

Mission Performance Centre

Alternative vicarious gain estimates for Sentinel-3 OLCI: Investigation of atmosphere-typed spectral optical thickness corrections for the processor vicarious calibration, from the open ocean to the shore

Bertrand Saulquin¹, François-Régis Martin Lauzer¹, Ludovic Bourg¹

OLCI 250 m resolution image over Logan, 20170821 eclipse day !!

Why changing gain formulation in the future?

The classic (actual) gain formulation :

OLCI L2 processor estimates the total optical thickness Tau T= τa+ τr. It is therefore natural to align (i.e. apply gains to) the model using an estimated correction on τ.

A new gain formulation for (Plan of the presentation):

- ✓ 1/ Understand the OLCI level 2 errors to enhance in the future the processor.
- 2/ Correct the estimated Tau with the underlying idea that the non-linear correction on Rhow(λ) will be more generic, and therefore applicable in a more robust way to other areas, than the actual linear correction.
- ✓ 3/ Enhancements of the actual OLCI level 2 products , from open ocean to the shore, with the introduction of conditional gains.

I/ Understand the <u>significant</u> sources of errors for the OLCI L2 processor

© ACRI-ST. all rights reserved – 2017 bertrand.saulquin@acri-st.fr

4

I/ Data alignment between OLCI L2 processor and the SVC dataset

Rho_gc = Rho_path + td * Rho_w

Estimated by the processor

In-Situ

SVC dataset = 3150 **climatological measurements +** 350 **in-situ measurements**

I/ Understand the <u>significant</u> sources of errors for the OLCI L2 processor

PCA decomposition of forcing parameters (covariates) at Moby

I/ Understand the <u>significant</u> sources of errors of the OLCI processor

con

II/ Gains for OLCI in the visible onto the spectral optical thicknesses: Correct the estimated variable of the L2 processor

Classical formulation

$$G.rho_{gc}(\lambda) = rho_{path}(\lambda) + T_{\theta s}(\lambda) * T_{\theta v}(\lambda) * rho_{w}(\lambda)$$

- From OL2 processor
- In-Situ
- To be estimated

Proposed formulation:

Direct T Diffuse T $T_{\theta s}(\lambda) = e^{-\tau(\lambda) * M_s(\lambda)} + e^{-\tau(\lambda) * M_s * coeffs(\lambda)}$

Is the total downward transmittance

$$T_{G\theta s}(\lambda) = e^{-G(\lambda) * \tau(\lambda) * M_s(\lambda)} + e^{-G(\lambda) * \tau(\lambda) * M_s * coeffs(\lambda)}$$

Is the total downward transmittance with gains onto Tau

$$rho_{gc}(\lambda) = \left[\frac{1 - T_{G\theta s}(\lambda) * T_{G\theta v}(\lambda)}{1 - T_{\theta s}(\lambda) * T_{\theta v}(\lambda)}\right] * rho_{path}(\lambda) + T_{G\theta s}(\lambda) * T_{G\theta v}(\lambda) * rho_{w}(\lambda)$$

Where **G** is a vector of gains to be estimated for bands 400,412,443,490,510,560,620,665,670,681 given the inversion results of the OL2 processor and an in-situ dataset.

II/ Gains for OLCI in the visible onto the spectral optical thicknesses

***** Estimation using a robust minimisation procedure on data from:

1/ Radiometric In-situ dataset

MOBY	Kenneth Voss	University of Miami
	Kent Hughes	NOAA
BOUSSOLE	David Antoine	LOV
AAOT	Giuseppe Zibordi	JRC
	John Icely	University of Algarve
CASES	Selima Ben Mustapha	Fisheries and Oceans Canada
CoveSEAPRISM	Greg Schuster	NASA GSFC
Gloria	Giuseppe Zibordi	JRC
GustavDalenTower	Giuseppe Zibordi	JRC
HelsinkiLighthouse	Giuseppe Zibordi	JRC
LISCO	Alex Gilerson	City college of New York
MVCO	Annelies Hommersom	IVM
WaveCIS	Alan Weidemann	Naval Research Laboratory, NRLSSC
	Bill Gibson	Coastal Studies Inst. LSU

2/ Climatologcal radiometric dataset

Daily Satelitte time-integrated average from 1997-now from **ESA Globcolor & NASA Oceancolor** datasets at global scale from 1997 no now

II/ Estimation of the gains for OLCI on Tau for clear waters

***** Estimation using a robust minimisation procedure

Stations= MP15-SAGOPT-SPGOPT-SIOOPT-NWPOPT-NEPOPT-NAGOPT-HyBOUS-MOBY40

Gains on Tau= [1.00969002, 1.0181875, 1.01301313, 1.00797925, 1.00522232, 1.00242976, 1.00128386, 1.00128386, 1.0006125]

са

cor

II/ Validation of the gains for OLCI on Tau for clear waters

♦ Rhow residuals

ACRI

II/ Validation of the gains for OLCI on Tau for clear waters

***** Rhow residuals

II Estimation of the gains for OLCI on Tau on coastal areas

Stations='AAOT', 'GustavDalenTower', 'IML10', 'IML4', 'IML6', 'LISCO', 'MVCO', 'Thornton', 'UscSEAPRISM', 'WaveCIS', 'Zeebrugge'

Gains on Tau= 1.0077223, 1.01188601, 1.0077223, 1.00616707, 1.00373133, 1.00248754, 1., 0.99859752, 0.99917006

Rhow residuals

cal

con

The vicarious calibration issue, from the open ocean to the shore

Gains estimated on clear atmospheres & waters =>

Good <u>performance over clear waters</u> BUT <u>underestimation in</u> <u>coastal areas</u> (including negative reflectance)

Gains estimated on turbid atmospheres & waters => Good <u>performance over coastal waters</u> BUT <u>overestimation</u> <u>for clear waters</u>

III/ Investigations for enhancements of the actual OLCI level 2 products with the introduction of conditional mixture of gains: to be better in every case

17

© ACRI-ST. all rights reserved – 2017 bertrand.saulouin@acri-st.fr

✤ Introduction of conditional gains:

Gains= $\sum_k P(i = k)$ Gains_k

The probability P being given by a robust TOA indicator to identify coastal and clear TOA observations

© ACRI-ST, all rights reserved – 2017 bertrand.saulquin@acri-st.fr

III Conditional mixture of gains

* Seeking for robust TOA indicators to characterise clear and coastal areas

III Validation of mixed gains

Gains= $\sum_k P(i = k)$ Gains_k

Rhow residuals

III Validation of mixed gains on coastal waters

III Validation of mixed gains on coastal waters

\Rightarrow Improvements compared with the S3 SVC

III Mixed gains foe the OLCI L2 processor

Less negative reflectances: level 2 <u>coverage increase from 2 to 10% for coastal waters</u>

***** Less negative reflectances: level 2 coverage increase for coastal waters

SVC OLCI Chl-a

Mixed Gains Chl-a

[©] ACRI-ST, all rights reserved – 2017 bertrand.saulquin@acri-st.fr

III Mixed gains foe the OLCI L2 processor

***** Less negative reflectances: level 2 coverage increase for coastal waters

SVC OLCI Chl-a

Mixed Gains Chl-a

Preliminary conclusions

Mission Performance Centre

1/ Error analysis using PCA will provide soon ways to **quantify and discriminate the** modelling errors and the inversion errors => returns towards the RTM designers

2/ Vicarious calibration on Tau, the inversed variables, correct the estimated Tau conversely to the gains onto rho_gc.

=> Soon, provision of the results of the correction onto Tau using the Aeronet in-situ data

3/ **Conditional gains** provide a simple way to improve the Level 2 in <u>coastal areas</u> while preserving the atmosphere model's calibration in open ocean. We can increase the coverage from to 2 to 10 % at the shore of the OL2 processor.

=> L2 OLCI processor enhancements

=> Guide for a multi-model inversion scheme for OLCI

Mission Performance Centre

Further major improvements of the L2 OLCI processor will be also soon proposed:

- ***** Correction of the BPAC including spatial regularisation terms.
- Optimisation of the estimation of Tau_865 and the aerosol model selection to avoid meaningless (incl. negative) Rhows.
- Inversion over block of pixels to minimize the noise and introduce the existing spatial continuity of the atmospheric variables (ongoing paper for Sentinel 2).
- Enhancement of the coupling between td_up and Rhow to take into account the BRDF of the water (correction of the Lambertian hypothesis of the OL2 processor).

Annex

© ACRI-ST, all rights reserved – 2017 bertrand.saulguin@acri-st.fr

28

II Gains for OLCI in the visible onto the spectral optical thicknesses

Validation of the proposed formulation with the OLCI LUTS:

$$rho_{gc}(G,\lambda) = \left[\frac{1 - T_{G\theta s}(\lambda) * T_{G\theta v}(\lambda)}{1 - T_{\theta s}(\lambda) * T_{\theta v}(\lambda)}\right] * rho_{path}(\lambda) + T_{G\theta s}(\lambda) * T_{G\theta v}(\lambda) * rho_{w}(\lambda)$$

SZA=31, VZA=35, RAA=44, Tau_a=0.3, Aer=1

+- 5% dTau => Error performed TOA < 0,1% = < 1% BOA

cal

con