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I. Introduction to Range
The range, commonly known as the penetration depth, describes the maximum distance
electrons can travel through a material, given an initial incident energy, before they lose
all of their kinetic energy and come to a rest.1,2 The primary energy loss mechanism which
causes the electron to lose its kinetic energy is due to inelastic collisions within material.
Due to the probabilistic nature of this mechanism, the Continuous Slow Down
Approximation (CSDA) is often employed to simplify the problem where the stopping
power is taken as a constant.
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III. Predictive Formula for NV
A simple formula [Eq. (4)] was found to predict our single range parameter, Nv , as a function of only mean atomic
number derived from the stoichiometric formula. This simple formula resulted from extensive analysis of much
more complex predictive formula for NV involving sums of power law terms for density, effective atomic number and
weight, and bandgap plus other properties including plasmon energy, conductivity, phase, and more. This general fit
for NV was evaluated using general least squares fit analysis methods to simultaneously determine the best
estimates for fitting parameters for each material property. Amazingly, the simple formula Eq. (4) involving only Zm

was the result.
Fig. 3 and Table 1 show the results of the fits with Eq. (4) for A,B and C. The fitting parameters was then used to
calculate an estimate of Nv using the power law model. Plotting this estimate of Nv versus the true value of Nv

Goodness of fit metrics χ2
Nv and R allows quantification of the quality of the fits.

To refine Eq. (4), separate fits were made for materials subcategorized into grouping such as insulators,
semiconductors, and conductors [see Figs. 3(b-d)] and solids, liquids, and gasses with the hope that this
categorization might unearth additional information. Semiconductor show excellent agreement. Insulators show
very good agreement, with a slight downward concavity. Although conductors show good agreement, it is apparent
that an additional higher order correction for conductors needed is needed to account for electron overlap in the d
and f orbitals of transition and rare earth/actinide elements.

VI. Future Work
 We will create an online range prediction calculator that will be able to produce the
range of a material with only input of the common material parameters mass density
ρm, effective atomic number and weight NA and MA from the stoichiometric formula (or
relative amounts of elements in compounds and composites), and band gap Egap (or
HOMO-LUMO gap).
 We propose to develop a better relativistic approximation for Eq. (1) to improve
range predictions above mec2=0.5 MeV.
 We prose to improve NV predictions by adding addition Zm dependence in Eq. (4).
 Gas and liquid materials do not have band gaps, a necessary parameter in our range
model. The HOMO-LUMO energy gaps may be an appropriate surrogate. We will study
the HOMO-LUMO gap and its potential connection to the range.

Fig. 3. The graphs examine NV found from fits to the NIST database data versus NV predicted using Eq. (4). Nominally, for exact agreement the slope of the fit would be 1 with an intercept of 0 and χ2
Nv

approaching 0. 10% and 30% error lines to the slope are marked in dashed red and dashed purple lines, respectively. Values for the constants for predictive NV from Eq. (4) and the goodness of linear fit
for Fig. (3) graphs are found in Table 1.

This idea is illustrated by a
Lichtenburg discharged tree
pictured in Fig. 1. This “tree”
demonstrates a situation
where accelerated high
energy electrons comes to
rest and deposit charge at a
given range in an insulating
material.3 The side view of
the Lichtenburg tree displays
the melted plastic caused by
the energy of the deposited
incident electrons at a
uniform penetration depth.
Here the stored charge is
dissipated through a
discharge.1

Fig. 1. Front (Left) and side (Right) views of a Lichtenberg
discharge tree. The white line (Right) indicates the narrow
distribution of deposited charge from a ~1 MeV electron
beam at R≈3 mm in a PMMA sample.
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II. Original Model
The previously developed model predicts the energy-dependent range, R(E), as a function
of incident electron energy for materials found in the NIST ESTAR database. In a
continuous composite analytic approximation to the range with a single fitting parameter,
NV, spanning incident energies, E, from <10 eV to >10 MeV, the following functions (Eqs. 2,
3, and 4) describe the energy-dependent range, R(E), in terms of NV and material
parameters mass density ρm, effective atomic number and weight NA and MA and band gap
Egap. 1

Eq. (2). Mean energy lost per
collision.

Eq. (3). Plasmon energy.

Manual fits to these range
equations and optimum
values of Nv were found
using data for about 20 well-
known elements and
compounds with range data
from the ESTAR database.2

Fig. 2 shows several approx-
imate fits to the range data.

Fig. 2. Comparison between several range approximations and the data from the ESTAR database
for Au. The IMFP data for Au are also plotted along with the TPP-2M IMFP formula for λIMFP(E).

V. Materials with Predicted Ranges
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All Materials Insulators

Conductors

Semiconductors

Eq. (4). Predictive formula for effective number of

valence electrons, where Zm the is mean atomic number
and A, B, and C are constants found through fits shown
in Fig. 3.

Solids Actinium 13.576 Adenine 2.408 Alumina (Aluminum Oxide) 4.538 Bakelite 2.047 A-150 Tissue-Equivalent Plastic 4.562

Aluminium 5.195 Alanine 1.945 Barium Fluoride 7.125 C-552 Air-Equivalent Plastic 2.831 Adipose Tissue (ICRP) 1.554
Americium 13.151 Cellulose Nitrate 31.722 Barium Sulfate 5.817 Cellulose Acetate Butyrate 2.059 Amber 1.462

Antimony 10.59 Epoxy (EP) 1.805 Beryllium oxide 3.734 Cellulose Acetate, Cellophane 2.23 Anthracene 1.616

Arsenic 8.404 Glutamine 2.064 Bismuth Germanium Oxide 7.025 Ethyl Cellulose 1.857 B-100 Bone-Equivalent Plastic 2.047
Astatine 13.359 Guanine 2.581 Boron Carbide 2.7914 M3 Wax 1.452 Bone, Compact (ICRU) 2.129

Barium 12.334 Stilbene 1.743 Boron Oxide 3.453 Mix D Wax 1.285 Bone, Cortical (ICRP) 2.391

Berkelium 13.242 Sucrose 2.17 Cadmium Telluride 10.501 Nylon 11 (Rilsan) 1.63 Brain (ICRP) 2.73

Beryllium 2.056 Cadmium Tungstate 6.4 Nylon 6 1.693 Calcium Carbonate 1.549
Bismuth 13.063 Calcium Fluoride 5.317 Nylon 6/10 1.625 Eye Lens (ICRP) 1.658

Boron 2.662 Calcium Oxide 5.555 Nylon 6/6 1.578 Lung (ICRP) 1.638

Cadmium 9.712 Calcium Sulfate 4.804 Nylon, Du Pont ELVAmide 8062 1.622 MS20 Tissue Substitute 1.709
Caesium 12.983 Calcium Tungstate 6.16 Paraffin Wax (26-n-paraffin) 1.17 Skin (ICRP) 1.642

Calcium 7.062 Ceric Sulfate Dosimeter Solution 1.596 PC (Lexan) 2.067 Terphenyl 1.86

Californium 14.302 Cesium Fluoride (Caesium Fluoride) 8.501 PE (polyethylene) 1.206 Tissue, Soft (ICRP) 1.563

Carbon (Amorphous) 3.117 Ferric Oxide 5.339 PET (Mylar) 2.396 Tissue, Soft (ICRU four-component) 1.611

Carbon (Diamond) 3.438 Ferroboride 5.03 PI (Kapton) 2.568

Carbon (Graphite) 3.06 Ferrous Oxide 5.506 Plastic Scintillator (Vinyltoluene based) 1.592

Cerium 11.451 Ferrous Sulfate Dosimeter Solution 1.585 PMMA (Lucite) 1.972

Chromium 6.716 Gadolinium Oxysulfide 7.687 Polyacrylonitrile 1.995
Cobalt 6.849 Gallium Arsenide 8.269 Polychlorostyrene 2.284

Copper 7.125 Glass (Lead) 6.586 Polyoxymethylene 2.082

Curium 13.296 Glass (Plate) 4.558 Polypropylene 1.184

Dysprosium 11.717 Glass (Pyrex) 4.261 Polyvinyl Acetate (PVA) 2.002

Erbium 11.762 Gypsum, Plaster of Paris 3.562 Polyvinyl Alcohol 1.876

Europium 12.411 Lanthanum Oxybromide 8.214 Polyvinyl Butyral 1.558

Francium 18.071 Lanthanum Oxysulfide 7.647 Polyvinyl Pyrrolidone 1.792
Gadolinium 11.716 Lead Oxide 8.926 Polyvinylidene Chloride, Saran 3.629

Germanium 8.328 Lithium Amide 1.5 Polyvinylidene Fluoride 2.753

Gold 10.814 Lithium Carbonate (Lithium Salt) 3.105 PS (polystyrene) 1.74
Hafnium 11.237 Lithium Fluoride 3.714 PTFE (Teflon) 3.755

Holmium 11.729 Lithium Hydride 0.764 PVC (polyvinyl Chloride) 2.584

Indium 10.142 Lithium Iodide 7.836 Rubber, Butyl 2.028

Iodine 11.385 Lithium Oxide 2.657 Rubber, Natural 1.324

Iridium 10.245 Lithium Tetraborate 3.251 Rubber, Neoprene 2.223

Iron 6.881 Magnesium Carbonate 4.022 Valine 1.7
Lanthanum 11.528 Magnesium Fluoride 4.813 Viton  Fluoroelastomer 3.388

Lead 12.56 Magnesium Oxide 4.568

Lithium 1.179 Magnesium Tetraborate 3.76

Lutetium 11.874 Mercuric Iodide 11.744

Magnesium 4.938 Plutonium Dioxide 7.553

Manganese 6.816 Potassium Iodide 9.417

Molybdenum 8.676 Potassium Oxide 5.768

Neodymium 11.578 Silicon Glass 4.716

Neptunium 11.814 Silver Bromide 9.22

Nickel 6.971 Silver Chloride 8.186

Niobium 8.858 Silver Iodide 10.518

Osmium 10.145 Sodium Carbonate 4.035

Palladium 8.776 Sodium Iodide 8.562

Phosphorus (Black) 5.719 Sodium Monoxide 4.354

Phosphorus (Red) 5.747 Sodium Nitrate 3.974

Phosphorus (White) 5.756 Thallium Chloride 10.04

Platinum 10.42 Titanium Dioxide 4.929

Plutonium 12.101 Tungsten Hexafluoride 6.175

Polonium 13.256 Uranium Dicarbide 7.233

Potassium 6.848 Uranium Monocarbide 8.684

Praseodymium 11.526 Uranium Oxide 7.481

Promethium 11.576

Protactinium 12.508

Radium 15.23

Rhenium 10.258

Rhodium 8.606

Rubidium 10.276

Ruthenium 8.497

Samarium 11.619

Scandium 6.995

Selenium (alpha) 8.886

Selenium (grey) 8.785

Selenium (vitreous) 8.912

Silicon 5.493

Silver 9.171

Sodium 4.521

Strontium 10.074

Sulphur 6.044

Tantalum 10.723

Technetium 8.597

Tellurium 10.874

Terbium 11.703

Thallium 12.4

Thorium 13.28

Thulium 11.785

Tin (Grey) 10.291

Tin (White) 10.291

Titanium 6.88

Tungsten 10.416

Uranium 11.978

Vanadium 6.749

Ytterbium 12.618

Yttrium 9.627

Zinc 7.613

Zurconium 9.5

Liquids Gallium 8.051 1,2-Dichloroethane 2.922 Carbon Tetrachloride 5.793 Polytrifluorochloroethylene 4.22 Acetone 1.397

1+B3:G96,2-Dichlorobenzene 2.922 Cesium Iodide (Caesium Iodide) 11.474 N,N-Dimethyl Formamide 1.546

Aniline 1.828 Nitrobenzene 2.277

Benzene 1.61 Pyridine 1.826

Chlorobenzene 2.304

Cyclohexane 1.122

Dichlorodiethyl Ether 2.346

Diethyl Ether 1.152

Dimethyl Sulfoxide 1.962

Naphthalene 1.869

N-Heptane 1.001

N-Hexane 0.844

N-Pentane 0.946

N-Propyl Alcohol 1.214

Tetrachloroethylene 5.341

Toluene 1.513

Trichloroethylene 4.52

Triethyl Phosphate 1.782

Xylene 1.463

Butane 0.397

Chloroform 4.802

Ethane 0.323

Ethylene 0.705

Gasses Carbon Dioxide 2.349 Photographic Emulsion 172.157 Acetylene 0.7

Nitrous Oxide 2.381 Gel in Photographic Emulsion 1.856

Silver Halides in Photographic Emulsion 7.602

Tissue-Equivalent GAS (Methane based) 0.62

Tissue-Equivalent GAS (Propane based) 0.637

Elements Organic Compound Inorganic Compound Polymer Composite

IV. Accuracy of Range for Predicted NV

Material
Empirical 

NV

Predicted
NV

Percent
Error

SiO2 4.716 4.646 1.5%

Al2O3 4.538 4.652 2.5%

Si 5.493 5.702 3.7%

Al 5.195 5.468 5.1%

Au 10.814 11.800 9% 

Sr 10.074 9.071 10%

Table 2. Differences in the empirical and predicted NV for 

various materials.

Fig. 4. (a) Strontium range calculated using both empirical and predicted NV values as compared to ESTAR
range data. (b) Percent differences for both medium and high energy regimes for Sr range calculated
ranges for both empirical and predicted NV values as compared to ESTAR range and inelastic mean free
path data. (c) Percent differences between ranges calculated with empirical and predicted NV values for
SiO2, Al2O3, Si, Al, Au and Sr. (d) χ2 values for comparison of ESTAR range data to ranges calculated for both
the empirical and predicted NV values for all materials in the NIST material database (see Table 3). The χ2

values for Si, Au and Sr with predicted NV are highlighted, illustrating their extreme variances from the
empirical data.

Fig. 5. (inset) Number of
electrons deposited versus
depth of electron
penetration in Al for several
beam energies using
GEANT4. The dotted lines
indicate CSDA range as
predicted by Eq. (1). (Main
graph) Fraction of electrons
deposited normalized by the
maximum deposition fraction
as a function of penetration
depth scaled by the CSDA
range.

We gratefully acknowledge contributions from other
members of the Materials Physics Groups. This work was
supported by USU URCO fellowships and a NASA Space
Technology Research Fellowship.

The fraction of electrons deposited as a function of penetration depth can be calculated with
advanced simulation programs such as GEANT4, as shown in the inset of Fig. 5. Fig. 5 shows the
fraction of electrons deposited normalized by the maximum deposition fraction as a function of
penetration depth scaled by the CSDA range. The dotted lines indicate CSDA range as predicted
by Eq. (1). Note for energies of 10 keV and above, where GEANT4 simulations are valid, the
scaled curves are the same with a deposition fraction ~0.2% at the CSDA range. This suggests
that the single mean ranges for energy in our CSDA approximation can be broadened by
convolution with this universal curve to predict approximate internal charge deposition curves
for a wide span of energies for any material using our composite formula for the range and
predictive formula for NV.

𝑵𝑽(𝒁𝒎) = 𝑨𝒁𝒎
𝑩 − 𝑪

Eq. (1). Range for low, medium, and high energy regimes.

Range values as a function of energy predicted with
empirical NV values derived from fits to the NIST
database range and inelastic mean free path values
were found to give good fits with differences typically
less (often much less) than ±20% over full 10 eV<E<10
MeV spans.1 Fig. 4(a) shows such a plot for one of the
worst fit materials, Sr [see in Fig. 3(d) and Fig. 4(b) and
Table 2].

To better gauge the validity of the predictive formula for
NV, Eq. (4), comparisons are made of ranges calculated
with both empirical and predicted NV values (found in
Table 3). Comparisons are shown in Figs. 4(b) and 4(c)
for five different materials [including two materials with
the highest inconsistency between the two data sets--
strontium (Sr) and gold (Au)]. Agreement between the
ranges calculated with predicted NV values and ESTAR
range data are shown Fig. 4(d) for all 249 materials in
Table 3.

Table 1. Constants and Goodness of fit predictive NV fits.  

Materials A B C χ2 
Nv R

All 20.196 0.653 21.727 0.006 0.99

Insulators 21.581 0.730 22.892 0.0032 0.99

Conductors 22.898 0.604 24.982 0.0053 0.99

Semiconductors 14.817 0.153 16.585 0.0055 0.99

conductors

semi-conductors

insulators 

Conductors
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