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ABSTRACT 

The Quaternary Tectonic and Struc tural Evo lution 

of the San Felipe Hills, Californ ia 

by 

Stefan M. Kirby , Master of Science 

Utah State University , 2005 

Major Professor: Dr. Susanne U. Jancckc 
Departm ent: Geology 

We exam ine the transition between extensio n and strike-s lip in the San Fel ipe 

Hills, weste rn Salton Trough , sout hern California using new and compiled geologic 

mapping, measured stratigrap hic sectio ns, magnctostratigrap hy, and structural analys is. 

A 625 m measured section describes the Borrego, Ocotillo , and Brawley formations in 

the SE San Felipe Hills and constra ins a regional disconformity and correlative angular 

unconformity at - I Ma. Sedimentation rates for the Brawley Fom1ation above the 

disconformity range from 1.0 to 1.2 mm/yr, palcoflow was to the ENE. The Brawley 

Formation consists of three interbeddcd lithofac ics; (I) fluvial and fluvio-d eltaic , (2) 

lacustrinc, (3) and eolian deposits. Changes in facies, provenance , and paleoflow , with 

Ill 

deposition of Ocoti llo and Brawle y fonnations record onset and evo lution of cross cutting 

strike- slip faults other than the San Jacinto fault zone in the western Salton Trough at - I 

Ma. 



IV 
Since deposition of the Brawley Formation (- 0.5 Ma), rocks of the San Felipe 

Hills have been uplifted and complexly deformed. New data suggest that strands of the 

Clark fault persist SE of its previously mapped termination , transferring slip into folded 

rocks in the central and southern San Felipe Hills. Equivalent right lateral slip from 

folding for the Clark fault in the San Felipe I Iii ls is 5.6 km. Minimum slip rates for the 

Clark strand arc between 9 and I I mm/year. Since - 0.5 Ma, evolving strands of the San 

Jacinto fault zone, includin g the Coyote Creek and Clark faults, have deformed rocks of 

the San Felipe Hills. 

( 182 pages) 
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CHAPT ER I 

INTRODUCTION 

The evolution of the North American-Pac ific plate boundar y in the Salton Trough 

area of southern Ca lifornia is comp lex and incomplete ly under stood. Within the western 

Sa lton Trough ear ly extens ion was local ized on the West Salton detachment fault but 

sometime after - 2.5 -3 Ma cross cutting strike- slip faults replaced the west Salton 

detachment as the acti vc structures in this area (Axen and Fletcher 1998). The San 

Jac into l~1ult zone was the principal cros -cutting dcxtral strike-s lip fault. The relative 

amount, interaction, and timing of extension and strike- slip motion arc poorly constrai ned 

in the area. 

We examine this transition between extension and strike-s lip deformation in the 

western Salton Trou gh with new I :48,000 sca le geo logic mapping in the San Fe lipe Hills 

in approx imate ly 2.5 , 7.5 minute quadran gles (Plate I) . This map compiled detailed 

I :6,000 sca le mappin g in the southeast San Felipe Hills (Heitman 2002 ; Lilly 2003) with 

new mapping across the rest of the San Fe lipe Hills. A 625 m detailed measured section 

describes the Borrego, Ocot illo and Brawley formations in the southeastern San Felipe 

Hills (Plate 2). A 245 m measured section of the coarse lateral equivalent of the Brawley 

Formation , the Ocotillo Formation , was described in the Ocotillo badlands to constrain 

basin-wide changes and latera l fac ies variation among these units. A major angular 

unconformit y and lateral correlative disconformity beneath these units was constrained 

structurally and stratigraphica lly constrained for the first time . The results of the 

measured sections , map relations, new magnetostratigraphic datin g of the Brawle y 
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Formation arc presented in chapter 2 and provide new constraint s on the initiation and 

reorganization of the southern San Jac into fault zone during the last - I to 1.5 Ma. 

Current total plate motion across the plate boundary is broadl y distributed cast to 

west at the latitude of the Salton Sea, with much of the slip loca lized along strands of the 

San Jac into fault zone. Previous geo logic mapp ing, microscismicity, focal 

mcchanismsand geo phys ical data all show significant changes in the characteristics of the 

San .Jac into fault zone along strike in the western Salton Trough. 

The San Jacinto Fault zone is a southeastward widening zone within the western 

Salton Trough and includes the Coyote Creek, Clark, Supers tition Hills, Superstition 

Mountain faults (Sharp 1967) . Initiation of slip on the San Jac into fault zone to the north 

near its j unction wi th the San Andreas may have begun at 1.5 Ma (Morton and Matti 

1993) or 2.5 Ma (Mc isling and Weldon 1989) . Within the San Felipe Hills, Plio-­

Quatcrnary sed iments arc strongly defo rmed by a complex series of folds and faults 

southeas t of the previously mapped termination of the surface trace of the Clark fault. To 

the south, the Superstition Hills and Superstition Mountain faults may be acco mmodating 

slip adjacent to a broad zone of clockw ise transrotation (Hudnut ct al. 1989). The onset 

of slip on the southeast portion Clark fault has not been adequately dated. Also, 

interactions among the active strands of the southern San Jacinto fault zone and in 

particular the Clark fault, the complex deformation within the San Felipe Hill s and 

transrotation to the south has not been explored by previous studies . 

To constrain the structural style, onset of slip, and right-lateral slip amount in the 

San Fe lipe Hills, the geo logic map was divided into fold domain s based on similar fold 

geometries. Average trend and plunge of fold axes, intcrlimb angles, strain rates, 



shorten ing, and shorteni ng rates were ca lculated for eac h domain. Transect s through 

relevant fold domains were used to calculate the total N-S shortening and amount of 

equ ivalent dcxtral slip on the Clark fau lt plane oriented 305° NW that is required to 

produce this amount of shortening. These data along with new and compiled geologic 

mapping arc presented in chapter 3. To conslrain the geo metric s and interaction s of the 

3 

fault strands of the southern San Jacinto fault zone 3 earlier models for the geometry of 

the C lark fault in the San Felipe Hills and its relation to the Superstition Hills fault to the 

south are considered in chapter 3. Minimum fault slip rates arc calculated, time of 

reorganization and initiation of the fault zone arc identified, and a new kinematic mode l 

of the current San .Jacinto fault zone are presented in chapter 3. 

Reference s 
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northern Gulf of Californ ia, Mexico and Sa lton Trough, Ca lifornia. Interna tional 
Geology Review 40:2 17-244. 
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Lilly , D. R. 2003. Structura l geology of a transitory lef t step in San Felipe Hills fau lt. 
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CHAPT ER2 

STRAT IGRAPHY AND D EPOS ITION AL SETTING OF THE 

BRAWLEY FORMATION: INSIGHTS INTO INITIAL STRIKE-SLIP 

DEFORMA TlON IN THE WESTERN 

SALTON TROUGH 1 

Abstract 

5 

The evo luti on of the North Amer ican -Pacific plate boundary in the Salton Trough 

area is comp lex and incompletely understood. We examine this evolution and the 

transition between exte nsio n and strik e-s lip movement in the western Sa lton Trough with 

new I :48 ,000 sca le geo log ic mapping in the Sa n Felipe Hills in app roximate ly 2.5 , 7.5 

minute quadrangles (P late I). This map comp iled new mapp ing across the San Fe lipe 

Hill s w ith detailed I :6,00 0 sca le mapping in the so uth east San Felipe Hills (Heitman 

2002; Lilly 2003). A 625 m deta iled me asured sec tion describes th e Borrego, Ocotillo 

and Brawley fo rm ation s in the so uth eas tern Sa n Felipe Hill s. Magnetostratigraphy in thi s 

sec tion shows that the Brawley Fo rm ation was deposited betw ee n 1.07 Ma and 0.61 Ma 

± 0 .02 Ma to 0.52 Ma± 0 .03 Ma. A 245 m measured sect ion of the coarse lateral 

equiv a lent of the Brawl ey Formation, the Ocotillo Formation, in the Ocotil lo Badlands 

show s rapid westward coarsening of these unit s. 

Plio-Pl e istocenc sedimentary rocks in the San Felipe Hill s, Salton Trough record 

an abrupt change from older, open , perennial lake bed s to cyclic alluvial fan, flu v ial-

1 Coauthored by Stefan M . Kirby , Susanne U. Janeck e, Rebecca J. Dor sey, Bernard A. 

Housen , Victoria Langenheim, and Kristin McDou ga ll-Reid . 
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deltaic , and marginal lacustr ine deposits at 1.07 Ma. The - 1680 m thick lacustrine 

claystone , mudstone, and sandstone of the Borrego Formatio n in the San Fe lipe Hills 

preserve almost no marginal lacustrine deposits and formed in a large perennial lake. A 

regional disconfom1ity and laterally equ ivalent angular unconformity at the crest of a 15 

km long , cast-west trending basement-cored anticline separate the Borrego Formation 

from the over lying Ocotillo Formation and its fine-grained equ ivalent, the Brawley 

Formation . This east-west trending anticline is interpreted as the first evidence for 

transpressional deformation within the previously transtensional southwest Salton 

supradctachment basin. 

The Ocot illo Format ion is dominated by alluvial fan and braided stream facics , 

with lesser amount s of nuvial and minor lacustrinc facies deposited conformab ly on the 

underlying Borrego Formation in the Ocotillo Badlands . The Ocotillo Format ion fines 

and thins to cast-northeast as it interfingcrs with the Braw ley Fonnation in the eastern 

San Felipe Hills. 

The Brawley Formation consists of three interbcdded lithofacics: fluvial to deltaic 

sandstone with cross-bedding and weak calcic palcosols; lacustri nc mudstonc , claystonc, 

and marlstonc with 0.5 to 1.5 m deep desiccation cracks, rare evaporite minerals , and 

loca lly abundant microfossils; and eo lian sandstone with large sca le (- 3-4 m high) high­

angle cross stratificat ion. Microfossils include marine and lagoonal forams, and 

lacustrine ostracods, micromollusks, and charophytes. Sandstones include - 60 % biotite­

rich arkosc derived from loca l tonalite plutons (L suite), and - 40 % sublitharcnite 

derived from the Colorado Plateau (C suite). Sediment transport was to the E to NNE in 

the San Fe lipe Hills. Sed imentation rates in the Brawley Formation average about 1.0 
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mm/yr ± 0. 1 mm/yr to 1.2 mm/yr ± 0.2 mm/yr. Clastic Brawle y f om1ation sediments 

accumulated in an ephemera l stream and delt a system on the wes tern margin of the 

Salton Tro ugh while cvaporitcs accum ulated offshore in the basin center near the 

southeast Salton Sea (Herzig et al. J 988). 

Deposition of the Ocoti llo and Brawley fom1ations occurred in a basin contro lled 

by strike- slip faults that cut across the West Salton detachment fault and predate the 

current, fully formed San Jacinto fau lt zone. The end of deposition of the Brawley and 

Ocotillo fonnations and the first closely spaced folds occurred between 0.61 Ma± 0.02 

Ma and 0.52 Ma ± 0.03 Ma. This abru pt change at - 0.6 Ma, south and west of the 

Salton Sea , rcnccts reorganization of the basin due to changes in geomet ry and 

kinematic s of the San Jacinto fault zone in the San Felipe Hills. 

Jntrodu ction 

Tectonic Background 

The Late Miocene to Recent evo lution of the North Amer ican -Pacific plate 

boundary in the Salton Troug h is comp lex and incompletel y understood. Through out 

most of this evo lution dcxtral strike-slip motion has occurred on the San Andreas fault 

system along the eastern margin of the Salton Trough (Atwa ter 1970; Axen and Fletcher 

J 998; Oskin and Stock 2003). Within the wes tern Salton Trough ear ly extension was 

localized on the West Salton detachment fault but sometim e after 3 Ma cross cutting 

strike-s lip faults including the San Jac into fault zone and the Elsinore replaced the west 

Salton detachment as the active structures in this area (Sharp 1967; frost et al. 1996; 

Axcn 1998; Axcn and Fletcher 1998; Dor sey and Jancckc 2002; Steely ct al. 2004 ; Axen 
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Dibblee ( I 954 , 1984) noted large-scale litholo gic relationships, including facics 

changes and angular unconforrnitic s, which hinted at sign ificant changes in basin 

architecture during deposition of the late Miocene to middle Plei stocene aged 

stra tigraphic sect ion within the San Felipe Hills. Changes in depos itional patterns and 

the presence of an angu lar unconformity that separates the Ocotillo Forma tion from older 

units in some areas (Dibblee 1954, J 984; Reitz 1977) may reco rd a maj or basin 

reorganiza tion in the wes tern Salton Trough. The transition from slip on the West Salton 

detachment fault (Axen and Fletcher 1998) to act ive siip on strands of the San Jacinto 

fault zone may have produced the angu lar unconformity and changes in facics . Complex 

folding, north-south shortening and faulting or the late Cenozoic stratigrap hic sect ion 

started during the deposition of the upper portion of the sed imentary sect ion, with most 

deformation postdating the deposition of the Oco tillo and Brawley format ions (Dibblee 

1954 , 1984; Morley 1963; Dronyk 1977; Wagoner 1977 ; Reitz 1977; Feragcn 1986 ; 

Well s 1987 ; Heitman 2002 ; Lilly 2003 ; Stee ly ct al. 2004 ; Kirby ct al. 2004 ; this study) 

(fig 2-3). 

The goa l of this study is to better qua nti fy and understand the stratigrap hic 

connection between basin-controllin g faults, large folds and the sedimentary sect ion and 

to exam ine evidence for the transition from extension and transtcnsion across the now 

inac tive and exhum ed West Salton detachm ent fault system, to on-going strike- slip 

within the San Jacinto fault zone in the western Sa lton Trough. 

Stratigraphic Overview 

The early transtcnsion success ion exposed in the San Felipe Hills include s the 

Latest Miocene(?) to Pliocen e marine Imperi al Group and its lateral nonmarinc 
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equivalents at Borre go Mountain , and the overlying Pliocene tluvial-d eltaic Diablo and 

Olla formations of the Palm Spring Group (Winker and Kidwell 1996; Axcn and flet cher 

1998; Steely ct al. 2004) (fig. 2-4). lnterfin gcring with and conformably overlying the 

Diablo Fonnation in the San Felipe-Borrego basin is the thick lacustrine Borrego 

Formation. The Borrego Fonna tion may have been deposited during a poorly dated and 

understood transition between transtcnsional deformation and later transprcss ion and 

strike-slip related dcfonnation or during the final phases of regional transtcnsion on the 

West Salton detachment fault (Janccke et al. 2004; Dorsey ct al. 2004 ; Steely et al. 

unpublished data) (fig. 2-4) . Altogether this transtcnsional to transitional success ion is up 

to 4195 m thick and is well expose d in the San Felipe Hills and the Borrego Mountain 

area (Dibblee 1954, 1984; Morley 1963; Reitz 1977; Wago nncr 1977; Dronyk 1977; 

Fcragcn 1986; Wells 1987; Heitman 2002; Lilly 2003; this study) (figs. 2-2, 2-3, 2-4). 

These units were likely depo sited in a basin that was at least partially the resu lt of oblique 

top-to-the-cas t extensiona l slip on the west Salton detachment fault (Steely ct al. 2004; 

Axcn ct al. 2004), because the sandstones and mudstoncs of the lmperial and Palm Spring 

grou ps change laterally into bou lder conglomera te of the Canebrake Formation at the 

detachment fault (Dibblee 1954, 1984; Winker J 987; Winker and Kidwell 1996, 2002 ; 

Axen and Fletcher 1998; Dorsey and Jan ecke 2002; Stee ly et al. 2004) (figs. 2-2, 2-4). 

The San Andreas fault on the NE side of the basin probably also localized the basin at 

this time. 

Directly above the Borrego Formation in the San Felipe-Borrego basin there is an 

abrupt change in lithology and sed imentary environment at the base of the Ocotillo and 

Brawley formations (Dibblee 1954 , 1984; Dorsey 2002; Lutz ct al. 2003 ; this study) (figs . 
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2-3, 2-4). There are significant lithologic differences between the Ocotillo Formation and 

the underlying Imperial Group, Diablo and Borrego fom1ations in the San Felipe Hills 

(Dibblee 1954, 1984; Reitz 1977; Heitman 2002; Lilly 2003; Lutz and Dorsey 2003). 

The Ocotillo Fom1ation within the Ocotillo and Borrego badlands and the San Felipe 

Hills is a pebble to cobble conglomerate and pebbly sandstone with lesser fine-grained 

sandsto ne and mudstonc, whereas the underlying units range from claystone to sandstone 

(Dibblee 1954,1984; Bartholomew 1967; Reitz 1977; Remieka and Beske-Diehl J 996 ; 

Heitman 2002; Lilly 2003; Lutz et al. 2003) . 

A major basin-wide change in grain size is recorded at the base of the Ocotillo 

and Brawley formations, but this contact was described as a conformable and nearly 

imperceptible stratigraphic transition in the eastern San Felipe Hills (Dibblee 1954, J 984 ; 

Dronyk 1977; Wagoner 1977). On the south flank of the San Felipe anticline and in the 

Superstition Hills and Superstition Mountain area this contact is an angu lar unconformity 

(Dibb lee 1954, 1984; Reitz 1977) (figs. 2-3 , 2-4). The nature of this contact and the 

stratigraphic changes across it in the San Felipe Hills, arc the subject of this paper. 

Within the western Salton Trough the Ocoti llo Formation and its fine-grained 

lateral equivalent (the Brawley Formation) overlie either an angular unconformity, 

disconformity, or conformab le contact (Dibblee 1954, 1984) (figs. 2-2, 2-3). Previous 

workers have inconsistently described this contact in and near the San Fe lip e Hills 

(D ibbl ee 1954, 1984; Morley 1963; Bartholomew 1968; Dronyk 1977; Reitz 1977; 

Wagoner 1977; Feragan 1986; Wells 1987; Heitman 2002; Lilly 2003). In the 

sou thwe stern San Felipe Hills, an angular unconformity was first described by Dibblee 

( 1954, 1984) and later confirmed by other workers (Morley l 963; Reit z 1977 ; Dorsey et 
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al. 1999) (figs. 2-3, 2-4). Reitz ( 1977) , Heitman (20 02), and Lilly (2003) noted 

conformab le contacts beneath the Ocotillo Forma tion in Tarantula Wash a shori distance 

cast of areas of angular unconfo rmity. In the eastern San Felipe Hills previous workers 

describe the basal contact of the Brawley formations as conformable with, and nearly 

indistinguishable from, the underlying Borrego Format ion excep t where the coarse but 

thin Oco tillo Formation co incide s with the contact (D ibblee 1954, 1984; Dronyk 1977; 

Wagoner 1977; Fcragan 1986 ; Heitman 2002 ; Lilly 2003). Nearby in the Ocot illo 

Badlands to the southwest of the study area the Ocotil lo Formation is described as 

conformable with the Borrego Formation with a 20 degree angular unconformity 

apparen t within the lower Ocot illo Formation (Dibb lee 1984). To the west-nort hwest in 

the Borrego Badlands the basal contac t is described as conformab le with the underlying 

Borrego Format ion (Dibblee 1954; Rcmicka and Beske-Dieh l 1996; Lutz and Dorsey 

2003) but is now recognized as a brief hiatus in a few areas (Lutz, 2005; Lutz ct al. 

2004). Bartholomew ( 1968) and Reitz ( 1977) sugges ted that some of'thc Oco tillo 

Formation is correlative wi th the terrace and pediment depos its in the Borrego Badlands 

and the San Felipe I !ills respectively. 

The latera l equivalen t of the Ocot illo Formation, the Brawley Formation, is 

poorly known. Dibblee ( 1954, 1984) briefly described it as the lacustrinc equivalent of 

the Ocotillo Forn1ation, and indistinguishable from the underlying Borrego Formation 

where a thin conglomerate bed at the base of the Brawley Formation is absent. Later 

workers mostly accepted Dibbl ec's ( 1954, 1984) description of the Brawley Formation in 

the San Felipe Hills. Dronyk ( 1977) and Feragan ( 1986), mis located the Brawl ey­

Borrego contact within the Brawley Formation and described the two units as 



indistinguishable. None of these wo rkers completed any systematic study of lithofacies 

and depositional environment in the Brawley Formation but produced detailed maps of 

subunit s in the Borrego and Brawley formations (Wagoner 1977; Dron yk 1977; Feragan 

1986) . Prior to this study the Braw ley Formation in its exposures in the western Salton 

Tro ugh was considered to be lithologically similar to the Borrego Forn1ation (Dibblee 

1954, 1984; Dronyk 1977; Wagoner 1977). 

Structur al Overvi ew 

13 

The structures controlling ba. in subsidence in the weste rn Salton Trough have 

evo lved through time and can be subdivided into at least three distinct phases. After a 

poor ly documented phase of extension in M ioccnc time and depos ition of the Red Rock 

and Elephant Trees formations south o f the San Fe lipe-Bo rrego bas in (Ker r l 984; Winker 

and Kidwell 1996 , 2002; Dorsey and Jancckc 2002), the West Salton detachment fault 

bega n to slip along the entire wes t-southwes t margin of the basin (Axc n and Fletcher 

1998; Dorsey and Janeckc 2002 ; Winker and Kidwe ll 2002; Stee ly ct al. 2004). 

Deve lopment of the first large basins of the western Salton Trough was controlled by 

oblique, top-to-the-cas t dcxtral-normal slip on the west Salton detachment fault in the 

wes t and the nonnal slip component on the San Andreas fault in the cast (Frost et al. 

1996; Axcn and Fletcher 1998; Steely et al. 2004; Axcn et al. 2004 ) . The West Salton 

detachm ent fault accommod ated a significant fraction of strike-s lip and produ ced at least 

one bas in-sca le grow th anticline with a northwest trend (Steely et al. 2004 ; Axcn et al. 

2004 ). The northwes t trend of this syn detachment growth anticlin e differ s from the east­

wes t and north-south trend of folds that formed durin g the younger phase of transpression 

and strike-s lip deformation (Axcn ct al. 2004 ; Kirby ct al. 2004 ; Stee ly ct al. 2004) . We 
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will assume that major eas t-w es t trendin g folds or fold trains are the result of wrench 

deformati on within the San Jacinto fault zo ne because such orientations are incons istent 

with the detac hm ent's predicted and observed stra in field, and because such eas t-we st 

trending folds are act ive in toda y ' s strain field (And erso n et al. 2003). 

Later, by Ocotillo time, slip on th e San Jacinto fault zone and th e southernmo st 

Sa n Andreas fault , the Brawley se ismic zo ne and the Imperial fault were the prim ary 

contro ls on basin architecture (Ja necke et a l. 2004). A transitional phase of deformation 

during deposition of the Borrego Formation might predate the present geo metry of th e 

San Jacinto fau lt zone and there is some evi dence that parts of the deactivated detachment 

fau lt have bee n utili zed by younge r str ike-s lip faul ts (Pcttinga l 99 l ; Axe n and Fletcher 

1998; Dorsey and Jancckc 2002; Axcn ct al. 2004; Steely ct a l. 2004) . 

Curr ently the San Fe lipe Hills arc surrounded by dextral strand s of the south ern 

San Jac int o fault zo ne (D ibbl ee 1954 , 1984 ; Sharp 1967, 1981 ). The C lark fa ult may 

enter the stud y area from the nor th-w es t, the Coyote Cree k fault is loca ted alon g the 

south wes tern margi n of the stud y area , the San Andr eas fault is - 40 km to the north eas t, 

and the Super st ition Mountain and Superstition Hills fault s arc - 20 km to the so uth (figs. 

2-2, 2-3). Slip on these or other older dextral strand s probably created the bro ad cast ­

plun ging San Felipe anticline which dominat es the ce ntral San Fe lipe Hills , as we ll as the 

innumerable smaller map sca le folds throughout the San Felipe Hills (Dibb lee, 1984 ; 

He itman 2002; Li lly 2003; Chapter 3) (fig. 2-3). 

The San Felipe antic line is a broad east -west trending stru cture which partially 

predat es depo sition of the Ocotillo and Brawle y format ions (Dibble e 1954 , I 984; Chap ter 

3). Prior work suggests that the San Fe lipe antic lin e postdate s the deposition of the 
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Diab lo Formation (Dibblee 1954, 1984). The age and geometry of the anticline is refined 

by this study. 

Many open to gentle complex , and more closely spaced folds deform the limbs of 

the larger San Felipe and Santa Rosa anticline s (Dibblee 1954, 1984; Morley 1963; Reitz 

1977; Wells 1987; Fcragcn 1986; Heitman 2002; Lilly 2003) (fig. 2-3). We will show 

that these folds all postdate deposition of the Ocotil!o and Brawle y formations and arc 

consistent with the kinematics of the active strands of the San Jacinto fault zone (Chap ter 

3). 

Methods 

To assess stratigrap hic and structural relations within the San Felipe I !ills new 

I :24000-sca lc geo logic mappin g was con1plctcd and combined with previous detailed 

mapping in the south cen tral San Felipe Hills (Heitman 2002; Lilly 2003) in 

approximately 2.5, 7.5 minute quadrangles. Mappin g of the angular truncation beneath 

the Ocotillo Fom1ation in the western San Felipe Hills and south of Squaw Peak is 

quanti ficd and used to produ ce a reconstructed cross-section (A-A ' ) of the pal co-Sa n 

Fe lipe anticline at the time of initial depos ition of the Ocotillo and Brawley formations . 

The cross-section restores post Ocotillo Formation north-south shortening, but docs not 

restore slip on east-west striking strike-slip faults with uncertain offset. An additional 

cross section (B-B ' ) was created for a transect just west of A-A ' to show the current 

geometry of the San Fe lipe anticline. The approximate lateral extent of the angular 

unconformity beneath the Ocotil lo formation was mapped out and compared with the 

causative structures. A 625 m deta iled measured section was described through the 
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Borrego, Ocotillo and Brawley formations in the south-eastern San Felipe Hills to 

characterize a disconformity and basin transition, and to provide the first detailed analysis 

of the depositional environment of the Brawley Formation. 

Magnetostratigraphic analysis constrains the age deposition of the Brawley 

Formation in the San Felipe Hill s, and we collected a total of 16 sites, spaced 

approximately every 40 meters within the measured section, recovering between 4 and 7 

samples per site. The drilled samples were oriented using both magnetic and sun 

compasses; the declinations of the magnetic and sun compass all agreed to within a 

degree. The magnetizations of the sa mple s were measured using a 2-G 755 DC SQUJD 

magnetometer in a magnetically shielded room at Western Washington University , using 

an 8 position rotation sc heme. The samp les were demagnetized using an initial low­

temperature treatment accomplished by immer sion in liquid nitrogen. Little or no loss of 

remanence was observed after this trea tment. The sam ples were then either thermally 

demagneti ze d (using an ASC-TD 48 oven) , w ith I 5 to 22 temperature steps, or by 

alternating-field (a.f.) demagneti za tion (using a D-Tcch 02000 a.f. dcma gneti zer), with 5 

to l O mT increments to a maximum field of 200 mT. The palcomagnetic data were 

analyzed utilizing the PCA technique (Kirschvink 1980) to determine the directions of 

magnetization components. The directional components were then analyzed using both 

standard Fisher ( 1953) statistics, and the bootstrap methods of Tauxe ( 1998). These 

results were then correlated with the magnetic polarity timescale of Cande and Kent 

(1995) to determine the age of the top and bottom of the Brawley Formation, to date the 

first major phase of growth on the San Fciipe anticline, and to detennine when the closely 

spaced folding and related faulting first developed in the area. We compared our data 
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with the upp er 2 Ma of the magnetic polarity timescale because the correlative Ocotillo 

Formation in the Borrego Badlands yields lrvin gtonian fo ss ils and con tains the 0.76 Ma 

Bishop ash (Rcmicka and Be ske-Di ehl 1996). 

A 224 m of sect ion from the Ocotillo Badlands through the Borr ego and Ocotillo 

formations was described by Dorsey and analyzed fo r facies, paleocurr cnt s, and 

provenan ce. The Oil Well Wash meas ured sec tion is located 21 km to the east-northeast 

of the measured sect ion in the Ocotillo badl ands. This allo ws more proxima l and dista l 

facics to be com pared w ithin the same depositional basin . 

Pal eoc urrcnt indicators were measured in ex posures of the Brawley and Ocotillo 

fo rmatio ns inc ludin g the two measured sec tions. Within the measured sec tion samp les 

we re co llected and analyzed for microfossils by Kri stin McDougal l. Sa nd sto ne 

provenance was not ed when apparent in hand sampl e. Sa nd s were subdivided into three 

gro ups; Co lorado River derived , loca lly derived , and mixtur es of the two. 

Res ult s 

Outcrop Locations 

Within the San Fe lip e Hills the Ocotillo and Brawle y Formations are exposed 

throu ghout the southern and eastern portions of the study area (figs . 2-2 , 2-3) . The 

primary ex po sures of Ocotillo Formation form an east-west trendin g belt a long the 

southern limb of the San Fe lip e anticline (fig s. 2-2, 2-3). On the north limb of the San 

Felipe antic line in the northwestern portion of the fie ld area there are small exposures of 

the Ocotillo Fom1ation (fig. 2-3). Other expos ures of the Ocotillo Fo rm ation exist , 

imm ediate ly to the south and north of the stud y area, in the Ocotillo and Borrego 
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Badland s and the Seventeen Palms area (D ibbl ee 1954 , 1984 ; Pettinga 1991) (fig. 2-2). 

South of Squaw Peak the Ocotillo Formation extends eas tward as this unit interfinger s 

w ith the Brawley Formation in the southea stern San Fel ipe Hills (figs. 2-2 , 2-3). 

O utcrop s of the Brawley Formation fonn an eas t-we st trending belt east of the 

Powcr linc fau lt in the so uthern San Felipe Hill s . In the eas tern San Felipe Hills 

ex pos ures of the Brawl ey Format ion lie near and east of Ca lifornia Stat e Highway 86, 

and ex tendin g nea rly to the Salton Sea (figs . 2-2, 2-3). To the south of the San Felipe 

Hills the Braw ley Formation has bee n uplift ed an d ex po sed in the Superstition Hills and 

Super stiti on Mountain areas (D ibbl ee 1954 , 1984) (Fig. 2-2). The Brawley Formation is 

in the su bsur face to the cast and so uth of the study area (Seve rso n l 987; Herz ig et al. 

1988) . 

In the so uth eas t portion of the San Felipe Hill s, eas t of the Pow erline fault, the 

Brawley intcrfin gc rs with and gra de s westward into the Ocotillo Formation (Dibb lee 

1954 , 1984; thi s study ) (figs. 2-2, 2-3) . The contact between th e two unit s was placed 

above the highest cong lomera te o r pebbl y sa nd stone (Girty pcr s. comm. 2003; thi s 

stud y) . A thin (5-25 m) widespread ton gue of cong lomerate and pebbly sandstone, 

mapped as Ocot illo Formation , makes up the basa l unit of the finer-grained Brawle y 

Fonnat ion in the so uth eastern San Fe lipe Hills (Dibb lee 1954 , 1984; Heitman 2002; Lilly 

2003 ) (figs.2-3, 2-5). This ba sa l conglomerat e is replaced in the north by a loca lly 

de rived sa ndstone and gr it in the eastern San Felipe Hills . 

Borrego Formation 

The Borre go Formation in the San Felipe Hills is up to 1680 m thick in the easte rn 

Sa n Fe lipe Hills , and has a sharp upper contact with the overlying Ocotillo and Brawley 
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formations. The base of the Borrego Fom1ation is transitional as it interfingers with the 

underlying fluvial-dcltaic Diablo Formation. In the north and central San Felipe Hills a 

transitional map unit was used to identify areas where Diablo and Borrego litholo gies 

intcrfingcr in nearly equa l amoun ts. 

The Borrego Formation in the San Felipe Hills and Ocotillo Badlands consists of 

fine-grain lacustrinc claystonc, mudstonc, and siltstone with widely spaced intcrbeddcd 

sandstones. The total volume of sandstone is less than fifty percent, usually much less 

than fihy percent (figs. 2-5, 2-6; plate 2). Red finely laminated to massive marly 

claystonc, and mudstonc arc the primary lithology of the Borrego Formation. Lesser 

grey c laystonc and thin marl up to 0.5 111 thick arc also present (figs. 2-5). 

Sands tone beds in the Borrego Formation arc up to 4 111 thick and dominantly 

sublitharcnitc derived from the Colorado River (Guthrie 199 1; Winker and Kidwell 

1996). The middle of the Borrego Forma tion in the eastern San Felipe Hills contains 

severa l discontinuous beds up to 2 m thick of pebbly sandstone, with clasts dominated by 

tonalite . In the southeastern San Felipe llill s a laterall y continuous bed of conglomerate 

that contains clasts of Diab lo Formation sands tone and oyster shell fragments from the 

marine lmperial Group is traceab le for severa l kilometers in the middle to upper Borrego 

Fom1ation. 

The Borrego Formation appears internally conformable at our map scale and does 

not show evidence for syndepo sitional growth in the San Felipe Hills. Growth may be 

apparent within the Borrego Formation to the north and northwest in the Borrego 

Badlands (Dorsey unpubli shed data 2003). Landsat imagery that shows possible 

convergence of beds within the Borrego Formation on the north flank of the San Felipe 
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anticline coincides with a zone of structural convergence and numerous dextral faults 

(plate 3). Further stratigraphic work within the Borrego Formation throu ghout the 

western Salton Trough is necessary to clarify these relation ships. 

The uppem1ost Borrego Formation was measured in the lower part of both the 

Ocotillo Badlands section and the Oil Well Wash sec tion. This portion of the Borrego 

Formation is exposed in the southeastern and eastern San Felipe Hills and the core of the 

anticline in the Ocotillo Badlands beneath the Ocotillo and Brawley formations (figs. 2-3, 

2-5, 2-6; plate 2). Both of the sections started in the upper Borrego Formation . The Oil 

Well Wash measured sec tion describes up to 128.5 111 of the Borrego Formation and the 

Ocotillo Badlands measured sect ion describes 21.5 m. 

The Borrego Formation in both sec tions is dominated by claystonc with lesser 

mudslonc and sandstone . In the Oil Well Wash sec tion the claystonc is gray to red or 

pink and finely laminated to massive with thin up to severa l cm thick yellow weathering 

marl. Sandstone in the Oil Well Wash measured sect ion is composed of fine- to 

medium-grained sublitharcntitc , which is characteristic of Colorado River-deri ved 

sed iments (Guthrie I 991) (fig. 2-5; plate 2). Sandstone beds arc up to 5 111 thick but more 

commonly only 2-3 m thick displaying low-an gle cross stratification and planar 

stratification. Thin IO cm thick gray silty-marl beds arc also present in the Borrego 

Formation. The upper 5 m of the Borrego Formation consists of interbcddcd very fine­

grained sandstone, siltstone, and thin 1-2 cm thick laminated micritc. One prominent 

interval of desiccation cracks in red claystonc occurs in the upper 15 m of the Borrego 

Formation in Oil Well Wash. 
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The upper Borrego Formation in the Ocotillo Badland s is dominated by mass ive 

to finely laminated red c lay ston e (fig. 2-15). One 2 m thick bed of hori zo ntall y stratified 

pebbl y sand stone is int erb edded in red claystonc 5 m below the contact with the Ocotillo 

Fo rmation . C last compo sition of this bed is domin ated by tonalite from th e eas tern 

Pen insular R anges. No so il stru ctures or des icca tion crac ks were obse rve d in the 

uppermo st Borrego Fo nnation in the Ocotillo Badlands and the contact with the 

over ly ing Ocotillo Formation is interbedded and co nfom1 ab lc . 

Microfossils in the Borrego Formation inc lud ed ostracods, mi cro mollusks, 

diatoms , rare plankt on ic forams, and plant fragments (fig. 2-5 ; table 2- 1) (McDouga ll 

unpubli shed data 2004) . Microfossil assemblages indicate freshwater to occas ionally 

brackish wa ter lacustr inc co nditi ons. The Borrego Formatio n accum ulated in a quiet and 

re lat ively c lear , sha llow( < 20 m) , near-s hore environment in a poo l/ lake/ lagoo n se ttin g 

(McDougall unpublished work 2004). Water for thi s sys tem was provided by sa line 

(marine) and freshwater sour ces (McDougall unpubli shed work 2004). 

The rocks of the Borrego Formation acc umul ated in a perennial lacustrin c se ttin g 

with sa nd stone representing more proximal facics and claystonc and mud stonc 

repre se nting distal, open lacu strin e facies and near shor e environments. Further work is 

necessa ry to characterize the sandstone faeies in the Borrego Fonnation , but work to date 

shows few marginal lacustrine depo sits in the San Felipe Hill s . 

Ocotillo Formation 

Overview 

The ba se of the Ocotillo Formation is a angular unconformity in the western San 

Felipe Hill s and is a disconformity in the east, where the Oeotillo Formation interfingcrs 
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with the Brawley Formation to the east and north (figs. 2-5 , 2-6, 2- 7). To the so uth 

throu ghout the Ocotillo Badlands and in the measured sec tion , the Ocotillo Formation 

overlies the Borrego Formation along a sharp but co nformabl e contact that has no 

apparent so il develop ment or erosional relief (figs. 2-3 , 2-6). Clas ts of the underlying 

Borrego Formation are not present in the basa l beds of the Oco till o Forma tion . The 

contac t is diffcult to place in some areas. 

Outcrops of the angular unc onform ity beneath the Ocot illo Format ion occur 

principall y in the weste rn San Fe lipe Hill s as a relatively narrow eas t-west belt on the 

sout hern limb of the San Fe lipe anti cl ine. T he area und erla in by angu lar unconformity 

exte nd s cast to Tarantula Wash and probab ly cont inu es to the west beyond the stud y area . 

To the cas t of Tarantula Wash the Oco till o Forma tion ove rli es the Borrego Format ion in 

disconformity (fig . 2-3). Jn the Tarantula Was h area the base of the Ocotillo Formation 

changes laterally from an angu lar unco nformit y to a disconformity across a 200-500 m 

distance (fig. 2-3). This defi nes the eas tern exte nt of angular unc onformity (fig. 2-3) . On 

the north limb of the Sa n Felipe anticline there is one outcrop of the Ocotillo Formation 

ly ing in angular unconformit y on the Di ab lo Formation (fig. 2-3). I One lie s in 

di sco nformity on the transitional Diablo to Borrego unit (fig. 2-3). Near Seve nteen 

Palms , ~5 km to the north (Fig. 2-9) , there are more extensive ex po sures of the Ocoti llo 

Formation that app ea r to be conformable on the Borre go Formation (Dibblee 1984 ; 

Pettinga 1991; Bartholomew 1968) . Po st-Ocotillo folding and faulting ha s obscured the 

contact relations of several outcrops of the Ocotillo Formation between Seventeen Palm s 

and the northwest edge of the study area and we hav e not studied them. 



A well exposed sec tion of the Ocotillo Formation was mea sur ed (by Reb ecca 

Dorsey) in the nort hern Ocotillo badlands . The Ocotillo Fom1ation is 223 .5 m thick in 

the sec tion th ere, but map data sugges t a total thickn ess of - 450 m in the northern 

Ocotillo badlands (fig. 2-6). The Oil Well Wash sectio n contains just 16.5 m of distal 

Ocotillo Formation (fig. 2-5). 

Fac ics and sedi mentar y patterns 
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T he Oco till o Formation is characterized by co ng lom erate, pebbly to gri tty 

sa ndstone , sands tone, and lesse r fine grain si ltstone and mudstone (fig. 2-6). Within the 

San Felipe Hills, moderately lithificd pebbly arkos ic sands tone is the dominant lith ology 

or the Ocoti llo Formation, but medium-grained sandstone to mudstonc arc also important 

co mponents of the lower Oco till o Fo rmation . Sed imen tary structur es includ e shallow 

chan nel fills w ith imbricated clasts and hori zo ntal to low-angle strat ificatio n. The 

Oco till o Fom1ation includes intcrbedd ed C-s uite and L-suite sand ston es , with L-suite 

dominating ove r C-suit c. Re cyc led c las ts of the Diab lo Formation with lesser amount s 

of the Imp eria l Gro up , arc com mon. 

In the Ocotillo badland s, the ba se of the Ocotillo Formation was plac ed at the 

ba se of the low es t conglomerate bed greater than 2 m thick (fig. 2--6). Directly above its 

basa l contact with the Borre go Formation, the Ocotillo Formation consists of ma ss ive to 

horizontally stratified pebble to cobble conglom erate . Above the contact distinct beds of 

sa ndy matrix- support ed pebble to cobble conglomerates showing low-angle cross 

stratification and occasional shallow channel scours generally less than l m thick 

dominat e the meas ured section (fig. 2-6). 
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A interval of red claystone and mudstonc with lesser siltstone and sandstone 

begins abruptly at 48.5 min the measured section conti nuing up section to 77.5 m (fig. 2-

6). Bioturbation and gastro pods were noted in the lower portion of this section. Sand­

filled desiccation cracks up to l m deep arc present immediately below a planar bedded 

sandstone interval near 65 m (fig . 2-6). 

Conglomerate and pebbly sandstone overlie a sharp contact above a finer-grained 

sect ion between 58.5 and 77.5 m (fig. 2-6). These beds are horizontally stratified and 

similar to the section above the base of the Ocotillo Format ion (fig. 2-6). Above this , 

from 90 to I 09 rn the section contains fine-grained cross-be dded sandstone with Colorado 

River provenance (fig. 2-6). At IO 1.5 min this interval these sandstones are interbcdcled 

with lesser reel muds tones. The relative abundance and thickness of mudstonc beds 

increases up section in this otherwise sandy section (fi 0 . 2-6). 

Above I 09 111 pebble to occasionally cobble conglomera te dominate , with 

intervals of coarse sandstone and pebb ly sandstones (fig . 2-6). The pebbly sandstone is 

commonly crudely bedded showing weakly developed horizontal stratification with 

stringe rs of pebble s set in sand-dominated beds. Minor claystonc and mudstonc beds up 

2 111 thick arc intcrbcdcled with these deposit s (fig. 2-6). Fine-grained deposits include 

grey to white bedded and rippled siltstone and peach to red mudstone and claystone 

which is severa l meters thick. Several mudston c and claystone beds display well 

developed polygonal desiccation cracks (figs. 2-6, 2-8). 

Provenance 

The Ocotillo Formation in the Ocotillo Badlands is dominated by granular sub­

rounded very coarse to coarse white plagiocla se, quartz and biotite grains, which arc 
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likely derived from nearby uplift s of the eastern Peninsular Ranges (fig. 2-6). Sands 

w ith similar compos itions have been linked to the eastern Peninsular Range s to the west 

by previou s workers (Guthrie 199 I ; Winker and Kidwell 1996). Up to 90 % of sandstone 

in the measured sect ion has a local source (fig. 2-6). Smal l interval s (8%) of the section 

contained Co lorado River derived and mixed loca l and Colorado River-deri ved sed iments 

(up to 2%). Co lorado River-derived sands arc restricted to the lacustrine and fluvial­

dcltaic interva ls between 50 and I 00 m (fig. 2-6). 

Com position of pebble to cobble sized clasts arc fairly uniform . Clasts include 

tona litc, Diab lo Formation , mctasedimcntary schists and marbles, mylonitcs , and gneiss 

(fig . 2-6). Tona lite clasts dominate the section . Clasts o f the Diablo format ion arc overa ll 

less common , though loca lly abundant, and arc present throughout the sec tion . My lonitc, 

mctascdimentary , and gneiss clasts were noted both near the base and top of the section. 

Just above the base of the Ocotillo Formation, clasts includ e tonalite from the eastern 

Peninsular Ranges and up to 30 % recyc led clasts of the Diab lo Formation sandstone 

(figs . 2-6, 2-9). Oco tillo Forma tion to north and northeas t in the San Fe lipe Hills has a 

similar ove rall clast composition. 

Palco flow 

Clast imbri cat ions were measured at 6 interva ls in the measured section . Tilt­

corrected mean paleotlow was easterly based on 34 pebble imbrications (fig . 2- l 0). 

Environment of deposition 

Based on gra in size, sedimentary structures, and facies we infer that the upper 130 

m of Ocotillo Formation was formed in a proximal to distal alluvial fan and bajada 
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setting. The lower I IO m of Ocoti llo Fonnation consists of alternating lacustrinc , fluvial, 

delta ic, and alluvia l fan deposits (fig. 2-6). Alluvial fan environments arc characterized 

by the horizontall y strati ficd pebbly sandstones and pebble to cobble conglomerates , with 

low-angle cross stratification and sha llow channe l fills (figs. 2-6, 2-9). Evidence for 

lacustrin e deposition is limited to a 77.5 m thick transitional zo ne in the lower Oco tillo 

Formation, where Borrego and Ocotillo lithofac ics alternate . This interva l conta ins 

lacustrine fauna including gastropods and fine grai n intcrlaminatcd mudstonc and 

claysto nc. Fluvial to deltaic deposition is indicated by cross beddin g and fining-up trends 

between 86 and I 09 m (fig. 2-6). Facics association and sed imentary structure s between 

exposures of the Ocot illo Formation in the San Felipe Hills, and the Ocotillo and Borrego 

badlands arc similar and likely repre sent depo sition in alluvia l fans that prograclccl into 

and intcrfingcrcd with finer basinal depo sits which were either fluvial or lacustrinc (this 

study ; Lutz and Dorsey 2003). 

San Felipe antic line 

Angular relation s beneath the angular unconformity underly ing the Oco tillo 

Formation in the wes tern San Fe lipe Hills defin e a large cast-we st trending anticline in 

the underlyin g Borrego and Diablo formations and Imperial Group which probably 

formed ju st prior to deposition of the Ocotillo Forma tion across it (fig. 2- 11). Based on 

the age of the rocks beneath the angular unconfo1111ity, the angularity of the contact, and 

the younging direction beneath the unconformit y the anticline is roughly IO km north to 

south and 14 km from the western edge of the study area to the eastern tip. The anticline 

likely ex tends to the west to Borrego Mount ain for a total cas t-west length of 24 km. 

The anticline co incides with the large cast-west trending San Felipe anticline which 
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deforms the Ocotillo and Brawley fom1ations as well as the underlying Imperial Group , 

Diablo and Borrego formations (fig . 2-12). 

Jn cross-section the reconstructed anticline has a longer (7 km) north limb 

whereas the south limb is only 3 km in length (fig . 2-11). The Diablo Formations dips 

28° to the north beneath flat lying Ocotillo Formation on the north limb of the anticline 

(fig. 2-11) . Pre-Ocotillo beds on the southern limb of the anticline dip from 16 to 24° 

(fig. 2-1 l ). Structural offset between the southern San Felipe Hill s and the Ocotillo 

Badlands imply north-side-up thrust fault or similar structure separating these two areas 

(fig. 2-11 ). The exact dimensions of the southern limb are poorly constrained because the 

conformable contact between the Ocotillo and Borrego formations in the Ocotillo 

Badlands is located southwest across a major strand of the Coyo te Creek fault with up to 

2 kilometers of slip (fig. 2-11). The intcrlimb angle of the San Felipe antic line beneath 

the reconstructed angular unconfornity was at most 128° just prior to depo sition of the 

Ocotil lo Formation. Using the modern strain rate of 32.0 ± 2.4/\ I o-8 per year from GPS 

data sets (Anderson ct al. , 2003) over a simi lar spatial area and orientation to that of the 

reconstructed antic line the anticl ine cou ld have formed in 285,500 ± 19,700 years. 

A 2.7 mGal gravity high coincides very we ll with the San Felipe anticline mapped 

at the surface and defines the subsurface extent of the basement-cored part of the San 

Felipe antic line. This correspondence shows that the basement is coup led to the 

overlying sedimentary section at the sca le of the San Felipe antic line. The anticline 

appears to end or be truncated either at the Powcrline fault or - 2-3 km to the east in the 

central San Felipe Hills (fig. 2-13). To the west the gravity signal of the San Felipe 

anticline extends along trend 6 km to the west of Borrego Mountain on the southwest side 
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of the Coyo te Creek fault. The extent of the grav ity high corre sponds well with the 

po sition of both the modern and ancient , prc-Ocotillo and Brawley formations, San Felipe 

anticline ( fig. 2-13). 

Brawley Formation 

Overview 

The base of the Brawley Formation in the eastern San Fe lipe Hills is defined 

here by the first trou gh cross-bedded loca lly derived sandston e in eros ion a l contact with 

und erly ing red c laystonc, mud stone, and lesser sandsto ne of the Borrego Fom 1ation (fig. 

2- 14). The basal sandsto ne of the Braw ley Fonnation is common ly ove rla in by a red 

mudstonc or clay stonc up to 20 m thick which may a lso have w ithin it a wh ite si lty marl 

intcrb cd up to I m thick. T he location of the con tac t was late r co nfirm ed us ing Landsat 

data acquired af ter the contact had been traced in the field. 

The gra in size of the low em1ost Ocotillo and Brawley fo·m1ation s decreases to the 

north and cast above the disconformity in the eastern Sa n Felipe Hills. Recyc led c lasts 

of the underlying Borrego For mation and adjace nt Diablo Formation arc common in the 

lowermos t Ocotillo and Brawley formations in the easte rn Sa n Felipe Hills and arc 

typically I cm in diameter , ranging up to 2-3 cm in diameter. Throughout mo st of the 

San Felipe Hill s the contact has been exte nsive ly folded and faulted by deformation that 

po stdates depo sition of the Brawley Formation (fig. 2-3). 

Four hundred and e ighty met ers of the Brawley Formation, and 128.5 m of the 

Borr ego Formation were mea sured and describ ed in Oil Well Wash in the south-ea st 

portion of the study area (figs. 2-3, 2-5, 2-15). Th e sec tion was desc ribed and me as ur ed 

in thre e distinct int erva ls that arc separated by yo unge r folds and fault s . Section legs I 



29 

and 2 were directly correlated by laterally following bedding on foot and on aerial photos 

around a cast-northe ast plunging anticline (figs. 2-5, 2-15). Section legs 2 and 3 were 

corre lated across the Extra fau lt zone using a prominent series of marls and an over lying 

channe l comp lex at 480 mas a marker (figs. 2-5, 2-15). This marker couplet could also 

corre late with a marl and sands tone interva l at 415 m in leg 2, but this corre lation is not 

preferred because of a poor stratigrap hic match above the marker couplet. l f this 

alterna te corre lat ion is correct, the base of the Bruhn es normal would lie at 435 m in the 

measured section instead of at 480 m. 

Facies and sed imentary patterns 

The measured section in Oi l Well Wash is 625 m thick. The lower 128.5 m 

consists of upper Borrego Format ion and the upper 496.5 m contain Ocotil lo and Brawley 

formations (fig. 2-5; plate 2). A thin tongue of the Ocotillo Formation, 16.5 m thick , 

separa tes the Brawley Fo1111ation from the Borrego Formation in this area (figs . 2-3 , 2-5 , 

2- 15; plate 2) . Strata of the Brawley Forma tion are conform able and lack obse rvab le 

grow th strata. The contact between the Ocot illo and Brawley formations is conformabl e. 

Basal beds of the Oco tillo Formation over lie a disconfo1111able contact with 

Borrego Fom1ation in this sec tion and locally contain pebble to occasional tonalite 

cobbles. The Ocotillo Formation fines up from the basal unconformity to 145 min the 

sec tion and consists of horizontally stratified , locally derived sandstone. Mas sive 

mud s tones of the lowem1ost Brawley Formation conformably overlie this tongue of the 

Ocotillo Formation. 

Throughout the Brawley Formation buff to tan-orang e weathering fine- to 

medium- grained sandstone is the dominant lithology. Sandstone is characterized by buff 
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color, general lack of consolidation, and a variety of well developed sedimentary 

structures that include tabu lar and trough cross bedding, climb ing and tabular ripples, 

large scale high-angle cross stratification, channe l fills , and convolute laminations (figs. 

2- l 6, 2-17, 2-18, 2-19 ; plate 2) . Lesser amounts of red, finely laminated to massive, 

claystonc and mudstonc up to 3-4 m thick with well developed downward tapering sand­

filled cracks up to 1.5 m deep arc also characteristic of the Brawley Formation (figs . 2-5, 

2-20 , 2-21; plate 2). 

Channel-fil l structure s occur in the sandstone-dominated portions of the Brawley 

Formation , with good exposures between 425 m and 450 m in the measured section (fig. 

2-5). Channe l fills in the Brawley Formation general ly fine upward to siltstone and 

mudstonc and typically occur in beds 2- 6 m wide and 1-4 m high (figs. 2-5, 2- 16). Rip­

up mud pebble s and rare cobb les and armored mudballs arc common in the base of 

channe l fills (fig. 2-22). Several channel comp lexes up to 20 m thick exist as vertically 

stacked channe l-fil l depos its. Climb ing ripples and trough cross bedding are wel l 

developed and common withi n the channel fills (fig. 2- 17). Soft sediment deformation 

consisting of folded laminations arc present in some channel fills (fig. 2-18). Simi lar 

lithologics domina te the section from 156 m to 450 m. 

From 260 m to 400 m fine- to very fine-grained sandstone which commonly 

displays large sca le (3-4 m) high ang le cross stratificat ion is present in the measured 

section (figs. 2-19). Stacked sets of steep and tabular forescts up to 10-15 m thick are 

characteristic of this section. Sandstone in these deposits is well sorted and contains thin 

segregated intcrbeds of biotite. Thin, I m or less, lenticular and discont inuou s interbeds 
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of massive to laminated mudstonc and claystonc arc also present in this part of the 

section (fig. 2-5; plate 2). 

Red to red-brown mudstone and claystonc are intcrbcddcd with sandstone in the 

measured section. Thickness of these beds ranges from less than I m up io 3-4 m (fig . 2-

5; plate 2). These deposits are mass ive to laminated and show rare burrow mottling . 

Mudstonc and claystonc is dominant in the section between 145 m and 156 m and above 

480 m where they arc intcrbcddcd with sandstone, marl and siltstone (fig. 2-5 ; plate 2). 

Marl consists of grey to whitish silty to muddy carbonate-rich layers that 

commonly have abundant microfossils visible in hand sample includin g forams, 

ostracods , and gastropo ds (fig. 2- 18). Typical individual marl beds arc 20-30 cm thick. 

lntervals of stacked marl beds reach 2 m in thickness and make usefu l stratigraphi c 

marker s Locally-dcrvicd sandstone is commonly associated w ith marly interval s. 

Sedimentary structures in marl include soft sediment deformation , bioturbation , and 

occasional cross stratification. Marl usually is associated with claystonc and mudstonc 

but several arc abruptly overlain by channe l sandstones. 

Mudstonc and claystonc of the Brawley Formation commonly contain sand-fi lled 

desiccation cracks. The cracks arc typically well developed and downward tapering, and 

filled from above with loca lly derived sands (figs. 2-20, 2-2 l). Examination of some 

sand-fi lled cracks reveals fa int sub-hor izon tal laminations. The cracks arc up 1.5 m deep 

and up to 40 cm wide. When seen in plan view the desiccation cracks are common ly 

polygona l and up to 1-2 m across , and cross-sec tional view genera lly show regularly 

spaced (up to 1-2111) vertica lly oriented sand-filled cracks which occur throughout a given 

muds tone or claystonc bed. Soil features in the claystonc and muds tone of the Brawley 
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irregular rounded calcic nodules up to 3 cm in length (fig. 2-23). 

Microfossil results 
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Portions of the the Brawley Borrego formations in the Oil Well Wash measured 

section and elsewhere in the eastern San Felipe Hill s were samp led and analyzed for 

microfossils (McDougall unpublished data 2004) . Fossil assemblages within the 

Brawley Fonna tion range from fresh water to brackish to sa line water forms and 

included ; forams, micromollusks, ostracods , echinoids, and chara (fig. 2-5; tabl e 2-1 ; 

plate 2). Plant fragments were also noted in several samp les. The foram species is a 

sa line to brackish water type (McDougall unpublished data 2004). A ll other microfossils 

arc fresh water types. The Borrego Formation has a slightl y different fossil assemblage 

which was characterized by planktonic forams, micromollusks , ostracods , and diatoms 

(tab le 2- 1 ). 

Provenance 

Sandstone of the Brawley Formation in the Oil Well Wash sect ion contains up to 

- 57 % locally derived sandstones (L-suite) based on the presence of plagioclasc , quartz 

and biotitc grains derived from the Eastern Peninsular Ranges to the west (fig. 2-5, 2-22). 

Lesser (up to 36 %) Colorado River derived sandstones (C-suite) and minor (up to 7 %) 

mixed local and Colorado River derived sandstones characterize the Brawley Formation 

in Oil Well Wash (fig. 2-5). L-suite and C-suite sandstone beds alternate on a 5 m scale 

with relatively little mixing of the two petrofacics. 
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Paleoflow 

The Brawley Formation contains many well developed palcocurrcnt indicator s 

such as channel sco urs , forescts, ripples , and trou gh and planar cross bed s. For thi s study 

paleoflow was measured primarily from channel axes, cross beddin g and small sca le 

climbing ripples at various loca tion s in the San Felipe Hill s (fig. 2-24). The tilt-c orrec ted 

mean of the 51 measurements was 50 ° or north- eas terly (fig. 2-24). 

Environment of deposition 

Two thirds of the Brawley Forma tion in Oil Well Wash consists of fluvial and 

fluvial deltaic fac ies, as indi ca ted by consp icuou s cross-bedded sandstone channel fills 

that fine up into mudstonc w ith desiccation cracks and rare weak paleosols. Fluvia l and 

fluvial-deltai c facics dominat e the sec tion from 156 m to 450 m. Within thi s sect ion were 

brief periods of lacustrin e deposition and lon ger intervals of eo lian deposition. 

Eolian sandstone unit s arc int erbedd ed with the tluvial and fluvial dcltaic deposits 

betw ee n 260 m to 400 min the sect ion (fig. 2-5; plate 2). These deposits record sa nd 

dune s up to 4 m high and overall eas tward dun e mig ration . Similar facics patt ern s have 

been interpreted in the rock record as being deposit ed on the arid margin of ephemeral 

lacustrine systems (Rogers and Astin, 1991 ). Other evidence for arid conditions durin g 

deposition of the Brawley Formation include deep desiccation cracks and development of 

weak calcic paleosols. Both features arc indicative of so i I formation under arid 

conditions (Wright 1986) . The intervals which show the mo st evidence for extended 

subareal exposure and soil formation correspond well with interval s of eolian deposition · 

(fig. 2-5; plate 2). 
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Lacu strine deposits compr ise - 20 % of the Brawley Fom1ation in Oil Well Wa sh 

(fig. 2-5) . Promin ent lacu strinc interva ls arc present betwe en J 45 m and I 57 m and 

above 475 m where the y are intcrbedd ed with fluvia l-deltaic depo sits. Lesser int erval s of 

lacustr inc deposition ex ist betwee n J 57 m and 475 m (fig . 2-5; plat e 2). The mo st 

diagnostic litho facics in the lacustrine associa tion are fossiliferous marls and ma ss ive to 

lamin ated claystones and mudstones. Lacustrinc co ndition s arc support ed by the 

lacustrinc fauna identified in these marls and elsew here in the Brawley Formation. 

Lacustrinc conditions and suba real arid co nditi ons a lternat ed, producing the common 

well-developed sand-fi lled desiccation cracks (figs. 2-5, 2-25; plate 2). The largest 

des icca tion cracks occur in the lacustri nc intervals. 

Water chem istry of the Brawley Format ion lac ustrinc syste m va ried from fresh to 

brackish . Bracki sh water chemistry is required at times in the Brawley lake to support 

the sha llow marine to lagoona l marine forams preserved there. This probably developed 

during the period ic drying out of the lak e basin , co ns iste nt with other studi es of the 

Braw ley lake hi story (Herz ig et al. 1988). 

Paleomagnetic Results 

Fourteen of the pa leoma gnetic sa mplin g sites along Oi l W ell Wash in the upper 

Borre go and Brawl ey fonnations pr ese rve a stable primary ma gnetization . The 

upp ermost Borrego Formation is rever se ly magnetize d, and the low er 145.5 m of the 

Bra w ley Fom1ation has a normal pol arity (fig. 2-5 ; plate 2). About 206 m in the middle 

part of the Brawl ey Formation arc rever se ly magneti ze d and the upp er 145 m return to a 

normal polarity that we infer to be the Bruhncs subchron from regional relation s( fig. 2-5; 

plate 2) . Thi s correlat ion with the magn etic time sca le is further supported by work to the 
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north on the Ocotillo Formation which use d the presence of the Bishop ash (0.76 Ma) and 

unique fossi l assemb lages to corre late this portion of the tim e scale to the se rocks. This 

co rre lation places the base of the Jaramillo eve nt at the disconformity betw ee n the 

Oco tillo and Brawley fo rm at ion s and the Borrego Formation. The coincidence of the 

reversal w ith the disconformity a llows us to date the contact very precisely at 1.07 Ma . 

We recogn ize two distinct grades of paleoma gnetic data qu ality in our speci mens . 

Class da ta have we ll-defined seco nd-removed vector compone nts wi th a maximum 

angu lar deviation (MAD) of less than 25 ° (fig. 2-25). Class II data have poorly defined 

seco nd-remo ved components, with MAD >25°, and common ly do not trend towards the 

or ig in of the orthogona l vec tor plots (fig . 2-26). Many of the specimens w ith Class ll data 

have we ll-defined great ci rc les that a llowed for qualitative eva luat ion of the pol arity of 

the seco nd-removed magneti zat ion co mp onen ts (figs. 2-26, 2-27). One site (03Qb 19) has 

we ll-defined (C lass l) magneti za tion vec tors, which point either shallowly up, or 

sha llow ly down (fig. 2-28). We interp ret these directions to represent a recording of a 

tran sitional field , most like ly as soc iated wi th an excursion or short-li ved polarity eve nt , 

and so w ill not inc lude thi s mean direction in our analys is. 

T here arc six si tes w ith enou gh C lass 1 data to calculate site mea n dire ctions (fig . 

2-29). With one excep tion (Site 03Qbl 8), all of these sites have well -defi ned mea n 

dir ec tion s, with k> 15. The a 95 values are high , due to the low number of Class I samples 

in these s ites. The s ite mean dir ec tions are moderately clu ster ed in in- situ coordinates, but 

be co me mark ed ly better clustered after tilt-correction (fig 2-29). Th e in-situ mean 

direction (after inverting the pol arity of Site 03Qb32) is D = 6.8, I = 50.3, k = 27.8, a9 5 = 
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12.9, N = 6. After correctin g for bedding tilt , the mean of these direction s is D = 8.5, 1 = 

6 1.1, k = 51.0, CT95 = 9.5, N = 6. 

Age Constraints and Sedimentation Rates 
of the Brawley Formation 

The results of the palcomagnctic samp ling and correlation indicate that the base of 

the Ocot illo and Brawley formations at l 28.5 min the measured section coincides with 

the Matuyama-Jaramillo reversal ( 1.070 Ma) and that the base of the Bruhnes normal 

(0.780 Ma) lies at 480 m (fig. 2-5; plate 2) . The age of the rocks above and below these 

two tic points can be estimated from sediment accumulation rates. 

Magnetic reversals were placed at the midpoints between samp le points of 

opposite polarity , excep t for the two reversals descr ibed above (plate 2). The top of the 

Jaramillo normal subcro n (0.990 Ma) was detected at 274 m ± 36 111 (fig. 2-5; plate 2). 

The base of the Jaramil lo subchron would lie at l 35 m ± 30 m if it were halfway between 

the sample points. Instead the base of the Jaramillo was placed 6.5 m lower in the sect ion 

at the disconlormit y between the Ocotillo and Borrego formations at 128.5 m because 

this reversal co incides with the basal Ocotillo Formation in the other two loca lities that 

have been analyzed in the Borrego Badlands and Ocotillo Badlands (Brown ct al. l 99 1; 

Lutz and Dorsey 2003) (fig. 2-5; plate 2). The coincidence of this reversal and the major 

Ii tho log ic change at the contact is best explained if the Ocotillo Formation represents an 

abrupt basin-wide change. A I together the magnetostratigraphy shows that the onset of 

deposition of the Ocotillo and Brawley forn1ations in the sout heastern San Felipe Hills 

was at 1.070 Ma. 

The base of the Bruhncs normal was interpreted to I ie at 480 m between 03Qb24 

and 03Qb2 I based on a stratigrap hic and palcomagnctic correlation of section leg 3 to 
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section leg 2 (figs. 2-5, 2-15; plate 2). l f section leg 3 is not correlated into leg 2, the 

reversal would be interpreted to lie at 448 ± 34 m, halfway between 03Qb25 and 03Qb24. 

We calculate sedimentation rates using the preferred and alternate positions of the 

reversals. 

Applying the age constraints of 1.070 Ma and 0.780 Ma to the 351.5 m of the 

section between 128 .5 m and 480 m yields a time averaged sedimen tation rate of 1.2 ± 

0. l mm/yr. Alternate placement of the reversals at 135 ± 30 m and 448 ± 34 rn yields a 

sedimentation rate of 1. 1 ± 0.2 mm/yr. This is the overa ll rate for the constrained 

interval. Two other rates within this interval can be calculated using the top of the 

Jaramillo normal subchro n at 0.990 Ma. Using the preferred correlation of the base of 

the .Jaramillo at 128.5 m and the top of the Jaramillo 274 ± 36 m the sedimentation rate 

over this chron is 1.8 ± 0.4 mm/yr (fig. 2-5 ; piate 2). For the alternate correlation at 135 

± 30 m and 274 ± 36 m the rate is 1.7 ± 0.8 mm/yr. 

The reversed subchron betwee n the Jaramillo and the Bruhnes norma ls yields a 

sed imentation rate of 1.0 ± 0.2 mm/yr using the preferred corre lations at 274 ± 36 m and 

480 m (fig. 2-5; plate 2). Using the alternate corre lation at 274 ± 36 m and 448 ± 34 ma 

rate of 0.8 ± 0.3 mm/yr is calculated. 

Although these rates are computed from only a portion of the lower to middle 

Brawley Formation it likely can be applied to the entire measured section because of the 

similarities in depositional environments. By doing this a rough age can be calculated 

for the top of the Brawley Formation at 625 m (fig. 2-5; plate 2). Using the preferred 

correlation of the base of Bruhnes nom1al at 480 m and the two preferred rates previously 
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calculated of I .2 ± 0. I mm/yr and 1.0 ± 0.2 mm/yr, the age of the top of the Brawley 

Formation is estimated to be 0.66 ± 0.0 I Ma and 0.64 ± 0.03 Ma (fig. 2-5; plate 2). 

The total thickne ss of the Brawley and Ocotillo formations may be grea ter than 

the 480 m exposed in Oil Well Wash. Up to 550 m of the Brawley Formation is inferred 

from map relations locat ed north and cast of the measured sect ion. By applying the 

preferred sedimentation rates of 1.2 ±_ 0.1 mm/yr and 1.0 ± 0.2 mm/yr to this additional 

thickness, the end of Brawley sedimentat ion within the San Felipe Hills ranges from 0.61 

± 0.02 Ma to 0.52 ± 0.03 Ma. 

Discussion 

The Ocotillo Formation in the Ocotillo Badlands and the San Felipe Hills is 

dominated by locally derived pebble to cobble cong lomerate s and pebbly sandsto nes with 

lesser sandstones and minor muds tones and clays tones . Clast composition of the coarse 

beds is dominated by tonalitc from the eastern Peninsular Ranges with lesser but common 

recycled clasts of Diab lo Formation andstoncs. Both tonalitc and Diablo Formation 

clasts may have been sourced from uplifts to west and south in the Fish Creek and 

Vallccito mountains. ln the Ocotillo Badlands paleoflow is easterly supporting western 

sources for the tonalite and recycled Diablo Formation clasts. Some sediment may have 

had a source on the west most uplifted end of the San Felipe anticline near Borrego 

Mountain. 

Alluvial fan and bajada facics dominate the Ocotillo Fom1ation and differ from 

the underlying lacustrine Borrego Fon11ation. This change in depositional environment is 

significant and could have resulted from either tectonic or climatic variations. The 
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presence of recycl ed clasts of the older Diab lo Formation and the underlyin g angular 

unconformity beneath the Ocotillo Formation in the western San Felipe Hills support 

tectonic influences as the driver of change in depositional enviro nment at the onset of 

deposition of the Ocotillo Formation. 

Angularity and location of the angular unconformit y below the Ocotillo 

Formation and the age of the subcrop relation show that I) the angular unconformity 

overlies the basement-cored part of the San Felipe ant icline and 2) it defines the extent of 

the anticlin e ju st prior to 1.07 Ma. The San Felipe anticline at 1.07 Ma was a broad eas t 

trending antic line which stretched from at least Borrego Mountain in the west to central 

San Felipe Hills (~24 km) and was 10 km north to south. The orientat ion and sca le of 

this fold arc consistent with wrench deformation produced by northwest-striking dextral 

strike-s lip faults with a maximum horizontal stress oriented north -so uth . The fold has 

continued to grow in the current dextral strain field since the end of deposition of the 

Brawley Formation. 

The base of the Brawley Formation is a disco nformit y in the San Felipe Hills, 

which commonly displays 1-2 m of erosional relief. Thi s sugges ts a regional drop in base 

level ju st prior to deposition of the fluvial to fluvial-deltaic Brawley Formation over the 

persistently lacustrine Borrego Fom1ation. We infer a structural cause for this major 

change . The mapped extent, contact relations, lithology , and depositional environment of 

the Brawley Fom1ation documented in this study differ from those of previous workers 

(Dibblee 1954, 1984; Wagoner 1977; Dronyk 1977; Feragen 1986). Previou s workers in 

the eastern San Fel ipe Hills placed this contact 1-3 km farther to the east in the 

northeastern San Felipe Hills (Dibb lee 1954, l 984; Dronyk 1977) . 
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The fluvial, flu vial-d e ltai c, eolian, and lacustrin e condition s which existed durin g 

deposition of th e Brawley Formation represent an arid fluvial-lacustrinc sys tem. Ar id 

lac ustr inc se ttin gs arc typica lly assoc iated with thick eva porit e deposits (Boggs 200 l ). 

Lacustr ine inter vals in the Brawley Fo rmation contain co mmon well-developed sa nd­

filled desiccation cracks and thin s ilty marlstone interbedded with eo lian and fluvial 

deposits , but only one documented cva porit e bed. Similar-aged evapor itc deposits have 

been described in tim e corre lative deposits farther to the east in drill cores and at Durrn id 

Hills cast of the Sa lton Sea and shows that the basin axis was to the cas t during the 

deposition of the Brawley Formation (Herzig ct al. 1988) . The presence of significant 

desiccation cracks maybe the result of longer periods of flooding produced by the 

episodic infilling of the Salton Trough by a major river system . 

T he fac ics and sedime ntary structures in the Braw ley Format ion represent 

imp ortan t paleoclimatc indi cators for the per iod of deposition. The presence of ca lcic 

palcosols , co mm on we ll-d eve loped desiccation cracks , and signifi ca nt sect ions of eo lian 

san dstone deposits in the middl e of the Oil Well Wash sect ion rec ord sem i-arid to arid 

cond itions during deposition of the Brawley Formation (P lummer and Gos lin 198 1; 

Weinberger 200 I) . Clim ate durin g Brawl ey tim e may have been simil ar to the modern 

arid conditions of the Sa lton Trough and sugg est dese rt conditions in this area at leas t 

sinc e approxim ately l Ma. 

Provenanc e durin g depo sition of the Brawley Formation differs signific antly from 

that in the underl y ing Borr ego and Diablo formations (fig. 2-30). Prev iou s workers have 

shown that sa nd ston e prov enanc e of the Borre go and Diab lo fonnations in the San Felipe 

Hill s is dominated by Co lorado Riv er sourced sand and mud (Guthrie 1991 ; Winker 
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1987; Winker and Kidwell 1996) . However C-Suitc sa ndstone in the Brawley Formation 

prob ably was recycled from the o lder Borrego and Diablo formations. Recycl ed clasts of 

Diab lo Fo rmati on sa nd stone just above the base of the Brawley Formation indicat e 

sedim ent recyc ling be gan synchron ously with depo s ition of the Brawl ey Fo rmation. 

Because palcoflow in the Brawley Formatio n was toward the north eas t and the mouth of 

the Co lorado River sed iment was loca ted far to the so uthea st during Brawle y depos ition 

it is high ly unlikely that sediment was tran sported directly into the stud y area from the 

Colorado River. Much of the sa nd- size sediment in the Brawley Fom1ation may be 

rec yc led from nearby uplifts , inc ludin g the now denuded and uplifted Fish Creek and 

Va llcc ito Mountains . Overa ll northeastward fining of the Ocot illo and Brawley 

formations and overa ll cas t-nor the ast palcoflow support s the interpretation that recycled 

sediment was transported from uplift s to wes t and so uthw es t of the San Fe lipe Hill s (figs . 

2-3 I, 2-32). 

A palcogcograp hic reco nstru ct ion of the Ocotillo and Brawley formations shows a 

west to cas t late ral chan ge in depositional environm ents (fig . 2-3 1 ). Alluvial fan and 

bajada depos its in the south weste rn San Fe lipe Hill s and Ocotillo badl and s change 

eas tw ard into fluvial-deltaic and lac ustrin e depo sits (figs. 2-31, 2-32). Grain size 

de crea ses to the east towards the lacustrin e depoccnt er which is centered near the modern 

Salton Sea (figs. 2-31, 2-32). The San Felipe anticline is a large east-west trending 

structure which may have partially partition ed the San Felipe-Borrego Basin. The 

position of the Brawley delta was likely locat ed ju st south of the San Felipe anticline and 

the strea m feeding this delta may have flowed along the axis of the syncline just to the 

south (fig. 2-31 ). West and so uth of the Ocotillo Badlands and the San Felipe Hill s 
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dextral and or normal faulting along the front of the current Vallecito and Fish Creek 

mountain s may have produced uplift and denudation of these areas , and thereby supplied 

much of the sedime nt for the Ocotillo and Brawley formations . Generally cast-north east 

palcoflow is documented away from the mountain block s ( figs. 2-3 1, 2-33). 

Fac ics contra st across the disconformity further support changes in base level 

between Borrego and Brawley time. During deposition of the Borrego Forma tion in the 

San Fe lipe Hills, clays tonc and mudstonc accumulated in a relatively deep-water 

lacustrinc sett ing. Near-sho re lithofac ics are uncommo n. This contras ts with fluvial to 

fluvial-dcltaic , eolian, and intermittent near shore lacustrine facies of the Brawley 

Formation in the eas tern San Felipe 1-lills. Prior to 1.07 Ma the Borrego Format ion had a 

major depoccnter in the San Felipe Hills and Borrego Bad lands. The basin center sh ifted 

abruptly eastward at abou t 1.07 Ma at the end of Borrego deposition and before 

deposition of the Oco tillo and Brawley formations. 

The drop in base leve l and the shift to fluvial, fluvial-deltaic, and alluvial fan and 

bajada facics at the onset of deposition of the Ocotillo and Brawley formations could 

have been caused by a shift to a drier climate. However , the correlation of the facics 

change with a disconformit y and angular unconformity that coincide s with the San Felipe 

anticline , and the presence of significant amounts of recyc led sediment within the 

Ocotillo and Brawley formations strongly support tectonic deformation and its resultant 

base level change as the primary driver of these changes. Climate record s for the late 

Pliocene to Plei stocene in the southwestern United States show dramatic drying during 

the early Pleistocene at approximately l .5 Ma (Smith 1994). This does not conelatc with 

the 1.070 Ma disconforrnit y, angular unconformity , and conformable contact and 
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suggests that the upper Borrego Formation was possibly deposited during arid conditions. 

Thus the change in sedimentation is unlikely to have been the result of climate change. 

The basic control on the position of fine and coarse-grained facics in a 

tectonically active basin is the balance between subsidence and sediment influx (Boggs 

200 I). A major progradation of coarse gra ined facics, such as that record ed by the 

Ocotillo and Brawley Formations, is likely the result of changes in both subsidence and 

sedi ment inOux. Incr eased sediment influx may have been produced by new and or 

active tectonically driven intcrbasin and basin margin uplift s such as the San Felipe 

anticline and Fish Creck -Vallcci to Mountains. The sh ift in basin architecture was 

therefore likely caused by change or reorganization of the basin controlling faults. 

The loca tions and kinematics of the faults that controlled this tectonic transition is 

sti ll being inves tigated (Steely, .Jancckc, and Langenheim , in progress). However we do 

conclude that the controlling structures were not part of the older West Salton detachment 

fault system. East-west trendin g San Felipe anticline is likely the result of transprcssional 

deformation and is unexpected for the early phase of transtension on the West Salton 

detachment fault. The Coyo te Creek strand or the San Jacinto fault zone offsets the San 

Felipe anticline and is therefore a younger structure. There is no evidence for slip on the 

currently active strands of the San Jacinto fault system during deposition of these early 

syn-transtcnsion units, including the Imperial and Palm Spring groups, and 

Borregoormation in the San Felipe Hills. If slip occurred on the Coyote Creek and Clark 

strands of the San Jacinto fault zone during deposition of the Ocotillo and Braw ley 

formations it is expected that unconformitic s and or growth strata wou ld be observable on 

the closely spaced folds in the study area. None have been noted at map scale within the 
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study area in the Ocotillo, Brawley, and Borrego fom1ations in the study area but broad 

tilting adjacent to faults is not truled out by our data set. Altogether these data show that 

the growth of the San Felipe anticline and the drop in regional base-level at the onset of 

deposition of the Ocotillo and Brawley formations may have been the result of strike-slip 

on now inactive strands of the San Jacinto and/or the San Felipe fault zones. The fault at 

the northeast edge of the Vallccito and Fish Creek mountains was apparently one of these 

ancient strands (fig. 2-30) but other structures may have been involved in this 

reorganization. At the end of Brawley Formation (0.6 l ± 0.02 Ma to 0.52 ± 0.03 Ma) 

uplift halted deposition in the San Felipe 1-lills, closely spaced cast-west, north-south , and 

south-ca st trending folds developed, the San Felipe anticline tightened and a network of 

interconnected str ike-slip faults of the modern Clark strand of the San Jacinto fault zone 

propa gated from the SE Santa Rosas (Lutz 2005) into the San Felipe Hills (fig. 2--3). This 

deformation continues today and is described in Chapter 3. 

Conclusions 

Basin analysis is a powerful tool for understanding the evolution of plate 

boundary fault systems. Evidence for the initiation or reorganization of the San Jacinto 

fault zone exists within the Pleistocene stratigraphic section of the San Felipe Hills. A 

regional disconforrnity and correlative angular unconformity and changes in depositional 

patterns at 1.07 Ma was coeval with strike-slip related deformation in the southwestern 

Salton Trough. Deposition of the Ocotillo and Brawley formations was probably 

produced by now inactive strike-slip faults in the area, possibly by slip on the original 

strands of the San Jacinto fault zone. 
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The angular unconformit y beneath the Ocotillo Formation in the western San 

Fe lipe Hill s defin es a large east plun ging basement-cored anticline which corresponds 

well with the mod ern San Fe lipe an ticlin e. The int er limb angle of this fold was - 130 ° 

based on a reconstructed cross sec tion of the struc tur e just prior to depos ition of the 

Ocotillo Formation . The or ienta tion and sca le of this fold are consistent with wrench 

deformation produced by northw est st rikin g dextral str ike-slip faults. The west Salton 

detachment fault mu st therefore have stopped slipping as a single transtensional structure 

by this tim e . 

The angu lar unconformity corre lates eastward with a regional disconformity 

beneath the Oco tillo and Braw ley formations in the eastern San Fe lipe Hills 

magnctost rat igrap hical ly dated at 1.07 Ma. T he San Fe lipe ant ic line formed shortly 

before 1.07 Ma and provides the first clear ev idence th at strik e-s lip deformation of the 

Sa n Jacinto-Elsinore sys tem had supp lan ted the o lder West Sa lton detachment fau lt. 

The Ocotillo Formation just sou th of the Sa n Fe lipe Hill s in the Ocotillo Badlands 

is loca lly confor mab le on the und erlying lac ustr inc Borrego Formation . This unit is 

dominated by pebble to cobble loca lly derived co ng lomera tes, dominated by loca lly 

ton a litc c las ts and commonly co ntainin g recycled clas ts of the und er ly ing Diablo 

Formation. Paleoflow was easterly base d on clas t imbrication s . 

The Ocotillo Formation interfin ge rs and fines to the eas t northea st into the 

Brawley Formation in the south eas tern San Felipe Hills (figs. 2-3, 2-32; plat e l ) . These 

two formations repr ese nt prox imal to di sta l part s of the sa me depo s itional bas in , with 

deposition ranging from a lluvial fan and bajada depo s its of the Ocotil lo Fonnation to the 

fluv ial-d e ltaic to lacustrinc depo sits of the Brawley Formation. 
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Previ ous workers characteri zed the Brawley Formation as the lacustrinc lateral 

eq uiva len t of the Ocotillo Formation (Dibblee 1954 , 1984; Dronyk J 977; Wagoner 

1977). Instead the Brawley Formation in the easte rn San Felipe Hill s and meas ur ed in 

O il Well Wash is dominated by locally deri ved and recycled Co lorado Riv er derived 

fluvial and fluvial-dcltaic deposits wi th lesser eo lian and lacus trin c intervals . A regional 

di sco nformity se para tes the Brawley Fonnation from the und erlying Borrego Fo nn ation 

throu ghout the eastern San Felipe Hills. The disco nfom1ity at the base of the Brawley 

Forma tion in the eas tern San Fe lipe Hills has been magnetostratigraphically dated for the 

first tim e J t 1.07 Ma . The Brawley Forma tion in the eastern San Fe lipe H ills is 500 to 

550 m thick. Sedimentation rates (uncorrected fo r compact ion) calcu lated for the 

Brawley Form ation in Oil Well Wash were J .2 ± 0. 1 mm/ yr and 1.0 ± 0 .2 mm /yr. 

Brawley Formation se dim ents were suppli ed fro m near by intraba sin and basin margi n 

uplift s which shed mo stly Di ablo Formation and occas iona l lrnp eria l Gro up dep os its and 

int ermi xed these sed iment s wi th loca lly der ived arkoses. 

The ab rupt a lternation of lacustrinc , fluvi a l-dc lta ic, and eolian interv a ls in the 

Brawle y For mation was like ly driven by the occasional flood ing of the Salton Trough 

du e to aggrading and chann el sw itching of the Colorado Ri ver delta which se nt water 

northward into the Salton Trough . Occasional brackish conditions and a conn ec tion with 

the Gu If of Ca lifornia to the south for the Brawley lake are sugges ted by the pres ence of 

mar ine forams int ermix ed with mor e typical lacustrine microfo ss ils. Lar ge desiccation 

cracks and weak calcic paleo sols formed and 4 m high sand dunes were depo sited during 

int erve nin g dry period s. 
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Modern deposition patterns in the central Salton Trough show similar highly 

episodic patterns to the Brawley Formation however the depocentcr is more tightly 

focused on the floor of the Salton Trough. There is significant north- south shortenin g in 

the San Felipe Hills , the style and magnitude which was not apparent during the 

deposition of the Ocot illo and Brawley formation. This sugges ts that the current 

configuration of the strands of the southern San Jacinto fault system is no older than the 

top of the Brawley Forma tion between 0.6 l Ma± 0.02 Ma to 0.52 Ma ± 0.03 Ma. 

The sed imentary rocks exposed within the San Fe lipe Hills record the late 

M iocenc to recent evolu tion of the North American-Pacific plate boundary in the western 

Salton Trough. Early ob lique extension on the wes t Salton detachment fau lt was replaced 

by later transp rcss ion and strike-s lip on strands of the San Jacinto fault zone. This 

transition is recorded by the depo sition of the Ocotillo and Brawley formations over the 

Borrego and Diab lo formatio ns and the Imperial Group in the San Felipe Hills. 

Subsequent changes in the kinematics and geometry of the San Jacinto fault zone have 

deformed this success ion within the San Felipe Hills. 
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Table 2-1. Microfo ssil results. Microfossil numbers correspond with those on plate 2. 
Fossil indentific ation is from McDou gall unpublished work (2004). 

Microfossil 
Formation Fossil ID 

sam le# 
1 Brawley Forams, ostracods, micromollusks 
2 Borrego Forams (planktonic) , rnicrornollusks, diat< 
3 Borrego Barren 
4 Brawley Plant Fragments 
5 Brawley Barren 
6 Brawley Forams?, ostracods 
7 Brawley Forams?, ostracods , shell fragments 
8 Brawley Forams, ostracocts, micromollusks 
9 Brawley F orams?, ostracods 
10 Brawley B3rren 
11 Brawley rorams ?, ostracods, chara, echinoids? 
12 Brawley Ostracods 
13 Brawley Barren 
14 Brawley Forams , ostracods, abundant chara, Tin tin: 
15 Brawley Forams 'l, ostracods, chara, plant fragmet 
16 Brawley Forams, ostracods 
17 Brawley Barren 
18 Brawley Forams, ostracods, chara, micromo llus~ 
19 Brawley Forams, ostracods , chara 
20 Brawley Barren 
21 Borrego Ostracods , diatoms? 
22 Brawley Diatoms?, shell fragments? 
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Figure 2-1 . Tectonic overview of southern California . Areas of active block rotation 
are shaded red (Nicholson et al. 1986; Hudnut et al. 1989; Oskin and Stock 2003) . 
Strike-slip faults are in black; SAFZ =San Andreas fault zone , SJFZ =San Jacinto fault 
zone, IF=Imperial fault, SJFZ =San Jacinto fault zone , EF=Elsinore fault. 
BSZ=Brawley Seismic Zone. Oblique-slip detachment faults are in blue including 
the WSD =West Salton detachment. Fault locations are from Jennings (1977), and 
Axen and Fletcher (1998) . Box is approximate location of figure 2-2 . 



Figure 2-2. Overview of the western Salton Trough. Black box is extent of gravity map 

in figure 2-13. Dashed black box is the extent of the study area figure 2-3 . CCF , Coyote 

Creek fault ; CF , Clark fault ; SAF , San Andreas fault ; SHF , Superstition Hills fault ; SMF, 

Superstition Mountain fault; EF, Extra fault ; ERF , Elmore Ranch fault ; IF, Imperial fault ; 

BSZ , Brawley Seismic zone ; DH , Durmid Hills ; SFH , San Felipe Hills ; OC , Ocotillo 

Badland s; BB , Borrego Badlands ; FCB , Fish Creek-Vallecitos basin ; FCM , Fish Creek 

Mts .; PM Pinyon Mountains ; CM , Coyote Mountain ; C Mts .,Coyote Mountains ; SM, 

Split Mt.; SYM, San Ysidro Mts. ; VM ,Vallecito Mts. ; TBM , Tierra Blanca Mountain s; 

WP , Whale Peak ; YR , Yaqui Ridge. Modified from Axen and Fletcher (1998) 



Figure 2 - 2 . Overview of the western Salton Trough. 
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Figure 2-3. Simplified geology of the San Felipe Hills. Compiled from new unpublished 

mapping by Kirby , Janecke , Dorsey and Steely (2003) and Girty, Heitman , and Lilly ( 

2002) shown by dashed blue box . Faults are shown in blue and folds in black .. Major 

strike-slip faults within the study area include the SFHF (San Felipe Hills fault), the OF 

(Dump fault), the CCF (Coyote Creek fault), the PWF (Powerline fault), and the SDF 

(Sand Dunes fault). The trend of the major SFA (San Felipe Anticline) is shown in black. 

Outcrops of angular unconformity between the Ocotillo Formation and the underlying 

units is shown in yellow on the limbs of the San Felipe anticline. Black dashed line is 

approximate extent of the San Felipe anticline just prior to deposition of the Ocoti I lo 

Fonnation . The extent of disconformity at the base of the Ocotillo and Brawley 

formations is shown in red. A to A' is the location of the reconstructed cross sect ion for 

figure 2-11. Location of cross section B-B' (Fig . 2-12) is shown . Black box conesponds 

to position of figure 2-15 . Star represents location of the Ocotillo Badlands measured 

section in figure 2-6 . Approximate position of San Felipe wash is shown by the black 

dashed line . Red dashed lines are state highway s. 
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Figure 2-4. Stratigraphic column . Early synrift succession is the Imperial Group to 
Diablo Formation. The Borrego Formation is a transitional unit. Above these units , 
across an angular unconformity (shown in yellow) in the west and disconfonnity 
(shown in red) in the east are the Ocotillo and Brawley formations which were likely 
deposited during onset or reorganization of slip on strands of the San Jacinto fault zone . 
The coarse Ocotillo Formation conglomerate and sandstone interfinger with the finer 
sandstone of the Brawley Formation to the east within the San Felipe Hills. The 1.07 Ma 
age of the unconfom1ity was detem1ined paleomagnetically by this study. Other ages are 
approximate based on work of this study and previous work nearby by Johnson et al. 
( 1983), Remieka and Beske-Diehl ( 1996), Winker and Kidwell (1996) , and Steely et al. 
(2004). Growth may be apparent in the Imperial-aged deposits just to the west (Steely 
et al. , 2004). Unit thickne ss's are minima based on mapping from thi s study. Unit s 
match those in figure 2-3. 



Figure 2-5. Oil Well Wash measured section summary. Age constraints are shown 

relative to provenance, depositional environment , and sedimentary structures. Major 

changes in facies, provenance, and sedimentary structures occur across the regional 

disconfom1ity (black line) separating the Ocotillo and Brawley formations from the 

underlying Borrego Formation. Base of the Jaramillo normal was placed at the 

disconformity because of magnetostratigraphy in the Borrego Badlands which tightly 

constrains the onset of Ocotillo deposition (Lutz, 2005). The base of the Bruhnes normal 

was placed at 480 m based on stratigraphic correlation of the section legs 2 and 3 across 

the Extra fault zone. The thin dashed line is position of the other possible correlation 

which is not preferred because of a stratigraphic mismatch. Microfossils include; fp, 

planktonic Forams; f, Forams ; o, Ostracods ; m, Mollusks; p, plant fragments ; c, Chara; e, 

Echinoids; d, Diatom s. Reference polarity timescale is from Cande and Kent ( 1995) . 
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Figure 2-5. Oil Well Wash measured section summary. 
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Figure 2-6. Ocotillo Badlands measured section summary. Major changes in facies , 

provenance , and sedimentary structures occur across the conformable contact, shown in 

black, separating the Ocotillo Formation from the underlying Borrego Fonnation . Grain 

sizes are as follows ; Cl, claystone ; Md , mudstone ; SI, siltstone ; Vf, very fine grain 

sandstone ; F, fine grain sandstone ; M, medium grain sandstone ; C, coarse grain 

ssandstone ; Ve , very coarse grain sandstone; Pb, pebble conglomerate ; Cb, cobble 

conglomerate . Grey fill are siltstone or finer , pattern fill is pebble conglomerate or 

coarser. Onset of Ocotillo deposition is marked by sharp increase in grain size to pebble 

or cobble conglomerates . Location of section is shown on figure 2-3 . 
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Figure 2-7. Angular unconformity in the southern San Felipe Hills. Angular 
unconfonnity between north-dipping Ocotillo Formation (Qo) and 
south-dipping Diablo Formation (Td) in Tarantula Wash on the so uth limb of 
the San Felipe anticline . 
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Figure 2-8. Plan view of polygonal sand filled de sication 
cracks in red mudstone of the Ocotillo Fo1111ation. 
Location is south of the San Felipe Hills in the Ocotillo 
Badlands . Hand shovel is 60 cm long. 

Figure 2-9. Photo of cong lomerate in the Ocotilllo Formation 
with numerous recycled clasts of Palm Spring Fonnation 
sandstones. An-ow s point to Palm Spring clasts. Location is 
just sout h of the study area in the Ocotillo Badlands, from 80 
m in the measured section (Fig. 2-6). 
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ROSE DIAGRAM: 

Outer Circle = 15% 
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N=34 

Figure 2-10. Paleocurrents for the Ocotillo Formation. Paleoflow was measured from 
clast imbrications within the Ocotillo Fonnation in the Ocotillo Badlands. Mean 
direction= 88.7°. 
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Ocotillo Fom1ation. Units correspond with those used in Figs. 2-3, 2-4. See Fig. 2-3 for location of cross section. 
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Figure 2-13 . Isostatic gravity anomalie map . Approximate extent of the study area is 

shown by black dashed box . Extent of surficial angular unconformity beneath the 

Ocotillo Formation is shown be the white dash. The gravity signal of the San Felipe 

anticline (SF A) extends east past the Powerline fault (PWF) . The gravity signal of the 

south plunging Santa Rosa anticline (SRA) is apparent. Major faults are shown in white 

including the Clark fault, CF; Coyote Creek fault, CCF; Extra fault zone, EFZ; Elmore 

Ranch fault, ERF; Superstition Hills, SHF . Relevant exposures of Plio-quartemary rocks 

include the Borrego badland s, BB; and the Ocotillo badlands , OB. State highways are 

shown by the red dashed lines. Gravity data is courtesy of Langenheim unpublish ed 

work (2004) . 
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Figure 2-14. Disconformity in the eastern San Felipe Hills. Erosional 
contact between the basal locally derived coarse grit of the Brawley 
Formation and the red lacustrine mudstones of the upper Borrego 
Fonnation. Location is IO km north of the Oil Well Wash measured 
section in the eastern San Felipe Hills . Backpack in foreground for 
scale. 
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Figure 2-15. Oil Well Wash measured section location map. Faults are in blue and include the left lateral Extra fault zone . Folds are 
in black. Black bars represent approximate extent of segments of the measured section. Red dashed line represents stratigraphic tie 
line around structures. Crosses are approximate position of paleomagnetic sampling sites, red represents reversed polarity and black 
represents normal polarity. Site numbers correspond to those in figure 2-5 and plate 2. Qb =Brawley Formation , Qo = Ocotillo 
Formation, QTb = Borrego Formation , and Qu=undivided Holocene deposit s. 
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Figure ?-16 . . Cha~nelfill in te Brawley 
Fonnat1on. Location 1s 483 rn in the 
Brawley Formation . White scale bar is 
2_m. A1rnws indicate prominent beds of 
silty marl that are up to 40 cm thick. 

Figure 2-17. Climbing ripples in the 
Brawley Fom1ation. Climbing ripples 
111 poorly consolidated very fine-grained 
locally derived sandstone . 

Figure ?-19. Eolian deposi ts in the Brawley 
Formation. Foresets are approximately 3-4m m 
length. 

Figure 2-18. Soft sediment 
deformation in the Brawley 
Formation. Soft sediment 
defo1mation in the lowest marl 
bed in figure 2-16. Width of 
view is appoximately lm. 
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mudstone 

sandstone 

Figure 2-20. Large desiccation cracks in the 
Brawley Formation. Cross sectional view of 
large downward tapering desiccation cracks 
in red claystone. Photo is from 524 m in 
Brawley Formation along Oil Well Wash . 
Scale is 2m. 

Figure 2-21. Close up of desiccation 
cracks in the Brawley Formation. Cross 
sectional view of small desiccation crack 
filled with locai ly derived sands. Pencil 
for scale. Many cracks traverse the ful I 
thickness of a mud stone or claystone. 

70 



Figure 2-22. Locally derived sandstone in 
the Brawley Formation . Granular locally 
derived sandstone with mudstone clasts at 
base of channel fill. White grains are 
plagioclase weathered from Penin sular 
Ranges basement. Pencil for scale . 

Figure 2-23 . Paleosols in the Brawley 
Fonnation. Calcite nodules 
developed in a red mudstone. 
Downward tapering sand filled 
desication cracks are apparent. Photo 
is from 404 m in the Oil Well Wash 
measured section. Pencil for scale. 
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Figure 2-24. PaleocwTents for the Brawley Foramtion. a) Paleocurrents from the Brawley 
Formation throughout the eastern San Felipe Hills. Mean direction= 50° Paleoflow was 
measured from channel fills structures similar to the one shown in b) when additional 
sedimentary structures such as ripples and or trough crossbeds could be measured to 
determine unique flow direction. Additional measurements were taken on crossbeds and 
ripples. Orange field notebook for scale. 
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Figure 2-25 . Demagnetization diagrams for class 1 data. These sites have a well 
defined second-removed vector components . 
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Figure 2-26. Demagnetization diagrams for class 2 data . These sites had a poorly 
defined second removed components, and commonly do not trend towards the origin of 
the orthogonal vector plots. 
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Figure 2-27 . Class 2 data specimen polarity. Class 2 specimens 
which have a well defined great circle were qualitatively assessed 
for polarity . 
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Figure 2-28. Transitional field sites. Sites which shows well defined magnetization 
vectors which point either shallowly up, or shallowly down . This is interpreted to 
represent a period of transitinoal field. 



Oil Well Wash, class 1 site means, in-situ 

OWW mean, in-situ OWW mean, tilt -corrected 

-~ \i)• -~-
D = 6.8, I = 50.3, D = 85, I = 61.1, 

k = 27.8, o:95 = 12.9, N = 6 k = 51.0, o:95 = 95, N = 6 

Site N / No Declination Inclination k 95 Bed s/d 
03Qbl8 3 / 4 356.5 45.3 9 43.8 075/08 
03Qb20 4 / 4 10.l 57.4 33.4 16. 1 113/09 
03Qb22 4 / 4 34 1 37.7 15.8 23.8 077/32 
03Qb23 3 / 3 13.2 46 20.3 28. 1 085/09 
03Qb32 3 / 3 2 17.4 -46.2 27. l 24.2 I 65/ 10 
03Qb34 3 / 3 7.8 60.7 [84.5 9. 1 061/04 

Figure 2-29 . Class 1 data site means . Site mean directions from class 1 sites . 
Directions are given in in-situ coordinates , N/No are the number of accepted sample 
directions / number of demagnetized samples, k is the Fisher clustering parameter , 95 
is the radius of 95% confidence about the mean directionSite mean directions are 
moderately clustered in in-situ coordinates . Site mean directions are better 
clustered after tilt correction. 
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Figure 2-30. Tectonic and stratigraphic summary. Units and their approximate ages are 

shown to the left. Italics represent inferred ages primarily from correlation with 

paleomagnetically dated units to the south in the Fish Creek Basin (Winker and Kidwell 

1996; Johnson et al. 1983). Regular type represents constrained age from this study. 

Paleoflow is north when straight up and shows a 180 degree reversal between the 

Brawley Fonnation and the underlying units. Active faults show major structures which 

likely controlled basin architecture at a given time. Numbers represent data source ( 1, 

this study; 2, Steely et al. 2004; 3, Axen and Fletcher 1998; 4, Morton and Matti 1993; 5, 

Lutz 2005). 
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Figure 2-31. Paleogeography for the Ocotillo and Brawley formations. 
Paleogeography of the San Felipe Hills during deposition of the Ocotillo and Brawley 
formations just after 1 Ma . SFA, San Felipe anticline ; BB , Borrego badland s; OB , 
Ocotillo badlands ; OWW, Oil Well Wash ; SP, Squaw Peak ; FCB , Fish Creek basin ; 
BM , Borrego Mountain ; PLF , Powerline fault; SM , Superstition Mountains. Black 
arrow s show infered direction of sediment dispersal. Red arrows show actual sediment 
dispersal. Black dotted line is the extent of sub-Ocotillo Formation angular 
unconformity . Black dashed box is the extent of the study area. 
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Figure 2-32. Comparison of Oil Well Wash and Ocotillo badlands measured sections. 

Black line represents the base of the Ocotillo Formation from both sections. This 

transition was dated at 1.070 Ma in Oil Well Wash. Grain sizes are as follows; Cl, 

claystone; Md, mudstone; SI, siltstone; Vf, very fine grain sandstone; F, fine grain 

sandstone; M, medium grain sandstone; C, coarse grain ssandstone; Ve, very coarse 

grain sandstone; Pb, pebble conglomerate; Cb, cobble conglomerate. Grey fill represents 

siltstone or finer, pattern fill represents pebble conglomerate or coarser. Onset of 

Ocotillo deposition is marked by sharp increase in grain size to pebble or cobble 

conglomerates at both locations . ln the Oil Well Wash section this con-esponds with a 

regional disconformity in the Ocotillo Badlands no disconfom1ity is apparent. Measured 

Ocotillo Formation thickness in the Ocotillo badlands is at least 243.5 m and in the Oil 

Well Wash section is only 22.5 m thick showing dramatic eastward fining of the Ocotillo 

and Brawley formations . The Ocotillo Badlands section is located 20 km west of the Oil 

Well Wash section. Comparison of depositional environments shows basinward changes 

from alluvial fan and bajada deposition to finer grain fluvial .. deltaic and marginal 

lacustrine deposits. 
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Figure 2-33. Combined paleoeurrents for the Oeotillo and Brawley 
formations. Mean direction = 65.9° 
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CHAPTER 3 

MIDDLE PLEISTOCENE TO RECENT STRUCTURAL 

EVOLUTJON OF THE SAN JACINTO FAULT ZONE 

IN THE SAN FELJPE HILLS AREA , CALIFORNJA 2 

Abstract 

82 

The current transform plate boundary within southern California is a broad zone 

of northwest-striking dcxtral faults. Tota l plate motion across the plate boundary is 

broad ly distributed cast to wes t at the lat itude of the Salton Sea, wi th much of the slip 

localized along strands of the San Jacinto fau lt zone. Previous geologic mapping , 

microseismicity, seismic reflection, grav ity, magnetic, and trilate rat ion data all show 

significant changes in the characte ristics of the San Jacinto fault zone along strike in the 

western Salton Trough. Interacti ons among the active strands of the southern San Jac into 

fault zone and in particular between the Clark fault and other strand s, the complex 

deformation within the San Felipe Hills and the importance of sinistral faulting to the 

south have been poorly constrained by previous studi es . The rocks in the San Felipe 

Hills record the evo lution of the San Jacinto fault zone at the latitud e of the southern 

Salton Sea. 

In the western Salton Trough right-lateral separation along the Clark fault and the 

Santa Rosa fault is J 5 km based on an offset of the Cretaceous Eastern Peninsular Ranges 

2 Coauthored by Stefan M. Kirby , Susanne U. Janecke , Victoria E. Langenheim , Rebecca 

J. Dorsey, and Bernard Housen. 
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my Ion ite zone [ Sharp, 1967], yet a fault tip was identified just a few kilometers southeast 

of the offset mylonitc. To the southeast in the San Felipe Hills, . Plio-Quatcrnary 

sediments arc strongly deformed by a complex ser ies of folds and faults south-east of the 

previously mapped tcrn1ination of the surface trace of the Clark fault. New data suggest 

that the Clark fault probably persists into the central San Felipe Hills as an incompletely 

mapped horsetail fan and en eche lon fault zone, and the San Jacinto fault zone recently 

began to accommodate strain in a broad rotational zone southeast of the San Felipe Hills. 

Based on structural analysis, folds in the San Felipe Hills were divided into 

domains with similar geometr ies. Two transects through relevant fold domains were 

used to calculate the total shortening and amount of equ ivalent dcxtral slip on the Clark 

fault plane oriented 305° NW required to produce this amount of shorten ing. Total 

equivalent slip on the Clark fault plane is 5.62 km based on analysis of an eastern 

transect, and represents roughly a third of the right separation documented to the 

northwe st. Folding along this transect may have begun no earlier than the end of 

deposition of the internally conformable Brawley Formation in the sout heastern San 

Felipe Hills at 0.61 Ma ± 0.02 Ma to 0.52 Ma ± 0.03 Ma. Our analysis based on the 

spa tial extent, amount of shortening from folding and the time constraints give slip rates 

on the Clark fault rangjng from 9.5 ± 0.3 mm/year to 10.8 ± 0.7 mm/year. This suggests 

a significant component of plate boundary motion at this latitude has been localized on 

the Clark strand of the San Jacinto fault zone since at least 0.5 Ma. 

The southeast San Felipe Hills preserve the most intensely folded sedimentary 

rocks in the area, and is interpreted as the boundary zone between the domain of dextral 

slip and wrench folding to the northwest and a broad domain of clockwise block rotation 
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to the southeas t. The rotating domain transfers slip from the Coyote Creek and 

Superstition strands to the Imperial and Brawley zones in the cast and southeast [Hudnut 

et al ., 1989; Seeber and Armbr uster, 1999], our work shows that it also captures slip from 

the Clark strand. 

Introduction 

Tectonic Background 

The current transform plate boundary within southern California is a broad zone 

of major northwest-striking dcxtral fault systems, including the San Andreas, Elsinore, 

and San Jacinto fault systems [At1n 1ter, 1989]. Total plate motion across the plate 

boundary is broadly distributed cast to west at the latitude of the Salton Sea, with much 

of the slip loca lized along the strands of ihc San Jacinto fault zone to the southwest and 

the San Andreas fault to the northea st [Atwat er, 1989; Ro ckwe ll et al., 1990] (Figures 3-1, 

3-2). Southward the San Andreas fault steps right to the Imperial fault across the north­

northwest trending Brawley Zone which interact with the San Jacinto fault zone further to 

the wes t via a series of north east-striking le ft lateral faults [N icholson et al. , 1986; 

Hudnut et al ., 1989; Frost et al. , 1996; Magistra le, 2002] (Figures. 3-1 , 3-2) . The 

southern San Jacinto fault zone may be slipping at rates that equal or exceed the southern 

San Andreas fault at this latitude but this interpretation is controversial [Kendri ck et al., 

1994; Meade and Hage r 2005]. Despite the relative importance of the San Jacinto fault 

zone to total plate boundary mot ion at the latitude of the western Salton Trough , the 

geometrics and kinematics of this fault zone are incomplete ly known. 
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The southeastern San Jac into fault zone in the wes tern Salton Tro ugh is 

charac terized by severa l short, divergent fault strands which acco mmodate dcxtral strike­

slip. These include the Buck Ridge fault, the Clark fault and the Coyo te Cree k fault in 

the northwes t and the Superstition Mountain and Superstition Hills faults to the southeast 

[Dibblee, 1954, 1984a, 1984b; Sharp , 1967, 198 1] (Figure 3-2). Slip rates and fault 

geome trics of strands of the southern San Jac into probab ly evo lved through time within 

the wes tern Sa lton Trough but the specifics of the poss ible changes arc uncertain 

[Bartho lome11·, 1970; Pet tinga, 199 1; Dorsey, 2002; Janecke et al., 2004 ; K irby et al., 

2004; Lutz. 2005]. 

Lying along strike of the San Jacin to fault zone in the wes tern Salton Tro ugh, arc 

spa tially extensive expos ures of folded and faulted late Miocene to Plci toccne 

sed imentary rocks in the San Felipe Hills [Dibh lee, 1954, 1984a; Dronyk, 1977; Reitz, 

1977 ; Feragen, 1986; Wells, 1987 ; Heitman, 2002; Lilly, 2003]. The structures within the 

San Felipe I !ills should show the nature and extent o f the interac tion between strands of 

the San Jac into fault zone at this latitude. 1 lowcvc r. the geo metric and kinematic details 

of the faults which drive defo rmation in the San Felipe I !ills and the relation to the San 

Jac into fault zone to the northwest and southeast arc poorly known (for example 

compare) [Dihb lee, 1954, 1984a; Dronyk, 1977; Reitz, 1977; Feraga n, 1986; Wells, 

1987; Heitma n, 2002; Lilly, 2003]. This study provides new structural and geophysical 

data about the San Jacinto fault zone and clarifies the complex geometry of the San 

Jacint o fault zone in the western Salton Trou gh. 

Early strike- slip motion at the latitude of the Salton Trough was localized on the 

southern San Andr eas fault, which appears lo have been actively accommod ating dextral 



86 

slip in the Salton Trough starting after loca lization of the North American / Pacific Plate 

bounda ry in the Gulf of Ca lifornia at - 6.3 Ma [Atwater, 1970; Oskin and Stock , 2003]. 

During this time structures in the wes tern Salton Trou gh accom modated regional oblique 

extension across the West Salton detachment fault [Fros t et al., 1996; Axe n and Fletcher, 

1998 ; Steely et al., 2004] (Figures 3- 1, 3-2). Strike-s lip on strand s of the San Jac into fault 

zone began much later [Meisling and Weldon , 1989; Mor ton and Malfi , 1993; Weldon et 

al., l 993] and evo lved over time [Janecke el al., 2004; Kirby et al., 2004]. To the north, 

near its intersec tion wi th the San And reas fau lt, slip on the San Jacinto fault began after 

1.5 Ma perhaps as recent ly as 1.2 Ma [Morton and Matti , 1993]. A separate analysis 

ass uming constant slip rates of IO mm/yr across the entire fault zone points to a 2.5 Ma 

inception of the San Jac into fault zone [Morion and Matti, 1993] . Data presented here 

provide s import ant geo metric and time constraints on the development of the San Jacinto 

fault zone at this latitud e and revise long-term geologic slip rates. 

Structural Back ground 

The current con figuration and interre lation of the strand s of the southern San 

Jacinto fault zone has been the focus of much researc h [Sharp, 1967, 1972, 1975; 

N icholso n et al. , 1986; Ro ckvvell et al., 1990; Petersen et al., 1991 ; Seeber and 

Armbr us ter, 1999; Dors ey, 2002 ; Hudnut el al. , 1989; Anderson et al. , 2003]. Previous 

geo logic mappin g, and geophysica l data sets all show changes in the geometry and 

kinematics of the San Jacinto fault zone along strike in the southwestern Salton Trou gh 

[Dibbl ee, 1954, 1984a ; Sharp , 1967 , 1981; Bartholom ew, 1970; Nicholson et al., 1986; 

Severso n , 1987; Seeber ond Armbruste r, 1989; Hudnut et al. , 1989 , Pettinga, 199 1; 

Mag is trale, 2002 ; Anderson et al. , 2003]. 
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Ear ly work on the San Jacinto fault zone in the western Salton Trough was 

completed by Dibblee [1954, 1984a] and Shmp [1967, 1981]. Both of these workers 

mapped the San Jacinto fault zone as a series of southeastward-divergent discontinuous 

fault strands as it enters the western Salton Trough from the northwest [Dibble e, 1954, 

1984a; Sharp , 1967, 1975, 1981] (Figure 3-2). Changes in fault zone geometry are most 

pronounced as the strands of the southern San Jacinto splay southeast-ward into the 

western Salton Trough and distribute slip among several active faults [Dibblee , 1954, 

1984a; Sharp, 1967, 1981] (Figures 3-1, 3-2). Most of the dcxtral slip accommodated by 

the San Jacinto fault zone within the Salton Trough was assumed to be carried on the 

Coyote Creek , Superst ition Mountain , and Super stition Hills faults [Dibbl ee, 1954, 1984a; 

Sharp , 1967] (Figure 3-2). Other major strands which enter the Salton Trough from the 

northwest include the Buck Ridge fault and the Clark fault [Dibbl ee, 1954, 1984a; Sharp, 

1975]. Offset across the Buck Ridge fau lt and its kinematic relations to the San Jacinto 

fault zone arc incompletely understood [Sharp , 1967]. The Clark strand , which may be 

the dominant structure of the San Jacinto fault zone 1arthcr to the northwest in the 

Peninsular Range , was not considered to be the dominant fault strand in the Salton 

Trough and was thought to terminate south of the Santa Rosa Mountains some IO km 

northwest of the San Felipe Hills (Figure 3-2) [Dibblee, 1954, 1984a; Sharp, 1967, 1972, 

1975, 198 1; Bartholomew, 1970; Pettinga, 1991 ]. 

Total right-lateral slip across the San Jacinto fault zone northwest of the Salton 

Trough in the Eastern Peninsular Range is up to 24 km [Sharp , 1967; Bartholomew, 

1970; Matti and Morton, 1991 ]. To the southeast in the Salton Trough, the Coyo te 

Creek strand near Coyote Mountain was thought to have up to 6 km of right latera l offset 
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[Sharp, 1967; Dorsey, 2002], but newer work suggests offset of about 4 km [Janecke et 

al., 2005]. To the northeast, the C lark fau lt has at least 15 km of right separation on the 

basis of offset east-dipping Cretaceous mylonite zone [Sharp, 1967 ; Bartholomew, 1970] 

(Figure 3-2). A significant component of southwest-side-down slip across the Clark or 

San ta Rosa faults in Clark Valley would reduce the actual strike-slip component of s lip 

but there are few data to assess these dip slip components . Early work by Bartholomew 

[ 1970] postulated that much of the separation apparent on the C lark fault southeast of 

Coyote Mountain (Figure 3-6) could be the result of a connection between the NW Clark 

fault and SE Coyote Creek fault along the north-striking East Coyo te Mountain fault.. 

New data which shows similar - 4 km offset along the NW and central Coyo te Creek 

fault may preclude this possibility [Janecke et of ., 2005]. Later work ha s not focused on 

Bartholomew 's hypothesis ; a lthough several ot her stcpovcr models have been proposed 

for the Clark and Coyote Creek fau lts [Janecke et al ., 2003]. Timing of initiation of the 

Cla rk fault is a lso poorly known but critical to under standing the evo lution of the San 

Jacinto fau lt zone. 

South and southeast along strike of the San Jacinto faul t zone s ignificant changes 

in kinematics and structura l geometries occur [Hudnut et al., 1989] . Severa l fault stra nd s 

inc ludin g the dextral north west striking Superstition Hills and Superstition Mountain 

faults which may bound the so uthw est edge of a zo ne of clockwise block rotation 

so uth east of the San Felipe Hills. These rotating blocks are bounded by the Supers tition 

Hills and Superstition Mountain faults to the so uthw es t, and by northeast-striking s ini stra l 

faults such as th e E lmor e Ranch and Extra faults on the northwest and by th e north ­

north east-str ikin g Brawley Seismic zone on the east -north east [Hudnut et al., 1989; 
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Seeber and Armbruster , 1999; Magistrale, 2002] (Figures 3-1, 3-2). Block rotation 

appears to accommodate dextral slip across the southwestern Salton Trough southwest of 

the termination of the San Andreas fault and northwest of the termination of the Imperial 

fault [Seeber and Armbrust er, 1999] . Duration, magnitude, and timing of initiation of 

block rotation, however, is poorly constrained [Hudnut et al., 1989; Seeber and 

Armbruster, 1999]. 

The northwestern boundary of block rotation is inconsistently located in different 

studie s, but is assumed to be located approximately in the central San Felipe Hills, and 

ext endin g southw es t from the southern tip of the San Andreas fault to the Coyote Creek 

fault in the southwe st [Hudnut et al ., 1989 ; Seeber and Armbru ster, 1999]. None of the 

kin ematic model s for thi s latitude of the San Jacinto fault zon e adequatel y expl a in the 

complex deformation in the San Felipe Hills, and or interpret the re lationship of the Clark 

fault with the province of block rotation further to the southeast. 

Southea st of the previously mapped tc,mination of the Clark fault in the San 

Felipe Hill s, numerou s worker s have shown extensive folding and faulting of the late st 

Miocene lo Pleistocene stratigraphy over a - 550 km 2 area [Dibblee, 1954 , 1984a; 

Morley, 1963 ; Drony k, 1977 ; Reitz, 1977; Wagoner, 1977; Feragen, 1986 ; Wells, 1987; 

Heitman, 2002; lilly , 2003 ; Jan ecke et al. , 2003 ; Kirby et al., 2004] (Figures. 3-2, 3-3 , 3-

4). Exposures of deformed late Miocene to Pleistocene stratigraphy stretch from the 

Salton Sea in the east to Borrego Mountain in the west, and from California State 

1-1 ighway 78 in the south to the TruckJrnven Road in the North. Prior to this study only 

the work by Dibbl ee [ 1954, J 984a] covered this entire area . All other previous work was 



90 

limited to sma ller portions of the San Fe lipe Hills area [Morley, J 963; Dronyk , 1977; 

Reitz, 1977 ; Wagoner, 1977; Wells, 1986; Feragen, 1987; H eitman, 2002; Lilly, 2003]. 

The cast-plun ging San Felipe antic line forms the backbon e of the San Felipe Hills 

and expose s Cretaceo us age foliated plutonic rocks and some older metasedimentary 

rocks and late Miocene to ear ly Pliocene marine Imperial Group at its core [Dibbl ee, 

1954, 1984a ; Morie) ·, i 963; Reitz, 1977] (Figures 3-3 , 3-4). Entering the San Felipe Hills 

from the north is the south to southeast-plunging Santa Rosa anticline [Dibbl ee, 1954, 

1984a] (Figu res 3-3, 3-4). Superposed upon these two large folds arc many sma ller, 

dorninatcl y cast-plunging folds, with wave lengths between 1-2 km and hundr eds of 

meters f Dihhl <!e, 1954, 1984a; Morl ey, 1963; Reitz, 1977; Wells , 1986; Fera ge n, 1987; 

f/ eitmcm, 2002; Lilly , 2003 ]. Major northwe st-striking dcxtral faults mapped by previous 

workers in the San Fe lipe Hills include the San Felipe Hills and Powcrline faults, but 

many smaller faults have also been mapped [Dibbl ee, 1954, 1984a; Mor ley, 1963 ; Reitz, 

1977; Wells , 1986; Fero ge n, 1987 ; Heitman , 2002; lilly , 2003]. None of the prev ious ly 

mapped faults arc continuous across the San Felipe Hills and no prior mapping has found 

strands of the Clark fault southeast of its mapped termination near the Truck havcn road 

[Sharp , 1972, 1975 ; Bar tho lom ew, 1970; Pettin ga, 199 I] in the San Fe lipe Hills. 

Explanation s for the faulting and folding within the San Felipe Hills have var ied 

and none of the previous interpretations have accounted for the kinematics of the San 

Jacinto fault zone to the northwest and southeast of the study area. lt has been inferred 

that the deformation within the San Felipe Hills is the result of the dextral slip on the 

Clark fault , either as a blind structure at depth [Feragen , I 986; Wells, 1987] or a series of 

contractional stepovers which transfers slip across discontinuous faults within [Heitman, 



2002; Lilly, 2003 ], across the San Felipe I !ills [Janecke et al. , 2003] , or around the San 

Felipe Hills [Bartholom ew, 1970]. 

Obj ective 

We exam ine the kine matics and lateral continuit y of the San Jacinto fault zone 

using data from struc tures and synkinem atic deposits wit hin the San Fel ipe Hills. To 

constra in the geometry and interact ions of the fault strand s of the southern San Jacinto 

fault zone, three prior model s for the geometry or the Clark fault in the San Felipe Hills 

and its relation to the block rotation to the south arc tested . These hypothes es are 

presented below: 

I ) the Clark fault continues as a blind structure in the crysta lline baseme nt 

bene ath the San Felipe I I ills, connec ts at depth with the Superst ition Hills 

fault to the south , and produce s the folding deformation in sed imentary rocks 

the Felipe Hills above a blind portion of the fault [ Wells, 1986; Feragen, 

_1987] (Figure 3-5). 

2) the Clark Fau lt terminat es in the folds and faults near Seve nteen Palms and 

does not transfer slip to the Brawle y se ismic zone or the southern strand s of 

the San Jacinto fault zone, including the Superstition Hill s, Superstition 

Mountain, and Imperi al faults [Dibblee, 1954, 1984a; Pettinga, l 991] (Figure 

3-5). 

9 1 

3) the Clark fault steps 24 km to the left throu gh the folds of the San Felipe Hill s 

to a blind right latera l fault a long the south-east margin of the Salton Sea . This 
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blind fau lt connects directly sout heastwa rd to the lmp crial fault [Janecke el 

al., 2003] (Figure 3-5). 

For each kinematic model the structura l relationships to the southea st arc assumed 

to follow those described by Hudnut el al. [l 989) and Seeber and Armhrusler [ 1999). 

We therefore modified each original model to include the sinistral Extra fault zone and 

the dcxtral Superstition Hills fault. Each kinematic and geome tric model predicts unique 

structural and geophysical features in the San Felipe Hills (Figure 3-5). The actual 

distribution, geometry, and magnitudes of stra ins, and geophysical characteristics of the 

San Felipe I !ills will be compared with those predicted by eac h model. 

A blind connection between the Clark fault and the Superstition I !ills fault to the 

sou theast (model l) was suggested first by Wells [ I 986) and later by F'erogen [ 1987) as 

the primary cause of deformation within the southeastern San Felipe Hills (Figure 3-5). 

This model proposes that the Clark fault cont inues along strike to the southeast of its 

prev ious ly mapped termination (Figure 3-5) . A zone of deformation is centered above the 

blind trace of the Clark fault with folding orien ted oblique, rough ly cast west trending, to 

the trace of the fault (Figure 3-5). The model also implie s that cross faults, like the 

sinistral Extra fault zone, must terminate at the blind trace of the Clark fault. The 

intersection zone of these faults would have more deformation (Figure 3-5). 

Model 2 hypo thesizes that the Clark fau lt docs terminate at its previously mapped 

position , with fau lt-tip related deformation reaching into the San Felipe Hills [Dibble e, 

1954, 1984a; Sharp, 1967; Pe ttinga, 199 1] (Figure 3-5). In this mode l no slip is 

transfe n cd to another major fault from the Clark fault. The most intense deformation 

should be loca lized very near the surficial termination of the Clark fault in the northwest 
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San Felipe Hill s with defonn ation decreasing outw ard (Figure 3-5). Fold hinges 

genera lly trend cast-wes t to the south and south-west of the termin ation and converge on 

the fault tip (Figure 3-5). 

Model 3 proposes that the Clark fault steps over through east -wes t folding to a 

blind northwest trending dextra l fault along the southwestern margin of the Salton Sea 

[Janec ke et al., 2003] (Figure 3-5) . This blind structure wo uld direc tly transfer slip to the 

Imperial fault which lies roughly along strike to the sou theas t. Deformatio n in this 

mode l wou ld be most intense in the stcpovc r zone and be cha racterized by cas t-wes t 

trending folds. Addi tional intense deforma tion is predic ted as this blind structure 

interacts with and crosses severa l no1i hcas t trend ing structures at depth including the 

Extra fault zone and the Elmore Ranch fault (Fig ure 3-5). 

In addition to these models one other potential geo metry must be considcrcct. 

Thi s model proposes that in the past the Clark fault transferre d slip via a right bend 

southwes t of Clark Lake Valley onto the main part of the Coyo te Creek fault sou theast of 

Coyo te Mountain [Bar tholomew, 1970] (F igure 3-6). The Clark fault south of the Santa 

Rosa Mo untains would therefo re have formed later and have acc umulated relatively little 

slip [Ba rtholomew, 1970]. In this model little or none of the 15 km of right separation on 

the mylonite is related to dextral slip across the Clark fault southeast of Coyo te 

Mount ain [Barth olomew, I 970]. Thi s implies that the deformation in the San Fe lipe Hills 

could be unrelat ed to slip on the Clark fault because much of the slip across the Clark 

fault to the northw est may have bypassed the San Felipe Hills early in the history of the 

San Jacinto fault zone. The south east-most portion of the Clark strand terminat es at the 

surface northwes t of the study area according to all prior mapper s [Barth olomew, 1970; 
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northwest of the San Felipe Hill s are neces sary to prove or disprove this fault geometry. 

Methods 

To assess the southeastern strands of the San Jacinto fault zo ne and their relations 

within the San Felipe Hills, new I :48,000 sca le geo logic mapping, struc tural , and 

stra tigrap hic field studies were conducted in approximately 2.5 quadrangles in the San 

Felipe Hills inc ludin g the Shell Reef, Kane Springs NW, and portions of Kane Springs 

NE, Truckhaven , and Seventeen Palms 7.5 minute quadrangles. This mapping was 

combined with previous l :6,000 sca le mapping in the south central San Felipe Hills 

[Heitman , 2002; lilly, 2003] to produce a geo logic map of the study area (Figures 3-3, 3-

4; Plate I). The map was refined using aerial photography , Landsat, and SPOT imagery 

courtesy of Robert Crippen and Ronald Blom (Plate 3). Five structural cross sections 

show struc tural features of the San Felipe Hills. 

Folds were a particular focus of this study. Fold geometr ics vary across the San 

Felipe Hills , and folds with similar trends were grouped into distinct fold domains for 

geometric analysis. For each fold domain strike and dip data were plotted as poles to 

bedding and contoured using the Kamb method at a significance level of I sigma and a 

contour interval of 4.0 using Richard Almendingcr's Stcreonet for Windows J. l software . 

Best fit fold limbs were picked using the Kamb contour for each fold limb in each 

domain. These average folds were used to mea sure interlimb angles , vergence, trend , 

and plunge in each of the fold domains. Strain values were computed from interlimb 

angles. Strain rates were computed using the magnetostratigraphically detennincd age of 
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the younges t conform able strata (0.6 1 Ma± 0.02 Ma and 0.52 Ma ± 0.03 Ma) deformed 

by the folds [Kirby et al., 2004 ; Chapt er 2]. 

Fo lds appear to terminate latera lly at dextral fault s in many parts of the San Felipe 

11ills (Figure 3-3, Plate I). Thus analys is of the folds allows fault slip to be estimated. In 

order to characterize the total shortening and slip which the Clark strand could have 

produced in the study area, two transects through contiguous fold domains were 

analyzed. These transects cover the portion of the study area most likely affec ted by slip 

on the Clark fault and to avo id some of the larger faults in the area. Total shortening 

within each domain was comp uted from the strain and spatial extent parallel to the 

transects. Shortening was then reso lved onto a vertica l plane striking 305°, para llel to the 

Clark fault immedia tely lo the northwes t [Sharp, 1967; Bartholomew, 1970]. This 

ca lcuiation was used to estimate the amount of strike-s lip offse t which is required to 

produce the folds in the San Felipe Hills. Ferage n [ 1986] first made such a calculation 

and extrapolated local shortening amounts from the south central San Fe lipe Hills across 

the entire San Felipe I I ills. I !is estimate of 9 km of strike-s lip [Feragen, 1986] is too 

large because folding strains in the southeast San Felipe Hills exceed those in the 

remainder of the study area [this study ]. 

Geophys ical data sets including isostatic gravity and filtered aeromagnetic 

anomalies were analyzed for this study and areas north and south along strike of the San 

Jac into fault zone. Gravity data are from Lan ge nheim and Jachens [ 1993] and 

Lange nheim [unpubli shed data, 2004]. Aerom agnetic data [U.S. Geolog ical Survey, 

l 990] were decorrugated and filtered to enhanc e shallow( < I km) magnetic sources 

[Lange nheim, unpubli shed data , 2004]. Geophysical data sets were used to validate field 



mapping and regional structural interpretation s. Comparisons of isostatic gravity and 

magnetic anomaly maps and the geo logic map provided critica l information about 

subsurface relationships. 

The three prior models for the defonn ation in the San Felipe Hills are compared 

to the geolog ic map, structural , and geophys ical data (Figure 3-5). A new model is 

developed below , to better explain the diverse data sets. 

Results 

Overview 
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Structura l studies in the San Felipe Hills show comp lex folding and faulting of the 

latest Miocene to Pleistocene sedimentary rocks (Figure 3-3; Plates I, 3). The 

deformation is dominated by cast-wes t tendin g folds but the spac ing and geometry of the 

folds varies across the study area (Figures 3-3, 3-7; Plates I, 3). Severa l faults are also 

appare nt. Dcxtral faults arc most common in the central and weste rn parts of the area, 

whereas sinistral and normal faults arc concentrated in the cast and southeast San Felipe 

I I ills. East-wes t striking strike-s lip faults arc most common in the west, cas t of major 

dextral faults. Most of the fault in the San Felipe Hills arc discontinuous and less than 

severa l kilo meter s long. 

Faults 

NW striking strike- slip faults 

Several large right-lateral no1ihwest-trending strike-slip faults defom1 rocks in the 

San Felipe I I ills. These include the Coyo te Creek fault , the San Felipe Hills fault and the 

Powerline fault [Dibblee, 1954, 1984a; Morley, 1963; Reitz, 1977; Heitman, 2002 ; lill y, 
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2003; th is s tudy ]. The Coyo te Creek fault is the largest fault and it passes through the 

extreme southwes tern corner of the study area. Slip across this fault near the study area 

is the subject on current research and appears to be between I and 4 km [Jonecke et of., 

2005; Langenheim and Steely, unpublished data, 2005).). The Coyo te Creek fault is not 

is apparent as a grav ity lineame nt in the southwes tern San Felipe Hills (Figures 3-8). 

However, portions of this fault correspond with a strong magnetic grad ient that separates 

less magnetic rocks to the southwest from more magnetic rocks to the northeast in the 

western San Fe lipe Hills (Figures 3-10, 3- 11). The source of this large difference in 

magnet ization is uncer tain. 

Both the San Felipe I I ills fault and the Powcrlinc fault arc sr atially limited to the 

San Felipe Hills lDibhlee, 1954 , 1984a; Reitz , 1977 ; !Jeitman , 2002; Lilly , 2003] (Figure 

3-3). The San Felipe Hills fauit extends at least 8 km along a strike of approxima tely 

3 10° in the wes tern San Felipe Hills (Figu re 3-3). Photogeo logic stud ies sugges t that this 

fault may terminate to the northwes t j ust north of the study area in a bedd ing- strike 

para llel structure and to the southeas t near the axis of the San Felipe anticline [Dibhlee, 

1984a; Heitman, 2002]. Dcxtra l offse t across this near ly vert ica l structure is 

unconstra ined but must be sma ll (< 2-3 km) because the fault docs not offse t the grav ity 

gradient of the north limb of the San Felipe anticline (F igure 3-9). The San Felipe Hills 

fault corresponds well with a magnetic lineament and separa tes magnetic rocks to the 

northeast from less magnetic rocks to the southwest (Figures 3-10 , 3-11 ). The isostatic 

gravity map shows slight evidence for the San Felipe Hills fault (F igures 3-8, 3-9). 

The Powerlin c fault is loca ted in the southern centra l San Felipe Hills extending 

some IO km along an approximate strike of 3 18° NW (Figure 3- 17). This fault is a single 



98 

covered strand in the south central San Felipe Hills. To the north the fault splays into at 

least three strands (Figure 3-3; Plate I). These northern strands of the Powcrlinc fault 

strike north-northwest and dip steeply cast and west. Slickcnlines indicate right-lateral 

motion and rake 3-5° from horizontal. Offset across the Powcrlinc fau lt is unconstrained 

but cou ld be up to 1-2 km. The fau lt correlates with a strong magnetic grad ient between 

magnetic rocks on the southwest and much less magnetic rocks on the northeast side 

(Figures 3- 10, 3-l I) . The isostatic grav ity map shows a small increase in the depth of 

basement northeast of the Powcrlinc fault (Figures 3-8 , 3-9). The Powcrlinc fault or the 

Sand Dunes fault, 4 km to the northeast , bound the cast end of the bedrock high beneath 

the San Felipe anticline (Figure 3-9). 

Many sma ller dextra l northwe st striking faults exist within the San Fe lipe I fills 

(Figu re 3-3). Dips of these smaller fauits range from northeast to southwest within 30° of 

vertica l. Rakes of slicken lines, where apparent, arc within I 0° of horizontal. Right­

latera l motion is apparent where kinematic indicator s exist. 

NE striking strike-s lip faults 

Northeast striking sinistral fau lts also deform the San Felipe Hills. The Extra 

fault zone in the southeaste rn San Felipe Hills is the on ly latera lly continuous sinistra l 

fault (Figures 3-3, 3- 12; Plates l and 3). The overa ll strike of the Extra fault zone is 

north 35° cas t, but it changes strike south of Highway 78 to north 45° cast. The Extra 

fault zone is charact erized by several discontinuous northe ast-strikin g en echelon fault 

strands and adjacent small , less than l km long, doubly plunging anticlines and synclines 

near and north of state highway 78. At least one clown to the west, north- striking normal 

fault exists within the fault zone. This fau lt had a strike of north l 4° cast and a dip of 71 ° 
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west. Lineations indicate dip slip motion . Norma l separat ion on this fault may be 120 m 

based on stratigraphic corre lations in Oil Well Wash [Chap ter 2]. Farther northea st the 

Extra fault zone is characterized by a single fault strand str iking north 25 ° cast and 

dipping 82° west where it crosses state highway 86. Tool marks indicate left-lateral 

motion on this strand. The Extra fault zone persists along strike to the northeast to the 

shore of the Salton Sea and southwest to San Felipe Wash as a series of discontinuous 

photo lineaments and fault scarps in alluvial and eolian deposits. Total left-lateral offset 

across the Extra fault zone is unconstrained. 

Northeast-striking magnetic and gravity grad ients coincide with the surface trace 

of the Extra fault zone near state highway 86. Further to the southwe st there is a 1-2 km 

offset between the surface trace and grav ity and magnetic signals (Figures 3-9 to 3- 11 ). 

Magnetic data shows a possible weak northeast trendin g gradient 2 km northwe st of the 

Extra fault in an area of much eolian, lacustrinc , and alluvial cover (Figures 3-10, 3- 11). 

This area is the northwest-most position of a possible laterally cont inuous northea st­

striking fault, but to date no such fault has been idcnti ficd northwes t of the Extra fau lt 

zone. 

In genera l, northeast-striking sinistral faults in the San Felipe Hills arc much more 

localized than dextral faults and may simply be cross faults between more laterally 

continuous northwe st strikin g dextral faults. This is apparent between the Powcrline and 

Sand Dunes faults where severa l northeast striking structures exte nd between these two 

larger faults [Reitz, 1977; Heitman , 2002; Lilly, 2003] (F igure 3-3). Slickcnlines on a 

sma ll exposure of the northwest-most of these sinistra l faults indicate left latera l motion 

on a vertical fault plane striking 32°east of north . Other similar northeast-striking faults 
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exist along the eastern branch of Tarantula Wash in the central San Felipe Hill s [Reitz, 

1977 ; Heitma n, 2002; Lilly , 2003] (Figure 3-3). These faults generally strike between 

and 18 and 64 ° cast of north and dip steeply to the northwes t and southeas t within 25° of 

vertical. Kinematic indicators in a small number of exposures sugges ted left-l atera l 

motion. The isostatic grav ity may show a weak lineament corresponding with the 

northwest~most northeast striking fault between the Power line and Sand Dunes faults 

(F igure 3-9) . Otherwise these faults do not appear to have disecrnable magnetic or 

grav ity signals (Figures 3-8, 3-9, 3-10, 3-11). ln the northweste rn San Fe lipe Hills at 

least one northeast striking left-latera l fault can be traced along strike to the southwest as 

it bends into an east-wes t orientation (Figure 3-3; Plates I and 3). 

North-south striking normal faults 

North-south striking normal faults are apparent in the northern, central, and 

eastern portions of the study area . Near the northern boundary of the mapped area 

severa l down-to-the-cast fault sca rps cut an elevated alluvial terrace wes t of Sa lton City 

and north of the Truckhavcn road (Figure 3-3; Plate 1). Scarp height is betwee n I and 2 

meters. South-fac ing cross sectional views of these faults on the terrace margin north of 

the Truckh aven road expose small synclines in the hanging-wall of these fault s. Normal 

fault s to the south of the terraces along Arroyo Salada strike between 334 and 28° and dip 

between 66 and 79° east. Dip slip is apparent from lineation s. Offset acros s each of 

these normal faults could be at least several meters based on stratigraphic correlati ons. 

Weak north-south magnet ic anoma lies south of Arroyo Salada may correlate with several 

of these faults (Figure 3-1 I). No grav ity signal is appar ent from these fault s (Figures 3-8, 

3-9). 
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To the south, north-nortlnvcst striking normal faults likely separate highly folded 

rocks on the cast from less folded strata on the west side of the faults (Figures 3-3, 3- 13; 

Plate I). No exposures with good fault planes and slickenlincs have been found for these 

faults which strike parallel to bedding on the west side of each fault. It is assumed that 

these faults strike parallel to the unfolded strata which they bound and dip cast. Offset on 

these structure s is uncon strained. 

In the eastern San Felipe Hills north-south striking faults are present in a zone of 

north-south trending folds (Fig ure 3-3 ; Plates I and 3). These normal faults appear to be 

parallel to the dominant fold trend and in places truncate these folds (Figures 3-3; Plates 

I and 3) . No measurable exposures of these faults were found durin g this study. 

Previous work by Dmnyk [ 1977] docume nted sma ll offset normal faults striking nearl y 

north-south and dipping both cast and west in this area. 

East-wes t striking strike- slip faults 

East-west striking steeply dippin g fa ults arc fairly common in the western San 

Felipe II ills, and south of Squaw Peak to the Ocot illo Badlands (Figure 3-3; Plate I). 

These faults strike with in 10 degrees of east. Slip sense of the fau lts south of Squaw 

Peak is assumed to be left lateral based on partly ambiguous kinematic indicators. Cross 

sections through these structures show at least a componen t of reverse motion, north side 

up, on these structure s (Figures 3- 14, 3- 15). Dip directions vary over short lateral 

distance s but faults arc genera lly steep, within 20° ofve1iical. Dip of these faults was 

rarely measurable .. 

There arc also severa l east-west striking strike-slip faults within the San Felipe 

Hills. In the northwestern portion of the study area at least one cast-west striking fault is 



102 

continu ous with a left lateral north-cas t striking strike- slip faults along strike to the east 

(Figure 3-3). Slickcnlincs and tool mark s indicate left-latera l motion for these structures. 

Separa tions across these faults arc unce rtain because the faults commonly strike parallel 

to beddin g. 

East-west strikin g strike-s lip faults arc most com mon immedi ately cast of major 

northwest striking dextral faults, includin g the San Felipe Hills fault and the Coyote 

Creek fault. They appear to extend 3-6 km cast before losing definition (Figure 3-3; Plate 

I). Sharp [ 1967] previously document ed similar relationships cast of the Coyo te Creek 

fault in the southwest ern-mo st part or the study area. East-west strikin g faults cut the 

antic line in the Ocot illo badland s but arc incomple tely mapped [this study ]. 

Sand Dunes fault 

In the south-central and central San Felipe Hills the mostly north-west strikin g 

Sand Dunes fault juxtaposes Diablo Fom1ation on the southwes t aga inst the Borrego 

Formation and transitional unit to the northea st [Heitman , 2002; Lilly, 2003] (Figure s 3-3 , 

3- 12; Plate I). It has a buried cast-striking trace cast or the southeast tip of the Powcrlinc 

fau lt. The fault then turns north and north-northwes t in an arcuatc fau lt trace which 

ju xtaposes o lder Diablo Forma tion on the southwest side aga inst younger Borrego 

Formation on the northea st side (Figures 3-3, 3- 12). Map relations imply at leas t partiall y 

reverse motion for this structur e. Smaller left lateral northea st strikin g faults cut the Sand 

Dunes fault . The Sand Dunes fault dips steeply and is nearly vertical where observable 

[Heitman, 2002 ; Lilly, 2003]. Offset acro ss this structure is unconstrained but may be 

large becau se it juxtapos es dissimilar rock units in most places. To the northwes t the 

Sand Dunes fault may continue and join a large en echelon network of faults in a 
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complex zone of rotated blocks south of Tulc Wash. Addition a l mapping is needed in this 

complex fault zone (Figure 3-3). The Sand Dunes fault correlates well with a magnetic 

gradient which nearly parallels its mapped position (Figures 3- 10, 3- 11 ). The San Felipe 

anticline loses its gravity express ion cast o f the trace of this fault , and changes eastward 

from a bedrock- core d anticline to a subhorizontal undulating bedrock surface (Figures 3-

8, 3-9). 

En echelon strike-s lip fault zone 

Severa l prev iously unmapped strike-s lip faults form a zone of discontinuous en 

echelon northwest trending strike-s lip faults in the north centra l portion of study area 

(F igure 3-3) . The Powc rlinc and Sand Dun es faults arc probably part of this set o f faults 

and form the southwes t margin of this fault network. Thi s fault zone extends to the 

north-northwes t from the Sand Dunes fault. Some faults converge northwes t-ward, and 

the fat1ll zone co inc ides with a broad, concave to the southwes t, magnetic low (Figures 3-

3, 3- 10, 3- 1 I). Smaller northwes t-trending magnetic gradients within the 4 km wide 

magnetic low co incide with individual faults (Figure 3- 1 I). These faults vary in length 

from I km to 4 km along strike and some clearly die out into cas t-wes t trending fold 

train s. Where fault dip is apparent it is steep between 80 and 90° for these structures. 

The strike of the fault strand s range s from 298 degrees to 329°. Cross section C-C' 

shows several o f these faults which may merge al depth into a single fault (Figure 3-16). 

Slickenlines arc uncommon but where expo sed gave right-l ateral motion for one of the 

strand s and rake 7°. Spacing of these fault strands varies from I to 3 km perpendi cular to 

strike. Offset is uncon strained , but we estimate that any one strand may have less than l 

km of separation. The en echelon faults arc in a weak gravity low that lines up with a 
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promin ent gravi ty gradient that coincides with the Clark fault to the northwes t (F igures 3-

8, 3-9) . lmmcdi atcly to the south and southea st of these fault s is the cast-west trending 

folds of fold domain K, which has the most shortening in the study area (Fig ure 3-7; 

Table 3-1 ). This en echelon fault zone is incomplete ly mapp ed and further fie ld studies 

may show grea ter latera l continuit y and may revea l add itional faults. 

Dump fault 

Just north of these discontinu ous en echelon strands, in the northern portion of the 

study area, a west-northwes t strikin g strike-slip fault was mapp ed. This fault is apparent 

on theLandsat+Spot imagery (Plate 3). This structure is assumed to be steeply clipping 

and right latera l ba eel on map relations (F igure 3-3 ). A west-north-west trending 

magnetic gradient is I km southwest or this structure (Figure 3- 1 I). The strike of this 

fau lt is approximate ly 290°along its 6 km exte nt. The Dump fault define s the northea st 

margin of the en echelon fault array. This structure may tennin ate to the cast and can be 

traced out of the study area to the wes t-northwest as it project s toward the southeast tip of 

the Clark fault. 

Fault interrelations 

The northwest-strikin g dextral faults are the larges t and most continuous, cut or 

bound many fault blocks that also contain north east, east ··West, and north- south striking 

faults (Figure 3-3; Plate I). Locally north east-strikin g sinistra l faults cut the northwest­

strikin g faults includin g the Sand Dunes fau lt [Heitman , 2002 ; Lil ly, 2003] (Figure 3-3; 

Plate l) . East-west-striking faults are localized prim arily to the east of the major 

north wes t striking faults such as the Coyote Creek fault and the San Felipe Hills fault 
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(Figure 3-3; Plate I) . The zone of en echelon dextral faults in the northern and central 

San Felipe Hills ha s a southeast-ward horsetail sp laying geometry which is bounded on 

the northeast by the Dump fault. Along strike to the south and sou theast the en eche lon 

faults are replaced by folds and the Powcrlinc and Sand Dunes faults which persist into 

the so uth ern San Felipe Hills (Figure 3-3 ; Plate I ). None of the northwest striking faults 

except the Coyote Creek fault continue so uthe ast of the Extra fault zone . We agree with 

prior mappers that the Extra fau lt zone is a region a lly important northeast str ike-slip fault 

zo ne [Dibblee, 1954 , 1984a ; Hudnut et al. , 1989] (Figure 3-3). 

The interrelation between faults and folds wit hin the San Felipe Hills is complex 

and variab le. North-south striking normal fau lts in the no1ihcrn and centra l San Felipe 

Hills separate strong ly folded strata from less folded strata but not cut the fold s . 

Elsew here dextral faults die out into cast-west-trending fold train s . Overall there is a 

stron g interconn ectio n betwee n faults and folds within most of the San Fel ipe Hills 

(Fig ure 3-3) . 

Folds 

Overview 

Most of the exposed sedimentary sec tion is folded in the San Felipe Hills. Folds 

range from open to gentle with wavelengths of l 00's of m to I O's of km. Folds were 

grouped into domains based on the style and orientation of the folds (Figures 3- 7, 3-18). 

Orientation of fold axes vary across the San Felipe Hills (Figures 3-7, 3-18). Mo st folds 

trend cast-west in the San Felipe Hills but there are several small er zo nes of north-south 

and southeast trending folds (Figures 3- 7, 3-18). 
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The San Felipe and Santa Rosa anticlines are both persistent regional scale 

structures upon which the many smaller folds and faults of the San Felipe Hill s have been 

superpo sed [Dibblee, 1954, 1984a]. Plunge directions of the closely spaced folds 

changes from cast to west across the south-southea st plun ging Santa Rosa anticline. The 

Santa Rosa and San Felipe anticlines are defined by changes in dip of bedd ing, plunge 

directions of folds , and magnetic and isostatic grav ity anomali es (Figures 3-3, 3-18, 3-8 

to 3- 11). 

San Felipe anticline 

The San Felipe ant icline deforms the late Miocene to Pleistocene stra tigraphy of 

the San Felipe Hills expos ing Pliocene Diab lo Formation and upper Miocene-Pliocene 

Imperia l Group near its core, and folding late Pliocene-Pleistocene Borrego Format ion 

and middle Pleistocene Ocotillo and Brawley formations further to the cast (Figure 3-3 ; 

Plate I). Basement rocks are exposed in the core of this anticline near Squaw Peak 

(F igures 3-3; Plate I). This anticline formed before the - 1. 1 to 0.5Ma Ocotillo Forma tion 

lapped across its crest and has tightened since the end of Ocotillo Formation deposition 

(- 0.5 Ma) [Chapter 2].Base d on the subcrop beneath the Ocotillo Formation the extent 

of the San Felipe anticline was roughly 12 km north to south and 14 km from the western 

edge of the study area to the to eastern-mo st exposure of the sub Ocotillo Formation 

angular unconformit y [Kirby et al., 2004]. The east end of the anticline coincided with 

the Power line and Sand Dunes faults prior to deposition of the Ocotillo and Brawley 

formations and also the extent of a prominent bedrock high [Chapter 2]. The San Felipe 

anticline likely extends to the west to a basement cored anticline at Borrego Mountain 
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based on the latera l continuit y, similar width and amplitud e of an east-wes t-trendin g 

grav ity high there (Figures 3-8, 3-9) . 

The ancestra l San Felipe anticline, along cross section 8 -B', has north and south 

limbs with average dips of 34 and 23°, respectively (Figure 3-15). Young cast-west 

strike-slip faults and tilting produ ced the modern San Felipe anticlin e. Jt is now a faulted 

anticline with some superposed close ly spaced folds (Figure 3-15). The interlimb angle 

for the San Felipe anticline is 123 ° along this cross sect ion (F igure 3- 15). The crest of 

the San fc lipc anticline coincides with a grav ity high and is 1 km north of a magnet ic 

high (Figures 3-8 to 3-1 l). ll owcvcr there is a misma tch betwee n the cast-west exten t of 

the gravity and magne tic signal and the mappab le extent of the anticline (Figures 3-3, 3-

8 to 3- 1 I). The magnetic signal is disp laced to the south 2.5 km relative to the mapped 

ax is of the anticline and the center of the grav ity high (F igures 3- 10, 3- 11). The gravity 

high disappears cast of the Sand Dunes fault yet the San Felipe anticline remains a 

mappab le fold cas t of the Sand Dunes fault (F igures 3-8, 3-9; Plate I). 

A reconstructed (~ 1.07 Ma) cross section of the San Fe lipe anticline produced 

from the angular unconformity beneath the Ocotillo Formation has a intcrlimb angle of 

130°, a homoclinal north limb and a more complex south dippin g limb [Kirby et al., 

2004] (Figure 3- 19). The north-south extent of the south limb of the reconstructed San 

Fe lipe anticline is poorly known because conformable depositional contacts beneath the 

Oco tillo Fom1ation occur in the Ocotillo Badlands on the southwe st side of the Coyote 

Creek fault]. A north-dippin g reve rse fault is inferred at depth to explain the large 

difference in the subcrop of the Ocotillo Formation northward from the Ocotillo Badlands 
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and the presence of crystalline rocks at shallow depth s near the Coyote Creek fault 

(More ly, 1963). 

Preliminary offse t across the Coyo te Creek fault based on gravi ty data may be ~4 

km [Langen heim, unpubli shed data, 2005; Janecke et al. , 2005]. Further work is 

necessa ry to verify offset amount across the Coyo te Creek fault in the San Felipe Hills. 

Based on the reconstructed cross section (Figure 3- 19) and the modem B-B' cross section 

(Figure 3- 15) the San Fe lipe anticline may have tightened jus ( 7° since the Ocotillo 

Formation was depos ited across it. Thi s is, howeve r, complicated by severa l north-side­

up cast-wes t striking strike-s lip faults which may obsc ure the true dimensions of the 

modern anticline. Other evidence for modern grow th of the San Felipe ant icline inc lude 

the Holocene Lake Cahuilla shoreline which defines a large cmbay mcnt south of the San 

Fe lipe anticline and a smaller cmbaymcnl north of the San Felipe anticline (Plate I). 

These relationships suggest that the anticline may still be growing and deflecting the 

shoreline. 

Santa Rosa anticline 

The southeast plunging Santa Rosa anticline is less we ll defined than the San 

Fe lipe anticline and it may not persist south ofTul e Wash (Figure 3-3). It is best 

expressed in the northern portion of the field area where the eas t limb dips up to J 9 

degrees and the west limb dips up to 20°. Cross section C-C' shows the faulted limbs of 

the southern-m ost Santa Rosa anticlin e (Figure 3-16) and an industry seismic data imaged 

the east dippin g limb (Figure 3-20). The fold extends 7 km a long trend south- southeast 

into the northern San Felipe Hills and is up to 4 km across (Figure 3-3). South of Tule 

Wash this reg ional structur e may be defined by fold plunges which change from east to 



109 

west near the Powerline Fault (Figure 3-7). The Santa Rosa anticline coincide s with a 

gravity high in the northern portion of the study area but to the south this signal is less 

clear becau se the Santa Rosa and San Felipe anticlines intersect there (Figures 3-8, 3-9). 

The Santa Rosa anticline correlates with a magneti c high north of Tulc Wash but farther 

to the south arcing anomali es associated with the sou theast end of the Clark fault obscure 

possible continuation s of the Santa Rosa anticline (Figures 3- 10, 3- 11). The age of initial 

growt h of the Santa Rosa anticline is uncertain but most of the grow th was after 

deposition the Brawley Formation. This unit dips cas t on the cast limb of the anticline 

near ly as much as the underlying Oorrcgo and Diablo fo1111ations (F igures 3- 16, 3-20). 

Fold domains 

Folds with similar or ientation and style of folding were grouped into 11 domains. 

Where poss ible, fold domains arc directly abutted with one another unless separated by 

covered areas, homoclinally dippin g rocks , or faults (Figure 3-7). Domains C and D 

have noncontiguous subdomain s which arc separated by areas of cover or other fold 

domain s (Figure 3-7). Geometric data for each fold domain arc shown in tables 3-1 and 

3-3 and figures 3-7 and 3-18. 

All but two of the fold domains have upright axial surfaces on average (Figure 3-

l 5). Fold wavelength varie s among fold domain s from a minimum of severa l hundred 

meter s to a maximum of several kilometer s (Figure 3-3). Fold style varies considerably 

from kink folding (doma in D) to cylindrical folding which dominated most of the other 

fold domains (Figures 3-7 , 3-l 8). 

The trend and plunge of folds vary somew hat across the study area but cast-we st 

folds dominate (Figure 3- l 8; Table 3- l ). Folds in domains B, E, G, J,and Kall trend and 
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plunge to the cast with folding in domains E and J plunging slightly north of cast, and 

folds in domain D plun ging slightly south of cast (Figures 3-7, 3-18). Fold domains F, H, 

and l plunge wes t (F igure 3- 18). Folds in doma in C plunge to the cast-southeast (F igure 

3- 18). Folds in domain A, just west of the Salton Sea trend north (Figures 3-7, 3- l 8). 

Plunge values range from 3° in domain H to 2 1 ° in dom ain E (Table 3-1 ). Average 

plunge was approxima tciy 8°. Fo lds in the southeast San Felipe Hills bend from their 

dominant cast-wes t trend to east -northeast trends as they approach the Extra fault zone. 

Vcrgcncc varies slightly among the fold domains but the difference may not be 

statistically significant (Tab le 3- 1 ). Folds on the south limb of the San Felipe ant icline 

verge to the north [Wells, 1986 ; Heitman , 2002; Li lly, 2003] (F igures 3- 15, 3- 16). Folds 

on the north limb of the San Felipe anticline may verge southward in domain F (F igure 3-

15; Table 3- 1 ). Folds in domain A show pos iblc cast vcrgcncc (Figure 3- 15; Tab le 3- 1 ). 

Larger data sets may show addition al patterns but most ax ial surfaces arc close to 

vertical. 

lntcrlimb angles amo ng fold domains range from 164.4 ° for the north plunging 

domain A in the northeas tern portion of the field area to 8 1.8° for the cas t plunging fo lds 

in domain K (Tabl e 3-l) . Other fold domains have interlimb angles betwee n 107.4 and 

l 43.4° (Table 3- 1 ). 

The shortenin g direction in each domain is assumed to be perpendicular to the 

dominant trend of the folds (Figure 3-14; Table 3-1). Across the San Felip e Hills the · 

domin ant shortenin g direction is nearly north- south (F igure 3-18). Seve ral fold domain s 

vary slightly from north-south shorte ning (Figure 3-7; Table 3-1 ). 



Strain 

Strain magnitudes were computed for each fold domain and the homoclinal dip 

domains using intcrlimb angles (Tables, 3-1, 3-2). Limbs were assumed to be initially 

horizontal and of a unit length . Change of horizontal length parallel to the shortening 

direction was then trigonometrically calculated from the change in initial and final limb 

angles (Figure 3-21 ). Strain range s from a low of 0.009 for fo ld domain A to a high of 

0.345 for fold domain K (Table 3-1 ). The other fold domains have strain magnitudes 

between 0.050 and 0. l 95 (Table 3-1 ). The homoclinal dip domain s reflect strains of 

0.034 and 0.073 for the south and north limbs of the San Felipe anticline (Table 3-2) . 
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Strain rates were calculated using the strain magnitudes and magncto stratigraphic 

age constraints from the Brawley Formation in the southeastern San Felipe Hills (Tab le 

3-1 ). The Brawley Formation is the youngest internally conformable depo sit that 

contains no evidence for active deformation on loca l strnctures during its depo sition . 

Growth strata were not observed in this or any other unit in the San Felipe Hills but may 

be present farther to the north and west in the Borrego and Diablo formations [Dorsey, 

unpublished data , 2003]. Seismic lines in the north San Felipe Hills also show little 

evidence of lateral thickening of the Pliocene to Quaternary strata in the San Felipe Hills 

(Figure 3-20). Magnetostratigraphic correlation and sedimen tation rates app lied to a 

measured section yield ages which range from 0.61 Ma.± 0.02 Ma to 0.52 Ma .± 0.03 Ma 

for the end of deposition of the Brawley Fom1ation in the San Felipe Hills. 

Paleomagnetic data show clockw ise vertical axis rotation of - 8.5° for the uppermost 

Bonego Formation and Brawley Formation in the southeastern San Felipe Hills [Kirby et 

al., 2004]. 
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Our data support earlier interpretations that all deformation except growth of the 

basement-cored pari of the San Felipe anticline occurred since the deposition of the 

Brawley Formation [Dibblee, 1954, 1984a]. Deformation is assumed to be equally 

distributed across a given fold or dip domain. Age constraints yield two distinct end 

member strain rates and shortening rates for each fold domain. Strain rates ranged from a 

high of 66.40 ± 3.62 10-8/yr for fold domain K assuming the youngest onset of 

deformation at 0.52 Ma ± 0.03 Ma to a low of 1.52 ± 0.04 I0-8/yr for fold domain A 

assuming the older onset of deformation at 0.61 Ma± 0.02 Ma (Table 3-1) . 

Shortenin g 

Shortening rates were ca lcu lated using the strain values, spatial extent of fold 

domains , and age constrai nts for the onset of folding. These values ranged from 3.98 ± 

0.22 mm/yr for the east -plun ging folds in domain K to 0.11 ± 0.003 mm/yr for the north­

plungin g folds in domain A. Shortening rates for each fold domain are shown in table 3-

I. 

We ca lculate total shortenin g from folding along two structural transects (Figure 

3-7). The transects arc oriented approxi mately north-south and exac tly nom1al to the 

trend of each contiguous fold and homoclinal dip domain (Figure 3-7). Transect I 

includes fold domains Band Kand is located in the east central portion of the study area 

(Figure 3- 14). Shortening across the homoclinal north and south limbs of the San Felipe 

anticline was grouped with fold domains F, G, and H in transect 2, which covers a north­

south section in the central San Felipe Hills (Figure 3-14). The amount of shortening was 

calculated for each fold and dip domain by multiplying the spatial extent of each domain , 

parallel to the direction of shortening , by the calculated percent shortening. Shortening is 
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calculated separately for eac h fold dom ain and then summed for all fold and dip domains 

in a given transect (Table 3-2). Shortening was then proj ected on an idealized vertica l 

Clark fault plane striking 305 ' NW to ca lculate the equivalent dcxtra l slip recorded in 

each transect. 

Equiva lent dcxtral slip across transect I, likely related to the Clark fault in the 

eastern San Felipe Hills, is 5.62 ± 0.2 km. This value is a minimu m and assumes that all 

the Clark related slip is transferred to cast -west trending folds in transec t I. In the central 

San Felipe Hills, including the San Fe lipe anticline, transect 2 has 1.32 ± 0.2 km of 

equiva lent s lip. A maximum estimate sums the strain in transects I and 2 for equiva lent 

slip of 6.95 ± 0.4 km. We pre fer the lowe r estimate of 5.62 km ± 0.2 km based on 

transect I alone, because transect 2 is al leas t partially structurally isolated from the 

influence of the Clark fault by the intervening Sand Dunes and Powe rlinc faults (Fig ure 

3-7). Either the nearby San Fe lipe Hills fault and or the more distant Coyo te Creek fault 

is a more likely source of the shortening observed along transect 2. 

Error estimates for each transect result from potential measurement error o f the 

spatial extent of fold domains within a given transect. Different spatial extents can be 

measured within a given transect. Error resulting from the calculation of strain for each 

fold domain is unconstrained . Our method docs not detect slip on discrete faults unless 

the faults termin ate into zones of foldin g. Rotation about vertical axes can significantly 

affect the end result. Total rotation about vertical axes in the southeastern San Felipe 

Hills is up to 8° clockwise since about I Ma. 

To the north, sho,i ening was calculat ed in a similar manner for a north-south 

transect which stretches north from the study area to Tra vertine Ridge (Figure 3-3) . This 
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transect should record any additi onal shortening by folding that could have been 

produ ced by slip on the Clark fault. Nor th and south homoc linal dip domains, dippin g 

8.5 and 14° respectively, define this transec t. Total shortening across the 6.5 km transec t 

was minor at ju st 0.04 km. 

5.62 ± 0.4 km of dex tral slip likely related to the Clark fault, on a plane striking 

305 ° NW, is preserved in the folds of the eas tern San Felipe Hills. Some unknown 

amount of dextra l sl ip is prese rved on th~ strike-slip faults in the San Felipe Hills, but 

without offse t markers this va lue is poorly constrained. Fau lts with potential for the 

grea test offse t and slip within the San Felipe Hil ls include the San Felipe Hills, Sand 

Dunes, Powcr linc, and Dump faults, but mos t of these faults appea r to die out and 

tr:rnsfcr some or all or their s lip to folds [/ !eitman, 2002; Lilly , 2003; this s111c(\']. 

Discussion 

F aults 

Based on our new mapping, the Clark fault continues 18 km southeast of its 

previously mapped termination as a series of en echelon faults and horsetail splays which 

terminat e in the folded stratigraphy of the central and southeas tern San Fe lipe Hills 

(F igure 3-3). The northernmost newly mapped fault strand which may be related to the 

Clark fault is the Dump fault (Figure 3-3). It strikes west-no1ihwcst and coincide s with 

the southwes t edge of gravity and magnetic highs which curve along strike into the strong 

gravity and magnetic gradient along the Clark fault farther to the northwes t (Figures 3-3, 

3-8,3 -9,3-10 ,3-11 ) . To the south of the Dump fault arc discontinu ous and complex 

northwest strikin g dextral fault s that arc likely related to the Clark fault farther to the 
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northwes t (Figures 3-3; Plate I). Magnetic gradients from these faults turn and connect 

directly with gradients along the Clark fault farther to the northwes t (Figures 3- 10,3- 11 ). 

The gravity and magnetic data arc consistent with a single fairly large Clark fault at 

basement leve l that splays southeastward into the northwes t edge of the study area . 

Surface geo logy shows a much less organized fault zone in the same area [Dibblee, 1954, 

1984a; Bart holomew, 1970; Petlinga, 199 1 J. We infer that the Clark fault changes from 

a single fault at depth to multip le strands at shallower leve ls northwes t of the study area 

and distributes slip southeastwa rd along the Dump , Powcrlinc, and en echelon faults into 

the San Felipe I lills. 

Severa l other major dcx tral northwest-striking faults including the Power line and 

Sand Dunes faults have been mapped northwest of their prev iously mapped pos itions 

[Reitz, 1977; Heitman, 2002; l illy, 2003] by our study. These faults likely transmit slip 

from the Clark fault into the central and south-central San Felipe Hills. None of these 

fauits, however , arc continuous across the study area . It is therefo re likely that slip on 

these faults, is balanced by folds near their terminat ions. 

New mapping shows the Extra fault zone to be the only through-going northeast­

strikin g sinistral fault zone in the San Felipe Hills. Thi s fault is unlike other sinistral 

faults in the San Fe lipe Hills but quite similar to sinistral faults to the south east including 

the Elmore Ran ch fault [Hudnut et al., 1989; Janecke et al., 2004]. The Extra fault zone 

repr esents a kinematic and geo metric change from the rest of the study area . The fold 

and fault patterns apparent in the San Fe lipe Hills arc best represented by a new model 

shown in figure 3-22 . Models 1,2, & 3 predict fault and fold geometrics that arc not 

apparent in the San Felipe Hills (Table 3-4; Figure 3-5). 
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Fold s 

Stra in intensity due to folding is distributed unevenly across the San Fe lipe Hills. 

Highest stra in is localized in the sout heastern San Fe lipe Hill s in fold doma ins K,J, and B 

(Table 3-1). Fold domains B and K lie ju st to the cast and south respectively o f the 

Powerline, Sand Dunes and discontinuous fault strands which penetrate the central San 

Felipe Hills from the southeast end of the Clark fault (Figure 3-7) . Both of these 

domai ns like ly reflect strain transmitted to the southeastern San Fel ipe Hill s by slip on 

the strands of the Clark fault and its interactio n with the prov ince of block rotation and 

sinistral faulting to the south. Fold doma in K has the highest stra in magnitude (35 %) of 

all domains examined by a facto r of two (Tab le 3- 1 ). Strain magnitudes for the 

remainder of the fold domains, exc luding doma in A, lie in the middle of the calculated 

range. None of the prior models examined predict that the most intense folding would be 

loca lized in the southeastern San Felipe I lills (Figure 3-5) . 

Fold domain A with its north-sou th trending folds and low apparent strain, is an 

anomaly compared with the folding apparen t in the rest of the San Felipe Hills. Domain 

A may be the result of east-west extensional strain resulting from the continu ed 

subsidence of the floor of the Salton Trough. The pos ition of some of the north-south 

trending folds in the hanging walls of north striking normal faults suggests these folds 

may be extensional fault propagation folds. This fold domain is only accounted for by 

model 3 that proposes these folds developed over a blind northwest striking dextral fault 

near the margin of the Salton Sea [Janecke et al., 2003] (Figure 3-5) . The low 
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magnitude or strain present in fold domain A is however not predicted by this model and 

model 3 docs not predict high strains in the south central to southeast San Fe lipe Hills. 

Fold domain J along the Extra fault zone had the second highest strain rate and is 

located cast of domain K. There is a strong spatial correlation of these folds with the left­

lateral Extra fault zone. Strands of the Extra fault zone cut and interact with the doubly 

plunging anticlines and synclines characteristic of this domain. Fold domain J likely 

represents strain resulting from slip along the left-lateral Extra fault zone and not from 

slip transferred from the north on strands of the Clark fault. The folds of domain J 

provide further evidence of a change in structural kinematics along the Extra fault zone 

relative to most of the San Felipe Hills. Previous workers have concluded that the Extra 

fault is part of the province of sinistral faulting and clockwise block rotation farther to the 

southeast of the San Felipe Hills, but some models included the southeast San Felipe 

Hi I ls northwest of the Extra fault, in the zone of block rotation [Hudnut et al., 1989; 

Seeber ond Armbruster, 1999]. 

Preferred model 

The structural data do not support any of the prior models for the structure of the 

San Felipe Hills (Figures 3-5). Fau lt distributions and orientat ions arc closely matched 

by model 3; however none of the models predict the high strain values found in domain 

K. Based on this we present a modified kinematic model to account for the data (Figure 

3-23; Table 3-4). In the modified model the extent of folding in the San Felipe Hills and 

the presence of a previously unmapped en eche lon dcxtral fault strand s in the north 

central San Felipe Hills and other large northwest-striking faults including the Powcrline , 

Sand Dunes , and Dump fault arc best explained by slip which enters the San Felipe Hills 
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from the Clark fault to the northwe st (Figure 3-23). These faults transmit dextral strain 

to most of the northern , central, and south-central San Felipe Hills, producin g the high 

stra in found in fold domains B and K. The highest strain magnitude found in domain K 

may be produced by the interaction of slip from the Clark fault and the northwestern edge 

of the province of sinsitral faulting and block rotation to the southeast. Our field studies 

show clearly that the Extra fault is the northwest-most laterally continuous sinistral fault 

of the transrotating domain because we have mapped a virtually unfaulted Borrego and 

Brawley contact across the southern and eastern San Felipe Hills just northwest of there. 

Previous workers have shown the province block rotation extending northwest into the 

San Felipe Hills [Hudnut , 1987, 1988; Seeber and Armbrust er, 1998]. The preferred 

mode l limits the northwestward extent of laterally continuous sinistral faults to the zone 

between the Extra fault zone and Domain K. Deformation along the Extra fault zone 

and block rotation in the San Jacinto fault zone to the southeast must have begun 

contemporaneously at 0.61 Ma ± 0.02 Ma to 0.52 Ma± 0.03 Ma, the age of the youngest 

pre-growth strata deformed by the Extra fault zone. 

San Felipe anticline 

The large San Felipe anticline is geometrically distinct from the younger closely 

spaced folds that also shortened the San Felipe Hills . Reconstructed cross sections of the 

San Felipe anticline based on angular relations at the basal contact of the Ocotillo 

formation define the extent of the San Felipe anticline at about 1.07 Ma (Figure 3-19). 

Development of the San Felipe antic line immediately preceded or coincided with a basin­

wide change in deposition and facies recorded by the Brawley and Ocotillo formations 

[Chapt er 2]. The interlimb angle of the reconstrncted San Felipe antic line east of Squaw 
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Peak is 130° whereas the current intcrlimb angle is J 23°. This shows minor tightenin g of 

the San Felipe anticline since - 1.07 Ma in the central San Felipe Hill s, and much of 

tightening may be loca lized tilting adj acent to cas t-west-striking strike- slip faults. 

The modern stress field and slip on strands of the modem San Jacinto fault zone 

arc unlikely to have produced the San Fe lipe anticline because the fold has barely 

tightened since - I Ma and the curren tly active Coyo te Creek fault crosscuts and offsets 

the ant icline. Jnstcad, slip on a kincmaticall y different early San Jacinto fault zone is 

hypothe siszcd to have produced this fold. The poor ly understood San Felipe and Veggie 

Linc faults to the west may also be related to formation of the San Fe lipe anticline 

(Figure 3-2) . A similar bedrock cored fold has been descr ibed by Dibblee [ 1954, 1984a, 

1984b] southeast in the Coyo te Mountains adjacent to a contrac tional bend in the 

Elsinore fault. The orientation, scale, structural and stratigraphic context of that fold 

resemb les the San Felipe anticline [Dibblee, 1984b]. 

Shortening from Foldin g 

Feragen [ 1986] calculated - 9 km of north- south fold related shortenin g across 

the San Felipe I !ills by assuming that shortening percentages equal to those in doma in K 

app ly to the entire San Felipe Hills. This is equiva lent to 14 km of dextral slip on the 

Clark fault plane (305 ° NW) [ Wells and Feragen, 1987]. Our work sugges ts lower 

values of fold-re lated shortenin g because the actua l strain magnitud es are significant ly 

less than Ferag en [1987] inferred across much of the San Felipe Hills. We calcu late that 

at least 5.62 ± 0.4 km of dcxtral slip likely related to the Clark fault, on a plane striking 

305° NW, is preserved in the folds of the eastern San Felipe Hills (Table 3-2). lf the 

discontinuous dextral faults in the area accom modated additional slip, the total-slip in the 
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San Felipe 1-1 ills could be - 1-3 km greater. The abse nce of corrcl atab lc markers across 

many of the dcxtral faults makes more detailed estimat ion of fau lt offse t untenable , and 

there may be large errors associa ted with the current est imate. 

A fract ion (abo ut 1/3) of the 15 km ofdex tral separation across the Clark fault is 

recorded in the folds of the San Felipe Hills. Further work is needed to determine if the 

rcmaining - 9- 10 km of separation is preserved on small faults in the San Felipe Hills 

and/or on faults northeast of the Clark fault between Travc11inc Ridge and the 

Truckhavcn Road, or is not evident in near -surface sed imentary deposits . Some of this 

slip deficit may be accounted for if earlier geome trics of the Clark fault were similar to 

those presented by Barrho/011m v [ 1970] (Figure 3-6) J f his model is partia lly correct 

signilicant amount s of the slip on the Clark fault lo the north of the San Felipe II ills could 

have been transf erred to the south, bypassing the San Fe lipe Hills. Slip could have been 

transfe rred to the Coyo te Creek fault [Bar tholomew, 1970] or the Fish Creek Mounta in 

fault [Jan ecke er al. , 2004]. Another poss ible explanation for the s lip defic it may be 

sugges ted by recent work by Fialko er al. [2005] that show large differences between slip 

magnitudes at 3-5 km depth s and slip magnitudes near the surface. Further work is 

necessary to exp lain the apparent slip deficit. 

The absence of grow th strata in the Brawley Fonna lion of the San Felipe Hills 

suggests that all of the foldin g on transect I occurred since deposition of the Brawley 

Formation at 0.61 Ma ± 0.02 Ma to 0.52 Ma ± 0.03 Ma (Figure 3-7). Therefore at least 

- 5-6 km of slip has been transferred into the San Felipe Hills along strands of the Clark 

fault in less than 0.5 Ma. 



Slip Rates 

Folding along transect I may have begun no earlier than the end of deposition of 

the internally conformable Brawley Formation in the southeastern San Felipe Hills at 

0.61 ± 0.02 Ma to 0.52 ± 0.03 Ma [Chapt er 2].. Two slip rates of9.5 ± 0.3 mm/yr and 
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I 0.8 ± 0.7 mm/yr arc calculated based on shortening in tran sect I and the age of the 

youngest Brawley Formation (Table 3-2). These minimum slip rates arc ca lculated only 

for fold dom ains B and Kin transect J that arc most likely to be the result of slip on the 

Clark fault. These slip rates likely are likely minima beca use potential slip on faults 

including the Sand Dunes , Powe rlinL:, and Dump faults is not included in this estimate 

(Figure 3-3). Fold domains D and E could also record. lip on the Clark fault but arc 

likely to be slructurally iso lated by faults and or may record duplicate slip already 

captured in transect I (F igure 3-7). Actua l slip rates may be somewhat lower if some of 

the folding across transect I is the result of deformation stepping left from the Coyote 

Creek fault, and somewhat higher if there was significant clockwise rotation of the fold 

axes with in the San Felipe Hills. A rotation of 10° cou ld increase the slip rate by roughly 

I 0%, assuming that 2 km long blocks rotate coherently. 

This rate represents a significant amount of plate boundary slip when compared 

with slip rates of - 25 mm/yr for the southernmost San Andreas fault south of the 

Transver se Ranges [ Weldon and Sieh, 1985; Bennett et al. , J 996]. Total slip across the 

San Jacinto faul t zone in the western Salton Trough will be at least 9.5 to I 0.8 mm/yr plus 

the slip rate on the Coyo te Creek fault. Recent estimates of the slip rate across the Coyo te 

Creek fault [IO mm/yr; Dors ey, 2002 ] appear too high by a factor of 2. Follow-up studies 
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suggest slip rates of 4-6 mm/yr in the same area [Janec ke et al ., 2005]. Combinin g these 

estimates with our data gives a slip rate of at least 15 mm/yr for the San Jacint o fault zone 

over at least the last 0.5 Ma. 

Recent trilaterat ion data support similar strain rates (32.0 to 2.4 I o-8/yr) across 

both the San Jacinto fault zone and the San Andreas fault at the latitude of the San Felipe 

Hills [Anderson et al., 2003]. Such high rates are surprising given the lower ncotectonic 

rates of - 10-12 mm/yr found farther to the northwest along the San Jacinto fault zone 

based on dated Quaternary deposits offsets and G PS studie s [Sharp, 198 1; Rockw ell et 

al. , 1990; Wesnouski et al., 199 1; Benn ett et al. , 1996 ] but agree with higher rates in other 

studies [ Kendri ck et al. , I 994]. 

Conclusions 

The middl e Pleistocene to recent structural history of the San Felipe Hills is 

complex and shows the interact ion of several different fault geo metrics and deformati on 

styles produced by the evolution of the southern San Jacint o fault zone. Early structures, 

including the large cast-trending basemen t cored San Felipe anticline arc different from 

the smaller, tighter, and more numerous folds that deforn1 much of the study area. 

Magncto stratigraphically dated rocks of the Brawley Formation are internally 

conformable and provide age constraints on both the San Felipe anticline and the onset of 

the later smaller sca le folding. An angular unconformity beneath the Ocotillo Formation 

in western the San Felipe Hills shows that the basement cored portion of the San Felipe 

anticline developed slightly before or at ~ 1.07 Ma. Using the modern strain rate of 32.0 

± 2.4 1\ I o-8 per year from GPS data sets [A nd erso n et al., 2003] over a similar spatial area 
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and orientatio n to that of the reconstructed anticline the antic line could have formed in 

285,500 ± 19,700 years [Chapt er 2]. Farther to the east at this time no folding is 

apparent during the deposition of the Brawley Formation. Development of the many 

smaller folds in the eastern San Felipe Hills could not have begun until after deposition of 

the internally conformable deposition of the Brawley Fom1ation at 0.61 Ma± 0.02 Ma to 

0.52 Ma ± 0.03 Ma [ Chapter 2]. Thus the current configuration of the San Jacinto fault 

zone at the latitude of the San Felipe Hills can be no older than the youngest Brawley 

Formation . An earlier change , around l. I Ma, evidenced by the growth of the San Felipe 

anticline and the arrival of coarse elastic s in a former lake basin probably records another 

reorgani zation. This event appears lo be the initiation of the San Felipe and Fish Creek­

Vallecito faults [Chapt er 2; Stee~y et al ., 2005] , and perhap s also the initiation of the 

ancestral San Jacinto fault zone [Lutz, 2005 ; Jan ecke et al. , 2005]. The relatively high 

slip rates found by this study are also consistent with this interpretation. Slip rates 

slightly higher than those found by this study could account for the total right separat ion 

acros s the southern San Jacinto fault zone [Sharp , 1967; .Janecke et al. , 2005] in just over 

I Ma. 

Since the end of deposition of the Brawley Formation (- 0.5 Ma) at least 5-6 km 

of slip has occurred on the Clark fault plane. This va lue represents a portion of the l 5 

km separat ion across the Clark fault northwest of the study area , but still leaves a slip 

deficit of at least - 9-10 km. Some of the slip deficit could disappear if the Clark fault 

had a significant southwest-side-down component in Clark Lake Valley. Some of this 

deficit can be accounted for by earl ier geometries of the San Jacinto fault zone, which 

bypassed the San Felipe Hills [Bartholom ew, 1970; .Janecke et al., 2004] (Figure 3-6). 
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The rest of the slip may reside in undocumented fault slip across structur es northeast of 

the Clark fault, like the Truckha vcn fault , and faults in the San Felipe Hills like, the Sand 

Dunes, Powcrlinc, and Dump faults. Offset across these faults could total up to 3-4 km 

and account for some of the slip deficit. Finally, permanent near-surface slip deficits , like 

those recently documented on strike-slip faults, could explain the observed slip deficit 

[Fialku el al., 2005]. Further detailed work on the faults in the San Felipe Hills and the 

possibility of Clark fault step-around to the south is warranted. Slip rates based on the 

resolved shortenin g and the palcomagncti c time constraints arc calculated at 9.5 :± 0.3 

mm/yr and I 0.8 ..'... 0. 7 mm/yr for the Clark fault over the last ~0.5 Ma. These values arc 

quite conservative and actual rates may be higher. 

The overa ll geome try of folding and deformation within the San Felipe Hills is 

likely the result of slip on the Clark fault and its interaction with province of block 

rotation to the southeast and the Coyote Creek fault to the west. This interpretation is 

further supported by the localization of the highest stra in within the San Fe lipe Hills in 

fold domain K. This folding is not the direct result of block rotation because of the lack 

of major( > 10°) vertical axis rotation documented in concurrent palcomagnctic studies 

[Housen el al., 2004; Chapter 2]. lnstead this folding may be produced by slip on the 

Clark fault transferred into the southern San Felipe Hills, which interacts with the 

province of clockw ise block rotation to the south. The geome try and spatial extent of the 

folding in domain K is also different from that of fold domain J which is related to 

sinistral slip on the northeast strik ing Extra fault zone. 

Of the three prior models presented for the formation of the closely-spaced folds 

and smaller faults in the San Felipe Hills, none exactly match the structural , map, and 
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geophysical data (Figure 3-5) . Instead we propose a var iant which better incorporat es the 

data , in which the Clark fault terminates as series of en eche lon horse-tail splays which 

transfer slip southward to the northern edge of the province of sinistral faulting and block 

rotation (Figure 3-23). Deformation is most intense where the en echelon strands of the 

Clark fault interac t with the northern boundary of the block rotation. 

Our model for the kinematics or the southern San Jacinto fault zone near the San 

Fe lipe Hills has severa l important implications. First, the Brawley Zone which bounds 

the province of block rotation on the cast [Hudnut el al., 1989] and transfers dcxtral slip 

north from the Imperial fault may be no older tl1an the onset of folding in the Braw ley 

Formation. Seco nd, the southern San Jacin to fault zone has undergone major kinematic 

changes in just the last I Ma. Third, the transfer of slip and stra in across the province of 

block rotation is linked to slip and strain changes along the Coyo te Cree k and Clark fault 

to the northwe st. Fourth, the San Felipe Hills lie astride a complex zone of kinematic 

transfer in the southern San Jacinto fault zone with the Extra fau lt zone lying near or on 

the northwest boundary bctv,rcen sinistral faulting and block rotation to the southeast and 

dcxtral strike-s lip along the Coyo te Creek and Clark faults to the northwes t. 

Deformation in the San Felipe Hills is driven by previou s (- I.I Ma) and recent( < 

0.5 Ma) along strike changes in the fault kinematics and geometrics of the San Jacinto 

fault zone. Ev idence for at least two geometries of the San Jacinto fau lt zone is shown by 

the - 1.1 Ma San Felipe antic line and the( < 0.5 Ma) closely spaced folds and faults. 

The modern San Jacinto fau lt zone displays major kinematic changes sout heastwa rd 

along strike, from the en echelon strands of the Clark fault to province of sinistral faultin g 

and block rotation to the southea st. 
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Table 3-1. Table of fold domain data. Summary of fold domains showing plunge and trend, interlimb angle, percent 
shortening, orientation of shortening, spatial extent, strain rate, and shortening rate. Shorten ing orientation isperpendicu lar to 
trend of folding. Strain rates were calculated by assuming all folding post dates the depositio n of the Braw ley Formation in 
the eastern San Felipe Hills. This assumption may be incorrect for fold domains in the western San Felipe Hills , including 
domains E, F, and G. Fold categories include o (open folds), g (gentle folds). 

Rate of Rate of 

Fold Orientation lnterl,mb Pacent Shortening Spatial extent of fold Strain rates IO' yr' Strain rates IO ' yr 1 .:,honening shonening 

domain (plunge and angle shortening orientation domain perpendicular since 0.52 Ma since 0.61 Ma perpendicular to perpendicular to 

trend) (nzi111uth) to trend (km) trend ( 111111 yr) trend (111111 yr) 
since 0.52 Ma since 0.61 Ma 

Domain A 5,359 1644 g 1% 269 7 178 :': 0 10 1.52 :': 0.04 0.12 :': 0.01 0.11 :': 0.00 

Domain B 11, 9 1 1164 0 15 % 181 6 28.87 :': 1.58 24.61 :': 0.78 173 :': 0.09 1.48 :': 0.05 

Domain C 11, 127 140.2 g 6% 217 1 11.15 :': 0.63 9.79 :': 0.31 0.12 ! 0.01 0.10 :!:. 0.00 

Domain D 12, 101 1434 g 5% 191 5 9.73 ! 0.53 8.29 :': 0.26 0.49 :': 0.03 0.42 ! 0.01 

Doma in E 21, 76 129.0 g 10 % 346 1 18.73:': 1.02 15.97 :!:. 0.51 0.19 :': 0.01 0.16 :': 0.00 

Domain F 5,271 128.9 g 10 % 181 2 18.81 :': 1.03 16.03 :!:. 0.51 0.38 :': 0.02 0.32 :': 0.01 

Domain G 10,9 4 140.2 g 6% 184 4 11.48:+:0.63 9.79 :': 0.31 0.46 :': 003 0,39 :!:. 0.01 

Domain H 3,273 136.7 g 7 % 183 4 13.57 :': 0.74 11.56 :!:. 0.37 0.54 :': 0.03 0.46 ! 0.01 

Domain I 5, 268 135.0 g 8 % 358 5 14.64 :!:. 0.80 12.48 ! 0.40 0.73 :': 0.04 0.62 :': 0.02 

Domain J 4,80 107.3 o 20 % 350 3 37.42 :': 2.04 3190 :': 1.01 1.12 ! 0.06 0.96 ! 0.03 

Doma in K 7, 94 81.8 0 35 % 184 6 66.40 :': 3.62 56.60 ! 1.80 3.98 :': 0.22 3.40 ! 0.1.1 

homocline N n/a n/a 7 % 180 2 n/a n/a n/a n/a 

n/a n/a 3% 180 2 n/a n/a n/a n/a 
homoclinc S 

-w 
N 



Table 3-2. Shortening transect summ ary. Location of transects is shown in figure 3-14. Spatial extent of fold domains is measured 
parallel to the orientation of shortenin g. North and south limbs are the homoelin al limbs of the San Felipe anticline. Total 
north- south shortening was resolved onto a vertical plane parrallcl to the Clark fault plane northwes t of the study area (305 ° NW). 

Transect lnterlimb Orientation of Spatial Total 
Slip resolved Fold or dip Percent shortening angle or shorten ing axis extent on 305 NW domain shortening across domain homocline dip from north (km) (km) (km) 

Transect l b 116.4° 181° 15 % 6.20 0.93 1.66 

k 81.8° 184° 35 % 5.90 2.04 3.96 

Shortening on 2.97 5.62 ±. 0.2 km 
transect 1 

Transect 2 f 128.9° 181° 9.7 % 2.50 0.24 0.44 

g 140.2° 184° 5.9 % 2.70 0.16 0.31 

h 136.7° 183° 7% 2.80 0.20 0.37 

N limb 34° 180° 4.3 % 1.70 0.07 0.13 

S Limb 23° 180° 2% 1.90 0.04 0.07 

Shortening on 0.71 1.32 + 0.2 km 
transect 2 -

w 
w 
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Table 3-3. Cy lindric al best fit eigen vectors and confidence inter vals for fold domain s 
a-k. For values of n > 25 confidence int erva ls were computed . 

Fold n Eigen Eigen 
Trend Plunge 

Confidence Confidence 
domain vector value max min 

A 38 1 0.9153 220.8 85.1 6.5 2.6 
2 0.0723 90.9 3.2 
3 0.0125 0.7 3.8 12.3 2.5 

B 33 1 0.7233 223.8 74.1 20.0 4.0 
2 0.2561 3.2 12.2 
3 0.0206 95.4 10.1 8.2 3.9 

C 21 1 0.8688 297.1 83.6 
2 0.1194 36.4 1.0 
3 0.0118 126.5 6.3 

D 17 1 0.8237 295.9 78.2 
2 0.1599 195.4 2.2 
3 0.0165 105.0 11.5 

E 16 0.7329 138.8 81.3 
2 0.2514 2.5 6.3 
3 0.0157 271.8 5.9 

F 10 1 0.7582 268.6 68.7 
2 0.2206 168.6 3.9 
3 0.0212 77.1 20.9 

G 18 1 0.8101 266.5 81.7 
2 0.1498 359.0 0.4 
3 0.0401 89.0 8.3 

H 27 1 0.7956 23.0 82.7 14.7 4.3 
2 0.183 184.0 6.9 
3 0.0214 274.3 2.3 11.2 3.7 

21 0.7959 88.3 82.6 
2 0.167 357.3 0.1 
3 0.0372 267.3 7.4 

j 17 1 0.6181 5.5 81.1 
2 0.2978 166.6 8.4 
3 0.0841 257 .1 2.8 

K 230 1 0.5234 356.9 44 .2 21.2 3.9 
2 0.4048 187.9 45.3 
3 0.0718 92.3 5.6 4.1 3.6 



Table 3-4. Table of prior tectoni c models. Summary of the fit between observed relationship s and those predicted 
by prior tectonic model s for the San Felipe Hills and the southern Clark fault. (I)= Wells [ 1986] and Feragen 
[ 1987], (2) = Dihbl ee [ 1954, 1984], Sharp [ 1967], and Pertinga [ 199 1 ], (3) = Jan ecke et al. [2003] . Figure 3-5 
corresponds with model s 1 thru 3. Ba lded entries represent sign ificant mismatche s between actual data and 
prediction s. 

Observed 
data 

E-W trending folds 
in most of the San 
Felipe Hills (SF: 1) 
except in the east 

whe re NS trending 

folds exist 

folding is 
distributed acro~s 

the entire SFH 

highest strain is located 
in the SE SF H 

severa l NW-striking 
dextral faults possbly 

related to the Clark fault 

Extra fault zone is a 
major through-going NE 

striking sinstral fault 
zone 

Prediction s of Model l : 
blind Clark fault ( l) 

E-W trending folds 

folds arc developed 
primari ly above th e 

blind trace of the 
C la rk fault 

strain is equally 
distribut ed in d cfunn cd 

zone abo\'C th e blind 
fault 

no large surfac e 
fau lts predicted 

in the SFl-1 

no major ~E strikin g 
faults shou ld cross 

the Cla rk fault 

Prediction s of Model 2: 
Clark fault term . (2) 

E-W to SE trending 
folds fold trend 
changes across 

folded zone 

folds are deve loped 
only nea r the tip of 

the Clark fault in the 
~\\' SFH 

highest strain is 
expected near the tip of 
the Clark fault ~\\ ' of 

the SFH 

no surfac e fa ult s 
predicted in the 

SFH 

no maj o r :\E str ikin g 
faults arc pr edi cte d 

Predictions of Mode l 3: 
Clark fault stepover (3) 

E-W trending folds 
throughout SFH except in 

the east where NS 
trending folds are 

developed 

folds are dist ributed 
broadly across the 

entire SFH 

hi ghes t stra in is 
expected in s tepovcr 

zon e in the centra l and 
north ern SF H 

:\\V str ikin g fault s should be 
d isco ntinu ous a nd bound 

folded ste po vcr zones 

Ex tra fault is not predict ed 
and mu st cro ss a major 

buried ;--w strikin g fault zone 
at d ep th 

w 
V1 
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Figure 3-1. Tectonic overview of southern California . Areas of active block rotation 
are shaded red [Nicholson et al. , 1986 ; Hudnut et al., 1989; Os kin and Stock , 2003]. 
Strike-slip faults are in black ; SAFZ =San Andreas fault zone, SJFZ =San Jacinto fault 
zone , IF=lmperial fault, SJFZ =San Jacinto fault zone , EF=Elsinore fault. 
BSZ =Brawley Seismic Zone . Oblique-slip detachment faults are in blue including 
the WSD =West Salton detachment. Fault locations are from Jennings [1977] , and 
Axen and Fletcher [ 1998] . Box is approximate location of figure 3-2. 



Figure 3-2. Overview of the western Salton Trough. Black box is extent of gravity map 

in figure 3-8 . Red box is the extent of magnetic anomaly map in figure 3-10. Dashed 

black box is the extent of the study area figure 3-3 . CCF, Coyote Creek fault; CF, Clark 

fault ; SAF, San Andreas fault ; SHF , Superstition Hills fault ; SMF , Superstition Mountain 

fault; EF, Extra fault ; ERF, Elmore Ranch fault; IF, Imperial fault; BSZ , Brawley 

Seismic zone ; DH, Durmid Hills ; SFH , San Felipe Hills ; OC , Ocotillo Badlands ; BB, 

Bonego Badlands; FCB , Fish Creek-Vallecitos basin ; FCM , Fish Creek Mts .; PM 

Pinyan Mountains ; ; CM, Coyote Mountain ; C Mts. ,Coyote Mountains ; SM , Split Mt. ; 

SYM, San Ysidro Mts.; VM ,Vallecito Mts.; TBM , Tiena Blanca Mountains ; WP, Whale 

Peak ; YR, Yaqui Ridge . Modified from Axen and Fletcher [1998]. 
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Figure 3 - 2. Overview of the western Salton Trough. 
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Figure 3-3. Simplified geology of the San Felipe Hills. Geologic mapping by Kirby, 

Janecke, Dorsey and Steely unpublished mapping [2003] , area of compilation from Girty, 

Heitmann, and Lilly unpublished mapping [ 2002] shown by dashed blue box. Faults are 

shown in blue and folds in black. Major strike-slip faults within the study area include 

the San Felipe Hills fault (SFHF) , the Dump fault (DF), the Coyote Creek fault (CCF), 

the Powerline fault (PWF), and the Sand Dune fault (SDF) . The trend of the major San 

Felipe Anticline (SF A) is shown in thicker black line. Locations of cross sections shown 

by solid black lines . Approximate position of San Felipe wash is shown by the black 

dashed line . Red dashed lines are state highways. See figure 3-4 for unit descriptions. 
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Figure 3-3. Simplified geology of the San Felipe Hills. 
w 
00 



. (, 
~ 0 ~e, ~ ~e, '\e; . ~ 

.. _l>f 
"'O C C 0 ru 
Q. V'I 

V'I 

V'I 
<li .... 1oz._~ I Q. -QJ V'I .::,:, 
C ·;:: ru +-' .... 

VI +-' 

QJ 
C 
QJ 

~ ,? 
e,'-j 

.lj.-<::-
'\-<:-" 

4000 

~ ~o 
~1> 

~o' 

Ol:ot ilh.> Format ion (Qo) Middle Pleistocene 
Grey to tan pebb le 10 cobble cong lomerate, pebbly sandstone. 
peach mud stone and grey siltstone. lnterfingers bas inwa rd 
with the Braw ley Fonn at ion. Alluvia l and fluvia l deposits. 

Brawley Formatum (Qb) Midd le Ple istuct:ne 
Buff loca lly and Co lorado River-der ived c;;andstonc . 
Red mud stone 1.ommonly con tain ing sand 
filled des icca tion crac ks. Dista l equivalent o f the Ocot illo 
Fm. Flu, iaL lhl\ ial-deha ic.:. and lt!sser lar.:ustrint! depos it::,. 

Borrego Fom1ation (Ql b) 
Red :nud stones and fiss ile grey clay stone. Lessr.::r sandsto ne 

139 

u 
r-- 0 

i, domin,Hd} CLllorado Rl\cr deriH:d . Opi:n lm:u::,trine depo!:>ib. 

+-' 
V'I 

ru 'cii 
C ? 0 CL 

·'= V'I 

C 
ru 7 .... 

f-
r--

QJ 
C 
QJ 
u 

+-' 0 ....... 
· ;:: 

CL 
QJ 
:::, 
O' 

1:i 
0 .... 
0 

~ 
? C 

>. 
VI -

7 

Miocene ? 

QTb 

3000 

2000 

1000 

0 

rran~i11011al U1111 (Tl) 
Tr:msit10nal un it between tile Diablo Format ion 
«nd rhe Borrego Fonnatil1n. 50 50 mmlstone and Colorado 
Ri,er -deri\ed sand,t one Lacustrine Jnd dd 1a plane depo~11, . 

Diab lo Fonnatmn (Td) of the Palm Spr ing Group 
Tan 10 bu IT pbnar 10 cro~~beJded Co lorado Ri\ er­
deri\ et! 'iamls!Onl!. Red massi\ e muJstonc.: up 
to 4-5m thick. NonmarnH.~ deltaic depos ib . 

Olla Fonnat ,on (To) of the Palm Spnng <iroup 
0dff pb nac 10 cro.:.sbedtleJ loca liy der i\ eel nU\ 1al sa ndstone 
Mmor outcrop:-. 1n !he no11h\\estern San Fe liix Hilb 

lrnpen.i l G1oup (T1) 
Grey bufTto ye llo,\ coarse locally cleri\"ecl manne 
b1orurbatcd sancis10ne. coquma. Cine-grained rhy1hm i1es 
and shak . Abundant ::-hell fragments in some: zone .... Marmt' 
prodelrn and marginal depO'-ltS. 

We~l Butte Fonnation (T\\ b) 
(irey buff loca lly der ived manne ,andstone. mmor pebbl y 
,;;andstone and gnt (Stee ly. ct a l.. 2004) . 

Elephant frees Fonnati on {Tet) 
Encountered in \\e lls at the base of the sect ion cons ists of 
loca lly derived sandsto ne and cong lomerate (D ibb lee. 1984). 

Squaw Peak Gnei,;;.., (Ksp) 
Moderate ly to stro ngly foliated gran iioicl. mino r biot ite 
~chi::,t. 

Figure 3-4 . Stratigraphic column. Early synrift succe ssion is the Imperial Group to 
Diablo Fonnation. The Borrego Formation is a tran sitional unit. Above these unit s, 
across an angular unconfo1111ity (shown in yellow) in the west and disconformity 
(shown in red) in the east are the Ocotillo and Brawley formations which were likely 
deposited during onset or reorganization of slip on strands of the San Jacinto fault zone . 
The coarse Ocotillo Fo1111ation conglomerate and sandstone interfinger with the finer 
sand stone of the Brawley Formation to the east within the San Felipe Hills . The 1.07 Ma 
age of the unconfonnity was dete1mined paleomagnetically by this study. Other ages are 
approximate based on work of this study and previous work nearby by John son et al. 
[ 1983], Remieka and Beske-Diehl [ l 996], Winker and Kidwell [ I 996], and Steely et al. 
[2004]. Growth may be apparent in the Imperial-aged deposit s ju st to the wes t [Steely et 
al., 2004]. Unit thickne ss 's are minima based on mapping from thi s study . Units match 
those in figure 3-3. 
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Figure 3-5 . Previous kinematic models. The approximate extent of the study area is shown by the black boxes . Model l shows 
a blind continuation of the Clark fault at depth beneath the San Felipe Hill s after Feragen [1986] and Wells [1987]. Model 2 
shows the Clark fault terminating within the no11hern San Felipe Hills as proposed by both Dibbl ee [1954, 1984a] , Sharp 
[ 1972], and Pettinga [199 i]. Model 3 shows a contractional stepo ver of the Clark fault onto a blind northwest striking dextral 
fault zone located near the shore of the Salton Sea after Janecke el al. [2003]. See Chapter 3 text for deta ils of each model. 
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Figure 3-6. Clark fault bend model. Model of an extensional bend in the Clark fault after Bartholomew [ 1970]. Most of the 
apparent offset of the mylonite is produced by slip on an older geometry of the Clark fault which transfers slip along the the 
eastern edge of Coyote Mountain. This model was not directly tested by dat a in thi s study , further work in the Borrego Badlands 
and along the Coyote Creek fault is necessary to determine whether the Coyote Creek fault southeast of the star has more slip 
than the Coyote Creek fau lt northwest of the star . Dashed box is the extent of the study area. 
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Figure 3-7. Fold domain map of the San Felipe Hills . Fold characteristics for domains A­

J were computed from field mapping . Data for fold domain K was compiled from 

Heitmann [2002]. Azimuthal orientation of average shortening direction for each domain 

is shown by black arrows. Average trend and plunge of fold domains is shown by large 

black arrows. Extent of two transects used to compute total shortening (Table 3.2) most 

likely related to the Clark fault are shown in black. Faults are shown in blue and folds in 

black. Major strike-slip faults within the study area include the San Felipe Hills fault 

(SFHF), the Dump fault (OF), the Powerline fault (PWF) , and the Sand Dunes fault 

(SDF). The axes of the major San Felipe anticline (SFA) and Santa Rosa anticline (SRA) 

are shown in black. Major state routes and highway s shown by red dashed lines. 
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Figure 3-7. Fold domain map. 
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Figure 3-8 . Isostatic gravity anomaly map of the western Salton Trough . Approximate 

extent of the study area is shown by black dashed box . The gravity signal of the San 

Felipe anticline (SF A) extends east past the Powerline fault (PWF). The gravity signal 

of the composite south-plunging Santa Rosa anticline (SRA) is apparent for the northern 

and central parts of the anticline . Major faults are shown in white including the Clark 

fault (CF), Coyote Creek fault (CCF) , Extra fault zone (EFZ) , Elmore Ranch fault (ERF) 

and the Superstition Hills fault (SHF) . Relevant exposures of Plio-Quaternary rocks 

include the Borrego badlands (BB) and the Ocotillo badlands (OB). State highways are 

shown by the red dashed lines. Gravity data are from Lang enheim and Jachens [1993] 

and Langenheim unpublished data [2004] . 
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Figure 3-9. Isostatic gravity and surficial geology of the San Felipe Hills . Gravity 

extent of the San Felipe anticline corresponds well with mapped San Felipe anticline 

(SF A). Gravity signal of the Santa Rosa anticline (SRA) is offset from the mapped axi s 

of this fold. Faults are shown in blue and folds in black . Major strike-slip faults within 

the study area include the SFHF (San Felipe Hills fault) , the DF (Dump fault) , the PWF 

(Powerline fault) , and the SDF (Sand Dunes fault). The trends of the major SF A (San 

Felipe Anticline) and SRA (Santa Rosa Anticline) are shown in black . Approximate 

position of San Felipe Wash is shown by the black dashed line . Red dashed lines are 

state highways. Gravity data are from Langenheim and Ja chens [ 1993] and Langenheim 

unpublished data [2004]. 
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Figure 3-9. Isostatic gravity and surficial geology of the San Felipe Hills. 
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Figure 3-10. Magnetic anomaly map of the western Salton Trough . Magnetic anomaly 

has been filtered to enhance shallow sources [Langenheim , unpublished data, 2004 ]. 

Edge of color shade is the edge of available detailed data . Black dashed box is the 

approximate extent of the study area. Major structures apparent on the magnetic anomaly 

include the Coyote Creek fault (CCF) , Clark fault (CF) , San Felipe Hills fault (SFHF) , 

Extra fault zone (EFZ), and Powerline fault (PWF) . Several magnetic lineaments 

represent the magnetic signal of the diffuse strands of the Clark fault (CFS) found by this 

study in the field area . The expression of the San Felipe anticline (SF A) and the Santa 

Rosa anticline (SRA) is apparent. Magnetic signal of the SF A across the CCF is much 

lower west of the fault p does not show this juxtaposition . Nearby exposures of Plio­

Quatemary strata include the Ocotillo badlands ()8) and Borrego badlands (BB) . State 

highways are the red dashed lines. 
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Figure 3-10 . Magnetic anomaly map of the western Salton Trough. 
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Figure 3-11. Filtered magnetic anomaly and surficial geology of the San Felipe Hills . 

Magnetic gradients correlate with the surficial Sand Dunes fault (SDF) and the en 

echelon northwest trending faults just to the north . Faults are shown in blue and folds in 

black. Major strike-slip faults within the study area include the San Felipe Hills fault 

(SFHF) , the Dump Fault (DF) , the Powerline fault(), and the Sand Dunes fault (SDF). 

The trends of the major San Felipe Anticline (SFA) and Santa Rosa Anticline (SRA) are 

shown in black. Approximate position of San Felipe Wash is shown by the black dashed 

line. Red dashed lines are state highways. Locations of cross sections shown in black . 
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Figure 3-14. Cross section A-A'. North-south cross section in the western San Felipe 

Hills through the east-plunging San Felipe anticline. Units include the Ksp (Squaw Peak 

gneiss) , Ti (Imperial Group), Td (Diablo Formation), Tt (transitional unit) , QTb (Borrego 

Formation), and the Qo (Ocotillo Formation). Black tadpoles represent the dips of all 

units except the Ocotillo Formation . Red tadpoles represent the dip of the Ocotillo 

Fonnation. Red line represents the extent of surficial coverage. Blue dashed line is the 

west Salton detachment fault (WSD) which in this orientation has upper plate motion into 

the page. It is inferred that the detachment fault was folded by the San Felipe anticline 

and then faulted by east-west strike-slip faults which are driven by slip on the nearby 

Coyote Creek fault and San Felipe Hills fault . Separation across the San Felipe Hills 

fault is uncertain. Relative thickness of upper plate basement is inferred to show a 

persistent bedrock high located beneath Squaw Peak . See figure 3-3 for location . 
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Figure 3-15. Cross section B-B'. North-south cross section through the San Felipe 

anticline. Units include Ksp (Squaw Peak gneiss), Ti (Imperial Group), Td (Diablo 

Formation) , and Qo (Ocotillo Formation) . Black tadpoles are dips for all units except the 

Ocotillo Formation. Red tadpoles are the dips for the Ocotillo Formation. The Ocotillo 

Formation lies in angular unconformity on the Diab lo Fom1ation on the south end of the 

cross section. The blue line is the west Salton detachment fault. Red line is the extent of 

surficial cover. Upper plate motion is into the page. The detachment is inferred to have 

been folded and faulted after it ceased slipping. The thickness of the upper plate 

basement is uniform across this cross section . Several high angle east-west striking 

strike-slip faults in this section are assumed to be left lateral faults based on kinematic 

indicators on east-west striking faults in the northwest portion of the study area. See 

figure 3-3 for cross section location. 
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Figure 3-16. Cross section C-C'. Cross section through the en echelon strands of the 

Clark fault in the central San Felipe Hills. Subsurface geometries and structure inferred 

from seismic reflection data from Severson [ 1987] ~ 7 km to the northeast. See figure 3-

20 for interpreted seismic line. Cross-cutting relationships shown in the cross section 

imply that the detachment stopped slipping at the end of deposition of the Diab lo 

Formation. Black -dashed strike-slip fault strands correspond with magnetic linaments in 

figure 3-11. Dashed blue lines are normal faults and the west Salton detachment fault 

(WSD). Red line represents a regional disconformity at the base of the Brawley 

Formation [Chapter 2] . Units Peak gneiss), Ti (Imperial Group), Td (Diablo Fonnation), 

Tt (transitional unit) , QTb (Formation), and Qb (Brawley Fonnation), QTu (undivided 

QT sediments). See figure 3-3 for cross section location. 
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Figure 3-17. Photograph of the Power line fault. View is to the south along 
Tule Wash. Right lateral fau lt motion places red mudstones against tan 
sandstones of the trans itiona l unit (Td-m). Hammer for scale. 
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Figure 3-20. Seismic line in the northeast San Felipe Hills . Industry seismic line from 

Severson [ 1987]. Seismic interpretation shows faults as dashed red lines , the sol id red 

line represents top of basement and probable faults, prominent sedimentary reflectors are 

shown in blue . Basement interpretation for cross section C-C' (figure 3-16) is from this 

seismic line . Location of seismic line is shown on figure 3-3. Depth to basement for 

Pure Oil #1 well is 2000 m [Severson , 1987; Layman unpublished data , 2005]. Units are 

QTb (Borrego Formation), Qb (Brawley Fom1ation) and pT (preTertiary basement). 
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CHAPTER4 

CONCLUS ION S 

We examined stratigraphic and structural relationships well exposed in the Plio­

Quaternary rocks of the San Felipe Hills, in order to characterize the evo lution of the 

North Amer ican-Pacific plate bound ary in the Salton Trough area . Early extension 

loca lized on the West Salton detachm ent fault was replaced sometime after - 1.5 to I. 

Ma by slip on c-ross cutting strike-slip faults. Our work provides detailed constraints on 

the timing and kinematic evo lution of strike-s lip faulting including fault strands or San 

Jacinto fault zone in the wes tern Salton Tro ugh. 
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Stratigrap hic analysis of the Ocotillo and Braw ley formations and their relations 

with the under ly ing units provides constraints on the evolution or the San Jac into fa ult 

zone between - I and 0.5 Ma. Our work accurately cons train s the age and depositional 

en vironment of the Braw ley Formation in the San Felipe Hills for the first time. We 

measures 550 m of the Brawley Forma tion in the southeas tern San Felipe I I ills. Magneto­

stratigraph y along this section shows that the Brawley Format ion was depos ited between 

l .07 Ma and 0 .6 1 Ma .± 0.02 Ma and 0.52 Ma .± 0.03 Ma (Chapter 2). A 245 m section of 

the coarse latera l equivalent of the Brawley Formation, the Oco tillo Format ion, described 

in the Ocotillo badland s show s rapid westward coarsening relati ve lo the and Brawley 

Fom1ation to the east (Chapter 2). Plio-Pl eistocene sedim entary rocks in the San Felipe 

Hills, Salton Trough record an abrupt change from older, open , perennial lake beds to 

cyc lic alluvial fan,"fluv ial-deltaic, and marginal lacustr ine deposits at 1.07 Ma. The 

- 1680 m thick lacustr ine clays tone , mud stone, and sandstone or the Borrego Formation 

in the San Fe lipe Hill s preserve almo st no margina l lacustrinc deposit s and formed in a 
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large perennial lake. A regional disconformity and laterally equivalent angular 

unconformity at the crest of a l 5 km long cast-west trending bedrock-cored anticline 

separate the Borrego Formation from the overlying Ocotillo Formation and its fine­

grained equivalent, the Brawley Formation (Chapter 2) . This east-west trending anticline 

is interpreted as the first evidence for tran spres sional defomrntion within the previousl y 

transtensional southwest Salton supradetachment basin . 

The Ocotillo Formation is dominated by alluvial fan and braided stream facics , 

with lesser fluvial and minor lacustrin e facics deposited conformably on the underl ying 

Borrego Formation in the Ocotillo Badlands (Chapter 2). Sediment is local ly so urc ed 

from nearby uplifts in the Fish Creek and Vallccitos Mountains and contains c last s 

recycled from older early to middle Pliocene basin fill. Palcotlow was to the cast. The 

Ocoti llo Fom1ation fines and thins to cast-northeast as in intcrfin gcrs with the Brawley 

Formation in the eastern San Fel ipe Hills (Chapter 2). 

The Braw ley Formation consists of 3 intcrbcdded lithofacies: fluvial to dcltaic 

sandstone with cross-bedding and weak calcic palcosols ; lacu strinc mud stonc , c lays tonc , 

and marlstone with 0.5 to 1.5 m deep desiccation cracks, rare cvaporitc mineral s, and 

locally abundant microfossils; and eo lian sandstone with large scale (- 3-4 m high) high­

ang le cross stratificat ion (Chapter 2). Microfossils include marine to lagoonal forarns , 

and lacustrine ostracods , micromollusks , and charop hytcs. Sandstones include - 60 % 

biotite-rich arkose derived from local tonalite plutons (L suit e), and - 40 % sub lith are nit e 

derived from the Colorado Plateau (C suite) . Sediment transport was to the E to NNE in 

the San Felipe Hills. Sedimenta tion rates in the Brawley Formation range from 1.0 ± 0.1 

to 1.2 ± 0.2 mm /yr (Chapter 2) . Clastic Brawley Formation sedime nt s accumulated in an 



ephemeral stream and delta system on the western margin of the Salton Trough while 

cvaporites accumulated offshore in the southeast Salton Sea. Most water in the Brawley 

lake was derived from the Colorado River to the SE, but palcocurrents show that sand 

was derived from local sources in the Wand SW. C suite sand was recycled from the 

uplifted Pliocen e Diablo Formation, Imperial Group, and /or Borrego Formation. 

Flooding of the basin occurred when channel switching in the Colorado River delta 

delivered water north into the Brawley basin (Chapter 2) . 

Starting at 1.07 Ma the lake margin shifted to the NE and nearly modern 
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depositional environments were establi shed. These environm ents include the allu vial 

facics of the Ocotillo Formation in the west and southwest and grading eastward into the 

fluvial , fluvial-dcltaic , eolian , lacustrin e , and cvaporitc facics of the distal Brawley 

formation. Deposition of the Ocotillo and Brawley fom1ation s occurred in a basin 

controlled by geometries kinematics of the San Jacinto fault zone that differ from those of 

the current San Jacinto fault zone. Folding after the end of Brawley and Ocotillo 

formation depo s ition between 0.61 Ma± 0.02 Ma and 0.52 Ma± 0.03 Ma shifted the 

dcpoccntcr even farther to the east as the active strands of the San Jacinto fault zone 

changed to their modern geometries. The depositional basin was localized on the floor of 

the Salton Trough and uplift and pedimentation became the dominant process in the 

western Salton Trough. This abrupt change at - 0.5 to 0.6 Ma reflects reorganization of 

the basin due to initiation or reorganization of the San Jacinto fault zone in the San Felipe 

Hills. 

Our work found no definitive evidence of stratigraphic growth relations in the 

stratigraphy pre-dating the Ocotillo and Brawley formations. Rocks of the Imperial 
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G roup , Diablo and Olla fom1 ation s, and Tran sition al unit were appar entl y depos ited in a 

co nform able se qu ence acro ss the San Fel ipe Hill s. Lands at ima ge ry showin g conv erge nt 

be ddin g trac es in the lowe r Bo rrego Fo rm ation in the central San Felip e Hill s in an area 

of inco mpl ete ly mapped dex tra l fau lts (Plate 3) . To th e south a single latera lly continuo us 

bed o f recyc led c las t cong lom erat e in th e Borr ego fo rm ation pro vide po ss ibl e ev idence of 

pre-Oco till o Fo rm ation int er-bas in defo rm ation in the Sa n Fe lipe Hill s (C hapt er 3). 

Furth er fie ld studi es arc nee ded in the lowe r and middl e Borr ego Form ation in the ce nt ra l 

and south -ce ntr a l Sa n Fe lipe Hill s to quant ify these observa tions. Th e stra tigraphi c 

pos ition of these features im pl ies that they are not the res ult of slip a long stran ds of the 

Ple istoce ne Sa n Jac into fault zo ne beca use it we re no t ac tive durin g depos ition of the 

lowe r Bor rego Forma tion . 

W ithin the Sa n Fe lip e Hill s , Plio-Quaternary se dim ents of the prev ious ly 

desc ribed and dated Borr ego, Oco till o, and Brawle y formations are stron g ly deform ed by 

a co mpl ex se ries o f folds and fault s south eas t o f the pr ev iously mapp ed termin ation of the 

sur face trace of the C lark fault. To the so uth , the Superstition Hill s and Sup erstition 

Mo unt a in fault s may be acco mm odatin g s lip in bro ad zo ne of c loc kwi se tra nsro tation 

(Hudnut et a l. 198 9). To con strain the ge om etri es and int eraction s of the fa ult strand s of 

th e so uthern Sa n Jac into 3 pri or model s fo r the geom etry of the Clark fault in the Sa n 

Felipe Hill s and its relation to the Sup erstition Hill s fault to the south are con sider ed . It 

has been sugges ted that the C lark fault terminate s, continues as a blind fault in the 

sub surface , or step s left ~ 25 km to the blind northw est continuation of th e Imp eria l fault 

(C hapter 3). Our fie ld studi es refut e these thr ee model s. New data sugge st, instead . that 

th e C lark fault probably per s ists into the central San Felipe Hills as an incompl etely 



mapped horsetail fan and en eche lon fault zone, and the San Jacinto fault zone recently 

began to accommodate strain in a broad transrotational zone southeast of the San Felip e 

Hills (Chapter 3). Gravity data show a southwe st-deepenin g step in the bedrock surface 

coincident with the Clark strand near the Santa Rosa Mountains (Chapter 3). The 

bedrock step persists southeast into the central San Felipe Hills , southeast of the tip-line 

identifi ed by prior surface mapping (Dibblee 1954, 1984; Sharp 1972) . 

The southea st San Felipe Hills preserve the most intensel y folded sediment ary 

rocks in the area (I lcitman 2002; Lilly 2003; Chapter 3). This highly folded belt is 

interpreted as the boundary zo ne between the domain of dcxtra l slip and wrench folding 

to the northwest and a broad domain of clockw ise transrotation lo the southea st. The 
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tran srota tiona l domain transfers slip from the Coyote Creek and Superstition stra nds to 

the Imperial and Brawley zones in the cast and southeast (Hudnut et al. 1989; Seeber and 

Armbruster 1999), our work show s that it also captures slip from the Clark strand. The 

current configuration of the San Jacinto fault zone appears to be less than 0.6 ± 0.02 to 

0.5 ± 0.03 Ma (Chapter 3). 

The foldin g in the San Felipe I tills was divided into fold domains based on 

similar fold geometrics. Average trend and plunge , intcrlimb angles , strain rates , 

shortenin g, and shortening rates were ca lculated for eac h domain. Transects through 

relevant fold domain s were used to calculate the total shortening and amount of 

equivalent dextral slip on the Clark fault plane oriented 305° NW (Chapter 3) . Total 

equ ivalent slip on the Clark fault plane for transect 2 is 5.62 km. Total equivalent dextral 

slip on transec t I is 1.32 km, but is likely produced by slip on faults to the sout hwest of 

the Clark fault , including the Coyo te Creek and or San Felipe Hills faults (Chapter 3). 
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Fo lding along transec t 2 may have begun no ear lier than the end of depos ition of the 

internally conformable Braw ley Format ion in the southeas tern San Fe lipe II ills at 0.61 ± 

0.02 to 0.52 ± 0 .03 Ma. Our ana lys is based on the spatia l extent and amo unt of 

shortening from fo lding and the time constraints gives poss ible minimum slip rates 

between 9 .5 ± 0 .3 mm/yea r and I 0 .8 ± 0.7 mm/yea r for the Clark strand in and near the 

San Fe lipe Hills (Chapter 3) . This sugges ts a significant component of plate boundary 

mo tion at this latitude has bee n loca lized on the Clark strand of the San Jac into faul t zone 

since at leas t 0.5 Ma . 

Basin-scale structu ral and stra tigraph ic ana lyses can provide critical de tails of 

plate boundary evol ution and geomet ry. In the San Felipe I !ills our work shows the 

evo lution of the sout hern San Jac into la ult zone from - I Ma to recent time period is 

complex and invo lves at least 2 majo r bas in wide stratigrap hic and structura l transitions. 

An early change is recorded by a spat ia lly exte nsive angular unconformity and lateral 

disconfo1m ity which separa tes the midd le Pleis toce ne aged alluvial to lluvio- lacustrinc 

Braw ley and Oco tillo format ions from the underlying pers istently lacus trinc Borrego 

Format ion. A later change at 0.5 Ma complex ly folded and laultcd these rocks as the 

Clark strand transmitted slip southwa rd into the San Felipe I !ills and interac ted with the 

deve loping zone of block rotation to the southeas t. This geo metry appears to have 

persisted into the prese nt day. 
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Plate 1 Geologic map of the San Felipe Hills, CA. 
by S. Kirby, S. U. Janecke, R. Dorsey and, A. Steely 2005 
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Unit Descriptions 

disconformity 

Undivided surficial deposib; (Qu). Unit consists of all remairing late Holocene age 
depo5it5 including; stream alluvium, colluvium, vegetated and active dunes, and 
lake Cahuilla deposits in the east Lake Cehuilla deposit5 are:haracterized by 
poorly consolidated dull brown silt, sand, mud, and occasiooal white marls. Broken 
lacustrine gastropod fossils are common. Pumice clast5 are locally common in the 

Cahuilla sediments. Total thickl'1ess of the Cahuilla deposits is up to - 4-5 m but is 
generally less - 2-3 m. 

Older alluvium (Qoa). Dark weathering cobble to sandy-gravel deposits. Deposits 

form sma ll low hills south of Squaw Peak in the western San Felpe Hills. Poorly 
consolidated deposit which is dominated by plutonic clasts derived from the Eastern 
Peninsu lar Ranges. Unit maybe weakly folded in some areas. iJtal thickness is - 2-4 

m, 

Youngest terrace deposit (Qt3). Dark weathering gravel to sandy gravel and cobble 
terrace. Clast composition is similar to Ot2. Unit is deposited along the upper 
portions of Arroyo Salada andTule washes near the western edge of the map area. 
Overlies all older rocks in angular unconfo rmity Several fau lt scarps and lineaments 
are apparent in this unit Total thickness 2-3 m.-

Terrace depo5it {Qt2}, Dark brown weathered cobble to sandy-grav-el terrace deposit. 
Clast5 consist of metamorphic rocks including marble and quartzite, and plutonic 
rocks of the Eastern Peninsu lar Ranges. Unit forms high terrace along the northern 
edge of the map area overlying the Diablo Formation and Transitional unit in angular 
unconformity Terrace is cut by several down to the E!ast - 2-3 m high fau lt scarps. 
Total thickness is - 4-5 m. 

Oldest terrace deposit (Qt1). Weathered tan to brown gravel and &andy terrace 
deposit with moderately developed calcic soil horizon. (lasts are dominated by 
plutonics derived from the Eastern Peninsular Ranges. Isolated south sloping 
high terrace exposure just west of the Powerline fault north of Tarantula Wash . 
Overlies older unit5 in angular unconformity. btal thickness is - 2-3 m. Maybe 
correlative with the Fonts Point sandstone of Ryter (2002) further to the west 

Brawley Formation (Qb). Buff-tan to orange weathering, locally-derived and 
Colorado River-derived sandstone and mudstone. Formation is characterized by 
moderately to poorly llthified, medium- to fine-grained sandstone with abundant 
sedimentary structures including large scale high angle cross stratification, 
trough and planar cross bedding, climbing ripples, channel fills, and son sediment 
deformation. Red mud stone and clays tone, containing downward tapering &and 
filled desiccation cracks up to 1-2 m deep are common. Also includes locally 
abundant &ands tone concretions, gray fossiliferous marls up 0.4 m thick, and minor 
silt5tone. Microfossi1 assemblages show deposition in fresh to brackish water 
conditions, Distal equivale11t of the conglomeratic Ocotillo Formation, The basef 
formation is a regional disconformity in the eastern San Felipe HUis dated at 1,07 
Ma. Total thickness is up to - 550 m in the eastern San Felipe Hills. Fluvial, fluvlal­
deltaic, lacustTine, and eolian deposib;. lower to middle Pleistocene age. 

Geologic Symbols 

Contacts 
--- Definite 

Gradational or approximately located 

Concealed 

Faults 
lsolld whore OOftnetely locat,d, da<h..d where approxlmaMy located, dotted wherHoncealed) 

_ _;;L--c--- • - ••• 
""?' 

Strike-slip fault (arrows give slip sense) 

C 
--: o=--- - - ... Normal fault (u is on footwall) 

-,...,L--,,.. • .... . .. 
• ""?' 

Oblique-slip fault 

--~- •• •• , Thrust or reverse fault (barb is on hanging wall) 

a a 

Folds 

Normal fault scarp (hatch is on down-thrown block) 

Bedding plane strike parrallel fault (inferred to 
separate highly folded from less folded rocks) 

--t--, Syncline (direction of arrow is direction of plunge) 

~ Anticline (direction of arrow is direction of plunge) 

Miscellaneous Symbols 

r 4~ Strike and dip of bedding 

• - - - - - Bedding trace from air photos 

- - Lake Cahuilla highstand - 48 ft above sea level 

111111 

Ocotillo Formation (Qo) (formerly 1he Ocoti llo Cong lomerate of Dibblee, 
1954). Gray to tan, pebble to cobble conglomerate, pebbly sandstone, arkose, 
gritty sandstone, pen ch muds tone, and gray siltstone. Recycled etas ts of the 
Diablo Formation and the Imperial Group are locally com/llOf\, Over lies older 
units in angular unconformity in the western San Felipe Hills and disconforrnity 
in the southeastern San Felipe Hills. lnlerfingers basinward with the Brawley 
Formation. Total thickness is - 225 rn to the south in Ocotillo Badlands, 
exposed thickness in the southwest San Felipe Hills is significantly less - 75-
100 m. A thin tongue (-10-20 m thick) ofOcotillo Formation underl~s the 
Brawley Formation in the southeastern San Felipe Hills. where this contact is 
dated at 1.07 Ma. Alluvial and fluvial deposit5. Lower to middle Pleistocene 
age. 

Borrego Formation (Qlb). Red laminated to massive muds tone and fissile gray 
clays tone dom inate over buff to tan colored, moderately lithified, fine to medium 
grain tabular to crossbedded sandstone. Minor grey siltstones and fossiliferous 
marls. Yellow argilliceous calcite nodules up 10 cm in length common In the 
gray claystones. Fossil assemblages indicate fresh to brackish water conditions. 
Sediment is dominantly Colorado River derived Records deposition in open 
water to marginal lacustrine conditions. Total thickness is - 1800 m just south 
of Salton City. Upper Plfocene to lower Pleistocene age. 

Transitional Unit (Tt). Transitional unit betweeo the Diab lo Formation 
and the Borrego Formation. Approximately subequa l amounts of red massive to 
laminated mud stone and buff to tan colored Colorado River-derived sandstone 
Total th ickness In the north-central San Felipe Hills may beup to 500 m . 
Transitional unit Is uncommon on the south flank of the San Felipe anticline in 
part because of younger faulting and erosion. Most outcrops are complexly folded 
and faulted. Unit interfinger$ with both fully lacustrine deposits of the Borrego 
Formation and fluvial tofluvial deltaic deposit5 of the Diablo Formation. 
lacust rine and delta-plain deposit$. Dibblee (1954, 1984) included this within the 
Palm Spring Formation. Middle to upper Pliocene age. 

Diablo Formation (Td) of the Palm Spring Group. Tan to buff, planar to 
crossbedded, Colorado River-derived sandstone. Includes beds of red 
massive mudstone up to 4-5 m thick. commonly at the top of 3-4 m thick 
fming upward channel sandstone intervo ls. Resistant, black to varicolored 
pebble size siliceaous clasts are common at the base of some sandstone 
packages. Gray to gray-blue calcite crusts and nodu les and large spherical 
sandstone concretions are common in the north-central portion of the San 
Felipe Hills. Petrified palm wood is commo n. Total thickness on the north limb of 
the San Felipe c>nticlineis- 2000 m. Nonmarinede ltaicdeposiK Pliocene age. 

Imperial Group (Ti). Gray buff to yellow, coarse-grained locally derived marine 

bioturbated sandstone, coquina, fine-grained rhythmites and shale. Abundant 
oyster shell fragments in some zones. Very coarse-grained locally derived 

arkose lies in buttress unconformity on basemer,t rock at Squaw Peak. Sandy 
and fossiliferous gray limestone is charcteristic of the lower portions of die 
Imperial Group. T 01al thickness near the core of the San Felipe anticline is -900 
m. Marine pro de lta and maginal deposits. Upper Miocene to lower Pliocene age . 

Squaw Peak Gneiss (Ksp). Moderately to strong ly foliated, dark weathering 
granltold, minor blotite schist. Exposed at Squaw Peak whered"liation dips - 50-60 
north and strikes wes t-northwest Cretaceous age. 



Plate 2. Measured section 
and magnetostratigraphy of 
the Brawley Formation, Oil Well 
Wash, San Felipe Hills, CA. 
S. Kirby, S. U. Janecke, R. Dorsey, and B. Housen 2005. 
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Plate 3. Landsat image and geology of the San Felipe Hills, CA. 
by S. Kirby, S. U. Janecke, R. Dorsey and, A. Steely 2005 
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