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To paraphrase Douglas Adams,

“Space is [harsh]. Really [harsh]. You just won't
believe how vastly, hugely, mind-bogglingly
[harsh] it is.

| mean, you may think it's a long way down the
road to the chemist, but that's just peanuts to
space.”

D. Adams--Hitchhiker’s Guide to the Galaxy
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Presenter
Presentation Notes
To paraphrase Douglas Adams, “Space is [harsh]. You just won’t believe how vastly, hugely, mind-bogglingly [harsh] it is.” Interactions with this harsh space environment can modify materials and cause unforeseen and detrimental effects to spacecrafts. If these are severe enough the spacecraft will not operate as designed or in extreme case may fail altogether. Environmentally-induced problems are dominated by spacecraft charging and single-event interrupts . Exposure to higher fluence radiation and radiation can generate atomic scale defects in materials leading to changes in the optical, electrical, and mechanical properties. Alternately, temperature fluctuation, charged particle flux, contamination, or surface modifications can lead to materials modifications and changes in optical, thermal, and charging properties of the materials. The evolution of the charging, discharging, electron transport, and arcing properties of surface and bulk materials as a result of prolonged exposure to the space environment has been identified as one of the critical areas of research in spacecraft charging. Further, materials modifications can change the satellite environment, leading to feedback mechanisms for further spacecraft responses. 


®
Bottom line for the USU Materials Physics Group:

Interactions with this harsh space environment can modify materials and
cause unforeseen and detrimental effects to spacecraft. Therefore, we:

 simulate the space environments,

 characterize their effects on materials properties,

 use these results to predict and mitigate space environment effects,

« work to understand the materials physics involved at the atomic scale to
 extend our work to more diverse problems and materials.
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Presenter
Presentation Notes
To paraphrase Douglas Adams, “Space is [harsh]. You just won’t believe how vastly, hugely, mind-bogglingly [harsh] it is.” Interactions with this harsh space environment can modify materials and cause unforeseen and detrimental effects to spacecrafts. If these are severe enough the spacecraft will not operate as designed or in extreme case may fail altogether. Environmentally-induced problems are dominated by spacecraft charging and single-event interrupts . Exposure to higher fluence radiation and radiation can generate atomic scale defects in materials leading to changes in the optical, electrical, and mechanical properties. Alternately, temperature fluctuation, charged particle flux, contamination, or surface modifications can lead to materials modifications and changes in optical, thermal, and charging properties of the materials. The evolution of the charging, discharging, electron transport, and arcing properties of surface and bulk materials as a result of prolonged exposure to the space environment has been identified as one of the critical areas of research in spacecraft charging. Further, materials modifications can change the satellite environment, leading to feedback mechanisms for further spacecraft responses. 


Spacecraft/Environment Interactions

* The Sun gives off high energy charged particles, with
dynamic fluxes.

e Particles interact with the dynamic Earth’s atmosphere and
magnetic field in interesting and dynamic ways.

* Dynamics of the space environment and satellite motion
lead to dynamic spacecraft interactions

e High energy particles deposit charge and energy into
spacecraft surfaces

e Materials in spacecraft can modify the local space
environment

* Materials properties evolve in response to interactions with
the environment

* Evolving mission objectives, complexity, sensitivity, size
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Primary Motivation For Our Research—Spacecraft Charging

Our concern for spacecraft charging is caused by plasma
environment electron, ion, and photon-induced currents.
Charging can cause performance degradation or complete

failure.

Majority of all spacecraft
failures and anomalies due
to the space environment
result from plasma-induced
charging

» Single event interrupts of
electronics

» Arcing

Sputtering

Enhanced contamination

Shifts in spacecraft potentials

Current losses

-
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Energetic Magnetospheric
Ions & Electrons

Backscattered

Sputtered Ions Electrons

Secondary

Ambient Electrons (SE’s)

Tons
&
Electrons

4" ey’
uv //’ ,
Photo-emitted

sunlight
Electrons

Incident and Emitted Currents that
Result in Spacecraft Charging

Spacecraft adopt potentials in
response to interaction with
the plasma environment.

* Incident fluxes and electron
emission govern amount of
charge accumulation

* Resistivity governs:
 Where charge will accumulate

« How charge will redistribute across
spacecraft

* Time scale for charge transport and
dissipation
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Critical Time Scales and Bulk Resistivities

Conductivity (Q-cm)™*
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Decay time vs. resistivity base on simple capacitor model.
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Presenter
Presentation Notes
Decay time as a function of resistivity base on a simple capacitor model and Equation (1).  Here εr is set to 1.  Dangerous conditions occur for materials with resistivities (or more properly ρ•εr) in excess of ~4•1016 Ω-cm, when the decay time τ exceeds ~1 hr.  Problems occur for ρ•εr ≥1018 Ω-cm, when decay times exceed 1 day.

 The practical limit of determining resistivity is approaching.  Values of 1023 W-cm and higher come with decay times of a century or more and the cosmic background radiation becomes a factor in noise elimination.


Where Materials Testing Fits into the Solution

Charge Accumulation
» Electron yields

* lon yields

* Photoyields

e Luminescence

Charge Transport

» Conductivity

* Radiation Induced Conductivity
o Permittivity

» Electrostatic breakdown

* Penetration range

ABSOLUTE values as functions
of materials species, flux, fluence,
energy, and temperature.
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Presentation Notes
Basic materials properties as a function of species, flux, and energy lead to the familiar changes in potential and ESD as functions of flux changes, for example solar events or moving in and out of eclipse.

How ever, the picture is much more complex.  No


Dale Ferguson’s “New Frontiers in Spacecraft Charging”

#1 Non-static Spacecraft Materials Properties
#2 Non-static Spacecraft Charging Models

These result from the complex dynamic interplay between space environment, satellite
motion, and materials properties

Specific focus of our work is the change in materials
properties as a function of:

 Time (Aging), t
e Temperature, T
 Accumulated Energy (Dose), D
s Dose Rate, D
* Radiation Damage
« Accumulated Charge, AQ or AV
» Charge Profiles, Q(2)
« Charge Rate (Current), O
e Conductivity Profiles, o(z)
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Presentation Notes
I find myself in kind of an embarrassing situation, agreeing with Dale Ferguson.  I recall two of his new frontiers in spacecraft charging in his talk on Monday, the first being non-static space materials properties and the second non-static spacecraft charging models.  These two issues are intermediately related because of their interplay.  So in this talk what I’m going to do is provide some examples of how materials properties change as the function of:
 
time (or aging as this is sometimes called), 
temperature, 
the accumulated energy or dose,
the dose rate (the energy accumulation rate)
the charge accumulation,
the charge accumulation rate, 
the spatial distribution of the charges, and finally 
the transport of the charges, the conductivity profiles as a function of position.  
 
So, from here on out, it’s more of a show and tell.  We’re going to do this like a detailed analysis of new and interesting facts. 


A Materials Physics Approach to the Problem

Measurements with many methods...

Dark
Conductivity
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Interrelated through a...

Complete set
of dynamic
transport
equations

Extended
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Materials Physics Group Measurement Capabilities

Electron Emission  Photoyield Conductivity Radiation Induced Cond.
lon Yield Luminescence  Electrostatic Discharge Radiation Damage

Dependence on: Press., Temp., Charge, E-field, Dose, Dose Rate A
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Electron Yields Determine Charge Accumulation

Electron yields characterize
a material’s response to
Incident charged particles.

out

e

n

Yield =0 =

Can be O<o>>1

Leading to + or - charging
Depends on material
Incident electron energy
Temperature

Charge

» Grounded conductors replenish
net emitted charge in <ps

> Yields of insulators change as
charge accumulates in sample.

» Intrinsic yield is zero charge
yield
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Hemispherical Grid Retarding Field Analyzer Electron Emission Detector

el

0 10 eV to 306 100 keV incident electrons
o fully enclosed HGRFA for emission
electron energy discrimination.
o Precision absolute yield by measuring
all currents
0 ~1-2% accuracy with conductors
0 ~2-5% accuracy with insulators
0 in situ absolute calibration
o multiple sample stage
e ~10040 K < T <400 K
*reduced S/N

-
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Enhanced Low Fluence Methods
for Insulator Yields

0]

0]

low current (<1 nA-mm-2), pulses (<4
us) with <1000 e"-mm-2

Point-wise yield method charge with
<30 e -mm per effective pulse
neutralization with low energy (~5 eV)
e and UV

in situ surface voltage probe

e flood gun

P UV flood LED

1 i i
1 S — o
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Constant Voltage Conductivity

Constant Voltage Chamber configurations
inject a continuous charge via a biased
surface electrode with no electron beam
injection.

*Time evolution of resistivity
*<101sto>10°s

e £200 aA resolution

¢ >5:1022 Q-cm

*~100 K <T< 375 K
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Presenter
Presentation Notes
FIG. 4.4 Fitted USUMPG CVC Model vs. Pure Exponential
The data is shown in black, the USUMPG model in yellow, and the exponential solution when no interface charging is considered.  It is clear that the exponential solution is a poor estimation of the measured current density.  The maximum current and minimum current are shown as dotted lines for reference. 
FIG. 4.6 USUMPG-CVC Charging Current Density Model
The (Black) data is USUMPG CVC data taken on LDPE at ~ 1e8 V/m.  The (Orange) fit is the sum of the polarization and displacement current densities.



Surface Voltage Charging and Discharging

« Uses pulsed non-penetrating electron Instrumentation - 1

beam injection with no bias electrode e | Ch arg N g
injection.

= ot

* Fits to exclude AC, polarization, transit 5 .

and RIC conduction. 3
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Radiation Induced Conductivity Measurements

RIC chamber uses a
combination of charge
injected by a biased
surface electrode with
simultaneous
injection by a pulsed
penetrating electron.

Top view of samples on window  IAC Accelerator and RIC Chamber RIC Chamber at IAC

i
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Low Temperature Cryostat

Radiation Sources
A Electron Gun

Sample Mount
B Sample Pedestal

' Sample

1D Sample Mount

E Sample Mask Selection Gear

F Interchangeable Sample Holder

G In situ Faraday Cup

H Spring -Loaded Electrical Connections
I Temperature Sensor

J Radiation Shield

* RIC

Used with:
» Constant Voltage Conductivity

« Cathodoluminescence
* Arcing

 TE/SE/BSE Yields

» Surface Voltage Probe
* Photoyields and lon Yields

Analysis Components

. UV/Vis/NIR Reflectivity Spectrometers
I. CCD Video Camera (400-900 nm)

M InGaAs Video Camera (800-1200 nm)
N InSb Video Camera (1000-5000 nm)

() SLR CCD Camera (300-800 nm)

P Fiber Optic Discrete Detectors

() Collection Optics

Instrumentation (Not Shown)
Data Acquisition System
Temperature Controller
Electron Gun Controller
Electrometer
Oscilloscope

Chamber Components

R
S
T

Multilayer Thermal Insulation
Cryogen Vacuum Feedthrough
Electrical Vacuum Feedthrough
Sample Rotational Vacuum Feedthrough
Turbomolecular/Mech. Vacuum Pump

" Ton Vacuum Pump

Ion/Convectron Gauges — Pressure
Residual Gas Analyzer— Gas Species
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Presentation Notes
Figure 1.	Hemispherical Grid Retarding Field Analyzer (HGRFA) and Surface Voltage Probe (SVP). (a) Sample stage and HGRFA detector (side view). (b) Cross section of HGRFA. (c) Sample stage and HGRFA detector shown without C and G (front view).  (d) Interior view of the partially assembled HGRFA showing sample block and inner grid. (e) Diagram of HGRFA interior with SVP. (f)  Surface voltage probe assembly.  (g) Diagram of SPV interior and Au electrodes. (h) Ex situ portion of Electrostatic Field Transfer Probe (EFTP) assemble.


Cathodoluminescence & Induced ESD Measurements—Arc/Glow/Flare Testing

NIR SDL Far IR SDL SWIR/MWIR

Spectrometer . HgCdTe Camera InSb Camera Oscilloscope
: S — —
Luminescence/Arc/Flare | gement insh g;tecto:L— A

Test Configuration Far IR Element _\_,: A
HgCdTe Detector L P
. earson
* Absolute spectral radiance L— Ceil =
e ~200 nm to ~5000 nm NIR/SWIR Single —
i Element Detectors SR MEE
» 4 cameras (CCD, iiCCD, InGaAs, | Camera
InSb) InGaAs ] Optical SEM
« Discreet detectors filters Ext InGaAs Microscope
* 2 Spectrometers (~200 nm to Ui T Ammeter
~1900 nm) Spectrometer
e e at ~1 pA/cm?to ~10uA/cm? & TR e
~10 eV to 50 keV Camera
* 35 K< T< 350 K -
» Multiple sample configurations to
~10x10cm
HEED Gun
Legend
Existing Equipment
usu
Electron Equipment to be Upgraded
Emission
Test
Chamber SDL Equipment
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We recorded current in three ways: 1.Pearson Coil--


Electron-Induced Luminescence

Kapton XC
500 nAlcm?
22 keV
150K
< SLR NIR Video 33 ms exp.

Diversity of Optical Emission Phenomena in Time Domain

Ball Black Kapton 22 keV 110 or 4100 uW/cm?
135 K 5 or 188 nA/cm?
Sample current

Surface Glow '

Relatively low intensity
Always present over full
surface when e-beam on

S

Current [nA]

May decay slowly with .
time £ Sustained Arc %
M55J ;. Glow Electrometer f Flare
2 l; — ‘ — 10:)0 D — QDIOU = : — = 3(1‘00‘ =
1 nAlcm Time [s]
22 keV Edge GIOW 300x10™ [} T | ! 1™ — IXyb Edge “H
100K Similar to Surface Glow, E @Arc CCD Video Camera s | )4
= ol | 4L | 7 (4vounmtowyuwyunm) |7 Xyb Bk i
“Flare” Sustained Glow but present only at < : i — igﬁ 12?3%2"3'% 5
sample edge B Rt
IEC Shell Face Epoxy % “y f
Resin with Carbon Veil w Y & f’
Flare 3 :- -
1 nAlem? ’ - o E
22 keV ‘ 2-20x glow intensity £ olf "
100K Abrupt onset & E ]
“Flare” Sustained Glow 2-10 min decay time U S SN
1 2 Time [s_] )

— InGaAs Video Edge E
—— InGaAs Video Sample E
InGaAs_Samp_Drk1 ]
—— InGaAs_edge_Drk1 q
- InGaAs_Samp_Drk1_SD| 4
-- InGaAs_edge_Drk1_SD ]

InGaAs Video Camera
& (900 nm to 1700 nm)

- Relatlvely very high
intensity

Spectral Radiance [W/cm”2-nm-sr] ‘

. . m
Sustained Glow Sustained Glow NIR Video 10-1000X glow intensity ol Sustained ]
Kapton E Very rapid<lustols \i Glow
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Risk Due to Electron-Induced Luminescence

Statement of Risk

Critical JWST structural and materials and
optical coatings were found to glow at
potentially unacceptable levels under electron
fluxes typical of storm conditions in the L2
environment.

Preliminary results of Vis/NIR glow at <0.2
nA/cm? show

Intensity is:
visible with eye, SLR camera & NIR
video camera
» estimated to exceed acceptable
2 um stray light intensity into NIRCam
 Absolute sensitivity <20% of zodiacal background

Glow spectra:

* has been measured from
~250 nm to >1700 nm
may well extend to much higher wavelengths

Space Dynamics

® LABORATORY
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SMSS - VDA + black Kapton covered, glow at
particular angles would directly image onto

detectors unobstructed PM frill - black Kapton, glow will transmit

\ unobstructed as additional background

ISIM structure -

wrapped in
Kapton
(penetration
SM mount - depth of
black Kapton electrons?)
wrapped

AOS structure and front —
wrapped in Kapton or
Kapton+Kevlar sandwich
(penetration depth of electrons?)

Bib - black Kapton, glow from frill-like
area near edge of PM will transmit
unobstructed as additional background
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Presentation Notes
Emphasize Kapton E and Kapton XC appear more red than M55J, T300 and Fiberglass Composites


Fesp Breakdown: Dual (Shallow and Deep) Defect Model

Yields: 1 Feggp=20£2 MV/m at RT

...........

1777 Fegp=27+2 MV/m at 157 K

____________

_______

Ratio of Defect - Feep=19.020.6 MV/m at RT and 142 K (irradiated)
energy to Trap '

density, AG,.; /Nt

Separate these with
T dependence

AG,;=0.97 eV 10 \
N;=1-10%7 cm3 |

W
o
l

_______
_______
..............

______________

......

____________

N
o
[ | | L1

......

Current (MA)

.......

-

_______

Breakdown field measurements: 0 2000 4000 6000

& - Voltage (V)
A AGolef — 02 (FESD)

Endurance time measurements:

AG_ . (F,T 2 co&r
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Presentation Notes
. Dual mechanism multiple trapping model fit against endurance time data for the polymer LDPE, with Fbb ≈255·MV/m, Fonset  ≈110·MV/m.  Data are fit with USU (black line) [8] extension of the Crine [ref ]models.  The blue lines show fits with ±5% variations in the USU fitting parameters. The dashed line indicates the ramping time at a given field. The colored bars to the right indicate the following time scales on the graph: The insert shows the fit without considering the ramping process (black), a fit assuming each ramp step field places as much stress on the material as the waiting field (yellow), and a fit considering the field as it is stepped up gradually over time (green). Note that even at high fields these deviations are small compare to the variations due to a ±5% uncertainties in the defect energies. 
Refer to slide 6 as to why we don’t have a Kapton graph like this. 


A Path Forward for Dynamic Materials

Issues

For dynamic materials issues in
spacecraft charging:

» Synthesis of results from different

studies and techniques o
Rt TR

* Development of overarching

theoretical models

allow extension of measurements made —_—

over limited ranges of environmental
parameters to make predictions for
broader ranges encountered in space.

* Energy Diagram incorporates information from:

e Optical transmission (CB-VB gap)

e Conductivity (shallow trap distribution, rates)

* Surface Decay (shallow trap distribution, recombination)

* RIC (shallow trap distribution & occupation, rates)

* Electrostatic discharge (shallow trap distribution & occupation, rates)

e Cathodoluminescence (deep trap distribution, defect types, trap
occupation, rates, relaxation)

e Optical & Thermal Stimulated CL (deep trap distribution, trap
occupation, rates, relaxation)

-
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A Puzzle from Solar Probe Plus: Temperature and Dose Effects

1st Sun encounter, Nov. 26, 2018
2nd Sun encounter, Jul 15, 2023

~Launch
Oct' 14,2014
——__Gg-125km/s?

Earth at 1st perihelion
(15° off quadrature)

— = WideTemperature Range
P <100 K to >1800 K

Wide Dose Rate Range
Five orders of magnitude variation!

JGA flyby.
Mar-15, 2016
C/Arange: 12R; ——

Figure 4-1. Solar Probe mission summary.

215Rg

165Rg M
104Rg (0.8AU o _-'

; 65Rs  (0.5AU +20d

§ 20Rg (03AUL —T504

{01 +5d

Wide Orbital Range
Earth to Jupiter Flyby

.’(+1 d
" Pole-to-pole flyby: South to North

P

i_q d\
Solar Flyby to 4 R A
. —80d e
Charging Study by Donegan,
Sample, Dennison and
H O ff m an n Figure 4-2. Solar encounter trajectory and timeline. Science operations begin at perihelion —5 days

(65 R;) and continue until perihelion +5 days.
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Presentation Notes
Solar Probe Mission web site.



Charging Results: Temperature and Dose Effects
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Presentation Notes
Top Figure. Charging of Solar Probe spacecraft at 0.3 AU with αS/εIR = 0.6.  (a) alumina-coated heat shield. (b) PBN-coated heat shield.  [Donegan]

Bottom Figure.  Dependence of the differential surface potential on distance from the Sun for the Solar Probe spacecraft: a) Al2O3-coated heat shield, b) PBN-coated heat shield.  [Donegan]



SE Yield

Charqging: Evolution of Contamination and Oxidation

“All spacecraft surfaces are
eventually carbon...”
--C. Purvis

This led to lab studies by Davies, Kite,
and Chang

Au

SE Yield Evolution

1.4 —
(0 - 300 angstroms Carbon Contamination)
1.2 —
1.0 —
7 10-angstrom Increments

0.8 /
0.6 —
0.4 7 / — 0 angstroms C on Au —

/ = 300 angstroms
0.2 11 — Emax Evolution

I I I I I ]
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Presentation Notes
Comment:  This is perhaps the most obvious of dynamical materials changes.
Comment:  This is an extreme case, since Au has a very high yield for a metal (~1.8 total yield) and C has a very low yield (<1 total yield)

�Left Figure.  Evolution of  with carbon layer thickness.

Right Figure.  Equilibrium charging potential for a single material using the time evolution of the secondary electron emission parameters for contaminated gold. Curves are for the 4 September, 1997 (squares), worst case (circles), and  ATS-6 (triangles) geosynchronous environments in full sunlight (dashed curves) and eclipse (solid curves).5


Environmental Changes: Reflectivity as a Feedback Mechanism

ReﬂeCtIVIty Changes Wlth Surface 104 ;”—Ie:—IW:Jrst (lll;all;:alElnulfirn;menlt“” =
roughness and contamination : Traamis

|—> Reflect->Charging->Contamination « 10° £

Onset of
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/ charging
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10 E

Negative Potential {10-1) (in Vaolts)

—> Charging— Reflectivity«— 10" £
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. . e e . . . Absorptivity
|—> Radiation — Reflect—>Emissivity—Temp—Contaminatione— 1-00.chtip FIRSRGE.
eshold Char¢ = - KRR

Before ~ Zoomed Images ~ After
See Lal & Tautz, 2006 & Dennison 2007

JWST Structure: Charging vs. Ablation
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Test 61 - 0.11 µm Au/Cr coated fiberglass and carbon fiber sample, Au side exposed to beam, for IEC radiator baffles



Temperature Effects on Materials Properties

Strong T Dependence for Examples:

Insulators _
IR and X-Ray Observatories
Charqe Transport JWST, W|SE, WMAP, Spitzer,

« Conductivity Herscel, IRAS, MSX, ISO,

e RIC COBE, Planck
* Dielectric Constant o
e ESD Outer Planetary Mission

Galileo, Juno, JEO/JGO.
Cassini, Pioneer, Voyager,

Inner Planetary Mission
SPM, Ulysses, Magellan,
Mariner
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Radiation Effects
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RIC Graph.  See Dennison, APS Conf. Proc. 2007.
Yield graph.  See Hoffmann, MS thesis, 2010.


Combined Temperature and Dose Effects

Dark Conductivity vs T
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 See SPM calculations and references.  [Donegan]


SUSPECS on MISSE 6

The International Space Station with SUSpECS MISSE 6 exposed to the space The SUSpECS double stack can
just left of center on the Columbus module. environment. The picture was taken be seen in the bottom center of
on the fifth EVA, just after the lower case.
Deployed Retrieved deployment.
March 2008 August 2009
STS-123 STS-127
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Project Description
Utah State University Materials Physics Group, in cooperation with the USU Get-Away Special Program, USU Space Dynamics Laboratory and ATK Thiokol, has proposed a study of the effects of the space environment and charge-enhanced contamination on the electron emission and resistivity of spacecraft materials.  The electron emission and transport properties of materials are key parameters in determining the likelihood of deleterious spacecraft charging effects [Hastings, 1996; Bedingfield, 1996; Leach, 1994; Dennison, 2003(b)], and are essential in modeling these effects with engineering tools like the NASA NASCAP-2K code [Mandel, 1993; Mandel, 2003].  While preliminary ground-based studies have shown that contamination can lead to catastrophic charging effects under certain circumstances [Davies, 1997; Davies 1998], little direct information on the effect of sample deterioration and contamination on material flown in space is available.

The project has four key benefits: (i) basic research extends our understanding of the materials/space environment interactions, (ii) specific knowledge is gain for critical materials in several on-going projects of the team members, (iii) valuable collaborations between team members is fostered, and (iv) analysis capabilities and flight experience are developed that will prove useful not only for follow-up funding for post-flight analysis of the SUSpECS sample set, but for other joint ventures involving reliability and aging of materials in the space environment.






he Poster Child for Space Environment Effects

Ag coated Mylar

* Atomic Oxygen removes Ag
e UV Yellows clear PET
e Micrometeoroid impact

e Continued aging

Dynamic changes in materials properties are
clearly evident.

How will changes affect performance?

How will changes affect other materials
properties?
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Comment:  It is hard gauge real effects of contamination and oxidation, since few materials samples are flown in space and returned for post mortem examination.  The USU SUSpECS  experiment on MISSE-6 is such an example.
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Presentation Notes
To study this process we use an ultra-high vacuum chamber equipped with electron guns, heaters, and coolers to simulate the conditions of various orbits and other environments that a spacecraft might occupy. The samples are placed inside on a rotatable carousel so that each sample can be rotated in front of the electron gun. The HGRFA can be positioned over each of the samples in order to measure emitted electrons.


Fig. 4. Cutaway View with Source Beams.

(5

L=

Radiation Sources

A High Energy Electron Gun

A" Low Energy Electron Gun

B UV/NIS/MIR Solar Simulator
C FUV Kapton Discharge Lamps
O Air Mass Zero Filter Set

E Flux Mask

E’ Sr*" Radiation Source

Analysis Components

F UV/VIS/MNIR Reflectivity Spectrometers
G IR Emissivity Probe

H Integrating Sphere

| Photodiode UV/VIS/NIR Flux Monitor

) Faraday Cup Electron Flux Monitor

K Platinum Resistance Temperature Probe

Sré? Shutter

_ Space Survivability Test Chamber

Fig. 5 §5T Chamber. Configured for electrostatic discharge testing.

B Solar

E S0
Source

Sriﬂ
Translation

Rotation

Sample Carousel

L Samples

N Rotating Sample Carousel

N Reflectivity/Emissivity Calib. Standards
0 Resistance Heaters

P Cryogen Reservoir

Chamber Components

0 Cryogen Vacuum Feedthrough

R Electrical Vacuum Feedthrough

5 Sample Rotational Vacuum Feedthrough
T Probe Translational Vacuum Feedthrough
U Sapphire UV/VIS Viewport

V' MgF UV Viewport

W Turbomolecular/Mech. Vacuum Pump
X lon Vacuum Pump

¥ lonfConvectron Pressure Gauges

7 Residual Gas Analyzer

Simulator

V Mg IR
Viewport

| R Electrical
Feedthrus

Q Cryogen
Feedthrus

Cryogenic
Test 5tage

CubeSat

CubeSat Test Fixture
Radiation Shielding
COTS Electronics

Rad Hard Breadboard

COTS Text Fixture
Electron Gun

Tk —

Sample Stages
(Above) 21 com

diameter  sample
stage (M)
connected to 360°
rotary feedthrough
{5) to enhance flux
uniformity by
periodic  rotation.
The standard
breadboard allows
versatile sample
configurations.
(Left) 1U CubeSat
mounted on
sample stage.
(Right ) Stage with
thermal control and
linear translation
stage with in situ
characterization
probes.

Instrumentation [Not Shown)

Data Acquisition System
Temperature Controller
Electron Gun Controller

UVVISSMIR Solar Simulator Controller
FUV Kr Resonance Lamp Controller
Spectrometers and Reflectivity Source

Electron Flux

A high energy electron flood gun (A) (20 keV — 100
keV) provides <5 X 10° electrons/cm? (~1pA/cm? to 1
MA/cm?) flux needed to simulate the solar wind and
plasma sheet at more than the 100X cumulative
electron flux. A low energy electron gun (A) (10 eV-10
keV) simulates higher flux conditions. Both have
interchangeable electron filaments.

lonizing Radiation

A 100 mCi encapsulated Sr%° radiation source (E’)
mimics high energy (~500 keV to 2.5 MeV)
geostationary electron flux.

Infrared/Visible/Ultraviolet Flux

A commercial Class AAA solar simulator (B) provides
NIR/VIS/UVA/UVB electromagnetic radiation (from 200
nm to 1700 nm) at up to 4 times sun equivalent
intensity. Source uses a Xe discharge tube bulbs with
>1 month lifetimes for long duration studies.

Far Ultraviolet Flux

Kr resonance lamps (C) provide FUV radiation flux
(ranging from 10 to 200 nm) at 4 times sun equivalent
intensity. Kr bulbs have ~3 month lifetimes for long
duration studies.

Temperature

Temperature range from 60 K [4] to 450 K is
maintained to +2 K.

Vacuum

Ultrahigh vacuum chamber allows for pressures <10/
Pa to simulate LEO

A
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Space Components
 Radiation induced arcing
and material damage in

Microwave antennas

« Radiation induced arcing
in RF Cables

 Radiation damage of
COTS Parts

VUV Degradation of
thermal control paints

« SDL Electronics Boards

Dependence of ESD Breakdown

. : Field Strengthon TIDand T
Biological Tests

 Radiation damage of
seeds

 Radiation damage of
muscle cells
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Presentation Notes
To study this process we use an ultra-high vacuum chamber equipped with electron guns, heaters, and coolers to simulate the conditions of various orbits and other environments that a spacecraft might occupy. The samples are placed inside on a rotatable carousel so that each sample can be rotated in front of the electron gun. The HGRFA can be positioned over each of the samples in order to measure emitted electrons.


Simulating Space in the Space Survivability Test Chamber

Inverted Vacuum
Chamber for Biological
Tests

Simulating Radiation
and Vibration of Radish
Seeds exposed on
Russian flight

Both radiation
and vibrations
enhance
germination
rate, as was seen
in flight seeds
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Presentation Notes
To study this process we use an ultra-high vacuum chamber equipped with electron guns, heaters, and coolers to simulate the conditions of various orbits and other environments that a spacecraft might occupy. The samples are placed inside on a rotatable carousel so that each sample can be rotated in front of the electron gun. The HGRFA can be positioned over each of the samples in order to measure emitted electrons.


Absolute El_ectron Emission Callbrat_uon. & csic o
Round Robin Tests of Au and Graphite L e e

JR Dennison, Justin Christensen, Justin Dekany, Clint Thomson, Neal Nickles, Robert E. Davies, Materials Physics Group, Utah State University
Mohamed Belhaj, Onera - The French Aerospace Lab

Kazuhiro Toyoda, Kazutaka Kawasaki, LaSEINE, Kyushu Institute of Technology

Isabel Montero, Leandro Olano, Maria. E. Davila, and Luis Galan CSIC, Instituto de Ciencia de Materiales de Madrid

Introduction Descriptions of Facilities and Methods Round Robin Tests Results

Accurate determination of the absolute electron yields of conducting CSIC SEY Fac"'t LaSEINE TEEY Fac'lltv Measurements were made of the absolute total electron yields at normal
and insulating materials is essential for models of spacecraft charging The CSIC SEY Faeility of the The Laboratory of Spacecrat Engineering incidence over the full range of incident energies accessible with each group’s
and related processes involving charge accumulation and emission 2””3‘9 Na”"f“'““”"T"‘G "‘3"’ INteraction  Engineering  (LaSEINE)  at instrumentation {a full range of ~5 eV to ~5 keV). Figures show linear plots with
L 5 Space anc errestrial . N
due to electron beam and plasma interactions. Measurements of Communications Group of ICMM- g;::;;m::‘a:; T:;;ﬂ;;:g;'gf:gﬂum low energy detail insets (left) and log-log plots of scaled yields of£)/a,,,, versus
absolute properties require careful attention to calibration, scaled energy E/E
experimental methods, and uncertainties. We have developed the Total Electron Emission Gold
This CSIC graup doss research on Yield (TEEY) measurement fasiity for dala base
dielectic, magnetic and  metallic of the charging analysis tasl MUSCAT. We have
This study presents a round robin comparison of these absolute yields matenals for space agelicatons. A measured the TEEY of space conductive 10F
measurements performed in four international laboratories. The main goal of these research activities maleiais, as wel as nsuating material Ve also 2 1 1%
; q is the surface characterization by measured TESY ater imadiation witn ianizing s .
primary cbjectives were to determine the consistency and UMY spectroscapic techniques and fadiation, alomic oxygen, and uiraviciel fay. H E;
inti b i i law-secondary emssion sutaces to ) = &
ulnc.Trtlamtles ;nidsf?ch tests fanhni to |nves§|ga“lel lheA effects of She e e et e o e Measurements capal es include: g 53
similarities and differences of the diverse facilities. Apparatus using power  devices  for  sstelte  Measurements capabilities include + Vacuum analysis chamber. beion 10° P i | 3
variaus \uv:;ﬂue"ce PU‘sled e\ehdmnh bear; SDIWEEZ an: mel:‘Dde‘U cammunieations systams. " S8 (s geconaiet ana ckscarursa)  Electron Gun: 20010 ke s H
minimize charge accumulation have been developed and employed at 5 . CIron Iiradiation: conlinucus of pulse
AL P POy Equipped with: + Sample Stage movable in X-Y directions Um0 000 3000 4M0 SO0 6080 o ot
these facilities. quippe : . L Temboranrs smaie helder sobel [ p— S o
- Four Interconnecied UHY 2n relativa emission angle-depandence 240-370 K
Measurements were made for identical samples with reproducible ::":’:‘:I;:gr?g::]s + X-Ray Photoemission spectioscopy [XPS): Deslh Profies. e L, | = wehe — (l'\".;.‘lf:(.:\fl e
N 3 . + Auger Spectroscopy (AES), RHEELS e . CRIC SEY Fncilify (oantin. 1o -a':; 221 [ Na
sample preparation of three standard materials. . wmm;m%méa * intoncity Voitago and Capacitanca-Voltage characterstcs. Total electron emission yield 2 T 1 L =
the elemental conductor Au (25 um thick 6N high purity Au fails) *\on gun i %) vy auantum yield measurement method: Cnoni—DEESSE (Eidiod) T Ap=n | 1250150 WA
+  the elemental semimetal HOPG (bulk DOW highly oriented pyrolytic + K-ray source (MgiAl anades) :21’;’;}";’:;;’;‘:::&9::5?5‘ - Sample halder and calisctar are biased at - 2 z T T R
o + Homispherical olectron analyzar oo, : 300V and -260V, respectively. {For example, 5 R e
+ Quadrupols residual gas analyzar . =yjensye ssmeie menipulsiion the eleciren Incident energy on the sampie : vl g .
the polymeric insulator pelyimide (25 um thick Kaptan HN ), * Flexible sample size (12- 250 mm). - Simutanasve T range 4,500 % suface bacomes 506V win using 3606V Eet e T L —
) - Sample Manipulation electran beam - T — o
eielE e fnan HE e aa i s + Sample rotation: -40°10 +90° + Sample cuvent and sollestor cument are - e
. X * LR Hellum cryosiat micrametic measured for ealculsting TEEY. .
Absolute electron yield measurements for various materials are manipulstor XYZ# |4 K - 90 - For Insulating mm,g., pulse scanning HOPG Gra ph'te
necessary to determine absolute charging levels and hence to predict ' :iguw""’“”“"“‘""’”""“'WZ” melhn: \sﬂ'use-ld.;hehsamp\; 4 snmeddafoe.
¢ . . manipuator one shot of pulsed alectron bear in order fo . — o n
possible electrostatic breakdown and injection of charges into sy it - Preven: churgina efiect on e somele o )
plasmas. They have direct application to spacecraft charging, high « Temparature range: 4 K — 500 Enw=TaY surface. :
voltage direct current (HVDC) power and transmission lines, ion i
thrusters, plasma deposition, multipactars, semiconductor metal- oA HH il
e et s G oy ONERA DEESSE Facilit USU SEEM Facility ;

The Utsh State University Maler hysics Group (MPG) Space
Envirenment Effects Materials (SEEM) test facility performs state-of-
the-art ground-based testing of electrical charging and electron
Vanspert properties of beth condusting and insulating materials,
emphasizing  stucies of electron  emission,  conductiity,
uminescence. and electrastatic discharge

The DEESSE  (Dispositi
dEude  de  [Emission
Secondale Sous Electons)
faciity at ONERA is a LUHV
chamber equipped with
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e e + Eneray diswibution neesured oy 21 the cllection af the kew energy eriary - Iduced Eheirosttic Brakdown simillanesus suront and + Very good agreementof absolute yiald for E>E,,,, bu less agresmant for F<,
sl Conaie SN o S 40, 3012.208, . g:,“‘;f,;;f,ﬁi? gow i study electrons by ihe sample surface. NIRWISIUY optical measurements. * HOPG agrooment betwaen facilities is tha best: ~5% for g,,.,, and ~20% for enargias
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A G T et ) confirmed for select energies. bl + Vacuum <10 Pa N 3
TS B, -1 8 A T D 7 G 60 P e I e Dy 2""“:: m'“""’:\'é;”g’; g‘fé"“" Physics electran gun, the observed variation Au samples exhibit differing degrees of contamination--as evidenced by surface analysis
i 316040 . Spectroscopy (AES) an e 225, [y S tests—exhibiting two TEY pesks near 700 eV [clean Au) and 200 eV (C cantamination] [14].
Vhetre Vo, Sci. Technol. 2, 196%,81-82, + To limit conditioning effect, electron beam T —_— TDpiCS Offuture Rouﬂd Robln analvsis
thiracteriatics of VUM and . p " was pulse us pulse for conducting Ve Uls Ul Ul | g | Ipp]de y . 3 _ N
and X-ray sources (Mg/Al sources) matarials) g g + Charge sensitive measurements of dielectrics: Polyimide (Kapton HN™) resutts,

Kelvin surface potantial probe
Residual gas analyzer

o mperature Control of sangée hokier from
T e P D T T D T S amsient to 500°C

atien an Spacserat

Energy discriminated measurements: Secondary/Backscattered results and emission spectra,
Surface sensitivity: surface cleanliness tests, effects of contamination and Ar sputtering,
Discussions of the relative strengths and weaknesses of our various methods.

Elesiron yieia are calculated fram integrated curent
traces. from six dstector slements @) of a fully
enclesed hemisphencal grd retareing field analyzer
used for emiszion eiection energy Siscrinination.
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A Multitude of Materials: Multilayer/Nanocomposite Effects

Length Scale Time Scales
 Nanoscale structure of e Deposition times
materials  Dissipation
» Electron penetration depth times
o SE escape depth e Mission duration

C-fiber composite with Black Kapton™ Thin ~100 nm
thin ~1-10 pum resin (C-loaded PI) disordered SiO2
surface layer dielectric coating on

metallic reflector
space Dyl_':g.::!?}g {i/[i); UtahStateUniversity
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Point-wise Electron Yield Tests of Highly Insulating Materials

eCurrent analysis program could show how yield
changes over the course of a pulse. (~¥1% of total
pulse charge)

*Gold data should show no charging effects.

eZero charge plateau.
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Presenter
Presentation Notes
The Materials Physics Group has had an active research effort for the last dozen years studying spacecraft charging, the accumulation and dissipation of charge in materials resulting from their interaction with the space environment.  Our colloquium discusses this important practical application from a more basic science viewpoint, in terms of the interaction of energetic beams with materials and the transport of electrons through and out of the materials.  Ultimately we try to relate these processes to the exchange of energy from incident particles to electrons in the material at a basic quantum-level description of solid state interactions.  In particular, we will describe a number of experimental studies of electron emission and conduction from a wide array of materials.  Of particular interest are our most recent studies of charge accumulation and dissipation in highly insulating materials.  These studies involve novel techniques and instrumentation developed at USU to understand how internal distributions of accumulated charge effect subsequent electron emission and conductivity.
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Electron
studies  for
electrons,  ions  and
photons, with precision

MPG Space Environment Effects Materials Test Facility

Utah State University Space Environments Effects Materials (SEEM) Test Facilities

Conductivity & Charge Transport

Electron Emission

emissicn i )
incident Il }

Conductivity and
charge
studies far conduct-

transport

Space Simulation

The Space Survivability
Test (25T} chamber [15]
has unigue capa bilities far

Characterization & Preparation

Extensive capabilties for sample proparation
and characterization. These include;

Bulk Composition ncuctivaly Goudlec Flasma-

absolute  wislds  of ors, scmc!:unductors. Slmula.“ng arj'd testing Atamic Emesicn Sgpectroscogy (ISP-AZS) FTIR

conductors. e micon- & exfreme insulators F-utentlal en'r'llron!'r';ental- anc Faman spectascapy.

ductors ||-I|5u|atm5 £ Measure ments induced modifications of « Surface  Composition  Aocer Eeciron
' include: small satellites, cormpo- Spectroacnpy &no AL mappirg,  Erergy

extreme insulators[12].
Measurermants include:

Absaolute intensity and

Total | Secondary ! Backscattered Electron
Emission  using =21 eV o 53 ke mono-
energetic oulsec beams  with <5% absolue
Anezsrtamhy [£74,14].

Electron Emission Spectra versus enargy 0-F
e Wit 1T Y resalmen) SR argla, [ 1F)
lon-Induced Electron Emission speclia ano
viglk foeowarous =300 eV e Lo key eno
extpgelic imer Land reseive ivees

Photon-Induced Electron Emission spact-a anc
vicldks Tus =208 o o =25 oV (1252002 nim)
—onochrometed phetors [10 8% mear-H Lymar-a
arle e UAder ceve apment )

Surface WVoltege simul:ansoLs measwremerts o
0T K with =003 ey rsalobice 11,17

Induced Electrastatic Breakdown similancous
currart &N IRAWISL Y optics | measirenants [15]
Temperature capabilities (rom =90 K =450 K
3] {F gher temperatures under develepment.)

Cathodoluminescence

Bulk and surface
conductivity &
coretart woiage
and chance staragk:
—ethods far
corrlLctiities a5
oy @s 10 M -
crmy [ 8 0]
Radiation Induced
Conductivity
{RIC), it ke
ztume anc temporal
deperelaroe )
Phototyield 4y
cUrves.

Surface  Voltage  spelisl  anc lermoonl
measLremerts  over O-10 K owth <32 eV
resciton 19,7 4]

Temperature capabilities from <60 K o =450 K
[3] (Higrertemperaturas Jncer development )

Electrostatic Discharge & Arcing

Electrostatic  Braakdown
Field Strength («<*5 k' ar

nants, and materials of up
to 350 o area. It is
particularly well suited for
cost-affectiva  teats  of
multiple  small  scale
tratarials  samples aver
praknged exposura

critical

sirmulate
emvironmental cempeonents including:

+  Meutral gas atmosphers’vacuum =137 Za,

= Temperatures o7 GO K [3] o <50 Kwith=£2 K

+ Heactron flunes will simullancaous lowe ared ciigh
ermergy elector guans from <20 V¥ oo 100 kel
with -1 pfdicm2 m =1 aAmmE] s 1o simolare
the soiar wind and pasa shee: at more than the
A0 camnlarive elestran £ o [511 17]

+ lonizing Radiation with 3 100 moCl 3
broadiens (~R00 ke to 25 Meav] G oradiation
sauge [15].

+  HIRWISUNVAIUVE radiation (200 nm to 1720 nm)
Al Lp te 4% sun acianvakant intensity Hux.

+ Far WY simuaton of H Lymano wi Kr
resonarce lamps at ot 45 sur intersin

Studics underway

Ui parsie A-ray [ESR) Spectroscody.

Surface  Morpholegy  Scanning Elecraon
Miosooepy (FE-BEM)  Eecmon  Beckscater
Diffraction (E3S0), Awiz Force (AFM) ard
Scannng Tanreling (STH) Mizrocopes

Vacuum Thermal Ovens Various cverns v o
e P and tem aeratires up to w1800 K.
Qptlcal  Characterization
Spacular z1d Diffise
[2atlactn | ransmissian
Th +Film Interferametry, T-
ceraradant Ln ssiiky
Luminescence  Oploa iy
s ated HMINESaae
(250 Theenmal Slirmulated
Lurninescerce [TSL,

Collaborative Facilities

The MPG eollabarates with nearby facilities that

axtend cur capabilitias. Thess includs:

USU Space Dynamics Laboratory for satelibs
anc sensor dewelopme Tt “abrication & missions

S0L Hano=Satellte O peration VerlTicathon and
Assessment (NOVA)  test  caciliy for

lows level  alectron- =R M a2 g [, will determine hows sharactenzation and verfoation of subsystem and
induead lumineseshee: ! <% Wy 11,75 wel = d - -

) + Temperature and Vacuum I opace cegra syl e lorner e o sreall sl e

spactra. capabilitles fram =120 4 o dation of materials « ldaha  Accelerator Center tar Fioh erery
= Spectra (0.55.0ey =350 K al =09 Pa [7]. can be simulatad gloclior proderang posilion oy ared adialion

o 01700 nierya
1.1 nm resolutior?
Ta1e
Temperature
capabiliities from <50 K to =400 K 3,714
Charging and Saturation studies [13 14]

wilhcurranl and saal ally

Electron-Induced Arcing

arnd tarnporally resalsec
AEEIGA] MSEsURSmErTs ram
cB K to w350 K at e <107
Fa [15]

in  the SST.F

Materials expozad
in  the S5T are -
compared to 165 samples expased to the 155
space emnvironment for 18 months in the USU

SUSRECS project on the MISSE-6 mission [G].

SOUICES.
UEU Nanoscale Device Lab [x dovico ared
sample fabricatic 1 a d cheracterization.

Usy Core Microscopy Facllity for o higa
resolirion eexnon anc optical microscopy.

USU Luminescence Lab far apfinal aro tenms
stimu ated |aminescence testing.
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Integration with Spacecraft Charging Models
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Understanding the Physics
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