A Comparison of Relative Gain Estimation Methods for High Radiometric Resolution Pushbroom Sensors

Dennis Helder, Calvin Kielas-Jensen, Nathan Reynhout, Cody Anderson, Drake Jeno

> August 24, 2017 Calcon 2017, USU, Logan, Utah

South Dakota State University **Image Processing Lab**

CalVal Center of Excellence

Outline

- Introduction
- Methodology
- Results
- Conclusions

INTRODUCTION

South Dakota State University

Image Processing Lab

What are Relative Gains?

- When two detectors sense the same radiance, they should generate the same digital number (DN): $DN = g_i L_\lambda + b$
- Due to real world constraints, the DN will not be the same because $g_i \neq g_j$

– This causes visible striping in an image

• A relative gain (RG), $RG = \frac{g_i}{\bar{a}}$ \boldsymbol{g} , is applied to each detector so that the resulting DNs are the same when the detectors sense identical values

MOVTIVATION

- Landsat 8 (L8) uses a pushbroom style sensor array with nearly 70,000 detectors
- Difficulty increases with 12 (actually 14) bit dynamic range
- Relative gains are calculated using an onboard solar diffuser.
- Do data-driven alternative relative gain estimation methods, "lifetime statistics" and "side-slither," provide equivalent or better accuracy?

METHODOLOGY

South Dakota State University

Image Processing Lab

How are Relative Gains Calculated?

- Three methods are currently being used to calculate Landsat 8 RGs: Solar Cal Port
	- 1. Solar Diffuser (DIFF)

2. Side Slither (SS)

3. Lifetime Statistics (LS)

Solar Diffuser

- Diffuser collects are processed the same way standard OLI images are processed in order to correct any bias and linearize the response
- The following equation is then used to derive the RGs for each detector

$$
RG_i = \frac{\overline{DN_i}}{\overline{DN}}
$$

Where:

- RG_i = RG for the ith detector
- $\overline{DN_i}$ = Average DN for the ith detector
- DN = Average DN for all detectors within a focal plane module (FPM)

Sample Solar Diffuser Collect

http://www.mdpi.com/2072-4292/6/12/12275/htm

Lifetime Statistics

- Basic idea:
	- Each detector statistically sees about the same value (means and standard deviations) when given a "long enough" period of time
	- These means can then be used to derive relative gains

Scene Filter

- Rel Gains calculated on 16 day intervals
- Scenes within the **16 day interval** are filtered by scene mean and by scene standard deviation

$$
RG_i = \frac{\overline{DN_i}}{\overline{DN}}
$$

Side Slither

- Over a radiometrically flat and uniform area, the satellite is rotated 90° on its yaw axis
- As the sensor passes over its target, each detector theoretically measures the same radiance

Pushbroom Scan

Scan Motion

Image Formed

Scan Direction

Frame Variance

'Bad' SS data

'Good' SS data

Test Scenes

- Six different regions of interest (ROIs) were chosen, 10 scenes/ROI, spanning the lifetime of Landsat 8:
	- Amazon Rainforest
	- Pacific Ocean
	- Antarctica

Bright at Short Wavelengths

Dark Scenes

- Greenland
-
- Sahara Desert
- Saudi Arabia
- Bright at Long Wavelengths

Test Scenes

Quantitative Assessment: A Striping Metric

• For all detectors in an FPM (except for the two edge detectors), a detector and its two neighboring detectors are compared to determine the level of striping.

•
$$
S_i = \frac{|\overline{L_l} - \frac{1}{2}(\overline{L_{l-1}} + \overline{L_{l+1}})|}{\overline{L_l}}
$$
 $\frac{S_i}{\overline{L_l}}$ = striping metric
 $\frac{1}{2}$ = mean of a detector column

The overall striping metric is the cube root of the product of the mean, maximum peak, and mean of the top 15 peaks:

Differences on Average: Pairwise Difference Test

• Determines if two methods are statistically different from each other for a given band.

•
$$
t = \frac{\overline{x_i - y_i}}{s / \sqrt{n}}
$$
, where

 $-t =$ test statistic

- $-\overline{x_i-y_i}$ = sample mean of the difference between two methods
	- \bullet *i* = same detector in the scene
- s = standard deviation of $\overline{x-y}$
- $n =$ sample size

Extreme Stripes: Counting 'Spike' Data

- A Hampel filter was used to identify significant "outliers", or spikes, in an FPM for each of the three methods.
	- Moving window median filter
	- For a given data sequence,
	- $-$ Spike if: $x_i \geq 3MAD(x_{i-1}, ..., x_{i+1})$
	- The data point at the center of the window is considered a spike if it is more than three times the median absolute deviation of the data points in the window.
- The peak spike was recorded, along with the median of spikes and number of spikes.

RESULTS

South Dakota State University

Image Processing Lab

Visible Spikes (DIFF & SS)

Visible Spikes (DIFF & SS)

Antarctica Band 1 FPM 6

Antarctica Band 1 FPM 6

Antarctica Band 1 FPM 6

Visible Spikes (LS)

Pacific Ocean Band 3 FPM 1

Lowest Striping Metrics

Greenland Band 7 FPM 12

DIFF

Striping Metrics - Optimal Approach LC80020102016205LGN01 \cdot DIFF (Greenland) Band 7 FPM 12 5 Spikes: Peak | Median | Num Difference Test: H_o Mean±StDev DIFF-LS: 0 DIFF: 4.49±0.139 mDN $\frac{005}{006}$ LS: 0004 0004
SS: 0004 0004 $S: 4.49 + 0.139$ mDN **LS-SS: 0** A.

Striping Metric (mDN)

4.

4.

4.

4.

4.

4.

4.

4.
 $\frac{4.8}{4}$ 250 Ω 50 100 150 200 300 350 400 450 Detector ID 29

Side Slither Anomaly

Summary: Pairwise Difference Tests

Summary: Spike Results

Conclusions

- All three methods work well—Diffuser, Lifetime Statistics, and Side Slither
- Statistically significant differences exist between the mean striping levels of the three methods
	- Significant differences are extremely small due to the large number of detectors
	- Lifetime Statistics generally has the smallest values, although this is somewhat wavelength dependent
- Large striping metric "spikes," which generally indicate visual stripes, are present for all three methods
	- Spikes in Diffuser method most prevalent at short wavelengths
	- Side Slither striping spikes exist, however many appear to be induced by processing error
	- Lifetime Statistics approach generates substantially fewer spikes
- Both data driven methods, Lifetime Statistics and Side Slither, produce results equivalent to or better than Diffuser method
	- Suggests that these methods can readily be a backup to onboard methods
	- However, each has a significant requirement:
		- Lifetime statistics method requires developing a database of information
		- Side Slither requires a maneuver that may not be possible for some systems and impacts operational imaging
	- $-$ Lifetime Statistics appears to outperform Side Slither; however, additional investigation neeged to resolve this comparison