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Abstract The Lewis acid mediated Nicholas reaction of potassium 
alkynyltrifluoroborates and propargyl acetate- hexacarbonyldicobalt 
complexes affords 1,4-diyne dicobalt hexacarbonyl complexes in good yields. 
The analogous Nicholas reactions of potassium alkenyltrifluoroborates give 
1,3-enyne dicobalt hexacarbonyl complexes in most cases, although the initial 
site of reaction can vary. Potassium vinyltrifluoroborate itself affords  
alkynylcyclopropane complexes. 

Key words alkyne complexes, boron, carbocation, coupling, Lewis acids, 
alkynes, enynes 

 

The generation and reaction of hexacarbonyldicobalt complexes 

of propargylic carbocations (1), or Nicholas reaction, has 

achieved a place of prominence in metal-organic chemistry due 

to high reaction site selectivity, good cation stability and 

reactivity, ease of handling of the alkynedicobalt complexes, and 

ready decomplexation of the organic unit. Many of the 

requirements for participation of the nucleophile are well-

understood,1 and a wide range of heteroatom-based 

nucleophiles, hydride sources, and carbon-based nucleophiles 

are compatible (Scheme 1). For carbon-carbon bond formation 

processes, electron-rich arenes, enol derivatives, and allylmetals 

are particularly reliable reaction participants. 
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Scheme 1 Nicholas reactions of heteroatom, hydride, and carbon nucleophiles. 

 

Nevertheless, some classes of carbon based nucleophiles remain 

problematic for the Nicholas reaction. Alkynyl nucleophiles are 

known, but solely as the trialkynylaluminums;2 there is little 

further work reported based on this transformation, perhaps due 

to reactivity issues with some of the alanes involved.3 Similarly, 

there are limited reports of intermolecular reactions with alkene 

nucleophiles that are not activated as either enol ethers or 

allylmetals. For simple alkene nucleophiles, modest yields of 

isomeric alkene mixtures are the norm, with pendant cation-

trapping nucleophiles substituted on the alkene ameliorating the 

situation only somewhat.4,5 Simple vinylsilanes have not been 

reported to be reliable nucleophiles in this process. 

In this context, our attention has been drawn to the chemistry of 

potassium organotrifluoroborates. Arguably most prominent as 

boronic acid equivalents for cross coupling procedures,6,7 the 

alkynyl- and alkenyltrifluoroborates recently have been shown 

to enter into reactions with carbocations or related electrophilic 

carbon centres.8 These trifluoroborates are water- stable and 

have good long- term storage capability, and they would appear 

to be useful in addressing the limitations with alkynyl- and 

alkenyl nucleophiles in Nicholas reaction chemistry.  This letter 

reports our preliminary work on these reactions. 
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Figure 1 Starting potassium alkynyltrifluoroborates (2), propargyl acetate 
hexacarbonyldicobalt complexes (3). 

Our initial experiments involved use of 

phenylalkynyltrifluoroborate 2a and 1-acetoxy-2-pentyne 

complex 3a (Figure 1). In the presence of BF3•OEt2 (2.5 equiv) in 

CH2Cl2 at 0 oC (1.5 equiv 3a), a reaction occurred that ceased 
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progressing after 1.5 h, giving 4aa (65% yield). Reversing the 

stoichiometry (1.5 equiv BF3•OEt2, 2.5 equiv 2a) improved the 

yield significantly (4aa, 86%), while use of 2.5 equiv each of 

BF3•OEt2 and 2a gave 4aa in 91% yield.9 This latter procedure 

was adopted as standard conditions for subsequent experiments. 

Using these standard conditions, the reactions of three potassium 

alkynyltrifluoroborates (2a, butyl- substituted 2b, and 

unsubstituted 2c) were investigated, with a number of cobalt 

hexacarbonyl complexes of propargyl acetates 3 (Equation 1, 

Table 1).10 The alkynyltrifluoroborates successfully reacted with 

ethyl substituted complex 3a (4aa, 91% yield; 4ba, 73% yield; 

4ca, 67% yield), butyl substituted complex 3b (4ab, 73%), 

trimethylsilyl substituted complex 3c (4ac, 65% yield; 4bc, 77% 

yield), vinyl substituted complex 3d (4bd, 65% yield), phenyl 

substituted complex 3e (4be, 60% yield) and unsubstituted 

complex 3f (4bf, 63% yield). Monosubstitution at the propargylic 

site of the alkynedicobalt complex was well tolerated, as methyl 

substituted complex 3g (4ag, 90% yield) and phenyl substituted 

3h (4ah, 97% yield) each gave high yields of condensation 

product with 2a. Conversely, tertiary acetate 3i gave only 

elimination product 5 (54% yield) with 2a to the exclusion of any 

C-C bond forming product. Finally, a remote ester function on the 

propargyl ether complex (3j) was tolerated, giving γ-carbonyl 

cation reaction product 4aj (65% yield) employing   Bu2BOTf in 

place of BF3•OEt2.11 
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R

3a-j 4  
Equation 1 Lewis acid mediated reaction of potassium alkynyltrifluoroborates 
(2) and propargyl acetate hexacarbonyldicobalt complexes (3). 

Table 1  Reactions of alkynyltrifluoroborates (2) and propargyl acetate 

hexacarbonyldicobalt complexes (3). 
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a Yields in parentheses based on recovered starting 3 (brsm). b Lewis acid Bu2BOTf. 
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Figure 2 Potassium alkenyltrifluoroborates (6). 

Four potassium alkenyltrifluoroborates were chosen for 

investigation with propargyl acetate complexes (3), including 

styryltrifluoroborate 6a, n-propenyltrifluoroborate 6b, 

isopropenyltrifluoroborate 6c, and vinyltrifluoroborate 6d 

(Figure 2). The styryl substituted trifluoroborates, reacted in a 

quite straightforward manner under the standard conditions, as 

6a with 3b afforded 7ab (68% yield), and 6a with 3c gave 7ac 

(71% yield), each as (E)- isomers to the limits of detection by 1H 

NMR spectroscopy (Equation 2, Table 2).12 n-

Propenyltrifluoroborate 6b reacted analogously with 3a to give 

(E)- 7ba (51% yield, 58% brsm) and with 3c to give (E)- 7bc 

(35% yield, 69% brsm), but the reactions suffered from 

incomplete conversion under the standard conditions. Increasing 

the amounts of BF3•OEt2 and 6c to 4.0 equiv raised the yield of 

(E)- 7bc to 42% (65% brsm). 
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Equation 2 Lewis acid mediated reaction of potassium alkenyltrifluoroborates 
(6) and propargyl acetate hexacarbonyldicobalt complexes (3). 

Table 2 Reactions of alkenyltrifluoroborates (6) and propargyl acetate 

hexacarbonyldicobalt complexes (3). 

3 6 7 Product Structure Yield (%)a 

3b 6a 7ab 
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68 

3c 6a 7ac 

Me3Si
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71 

3a 6b 7ba 

Et
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51 (58) 

3c 6b 7bc 

Me3Si
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35 (69) 

a Yields in parentheses based on recovered starting 3 (brsm). 

In contrast, 6c and 6d gave unexpected reaction patterns 

(Scheme 2). Isopropenylborate 6c afforded 1-propenyl adducts 

as the sole regioisomers, predominantly as (Z)- isomers, with 3c 

giving 7bc (76% yield, Z:E = 7.1:1) and 3g giving 7cg (78% yield, 

Z:E = 2.9:1).13 Vinylborate 6d, on the other hand, gave incomplete 
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conversion to cyclopropane products with only traces (ca. 7%) of 

alkene isomers evident by NMR spectroscopy; 3b afforded 8db 

(33% yield, 80% brsm), and 3c provided 8dc (57% yield, 89% 

brsm). An increase in the amounts of BF3•OEt2 and 6d (to 4.0 

equiv each) with 3b gave somewhat improved yields of 8db, but 

still incomplete conversion (49% yield, 78% brsm).  
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Scheme 2 Reactions of isopropenyltrifluoroborate (6c) and vinyltrifluoroborate 
(6d) with propargyl acetate hexacarbonyldicobalt complexes (3). 

 

Three Nicholas reaction products were selected for 

decomplexation, for illustration of the viability of the process for 

these substrates (Scheme 3). Employing ceric ammonium nitrate 

(CAN) in acetone, under carefully controlled conditions, skipped 

diyne complexes 4bd and 4bf, and enyne complex 7ab each 

afforded their metal-free counterparts in good to excellent yields 

(9bd, 86% yield; 9bf, 86% yield; 10ab, 96% yield).14 
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Scheme 3 CAN mediated decomplexation reactions. 

 

The Nicholas reactions with alkynyltrifluoroborates are quite 

successful in the anticipated manner. They give reasonable to 

excellent chemical yields in all cases except the elimination- 

prone tertiary case (3i), with the higher yielding cases generally 

coincident with the more stabilized propargyldicobalt cationic 

species. The modest amounts of starting propargyl acetate 

recovered in a few cases likely stems from a competitive 

defluorination reaction by BF3•OEt2 of the alkynyltrifluoroborate 

salt.15 
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Scheme 4 Rationale for formation of n-propenyl adducts 7 from 
isopropenyltrifluoroborate (6c) and cyclopropanes 8 from vinyltrifluoroborate 
(6d). 

 

For the alkenyltrifluoroborates, it is our belief that the reaction is 

being driven by attack of the propargyldicobalt cation by the 

most nucleophilic carbon of the alkene function, with ultimate 

alkene re-formation by way of BF3 loss from a β-boryl cation. This 

results in straightforward substitution at boron- substituted site 

with styryltrifluoroborate 6a, and less efficiently for n-

propenyltrifluoroborate 6b. For isopropenylborate 6c, attack at 

the terminal alkene carbon results in formation of carbocation 

11, followed by hydride migration to give 12, which in turn 

undergoes BF3 loss to give 7bc/7cg (Scheme 4).16 There are rare 

examples of reactions involving isopropenyltrifluoroborate that 

afford a 1-propenyl adduct;17 however, they likely are not 

proceeding by way of a carbocation.18 Finally, the reaction of 

vinyltrifluoroborate 6d is consistent with initial formation 

carbocation 11, a 1,3-hydride shift to give propargyl cation 13, 

and nucleophilic attack on the cation to give 8db/8dc. It is likely 

that 6d is a less nucleophilic trifluoroborate and that BF3 induced 

defluorination competes more substantially in these cases. The 

reasons for the change in pattern of 6d from 6c are not clear at 

this time. 

Future work will involve investigating other protocols19 for 

generation of the propargyldicobalt cation for the purpose of 

obtaining complete conversion in the more difficult cases, 

determining the borderline between divergent reaction 

processes with the alkenyltrifluoroborates, and exploration of 

aryl- and alkytrifluoroborates as potential Nicholas reaction 

partner. These are in progress and will be reported in due course. 
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0.31 (s, 9H); resonances from the minor isomer were observed at 

3.56 (d, J = 5.9 Hz, 2H), 0.30 (s, 9H);
 
13C NMR (major isomer only): 

200.4, 128.0, 125.9, 111.2, 78.7, 32.3, 12.9, 0.6;  IR vmax : 3025, 2959, 

2984, 2085, 2041, 2000, 1581; HRMS m/e for C15H16Co2O6Si calcd 

(M+-CO+H) 410.9509, found 410.9501.  (8db): δ 2.78 (t, J = 8.0 Hz, 

2H), 2.15 (tt, J = 7.4, 4.2 Hz, 1H), 1.43 – 1.67 (m , 4H), 1.11 (ddd, J = 

7.4, 6.6, 4.3 Hz, 2H), 0.97 (t, J = 7.2 Hz, 3H), 0.72 – 0.77 (ddd, J = 6.6, 

4.3, 4.2 Hz, 2H); 13C: 200.1, 103.8, 98.4, 33.9, 33.6, 22.7, 15.2, 13.8, 

12.5; IR vmax : 2962, 2876, 2086, 2040, 2005, 1450 cm-1;  HRMS m/e 

for C16H14Co2O6 calcd (M+-CO+H) 380.9583 found 380.9589. 

(14) Experimental Procedure. Complex 4bd (47.6 mg, 0.110 mmol) 

was dissolved in acetone (8 mL), and the solution cooled to -78°C. 

Ceric ammonium nitrate (0.302 g, 0.551 mmol, 5 equiv) was added 

and the solution allowed to warm to -30 °C (2 h), with monitoring 

by TLC. A saturated sodium chloride solution was added and the 

mixture subjected to a conventional extractive workup (Et2O). The 

product was filtered through a silica plug using Et2O and 

concentrated under reduced pressure to give 9bd (13.9 mg, 86%). 

(15) (a) Bir, G.; Schacht, W.; Kaufmann, D. J. Organomet. Chem. 1988, 

340, 267. (b) Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; 

Schrimpf, M. R. J. Org. Chem. 1995, 60, 3020. (c) For a comparison 

of BF3•OEt2 with other common Lewis acids in aldehyde-

allyltrifluoroborate reactions, see reference 8g. 

(16) Our operating hypothesis for the predominant (Z)- isomer 

formation comes from the proposed larger size of the BF3‒unit 

relative to a methyl group. Initial reaction consequently gives a 

cation 11 with the methyl nearly eclipsed to the homopropargyl-

Co2(CO)6 unit (Scheme 4); subsequent hydride migration then 

gives a cation 12 where rotation of the C-B bond to a co-linear 

orientation relative to the empty p- orbital of the cation is lower 

energy than a rotation of the methyl group anti- to the 

homopropargyl- Co2(CO)6 group. 

(17) (a) Corey, E. J.; Lallic, G. Tetrahedron Lett. 2008, 49, 4894. (b) 

Zhang, Y.; Fu, Z.; Wang, J.; Li, J.; Chen, S.; Wei, Y.; Yu, L.; Tao, X. PCT 

Int. Appl. WO 2016045587, Sep 23, 2015; Chem. Abstr. 2016, 

511177. 

(18) For analogous reactivity of vinylsilanes with more electrophilic 

carbocations, see: Laub, H. A.; Mayr, H. Chem. —Eur. J. 2014, 20, 

1103. 

(19) El-Amouri, H.; Gruselle, M.; Jaouen, G.; Daran, J. C.; Vaissermann, J. 

Inorg. Chem. 1990, 29, 3238. 
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