ 5 js3c7e | 12．0504343 |
| ¢ヶ，ذ 7 ¢ ¢ ¢ ¢ | ，E． $209430 \leq 0$ |
| 61．729ころ07\％ | 6．84ごら319 |
| ¢0． 0 ¢ 2070.32 | 10.8655302 |
| $47 \cdot 5434$ cis | 9.46325733 |
| 55．4さc゙15365 | 7．8780 4305 |
| $4 \pm .54500000$ | 11.90673000 |
| Eしくらっと2 5365 | 7.0517 cia02 |
|  | 18.12845492 |

## Clusters

## Cluster 3

|  |
| :---: |
| いだしく |
| IN |
| C－．0 |
| SSinef． |
| AU）ぐい |
| ARITH |
| D161TS |
| Cl：j：$\because$ |
| O1CCUM |
| トしインES |
| LO」ASS |
| TAE： E T |
| Ficiof |
| rTinf |
| TッフこT |
| TrTVjT |
| TA．い。 |
| TAי！ |
| P：Ser |
|  |
| CATrlit |
| TiS．srit |

T：A！rit
iv

6
4
2535.5750000 J $4 \epsilon .07000000$ 45．0うOCCこOO 4t．36500000 $54.000 \cup 000$ ） $4 \% \cdot 10500000$
 42.53000000 $44.3=250000$
〔0．ajะちくunの 20.53000003 3 ansociocoj 34.0 ソ75000 45.17000000 を．た17シ000． © 1．4（2730000 4シ．1－7，C．Jい心 21.5
37.017500000
$-37.01750000$
51．127！c 000
$3 \varepsilon \cdot 5 \div 7 \therefore C 000$

## STANCARO

 SEVIATION11ご0．49tき40シャ

 16.79431154 17．06360550
 c． 351 EE73i

 4．3028： $56 \%$ $5 \cdot 6942 \cdot 53: 5$
$3.0703 G 517$ 23.07039517
20.15771151
 $3.5711570 \epsilon$ （．．．itu OU7＇s？ $\therefore$ ？ 375059 12．22714041
 10.407 C 3553 16.099 Co2 26

## Cluster 4

| VAご的ごし＝ | $N$ |
| :---: | :---: |
| NFIL | 11 |
| 1 l | 11 |
| CLip： | 11 |
| E゙，；）． | 11 |
| A | 11 |
| $\therefore$ ．${ }^{\prime}$ | 1. |
| ．！，！1 ， | 11 |
| （：．）1： | 11 |
| P心COい | 11 |
| サLiou－ | 11 |
| C丁」かっか | 1： |
| T $\therefore$－¢ 67 | 11 |
| r $\times$ ．．．．． | 11 |
| $\vdash 1 \times$ | 11 |
| THT： 1 | 11 |
|  | 11 |
| T A M \％ | 11 |
|  | 11 |
| P5GEく1 | 11 |
|  | 11 |
| Cattut | 11 |
| T： 3513 T | 11 |

TABLE 4 （cont＇d）

## Clusters

## Cluster 5

VARIABL
－if1L：
1in：
Cis
らきゃしゃ
AいJELO
A：ITH
－1G1T3
（i） 10
ت IOCC：
らしがンご

TAit G：T
FABint
FTr？
Tジゥ
गロTッリリ
TADP
TADL
アバららっT
PEGSLT
CATHたT
TRS日T
iv
$144: .26 \cos$ cice 7 4 － 111 cijér
 （i） 1 －4 4333333 $52.0700000 \%$ 49.44333337
 コし．110ううこりコ $4: 3 \cdot 1300000 \mathrm{~J}$ E2．2：23 3：3： こと・111ヒヒたにて ＋1・リもうこのつつつ ＋7．0000cjuj ن $\because 7 . \therefore$ द50000



 ら2．0416́6Eヒ7


## STANCGAD DEVIATICN

927．121．93419
 11．30ヶc50しう 7．09342700 4.70145044 3． 27775940 4．4345HS15 シーごッ11らフ3 シ．437173ヶ7 3.444 .7719 ذ ن ذ 7.20165913

$$
10.95445115
$$

$$
14.70741300
$$

$$
11664050710
$$



11．J4ヶと15こ4
－ $4 \times .9 .7 .29=3$
$6.4010137 ?$
7.11792222 $5.9200380 \%$

## Cluster 6

| VA： 1 Aritu： | iv | AS Av |
| :---: | :---: | :---: |
| －1．1．${ }^{\text {a }}$ | $\dagger$ |  |
| ： $1 \cdot$ | ； |  |
| ¢ ：，リ， | $\stackrel{+}{ }$ |  |
| $\cdots$－31． | $\stackrel{+}{4}$ | ¢，¢ •－\％ |
| $\therefore$ 小，）．t．U | 4 | 乚－0＇500cub， |
| 二心111 | 4 | 4j－त3aty00－ |
| ט1317 | － | $4: 4.15$ ¢0 U－0 |
| cusidu | 4 | －1．00750000 |
| Piccur | 4 | $4 \cdot 10500000$ |
| ：化以！ | 4 | 4．4．1f75000J |
| のー」心らも | 4 | ¢三•33世5心coo |
|  | 4 | $4=.02000000$ |
| 「Aう， | 4 | $\therefore 4 . J$ UUCOUい |
| ¢Tッチ． | 4 | $4-107 ¢ 00005$ |
| T．OTST | 4 | $4 \div .50750000$ |
| trijut | 4 | 4 ¢．U6750000 |
| TA：Did | 4 |  |
| T4．3L | 4 | 4.2 .2000000 |
| 「i：ぶらいT | 4 | 5．j．91500300 |
| い：j：LT | 4 | 4 －．．．j50000 |
| c：itut | 7 | \％7．Je200000 |
| TrSit | 4 | 50.21750000 |

Srn・シム:3) UこV！ハT1Uル
$442 \cdot 20$ 2ごとい 9
 $4.71454 \%$ 50 10．3n：OUこう」：
11•11こしくらう 2．705357 7
0.36542773 4．302e356も 4.19479439 11．01505750 11.3637 .3240 7－$+7 \div 10306$


7．おらに0140
7．ध4541556
5．02775750
3．12353432
5．41160181
8．764 ？ 7117
5.05483514


## TABLE 4 （cont＇d）

## Clusters

## Cluster 7

VARIABLE
：1F 11－6
1 Vt 4
（0．4．）
らラ：ER
huoc̈la
A：ITH
） 161 TS
（1）1：1－
－！ことに・•
じは心リ．
いi」」の刀：
TA？：
FA心裙
FTuti
TSTUT
TUT jilT
TA．
TA以L
P！G：T
が号宁
CATTGT
TRSGT
$N$
1 13
13
$1:$
$1 \ddot{3}$
13
12

1
1．；
1.5

13
15
1.5
1.3
1.1

13
$1 j$ うこ．21016心๕



$12 \quad \vdots 1-1+5)=j 00$
12 34．5．j7万．う心0
13 54－11こう7パュ



STAIIDARE
MEAN


 44．075きだムも2 4J．151060せ7 4に・15394015 4c．06692308 41．43：3 346 と

 57．9，JJこ0う 30.33000000 20．307E9231



DEVIATION：
$\therefore .907=2010$ 4．506591C2 1.59905703 7.7995013 2．00305003
 C．JU世5451．3 0．0．57474406 －23．343775
 5．54 570240

11．4 3773704 0.72711113
 － $5 \cdot 16590747$ C． 047 EjSi4 6

N．B．The seven cluster solution listed on this table represents the results of both the Group Average and Centroid Sorting Methods，since identical solutions were generated from each．

TABLE 5

T Score Means and Standard Deviaitons
of Variables for Each Centroid Sorting Cluster Group for Dextral Split Sample 2

## Clusters

## Cluster :

VARIABLE

NFILE
INFO
сомр
SSPER
a udcle
ARITH
DIGITS
cOUING
PICCOM
BLXDES
OBJASS
TARGET
FAGNR
FTWR
TPTOT
TPTNOT
TAPR
TAPL
PEGSRT
PEGSLT
cattot
TESBIT

N

| 24 | 207C.225000 |
| :---: | :---: |
| 24 | 40.2770833 |
| 24 | $4 \mathrm{S.7225c} 00$ |
| 24 | 25.9504166 |
| 24 | 44.935000 |
| 24 | 4 E. 0554100 |
| 24 | 42.9106666 |
| 24 | 45.7210666 |
| 24 | 52.2220t3 |
| 24 | 53.33375000 |
| 24 | 52.5004106 |
| 24 | 42.96625000 |
| 24 | 60.06066667 |
| 24 | $4 \varepsilon \cdot 5 \geq 833333$ |
| 24 | 55.42791667 |
| 24 | 52.13375000 |
| 24 | 63.2595E333 |
| 24 | 45.6412500 |
| 24 | 54.75416667 |
| 24 | $41.5410666 \%$ |
| 24 | 5 c .603333 |
| 24 | 40.7100000 |

STANCARD DEVIATION

S16.605C9312 4.49488064 $7.915 C 8605$
17.87931024
11.02971674
5.19211524
8.06504409

ع. 78725147
11.105ع30C3
7.48576784
G.89176974
$11.576 E 4433$ 8.93778820
12.63647882 5.02111366
6.87051147
10.22412853
7.77141379
7.086c3924
11.60573871
7.96940436
14. 43622523

## Cluster 2

| VARIABLE | $N$ | mean | stancard CEVIATICN |
| :---: | :---: | :---: | :---: |
|  | 4 | 2733.35000000 | 442.20と37448 |
| NFILE | 4 | $41.60750000$ | 4:30283560 |
|  | 4 | 4 C .0025 CCOO | $4.714 \mathrm{C45} 5 \mathrm{C}$ |
| CSMPER | 4 | 52.55000000 | 10.36600202 |
| SSPER | 4 | 63.50000000 | 11.11305539 |
| AUDIL | 4 | 40.83250000 | 8.76535748 |
| ARITH | 4 | 44.16500000 | 6.86941773 |
| DIGITS | 4 | 61.66750000 | 4.30283566 |
|  | 4 | 45.16500000 | 4.19479479 |
| PICCOM | 4 | $54 \cdot 16750000$ | 11.01505750 |
| BLKDES | 4 | 63.33250000 | 11.86373290 |
| TARGET | 4 | 48.62000000 | 7.67810306 |
| FAGNR | 4 | 54.00000000 | 13.95229969 |
| FTWR | 4 | 45.07250000 | 7.29675898 |
| TPTDT | 4 | 49.50750000 | 7.36166140 |
| TPTINDT | 4 | 49.66750000 | 7.64941556 |
| TAPR | 4 | 52.22250000 | 5.62770750 |
| TAPL | 4 | 43.23000000 | 3.12353432 |
| PEGSRT | 4 | 55.91500000 | 5.41168181 |
| PEGSLT | 4 | 41.30500000 | 8.76427117 |
| CATTOT | 4 | 47.06251000 | 5.05483514 |

TABLE 5 （cont＇d）

## Clusters

## Cluster 3

## INFO <br> COMP <br> SSPER <br> AUOCLO <br> ARITH <br> DIGITS <br> COSING <br> PICCOM <br> BLKDES <br> GBJASS <br> TARGET <br> FAGNR <br> FTWR <br> TPTDT <br> TPTNDT <br> TAPR <br> TAPL <br> PEGSRT <br> PEGSLT <br> CATTOT <br> TRSBT <br> VARIABLE

## VARIABLE

NFILE
INFO
C C Mi
S5ヶER
AUJClo
ARSITH
DIGITS
COJING
PICCOM
BLKDES
O日JASS
TARGET
FAÜRid
FTwR
TPTDT
TPTNDT
TAPR
TAPL
PEGSRT
PEGSLT
CATTOT
TRSBT
$N$
38
8
816
635.87500000 45.83375000 53．7500CCOO 53.35875000 53.44250000 48.33250000 45.41750000 42.91500000 57.50125000 52.08250000 56.60625000 $2 \Xi \cdot 65000000$
55.75000000 51.63125000 4 E． 91875000 51.09125000 53.40250000 42.53000000 52.09000000 41.90125000 53．65375000 4 C .55750 COO

## Cluster 4

$N$

MEAN
$2513.7363 \in 364$
42.42545455
$4 三 .54000000$
41.34727273
46.21400000

4 E． $4545454 \cdot$ ，
40.96909091

4c．36272727
48.78727273
50.00545455
54.24272727
$35.0209090 \%$
42.36363636

11．24909091
52.39000000
33.70000000
$5 \epsilon \cdot 15818182$
35．0063e364
38.38800000 0.85200000
52.55727273
41.49454545

## STANCARO DEVIATION

$$
\begin{array}{r}
1261.90343954 \\
6.36265205 \\
16.6061532 c \\
9.28891111 \\
8.64058829 \\
7.34544514 \\
6.71853629 \\
8.98534998 \\
8.30954661 \\
5.89262432 \\
9.42724916 \\
11.9615777 \\
5.95464466 \\
11.32562566 \\
11.22100366 \\
4.75533216 \\
7.07202285 \\
9.6859274 \\
6.61659602 \\
6.77561322 \\
5.40056330 \\
17.27854817
\end{array}
$$

STANCARD DEVIATION
$2350.255 \varepsilon 3327$
7． 10364344
$4.1070 \in 7019$
13.40044260
10.6837115
7.92741113
$5.467 C 1330$
6.57451455
4.54019182
7.12219540
6.84537814
18.43377794
13.75327900

21．995こ6381
7.53150450
43.38425141
12.32005424

9．90159005
22．07ミ12584
6E．12102181
6.63060979
8.99070783

TABLE 5 （cont＇d）

## Clusters

## Cluster 5

$N$
VARIABLE

NF1LE
I NFO
comp
SSPER
a Uoclo
ARITH DIGITS
COOING
PICCOM
BLKDES
OBJASS
TARGET
FAGNR FTWR TPTDT TPTNDT
TAPR
TAPL
PEGSRT
PEGSLT
CATTUT
TRSET

## Cluster 6

| VARINBLE | $N$ | ME AN |
| :---: | :---: | :---: |
| NFILE | $\bigcirc$ | 1607.11250000 |
| 1 NFO | 8 | 44.16025000 |
| CCHP | is | 51．25000000 |
| SSPER | 3 | $54 \cdot 3437500:$ |
| AUJCLO | － | 44．31：3こしひひ |
| －ITH． | 8 | 4 4．3： 5000 |
| DIGITS | 8 | 46.2. |
| CODING | 3 | ゴ・ ！！ |
| PICCCM | ${ }^{4}$ | －．－－－ |
| BLKDES | U | 勺く・ソ こう |
| OUJASS | 8 | $5: 3$－ |
| TARGET | 8 | 4t．10ECSCOO |
| FAGNR | 8 | 4 E．SOUOCOOO |
| Frwh | 8 | 50.07125000 |
| TPTDT | 8 | 53．12375000 |
| TPTNDT | 3 | SE．20125000 |
| TAPR | 8 | 54．44E25000 |
| TAPL | 8 | 37－92000C00 |
| PEGSRT | 8 | 70.27875000 |
| PEGSLT | 8 | 54.24000000 |
| CATTUT | 13 | $5 \mathrm{C} \cdot 83750000$ |
| TRSET | 8 | 54.52250000 |

STANCARD DEVIATION

755．37172303 4.57416257 7.55107379 27.82489036 14．33135456 6.55466628 7．02519442
10.47836283 11.78623607 8．73042668 9.92175718
9.60827060 30．3135578．e 14.74409957 13.30846013
11.24222147 ع．52891255 8．311Co33：
10．1．19 E0824 12．92153705 8.80640795
16.92051258

TABLE 5 (cont'd)

## Clusters

## Cluster 7

VARIABLE

NFILE
INFO
COMP
SSPER
AUOCLO
ARITF
DIGITS
CODING
PICCEM
BLKDES
OOJASS
TARGET
FAGNR
FTMR
TPTDT
TPTNOT
TAPR
TAPL
PEGSPT
PEGSLT
CATTOT
TRSET

N
$\omega \omega \omega \omega \infty \propto \omega \omega \alpha \infty \omega \infty \infty \omega \propto \infty \infty \omega \infty \infty \omega \infty$
1939.22500000
45.00000000
45.00000000
45.41625000
44.15750000
46.6602000
55.00125000
51.66625000
47.49875000
51.25000000
45.16625000
50.21025000
61.50000000
$5 \varepsilon .21625000$
55.80375000
51.09625000
56.73000000
41.81500000
40.4250000
35.1162600
54.02125000
54.19500000

STANCARD DEVIATION
744.08955634
4.36435390
9.08456089
10.83663619
12.26250588
5.91071167 7-55Ec746e 7.55G60494 9.04113210 5. 61672757 9.38451146
8.184́ㅇ965 G. 18072515 3.262COE12 6. 31 ع氏ç774 7.42124159 6.007E1184 7. 53348965
10.03052448
10.57815746 6.04350286 7.57335178


Fiaure 9. Plot of $I$ score means for Cluster 1 of dextral split sample 1.


TEST MEASURES
Figure 10. Plot of $I$ score means for Cluster 2 of dextral split sample 1.


Figure 11. Plot of I score means for Cluster 3 of dextral split sample 1.


Figure 12. Plot of $I$ score means for Cluster 4 of dextral split sample 1.


Finure 13. Plot of I score means for Cluster 5 of dextral split sample 1.

Figure 14. Plot of $\dot{T}$ score means for Cluster 6 of dextral split sample 1.


Fiqure 15. Plot of $T$ score means for Cluster 7 of dextral split sample 1.


Figure 16. Plot of I score means for Cluster 1 of aroup average solution for dextral split sample 2.


TEST MEASURES
Figure 17. Plot of I score means for Cluster 2 of group average solution for dextral split sample 2.

test measures
Figure 18. Plot of I score means for Cluster 3 of aroud average solution for dextral split sarple 2.


TEST MEASURES
Figure 19. Plot of I score means for Cluster 4 of qroup average solution for dextral split sample 2.


TEST MEASURES
Figure 20. Plot of $I$ score means for Cluster 5 of group average solution for dextral split sariple 2.

$\underset{\sigma}{\omega}$

TEST MEASURES
Figure 21. Plot of $I$ score means for Cluster 6 of oroup averaṇe solution for dextral split sample 2.


Figure 22. Plot of I score means for Cluster 7 of group average solution for dextral split sample 2.

Figure 23. Plot of I score means for Cluster 1 of centroid sorting solution for dextral split sample 2 .


Figure 24. Plot of $I$ score means for Cluster 2 of centroid sorting solution for dextral split sample 2 .


Fiqure 25. Plot of I score means for Cluster 3 of centroid sorting solution for dextral split sample ?


I8ะ
test measures
Fiqure 26. Plot of I score means for Cluster a of centroid sorting solution for de tral split sample 2 .


Figure 27. Plot of $T$ score means for Cluster 5 of centroid sorting solution for dextral split sample 2.


Figure 28. Plot of I score means for Cluster 6 of centroid sorting solution for dextral iplit sample 2.


Figure 29. Plot of I score means for Cluster 7 of centroid sorting solution for do tral split sample 2.

1950 - Born in Minneapolis, Minnesota, U.S.A.
1968 - Graduated from Edina High School, Edina, Minnesota.
1975 - Granted degree of Bachelor of Arts (Magna Cum Laude) with Honours in Psychology from Augsburg College, Minneapolis, Minnesota.

1978 - Granted degree of Master of Arts in Psychology from the University of Windsor, Windsor, Ontario.

1978-1982 Registered as a Graduate student in the Department of Psychology at the University of Windsor, Windsor, Ontario.


[^0]:    * Denotes dependent measures used in data analyses treatment.

[^1]:    ＊Denotes dependent measures used in statistical treatment of data．

[^2]:    STANDARD DEVIATICN
    6.09460335

    8． 64873242
    7.05707053

    6．4829765？
    125.33985771
    0.45769659

    2．？ 0 R51441
    17.17454647
    9.54120462
    12.91600192
    7.36652252

    7．695Gうこ72
    7．月7ク5？093
    －．41ETEOS1
    10.32935031
    10.5464 .3709

    8．83161154
    7．13712451
    0.20000000
    0.23810407

    8．5706노2．
    0.5134 .436
    0.20 〇51441

    4．71507712
    20.57 .219393

    8．97171111
    24.95162529
    $5 \cdot 66778340$
    10．03833021
    6.94344190
    $6 \cdot 0 \div \div 54905$
    $14 \cdot 1554$ 厄́s
    10.00102120
    10.24210175 6． $\sin$ ？$\because n 413$
     4．につ下マラにヒ， 7 $4.432 \geq 5456$ c． 92232534
    11.02435311 5.31555979 $6.52810: 370$ 7．754 6AEOO 6.62501349
    1.05107467 1.05107467
    5.34254303 6.94226140 4．98165277 26.98689478 $25: 93988185$
    10.28160797

[^3]:    ＊Denotes dependent measures used in statistical treatment of

[^4]:    ${ }^{1}$ Adapted from the description of tests distributed by the Department of Neuropsychology, Windsor Western Hespital Centre, Windsor, Ontario.

[^5]:    S is required to respond to 168 visual choice stimuli, mostly geometric forms. Within any series, only one principle applies. But, in successive sequences of trials, the abstraction of principles of numerosity, oddity, spatial position, and relative extent is required for successful responding. The score is the number of errors.

[^6]:    
    
    
    

