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I NTRCDUC'I'I CN 

Considerable stud.;;r h:J.s been made c nncerning the 

properties of the it e rat i ons of a homeo~orphisu on a metric 

space . Much of this rn;J.teria1 i~] ~ca tterecl throug-hout the 

li terat u re and understood sole l y by a specialist. The nain 

object of this parer ~ ,-, 
.Lu to put into readable for~ proofs 

pert ;.ining to thi:::- to r ic in topolog y . l "roperties of the 

decomposition spac,:::: of r:o i nt· .orbits inJuced by tLe :i ttir>ations 

o f a hon1.oorr:orpb i f:,11 vd.1 1 comrose a r:w.jor pa.rt of ·ciw utudy. 

Soue thE:orems wi.11 liG e::;tablit:,hed throu r;h s eri es of l emna s 

requ i red to fill in CTuch of th 0 aet3il lackin ~ in proofs 

found in [8] • 

definitions and tneor6ms ussJ ih dev9 l 0ping so~2 of the 

p r oofs . 

out t he pa per. X wi ll denote a rr.etric ;-}race 1.:ith 1netr}~c f 1 S 

a topolo g ic a l space , I the set o f ;:.oEitive 1ntegr:,rs, A, B }C ·i. o. 
sets of poi n ts o r el ements. Sma ll l e tt e r s , s u ch as a , b , c, 

x, y ,z, ••• will des i gna t e e l emen t s or po int s of se t s. U a nd 

V will de not e 01,e n sets , S_,.,(x) a srhe:cical rn:!i[,;hborhood. of 
-'-

x with r adius r . A ' denotet ; the s2t cf liLit i:c,intf3 c_f 

A, I t he se t of closure points of A. LJ, n., C 1.Jill denote 

union, int er~c.:ec t i on, anrJ sot i nclusicn ror:p ctivc1'/, 1i _c 
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symbc;l E. will mea n 11 i s an el emsn t ofn. 0 d en ot e s the empty 

set. S - A is th e set of po i nts in S which are not in A. 



) 

FI NI TE FROPERTY FOR COMPACT ORBITS 

r he main result to be establ i shed in t h i s section i s 

th at i n orde r for a homeomorph i sm def in ed on a compact metr i c 

space to b e po int Nise per iodic, it is n e ce ssa r y and su f

fic~ eit that the po int-o r bit s be c ompa ct. The su f ficiency 

part )f th e p roof require s severa l lemmas. Before pro 

c eediig t o obtain these results some essential def init ions 

and t1enry will be deve lo ped. 

1 function f i s a homeom or phism of a set onto it se lf 

pro~ i Qed that f is a 1-1 continu ou s mapp in g and the inverse 

fun ct:_on f-l is continuous. See [4J )p . 24. Le t f be a 

hom Eonorph i sm of a metric space X onto itself. The iterations 

of th e mapping f wi ll be defined to be the integral powers 

off , denoted by 

f 0 (x) 

f(x) 

f [fn(x)] 

f-l [f-n(x)] 

wher e xis an e le ment of X. 

expo ne nt s a re satisf ied , ie. 

= 

= 

= 

-

I t 

fm [ f 1\ x)] 
(f m.)n (x) 

where m and n are integers . 

X 

f 1 ( x) 

fn +l( x ) 

f -n-l(x) 

is clear 

·- fn +m(x) 

= fmn(x ) 

for n>o 

for n )O 

th a t the l aws of 

The period off a t a point x in Xis the le ast posi tive 

int ~er n such th a t fn (x) = x . A homeomorph ism f i s said 

to ~ periodic on X if there exists an integer n such th at 
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symbo l E. will mean 11is an el emsn t of n. 0 denot es the empty 

se t. S - A is the set of points in S which a r e not in A. 
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fn(x) = x for each x E Xo The least such positive integer 

n will denote the period off on Xo Now, f is said to be 

poin t wi se periodic on X provided f is periodic at each 

X in X. 

From the above definitions it is easy to see that if 

f is pe riodic on X, f is pointvise per iodic on Xo H01,,rever, 

the converse is not true. Consider the space X consisting 

of all ordered pairs of positive int ege rs (i,j) such th at 

j ~ i. Let f :-Je the continuous mapp in g defined as follows: 

1_,, ')' ('· 1~ i·f J. Li ' .· \ l 5 .J -· ' j_ ' J + .I 

f(i~j) - (i~ 1) if j = i 

It is easy to see t~at f is pointwise periodic on Xo However, 

f is not periodic on X since for each positive integer n, 

there exists a point ,,nth period n + 1, namely the point with 

coordinates (n+l, 1) . 

Let f be a homeomorphism defined on a met ric spa ce Xo 

Let x be a point of X. The orbit of the point x wi ll be 

defined to be the se t of ally in X such that fn(x) = y 

for some inte ger n. A wi ll denote the orbit of x with 
X 

re spec t to the homeomorphism f. If f is pointwise 

periodic at f, it is easy to sGe that A is finite s inc e 
X 

Ax:= fx, f(x), •••1in(x )] where fn+lc ~ ) = X for some p ositive 

integer n. 

Theor em 1.1. Let x,y E X such that x I y. Then a 

necessary and suffic i ent conditi on that .Ax n .Ay / 0 is that 

Ax= Ay. 

Proof. The sufficiency par t of the proof is obvi~us. 
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d efini t io n of a ;rint-orbi t tnere eYist i Lt'sers r , s suet 

re \ s, \ t 1w t f .x 1 = .f ( y J ~- z o A 1 so the r 2 c, xi ,~ t s c, r ·L, t e g e i.~ t 

such that ft (x) = x 1 o Consider the cass ~nere t > ro 

t-r = mo Then fr,: [r 8 (y)] = fm [r1'' ( x ~ = f rtm(x) 

If r- .., SI' ~ 
L ~.Y) ,u:.1 

'The ease ,,;here t < .r· is si1d la.r to the first s:-:-, '" ·" o ':.i' 1 •. r~?-· 

fore Ax e Ay. Sinil o.rl y, A C A " Ren ee A - A which \•Jr1s y X X y 

to be shovm o 

Con~oi d_er th e metric spa c e X and f a homeomo r phism of 

i s t he s? t of all poi n~ -urbi t ~ A su~h thrt z i2 'L el8mect 
X 

of :Xo 

0(Jifl8 and Ay a re either- cU .. ~,jo::.nt or eqw-::::.1 for x .,.nd. y 1n _;, o 

prop erties of the dec01.~osi ti on of~ irr~o ~0int-orbits ~ill 

be prove d i n the next .L.. se c L,ion o 

Attention is now tu r ned tcwar~ proving that R corpact 

or bi t is f i niteo A rietr-ic c:_::,uce X is cc-•r::p·:;.cc provided thr-t c.n3·· 

infinite subset A oi Z has~ liEit point lil Xo See~ ] , p o38, 

Note th &t countal:l.e coDpactness ar..d compactness are equivalent 

in a r'.i.etric space, F> c3 is shown in [4111 p o 1 09 o 'I1he Glo sure 

of a set A, denoted by A~ is defined tn be tl.':!8 set A LJA 0
o 

Lemma 1. 2 . Let X b e a co mp a ct met ri c sre. ce o Then X 

i s not the union of a countable collectio n of clo st:cl S 1l 1J f) et t: 

of x~ no one of which conte. ins e.n open nOllr- ernpty subse t of Xo 

an d 

Proofo The proof is by c on tradict iono ,S1:ppose X =,Ure. i e . i 

Thus 

C , 
l 

e1--::.ch point of C~ 
j_ 

contains no non-2n0ty open se t of 

is a limit point of X - C . 
l 

for 
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each i. C. C X-C .• 
l l 

Since each ne ighborhood 

0£ each point of Ci c ont a i n s a point of X - Ci' X - Ci I¢. 
Let p

1 
be a poin t of the open set X - c1 • Then for some r, 

t hEre exists a spher ical neighborhood s2r
1 
(r 1 ) of p 1 su ch 

t hct s
2

r
1 

( p 1 ) n c
1 

= 0 o Th en Srl ( p 1 ) (\ c1 = 0, sin c e 

S (p
1

) C s
2 

(p
1

). Let n
1 

b e the f irst int eger such that 
r 1 .r 1 

C n S ( n
1

) I 0. There exis t s such an int eger n 1 since 
n

1 
r

1 
-

x = .U1c .. 
l E l 

Now the r e exists a po in t p 2 in S ( p 1 ) - C , for 
rl nl 

ot ter wi se C wou ld co nta in the open se t S ( p 1 ) which would 
nl rl 

vicl ate the assumption that en.ch C . c onta in s no non--empty 
l 

open subset . Let S (p 2 ) be su ch th at 
r2 

S (p
2

) n {'x - S (p 1 )] U C 1 = 0. Again , the re exis t s 
r~ l:: r 1 n 1 

such a nei gh bo rhood o f p 2 since X - S (p 1 ) and C are 
rl nl 

e ach closed an d p 2 is a po int of neit h er se t. Let n 2 be 

t he first int eg er such that C n s (p 2 ) I 0. 
n 2 r2 

Th is pro c ess may be c ontinued and t hus , in general, 

t her e exist a p. and S (p . ) s uch th a t 
J r. J 

S (p.) n ) ~ - S J (p. 1 )1 LJ C 1 = 0 
rj J l rj-1 J- J nj-1 

prcvided p. 
1 

, S ( p. 1 ), C have each bee n defined. 
J- r~ 1 J- n . 1 u- J-

Let n. 
1 

be the first in teger s uc h that C n S (p . ) / 0. 
J + ____ nj+l rj J 

Now, for each i, sr . (pi )::) sr. ( pi )::) Sr · (p 1: 1 ) . So 
---,--4: l ---,-- l i+l 

th ~ sets S ( p. ) , S ( p 2 ) , S ( p
3

) , .• •• form a decreasing 
r 1 i r 2 r 3 ,_ 

se c_uenc e of c ompact sets and the set .n S. (p 1 ) '/, 0, See 
"° --,--...,. 1•1 ri 

[8- , p. 4 . Let p E.n S . (p. ) . Since X = ½1 C. , there exists 
- 1- 1 l 1 l l 

a n integer k s uch tha t p E: Ck. Now, ni 2. i for each integer i. 

By the s e l ect io n of each C , S ( pk 1 ) n Ck C S (p ) n . r k 1 + r 1 r l + ___ { 
n ck = 0 which contradicts the f a ct that p E. s ( p. ) :(or r. 1 

l 
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eac1 i. Hence, the theorem is es t ablished . 

A subset M of a space Sis said to be perfec t if Mis 

clo ;ed and e a ch point of M is a limit po int of M ~ ie. M = MO o 

Le mma 1.3. No co mpa ct metric space is both c ountab le 

and perfect . 

Proof. This l erur:a i s an i 1:'.IIl.edi 2 te con seq_u o.r:ce of 

Lem1a 1.2, for sup p o se Xis a c ount ab l e pe rf ec t metric 

spa<e o whe re x . i s a li mit po int of Xo 
l 

Eac l ~ xi} i s a cl osed subset of X. Each {_::c} 
J_ 

is not 0 -r r,- .. , 
I.' G.L.: 

since each nei ghborhood of xi c 0n t Rins po int s fro~ X - {x
1
1 

Thu : Xis the un i on of a c oun t ab l e co ll ect i on of closed sub

set: of X, no on e of which cont .?dns an O];'(m subr-,c t ·:-if X. 

Thi , contr a dicts the p reviou s lcn ma. 112nc..:., nv co::-.1r,oc:t 

met1ic spa c e is both count ab l e an d per f ec t. 

x. 
Le mma 1.4. Let f be a horneomor p hisn ~ on a metric space 

If A is compact, A is finit e o 
X X 

Proofo Th e proof wil l be by c ontr ad ictio no Let A 
X 

be c compa ct o r bit of X under the it e r a tions of f o Suppose 

A js not fin ite. Since A is compa c t. it cont a in s a li ~it X X ' 

poirt z. Since f i s a h ome omor ph i sm on X, f maps li mit 

poirts into li mit po ints. See [4 ] , p. 101. Thus fn(z) is 

a linit point of Ax for each inte ge r n. Since z is a point 

of Ax, Az = Ax by theorem l.lo Then Ax is closed and thus, 

perfect. Since A is a compact subspace of X, by le mma l o3 
X 

Ax c~nnot b e both countable and perfec t. Hence, a contra

diction and A is finite. 
X 

The followin g re su lt is thu s ob t &in e d fr om the p rece d i ng 
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Theorem lo5o A necessa ry and suffic i en t condition for 

a hoLeomorphism f defined on a metr i c s~~ce X t o be pointwise 

:pericdic is th at each point···Orbi t Ax 'be comp ::,ct o 



ORBIT DECOI"II)OSIT I OIJ Al<D CONTINUITY 

PROPERTIES 

s 

In this section it will be p roved that given a metric 

space X and the foin t - orbit deconposit ion of X induced by 

the iterati ons o f a horeomor~hism f on X, a necess a ry and 

sufficient con d ition for t he decomposition to be continuous 

is th a t f have equicontinuous powerso Continuity for a 

collection of se ts wi ll be defined in terms of upper and 

lower semi -c ontinuity. A few consequences of the definition 

of lo wer semi-continuity will be de veloped as preparation 

for p rovin g t he theoremo 

Let A be a subset of a metric space X. S (A ,d) will 

be defined t o be the set of a ll x EX such th at f( x,a) <. d 

for some point a in Ao A collection ~ of point-orbits A 
X 

is said to be lower semi-continuous if given a point-orbit 

Ax and E >o t here exis t s 8 >o such that Ax C S (Ay,E) 

wheneve r A n S(A , 5) -J 0. y X 
A collection ~ of po int -orbits 

Ax is s a id to be upper sem i-c ontinuous if given a point -

orbit A and E > o there ex i s t s 5 > o such th a t A C: S(A . e ) 
X y x· 

whenever A n S(A , S) -/ 0. y X 

Theor em 2.1. If f is a poin t wise periodic homeo-

morphism on a metric spa ce X, the orbit decomposition is 

lower semi-continuous. 

Proof. Let x be any arbitrary point of X and l et 

A deno te the orbit of x under the iterations of fo Since 
X 

f is po int wi se periodic, let n denote the period off at x. 



10 

Now, i is continuous for each integer i since fi is the 

c omp~s Lt ion function de ter mined by i iter a tions off and f 

is c om.:;inuous . See [ 4 ] , p . 72. 

L~t 

i nt eg;e :' 

s? 
l 

anl 

8~ 
l 

ana. 

f? 
l 

a.nd. 

i, 

if 

if 

if 

E ) o be given . By the c ontinuity of fi for each 

there exists 

f (x, y ) < o~, ~~ i(x),fi(y ~.(.E for o ( i ~ n, 

~ &(x),~ < 6~ , ,!°k i(x),fi- l (y ]<. E for l ~ i ~ n+l~ 

/° ~2
( x),y ]l ~f, /& i(x),fi- 2 (y) j( E for 2 <i , n+2~ 

o oo•"• .. ••••••uea,e•••••• o 

dtl and if t l!" -lcx) , y] < bf-1, f~ i(x),fi- n +l(y) ]< € 

for n-1 < i fa 2n-l. 

L et S = min { 5 i ~ E.} where o ~ j ~ n-1, o < i ( 2n-- l. Suppose 

A n S(J. , 8 ) I 0. y X 

for so rre w E Ax. 

Let z E A () S(A , S ). y X 

Let u be a point of A. 
X 

Then ;° ( w, z) < ~ 

Now, u has period 

n since each point of an orbit has the same period. There 

ex ist s a positive inte ger m ~ n such that fm(u) = w. Then 

f> [fm(1:.) ,z] < £. By the ·way & was chosen 

/'° ~ n-ll [t'( u)] ' fn-m( z ~ = ,f'~ n( u), fn -m( z ~ = f [u, fn- m( z )] < E 

Hence u E S( A , E ) • Thus A C S(A , E ) which was to ·be y X y 

p r ov ed. 

Consider the homeomorphism f defined on a metric space 

X. I f f is pointwise periodic, l et p(x) den o te the pe riod 

o f x where x E X. Note th a t p(x) is a lso a function defined 

on X. Thus, p (x) will be cal l ed the period function 

associ ated with f . 



Corollary 2.2. Let f be a pointwise periodic 

homeomorh p ism on a r.1etric space X. Then for ea.ch x E X 

there exists a o > o such that if (° (x,y) < 5 , then 

p(y) ~ p(x). 

Proof. The proof will be by contradiction. Let 

11 

x E X such th at for each 'S >o there exists a y E X such that 

l° (x,y) <6 and p(y) < p(x). Let x have period n. Let 

3 E: = min {;,.o(fi(x) ~f j (x)) j for o < i, j ¾ n, i J j. Since 

fi is continuous for each i, t he re exists ~ - < E such that 
l 

if f (x, y ) <. 6i then for f ~ ·i(x) ~ fi(y) ] <(. E. e 

Let S' = min { b i } o ( i ~ n. 

Now there exists y 1 such that /° (x,y 1 ) < &' and 

p(y
1

) = k where k < n. Usin g the trian g le ine quality for 

a metr ic space it is seen that 

~ f l x,rk(yl) ] 

= f (x~yl) 

< E 

+ ;° r(yl), rk(x)] 
+ /' ~k(yl) ~ fk(x) J 

+ E =2 E-, 

a contradiction. Thus, corollary is proved . 

A real-valued function f defined on a metric space 

X is l ower semi-continuous at a point a G X provided that 

for each E-> o there exists a S) o such that f(y) ~ f(a) - E 

wheneve r f( Y, a) < 6 • 

Cor o ll ary 2.3. Let f be a pointwise periodic 

homeomorphism defined on a metric space X. The period 

function p(x) associ a ted with f is lower semi-continuous. 

Proof. This result is an immediate cc1nse quence of 

corollary 2. 2. Let x E. X and E ) o be given . Th en there 
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exists a 5<E such t hat p(y ) ~ p ( x) whe never !° (x , y ) < G. 

Hence the period function is lo wer sem i -continuous. 

A homeomo r ph is m f on a metric space Xi s said to have 

e qu i c ontinuous powers provided that for e ac h x in X and ea c h 

E > o there exists c. b) O such that if f ( x , y ) < ei , th en for 

each int eger n, j) [ fn(x), fn(y) ] ~ e . 

The po int-orbit decomposition of a metric spa c e X, 

generated by a homeomo r p hism f is sa id to be continuous if 

it i s both lower semi-con tinuou s and upper semi-continuous. 

Theorem . If f is a pointwise per i odic homeor1.0r 1,,hisrn 

on a metric space X, in order that the orbit decompositio n 

be continu ous it is necessary e.nd sufficient that f have 

equ ico ntinuous powers . 

Proof. To prove the sufficiency it wi ll suffice to 

show that t lrn orbit decompositio n is upper semi-continuous 

since Theo r em 2 .1 established lower sem i-contin uity for 

the orbit decomposition. Let E > o be g ive n . Since f has 

equicontinuous powers at p e X, there exists a 5 > o such 

that if /' ( p,x) < 6 ~ then tfr n(x), fn(p) ]< E for each integer n. 

Thus, A C S(A , E ) and the orbit decomposition is upper 
X p 

semi-continuous. Hence, the orbit de co mpo s ition i s continuous. 

In ord er to prove necessity, l et x E X, E > o be given 

and l et n denot e the period off 

L et 6° = ~!j f;p[fi (x), fj (xil} 
at x. 

and bi, 1 
= 2 min { E; t

1 J 
For each i ~ -n ~ i ~ n, f

1 
is continuous at x and there is 

a 5i s uch that /' ~ i(x),f.i(y ~ < eca v1henever f (x ,y) <(. 5i. Let 

~ 1 1
' = min l O 

1 1
, ~ i J f or -n ~ i ~ n . B;y-the upper semi·-
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continuity t here is a S<ti such thr ,_t i f Ay n S (.Ax' ~ ) I 0 ., 

then A C (A b 10 0
)' o y x' 

Now let /> (x'ly) < 6 and exar-i.ine f [r1 (x) ~fi(y) J c 

:?irst since b < si'l' .,.o[fn(x) , fn(y) J <. 'o" < E: 'land si nce 

$ <'.. b __ n ) /> [f-n(x), f-n(y )] ~ 8 ° 1 <:: E. o Th en since 

fn(y) E: S ( .A , b 11 1
) and f-n(y) E l:3(.A. , ~ 11

' ) and fr om th2 
X X 
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way b " ' was chosen ,t~ ·i(x),fn(y ~ >~ 0
'

0 for o < i < n and 

/° &i ( x ) , f-n(y )] > & 11 0 for -n < i < o o Thus ;° ~ n(:c), fn(;y J < b ' 00 

and f ~,-n(x), f --:r:(y )] ~ ~ 1 1 1 
• Simil arly then, since 

; 
11 0 < b 91 

, it follow r, th :lt f [ .rkn(x), fkn ( y ) ] ~ b vi O for any 

integer k. .F'urthe:crnore, since ~ ' ' 1 <. S. for o ~ j < n 'l the 1 
J 

;° [ f kn + j ( x ), f kn+j ( y )] < b ii< E. so th a t f has equicontinuous 

powers at Xo 
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COl½JJONENT-OHBITS AND CONVERGENCE PROPERTIES 

In developing the properties of point and component

orbits iL a metric space , an interesting result is that a 

convergent sequence of point or component-orbits converges 

to a component-orbit. This section concentrates on 

establishin g this result. A few consequences of t his 

property wi ll co mplete the section . The following defi

nitions are essential for the theory whic h follows . 

A1 , A2 , .. •. is a dec reasin g seq uence of sets p ro v i ded 

that A 1 c A for each positive integer n. A ch ain of sets n+ n 

is a finite seq u ence o~ se ts A1 , A2 , •o•, Ak such that 

A . ()A . 1 I= 0 for i = 1,2, •. . , k-1. An E -chain in a metric 
l l+ 

s pace is a finite sequence of po ints al, a2, oeoo, ak, 

such that ,,o(a., a. 1 )< E for i = 1,2, o o., k-1. A metric 
/ l l+ 

space X is E-connected if for each pa ir of points a, b E X, 

t here exists an E- chain a 1 , a 2 , •••. , akin X suc h that 

a = a 1 and b = ak. Two points a a nd bare connected in 

X provided that there exists a connected set Ac X such 

that a E. A, be. Ao Let L = A U B be a subse t of a space X. 

A UB is said t o be a separation of L if X n B = B n A = 0. 

Lemma 3 . 1. If a compact metr ic space Xis E-connected 

for each E) o, then X is connected~ 

Proof. The proof is by contradiction. Suppose Xis 

not connected. 11.'hen X = A U B is a separation of Xo Since 

A and Bar e e ach clo sed and hence, compact in X, f (A , B) = E, 

E. > o for some E . This is sh ewn in [ 4 ] , p . 90. Clearly 



no o/2- cha in ca n join a point of A to a point of Bo Thu s 

Xis not €/2 -connected which contradicts the hypothesis o 

Remark . If a subset of a metri c space is connected~ 

it i s E-connect ed for each E • 
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Proof of remark. Suppose there ex ists ~> o such that 

A is not E.-c onnected. Then there exist points a,b, E A 

such that th ere is no E -chain between a and b. Let B 

be the set of all x E A such that there exists an E:-chain 

between a and x. Let C be the se t A - B. Each pointy in 

C is grea t er then E distan c e from a poin t in B. It is easily 

seen that A = BU C is a separation of A. This contradicts 

the fact A is connected. Hence, the remark is true. 

Lemma 3.2. Let A 1 , A2 , .•• be a decreasing sequence 

of compact , € -connected sets. 

Proof. Let a , b E. A whe r e A 

enough so that A C S(A, €./2). n 

Then 

= 0 
l 

See 

A =()A . is 2 E -connected. 
l l 

A . • Choose n large 
l 

[ 6 ] ~ p. 47. Let 

= b be an E-chai n in An . Le t 

bi € S £/2 ( ai) for 1 ~ i ~ k-1. Then, using the tri an g l e 

inequality for a metr ic space, it is easily seen that 

a, b 1 b 2 , .•• , bk-l' bis a 2 £ - c ha in in A. 
' 
It should be r erra rked here that if a se t is E-connec t ed, 

i t is €' -connected for each £ 1 > E.. 

Lem.ma 3o3o If for each E.> O, the points a and b of 

a compact set B can be joined by an ~ -chain in B, then they 

are connected in Bo 

Proof. Let a and b be poi nt s of a compact set B such 



that they can be joi n ed by an E.-cha in for each E >o . 

Then l et A be the set of points of B which can be joined n 

to a by a 1/n-chain in B for each pos itive inte ger n. 
bo 

By hypothesis, b E A for each no n Hen ce, b E n A o 
n=l n 

The set B - A is open for each n since if x € B - A , 
n n 

S l/n (x) C B -- Ano Otherwise, x wou ld be an e le men t of 

An b y th e way An is definedo Thu s, eac h An is closed and 

co mpa ct. The se::_iuence A is a decreasing sequence, i e . n 

A 1 c A f or ea ch n. Th i s f ol lo ws f r om the r emark whi ch n+ n 

p r e c edes t h i s le mrra . 

Now, A is 1/n-connect ed for each n b y t he way A n n 

is defined . A is 1/n -conn e cted if n > n
0 

where n
0 

i s n o 
~ 

fixed. By l emma 3 . 2, n/] lAn = 

f or eRch n and therefore is 
() 

n A = A is 2/n
0

-connected n
0 

n 

E -connected f or each E s ince 

for each E. > o t::1sre exi sts an n ' such th at 2/n ' <: c . 
0 0 

Thus, A i s conn ected b;y lemma 3.10 Now a,b, E A. Hence, 

a anc-:. b are c onnected in B. 

16 

Lemma 3 . 4 . Let a and b be points of a compact set L 

which a re not connected in L. Then t he re exists a separation 

L = A U B of L such th a t a E. A, b E. B. 

Proof . By th e cont r apositive of the preceding l emma 

there ex i sts an E: > o such t hat a and b cannot be joined in 

L by an E- ch a in. Let A be the set of po i nt s of L which 

can be joined t o a by an E -ch a in and l et B = L - A. Now 

/' (A,B) ~ E.> o by the way A i s defined . Thus, it easi ly 

follow s t hat I n B = B n A -- 0. Henc e, A U B is a sepa:rat::.on 

of L su ch that a E A~ b E B. 



A suiset Kofa space Sis said to be a c o~ponen t of 

S providec. that K is a maximal connected subset of S, ieo 

17 

K is contc.in ed in no connected subset of S other than itself o 

00 

A subset 0 of Sis a compon en t-orbit if G = LJ fn(K) vhere 
-00 

K is a co :::tpon ent of G and f i.s a homeomorphism on S. Now, 

if f( S) = S, then a subset Y of Sis said to be inv a ria nt 

provided i(Y) = Y. If f is pointwise periodic on S, a 

closed in~ariant subset Gin Sis said to be a component

orbit pr o\ ided given any component Kin G, there exists a 
n . 

positive integer n such that fn(K) =Kand U f 1 (K) = G. 
i=l 

LemmE 3.5 . Let L be a c ompac t metric space and Ka 

component of L such that p E. L - K. Th en ther e ex ists a 

separatior . L = A U 13 such th at K C A~ p E. B. 

Froo f. Let a be a poin t of K. Since K is a component 

and p e. L - K, then a and p are not connected. By lemma 3.4 

there e:xist s a separation L = A U B of L such tl1.dt a f A 

and p E. B. Since K is connected and a E A, K C A. 

Lemma 3.6. Let L be a co mpac t metric space and K . a 
l 

component Jf L, p E. L - K. for i = 1, 2, ... , n. Then there 
l 

n 
exists a separation L = A UB such that u K. CA , p e B. 

. 1 l l= 

Further mor2, there exist disjoint open sets V and U such 

that A C. V, B C. U. 

Proof . By l emma 3.5, there exists a separation 

L = A . U B . of L such that K . CA . and p 6 B
1
. for i = 1,2

1 
•.• ,n. 

l l l l 
n n n n n 

Then LJ K. C U A . and p E n B . • Let A = U A . and B = n B . • 
·11 · 1l ·11 ·11 ·1 1 l= l= l= l== l= 

(Note that from [ 4 ] 5 })age . 70, given sets C and D, CUD =· 

C U D and C n D c C n D.) 



Hence , the foll owi ng is true: 

n n 
cu A.)nc n B.) -

i=l l j=l J 

n n 
( LJ A . ) n ( n B.) 

i=l l j =l J 

n 
= u 

i=l ~
A.n ( () B.)] 

l . 1 J J= 

= U (')( A. () B . ) 
i=l j=l l J 

= 0 since A. n B . = 0 for i = j 0 

l J 

~ n n n _ 
C O A . ) n C n B _. ) c C u A . ) n C n B . ) 

. - l . 1 J . - l 1°.=l .J l=l l= i ~l ~ 

n ~-n c n B,)J = u 
l=l l . 1 J J= 

n 
() (A. nB .) = u 

i=l J'°'l l J 

= 0 since A . () B . = 0 for i = ,j. 
l J 

Thersfo r e A and Bare separated sets . 

It is shown in [ 41 p. 11 0, that if A and B a r e any 
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two i isjoint sepa r ated sets of a metric space X, then t he re 

e xie l:; disjoint open sets U and V such that A C U, B C V. 

Thus, the second par t of the le mma i s estab li shed. 

Lemma 3 . 7. If U and V a re t wo disjoint open sub f,ets 

of a metric space X, then U and V are separated. 

Proof. Since unv = 0, UC (X - V) . 'I1hen b y [4] 1 p.70 ~ 

U C / X - V) = (X - V). Henc e~ U nv C (X - V) n V = y1o Th e re

fore TI' n V = 0 0 Simil a rly~ u n V = 0. Thus' u and V are 

sepa'.'ated. 
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Let S be a t opo lo g ical space and c ons ider G to be 

any finit e collection of non-e mpt y s ubse t s of S. The set 

of all points x of S such th a t each neighborhood of x con

t a i ns a point from each of infinitely many sets of G is 

c a l led the limi t superior of G and is denoted by lim sup G. 

The set of all poi nt s x in S such th a t each nei ghbo rhood 

of~ contains a poin t from all but a finit e numb er of the 

setE of G is called the limit inferior of G and i s denoted 

by Jim inf G. If lim inf G = lim sup G, the collection G 

is mid to conv erge to the li mit s et of G, denoted by 

l im 3-, whe re lim G = li m inf G = li m sup G. 

Let X be a co mpa ct metr ic space a nd fa po int wise 

perbdic homeomor ph ism defined on X. Let G1 , G2 , •.. be 

a s e:iuence of component -or b it s conve rg ing to a li mit set 

L i r X. Suppose K is a co mponent -orbit in L such that 

KI L. Then the r e exis t s a point p in L - K. By lemma 

3. 7 there ex ist s a sepa r a tion L = A U B of L s uc h that 

K C A., p E. B. Also , th e re exist sepa r a t e d open se t s V and U 

sucb that AC V, BCU. Based on these preli min a r y remarks, 

the following le mma wil l be establish e d. 

Lemma 3 .8. If x 1 , x 2 , ••. is a sequence of p oints 

c on verging to a point x in K wh e re K CV , and x. E. G. for 
l l 

e a c b p o s i tive i nteger i, the n there exists i
0 

su c h that 

if i> i , then f n ( x. ) E X - V f or some n . 
0 l 

Proof. The proof is by contradic ti on. Suppose there 

ex i sts a sequence i 1 , i 2 , 

fn(~ . ) E: V for each n. 
l , 

J 

.•. , ( i . < i . 1 ) such that 
J J+ 

Since U and Veach contain points of L, U and Veach 

intersect G. for all but a finite number of the G. 's . 
l l 
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In order to facilitate the proof, suppose U and V intersect 

all the G. 's. 
l 

G. 
l. 

J 
such that 

Now x. E. G. • 
l . l. 

J J 
G~k) n u 10. 

l, 
J 

fnj(x. ) e.G ~k) for some n 
l • l • j O 

J J 

Let Gi~) be a component of 
J 

But fn(x . ) e: V f or each n and 
l, 

J 

Hence G~k) n V / 0. Since, 
l . 

J 
by lemma 3.7, V and U are separ a ~ed sets and G~k) is 

l. 
J 

connected for each j, there exist points z . such that 
J 

(k) z . ESG. -(UUV ). 
J l. 

J 
Th e sequence z 1 , z 2 , ... forms an infinite 

set. Since X is co mpact, X - (U UV) is compact and some 

subsequence z . ' J · l 

z in X - (U U V) . 

of the zj's converges to a point 

Since each neighborhood of z contains 

all but a finite number of the z . 's then each neighborhood 
J .e 

of z contains a point from each of infinitely many of the 

G. 's, and thus of th e G. 9 s . Hence, z e I,.1 a contradicti on 
l . l 

J 

sin c e L C (U UV). This completes the proof of the lemma. 

Lemma 3.9. Le t S be a space and fa homeomorphism 

defined on X. I f G1 , G2 , •.• is a convergent sequence of 

invariant set s in X, the limit set Lis invariant under 

f, ie. f(L) = L. 

Proof. Let y E. f(L). Thus, t here exists an x L suc h 

th at f(x) = y. Hence, there exists a sequence x
1

, x
2

, ••o 

converging t o x such that x. £ G. for each i. The sequence 
l l 

f(x 1 ) ,f(x 2 ), " •• conve rges to y as shown in [4 ] ~ p. 101 . 

Now, for e ach i , f(x.) E.G. since f(G . ) = G. . Therefore, 
l l l l 

y € L. Thi s prov e s f(L) C L. 

Since r-·l is also a homeomorphism., f - 1 (L) C L. Thus
1 



f [f- 1 (L) J C f(L). But f ~- 1 (L)] = L. Therefore, 

LC f (L). Hence f(L) -- L. 

Theorem 3.10. Let X b e a compact metric space and 

fa pointwise periodic homeomorphism defined on X. Then 
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if G
1

, G
2

, .•• is a convergent sequence of point or component

orbits in X, the limit set Lis a component-orbit. 

Proof. Since f(G . ) = G. for each i f(L) = L by 
l l 

le mma 3°9° Let K be a 
0 

component of L. Let f(K ) 
0 = Kl ' 

n 
f(K 1 ) f(K 1 ) = K2, 8 G O ' 

= K so that K =UK . is a component-
n+ 0 . 1 l 

l= 

orbit in L. 

Suppo se KIL. L is clos ed and t he r efore co mpact since 

Xis compact. By l emma 3.6 the re exists a separ a tion 

L = A U B such that KC A. Al so the re exis t disjoint 

op en se t s V ancl U such that AC. V and B C. U. 

Choose a sequence of points x 1 , x 2 , such that 

x. E.G. and x . converges to xEK. Since all but a finite 
l l l 0 

nu mber of the x . 's are in V, there is no loss of ge nerality 
l 

in assumin g th at all are in V. For each i, let yi be the 

first point in the sequence f(x . ), f 2 (x.), ••• which 
l l 

belon gs to X - V. If t he G. 's a r e point-orbits, y. exists 
l l 

for each i since G. ncx - V) I 0 for all but a finite number 
l 

of the G. 1 s and it may be assumed G. ('\ (X - V) I 0 for all 
l l 

Gi's. If G1 , G2 , .•• is a sequence of co mponent-orbi ts, 

y . exists for each i by lemma 3.8. 
l 

Since Xis comp ac t and thus, also X - V, some sub-

sequence y. , y . , •. • of th e y . 1 s converges to a p oint 
ll 12 l 

y E (X - V) n L. Th e point f- 1 (y. ) is in V for each j by 
l -

J 
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t he way t he sequen ce y 1 , y 2 , • . . was de f in e d . 

f - l is a ho meon or phi sm, t h e s e que nce r- 1 (y. ) , 

Thus, si n ce 

ll 
·- 1 , ·) n con ve r g e s t o f y EV L. 

Now f- 1 (y ) E: V n ( L - K) f or i f f- 1 (y) K, t he n 

f [ f-
1

(y )] = y would b e a n e l emen t of K which it i s not . 

Since f- 1 ( y ) IX an d t he se qu en ce f- 1 (y ~ ), f- 1 (y . ), • • • 
ll 12 

can not conv erge t o x , th e r e exi s ts a n N1 such t h at 

f- 1 (y. ) I x. f or j > N
1

. 
l . l. 

J J 

By th e way th e seq ue n ce y 1 , y 2 , . . . was cho s en, the 
> __ ;) ( ' 

p oin ts f - ,y. ) 
- l . 

J 
f or e ac h j ) N

1
, 

f or j )N 1 a re in V. This follo ws s ince 

f - 2 ( y 1 _) i s scil l some no n -n egat i v e p owe r 
:J 

of f at x. • 
l , 

J 
Now, on l y a f in it e numb er of th e i - 2 ( y. ) 0 s 

l , 
J 

f or j > N1_ c a n equa l x . • 
l , 

Th i s f ol l ows since f - 2 ( y) e V ii ( L 
J 

a nd th e sequence r - 2 (y. ) , f- 2 ( y~ ), . •• co nv er g es to 
1 1 _J_2 

f- 2 ( y ) . Hence, t h e re exist s an N2 > N
1 

su c h that 

-2( ) .1 f y i . ,= xi , j > N 2 • 
J 

C t . . t l ' f-n ( y ) E. V on 1nu 1ng .1 1s proc e ss 

for each positive int eger n . Thi s i s co n trar y to t h e f a ct 

th a t f i s p eri o dic a t y and f-no (y) = y E. X - V f or s ome n
0

• 

Therefore K =La n d t h e theor em i s established. 

Coro ll a r y 3.11. If L contains a fixed point, then L 

is conn ected. 

Proof. The proof will be by c ontradiction. Sup p ose 

Lis not conn e ct e d. Th en let L = L1 UL 2 be a sepa r a tion 

of L. Let K
0 

b e a co mpone nt of L such th a t p E K
0 

and p 

is inv a riant un d er f, ie. f( p) = p. 

- K) 

Hence~ pEfi(K
0

) (i = o,1,2, •.. , n - 1). Since K is connected , 
0 
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without los s of generali ty suppose ·K
0

C L
1

o Then p EL 1 • 

By the previous theorerrc K = L is the cornponent-orbi t of 

K
0

• Since L2 I- 0, then fi (K
0

) C L2 for some i. Thus 'l p 

also is in L2 , a contradiction since L1 nL 2 = 0o Ther efo re'l 

Li s c nnect ed o 

Corollary 3.120 If L contains an invariant connect e d 

n on-emp t y subset, the n Lis connectedo 

Proof. Let A be an inv ar iant connected non-empty 

subset of Lo ~1 he:n .A co ntains an invariant point po Hence 'l 

by corollary 3oll'l Lis conneetedo 

The followin g lemma makes use of the fact th a t a compact 

metric space has a countable basis, which is shown in 

Lemma 3ol3. Let X be a com pact metric space. Then 

every infinit r sequence of distinct subse t s 0f X cont a ins 

a c ~nvergent subsequence. 

Proof. Let A11 A2 , •oa be a sequence of distinct 

subsets of X. Let R1 , R2 , . .. be a countable b asis for Xo 

For m an array of sequences of sets as followso 

Let fAt~ denote the sequence A1 , A2 , ••oo For each 

positive integer n, fAf+1} is obtained from {Af1 in the 

If there exists a subsequence {A1.} of 

l A~ } such that lim sup f A~j 1 ()R n = ,'), let ) A:+l \ b~ one 

such subsequence. If { Aff 1 n R t i . ) n 

H+l}, t~~ ( 

following mannero 

0 for each subsequence 
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Thu s , the following array: 

l At~ 1 1 1 
= Al' A2~ A3' . 0 0 

{ Af 1 2 2 2 
- A. ' A2' A3 ' 0 

l 

[ A~ 1 3 3 3 0 . 
= A. ' A2' A3, l 

0 0 0 

[ A~ l m m m Am = A. ' A2' A3, 0 • • 9 
l m 

. 

{A~ 1 n n n An = A. ~ A2' A3 ' () ea o , 0 •• 

l n 

The proof, by contradiction, wi ll establish the convergence 

of the diagonal sequence {A~ } • tA~1 is a subsequence of 

[ A~ 1 Suppose [A~} is not 

lim sup [ A~ 1 I lim inf l A~ J . 
convergent. This means 

But lim inf LA~~ C 

lim sup [A~~ as shown in [ s], p. 10. Thus~ there must 

exist a point x in lim sup tA~~ such that xis not in 

the 

lim inf {A~} Since Xis sec ond countable, there exists 

a nei ghb orhood R of x and an infinite subsequence 
ID 

such that R n ) A ni1 
m l n . 

l 
= 0. 

Now, by the way in which the above array of se quences 

is defined, the sequence {A~~ for n) m, and hence, a l s o 

t he sequence [ Ani 1 for i )' m, a r e subs e quences of [A~~ . ni ) 

Since [ A:~ 1 for i )' m does not intersect R , lim sup 
m 

l 

t A~ JC tAlL+l ) l Af+l j n Rm = 0. But for n ? m, and hence 



li m s up l A~~ Cli m s u p { A~+l ~ 
li m s u p l A~ 1 n Rm Cli m sup I A~+ 1} n Rm = 0 

But x E. li m s up [ A~} n Rm c 0, a con t radic t iono 

Th e r efo r e An converges which was t o be p r ovedo n 
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Th e orem 3. 14 0 Le t X be a co~pac t met r ic space and f 

a pointwise perio d ic homeomorphism of X ont o Xo ~et L be 

a d i sconnect e d inv ar iant closed subset of Xo Then for 

each separation L = L1 U I 2 , t here ex ists a pos itive int eger 
N-

N1 such that f 1-(L 1 ) C ~l. 

Proofo The proof wi ll be b y contradiction. Assu me 

that for each pos i tive i nt eger n ther e ex i s t s & :;:;r·ir..t 

y E. L -
1 

such that fn(y ) r/, L
1 

'l th at is fn(y .) E L
2 

since L n . n n 
i 

is invarianto 1 ·et "'0 t '"J.'"t 1·.no ( \ L T ~ xn =c y n ! ._, l ,., \ xn / <;;;. .!.. •,•, 0 

is closed an.d thus cc.,m;i2.c t , tne ScCJ..UEnce x .,, x:: ~ o •• has 
... c. 

a subsequen c e x , x , 00 0 converging t o a poi nt x of L. 
nl n 2 

Since L1 and ~ 2 are separated and each xn . is in 1 1 , ~hen 
l 

x is in L1 • Let k denote the period of f at x and let 

g ( p) = f k ( p) for ea c h p E. X. If mp denotes the period of 

m 
f a t p , t he n g P(p) 

km m m ru 
= f P( p ) = f p f poo o f P(p) 

whe r e the iterat ion i s t a k en k t imes so th a t g is a l so 

p oint wi se pe r iod i c on X o 

F or e a c h i, l et G. de no t e t he po int -o r bit of x under 
i n . 

l 

g . By l emma 3ol3 the seq u ence G1 , G2 , o •• contains a 

subse qu ence 

si n ::;e x e n. 
l . 

J 

G . ~ G. 9 o o o converging to a se t G-. No w x E G 
ll l2 

G. an d. e2.0h neighborl:wo.i 0f x con to ins a l l but 
l . 

<) 



,...,,.,. 
c'.O 

a finite number of the x sand conseque ntl y of the x ' s . n. n. 
l l. 

J 
since g(x) = fk(x) = x, it follows from corollary 3 . 11 

that G is connected, and since L1 and L2 a re separated with 

X E Ll ' then G C. Ll. 

If n. ~k then n. !/k is an integer, which may be denoted 
lj lj 

by m. • Then 
1 . 

J ni . l 
f J (x ) == n. 

l -
J ni . 

m. 
) = g J (x ) e G. • n. 1. 

l. J 
J 

Also f J(xn.) ~ L2 by 
1 . 

the way the xn's were selected so that 

J 
G. n L2 -/ 0 for n .. ~ k. 

1 . l , 
J J 

Let t. e G. such that tJ. E L2 • 
J 1. • 

J 
Since 

L2 is compact there exists a subsequence t . converging tot in 
Jh 

L2 • But also t E G' so that G n L
2 

I, 0 -owhich contradicts G c. L
1

• 

This establishes the theorem . 

Theorem 3.15. Using the hypotheses of theorem 3.14, then 

for each separation L = L1 UL
2

, there exists a positive i n teger 

N N N s u ch that f (L 1 ) = L1 and f (L 2 ) = L
2

• 

Proof. By theorem 3.14 there exist positive integers N1 
N1 N 

and N2 such that f (L 1 ) C L1 , and f 2 (L 2 ) C. L
2 

respectively . 

Now, let N = N
1

N
2

• Then fN1N 2 (L 2 ) C L2 and fN 1N2 (L 1 ) CLl. 

L1n L2 = 0 and so 

N N N
1

N
2 

f l 
2

( Ll) n f (L2) C Ll n L2 = ¢. 

Also , since L is invariant 



Then 

Ll n [ /1 N2(Ll) u /1N2(L2) ] = Ll n (Ll UL 2) = Ll 

[L1 n /1N2(Ll) J u ~l n /1N2CL2) 1 = Ll 

N N 
f 1 2(L) 

1 u 
N N 

27 

S . . 1 1 f l 2 ( L
2

) -- L imi ar y~ 2 • Hence~ 
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