New RadCalNet Instrumented Site at Gobabeb, Namibia: Installation Field Campaign and First Absolute Calibration Results

Sébastien Marcq, Aimé Meygret - Centre National d'Etudes Spatiales (CNES); Agnieszka Bialek, Claire Greenwell, Barry Scott, Nigel Fox - National Physical Laboratory (NPL); Marc Bouvet -European Space Agency (ESA); Beatrice Berthelot - Magellium; Bahaiddin Damiri - CIMEL

Outline

- Context:
 - Radcalnet
 - Instrumentation/Station description
 - Gobabeb
 - Search for site/Characterization campaign
 - Installation
- First results

RadCalNet (Radiometric Calibration Network) – CEOS/WGCV IVOS

- Automatic field instrumentation
- Data will be accessible to the public

Baotou (AOE, China)

Baotou

La Crau (CNES, France)

Railroad Valley (NASA/University of Arizona, USA)

Gobabeb (ESA/CNES, Namibia)

Already operational

Installed in July 2017

La Crau and Gobabeb Sites

La Crau (France)

43.5589N, 4.8644E

- Flat plain of a few square kilometers, covered with white pebbles and grass
- Used since 1987 (SPOT), automated since 1997

Londres Pays-Bas Brusenbourn Paris France Kordore

Gobabeb desert, Namibia 23.6002S, 15.1196E

- Arid desert, tens of square kilometers
- Very low cloud coverage
- Instrumented in 2017

Station description: Instrument

ROSAS automated photometric station

A **RO**botic Station for Atmosphere and Surface characterization dedicated to on-orbit calibration and L2a products validation

Photometer:

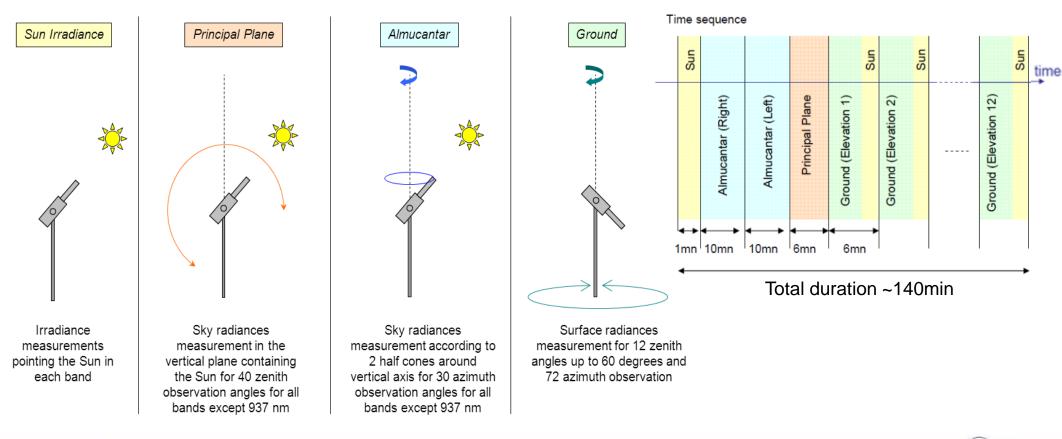
- Made by CIMEL
- AERONET concept (AErosol RObotoc NETwork) dedicated to atmosphere characterization
- Optical head: 2 collimators
- 2 detectors:
 - Silicium (visible and NIR)
 - InGaAs detector (SWIR)

Configuration:

12 filters: 414, 440, 500, 555, 675, 702, 740, 782, 870, 937, 1020, 1640 nm

Mounted on top of a 10mhigh post .

5


La Crau and Gobabeb stations share the same:

- Instrument
- Protocol
- Processing

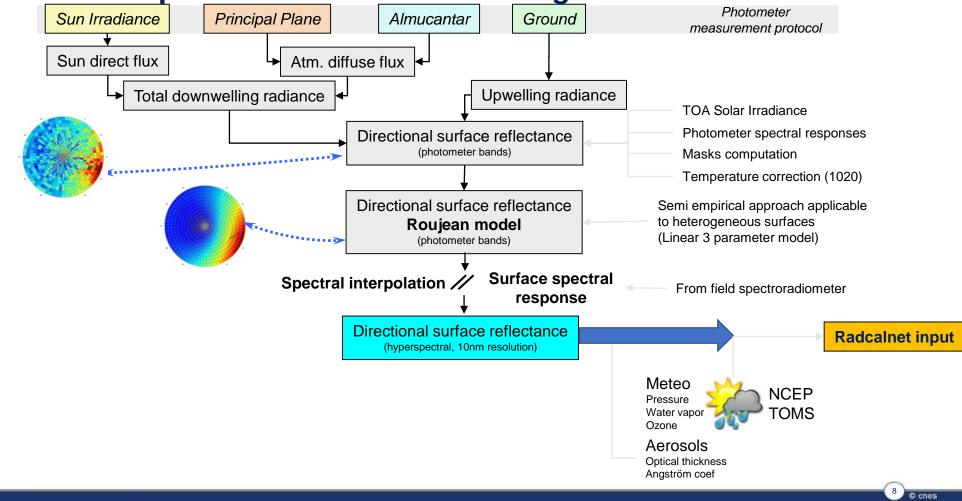
Station description: Protocol

Automatic acquisitions every non cloudy day

Station description: In situ Calibration

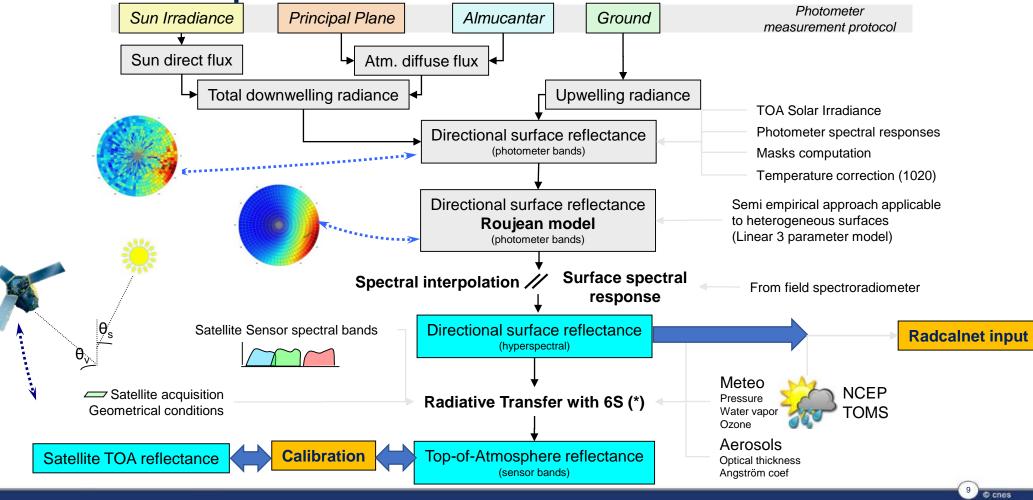
The SUN and SKY data can be used for an in-situ calibration of the photometer itself!

Irradiance Calibration

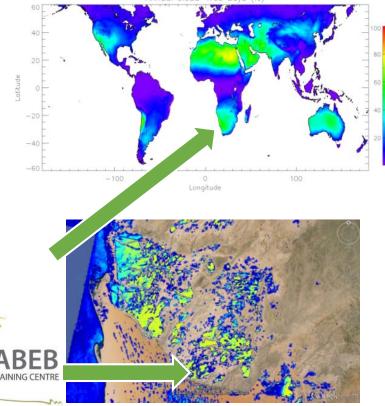

 \rightarrow Solar irradiance extinction: Bouguer-Langley Law

Radiance Calibration

→ Molecular scattering for short wavelengths and propagated to other bands using irradiance cross-calibration

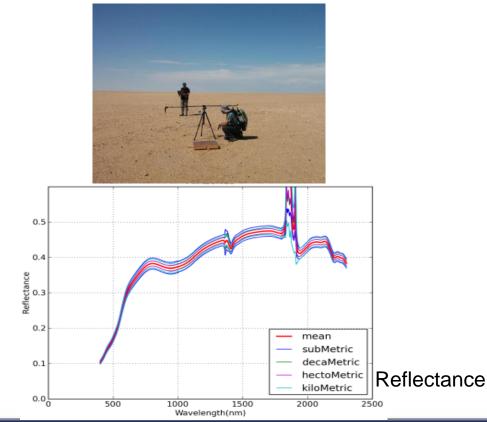


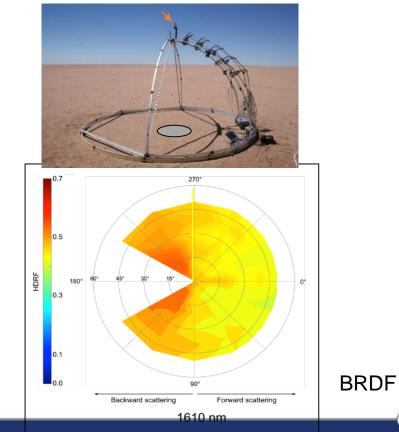
Station description: Radcalnet Processing


Station description: Satellite Calibration

Gobabeb: Global search for a new site

- \Rightarrow look for a new site (ESA+CNES) as part of RadCalNet (2013-2014)
- \Rightarrow Criteria of <u>global</u> analysis:
- Low Cloud coverage
- High Spatial homogeneity at several scales (10s of meters to 100s of meters)
- Stability (no vegetation)
- Atmospheric changes (atmospheric particles, water wapor...)
- Pratical reasons (access, GSM)




Gobabeb: 2015 Characterization Field Campaign

11) © cnes

Validation of satellite data analysis : very good spatial homogeneity from very high to coarse resolution

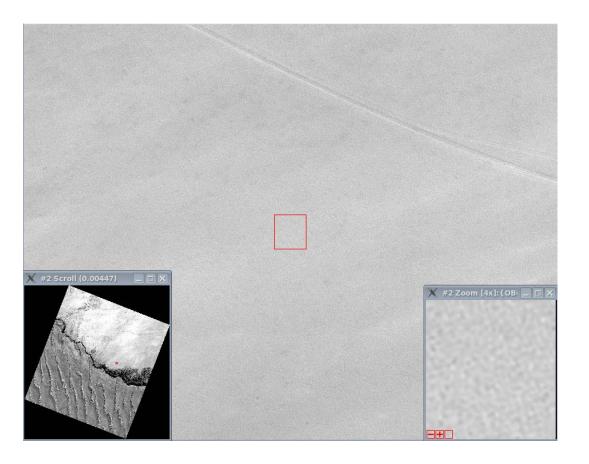
New RadCalNet Instrumented Site at Gobabeb, Namibia - CALCON Aug 22-25 2017

Gobabeb: 2017 Installation

1 week field campaign for installation in July 2017

Photometer mounted on 10m telescopic mast from Clarks Masts UK

In addition to sunphotometer, weather station measuring pressure, humidity, wind speed/direction and global downwelling irradiance



06/07/2017 PLEIADES PHR1A

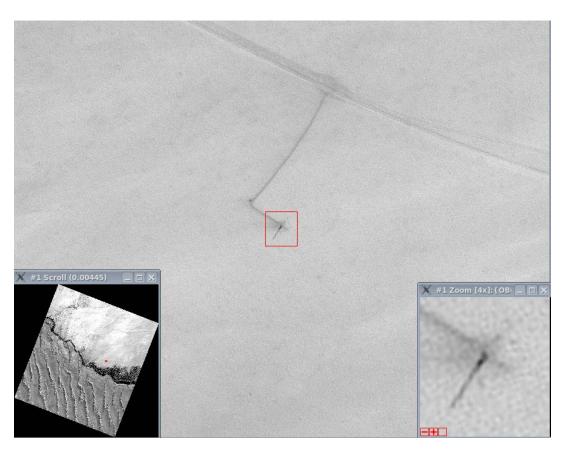
70 cm PAN

Before installation

25/07/2017 PLEIADES PHR1A

70 cm resolution PAN

After installation


Footprints filtered in the processing (such as mast shadow)

Impact

~10% at 70cm resolution with adjacent pixels

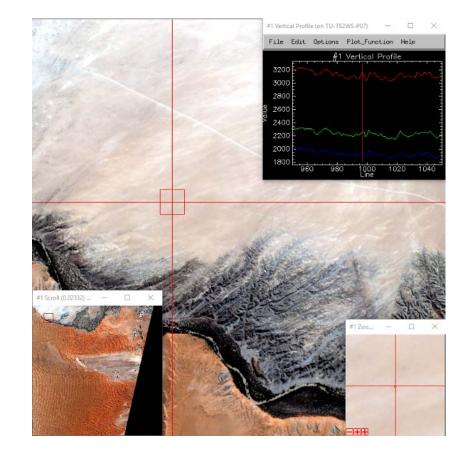
~2% at 70cm on image extraction (30x30m²)

...and fading away (wind)

19/07/2017 Sentinel2A

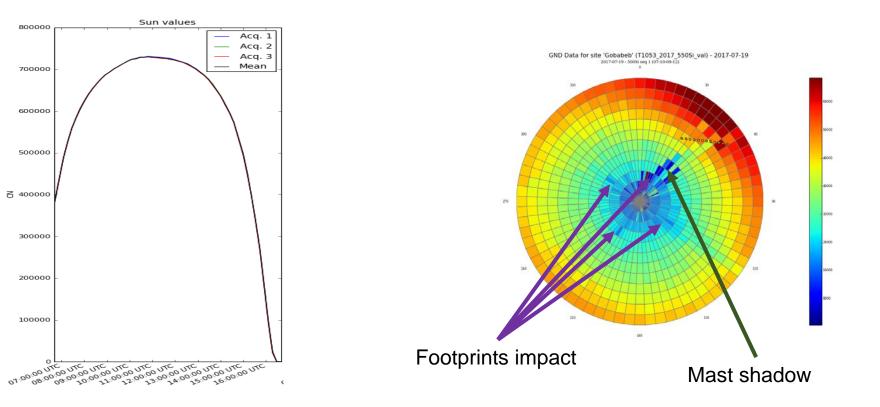
10 m resolution RGB

After installation


Footprints filtered in the processing (such as mast shadow)

Impact

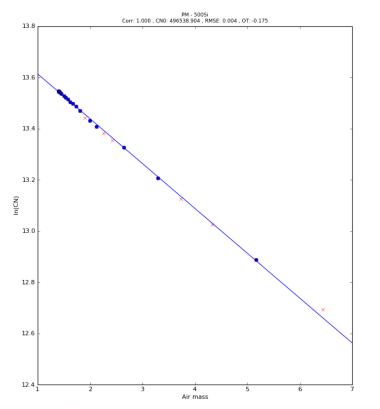
~3% at 10m resolution with adjacent pixels


~<1% at 10m on image extraction (30x30m²)

...and fading away (wind)

Gobabeb: Very first acquired data 2017/07/19

SUN 550 nm

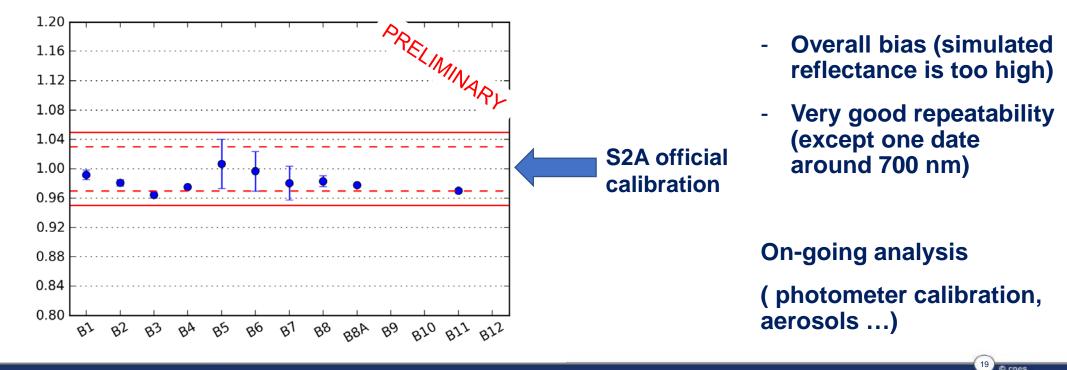


17 © cnes

Ground Radiance 550 nm

Gobabeb: In situ Irradiance Calibration of the station

In progress: almost no clouds, but aerosol load varies slightly


Spectral band	Irr. Calibration Coefficient	Difference to lab calibration
414	217061.8	2.5%
440	434262	1.8%
500	498934.8	1.3%
555	690851.4	1.4%
675	706242.8	0.3%
702	852989.2	0.3%
740	986128	0.0%
782	844668.7	0.7%
870	1008585.9	-0.2%
1020i	636907	-0.1%
1020	785585	-0.8%
1640	4191630	-0.7%

Results are very similar to lab calibration

Gobabeb: Sentinel 2A Absolute Calibration

1st absolute calibration results using Gobabeb station (3 S2A images)

Conclusion

• Gobabeb Radcalnet station has been installed in July 2017

• The instrument is now operational and has been used for Sentinel 2A calibration validation

• Quality assessment and tuning of processing parameters are currently underway

 First Gobabeb Beta data should flow to Radcalnet portal in the fall
Thank you for your attention!

BACKUP SLIDES

Photometer in-situ irradiance calibration

k Spectral band index

Langley-Bouguer principle: $E_{k} = E_{0k} \cdot \left(\frac{d_{0}}{d}\right)^{2} \cdot \exp\left(\frac{-\tau_{k}}{\cos \theta_{s}}\right) \cdot T_{g}$	E _k E _{0k} d ₀ /d <i>τ</i> θ _s T _g	Irradiance measured at ground level Top of atmosphere solar irradiance Earth-Sun distance variation Total optical thickness Sun zenith angle Total gaseous transmission			
Radiometric model for Sun measurements: $DC_k = A_k.Gu_k.E_k$	DC Gu A _k	Digital Count Electronic Gain Irradiance Calibration coefficient			
Bouguer line:					
$\ln(DC_k) = -\frac{\tau_k}{\tau_k} m + \ln(\frac{A_k}{Gu_k} Gu_k E_{0k} (d/d_0)^2)$	m T _g	Air mass = $1/\cos(\theta_s)$ is assumed ≈1 except for 937 band			
Fitting of Bouguer line (least squares method) over each non cloudy half-day					
✓ Air mass=0 → Irradiance Calibration coefficient A_k ✓ Slope of the line → Total optical thickness τ_k for the period					
The Irradiance Calibration coefficient obtained in situ is compared to					

22 Ches

8

46

Air mass

0 2

Radiance Radiometric model:

$$DC_k = B_k.Gk_k.L_k$$

- DC Digital Count
- Gk Gain for radiance measurements
- B_k Radiance Calibration coefficient

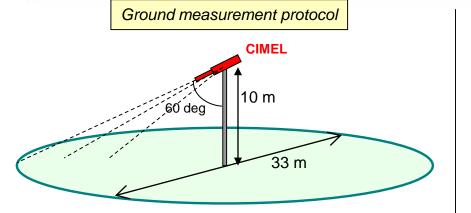
Photometer solid angle (not wavelength dependent)

At shorter wavelenghts (380, 440, 550nm), the top of atmosphere radiance is dominated by Rayleigh scattering, and to a lesser extent by scattering from aerosols and surface \rightarrow The total radiance L_k can be estimated for these wavelengths from Principal Plane measurements, using a radiative transfer code

Ω

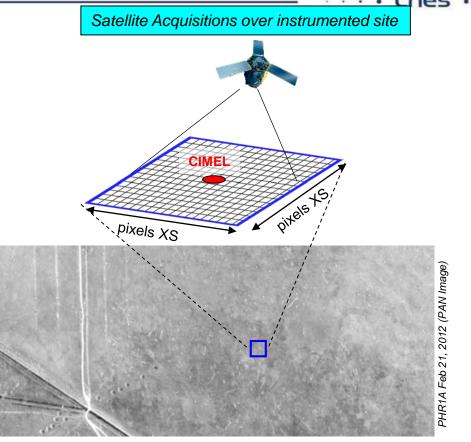
 \rightarrow B_k can be estimated in shorter wavelengths

Radiance / Irradiance relationship:


$$E_k = \Omega . L_k \qquad \qquad \Omega = \frac{B_k}{A_k}$$

A_k Irradiance Calibration coefficient
B_k Radiance Calibration coefficient

 B_k estimated in shorter wavelengths by radiance calibration A_k already calculated in all bands by irradiance calibration


 \rightarrow Estimation of $\Omega \rightarrow B_k$ in all bands

New RadCalNet Instrumented Site at Gobabeb, Namibia - CALCON Aug 22-25 2017

The Ground measurement protocol uses zenithal observation angles up to 60 degrees, which correspond to a **33m diameter** circular zone.

Each satellite measurement is averaged over X pixels around the photometer in order to form a squared area of 33m, and can be associated to a top-of-atmosphere reflectance