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Y function f is a homeomorphism of a set o

is a 1-1 continuous mapping anc

funetion f is continuous. See 41,p. 24. Let
homeonorphism of a metric space X onto itself,

of the mapping f will be defined to be the ]
of f, d b-
@it fy d Dy

]

X
£1(x)
PN+ ak ( v,)

(x)

1l

T_n—l

Before

is
metric
sufficiency

"
M4

0=

lefinitions
nto itself

inverse

the

where x is an element of X. It is clear that the laws of
exponents are Clgtiedy 16y
£ [fdl(X'] e
( f"i‘.i )1’1 (\L.) 2 _fI nn ( % \‘
where m and n are integ 5
The period of f at point in X is the least positive
integer n such that f%(x) = x. A homeomorphism f is said
to be periodic on X if ther 5 an integer n that
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n this ion it will be proved that given a metric
space X and t-orl composition of X induced by
the iterations of iorphi i X, & necessary and
sufficient condition for the decomposition to be continuous

is that f have equicontinuous powers. Continuity for a
collection of sets will be defined in terms of upper and
lower semi-continuity. A few consequences of the definition
of lower semi-continuity will be developed as preparation
for proving the theorem.

Let A be a subset of a metric space X. S(A e
be defined to be the et of all xeX such that ﬁ(; 8) < d
for some point a in A. A collection & of point-orbits AX
is said to be lower semi-continuous if given a point-orbit
AX annd € »o there exists §>0 such that AX c Q(ijé)
whenever A_ f\B(A\ 8) £ @. A collection L of point-orbits
AX is said to be upper semi-continuous i iven a sloe
orbit AX and € >0 there exists & > o such th AWC: S(A_ € )

y X
whenever Ay f\S(AX$ §) £ @,

Theorem 2.1, If f is a pointwise periocdic homeo-
morphism on a metric space X, the orbit decompositic 18
lower semi-continuous.

Proof. Let x be any arbitr point of X and let
A; denote the o of - 2 the diterations of f£f. ©Since
f is pointwise peri let n denot the period of £ at x.
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properties of point and compo:

A, A,, .... 1is a decreasing sequence of sets provided
1 c 5 <

that An+l(: An for each positive integer n. A chain of sets

is a finite sequence of sets Alﬁ, Agﬁ sooy A such that
Jj'LlnﬂAi_f_l £ @ for 4 = 1,28, casj
space is a finite sequence of

sueh that (als o B € for
such that /pk 19 ‘1+]>< for

ihn X sueh ‘that

a =a;, and b = a,.» Two points a and b are connected in
X provided that there exists a connected set A © X such
that a €A, beA. Let L = AUB be a subset of a space X.

ation of L if ANB = BNA = ¢.

Lemma 3.1, If a compact metric space X is €-connected
for each €0, then X is connected.

Proof.




nc ¢2-chain can join a point

X is not €&/2-connected which co
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11 & Subsel Ol a metric space 1s connected
it 1s E€-connected for each €.

i T S o A B
vhiere exXilists an E-chailn

A

between a and x. Let C be the set A - B. Each point ¥ on

the fact A is connected. Hence, the remark is true.

i a ¢ aue A Ag, ..o be a decreasing sequence

of compact, €-connected sets. Then A :/Q A. is 2€& -connected,
Proof. Let a,b e A where A :‘? A.. Choose n large
enough so that A < 8Ch, 52). Bee 161, p. 4/, Let

c = Ay Pos ey T e -
8 = 8,587y eoey 8 = b be an ¢€-chain in Anu Let

b, € Se/g(ai) for 1€ i<k~1. Then, using the triangle

inequality for a metric space, it is easily seen that

a, b bgg s5ey Dy , b is a 2 € -chain in A.

1,
It should be rerarked here that if a set is e-connected,
it is e€'-connected for each €' > € .

Lemma 5.3, If for each ¢>0, the points a and b of

a compact set B can be joined by an €-chain in B, then they
~ ~ A - v
re connected in B.
Doy ~ T.a+ B ey o v Af ; . B o
roof. Let a and b be points of a compact set B such




compact. The sequence A i1s a decreasing sequence, ie.

An+l<: An for each n. This follows from the re hicl
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emma 3.4, Let a and b be points of a compact set L
which are not connected in L. Then there exists a separation
L = AUB of L such that a€A, b €B,

Proof. By the contrapositive of the preceding

there exists an € >0 such that a and b cannot be joined in
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Let S be a topological space and consider G tTo be

m
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any finite collection of non-empty subsets of S. The s
of sll1 points x of S such that each neighborhood of x con-

tains a point from each of infinitely many sets of G 1is

(7

called the limit superior of G and is denoted by lim sup G.
The set of all points x in S such that each neighborhood
of x contains a point from all but a finite number of the
sets of G is called the limit inferior of G and is denoted

by lim inf G. If lim inf G = 1lim sup G, the collection G

$ L O e v B R (P i S S s I e
is =id to converge to the limit set of G, denoted bJ
lim G, where 1lim G = lim inf G = 1lim sup G.

space and f a pointwise

periodic homeomorphism defined on X. Let G, G54 ... be

a seguence of component-orbits converging to a limit set

in X. Suppose K is a component-orbit in L such that
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.7 there exists a

K CA, peB. Also, there exist separated open sets V and U

such that AcV, BCU. Based on these preliminary remarks,

Lgm

the following lemma will be established.

emma %.8. If X1y Xpy oeo is a sequence of points

conwrging to a point x in K where K C V, and XiE_Gi Tor

each positive integer i, then there exists io such that

. n
ei>i , then T (x.)e X - V for some n.
Proof. The proof is by contradiction. OSuppose there
exists a sequence iy, i,y coo, i <"*J+1> such that
n
f (31 ) eV for each n,

Since U and V each contain points of L, U and V

o)
)
¢
]

intersect G. for all but a finite number of the G.'s,

E: 18 i
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by lemma 5.7, V and U are separated sets and G. K
: ks

connected for each j, there exist points z. such that
)

N
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/T 7\ Ml ~ e P e i
—(UUV). The sequence

C
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5 N ° o
set. ©Since X i ct, X - (UUV) is compact and some
subseguencte Z. , Z.: . oes 0Ff the zﬁ°3 converges to a point

J i_J I’) J

z in X=X Since each of » coptains

Q)

of z contains a point from each « infinitely many of the
Gi 's, and thus of tt 7. ' Se g 2 & X on
J ;
gsince L < (U UY) This s the proof of & l emma .
Lemma %.9. Let S be a space and f a homeomorphism

defined on X, If G., G. is a convergent sequence of
invariant sets in X, the limit set L is invariant under
£, ie. L) = L.

Proof. Let y ef(L). Thus, there exists an x L such

that flx) = y. Hence, there exists a sequence x

converging to x such that x,e€ G, for each i. The sequence
. he

o
=
O
=
o

shown in [4], p

1 e A [ T
~ 2 all ol \ B
sinee f\\u: ) = s Therefore s
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£ [f—l(L)J C £(L). But f [f“’l(L)} = L, Therefore,
L £(L)., Hence f(lL) = L.

Theorem 3,10, Let X be a compact metric space and

if G Gh.soo 18 a convergent sequence of point or component-
29 4 - i
orbits in X, the limit set L is a component-orbit.
Proof. Since £(G.) = G, for each 1 f(L) = L by
- 8 M 3

lemma 3.9. Let KC be a component of L. Let f(KO) = Klg
K

n
il = seoy T = K that = |JK., is a component-
£(X;) 3 y EXE 1) K, so that K M is a component

2.
orbit in L.
Suppose K # L. L is closed and therefore compact since
X is compact. By lemma 3.6 there exists a separation
L = AUB such that KC A. Also there exist disjoint
en sets V and U such that AC V and B CU.
Choose a sequence of points x., Xy oo such that
Xié G. and X, converges to x:e}{,oc Since all but a finite
number of the XiVS are in V, there is no loss of generality
in assuming that all are in V. For each i, let y. be the
: 1
first point in the sequence f(Xi), f2<Xi>? cos Which
belongs to X - V. 1If the Gi's are point-orbits, Yi exists
for each i since Gif1(X - V) # @ for all but a finite number

of the Gi°s and it may be assumed Gif\(X - V) # @ for all

)

Gi'so /5 G19 629 .o+ 1is a sequence of component-orbits,

y. exists for each 1 by lemma %.8.
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Since X is compact and thus, also X - V, some sub-

SequUence ¥.: ¢ Y: wsse Of the yi“s converges to a point
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can not converge to x, there exists an N, such that

peants 1 (y. ) feor g )Bl are in V. This follows since

for each JoYN,, £ “(y., ) is still some non-negative power

of f at x, . Now, only a finite number of the f “(y. )'s
4 ; j

J 5

for j >N, can equal X. This follows since £ “(y)e VN(L K)

Cte

and the sequence T~ (y; )y £°(4 )y +o. converg
1 2

= : g ‘
£ “(y). Hence, there exists an I ~ > N, Buch

H

-2 / - ~ s =] 1
L(yi.) # X:5 J>N,y. Continuing this process £ (y) eV
J
for each positive integer n. This is contrary to the fact

H

that f is periodic at y and £ 70(y) = yeX - V for some e
Therefore K = L and the theorem is established.

Corollary %.11. If L contains a fixed point, then L
ig econnected,

Proof. The proof will be by contradiction. Suppose
L is not connected. Then let L = L.UL2 be a separation
of L. Let K_Dbe a component of L such that g CK( and p

@)

is invariant under f, ie. f(p) = p,

. ! : 2 N = ; ; -
Hence, pe f (KO) (1 = 0yl Bisasy Be=l).  Sinees K  is connected,
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The proof, by contradiction, will establish the converg

i1
E ; {A;% is a subsequence of
1

L
of the diagonal sequence {A
AL o Wl X
AL . Duppose A is not convergent. This means the

% s
lim sup {A £ 1ig inf {A?_% But lim inf ZA?-S(::

; ol : : 0 "
lim sup {fk % as shown ln_[‘ ) O. Thus, there must
exist a poi

. . i@ 4 SO0 .

lim inf gA } . ©oince X is second countable, there exists

a neighborhood R of x and an infinite subsequence

m
By n . !

ZAM of j&° such that RW(W gAn E = (g,
*j_ "% 41l l

Now, by the way in which the above array of sequences

L

. S (I
is defined, the sequence {A;% for n?>m, and hence, also

Y
the sequence {A 1 for i )m, are subsequences of {h»% o

n. i
i
n’I
Since Ar_ for 1 7?m does not intersect R_, lim sup
i a3l -
_[ &
m+.4 - i ]t 8 5 "y
ifx Sf]ﬁq = Y. But for n7m inq%(i ol } and hence




lim sup %A;}(:lim sup {A§+l}
o n . % |
lim sup ﬁj%lg r\ﬂm Sl gAgzlg N g = p

But x € 1lim sup {'A % C @, a contradiction.

:S

A

Therefore A onverges which was to be proved.

n
Theorem 3.14. Let X be a compact metric space and f

s
e
o

& pointwise peri homeomorphism of X onto X. Let L be

a disconnected invariant closed subset of X. Then for
LlLJL;? there exists a positive intege:

N, such that I ~(L.)& L.
AL il

each separation L =

g i PR MiA 2 VT S e R "= =8 : e s Je iy e = s
L LOOL s 1Ne proo:’l wilkl e DY contradlictlon, LEsume

: 0 0 , \ " = o R Y7 ; = -
¥.. € L. such that £ (y.) é.L,{H that 1is £ (y. ) € Ly since L
gt L s A L fac
o D
: Boae . ik ek s sy S, Yo ris 5
1s 1nvariant. Let X = F b BY that £7°ix ) € L. O L
is closed and thus couwpact, the seqguUence X.., Xoos oo Has

8 subseguence X , X, <.« CODvVerging to a point x of L.

g{p) = £ (p) for each pe X. If m_ denotes the period of

mF km_ m m_ m
] \ ) . ) 7 /
f at p, then g ¥(p) = f P(p) =t P r P,.,, £ P(p) :

where the iterastion is taken k times so that g is also

")
3

For each i, let G. denote the point-orbit of X unde

« AT 4 A+ S oM ~ . - o~
g By lemma 3.13 the sequence G (1)9 AR e Ts 0 v b a
subsegque a e o > t N
SUupseE JUTILICC T o g o 9 © 0o eledi) Ul o U T o NOW € (s
- A




: R | . %> .

a finite number of the x_ 's and consequently of the X, ;

.LL_l J .Li S

. : Al Ny o e % CH S il '
since g(x) = £7(x) = x, it follows from corollary 3.1l

that G is connected, and since L, and L2 are separated with

p 3 éLl, then G < L..

J J
by m, . Then
v a¢]1 km . ‘ m.
£f Y (% ) = £ Y(x = o Y(x I EG,
( n. AE ) S R A b
: i 1., 3
n l . : J J

Also £ d(Xn ) €L, by the way the xn?s were selected so that

E yd

J
Gy N L, £ @ for n. »k. Let t.€G, such that tje L,. Since

= = i [ el b E z
J dJ &

L, is compact there exis
=

N
ct
()]
fu

subsequence t. converging to t in
y
h

L But also t € G so that GNL, # @.which contradicts G C L. .
= ol 5

o

This establishes the theorem.

Theorem %.15. Using the hypotheses of theorem 3%.14, then
L

for each separation = L. UL,, there exists a positive integer

\T . R
N such that £(L,) = L, and £7(L,) = L

Proof. By theorem
N. N,

Py \ . & 5 =
such that f ‘(Lq)Cl Ll§ and f (L2)(:lL2 respectively.

«14 there exist positive integers N

and N

no

Now, let N = N;N, Then £"1M2(L,) C L, ana £M1N2(1) C1,.

e

v'* ] = (= J.‘\rq S
LLf]Lg @ and so




Then

NN oy Ne,
T [N = (g Dy (To) = T e gD

T
L
N.N, N-N,
[Llﬂ T d(Lw)] LI, o L) i
N.N, ,
qlimild ol G O P T
N.N, N.N,
Phtig, £ L(Ll) = Ly Similarly, f ~ “(L,) = L,. Hence,
o Ce
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