A Comparison of Relative Gain Estimation Methods for High Radiometric Resolution Pushbroom Sensors

Dennis Helder, Calvin Kielas-Jensen, Nathan Reynhout, Cody Anderson, Drake Jeno August 24, 2017

Calcon 2017, USU, Logan, Utah

South Dakota State University Image Processing Lab **EROS** CalVal Center of Excellence

Outline

- Introduction
- Methodology
- Results
- Conclusions

INTRODUCTION

South Dakota State University

Image Processing Lab

What are Relative Gains?

- When two detectors sense the same radiance, they should generate the same digital number (DN): $DN = g_i L_{\lambda} + b$
- Due to real world constraints, the DN will not be the same because $g_i \neq g_j$

- This causes visible striping in an image

• A relative gain (RG), $RG = \frac{g_i}{\overline{g}}$, is applied to each detector so that the resulting DNs To ADC Detector g_1 are the same when the detectors sense identical values **g**₂ Detector

To ADC

MOVTIVATION

- Landsat 8 (L8) uses a pushbroom style sensor array with nearly 70,000 detectors
- Difficulty increases with 12 (actually 14) bit dynamic range
- Relative gains are calculated using an onboard solar diffuser.
- Do data-driven alternative relative gain estimation methods, "lifetime statistics" and "side-slither," provide equivalent or better accuracy?

METHODOLOGY

South Dakota State University

Image Processing Lab

How are Relative Gains Calculated?

- Three methods are currently being used to calculate Landsat 8 RGs: Solar Cal Port
 - 1. Solar Diffuser (DIFF)

2. Side Slither (SS)

3. Lifetime Statistics (LS)

Solar Diffuser

- Diffuser collects are processed the same way standard OLI images are processed in order to correct any bias and linearize the response
- The following equation is then used to derive the RGs for each detector

$$RG_i = \frac{\overline{DN_i}}{\overline{DN}}$$

Where:

- RG_i = RG for the ith detector
- $\overline{DN_i}$ = Average DN for the ith detector
- \overline{DN} = Average DN for all detectors within a focal plane module (FPM)

Sample Solar Diffuser Collect

http://www.mdpi.com/2072-4292/6/12/12275/htm

Lifetime Statistics

- Basic idea:
 - Each detector statistically sees about the same value (means and standard deviations) when given a "long enough" period of time
 - These means can then be used to derive relative gains

Scene Filter

- Rel Gains calculated on 16 day intervals
- Scenes within the 16 day interval are filtered by scene mean and by scene standard deviation

$$RG_i = \frac{\overline{DN_i}}{\overline{DN}}$$

Side Slither

- Over a radiometrically flat and uniform area, the satellite is rotated 90° on its yaw axis
- As the sensor passes over its target, each detector theoretically measures the same radiance

Pushbroom Scan

Scan Motion

Image Formed

Pushbroom Array						
	Α	В	С	D		
	Е	F	G	н		
	I	J	К	L		
	М	N	0	Р		

Α	В	С	D
Е	F	G	н
Ι	J	К	L
Μ	Ν	0	Р

Scan Direction

Scan Direction

Frame Variance

'Bad' SS data

Test Scenes

- Six different regions of interest (ROIs) were chosen, 10 scenes/ROI, spanning the lifetime of Landsat 8:
 - Amazon RainforestPacific Ocean

 - Antarctica

Bright at Short Wavelengths

Dark Scenes

- Greenland
- Sahara Desert
- Saudi Arabia
- **Bright at Long Wavelengths**

Test Scenes

Quantitative Assessment: A Striping Metric

 For all detectors in an FPM (except for the two edge detectors), a detector and its two neighboring detectors are compared to determine the level of striping.

•
$$S_i = \frac{\left|\overline{L_l} - \frac{1}{2}(\overline{L_{l-1}} + \overline{L_{l+1}})\right|}{\overline{L_l}}$$
 $S_i = \text{striping metric}$
 $\overline{L_l} = \text{mean of a detector column}$

• The overall striping metric is the cube root of the product of the mean, maximum peak, and mean of the top 15 peaks:

Differences on Average: Pairwise Difference Test

• Determines if two methods are statistically different from each other for a given band.

•
$$t = \frac{\overline{x_i - y_i}}{s/\sqrt{n}}$$
, where

-t = test statistic

- $-\overline{x_i y_i}$ = sample mean of the difference between two methods
 - *i* = same detector in the scene
- -s =standard deviation of $\overline{x y}$
- -n = sample size

Extreme Stripes: Counting 'Spike' Data

- A Hampel filter was used to identify significant "outliers", or spikes, in an FPM for each of the three methods.
 - Moving window median filter
 - For a given data sequence,
 - Spike if: $x_i \ge 3MAD(x_{i-l}, \dots, x_{i+l})$
 - The data point at the center of the window is considered a spike if it is more than three times the median absolute deviation of the data points in the window.
- The peak spike was recorded, along with the median of spikes and number of spikes.

RESULTS

South Dakota State University

Image Processing Lab

Visible Spikes (DIFF & SS)

Visible Spikes (DIFF & SS)

Antarctica Band 1 FPM 6

Antarctica Band 1 FPM 6

Antarctica Band 1 FPM 6

Visible Spikes (LS)

Pacific Ocean Band 3 FPM 1

Lowest Striping Metrics

Greenland Band 7 FPM 12

DIFF

Striping Metrics - Optimal Approach LC80020102016205LGN01 DIFF (Greenland) Band 7 FPM 12 5 Spikes: Peak | Median | Num Mean±StDev Difference Test: H DIFF-LS: 0 DIFF: 4.49±0.139 mDI 005 006 005 LS: 0004 0004 SS: 0004 0004 S: 4.49±0.139 mDN LS-SS: 0 250 150 300 0 50 100 200 350 400 450 **Detector ID** 29

Side Slither Anomaly

Summary: Pairwise Difference Tests

Band	Amazon	Pacific	Antarctica	Greenla	and	Sahar	a	Saudi		Totals
	DIFF 0	DIFF 0	DIFF 0	DIFF	0	DIFF	0	DIFF 0)	DIFF 0
1	LS 7	LS 9	LS 10	LS	10	LS	9	LS 9)	LS 54
	SS 2	SS 0	SS 0	SS	0	SS	0	SS 0)	SS 2
	DIFF 0	DIFF 0	DIFF 0	DIFF	0	DIFF	0	DIFF 0)	DIFF 0
2	LS 9	LS 10	LS 10	LS	9	LS	9	LS 8	;	LS 55
	SS 1	SS 0	SS 0	SS	1	SS	1	SS 0)	SS 3
	DIFF 0	DIFF 1	DIFF 0	DIFF	0	DIFF	0	DIFF 0)	DIFF 1
3	LS 7	LS 7	LS 10	LS	10	LS	8	LS 8	;	LS 50
	SS 1	SS 0	SS 0	SS	0	SS	1	SS 0	_	SS 2
	DIFF 1	DIFF 1	DIFF 0	DIFF	0	DIFF	0	DIFF 0		DIFF 2
4	LS O	LS O	LS 10	LS	10	LS	10	LS 1 (LS 40
	SS 0	SS 0	SS 0	SS	0	SS	0	SS 0		SS O
	DIFF 2	DIFF 2	DIFF 0	DIFF	0	DIFF	0	DIFF 0		DIFF 4
5	LS O	LS O	LS 4	LS	10	LS	8	LS 6		LS 28
	SS 0	SS 0	SS 0	SS	0	SS	0	SS 0	_	SS O
	DIFF 0	DIFF 1	DIFF 0	DIFF	0	DIFF	0	DIFF 0		DIFF 1
6	LS 2	LS 1	LS 7	LS	7	LS	10	LS 1(LS 37
	SS 0	SS 0	SS 2	SS	2	SS	0	SS 0	_	SS 4
	DIFF 0	DIFF 0	DIFF 0	DIFF	0	DIFF	0	DIFF 0		DIFF 0
7	LS O	LS 1	LS 9	LS	8	LS	8	LS 8		LS 34
	SS 0	SS 1	SS 0	SS	1	SS	0	SS 0	_	SS 2
	DIFF 1	DIFF 0	DIFF 2	DIFF	2	DIFF	0	DIFF 0	_	DIFF 5
8	LS O	LS 2	LS 1	LS	1	LS	0	LS 0		LS 4
	SS 5	SS 6	SS 3	SS	5	SS	0	SS 2		SS 21
								Tatala		DIFF 13
								Totals		LS 302
										SS 34

Summary: Spike Results

Band	Amazon	Pacific	Antarctica	Greenland	Sahara	Saudi	Totals
	DIFF 10	DIFF 9	DIFF 10	DIFF 10	DIFF 9	DIFF 10	DIFF 58
1	LS O	LS 1	LS 0	LS O	LS O	LS O	LS 1
	SS 0	SS 0	SS 0	SS 0	SS 0	SS O	SS O
	DIFF 10	DIFF 10	DIFF 10	DIFF 10	DIFF 8	DIFF 10	DIFF 58
2	LS O	LS O	LS O	LS O	LS 1	LS O	LS 1
	SS 0	SS 0	SS 0	SS 0	SS 0	SS 0	SS 0
	DIFF 3	DIFF 4	DIFF 9	DIFF 9	DIFF 3	DIFF 7	DIFF 35
3	LS 2	LS 3	LS 0	LS O	LS 3	LS 1	LS 9
	SS 1	SS 2	SS 0	SS 1	SS 3	SS 2	SS 9
	DIFF 0	DIFF 0	DIFF 1	DIFF 4	DIFF 1	DIFF 2	DIFF 8
4	LS 3	LS 8	LS O	LS 1	LS 5	LS 1	LS 18
	SS 2	SS 2	SS 4	SS 5	SS 3	SS 5	SS 21
	DIFF 2	DIFF 2	DIFF 1	DIFF 0	DIFF 0	DIFF 2	DIFF 7
5	LS 1	LS 3	LS 2	LS O	LS 3	LS 3	LS 12
	SS 1	SS 1	SS 1	SS 7	SS 5	SS 2	SS 17
	DIFF 0	DIFF 0	DIFF 3	DIFF 4	DIFF 3	DIFF 0	DIFF 10
6	LS 4	LS 1	LS 3	LS O	LS O	LS 2	LS 10
	SS 4	SS 2	SS 1	SS 5	SS 5	SS 7	SS 24
_	DIFF 1	DIFF 2	DIFF 2	DIFF 3	DIFF 2	DIFF 1	DIFF 11
7	LS 5	LS 1	LS 3	LS O	LS 3	LS 2	LS 14
	SS 2	SS 2	SS 2	SS 4	SS 5	SS 7	SS 22
	DIFF 1	DIFF 1	DIFF 3	DIFF 4	DIFF 0	DIFF 0	DIFF 9
8	LS O	LS O	LS 2	LS 3	LS 0	LS O	LS 5
	SS <mark>4</mark>	SS 4	SS 2	SS 2	SS 5	SS 7	SS 24
						Tetele	DIFF 196
						Totals	LS 70
							SS 117

Conclusions

- All three methods work well—Diffuser, Lifetime Statistics, and Side Slither
- Statistically significant differences exist between the mean striping levels of the three methods
 - Significant differences are extremely small due to the large number of detectors
 - Lifetime Statistics generally has the smallest values, although this is somewhat wavelength dependent
- Large striping metric "spikes," which generally indicate visual stripes, are present for all three methods
 - Spikes in Diffuser method most prevalent at short wavelengths
 - Side Slither striping spikes exist, however many appear to be induced by processing error
 - Lifetime Statistics approach generates substantially fewer spikes
- Both data driven methods, Lifetime Statistics and Side Slither, produce results equivalent to or better than Diffuser method
 - Suggests that these methods can readily be a backup to onboard methods
 - However, each has a significant requirement:
 - Lifetime statistics method requires developing a database of information
 - Side Slither requires a maneuver that may not be possible for some systems and impacts operational imaging
 - Lifetime Statistics appears to outperform Side Slither; however, additional investigation needed to resolve this comparison