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Abstract. The importance of vertebrates, invertebrates, and pathogens for plant
communities has long been recognized, but their absolute and relative importance in early
recruitment of multiple coexisting tropical plant species has not been quantified. Further, little
is known about the relationship of fruit traits to seed mortality due to natural enemies in
tropical plants. To investigate the influences of vertebrates, invertebrates, and pathogens on
reproduction of seven canopy plant species varying in fruit traits, we quantified reductions in
fruit development and seed germination due to vertebrates, invertebrates, and fungal
pathogens through experimental removal of these enemies using canopy exclosures,
insecticide, and fungicide, respectively. We also measured morphological fruit traits
hypothesized to mediate interactions of plants with natural enemies of seeds. Vertebrates,
invertebrates, and fungi differentially affected predispersal seed mortality depending on the
plant species. Fruit morphology explained some variation among species; species with larger
fruit and less physical protection surrounding seeds exhibited greater negative effects of fungi
on fruit development and germination and experienced reduced seed survival integrated over
fruit development and germination in response to vertebrates. Within species, variation in seed
size also contributed to variation in natural enemy effects on seed viability. Further, seedling
growth was higher for seeds that developed in vertebrate exclosures for Anacardium excelsum
and under the fungicide treatment for Castilla elastica, suggesting that predispersal effects of
natural enemies may carry through to the seedling stage. This is the first experimental test of
the relative effects of vertebrates, invertebrates, and pathogens on seed survival in the canopy.
This study motivates further investigation to determine the generality of our results for plant
communities. If there is strong variation in natural enemy attack among species related to
differences in fruit morphology, then quantification of fruit traits will aid in predicting the
outcomes of interactions between plants and their natural enemies. This is particularly
important in tropical forests, where high species diversity makes it logistically impossible to
study every plant life history stage of every species.

Key words: fruit development; fruit morphology; germination; Janzen-Connell effects; natural enemies;
Panama; plant traits; predispersal seed mortality; seed survival.

INTRODUCTION

Vertebrates, invertebrates, and microbes all influence

plant survival, population dynamics, and species distri-

butions (Coley and Barone 1996, Crawley 1997b, Gilbert

2002, Maron and Crone 2006). Some of these influences

are positive, as vertebrates may be seed dispersers or

pollinators, invertebrates may be pollinators or other

mutualist symbionts such as in ant-plants, and microbial

mutualists may assist in foraging for soil nutrients or

fending off herbivores (Crawley 1997a). Many other

influences are negative, with vertebrates and inverte-

brates featuring as herbivores, and microbes as patho-

gens (Crawley 1997a). Vertebrates, invertebrates, and

pathogens play crucial roles in the early stages of plant

recruitment, when plants experience their highest

mortality. During fruit development in particular, all

three groups of organisms can cause large reductions in

plant fecundity (Crawley 2000) and may reduce seedling

performance by damaging developing seeds (Sousa et al.

2003, Bonal et al. 2007). Particular groups of natural

enemies may also interact with each other, for example,

insect seed predators can damage seeds in ways that

increase pathogen colonization or even act as vectors

(Mills 1983). Yet the relative and absolute influences of

vertebrates, invertebrates, and microbes on seed survival

at the predispersal stage have rarely been investigated in

forests due to the difficulty of studying processes

occurring in the tree canopy (Crawley 2000, Nakagawa

et al. 2005, Lewis and Gripenberg 2008).

Because invertebrates and pathogens tend to be more

specialized than vertebrates in the plant species that they

target, the question of the relative importance of these
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groups in attacking plants relates to the larger unre-

solved question concerning the influences of specialists

vs. generalists on plant communities (Maron and Crone

2006). Specialized natural enemies of plants, including

many insect seed predators (Janzen 1971, Crawley 2000,

Hulme and Benkman 2002) and fungal pathogens

(Gallery et al. 2007, Gilbert and Webb 2007), are

hypothesized to contribute particularly strongly to the

maintenance of diversity through frequency-dependent

mortality; generalist predators, such as vertebrate seed

predators (Hammond and Brown 1998), may also

contribute insofar as resistance to predation trades off

with other traits (Janzen 1970, Connell 1971). Deter-

mining the influence of different natural enemy groups

may direct future research in understanding whether

specialists or generalists have a greater impact on plant

communities and their potential role in diversity

maintenance.

Fruit morphology and chemistry are likely to be

particularly important in determining interspecific var-

iation in susceptibility to seed predation and pathogen

attack (Leishman et al. 2000). Observational studies of

predispersal seed predation and pathogen attack suggest

wide variation in attack rates among species and forest

types (e.g., DeSteven 1981, Myster 1997, Forget et al.

1999, Sousa et al. 2003, Beckman and Muller-Landau

2007, Jones and Comita 2010). Morphological traits that

influence seed survival include fruit size, seed size, pulp-

to-seed ratio, and allocation to physical protection of

the diaspore. Seed size is negatively correlated with

pathogen attack (Leishman et al. 2000), and positively

correlated with the size of mammals consuming seeds

(Dirzo et al. 2007). Seed size is also predicted to be

positively correlated with insect seed predation; larger

seeds, which have greater energy reserves, may be more

susceptible to insect seed predators and be attacked by a

greater variety of insects (large and small) than smaller

seeds (Mucunguzi 1995, Espelta et al. 2009). However,

larger seeds may be able to survive damage by insects

better than smaller seeds (Mack 1998, Espelta et al.

2009) with potentially decreased seedling growth com-

pared to similar-sized uninfested seeds (Sousa et al.

2003, Bonal et al. 2007). High pulp-to-seed ratios are

hypothesized to have evolved to protect seeds from

natural enemy attack (Mack 2000). Physical protection

(i.e., mass of endocarp and testa relative to seed)

increases with seed size (Moles et al. 2003) and may in

part explain the greater susceptibility of small seeds to

pathogen attack. Thus, the inclusion of fruit morpho-

logical data in studies ascertaining the influence of

natural enemies is likely to enhance our understanding

of proximate mechanisms mediating interactions be-

tween seeds and their natural enemies and provide a

foundation for generalization to unstudied species.

In this study, we investigated the role of vertebrate

seed predators, insect seed predators, and fungal

pathogens in reducing adult fecundity of tropical canopy

trees and vines, and further examined the degree to

which fruit morphology explains interspecific variation

in these interactions. The high diversity of tropical

forests enabled us to include species that range widely in

morphological traits (Table 1). We used a canopy crane

to access developing fruit; to exclude each natural enemy

group from these fruit; and to monitor plant responses

in fruit development, seed survival, and seed quality—

assessed by collecting seeds, measuring germination

rates, and tracking subsequent growth. This is the first

study that examines inter- and intraspecific variation in

enemy-induced seed mortality in the canopy and

establishes quantifiable measures using morphological

fruit traits to predict the mechanism that dominates

during the predispersal stage of early plant recruitment.

Our manipulative canopy experiment addressed the

following questions: (1) What predispersal effects do

vertebrates, invertebrates, and pathogens have on seed

survival and on the growth rates of surviving seedlings?

(2) Does variation in fruit traits explain interspecific

variation in seed survival due to vertebrate seed

TABLE 1. Study species of tropical trees and vines in central Panama and their traits.

Species Family Lifeform�
Dispersal
mode�

Seed
size
(mg)�

Fruit
size
(mg)

No.
seed/
fruit

Physical
protection
(g/g)§

Pulp :
fruit
(g/g)

Capsule :
fruit
(g/g)

Population
density}

Cecropia peltata Cecropiaceae midstory
tree

mammal,
bat, bird

0.5 2221.1 1868 0.54 0.40 0 9

Luehea seemannii Tiliaceae canopy tree wind 0.8 392.9 47 0.52 0 0.74 51/19
Antirhea trichantha Rubiaceae canopy tree bird 1.5 34.6 1 0.85 0.62 0 15
Stigmaphyllon

hypargyreum
Malpighiaceae vine wind 9.8 34.4 1 0.60 0 0 NA

Bonamia trichantha Convolvulaceae vine wind 16.1 276.1 4 0.47 0 0.60 NA
Castilla elastica Moraceae midstory

tree
mammal,

bird
203.3 5996.3 12 0.11 0.25 0 35

Anacardium excelsum Anacardiaceae canopy
tree

mammal,
bat

1459.1 2222.9 1 0.34 0 0 41/9

Notes: Species are ordered in increasing seed size. Masses reported are dry masses. NA is not available.
� S. J. Wright, personal communication.
� Seed reserve mass.
§ Physical protection was calculated as (diaspore dry mass� seed reserve dry mass)/diaspore dry mass.
}Number of individuals � 1 cm in diameter and reproductive individuals, if known, in a 1-ha plot centered on the canopy crane.
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predation, insect seed predation, and/or pathogen

attack?

MATERIALS AND METHODS

Study site and species

The canopy crane is located in Parque Natural

Metropolitano (PNM), a dry, semi-deciduous, old

secondary forest located near Panama City on the

Pacific coast (available online).4 The dry season in

Central Panama begins in mid-December and lasts until

the end of April, and the average annual rainfall at

PNM is 1740 mm. The crane reaches 42 m in height and

covers an area of ;1 ha, providing access to 80 species

of canopy plants. We selected reproductive individuals

of species accessible from the crane that represent a

range of life forms, dispersal modes, and families (Table

1). For all but one species, the study was conducted from

January 2008 to June 2009; for Antirhea trichantha, we

conducted an additional study on predispersal effects of

natural enemies on germination in 2007.

Experimental treatments

Natural enemy removal treatments and controls were

randomly assigned to separate branches (Appendix:

Table A1). Vertebrates were excluded from fruit using

lightweight exclosures designed for canopy-level work in

the same forest communities (Appendix: Fig. A1;

construction details in Van Bael 2003). Previous

experiments showed that exclosures effectively excluded

vertebrates, without affecting movement of inverte-

brates, and did not physically damage plants (Van Bael

2003). To remove fungal pathogens and insect seed

predators, we sprayed fruits weekly with pesticides

starting after pollination. Against fungal pathogens,

we used Captan (N-trichloromethylthio-4-cyclohexene-

1, 2-dicarboximide; Arysta LifeScience North America,

Cary, North Carolina, USA), a broad-spectrum fungi-

cide that kills most seed-decay pathogens (e.g., Fusa-

rium, Phytophthora, Pythium, and Rhizoctonia), at a

concentration of 10 g Captan/L water, which was

previously tested and used on seeds of pioneer species

in Panama (Dalling et al. 1998). Against invertebrates,

we used Mavrik Aquaflow (tau-fluvanilate; Wellmark

International, Schaumburg, Illinois, USA) at the label-

recommended concentration of 1.48 mL Mavrik

Aquaflow/gallon water (1 gallon is 3.8 L). Mavrik

Aquaflow kills a variety of invertebrates, including

larvae of Diptera, Lepidoptera, Coleoptera, and

Hymenoptera, with low toxicity to honey bees (Apis

mellifera; Johnson et al. 2006). During the summer of

2006, we tested whether pesticide application affected

vertebrate seed removal for seeds of one common tree

species, Pourouma bicolor, and found no effect (data

not shown).

Fruit development

To determine the effects of natural enemy removal
treatments on fruit development, we monitored the

number of fruits that developed to maturity. We
counted developing fruit biweekly until mature on

marked branches within each treatment. At the begin-
ning of the fruiting season, treatments contained ;12–

220 immature fruits depending on the species. For
Bonamia trichantha, we also counted the number of

healthy vs. aborted diaspores in each fruit at the end of
the fruiting season. Because Cecropia peltata infructes-

cences are long finger-like projections containing thou-
sands of fruits and parts of the infructescence tended to

be removed or aborted, we measured infructescence
length instead of fruit number. We censused more

frequently close to fruit maturation to determine the
number of immature fruit or length of immature

infructescences that successfully reached maturity and
to collect mature seeds prior to removal by vertebrates.

Germination

To determine the effects of natural enemy removal

treatments on seed viability, we measured germination
of mature seeds collected from treatments. For Luehea

seemannii, Antirhea trichantha, and Castilla elastica, we
also measured diaspore mass for half of the diaspores to

assess the effect of diaspore mass on germination and
test for interactions with treatments. For fleshy fruits,

seeds were removed from pulp in water and germinated
within a week of collection (Sautu et al. 2006). Cecropia

peltata seeds were processed in a dark room and air-
dried within two–three days of collection (Dalling et al.

1997). Due to limited growing house space, species with
high longevity were stored in an air-conditioned

laboratory until germination studies began (Sautu et
al. 2006).

Germination trials took place in Gamboa, Panama in
a growing house under 60% shade cloth and transparent

plastic to protect seeds from rainfall. Different germi-
nation conditions were used to accommodate require-
ments of each species. Approximately 60 seeds were

planted per treated branch, except for Anacardium
excelsum, for which ;10 seeds were planted per branch

(its low fruit production precluded larger sample sizes).
Seeds of Luehea seemannii and Cecropia peltata, the

smaller-seeded species, were germinated in petri dishes
lined with paper towels. Large-seeded species were

planted in soil collected from Barro Colorado Island
mixed with sand (2 soil : 1 sand) and planted in 72

square-cavity plug sheets (LandMark Plastic, Akron,
Ohio, USA). The sand–soil mixture was autoclaved for

one hour at 1218C in a Sterilmatic steam pressure
autoclave (Market Forge Industries, Everett, Massa-

chusetts, USA). Cells of trays and petri dishes were
watered individually to reduce cross-contamination of
fungi. Because L. seemannii seeds have initial dormancy,

seeds that did not germinate after six weeks were given a
hot-water treatment; seeds were submerged in 808C4 hhttp://striweb.si.edu/esp/i
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water for 2 min (Acuña and Garwood 1987, Sautu et al.

2006). In 2008, we observed some diaspores of A.

trichantha germinating twice (once from each locule),

and this was also recorded.

Germination trials ended after one month of no

germination within species (Sautu et al. 2006). Seeds

that did not germinate were opened to determine the

status of the embryo, which was characterized as viable

or dead, and with or without apparent insect or fungal

damage (measured to evaluate treatment effectiveness).

After germination, a subset of seedlings of Castilla

elastica and Anacardium excelsum were transplanted to

determine seedling relative growth rates. Complete

methods and results for assessing the status of seeds

that did not germinate and for measuring seedling

growth rates are given in the Appendix.

Morphological traits

We measured morphological traits on 15 mature fruits

collected from three individuals of each focal species

(Cornelissen et al. 2003). We measured fruit length and

width, the number of seeds per fruit, and the dry masses

of fruit, pulp, capsule, diaspore, and seed reserve. For

Anacardium excelsum, only the drupe, and not the

pedicel, was considered in the following calculations.

Fruit samples were dried at 608C for at least 72 h and

weighed using an analytical balance with a precision of

0.01 mg. The diaspore, or unit of dispersal, includes the

seed (i.e., seed reserve and testa) and endocarp and

excludes the pappus, flesh, and any other part that

comes off easily. Seed reserve includes the endosperm,

embryo, and cotyledons. Protective structures include

the testa and all other structures of the diaspore

surrounding the embryo and endosperm except for the

wings or awns in wind-dispersed species (Moles et al.

2003). We calculated the following to use as morpho-

logical fruit traits: pulp-to-fruit dry mass ratios, capsule-

to-fruit dry mass ratios, physical protection, log(mean

fruit dry mass), log(mean fruit length), log(mean fruit

width), log(mean seed reserve dry mass), and log(mean

number of seeds); physical protection was calculated as

(diaspore dry mass � seed reserve dry mass)/ diaspore

dry mass (Moles et al. 2003). All subsequent cross-

species analyses are based on species-level means or log-

transformed means.

Statistical analyses

For community-level and species-level analyses, we

used a generalized linear mixed model (GLMM) with

binomial errors to analyze variation in the proportion of

seeds removed and germinated in response to vertebrate,

invertebrate, and pathogen removal treatments. Fruits

and seeds were considered experimental units. Natural

enemy removal treatments were considered fixed effects.

To account for spatial autocorrelation among seeds

within branches and branches within trees, branches

nested within trees were considered random effects,

except for species-level analyses of the vine species. For

these, we assumed each vine species comprised one

individual, and therefore did not include individual as a

random effect. To analyze variation in final fruit length

of Cecropia peltata, we used a linear mixed model with

normal errors and included initial length as a covariate

to account for differences in initial fruit length.

In community-level analyses, we included plant

responses of all species to each treatment to analyze

the influence of interspecific variation in fruit morphol-

ogy on fruit development, germination, and seed

survival integrated over development and germination.

We calculated this integrated seed survival as the

proportion of fruit that developed on each branch

multiplied by the proportion of seeds that germinated on

each branch. Interspecific variation in fruit morphology

was summarized with principal component analysis

(PCA) using standardized variables of traits (i.e.,

correlation matrix in the PCA; Schaefer et al. 2003). In

community-level analyses, natural enemy removal treat-

ments, principal components of fruit morphology, and

the interaction between treatments and principal com-

ponents were included as fixed effects, and branches

nested within individuals were included as random

effects. An interaction between treatments and principal

components indicates that responses in treatments

responded differently to a particular principal compo-

nent compared to controls. For example, a positive

interaction between the fungicide treatment and PC1 in

the germination analysis would indicate that germina-

tion increased at a higher rate across PC1 in the

fungicide treatment compared to the control (i.e., the

slope of the fungicide treatment is steeper than the

control). Cecropia peltata was not included in the

community-level analysis of fruit development because

fruit removal was measured in a different way than the

other species. Integrated proportion of seed survival was

arcsine square-root transformed to meet assumptions of

normality and analyzed using a linear mixed model with

normal errors with the same fixed effects as the above

analyses and individual as a random effect.

For species-level analyses of germination, we included

predictor variables describing interannual variation in

germination and intraspecific variation in diaspore mass

when data were available. For Antirhea trichantha, we

had two years of germination data and included year

and an interaction between year and treatment as fixed

effects. To determine the effect of diaspore mass on

germination within species, we included it as a covariate

in species-level analyses of L. seemannii, A. trichantha,

and Castilla elastica. For A. trichantha, we measured

diaspore mass in 2008, and included it in analyses of

germinating once or twice. We standardized diaspore

mass by subtracting the mean and dividing by one

standard deviation to make coefficient estimates easier

to interpret (Gelman and Hill 2007). Treatments,

standardized diaspore mass (SDiaM), and their interac-

tions were included as fixed effects and branches nested

within individuals as random effects in germination
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analyses. Variation of SDiaM among treatments was

analyzed using a linear mixed model with normal errors.
We used the Laplace approximation of likelihoods to

estimate parameters of fixed and random effects using
restricted maximum likelihood estimation (Bolker et al.

2008). To analyze GLMM, we used the lme4 package in
R (Bates and Maechler 2009, R Development Core

Team 2009). Because of the uncertainty in calculating
the degrees of freedom needed for Wald t or F tests,
calculating P values for GLMMs with normally

distributed errors is controversial (Bolker et al. 2008).
Instead, for normally distributed errors, we obtained

95% confidence envelopes of parameter estimates using
Markov chain Monte Carlo methods and referred to

estimates as significantly different from zero if they fell
outside these envelopes. When appropriate, variables

were transformed to meet assumptions of normality. All
statistical analyses were done using R (R Development

Core Team 2009).

RESULTS

Fruit morphology

There were strong correlations among many of the
fruit traits (Appendix: Table A2). The first three

principal components (PC1, PC2, and PC3) explained
91% of the variance (Table 2). The first principal

component most strongly reflects fruit size (positively)
vs. physical protection (negatively), the second reflects

seed size (positively) vs. seed number per fruit (nega-
tively), and the third reflects the capsule-to-fruit ratio

(positively) vs. the pulp-to-fruit ratio (negatively).

Community-level analyses

The proportions of fruit reaching maturity and seeds

germinating were significantly affected by fruit traits and
their interactions with natural enemy removal treat-

ments (Fig. 1; Appendix: Figs. A2 and A3, Tables A3–
A5). There was a significant positive interaction of the

first principal component (i.e., fruit size vs. physical
protection) with the fungicide treatment on fruit
maturation (z ¼ 2.99, P , 0.01), germination (z ¼ 2.34,

P , 0.05), and seed survival integrated over maturation
and germination (t¼3.46, P , 0.05). For the proportion

of seeds surviving integrated over fruit development and
germination, there was also a positive interaction

between PC1 and vertebrate exclosures (t ¼ 2.19, P ,

0.05). The probability of fruit maturation (z¼�4.82, P
, 0.001), germination (z ¼ �1.70, P ¼ 0.0900), and
integrated seed survival (t ¼ �3.33, P , 0.05)

significantly decreased with the second principal com-
ponent (i.e., seed size vs. seed number per fruit). There

was a marginally significant positive interaction between
PC2 and the vertebrate exclosures on germination (z ¼
1.71, P¼ 0.0882). Germination (z¼ 2.64, P , 0.01) and
integrated seed survival (t¼ 2.73, P , 0.05) significantly
increased with the third principal component (i.e.,

capsule vs. pulp-to-fruit ratio). There was a marginally
significant positive interaction between PC3 and verte-

brate exclosures on fruit development (z ¼ 1.88, P ¼
0.0596). The main effects of PC1 and of the enemy

removal treatments were not significant.

Species-level analyses

Each species was significantly affected by at least one

natural enemy removal treatment during fruit develop-

ment, germination, and/or the seedling stage (Appen-

dix). The percentage of total fruit that matured and

seeds that germinated varied among species from 18% to

89% and from 13% to 86%, respectively (Appendix:

Table A1). Insecticide significantly increased either fruit

maturation or germination in four species (Figs. 2b and

3b; Appendix: Table A6). Fungicide enhanced germina-

tion in the two large-seeded species and reduced fruit

maturation in two small-seeded species (Figs. 2a and 3a;

Appendix: Table A6). Vertebrate exclusion increased

fruit development success for three species (Fig. 2c), but

had mixed effects on germination (Fig. 3c), and reduced

the number of healthy diaspores per fruit in Bonamia

trichantha (z ¼�2.67, P , 0.01; Appendix: Table A6).

The largest-seeded species in our study, Anacardium

excelsum, was responsive to all natural enemy removal

treatments during fruit development (fungicide, z¼ 2.07,

P , 0.05; insecticide, z ¼ 2.74, P , 0.01; vertebrate

exclosure, z ¼ 2.69, P , 0.01; Fig. 2), and all but the

insecticide treatment during germination (fungicide, z¼
2.14, P , 0.05; vertebrate exclosures, z ¼ 1.822, P ¼
0.0685; Fig. 3); relative growth rates (in height and

biomass) of A. excelsum seedlings from vertebrate

exclosures were significantly higher than those of

controls (P , 0.05; Appendix: Table A6).

Within species, variation in years and diaspore mass

contributed to intraspecific variation in germination and

seedling growth (Appendix). For Antirhea trichantha,

seed germination was significantly higher in 2008 than in

2007 (z¼ 4.17, P , 0.001; Appendix: Table A6). Higher

standardized diaspore mass was associated with higher

germination probability for L. seemannii (SDiaM; z ¼
4.838, P , .001), lower germination probability (z ¼
�4.14, P , 0.001) and increased relative growth rates (in

height) for C. elastica (t ¼ 2.04, P , 0.05), and had no

effect in Antirhea trichantha. For C. elastica, reduced

germination of larger seeds in controls compared to

TABLE 2. Principal component analysis of fruit morphology.

Variable PC1 PC2 PC3

Pulp : fruit ratio �0.357 �0.554
Capsule : fruit ratio 0.767
Protective structure : diaspore ratio �0.493
log(fruit dry mass) 0.453 �0.210
log(fruit length) 0.392 �0.344
log(fruit width) 0.477
log(seed reserve dry mass) 0.336 0.489 �0.202
log(number of seeds per fruit) �0.673 0.213
Cumulative percentage variance 47.9 72.0 90.8

Notes: Only loadings greater than 0.25 are shown. Loadings
greater than 0.40 are in bold.
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smaller seeds was most likely due to pathogenic fungi as

there was a significant positive interaction between

SDiaM and the fungicide treatment (z ¼ 5.23, P ,

0.001) and larger seeds had higher fungal damage in

controls than smaller seeds (internal fungal damage: z¼
3.55, P , 0.001). Relative growth rates (based on height)

were also slightly higher in the fungicide treatment after

adjusting for diaspore mass (t ¼ 1.74, P ¼ 0.0844),

suggesting predispersal effects of pathogenic fungi may

persist to the seedling stage.

DISCUSSION

Our results suggest that on the community level,

predispersal seed predation is not due predominantly to

any one group of natural enemies; instead, responses

were species specific and shifted throughout the early

recruitment stages studied here (i.e., fruit development,

seed germination, and seedling growth). These species-

specific responses to natural enemy removal were partly

explained by interspecific variation in fruit morphology.

Within species, variation in survivorship was further

explained in part by diaspore size and year.

Fruit traits and response to natural enemies

We found that species with less physical protection

and larger fruit experienced more pathogen attack, as

PC1 predicted fruit development (Fig. 1a), germination

(Fig. 1d), and integrated seed survival in the fungicide

treatment. In contrast, variation among species in seed

reserve mass and diaspore number per fruit (PC2) did

not predict responses to the fungicide treatment. There

are few studies relating pathogen susceptibility to fruit

and seed morphology, and those that do focus on

postdispersal stages. In one study relating seed charac-

teristics to postdispersal seed survival, Pringle et al.

(2007) found that pathogen susceptibility increased with

seed size and shade tolerance and was not related to seed

hardness, measured by biting seeds, which contrasts with

FIG. 1. The effect of natural enemy removal treatments and fruit morphology on (a–c) the probability of fruit maturation and
(d–f ) seed germination of tropical trees and vines in central Panama. Lines are best fits of the generalized linear mixed model using
individual seeds as replicates (also see Appendix: Figs. A2 and A3). PC1, PC2, and PC3 are the first three principal components
obtained from a principal component analysis of fruit morphology and explain 91% of the variance. The first principal component,
PC1, reflects fruit size (positively) vs. physical protection (negatively), the second reflects seed size (positively) vs. seed number per
fruit (negatively), and the third reflects the capsule-to-fruit ratio (positively) vs. the pulp-to-fruit ratio (negatively).
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our result on seed reserve mass. In congruence with our

results, Augspurger and Kelly (1984) found that
variation among wind-dispersed species in pathogen-
induced seedling mortality was not explained by

interspecific variation in seed mass. The negative effect
of fungicide on development and germination for species

with greater physical protection and smaller fruits,
species negatively associated with PC1, could be due to

interactions of plants with mutualistic fungi, in which
seeds may be infected with endophytes that benefit seed

survival (Cipollini and Stiles 1993, Gallery et al. 2007,
Rodriguez et al. 2009).

Contrary to our prediction that fruit morphology
explains variation in seed survival due to insect seed

predation among species, we did not find this relation-
ship. Although physical defenses surrounding seeds are

predicted to reduce insect seed predation (Hulme and
Benkman 2002), we did not find species with less
protective structures (PC1) to be more susceptible to

insect seed predation. Thicker seed coats have been
found to protect seeds of agricultural crops from

bruchid beetles, a major insect seed predator (Theiry
1984, Kitch et al. 1991). We did not find a relationship

between seed size or number per fruit (PC2) with insect
seed predation in our community-level analysis. The

influence of seed size on insect predation in previous

studies is unclear. Larger seeds are predicted to

experience higher levels of insect seed predation

(Mucunguzi 1995, Espelta et al. 2009), but may be able

to survive damage better than smaller seeds by satiating

the predator (Mack 1998, Bonal et al. 2007, Espelta et

al. 2009). In a large analysis of predispersal seed

predation and seed size in Australia, Moles et al.

(2003) found no relationship between seed size and

survivorship. Capsules and higher pulp content may

both act as physical barriers (Mack 2000, Hulme and

Benkman 2002). We found no evidence of differences

between species with capsules and those with high pulp

content (PC3) in their protection from insect seed

predators, suggesting these achieve similar effects on

seed survival in response to insect seed predation among

the species in our study.

Species with fleshy fruits experienced a lower proba-

bility of fruit maturation in the vertebrate exclosures

compared to the controls, unlike species with capsules

(PC3; Fig. 1c). Presence of vertebrates may have

indirectly reduced damage of fleshy fruits by other

natural enemies. Vertebrate insectivores may reduce

abundances of insects near developing fruit, thereby

FIG. 2. Estimated effects (þSE) of natural enemy removal
treatments on fruit development (measured as log of odds
ratios) in each species. Bars represent coefficient estimates of
each treatment relative to control from each species-level
analysis (Appendix: Table A6). Species are ordered by
increasing seed mass.
* P , 0.05; � P , 0.1.

FIG. 3. Estimated effects (þSE) of natural enemy removal
treatments on germination (measured as log of odds ratios) in
each species. Bars represent coefficient estimates of each
treatment relative to control from each species-level analysis
(Appendix: Table A6). For Luehea seemannii, Antirhea
trichantha, and Castilla elastica, coefficient estimates are
adjusted by standardized diaspore mass. For A. trichantha,
coefficient estimates are shown from 2008 analysis. Species are
ordered in increasing seed size.

* P , 0.05; � P , 0.1.
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reducing insect damage that may also facilitate fungal

colonization or transmission (Mills 1983). Studies have

documented increased herbivore abundances and foliar

damage when vertebrates are excluded from leaves (Van

Bael 2003, 2005, Kalka et al. 2008). Tritrophic

interactions among vertebrates, fruits, and insects may

have parallel consequences in reducing fruit damage and

seed consumption in species with fleshy fruits.

Species with less physical protection and larger fruit

(PC1) had higher seed survival integrated over fruit

development and germination in vertebrate exclosures.

Similarly, the vertebrate exclosures tended to increase

the probability of germination for species with higher

seed reserves and fewer seeds per fruit, while reducing it

for species with lower seed reserves and more seeds per

fruit (PC2; Fig. 1e). These results suggest that species

with larger seeds and fewer seeds per fruit and species

with large fruit and less physical protection suffer

greater direct physical damage from vertebrates that

reduce seed viability, while species with many small

seeds per fruit or higher physical protection gain some

benefit from being accessible to vertebrates, potentially

due to tritrophic interactions with vertebrates as

discussed previously. Seed predation depends on the

community composition and abundance of vertebrates.

Although there are few studies on the influence of

interspecific variation in seed size on seed predation,

defaunation tends to decrease removal at the postdis-

persal stage for larger seeds and increase it for smaller

seeds (Beckman and Muller-Landau 2007, Dirzo et al.

2007). Although our study site, PNM, is in close

proximity to Panama City, and abundances of large

vertebrates have been greatly reduced due to hunting

and habitat fragmentation (Ibanez et al. 2002), we found

vertebrates caused the largest reductions in seed viability

for species that have fewer, larger seeds per fruit.

Variation in fruit and seed morphology significantly

affected fruit development and seed germination both

across and within species included in our study. Species

with heavier seed reserves and fewer seeds per fruit

(PC2) had a lower probability of fruit maturation (Fig.

1b), germination (Fig. 1e), and integrated seed survival

in the controls. Within species, seed size increased,

decreased, or had no effect on germination. Our study

adds to the equivocal results of other studies document-

ing seed survivorship at the predispersal stage, which

show a range of responses including increased, de-

creased, or no effect of seed size on survivorship across

(Moles et al. 2003, Moles and Westoby 2006) or within

species (Sousa et al. 2003, Lazaro and Traveset 2009).

Plant interactions with natural enemies may contribute

to the opposing selective forces acting across recruitment

stages that maintain variation in seed size (Janzen 1969,

Espelta et al. 2009). We also found species with capsules

had higher germination (Fig. 1f ) and integrated seed

survival compared to those with fleshy fruits (PC3). The

reduced germination of species with fleshy fruits may

suggest that seeds of these fruits require ingestion by

vertebrates; however the hand-cleaning method we

employed has been found to adequately simulate

vertebrate ingestion and be sufficient for seed germina-

tion (Lobova et al. 2003, Robertson et al. 2006). Besides

morphology, fruit toxicity can also mediate interactions

with natural enemies (Janzen 1969). Differences in fruit

toxicity among species included in this study helped

explain variation in fruit development and seed survival

(Beckman 2010).

Effects of predispersal seed predation on plant populations

and communities

This study offers a snapshot of the influence of several

groups of natural enemies on plant reproduction.

Predispersal seed predation is known to vary in time

and space (Crawley 2000, Kolb et al. 2007), and thus our

study necessarily provides a constrained window on this

phenomenon. For Antirhea trichantha, we found a

significant effect of year on initial seed germination,

with seeds in 2008 having a higher probability of

germination than 2007. Because the insecticide treat-

ment had a significant effect on seeds across years, but

not when 2008 was analyzed separately (Fig. 3), this

interannual variation in germination is potentially due

to temporal variation in insect seed predation. A recent

review of predispersal seed predation by insects found

that interannual variation in predation was higher than

spatial variation for six out of nine species (Kolb et al.

2007).

Whether the documented reductions in fecundity due

to enemy attack influence population dynamics depends

partly on whether plant species are more seed- or

microsite-limited (Kolb et al. 2007). Seed limitation,

attributed to a limited number of seeds produced and

their limited dispersal, tends to be higher than microsite

limitation for the majority of species that have been

tested in Panama (Svenning and Wright 2005). Lower

fecundity may also alter spatial distributions of recruit-

ing seedlings by altering density-dependent processes

(Janzen 1970).

Our research suggests that there is no one group of

natural enemy that has a dominant effect on tropical

forest plant communities at the predispersal stage.

Instead, each group may differentially affect predis-

persal seed predation depending on interspecific varia-

tion in fruit morphology. In particular, species with

larger fruit and less physical protection surrounding

seeds exhibited greater negative effects of fungi on fruit

development and germination, and experienced reduced

seed survival integrated over fruit development and

germination in response to vertebrates. Our study

provides the beginnings of a mechanistic understanding

of the variation in seed survival among species and

highlights the importance of fruit and seed traits in

mediating plant interactions with animals and microbes.

Not only will incorporating plant traits benefit our basic

understanding of the consequences of natural enemies

for plant communities, a trait-based approach may aid
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our ability to predict changes in plant communities in

the face of increasing anthropogenic pressures.

Under the myriad environmental modifications in-

duced by humans, plant–animal interactions are expect-

ed to change with unclear outcomes for plant

communities (Harvell et al. 2002, Mitchell et al. 2003,

Wright et al. 2007). Identification of consistent relation-

ships of relatively easily measured fruit traits with

impacts of natural enemies on seed survival would

greatly facilitate generalization to unstudied species and

be useful in identifying species most at risk from

anthropogenic global change. This is particularly true

in tropical forest, where the high species diversity makes

it logistically impossible to study every species.
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APPENDIX

Supplemental materials and methods for assessing seed viability following germination trials and measuring seedling growth
rates as well as supplemental results for community- and species-level analyses (Ecological Archives E092-185-A1).
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