
Received 3 December 2015; accepted 27 February 2016. Date of publication 24 March 2016;
date of current version 14 April 2016.

Digital Object Identifier 10.1109/LLS.2016.2546546

libSBOLj 2.0: A Java Library to Support SBOL 2.0
ZHEN ZHANG1, TRAMY NGUYEN1, NICHOLAS ROEHNER2, GÖKSEL MISIRLI3,

MATTHEW POCOCK4, ERNST OBERORTNER5, MEHER SAMINENI1, ZACH ZUNDEL1,
JACOB BEAL6, KEVIN CLANCY7, ANIL WIPAT3, AND CHRIS J. MYERS1

1University of Utah, Salt Lake City, UT 84112 USA
2Boston University, Boston, MA 02215 USA

3Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
4Turing Ate My Hamster, Ltd., Newcastle upon Tyne NE27 0RT, U.K.

5DOE Joint Genome Institute, Walnut Creek, CA 94598 USA
6Raytheon BBN Technologies, Cambridge, MA 02138 USA

7ThermoFisher Scientific Synthetic Biology Unit, Carlsbad, CA 92008 USA

CORRESPONDING AUTHOR: C. J. MYERS (myers@ece.utah.edu).

This work was supported in part by the National Science Foundation under Grant DBI-1356041 and Grant DBI-1355909 and
in part by the Engineering and Physical Sciences Research Council under Grant EP/J02175X/1.

ABSTRACT The Synthetic Biology Open Language (SBOL) is an emerging data standard for representing
synthetic biology designs. The goal of SBOL is to improve the reproducibility of these designs and their
electronic exchange between researchers and/or genetic design automation tools. The latest version of the
standard, SBOL 2.0, enables the annotation of a large variety of biological components (e.g., DNA, RNA,
proteins, complexes, small molecules, etc.) and their interactions. SBOL 2.0 also allows researchers to
organize components into hierarchical modules, to specify their intended functions, and to link modules to
models that describe their behavior mathematically. To support the use of SBOL 2.0, we have developed the
libSBOLj 2.0 Java library, which provides an easy to use Application Programming Interface (API) for
developers, including manipulation of SBOL constructs, serialization to and from an RDF/XML file format,
and migration support in the form of conversion from the prior SBOL 1.1 standard to SBOL 2.0. This letter
describes the libSBOLj 2.0 library and key engineering decisions involved in its design.

INDEX TERMS Application programming interfaces, computational biology, software libraries, software
tools, synthetic biology.

I. INTRODUCTION AND MOTIVATION

SYNTHETIC biology is an engineering discipline in
which biological components are assembled into mod-

ules to perform useful functions. At present, many published
synthetic biological systems do not include sufficient infor-
mation about their structure, function, and design rationale,
hindering both their reproducibility and their reusability in
engineering new systems [9]. Providing a standardized format
for encoding all required artifacts of the design of synthetic
biological systems would enable scientists and engineers to
readily exchange, store, and integrate the artifacts of a design
in an automated fashion. The Synthetic Biology Open Lan-
guage (SBOL) aims to address this situation for synthetic
biology. libSBOLj is a Java software library that supports
these goals by providing a uniform interface for the adoption
of the SBOL standard into genetic design automation tools.

II. SYNTHETIC BIOLOGY OPEN LANGUAGE
Beginning in 2008, SBOL has been developed by an inter-
national effort involving both experimental and computa-
tional synthetic biologists, and including participants from

academic, governmental, and commercial organizations.
The core data model established in SBOL 1.1 enables
specifications of DNA-level designs [3]. Under this model,
biological building blocks are represented as Collections of
DnaComponents that are hierarchically composed to provide
annotated DNASequences. Encoding a design in SBOL 1.1
allows the design to be assembled, optimized, and tested, as
well as exchanged and stored by software tools developed at
different organizations, thereby supporting a wide range of
collaboration and automation practices.

The SBOL 2.0 standard [1] extends SBOL 1.1 to enable
the specification of a wider variety of components, such as
RNA, proteins, complexes, and small molecules. SBOL 2.0
also represents relations between components in order to
specify intended or observed interactions, such as repression,
activation, translation, and complex formation. Components
and interactions can be grouped into modules that represent
functional blocks and can be further hierarchically connected
to formmore complex systems.Modules can also be linked to
behavioral models in languages, such as the Systems Biology
Markup Language (SBML) [6], CellML [5], orMATLAB [8].

34

2332-7685 
 2016 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 1, NO. 4, DECEMBER 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/127676503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Zhang et al.: libSBOLj 2.0: A Java Library to Support SBOL 2.0

FIGURE 1. Illustration of a hierarchical CRISPR-based repression module
represented in SBOL 2.0 (adapted from [7, Fig. 1(a)]). The CRISPR-based
repression template ModuleDefinition describes a generic CRISPR
repression circuit that combines a cas9 protein with a gRNA to form a
complex (represented by the dashed arrows) that represses a target
gene (represented by the arrow with the tee-headed arrowhead). These
relationships between these FunctionalComponents (instances of
ComponentDefinitions) are represented in SBOL 2.0 using Interactions.
This Module is instantiated in the outer CRPb characterization circuit
ModuleDefinition in order to specify the precise (including Sequences
when provided) FunctionalComponents used for each generic
FunctionalComponent. The undirected dashed lines going into the
template Module represent MapsTo objects that specify how specific
FunctionalComponents replace the generic ones.

Fig. 1 illustrates how SBOL 2.0 can represent the func-
tion of a state-of-the-art design, namely a CRISPR-based
repression module from [7]. First, consider the CRISPR-
based repression template ModuleDefinition shown in the
center of Fig. 1, which is used to provide a generic descrip-
tion of the CRISPR-based repression behavior. Namely, it
includes generic Cas9, guide RNA (gRNA), and target DNA
FunctionalComponent instances. It also includes a genetic
production Interaction that expresses a generic target gene
product. Finally, it includes a noncovalent binding Interac-
tion that forms the Cas9/gRNA complex (shown as dashed
arrows), which in turn participates in an inhibition Interaction
to repress the target gene product production (shown with
a tee-headed arrow). The CRISPR-based repression tem-
plate is then instantiated to test a particular CRISPR-based
repression device, CRPb, by the outer CRPb characterization
circuit ModuleDefinition. This outer characterization circuit
includes gene FunctionalComponents to produce specific
products (i.e., mKate, Gal4VP16, cas9m_BFP, gRNA_b, and
EYFP), as well as FunctionalComponents for the products
themselves. Next, it includes genetic production Interactions
connecting the genes to their products, and it has a stimulation
Interaction indicating that Gal4VP16 stimulates production
of EYFP. Finally, it uses MapsTo objects (shown as dashed
lines) to connect the generic FunctionalComponents in the
template to the specific objects in the outer ModuleDef-
inition. For example, the outer module indicates that the

target protein is EYFP, while the cas9_gRNA complex is
cas9m_BFP_gRNA_b.

III. JAVA LIBRARY FOR SBOL 2.0
Crucial to the success of a standard is an infrastructure
that supports researchers and software developers for the
integration of the standard into tools. A key goal has thus
been to develop a library that eases the adoption of SBOL.
libSBOLj 2.0 is a native Java (version 1.7) implementa-
tion of the SBOL 2.0 datamodel, enrichedwith an application
programming interface (API) to instantiate data objects and
to define their relations compliant with the SBOL 2.0 data
model. That is, libSBOLj 2.0 enables software tools to
use its API to construct objects to store data, such as the sys-
tem illustrated in Fig. 1. In addition, the library distribution
includes detailed documentation of the class definitions and
the methods provided by the API.

In particular, libSBOLj 2.0 organizes all SBOL data
within an SBOLDocument object. The SBOLDocument
includes a collection of each type of TopLevel object
(i.e., Collection, ModuleDefinition, ComponentDefinition,
Sequence, Model, or GenericTopLevel). Every object has
a uniform resource identifier (URI) and consists of prop-
erties that may refer to other objects, including non-
TopLevel objects, such as SequenceConstraint and Interac-
tion objects. libSBOLj 2.0 organizes the URI collections
to enable efficient access, and validation of uniqueness. The
libSBOLj 2.0 library provides methods to create, access,
update, and delete all of the data objects and properties
in SBOL 2.0.

While the library can read files with arbitrary URIs, the
library only creates compliant URIs that have the follow-
ing form:

http://〈prefix〉/〈displayId〉/〈version〉

This form is chosen to be easy to read, facilitate debug-
ging, and support a more efficient means of look-
ing up objects and checking URI uniqueness. The
〈prefix〉 represents a URI for a namespace (for exam-
ple, www.sbols.org/CRISPR_Example). The author of a
TopLevel object should use a URI prefix that either they own
or an organization of which they are a member owns. When
using compliant URIs, the owner of a prefix must ensure
that the URI of any unique TopLevel object that contains
the prefix also contains a unique 〈displayId〉 or 〈version〉
portion. Multiple versions of an SBOL object can exist and
would have compliant URIs that contain identical prefixes
and displayIds, but each of these URIs would need to end
with a unique version. Finally, the compliant URI of a non-
TopLevel object is identical to that of its parent object, except
that its displayId is inserted between its parent’s displayId
and version.

In addition to a URI, each SBOL object can also have
a persistentIdentity URI, which is simply its URI without
the version when using compliant URIs. The purpose of
a persistentIdentity is to allow an object to refer to the
latest version of another object using this URI. The latest

VOLUME 1, NO. 4, DECEMBER 2015 35



Zhang et al.: libSBOLj 2.0: A Java Library to Support SBOL 2.0

FIGURE 2. Mapping from the SBOL 1.1 data model to a subset of the SBOL 2.0 data model, indicating equivalences by color. A Collection
of DnaComponents maps to a Collection of ComponentDefinitions, among other TopLevel SBOL objects. DnaComponents map to
ComponentDefinitions of type DNA. DnaSequences map to Sequences using the IUPAC encoding for nucleotide sequences. SequenceAnnotations
with precise start and end positions are mapped to SequenceAnnotations with Range Locations, while SequenceAnnotations with imprecise
positions are mapped to SequenceAnnotations with GenericLocations. Each SequenceAnnotation also maps to a Component, which in
SBOL 2.0 represents the instantiation or usage of a given ComponentDefinition. Finally, precedes relationships map to SequenceConstraints
that specify precedes restrictions.

version of an object is determined using semantic versioning
conventions (see http://semver.org/).

RDF/XML [4] is the main serialization format of both
SBOL 1.1 and SBOL 2.0. SBOL 1.1 ‘‘inlines’’ objects when-
ever they are referenced, meaning that many identical copies
of a referenced object appear in a serialized RDF/XML doc-
ument. SBOL 2.0 serializes each object precisely once and
every time the object is referenced, the reference is specified
by the object’s URI.

SBOL 2.0 includes Annotations and GenericTopLevel
objects (i.e., identified annotations) to enable the serial-
ization of additional information that cannot be expressed
in the current SBOL 2.0 data model. If the library’s read
function encounters an unrecognized tag for a TopLevel
object, then these data are interpreted as a GenericTopLevel
object. Within TopLevel objects, when a tag for a property
is not recognized, the data are stored in a custom Annotation
object within the TopLevel object. In this way, tools using
libSBOLj 2.0 that do not recognize custom data can still
maintain the integrity of such data unmodified when writing
and reading SBOL files. Tools that do recognize custom
data, on the other hand, can further interpret and manipu-
late the data after it has been stored in a generic tree-like
data structure by the library. In comparison to SBOL 1.1,
the SBOL 2.0 solution enhances the extensibility of the
SBOL 2.0 RDF/XML documents.
libSBOLj 2.0 includes a couple of features to

ease the transition from SBOL 1.1. First, it includes
deprecated versions of the libSBOLj 1.1 data objects.
Users of libSBOLj 1.1 can immediately switch to

libSBOLj 2.0 with no loss of functionality, but they
should then endeavor to migrate their code to use the new
SBOL 2.0 data objects as soon as possible. Second, the
SBOL 2.0 reader can parse SBOL 1.1 files and automatically
convert them to use the SBOL 2.0 data objects using the
mapping shown in Fig. 2.

Algorithm 1 illustrates the use of the libSBOLj 2.0
library using an excerpt of the Java code to express the
CRISPR-based repressor design (see Fig. 1) in SBOL 2.0.
First, a new SBOLDocument is created (line 1), and is given
a default URI prefix (line 2). At this point, ComponentDefini-
tion and Interaction objects are also created for the CRISPR-
based repression template ModuleDefinition (not shown).
Then, Sequence objects are created for those sequences
provided in [7].1 For example, to create the sequence for
the CRP_b promoter, the createSequence method is
called with the displayId (CRP_b_seq), version (1.0), the
sequence, and the encoding used (line 3). Note that this
method creates a compliant URI, as described above, using
the default URI prefix and provided displayId and version.
Next, ComponentDefinition objects are created for each
element in the module. For example, a ComponentDef-
inition of DNA type is created for the CRP_b pro-
moter (lines 4–6). Note that by using compliant URIs,
the sequence can be looked up using its displayId, and
since no version is provided, it is referenced by its
persistentIdentity (line 6). Next, two ComponentDefini-
tions are created: one for the EYFP coding sequence

1Unfortunately, as usual, not all sequences are provided in this letter.

36 VOLUME 1, NO. 4, DECEMBER 2015



Zhang et al.: libSBOLj 2.0: A Java Library to Support SBOL 2.0

Algorithm 1 Fragments of Java Code to Produce Part of the CRISPR Repression Example Using libSBOLj 2.0
1 SBOLDocument doc = new SBOLDocument();
2 doc.setDefaultURIprefix("http://sbols.org/CRISPR_Example/");
3 doc.createSequence("CRPb_seq", "1.0", "GCTCCGAATTTCTCGACAGATCTCATGTGAT...", Sequence.IUPAC_DNA);
4 ComponentDefinition CRPb = doc.createComponentDefinition("CRP_b", "1.0", ComponentDefinition.DNA);
5 CRPb.addRole(SequenceOntology.PROMOTER);
6 CRPb.addSequence("CRPb_seq");
7 doc.createComponentDefinition("EYFPcds","1.0", ComponentDefinition.DNA).addRole(SequenceOntology.CDS);
8 ComponentDefinition EYFPgene = doc.createComponentDefinition("EYFPgene","1.0",ComponentDefinition.DNA);
9 EYFPgene.createSequenceConstraint("EYFPgeneCons", RestrictionType.PRECEDES, "CRP_b","EYFPcds");
10 doc.createComponentDefinition("Gal4VP16", "1.0", ComponentDefinition.PROTEIN);
11 ModuleDefinition CRPbCircuit = doc.createModuleDefinition("CRPb_characterization_circuit", "1.0");
12 Interaction EYFPact = CRPbCircuit.createInteraction("EYFPact", SystemsBiologyOntology.STIMULATION);
13 EYFPact.createParticipation("GAL4VP16", "Gal4VP16",SystemsBiologyOntology.STIMULATOR);
14 EYFPact.createParticipation("EYFPgene", "EYFPgene",SystemsBiologyOntology.PROMOTER);
15 Module Template_Module = CRPbCircuit.createModule("CRISPR_Template", "CRISPR_Template", "1.0");
16 Template_Module.createMapsTo("EYFPgene_map", RefinementType.USELOCAL, "EYFPgene", "target_gene");

(CDS) and one for the EYFP gene (lines 7 and 8).
A SequenceConstraint object is created (line 9) to indicate
that the CRP_b promoter precedes the EYFP CDS, because
the sequence for the CDS has not been provided and thus
cannot be given an exact Range. Finally, a protein-type
ComponentDefinition is created for the Gal4VP16 protein
(line 10). After all the ComponentDefinitions are created,
a ModuleDefinition object is created for the CRPb charac-
terization circuit (line 11). Next, the Interactions between
the components are specified using terms from the systems
biology ontology [2]. One example Interaction is the stim-
ulation of the EYFPgene by the Gal4VP16 protein (lines
12–14). Now, the CRISPR-based repression templateModule
is instantiated and connected to the CRPb characterization
circuit using MapsTo objects. For example, a MapsTo object
is used to indicate that the target_gene in the template
should be refined to be the EYFPgene specified in the CRPb
circuit (line 17).

SBOL does not provide the specification of a mathematical
model directly. It is possible, however, to generate a mathe-
matical model using SBML [6] and the procedure described
in [10]. Then, the SBOL document can reference this gener-
ated SBML model.

IV. SUMMARY
SBOL 1.1 has limitations with respect to the wealth of
required artifacts to specify, share, and reproduce designs of
synthetic biological systems. SBOL 2.0 extends SBOL 1.1
to specify both structure and function in a hierarchical
manner by introducing generalized components, the interac-
tions between them, and modules to group components that
collectively implement a common function.

As described in this letter, SBOL 2.0 is supported by
libSBOLj 2.0, which provides an API, documentation,
and additional utilities for managing the encoding and
exchange of designs. Improved functionality, particularly
error checking, continues to be added to further ease the
adoption of SBOL 2.0. The library is freely available from

GitHub under the Apache 2.0 License. The SBOL website
(http://sbolstandard.org) provides links to the current snap-
shot, the latest release, the issue tracker, javadocs, a brief
tutorial, and examples, including the full code for the CRISPR
example. Questions about the library can be sent to: libsbol-
team@googlegroups.com.

ACKNOWLEDGMENT
The authorswould like to thankB. Bartley and Profs. H. Sauro
and J. Gennari (University of Washington), who are devel-
oping a C++ version of this library, for their feedback.
The authors would also like to thank the SBOL Developers
community for their contributions to the SBOL standard.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation or their other funding agencies.

REFERENCES
[1] B. Bartley et al., ‘‘Synthetic biology open language (SBOL) version 2.0.0,’’

J. Integrative Bioinformat., vol. 12, no. 2, p. 272, 2015.
[2] M. Courtot et al., ‘‘Controlled vocabularies and semantics in systems

biology,’’ Molecular Syst. Biol., vol. 7, Oct. 2011, Art. no. 543.
[3] M. Galdzicki et al., ‘‘The synthetic biology open language (SBOL) pro-

vides a community standard for communicating designs in synthetic biol-
ogy,’’ Nature Biotechnol., vol. 32, pp. 545–550, 2014.

[4] F. Gandon and G. Schreiber. (2014). RDF 1.1 XML Syntax, accessed on
Mar. 23, 2015. [Online]. Available: http://www.w3.org/TR/rdf-syntax-
grammar

[5] A. Garny et al., ‘‘CellML and associated tools and techniques,’’ Philos.
Trans. A, Math. Phys. Eng. Sci., vol. 366, no. 1878, pp. 3017–3043,
Sep. 2008.

[6] M. Hucka et al., ‘‘The systems biology markup language (SBML):
A medium for representation and exchange of biochemical network mod-
els,’’ Bioinformatics, vol. 19, no. 4, pp. 524–531, 2003.

[7] S. Kiani et al., ‘‘CRISPR transcriptional repression devices and layered
circuits in mammalian cells,’’ Nature Methods, vol. 11, no. 7, pp. 723–726,
2014.

[8] MATLAB, MathWorks, Natick, MA, USA, 2015.
[9] J. Peccoud et al., ‘‘Essential information for synthetic DNA sequences,’’

Nature Biotechnol., vol. 29, no. 1, p. 22, Jan. 2011.
[10] N. Roehner, Z. Zhang, T. Nguyen, and C. J. Myers, ‘‘Generating systems

biology markup language models from the synthetic biology open lan-
guage,’’ ACS Synth. Biol., vol. 4, no. 8, pp. 873–879, 2015.

VOLUME 1, NO. 4, DECEMBER 2015 37


