Improved Temporal Resolution of Pseudo Invariant Calibration Sites (PICS) Through Development of the PICS Normalization Process (PNP)

CALCON 2017

Utah State University, Logan

22-25 August 2017

Ву

Morakot Kaewmanee, Harika Vuppula, Dennis Helder

South Dakota State University, Image Processing Lab

Outline

- PNP Objectives
- Thoughts and Process
- PNP Results
- Refined PNP process (BRDF-PNP) and results
- Comparison of PNP&BRDF-PNP vs On board Calibrator
- Summary

OBJECTIVE

To combine sensor observations of multiple PICS into a single time series with greater temporal resolution. Normalize each PICS site to the well known Libya-4 PICS which is used as the overall reference calibration site. After combining these 6 PICS into one dataset, a radiometric assessment is performed.—L8 Pre-Collection data

Increase Temporal Resolution using 6 PICS sites

Key problem: From DSL 65 to 224, 6 PICS provide 44 images to PNP within 160 day interval, L4 provides 10 images

and from DSL 657 to 816, Libya4 provides 1 image to PNP in a 160 day interval

Typical Spectral Signature of a PICS

5

Different PICS have different spectral signature

NIR COASTAL BLUE GREEN RED SWIR1 SWIR2

Thoughts

outh Dakota State University

Image Processing

- Each PICS site has its unique TOA Reflectance
- How can we identify the optimal TOA reflectance that represents the site?
 - Find TOA Reflectance Reference that is the <u>mean TOA</u> <u>reflectance</u> derived from <u>the region of TOA reflectance</u> having <u>better than 3% Temporal</u>, <u>Spatial and Spectral</u> <u>Stability</u> within the site
- How can we normalize all 6 PICS sites to Libya 4?
 - 1. Find optimal region defined as 3% Temporal, Spatial and Spectral stability using 1 year of Landsat 8 data (Jan-Dec Cloud-free images)
 - 2. Account for seasonal variation by using a month-bymonth approach to generate a correction map
 - 3. Derive Scale Factor to normalize to Libya 4

PICS Normalization Process-Concept

What is the optimal region/reference of a PICS site?

<u>Answer</u>: a TOA Reflectance derived from the Optimal stable region which satisfies 3% Temporal, Spatial and Spectral Stability

Work done in 2016 by : Ruchira, Harika, Leah and Morakot

Flowchart showing how to find Optimal stable region in PICS : 3% Temporal, Spatial and Spectral

Scale Factor, Correction Map

PROCEDURE (Finding Optimal Stable region within the PICS site, Scale Factor, Correction Maps)

- Find <u>optimal reference</u> and a region which is 3% Spatially, Temporally and Spectrally stable for each PICS site.
 - One year, 12 months Cloud Free images.
 - Apply smoothing filter to the images and stack the 12 smoothed images together.
 - Calculate temporal mean and standard deviation, then calculate temporal uncertainties map.
 - Create a temporal stability mean map having 3% temporal uncertainty.
 - From the Histogram, find a range of TOA Reflectance most often occurring in the 3% temporal stability mean map.
 - Take a mean of this range, called it '<u>Temporal Mean</u>', then find pixels with TOA reflectance within 3% of '<u>Temporal Mean</u>'.
 - Create a 3% Temporal and Spatial Stability Map.
 - Repeat the process for all the bands and combine the results to find a region having 3% spatial, temporal and spectral stability called 'OPTIMAL STABILITY REGION'.
 - Calculate the mean TOA Reflectance => 'Optimal Reflectance' of the PICS site.
 - Correction Maps => Optimal Reference-Pics_(band)/Smoothed image_(month,band)
 - Calculate Scale Factor to bring each PICS to Libya4 => OptimalReference-Libya-4/OptimalReference-PICS

$$\begin{array}{l} \underbrace{\text{Convolution Equation}}_{\text{Let H}: R_{\text{H}} \rightarrow [0, \text{K-1}]} \\ I_{t,band}\left(u,v\right) = \left[\sum_{\substack{(i,j) \in R_{H}}} I_{(t,band)}\left(u+i,v+j\right) \bullet H(i,j)\right]_{t=1,band=1}^{12,band7} \\ \text{Also denoted: } I' = I * H ; \quad R_{H} = (165 \times 165) \ (5 \text{kmx5km}) \end{array}$$

I' = smoothed images,

Each image is convolved, then stack them together temporally:-

(1) Scene Temporal mean

Ι

$$\mu_{band}(i,j) = \frac{1}{12} \left[\sum_{t=1}^{12} I'_{band}(i,j,t) \right]_{band=1\dots,7}$$

(2) Scene Temporal Standard Deviation

$$s_{band}(i,j) = \left| \sqrt{\frac{1}{12 - 1} \sum_{t=1}^{12} \left| I'_{band}(i,j,t) - \mu_{band}(i,j,t) \right|^2} \right|_{band=1...,7}$$

Calculate 3% Temporal Stability Mean Map

1. Create Uncertainty Map then mask pixel that < 3% Uncertainty Temporal Uncertainty Map : $TUM_{(i,j)} = \left[\frac{S_{(band)}(i,j)*100\%}{\mu_{(band)}(i,j)} \right]_{band=1...7}$

> *If,* $TSM_{band}(i, j) = 1, TUM_{band}(i, j) < 3\%$]_{band=1...,7} *else* $TSM_{band}(i, j) = 0, TUM_{band}(i, j) > 3\%$]_{band=1...,7}

> > TSM_{band} = 3% Temporal Stability Mask (TSM)

2. Create 3% Temporal Stability Mean Map

 $TSMM_{band}(i, j) = \left[\mu(i, j) * TSM_{band}(i, j)\right]_{band 1...,7}$

TSMM_{band} (i,j) = 3%Temporal Stability Mean Map (TSMM)

Identify TOA Reflectance region having 3% Temporal Uncertainty What range of TOA Reflectance most often occurs in the region?

Find range of TOA reflectance, most often occurring and calculate (Temporal Mean)

Tempmap is a Region that contains Toa Reflectance within (ρ_{min} , ρ_{max})

$$TemporalMean_{band} = \frac{1}{N} \sum_{i=1}^{N} Tempmap_{i,band}$$

N = No. of pixels satisfying, $\rho_{min} < \rho < \rho_{max}$

14

We now have the highest occurring Temporal TOA reflectance mean (mode) of each band.

A spatial variation map is next created showing spatial variation from the Temporal_Mean => Spatial Temporal Map (STmap) or STM

 $SpatialTemporalMap (STM)(i,j) = abs | (\underline{TSMM(i,j) - TemporalMean}) | *100\%$ TemporalMean

 $\begin{aligned} SPTM_{band}(i,j) &= 1, If \ [STM_{band}(i,j) < 3\%]_{band1..7} \\ else \ SPTM_{band}(i,j) &= 0, \end{aligned}$

The resulting map was restricted to 3% variation and named the SPatial_TemporalMask (SPTM)

We repeat the process for all 7 bands, then find the optimal region that contains 3%, Temporal, Spatial and Spectral stability.

Find Optimal Stable Region : 3% Temporal, Spatial and Spectral

Image Processing Lab

353 OLI data : High Stability ROI with SDSU Cloud Mask

91

90

91

Niger2

Sudan1

Egypt1

61

59

70

67%

66%

77%

image Processing Lab

PICS Normalization Process

PNP Super PICS Trending: 6 PICS sites: 353 Scenes

Temp Uncertainty	C/A	Blue	Green	Red	NIR	SWIR1	SWIR2
Egypt1	1.77%	1.84%	1.76%	1.70%	1.23%	0.75%	2.12%
Libya1	2.99%	2.92%	1.49%	1.08%	0.84%	1.03%	1.76%
Libya4	1.33%	1.45%	1.32%	1.14%	0.83%	0.69%	1.73%
Niger1	1.49%	1.47%	1.02%	0.88%	0.62%	0.88%	1.94%
Niger2	3.13%	3.23%	1.57%	1.34%	1.18%	0.61%	2.20%
Sudan1	1.47%	1.36%	0.93%	1.16%	0.85%	0.76%	1.93%

South Dakota State University Image Processing Lab

19

PNP Super PICS Trending: 6 PICS sites: 353 Scenes

Statistics	C/A	Blue	Green	Red	NIR	SWIR1	SWIR2
%Drift/year	-0.16	-0.13	-0.13	-0.18	-0.20	-0.09	-0.16
2Sigma	0.19	0.20	0.13	0.12	0.09	0.07	0.18
P value slope=0	0.101	0.178	0.045	0.002	0.000	0.012	0.072
SuperPICS Temp Uncertainty	2.14%	2.16%	1.40%	1.28%	0.97%	0.79%	1.99%

South Dakota State Univers

0.57

0.55

0.12

-0.19

-0.20

-0.25

-0.38

-0.54

-0.59

-0.40

-0.29

-0.28

-0.11

-0.27

-0.18

-0.14

-0.07

-0.06

-0.13

-0.08

0.09

PNP Drift Estimates for 6 PICS vs Weighted Avg vs SuperPICS

outh Dakota State University Image Processing Lab

CA

Blue

Green

Red

NIR

SWIR1

SWIR2

-0.08

0.03

0.15

0.12

-0.01

0.02

0.20

-0.16

-0.13

-0.13

-0.18

-0.20

-0.09

-0.16

-0.23

-0.15

-0.10

-0.12

-0.10

0.00

-0.22

-0.29

-0.25

-0.14

-0.20

-0.20

-0.09

-0.18

-0.32

-0.31

-0.39

-0.52

-0.48

-0.17

-0.40

8

Refined PNP technique

- Introduce BRDF-SZA correction, create PNP basemap with BRDF-SZA Correction – <u>BRDF PNP Basemap</u>
- Construct a BRDF correction model from stable region: <u>BRDF quadratic model</u>
- Apply BRDF quadratic model to selected 12 month images, stack them, create temporal BRDF mean map for each band
- Mask image with identified stable ROI-PNP, then calculate TOA reflectance mean : BRDF optimal Mean_{band}
- Create Correctionmap : <u>BRDF optimal Mean_{band}</u>

BRDF-Image_{12month}

Calculate Scale Factor : <u>BRDF Optimal Mean Libya4</u>_{band}

BRDF Optimal Mean (PICS)_{band}

• Perform BRDF PNP, test results

BRDF-PNP Super PICS Trending: 6 PICS sites: 353 Scenes

BRDF Temp Uncertainty	C/A	Blue	Green	Red	NIR	SWIR1	SWIR2
Egypt1	1.64%	1.78%	1.80%	1.76%	1.29%	0.76%	2.27%
Libya1	3.01%	2.93%	1.48%	1.01%	0.70%	0.77%	1.60%
Libya4	1.25%	1.40%	1.30%	1.14%	0.81%	0.59%	1.79%
Niger1	1.39%	1.37%	0.96%	0.89%	0.66%	0.77%	1.95%
Niger2	3.07%	3.14%	1.53%	1.34%	1.19%	0.65%	2.24%
Sudan1	1.48%	1.39%	0.92%	1.09%	0.75%	0.60%	1.82%

23

BRDF-PNP Super PICS Results: CA and SWIR1 Bands

Libya4, Libya1, Niger1, Niger2, Egypt1 and Sudan1 : 353 Images, 4 years Test if slope is equal to 0, if p-value < 0.05, there is a significant trend for that band

		SuperPICS	СА	Blue	Green	Red	NIR	SWIR1	SWIR2
		%Drift/year	-0.13	-0.11	-0.13	-0.19	-0.21	-0.10	-0.16
		2Sigma	0.19	0.19	0.13	0.12	0.09	0.06	0.18
No.	Couth Delvote State U	Uncertainty	2.09%	2.11%	1.38%	1.28%	0.96%	0.71%	2.00%
3	Image Processing	p-value	0.180	0.239	0.038	0.001	0.000	0.002	0.081

Drift Estimates Comparison : BRDF SUPERPICS vs BRDF Individual PICS Trending

PNP provides similar drift estimates as onboard calibration, i.e. <0.1% per year

Mishra N, Helder D, Barsi J, Markham B, <u>Continuous calibration improvement in solar reflective bands : Landsat 5 through landsat8</u>, Remote Sensing of Environment , 2016,7-15,

South Dakota State University Image Processing Lab

Initial PNP vs BRDF PNP : Temporal Uncertainty

	PNP Temporal Uncertainty,													
Landsat8		data since launch												
Bands	Libya4	Libya4 Libya1 Niger1 Niger2 Sudan1 Egypt1 SuperP												
C/A	1.33%	2.99%	1.49%	3.13%	1.47%	1.77%	2.14%							
Blue	1.45%	2.92%	1.47%	3.23%	1.36%	1.84%	2.16%							
Green	1.32%	1.49%	1.02%	1.57%	0.93%	1.76%	1.40%							
Red	1.14%	1.08%	0.88%	1.34%	1.16%	1.70%	1.28%							
NIR	0.83%	0.84%	0.62%	1.18%	0.85%	1.23%	0.97%							
SWIR-1	0.69%	1.03%	0.88%	0.61%	0.76%	0.75%	0.79%							
SWIR-2	1.73%	1.76%	1.94%	2.20%	1.93%	2.12%	1.99%							

Landsat8		BRDF PNP Temporal Uncertainty, data since launch												
Bands	Egypt1	Egypt1 Libya1 Libya4 Niger1 Niger2 Su												
C/A	1.64%	3.01%	1.25%	1.39%	3.07%	1.48%	2.09%							
Blue	1.78%	2.93%	1.40%	1.37%	3.14%	1.39%	2.11%							
Green	1.80%	1.48%	1.30%	0.96%	1.53%	0.92%	1.38%							
Red	1.76%	1.01%	1.14%	0.89%	1.34%	1.09%	1.28%							
NIR	1.29%	0.70%	0.81%	0.66%	1.19%	0.75%	0.96%							
SWIR-1	0.76%	0.77%	0.59%	0.77%	0.65%	0.60%	0.71%							
SWIR-2	2.27%	1.60%	1.79%	1.95%	2.24%	1.82%	2.00%							

outh Dakota State University Image Processing Lab

%Drift Estimates PNP vs BRDF PNP

Drift	Egypt1	Libya1	Libya4	Niger1	Niger2	Sudan1	W.avg	SuperPICS
СА	-0.08	0.57	-0.54	-0.18	-0.32	-0.23	-0.29	-0.16
Blue	0.03	0.55	-0.59	-0.14	-0.31	-0.15	-0.25	-0.13
Green	0.15	0.12	-0.40	-0.07	-0.39	-0.10	-0.14	-0.13
Red	0.12	-0.19	-0.29	-0.06	-0.52	-0.12	-0.20	-0.18
NIR	-0.01	-0.20	-0.28	-0.13	-0.48	-0.10	-0.20	-0.20
SWIR1	0.02	-0.25	-0.11	-0.08	-0.17	0.00	-0.09	-0.09
SWIR2	0.20	-0.38	-0.27	0.09	-0.40	-0.22	-0.18	-0.16

% Drift Estimates/year : PNP

% Drift Estimates/year : BRDF PNP

Drift	Egypt1	Libya1	Libya4	Niger1	Niger2	Sudan1	Wavg	SuperPICS
CA	-0.01	0.60	-0.53	-0.09	-0.33	-0.23	-0.26	-0.13
Blue	0.07	0.58	-0.59	-0.06	-0.34	-0.17	-0.24	-0.11
Green	0.14	0.13	-0.40	-0.06	-0.40	-0.11	-0.15	-0.13
Red	0.10	-0.16	-0.30	-0.05	-0.53	-0.15	-0.20	-0.19
NIR	-0.04	-0.12	-0.29	-0.09	-0.51	-0.14	-0.20	-0.21
SWIR1	-0.05	-0.13	-0.13	0.00	-0.24	-0.05	-0.11	-0.10
SWIR2	0.16	-0.31	-0.29	0.16	-0.40	-0.25	-0.19	-0.16

Both PNP techniques give % Drift Estimates within -0.2% for all Bands

PNP/BRDF-PNP Drift Estimates vs On-board Calibrators

Comparison OLI On board Calibrator vs PNP/BRDF-PNP Drift Estimations

http://www.sciencedirect.com/science/article/pii/S0034425716302899

Nischal Mishra, Dennis Helder, Julia Barsi, Brian Markham, Continuous calibration improvement in solar reflective bands: Landsat 5 through Landsat 8, <u>Remote Sensing of Environment Volume 185</u>, November 2016, Pages 7–15

outh Dakota State University

Image Processing Lab

BRDF PICS Normalization Process : Uncertainty Analysis

Uncertainty							
Sources	CA	Blue	Green	Red	NIR	SWIR1	SWIR2
BRDF Super PICS							
Temporal Uncertainty	2.05%	2.07%	1.38%	1.26%	0.91%	0.66%	1.93%
Bin Analysis (spatial)	0.66%	0.72%	0.73%	0.84%	0.54%	0.52%	0.61%
Temporal Uncertainty							
across PICS (Images)	1.65%	1.65%	1.13%	0.95%	0.69%	0.54%	1.81%
Total PNP Uncertainty	2.74%	2.77%	1.93%	1.80%	1.30%	1.03%	2.77%

Summary

- PNP approach increase data acquisition rate up to 3-4 times for Landsat 8 (every 3-4 days)
- PICS Normalization Process for both methods, the drift estimates for all spectral bands in the order of 0.2% per year which provides very comparable results to On-board Calibrators.
- Temporal Uncertainty of the SuperPICS after PNP and BRDF PNP was well within 2% for all bands.
- BRDF PNP Uncertainty Analysis: PNP-SuperPICS Uncertainty, Optimal Reference Uncertainty, Temporal Uncertainty of PICS

The overall Uncertainty of the PNP technique is within 3% for all OLI bands

• If there is no on-board calibrator, PNP technique a viable alternative technique to perform radiometric assessment of satellites especially the older ones.

Moving Forward

- Libya-4 has shown more variability recently, there is new study, Worldwide Exhaustive PICS Search (WEPS), using Google Earth Engine that has located stable regions with better than 2% temporal uncertainty for each spectral band.
- Modify PNP technique to incorporate these new results, and with Collection 1 data.

THANK YOU

Back up Slides

Average Drift calculation procedure

Image Processing Lab

Refined PNP technique: BRDF PNP Basemap

Image Processing Lab

Archived Images

PNP-ROI archived data BRDF-SZA Corrected, Quadratic model With Ref SZA = 0 degree,

BRDF-Corr 12months Stack BRDF Corrected images, BRDF Map Temporal BRDF Mean Map ROI-PNP, 3% Temporal, Spatial, Spectral Stability, Find BRDF Optimal Reference

BRDFCorrectionMap : Normalized to BRDF Optimal Reference

Refined PICS Normalization across multiple PICS

Calculate the scale factor for each PICS TOA to bring them to the Libya4 (reference PICS) TOA level

> Scale factor to Libya4 = <u>Optimal BRDF Reference Libya4</u> Optimal BRDF Reference(PICS)

PICS Normalization Process

Cloud Free BRDF corrected L1T images of selected ROI for each PICS

BRDF Correction Map By month,band

 \mathfrak{X}

Bring the images to equal to Optimal BRDF reference

BRDF Scale Factor, per band

Bring the images to equal to Libya4_Optimal BRDF reference

TOA reflectance Band 3,4 for each PICS in the same plot: Shows different Intensity of each PICS

Plot TOA Reflectance with each site scaled to the Libya 4 (no correction map)

.