An Investigation of the Range of a Boolean Function

Norman H. Eggert, Jr.
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd
Part of the Algebra Commons

Recommended Citation

Eggert, Jr., Norman H., "An Investigation of the Range of a Boolean Function" (1963). All Graduate Theses and Dissertations. 6772.
https://digitalcommons.usu.edu/etd/6772

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

AN INVESTIGATION OF THE RANGE OF A BOOIEAN FUNCAION by

Nomman H. Eggert, Jr.

```
A thesis submitted in partial fulfillment
    of the requirements for the degree
                                    Of
                                    MASMER OT SCIENCE
                                    in
```

Mathematics

ACKNOWLEDGENENTS

I wish to express appreciation to Dr. Charles H. Cunkle for his invaluable assistance and help throughout this research.

Norman H. Eggert, Jr.

TABLE OF CONTENTS

INTRODUCTION TO BOOLEAN ALGEBRA 1
DEFINITION OF A RELATIVE BOOLEAN ALGEBRA 9
BOOLEAN FUNCTIONS 15
BOOLEAN FUNCTIONS IN A RELATIVE BOOLEAN ALGEBRA 24
FUNCTIONS BETWEEN RELATIVE BOOLEAN ALGEBRAS 31
RELATIVE BOOLEAN ALGEBRAS AND SUB-BOOLEAN ALGEBRAS 37

INTRODUCTION TO BOOLEAN ALGEBRA

The purpose of this section is to define a boolean algebra and to determine some of the important properties of it.

A boolean algebra is a set B with two binary operations, join and meet, denoted by + and juxtaposition respectively, and a unary operation, complementation, denoted by ', which satisify the following axioms:
(l) for $a l l a, b \in B$ (that is, for $a l l a, b$ elements of B) $a+b=b+a$ and $a b=b a$, (the commutative laws),
(2) for all $a, b, c \in B, \quad a+b c=(a+b)(a+b)$ and $a(b+c)=a b+a c$, (the distributive laws),
(3) there exists $0 \in B$ such that for each $a \in B$, $a+O=a$, and there exists $I \in B$ such that for each $a \in B, a l=a$,
(4) for each $a \in B, a+a^{\prime}=1$ and $a^{\prime} a^{\prime}=0$ 。

If $a+e=a$ for all a in B then $0=0+e=$ e $+0=e$, so that there is exactly one element in B which satisfies the first half of axiom 3, namely 0 . Similarly there is exactly one element in B which satisfies the second half of axiom 3, namely 1 。

The O and l as defined above will be called the distinguished elements.

If in the statement of any of the four axioms join, meet, 0 , and 1 are replaced by meet, join, l, 0 respectively, the axiom remains unchanged. Thus it follows that if a statement can be proved from the axioms, then the statement with join, meet, 0 , and 1 replaced by meet, join, 1 , and O respectively can also be proved. The two statements are called dual statements.

From the axioms it follows that: $\mathrm{a} a=\mathrm{a} \mathrm{a}+\mathrm{O}=$ $a a^{a}+a a^{\prime}=a\left(a+a^{1}\right)=a l=a ;$ thus the idempotent laws follow:
(i)
$a=a$
and its dual
(i') $a+a=a$
Let $c+x=1$ and $c x=0$, then $c^{\prime}=c^{\prime} 1=$ $c^{\prime}(x+c)=c^{\prime} x+c^{\prime} c=x c^{\prime}+x c=x\left(c^{\prime}+c\right)=$ x $1=x$. Thus axiom 4 defines the operation complementation in the respect that $x=c^{\prime}$ if and only if $c+x=1$ and $c \quad x=0$ 。

The above property is also useful to show two elements are equal.

Since $l=a+a^{\prime}=a^{\prime}+a$ and $0=a a^{\prime}=a^{\prime} a$ it follows from above that:
(ii) $\left(a^{\prime}\right)^{\prime}=a$

Notice that (ii) is a self-dual statement。
It follows that $1=b+l$, since $b(l+b)=$ $b l+b b=b+b=b$ and $b^{\prime}(l+b)=b^{\prime} l+b^{\prime} b=$ $b^{\prime}+0=b^{\prime}$ implies that $l=b+b^{\prime}=b(l+b)+b^{\prime}(b+1)$ $=\left(b+b^{\prime}\right)(l+b)=I(l+b)=I+b$, therefore: (iii) $I=b+l$ and its dual
(iiil) $0=b 0$
The absorption laws thus follow: $a+a b=a l+a b=$
$a(I+b)=a \quad 1=a$:
(iv) $a+a b=a \quad$ and its dual
(iv') $a(a+b)=a$
Also: $a+b a^{\prime}=(a+b)\left(a+a^{\prime}\right)=(a+b) i=$
a +b . Hence:
(v) $a+b=a+b a^{\prime}$ and its dual
$\left(v^{\prime}\right) a b=a\left(b+a^{1}\right)$
Next the associative law for join will be established. Using the fact $a^{\prime}(b a)=a^{\prime}(b a)+a a^{\prime}=a^{\prime}(b a+a)=$
$a^{\prime} a=0$ in the form $x^{\prime}[(y+z) x]=0$ it follows that: $(x+y)+z=\left(x+x^{\prime} y\right)+z=\left[x+\left(0+x^{\prime} y\right)\right]+z=$
$\left(x+\left\{x^{\prime}[(y+z) x]+x^{\prime} y\right\}\right)+z=$
$\left\{x+x^{\prime}[(y+z) x+y]\right\}+z=\{x+[(y+z) x+y]\}+z=$
$\{x+[(y+z) x+(y+z) y]\}+(x z+z)=$
$[x(x+y)+(y+z)(x+y)]+[x z+(y+z) z]=$
$[x+(y+z)](x+y)+[x+(y+z)] z=$
$[x+(y+z)][(x+y)+z]$. Thus $a+(b+c)=$
$(c+b)+a=[c+(b+a)][(c+b)+a]=$
$[a+(b+c)][(a+b)+c]=(a+b) c$, and the associative laws are proved:
(vi) $a+(b+c)=(a+b)+c \quad$ and its dual
(vil) $a(b c)=(a b) c$
Define $a+b+c$ to be the common value of
$a+(b+c)$ and $(a+b)+c$. Also define $a b c=$ $a(b c)=(a b) c$ 。

From（iii）and（iiil）it follows that $1=0+1$ and $0=10=01$ i hence：
（vii）$\quad I=0^{1}$
and its dual
（VIil） $0=11$
Since $(a+b) a^{\prime} b^{\prime}=a a^{\prime} b^{\prime}+b a^{\prime} b^{\prime}=0+0=0$ and $(a+b)+a^{\prime} b^{\prime}=\left(a+b+a^{\prime}\right)\left(a+b+b^{\prime}\right)=11=1$ a the De Morgan laws follow：
（viii）$(a+b)^{\prime}=a^{\prime} b^{\prime} \quad$ and its dual （viii $\left.{ }^{1}\right)(a b)^{\prime}=a^{1}+b^{\prime}$

Define $x<y$ to mean $x+y=y$ 。
If $x<y$ and $y<z$ then $x+y=y$ and $y+z=z$ ，thus $x+z=x+y+z=y+z=z$ and $x<z$ ．Therefore the relation $<$ is transitive。

If $X<y$ and $y<x$ then $x+y=y$ and $y+x=x$ thus $x=y$ 。 Hence the relation $<$ is a partial order in a boolean algebra．A partial order is a reflexive，anti－symmetric，transitive relation。

Define $x>y$ to mean $x y=y_{0}$ ．In a sense $>$ is the dual relation of $<$ 。

If $X<y$ then $X+X=X$ and $y X=(X+y) X=X$ thus $y>X_{0}$ Similarly if $X>y$ then $y<X_{0}$

Since $x y=x$ is a necessary and sufficient
condition that $X+X=Y$ ，either condition will be used for $\mathrm{X}<\mathrm{y}$ 。 Furthermore $\mathrm{x}<\mathrm{y}$ and $\mathrm{y}>\mathrm{x}$ will be used interchangeably．

By（iii）and（iii＇），it follows that $0<a<1$ for all elements a in B 。

Let $\mathrm{x}<\mathrm{y}$ 。 Then $\mathrm{x}+\mathrm{y}=\mathrm{y}$, or by De Morgan's law $x^{\prime} y^{\prime}=y^{\prime}$ and $y^{\prime}<x^{\prime}$. Also $a(x+y)=a y$ or $a x+a y=a y$ thus $a x<a y$. Furthermore $a+x+y=(a+x)+(a+y)=a+y$ thus $a+x<a+y$ 。

If $\mathrm{x}<\mathrm{y}$ then $\mathrm{x} \mathrm{y}^{\prime}=(\mathrm{x} y) \mathrm{y}^{\prime}=0$, also if $x y^{\prime}=0$ then $x y=x y+x y^{\prime}=x\left(y+y^{\prime}\right)=x$ or $x<y$. Similarly if $x<y$ then by De Morgan's law on the above result $x^{\prime}+y=1$, and if $x^{\prime}+y=1$ then $x<y$.

Let x_{1}, \cdots, x_{n} be variables whose common domain is a subset D of a boolean algebra B. A function f is called a boolean function if the rule for the function, $f\left(x_{1}, \cdots, x_{n}\right)$, can be be built up from the variables x_{1}, \cdots, x_{n} and elements of B by a finite number of operations meet, join, and complemention. The range of the boolean function f is the set $R=\left\{r: r \in B\right.$, and there exist $\alpha_{1}, \cdots, \alpha_{n} \in D$ for which $\left.f\left(d_{1}, \cdots, a_{n}\right)=r\right\} \cdot\{x: P(x)\}$ means the set of all x such that X has property P; hence the set R is the set of all elements r of B for which there exist d_{1}, \cdots, d_{n} elements of D and $f\left(d_{1}, \cdots, d_{n}\right)=r$.

Theorem I.I
Every boolean function of one variable in B has
a rule of the form $f(x)=f(1) x+f(0) x^{\prime}$.
Proof: Since $a=a\left(x+x^{\prime}\right)=a x+a x^{\prime}$, and $x=1 x+0 x^{\prime}$, the statement is true if $f(x)=a$ or $f(x)=x$.

If $g(x)$ and $h(x)$ are of the required form, that is if $g(x)=g(I) x+g(0) x^{\prime}$ and $h(x)=$ $h(1) x+h(0) x^{\prime}$, then $[g(x)]^{\prime}, g(x)+h(x)$, and $g(x) h(x)$ are also of the required form, since:
$[g(x)]^{\prime}=\left[g(1) x+g(0) x^{1}\right]^{\prime}=$
$\left\{[g(I)]^{\prime}+x^{1}\right\}\left\{[g(0)]^{\prime}+x\right\}=$
$[g(1)]^{\prime}[g(0)]^{\prime}+[g(1)]^{\prime} x+[g(0)]^{\prime} x^{\prime}=$
$[g(I)]^{\prime}[g(0)]^{\prime} x+[g(I)]^{\prime}[g(0)]^{\prime} x^{\prime}+[g(1)]^{\prime} x+$ $[g(0)]^{\prime} x^{\prime}=$
$[g(I)]^{\prime} x+[g(0)]^{\prime} x^{\prime}$ 。 Also $g(x)+h(x)=$
$g(1) x+g(0) x^{\prime}+h(1) x+h(0) x^{\prime}=$
$[g(1)+h(I)] x+[g(0)+h(0)] x^{\prime}$. And, $g(x) h(x)=$ $\left[g(I) x+g(0) x^{1}\right]\left[h(1) x+h(0) x^{1}\right]=$
$g(I) h(I) x+g(0) h(0) x^{\prime}$ 。
Since a boolean function of one variable is a finite number of applications of meet, join, and complementation on X and elements of B, it follows by induction that all boolean functions of one variable are in the form $f(x)=f(1) x+f(0) x^{\prime}$.

Define, in a boolean algebra $B, \sum_{(e)_{B}} f\left(e_{I}, \cdots, e_{n}\right)$ and $\prod_{(e)_{B}} f\left(e_{I}, \cdots, e_{n}\right)$ to be the join and meet respectively over all combinations such that either $e_{i}=0$ or $\epsilon_{i}=I$, where 0 and I are the distinguished elements of B.

Example: $\quad \sum_{(e)_{B}} f\left(e_{1}, e_{2}\right)=f(I, I)+f(I, 0)+f(0, I)+$

$$
f(0,0)
$$

and $\prod_{(e)} f\left(e_{1}, e_{2}\right)=f(1, I) f(1,0) f(0,1) f(0,0)$.
Let e equal 0 or 1 , define x^{e} to be x if $e=1$ and x^{1} if $e=0$ 。

It then follows that a boolean function of one variable is in the form $f(x)=f(1) x+f(0) x^{1}=$ $\sum_{(e)_{B}} f\left(e_{1}\right) x^{e_{1}}$

Theorem I. 2
If f is a boolean function of n variables then
$f\left(x_{1}, \cdots, x_{n}\right)=\sum_{(e)_{B}} f\left(e_{1}, \cdots, e_{n}\right) x_{1} e_{1} \cdots x_{n} e_{n}$.
Proof: The theorem will be proved by induction.
If $n=1$, then from above the statement is true. Assume
that for $\mathrm{n}=\mathrm{k}$ the statement is true. Then since
$f\left(x_{1}, \cdots, x_{k}, x_{k+1}\right)$ can be thought of as a boolean function of one variable $x_{k+1}, f\left(x_{1}, \cdots, x_{k+1}\right)=$
$f\left(x_{1}, \cdots, x_{k}, I\right) x_{k+1}+f\left(x_{1}, \cdots, x_{k}, 0\right) x_{k+1}$. By the induction hypothesis, $f\left(x_{1}, \cdots, x_{k+1}\right)=$
$\sum_{(e)_{B}} f\left(e_{I}, \cdots, e_{k}, I\right) x_{1} e_{I} \cdots x_{k} e_{k} x_{k+1}+$

$$
\sum_{(e)_{B}} f\left(e_{1}, \cdots, e_{k}, 0\right) x_{1} e_{1} \cdots x_{k}^{e_{k}} x_{k+1}^{\prime}=
$$

$\sum_{(e))_{B}} e\left(e_{1}, \cdots, e_{k+1}\right){ }^{e_{l}}{ }_{l} \cdots{ }_{x_{k+1}}^{e_{k+1}}$. Thus the statement
is true for $k+1$ whenever it is true for k, and hence true for all positive integers.

Theorem I. 3

$$
\sum_{(e)_{B}} a_{1}^{e_{1}} \cdots a_{n}^{e_{n}}=1, a_{i} \quad B
$$

Proof: This also will be proved by induction.
If $1=1$ then $\sum_{(e)_{B}} a_{1}^{e}=a_{1}+a_{1}^{\prime}=1$. Assume the statement
is true for $n=k$. Then $\sum_{(e)_{B}} a_{l}{ }_{I} \ldots a_{a_{k}}{ }_{k}{ }_{a_{k+1}}{ }_{k+1}=$
$\left[\sum_{(e)_{B}} a_{1}{ }^{e_{1}} \cdots a_{k}{ }^{e_{k}}\right] a_{k+1}+\left[\sum_{(e)_{B}} a_{l} e_{1} \cdots a_{a_{k}}^{e_{k}}\right] a_{k+1}=$

$$
a_{k+1}+a_{k+1}^{\prime}=1 \text {. }
$$

DEFINITION OF A RELATIVE BOOLEAN ALGEBRA

This section will define the concept of a relative joolean algebra of a boolean algebra，and give some properties of them。

Let a－boolean algebra B and a, b elements of B ，be given．Define the set $S_{a, b}$ by $S_{a, b}=$ $\{x: x \in B, a<x<b\}$ ．Hence $S_{a, b}$ is the set of all elements x of B where $a<x<b$ 。

Note that if $a<b$ then $a, b \in S_{a, b}$ ．Let $x \in S_{a, b}$ ， by transitivity $a<b$ ．Thus $S_{a, b} \neq \varphi$ ，the empty set， if and only if $\mathrm{a}<\mathrm{b}$ ．In section I it was shown that for all $x \in B, 0<x<1$ ；thus $S_{O, I}=B$ ．

Let $S_{a, b} \neq \varphi$ ，that is $a<b$ ．Since $a(b x+a)=a$ and $b(b x+a)=b x+a b=b x+a, a<b x+a<b$ 。 Thus for all $x \in B, b x+a \in S_{a, b}$ ．If $x \in S_{a, b}$ ，then $\mathrm{a}<\mathrm{x}<\mathrm{b}$ or $\mathrm{b} \mathrm{x}+\mathrm{a}=\mathrm{x}+\mathrm{a}=\mathrm{x}$ 。

Throughout this section it will be assumed that a boolean algebra B has been given and that all elements are elements of B 。
＇Heorem II。I

$$
S_{a, b} \text { is closed under meet and join of } B \text {; that }
$$

is if $x, y \in S_{a, b}$ ，then $x+y, x y \in S_{a, b}$ ．

Froof: Let $x, y \in S a, b$. From above $a<x, y<b$ and it follows that $(x+y)+b=(x+b)+(y+b)=b$, and $(x+y) a=x a+y a=a ;$ therefore $a<x+y<b$ 。 Similacly, $x y+b=(x+b)(y+b)=b, x y a=$ $(x a)(y \quad a)=a$ and $a<x y<b$. Hence $x+y$ and x y ace elements of $S_{a, b}$.

If $S_{a, b}=\varphi$ then $S_{a, b}$ is closed under meet and join.

From above note that $C(x)=b x^{\prime}+a E S_{a, b}$ if $S_{a, b} \neq \varphi$. The element $C(x)$ will be called the relative complenent in B with respect to $S_{a, b}$, or simply the relative complement if no confusion will result. $C(x)$ is defined, of course, for each element x of B 。 For convenience, X° or X^{+}will be used to denote $C(x)$. $C(x)$ will be shown to have properties of complementation in the set $S_{a, b}{ }^{\circ}$

Theorem II. 2
$S_{a, b}$ is a boolean algebra, with distinguished elements a, b, where the meet and join are the same as in B and complementation being the relative complement in B with respect to $S_{a, b}$, if and only if $S_{a, b} \neq \varphi_{0}$ Proof: Assume $S_{a, b} \neq \varphi_{0}$ From above, the three operaions, meet, join, and relative complement, are
closed. Meet and join are commutative and distributive since they are the operations in B. If $x \in S_{a, b}$, then $x+a=x$ and $x b=x$, thus a and b are the dis tinguished elements of $S_{a, b}$ as defined by axiom 3 . Let $x^{0}=b x^{1}+a$, the relative complement of x_{0} For each s of $S_{a, b}, x x^{0}=x\left(b x^{\prime}+a\right)=b x x^{\prime}+a x=$ a and $x+x^{0}=x+b x^{1}+a=x+b=b$. Thus axiom 4 is satisfied. Therefore the set $S_{a, b}$ together with the operations meet, join, and the relative complement in B with respect to $S_{a, b}$ is a boolean algebra。

If $S_{a, b}$ together with the three operations form a boolean algebra, then $S_{a, b} \neq \varphi$ 。

Since the meet and join in the boolean algebra $S_{a, b}$ are the same as in B, the partial order, $<$, is also the same, that is if $x_{,}, y \in S_{a, b}$ and if $x<y$ in B then $x<y$ in $S_{a, b}$.

A relative boolean algebra of a boolean algebra B is a subset, $S_{a, b}$, of $B, a<b$, together with the operations meet and join of B and the relative complement in B with respect to $S_{a, b}$. From theorem II.2, a relative boolean algebra is a boolean algebra.

Theorem II. 3
Let $S_{a, b}$ be a relative boolean algebra of B and $\bar{S}_{c, d}$ be a relative boolean algebra cf $S_{a, c}$

Then $\bar{S}_{c, d}$ is a relative boolean algebra of B 。
Frcof: Since $\bar{S}_{c, d}$ is a relative boolean algebra of $S_{a, k}, a<c<d<b$. If $x \in B$ and $c<x<d$ then $x \in S_{a, b}$ thus $\bar{S}_{c, d}=\left\{x: x \in S_{a, b}, \quad c<x<d\right\}=$ $\{x: x \in B, \quad c<x<d\}$. The meet and join are the same operations in both $S_{a, b}$ and $\bar{S}_{c, d}$, and in B. Thus it remains to be shown that the relative complement in $S_{a, b}$ with respect to $\bar{S}_{c, d}$ is the same as the relative complement in B with respect to $\bar{S}_{c, d^{\circ}}$

$$
\text { Let } x^{0}=b x^{\prime}+a \text { be the complement in } S_{a, b} b^{\circ}
$$

Then the relative complement in $S_{a, b}$ with respect to $\bar{S}_{c_{2} d}$ is $d x^{0}+c=d\left(b x^{1}+a\right)+c=$ $d b x^{\prime}+d a+c=d x^{\prime}+c$ since $a<c<d<b$. Thus the complement in $\bar{S}_{c, d}$ is the relative complement in B with respect to $\bar{S}_{C,} d^{\circ}$

Theorem II. 4
If $S_{a, b}$ and $S_{c, d}$ are relative boolean algebras of B and $S_{c, d} C S_{a, b}$, [Cmeans is a subset of $]$, then $S_{c, d}$ is a relative boolean algebra of $S_{a, b}$.

Iroof: Since $S_{a, b}$ and $S_{c, d}$ are relative boolean algebras of B, the meet and join are the same as in B. Thus, since $S_{a, b} \subset S_{c, d}$, the meet and join in $S_{c, d}$ is the same as in $S_{a, b}$. Also $s_{c, d}=\left\{x: x \in S_{a, b}\right.$,
$c<x<d\}$ ．Hence it remains to show that the complement in $S_{c, c}$ is the relative complement in $S_{a, b}$ with respect to $S_{c, i}$ g that is $d\left(b x^{1}+a\right)+c=d x^{1}+c$ 。 This is immediate since $a<c<d<b$ ．

The next theorem gives a connection between relative boolean algebras in B 。

Theorem II． 5

Let $S_{a, b}$ be a relative boolean algebra of B and $x^{0}=b x^{1}+a_{0}$ If $x \in S_{c, d}$ ，then $x^{\circ} \in S_{c}{ }^{\circ}, d^{\circ}$

Proof：Let $x \in S_{c, d}$ ．Then $c<d$ ，or by section I，$d^{\prime}<x^{\prime}<c^{\prime}$ ，and $b d^{\prime}+a<b x^{\prime}+a<b c^{\prime}+a_{0}$ Thus $x^{\circ}<x^{\circ}<c^{\circ}$ or $x^{\circ} \in S_{C^{\circ}}$, d oo $^{\circ}$

Theorem II． 6
Let $S_{a, b}$ be a relative boolean algebra of B and $x^{0}=b x^{1}+a$ ．If $S_{h, k}$ is a relative boolean algebra of B and X^{+}is the complement of x in $S_{h, k}$ then $s_{K^{\circ}}, h^{\circ}$ is a relative boolean algebra with the complement of x being $\left[\left(x^{\circ}\right)^{+}\right]^{\circ}$ 。

Proof：Since $S_{h, k} \neq \varphi$ ，it follows from theorem II． 5 that $S_{k}{ }_{,} h^{\circ} \neq \varphi$ ，and thus $S_{k}{ }_{,} h^{\circ}$ is a relative boolean algebra with the complement of x being $k^{0} x^{1}-h^{\circ}$ 。 But $\left[\left(x^{0}\right)^{+}\right]^{0}=\left[k\left(b x^{1}+a\right)+h\right]^{0}=$
$b\left[k\left(b x^{\prime}+a\right)+h\right]^{\prime}+a=b\left[h h^{\prime}\left(b x^{\prime}+a\right)+k^{\prime}\right]+a=$ $b h^{\prime} x^{\prime}+b h^{\prime} a+b k^{\prime}+a=$ $\left(b h^{\prime} x+a x^{\prime}\right)+\left(b k^{\prime}+a\right)=h^{0} x^{\prime}+k^{0} 。$

The function f defined by $f(x)=\left(\left(\left(x^{+}\right)^{\circ}\right)^{+}\right)^{\circ}$ ， where＇and ${ }^{+}$are defined as in theorem II．6，will be seen later to be a homomorphism from $S_{h, k}$ onto $S_{k}{ }_{,} h^{\circ}$ o

Theorem II．？
$x \in S_{a, b} \cap S_{c, d}$ ，where \cap is the set intersection， if and coly if $a+c<x<b d$ ；that is，$S_{a, b} \cap S_{c, d}=$ $s_{a}+c, t d^{\circ}$

Proof：If $x \in S_{a, b} \cap S_{c, d}$ ，then $x<b$ and $x<d$ 。 Therefore $x(b d)=(x b)(x d)=x$ or $x<b d$ 。 Also $x>a$ and $x>c$ ，and it follows that $x>a+c$ ． Hence $\mathrm{a}+\mathrm{c}<\mathrm{x}<\mathrm{b} \mathrm{d}$ 。

$$
\begin{aligned}
& \text { If } a+c<x<b d \text { then } a<x<b \text { and } c<x<d \\
& \text { or } x \in S_{a, b} \text { and } x \in S_{c, d^{\circ}}
\end{aligned}
$$

Theorem II． 8
The following are equivalent if $S_{a, b} \notin \varphi$ and $S_{c, d} \neq \varphi_{0}$
（a）$S_{a, j} \cap S_{c, d} \neq \varphi$
（b）$a+c<b d$
（c）$a<d$ and $c<b$
（d）$a+c \in S_{a, b} \cap S_{c, d}$
（e）$b d \in S_{a, b} \cap S_{c, d}$
（f）$S_{a, b} \cap S_{c, d}$ is a relative boolean algebra．
Proof：Let $S=S_{a, b} \cap S_{c, d}$
（a）implies（b）：Let $S \neq \varphi$ ．Then there exists $\mathrm{x} \in S$ ，and by theorem II．？ $\mathrm{a}+\mathrm{c}<\mathrm{x}<\mathrm{b}$ d．Hence $a+c<b d 。$
（b）implies（c）：Let $a+c<b$ d．Then $0=$ $(a+c)(b)^{\prime}=(a+c)\left(b^{\prime}+d^{\prime}\right)=$ $a b^{\prime}+c b^{\prime}+a d^{\prime}+c d^{\prime}=c b^{\prime}+a d^{\prime}$ ．Hence $c b^{\prime}=0$ and $a d^{\prime}=0$ ，or $a<d$ and $c<b$ 。
（c）implies（d）：Let $a<d$ and $c<b$ ．Since $a<b$ and $c<d$ it follows that $(a+c)+b d=$ $(a+c+b)(a+c+d)=(b+c)(a+d)=b d$ ，or $a+c<b$ d．By theorem II．7，$a+c \in S$ ．
（d）implies（e）：If $a+c \in S$ then by theorem II．？$a+c<b d$ and hence $b d \in S$ by theorem II．？．
（e）implies（f）：Since $b d \in S, S \neq \varphi$ ，and by
theorems II． 7 and II．2，S is a relative boolean algebra。
（f）implies（a）：Since S is a relative boolean algebra，by theorem II．2，$S \neq \varphi$ 。

BOOLEAN FUNCTIONS

In this section the connection between boolean functions and the sets of the form $S_{a, b}$ will be shown; namely that the range of a boolean function is a relative boolean algebra。

In this and the following sections f will denote a boolean function of n variables, that is $f\left(x_{1}, \cdots, x_{n}\right)=$ $\sum_{(e)_{B}} f\left(e, \cdots, e_{n}\right) x_{1} e_{1} \ldots x_{n}^{e_{n}}$.

Theorem III.I
If I is a function in B such that $f\left(a_{1}, \cdots, a_{n}\right)=a$ and $f\left(k_{1}, \cdots, b_{n}\right)=b$, then there exist c_{1}, \cdots, c_{n} such that $f\left(c_{1},{ }^{\circ}, c_{n}\right)=a c+b c^{\prime}$ for any c an element of B, and furthermore $c_{i} \in S_{a_{i}} b_{i}, a_{i}+b_{i}$.

Proof: Let $c_{i}=a_{i} c+b_{i} c^{1}$. Since $a_{i} b_{i} c_{i}=$ $a_{i} b_{i}$ and $a_{i}+b_{i}+c_{i}=a_{i}+b_{i}$, it follows that $a_{i} b_{i}<c_{i}<a_{i}+b_{i}$.

Since $c_{i}^{\prime}=\left(a_{i} c+b_{i} c^{\prime}\right)^{\prime}=a_{i}{ }^{\prime} c+b_{i}{ }^{\prime} c^{\prime}$
it follows that $c_{i}^{e_{i}}=a_{i}^{e_{i}} c+b_{i}^{e_{i}} c^{\prime}$. Thus $f^{\prime}\left(c_{1}, \cdots, c_{n}\right)=$ $\sum_{(e)_{B}} f\left(e_{1} \cdots, e_{n}\right)\left(a_{1} c+b_{1} c^{1}\right)^{e_{1}} \cdots\left(a_{n} c+b_{n} c^{1}\right)^{e_{n}}=$
$\sum_{(e)_{B}} f\left(e_{I}, \cdots, e_{n}\right)\left(a_{I} e_{I} c+b_{I}{ }_{I} c^{\prime}\right) \cdots\left(a_{n}^{e_{n}} c+b_{n}^{e_{n}} c^{1}\right)=$ $c \sum_{(e)_{B}} f\left(e_{1}, \cdots, e_{n}\right) a_{1} e_{1} \cdots a_{n}^{e_{n}}+$ $c^{\prime}+\sum_{(e)_{B}} f\left(e_{1}, \cdots, e_{n}\right) b_{1} e_{1} \cdots b_{n}^{e_{n}}=$
a $c+b c^{\prime}$ 。 The elements c_{1}, \cdots, c_{n} exhibited have the properties required in the statement of the theorem, and thus the theorem is proved.

The next two theorems are immediate results of theorem III.I.

Theorem III. 2
If $f\left(a_{1}, \cdots, a_{n}\right)=a$ and $f\left(b_{1}, \cdots, b_{n}\right)=b$ then there exist c_{1}, \cdots, c_{n} and d_{1}, \cdots, d_{n} such that $f\left(c_{1}, \cdots, c_{n}\right)=a+b$ and $f\left(d_{1}, \cdots, d_{n}\right)=a b$ where $c_{i}, a_{i} \in S_{a_{i}} b_{i}, a_{i}+b_{i}{ }^{0}$

Proof: In theorem III. I let c be equal to a then to b 。

The next theorem follows by induction on theorem III.2.

Theorem III. 3

$$
\text { If } f\left(p_{1 i}, \cdots, p_{n i}\right)=p_{i} \text { for } i=1, \cdots, m \text {, then }
$$

there exist r_{1}, \cdots, r_{n} and s_{1}, \cdots, s_{n} such that $f\left(r_{1}, \cdots, r_{n}\right)=\sum_{i=1}^{m} p_{i}$ and $f\left(s_{1}, \cdots, s_{n}\right)=\prod_{i=1}^{m} p_{i}$ ．Further－ more，$r_{j}, s_{j} \in S_{c_{j}}, d_{j}$ where $c_{j}=\prod_{j=1}^{m} p_{j i}$ and $d_{j}=\sum_{j=1}^{m} p_{j i}$ ．

The following theorems in this section are concerned with tie restriction of the domain of f 。

Theorem III． 4
Let $x_{i} \in S_{a, b} \neq \varphi$ and f a boolean function．Then
$f\left(e_{1}, \cdots, e_{n}\right) x_{1} e_{1} \ldots x_{n} e_{n}=f\left(\eta_{1}, \cdots, \eta_{n}\right) x_{1} e_{1} \ldots x_{n} e_{n}$,
where $\eta_{i}=a$ if $e_{i}=0$ and $\eta_{i}=b$ if $e_{i}=1$ 。
Proof：Let $x_{i} \in S_{a, b}$ and $\eta_{i}=a$ if $e_{i}=0$
and $\eta_{i}=b$ if $e_{i}=1$ ．Consider $\eta_{i}{ }^{p_{i}} x_{i}{ }^{e_{i}}$ ，where
p_{i} is either 0 or 1 ．There are four cases to consider：
（I）if $p_{i}=0$ and $e_{i}=0$
（2）if $p_{i}=0$ and $e_{i}=1$
（3）if $p_{i}=I$ and $e_{i}=0$
（4）if $p_{i}=1$ and $e_{i}=1$ 。
Vase（I），since $\eta_{i}=a, \eta_{i}^{p_{i}} x_{i}^{e_{i}}=a^{\prime} x_{i}^{\prime}=x_{i}^{\prime}=x_{i} \theta_{i}$ ．
Vase（2），since $\eta_{i}=b,{ }_{i}{ }_{i} x_{i}^{e_{i}}=b^{\prime} x_{i}=0$ 。
lase（3），since $\eta_{i}=a, \eta_{i}{ }^{i} x_{i} e_{i}=a x_{i}^{l}=0$ 。

Cast（4），since $\eta_{i}=b, \eta_{i} p_{i} x_{i}^{e_{i}}=b x_{i}=x_{i}=x_{i}{ }^{\epsilon_{i}}$. It then follows that if $p_{i}=e_{i}$ then $p_{i} p_{i} e_{i}=$ $x_{i}^{e_{i}}$ ，and if $p_{i} \neq e_{i}$ then $\eta_{i}^{p_{i}} x_{i}^{e_{i}}=0$ ．Hence，if for each i，$p_{i}=e_{i}$ ，it follows that $\eta_{1}^{p_{1}} x_{1} e_{1} \ldots \eta_{n}^{p_{n}} x_{n} e_{n}=$ $x_{1} e_{1} \ldots x_{n}^{e_{n}}$ ，otherwise $\eta_{\eta_{1}}^{p_{1}} x_{1}{ }_{1} \ldots \eta_{n}^{p_{n}} x_{n}^{e_{n}}=0$ 。 Thus $f\left(\eta_{1}, \cdots{ }_{n_{n}}\right) x_{1} e_{1} \ldots{ }_{x_{n}} e_{n}=$
$\left[\sum_{(p)_{B}} f\left(p_{1} \cdots, \cdots, p_{n}\right) \eta_{1}^{p_{1}} \cdots{ }_{\eta_{n}}^{p_{n}}\right] x_{1} e_{1} \cdots x_{n}{ }_{n}=$
$\sum_{(p)_{B}} f\left(p_{I}, \cdots, p_{n}\right) \eta_{I} p_{1} x_{I} e_{I} \ldots \eta_{n} p_{n} x_{n} e_{n}=$ $f\left(e_{1}, \cdots, \exists_{n}\right) x_{1} e_{1} \cdots x_{n} e_{n}$ ，since there is only one combine－ tin such that $p_{i}=e_{i}$ for each $i 。$

$$
\text { Let } c=\prod_{(\eta)_{S_{a, b}}} f\left(\eta_{1}, \cdots, \eta_{n}\right) \text { and } d=\sum_{(\eta)_{S_{a, b}}} f\left(\eta_{1}, \cdots, \eta_{n}\right) \text {, }
$$

where the meet and join extend over all combinations such that either $\eta_{i}=a$ or $\eta_{i}=b$ 。

The next theorems show that if f is restricted to $S_{a, b} \neq \varphi$ ，then the range is $S_{c, d}$ ，where c and d are defined above 。

Theorem III. 5
Let f be a boolean function with a, b, c, and d defined above. Then there exist $c_{1}, \cdots{ }^{\circ} c_{n}$ and d_{1}, \cdots, d_{n} such that $f\left(c_{1}, \cdots, c_{n}\right)=c$ and $f\left(d_{1}, \cdots, d_{n}\right)=d$, where $c_{i}, d_{i} \in S_{a, b}$.

Proof: Application of theorem III.3。

Theorem III. 6

Let f be a boolean function with a, b, c, and d defined above. Then there exist $h_{1}, \cdots{ }^{\prime} h_{n}$ such that $f\left(h_{1}, \cdots, h_{n}\right)=h$ and $h_{i} \in S_{a, b}{ }^{\circ}$

Proof: Let c_{i} and d_{i} be defined as in theorem III.5. By theorem III. 5 and III.I there exist $h_{1}, \cdots \cdots, h_{n}$ such that $f\left(h_{1}, \cdots, h_{n}\right)=d h+c h^{\prime}=h$ and $h_{i} \in S_{c_{i}} d_{i}, c_{i}+d_{i}$ which is a subset of $S_{a, b}$ o

Theorem III.?

Let f be a boolean function and let

$x_{i} \in S_{a, b}$ then $f\left(x_{1}, \cdots, x_{n}\right) \in S_{c, d}$
Proof: Let $x_{i} \in S_{a, b}$. Recall that $c^{\prime}=\sum_{(e)_{B}}\left[f\left(\eta_{I}, \cdots, \eta_{n}\right)\right]^{\prime}$ and that $\eta_{i}=a$ if $e_{i}=0$ and $\eta_{i}=b$ if $e_{i}=I$. It then follows by theorem III. 4
that: $f\left(x_{1}, \cdots, x_{n}\right)+c^{\prime}=$
$\sum_{(e)_{B}} f\left(e_{I}, \cdots, e_{n}\right) x_{1}{ }_{1} \ldots x_{n}^{e_{n}}+c^{\prime}$
$\sum_{(e)_{B}} f\left(\eta_{1}, \cdots, \eta_{n}\right) x_{1} e_{1} \ldots x_{n}^{e}+\sum_{(e)_{B}}\left[f\left(\eta_{1}, \cdots, \eta_{n}\right)\right]^{\prime}=$
$\sum_{(e)_{B}} x_{1}^{e} \cdots x_{n}^{e_{n}}+\sum_{(e)_{B}}\left[f\left(\eta_{1}, \cdots, \eta_{n}\right)\right]^{\prime}=1+c^{\prime}=1 。$
Therefore $f\left(x_{1}, \cdots, x_{n}\right)>c$ 。
Also it follows that: $f\left(x_{1}, \cdots, x_{n}\right)+d=$
$\sum_{(e)_{B}} f\left(e_{1}, \cdots, e_{n}\right) x_{1} e_{1} \cdots x_{n}^{e_{n}}+d=$
$\sum_{(e)_{B}} f\left(\eta_{1}, \cdots, \eta_{n}\right) x_{1}^{e} 1 \cdots x_{n}{ }_{n}+\sum_{(e)_{B}} f\left(\eta_{1}, \cdots, \eta_{n}\right)=$
$\sum_{(e)_{B}} f\left(\eta_{1}, \cdots, \eta_{n}\right)=$ d. Hence $f\left(x_{1}, \cdots, x_{n}\right)<d$.
Thus $f\left(x_{1}, \cdots, x_{n}\right)$ is an element of $S_{c, d}$ whenever $x_{i} \in S_{a, b}$. Hence the theorem is proved.

Theorem III. 8

The range of a function, f, in B when the domain is restricted to $S_{a, b} \neq \varphi$ is $S_{c, d}$, where $c=$ $\prod_{(\eta)_{S_{a, b}}} f\left(\eta_{1}, \cdots, \eta_{n}\right)$ and $d=\sum_{(\eta)_{S_{a, b}}} f\left(\eta_{1}, \cdots, \eta_{n}\right)$ where the join and meet are over all combinations such that either $\eta_{i}=a$ or $\eta_{i}=b_{0}$

Some immediate results of theorem III。8 are：

Theorem III．9

The range of a function，f ，in b is $S_{h, k}$ where
$h=\prod_{(e, B} f\left(e_{I}, \cdots, e_{n}\right)$ and $k=\sum_{(e)_{B}} f\left(e_{I}, \cdots, e_{n}\right)$.
Theorem III． 10
Let f be a boolean function whose domain is B 。 The range of f is B if and only if $\prod_{(e)_{B}} f\left(e_{1}, \cdots{ }^{\circ} e_{n}\right)=$

0 and $\sum_{(e)_{B}} f\left(e_{I}, \cdots, e_{n}\right)=I$ ．
Another important theorem is：

Theorem III。II
If $f(0, \cdots, O)<b$ and $f(I, \cdots, I)>a$ then $f\left(x_{1}, \cdots, x_{n}\right) \in S_{a, b}$ ，whenever $x_{i} \in S_{a, b}$ ．

Proof：Let $x_{i} \in S_{a, b}$ and $f(0, \cdots, 0)<b$ and
$f(1, \cdots, I)>$ a．It follows that $f\left(x_{1}, \cdots, x_{n}\right)=$
$f(1, \cdots, I) x_{1} \cdots x_{n}+f\left(x_{1}, \cdots, x_{n}\right)>a_{0}$
Whenever there is an i such that $e_{i} \neq 0$ then
$b{ }_{1}^{e} 1 \cdots x_{n}{ }_{n}=x_{1} e_{1} \ldots x_{n}^{e}{ }_{n}$ ．Since $f(0, \cdots, 0) b=$ $f(), \cdots, 0)$ ，it follows that $b f\left(x_{1}, \cdots, x_{n}\right)=$
$\sum_{(e)_{B}} f\left(e_{1}, \cdots, \epsilon_{n}\right) b x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}=$

$$
\begin{aligned}
& \sum_{(e)_{B}} f\left(e_{1}, \cdots, e_{n}\right) x_{1}, \cdots x_{n}^{e_{n}}=f\left(x_{1}, \cdots, x_{n}\right) \text {. Thus } \\
& f\left(x_{1}, \cdots, x_{n}\right)<b 。 \\
& \quad \text { Therefore } f\left(x_{1}, \cdots, x_{n}\right) \in S_{a, b} .
\end{aligned}
$$

BOOLEAN FUNCTIONS IN A RELATIVE BOOLEAN ALGEBRA

In this section it will be understood that $\eta_{i}=a$ whenever $e_{i}=0$ and $\eta_{i}=b$ whenever $e_{i}=I$. This section will consider the relationship between functions in B and functions in a relative boolean algebra of B. Let $S_{a, b}$ be a relative boolean algebra of B and $x^{0}=b x^{\prime}+a$ 。

A useful theorem is:

Theorem IV. 1
If $x_{i} \in S_{a, b}$ then $b x_{1} x_{1} \cdots x_{n}^{e_{n}}+a=x_{1}^{\eta_{1}} \cdots x_{n}^{\eta_{n}}$, where $x_{i}^{\eta_{i}}=x_{i}$ if $\eta_{i}=b$ and $x_{i}^{\eta_{i}}=x^{0}$ if $\eta_{i}=a_{0}$

Proof: Let $x_{i} \in S_{a,} b^{\circ}$ If $e_{i}=0$ for some $i_{\text {, }}$ then i; follows that there exists a permutation, $i_{1}, i_{2}, \cdots, i_{j}, i_{j+1}, \cdots, i_{n}$, of the first n positive integers such that $e^{i_{k}}=1$ if $1 \leq k \leq j$ and $e^{i_{k}}=0$ if $j+\leq k \leq n$. Hence: $b x_{1}{ }^{e} 1 \cdots{ }_{x_{n}}{ }^{e}+a=$
$b x_{i_{1}} \cdots x_{i_{j}} x_{i_{j+1}} \cdots x_{i_{n}}+a x_{i_{1}} \cdots x_{i_{j}}=$
$x_{i_{1}} \cdots x_{i_{j}}\left(b x_{i_{j+1}}+a\right) \cdots\left(b x_{i_{j}}^{\prime}+a\right)=$
$x_{i_{1}} \cdots x_{i_{j}} x_{i_{j+1}} \cdots x_{i_{n}}^{0}=x_{1}^{\eta_{1}} \cdots x_{n}^{\eta_{n}}$.

If $e_{i}=l$ for all i, then $b x_{1} e_{1} \cdots x_{n}{ }_{n}=$
$x_{1}^{\eta_{1}} \cdots x_{n}^{n_{n}}$.
Hence in all cases the statement is true.

An alternate statement of theorem IV. 1 follows.

Theorem IV. Ia
If $x_{i} \in S_{a, b}$ then $a^{\prime} b x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}=a^{\prime} x_{1}^{\eta_{1}} \cdots x_{n}^{\eta_{n}}$.

A function, g, of n variables of a relative boolean algebra, $S_{a, b}$, of B will have the form $g\left(x_{1}, \cdots, x_{n}\right)=$ $\sum_{(\eta)_{S_{a, b}} g\left(\eta_{1}, \cdots, \eta_{n}\right) x_{1}^{\eta_{1}} \cdots x_{n}^{\eta_{n}} \text {, where the join extends over }}$ all combinations such that either $\eta_{i}=a$ or $\eta_{i}=b$ 。 $\mathrm{x}^{\mathrm{b}}=\mathrm{x}$ and $\mathrm{x}^{\mathrm{a}}=\mathrm{x}^{\circ}=\mathrm{b} \mathrm{x}^{\prime}+\mathrm{a}$, the complement in $\mathrm{S}_{\mathrm{a}, \mathrm{b}}$. The next theorem connects functions in B and functions in $S_{a, b}$

If f is a function in B, then the statement " f is a function in $S_{a, b}$ " means there exists a g in $S_{a, b}$ such that $f\left(x_{1}, \cdots, x_{n}\right)=g\left(x_{1}, \cdots, x_{n}\right)$ whenever $x_{i} \in S_{a, b}$.

Theorem IV. 2
If f is a function in B, and $x_{i} \in S_{a, b}$ implies
that $f\left(x_{1}, \cdots, x_{n}\right) \in S_{a, b}$, then f is a function in $S_{a, b}$ when the domain of the variables is restricted to $\mathrm{S}_{\mathrm{a}, \mathrm{b}^{\circ}}$

Proof: Since $x_{i} \in S_{a, b}$ and $f\left(x_{1}, \cdots, x_{n}\right) \in S_{a, b}$?
it follows from theorem III。4 and IV。1 that $f\left(x_{1}, \cdots, x_{n}\right)=$
$f\left(x_{1}, \cdots, x_{n}\right)+a=\sum_{(e)_{B}} f\left(\eta_{I}, \cdots, \eta_{n}\right) x_{1}^{\eta_{1}} \cdots x_{n}^{\eta_{n}}+a=$
$\sum_{(e)_{B}} f\left(\eta_{1}, \cdots, \eta_{n}\right)\left(b x_{1} \eta_{1} \ldots x_{n}^{\eta_{n}}+a\right)+a=$
$\sum_{(\eta)_{S_{a, b}}} f\left(\eta_{I}, \cdots, \eta_{n}\right)\left(x_{1}^{\eta_{1}} \cdots x_{n}^{\eta_{n}}+a\right)+a=$
$\sum_{(\eta)_{S_{a, b}}} f\left(\eta_{1}, \cdots, \eta_{n}\right) x_{1}^{\eta_{1}} \cdots x_{n}^{\eta_{n}}+a=$
$\sum_{(\eta)_{S_{a, b}}} f\left(\eta_{1}, \cdots, \eta_{n}\right) x_{1}^{\eta_{1}} \cdots x_{n}^{\eta_{n}}$.
Thus $f\left(x_{1}, \cdots, x_{n}\right)$ has the form of a function
in $S_{a, b}$ whenever $x_{i} \in S_{a, b}$.

The importance of theorem IV. 2 is not obvious
from its statement. One result is that if a boolean albebra B is imbedded as a relative boolean algebra in another boolean algebra \bar{B}, that is, the given algebra
B is a relative boolean algebra of a larger boolean algebra $\overline{\bar{B}}$ ，no new functions from B into B are formed by rules with coefficients from $\overline{\bar{B}}$ ．

Next it is of interest to examine the extension
of a boolean function，that is，given a function g
in $S_{a, b}$ is there a function f in B such that
whenever $x_{i} \in S_{a, b}$ then $f\left(x_{1}, \cdots, x_{n}\right)=g\left(x_{1}, \cdots, x_{n}\right)$ ？
It will be shown that a necessary and sufficient condition that a function g in $S_{a, b}$ and a function f in B have the property that $f\left(x_{1}, \cdots, x_{n}\right)=g\left(x_{1}, \cdots, x_{n}\right)$ ， $x_{i} \in S_{a, b}$ is that the following conditions hold：
（i）al $g\left(\eta_{1}, \cdots, \eta_{n}\right)<f\left(e_{1}, \cdots, e_{n}\right)<g\left(\eta_{1}, \cdots, \eta_{n}\right)+b i$
（ii）$g(b, \cdots, b)<f(1, \cdots, 1)<g(b, \cdots, b)+b i$
（iii）$a^{\prime} g\left(a,{ }^{\circ}, a, a\right)<f(0, \cdots, 0)<g(a, \cdots, a)$ 。

Theorem IV。3
Let g be a function in $S_{a, b}$ ，and f a function
in B ，such that $x_{i} \in S_{a, b}$ implies $g\left(x_{1}, \cdots, x_{n}\right)=$
$f\left(x_{1}, \cdots, x_{n}\right)$ 。 Then $a^{\prime} g\left(\eta_{1}, \cdots, \eta_{n}\right)<f\left(e_{1}, \cdots, e_{n}\right)<$ $g\left(\eta_{1}, \cdots, \eta_{n}\right)+b^{\prime}$.

Proof：By theorem IV。la，a＇$g\left(\eta_{1},,^{\cdots}, \eta_{n}\right)=$
$a^{\prime} b g\left(\eta_{1}, \circ, \eta_{n}\right)=a^{1} b f^{\circ}\left(\eta_{1}, \cdots, \eta_{n}\right)=$
$\sum_{(\bar{e})_{B}} f\left(\bar{e}_{1}, \ldots, \bar{e}_{n}\right) a^{\prime} b \eta_{1}, \ldots \bar{e}_{n}=$
$\sum_{(\bar{e})_{B}} f\left(\bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ a' $\bar{\eta}_{1} \ldots \bar{\eta}_{1} \bar{\eta}_{n}$, where $\bar{\eta}_{1}=$ a whenever
$\bar{\varepsilon}_{i}=0$ and $\bar{\eta}_{i}=b$ whenever $\bar{e}_{i}=1$ 。 If $\bar{\eta}_{i} \neq \eta_{i}$,
then $\bar{\eta}_{i}=a$ and $\bar{\eta}_{i} a_{i}=0$. Also if $\bar{\eta}_{i}=\eta_{i}$ then
$\bar{\eta}_{i}=b$ and $\bar{e}_{i}=e_{i}$. Thus a! $g\left(\eta_{I}, \cdots, \eta_{n}\right)=$ $f\left(e_{1}, \cdots, e_{n}\right)$ al bo Thus alg($\left.\eta_{1}, \cdots, \eta_{n}\right)<f\left(e_{1}, \cdots, e_{n}\right)$ 。 Again, by theorem IV.I, $g\left(\eta_{1}, 9^{\circ}, \eta_{n}\right)+b i=$
$b g\left(\eta_{I}, \cdots, \eta_{n}\right)+a+b^{8}=$
$\sum_{(\bar{e})_{B}} f\left(\bar{e}_{1}, \ldots, \bar{e}_{n}\right) b \bar{\eta}_{1} \ldots \bar{e}_{1} \ldots \bar{e}_{n}+a+b^{1}=$
$\sum_{(\bar{e})_{B}} f\left(\bar{e}_{I}, \cdots, \bar{e}_{n}\right) \bar{\eta}_{I} \bar{\eta}_{1} \ldots \bar{\eta}_{n}+a+b^{i}$, where $\bar{\eta}_{i}=a$
whenever $\bar{e}_{i}=0$ and $\bar{\eta}_{i}=b$ whenever $\bar{e}_{i}=1$. Since $a<b$ and $\bar{\eta}_{i} \neq \eta_{i}$ implies $\eta^{\bar{\eta}_{i}}=$ a, it follows that whenever i exists such that $\eta_{i} \neq \bar{\eta}_{i}$ then $\eta_{I} \bar{\eta}_{1} \ldots \eta_{n}^{\bar{\eta}_{n}}=$ a, and $£\left(\bar{e}_{1}, \cdots, \bar{e}_{n}\right) \bar{\eta}_{1} \ldots \bar{\eta}_{n}+a=$ $f\left(\bar{e}_{1}, \cdots, \bar{e}_{n}\right) a+a=a$. Thus, since $\eta^{\bar{\eta}_{i}}=b$ whenever
$\eta_{i}=\bar{\eta}_{i}, g\left(\eta_{1}, \cdots, \eta_{n}\right)+b^{1}=f\left(e_{1}, \cdots, e_{n}\right) b+a+b^{i}=$
$f\left(e_{1}, \cdots, e_{n}\right)+a+b^{1}$. Hence $g\left(\eta_{1}, \cdots, \eta_{n}\right)+b^{1}>$
$f\left(e_{1}, \cdots, e_{n}\right)$.

Theorem IV． 4
Let g be a function in $S_{a, b}$ and f a function in B ，such that $g\left(x_{1}, \cdots, x_{n}\right)=f\left(x_{1}, \cdots, x_{n}\right)$ whenever $x_{1} \in S_{a, b}$ ．Thew $f(1, \cdots, I)>g(b, \cdots, b)$ and $f(0, \cdots, 0)<g(a ; \cdots, a)$ 。

Proof：By definition of a boolean function
$\left.f^{\prime} b, \cdots, b\right)=f(1, \cdots, I) b+f(0, \cdots, 0) b{ }^{\prime}$ ．Since $f^{\prime}(b, \cdots, b)=g\left(b,{ }^{\cdots}, b\right) \in S_{a, b}, f(b, \cdots, b)<b$ ．Therefore $0=b^{\prime} f(b, \cdots, b)=f(0, \cdots, 0) b^{\prime}$.

Hence $g(b, \cdots, b)=f(b, \cdots, b)=f(1, \cdots, l) b$ ， and $g(b, \cdots, b)<f(I, \cdots, I)$ ．

By theorem IV．3，$f(0, \cdots, 0)\left[g(a, \cdots, a)+b^{\prime}\right]=$ $f(0, \cdots, 0)$ ．From above，$f(0, \cdots, 0) b^{1}=0$ 。 Hence $f(0, \cdots, 0)=f(0, \cdots, 0)\left[g(a, \cdots, a)+b^{1}\right]=$ $f(0, \cdots, 0) g(a, \cdots, a)$ ，or $f(0, \cdots, 0)<g(a, \cdots, a)$ ．

Theorem IV． 25

Let g be a function in $S_{a, b}$ and f a function in B．A necessary and sufficient condition that f be the seme as g whenever the domain of f is restricted tc $S_{a, b}$ is that the following conditions be satisfied：

$$
\begin{equation*}
\text { al } g\left(\eta_{1}, \cdots, \eta_{n}\right)<f\left(e_{1}, \cdots, e_{n}\right)<g\left(\eta_{1}, \cdots, \eta_{n}\right)+b l \tag{i}
\end{equation*}
$$

（ii）$g(b, \cdots, b)<f(1, \cdots, l)<g(b, \cdots, b)+b^{\prime}$
（iii）$a^{\prime} g(a, \cdots, a)<f(0, \cdots, 0)<g(a, \cdots, a)$ 。
Proof：The necessity follows from theorems IV． 3 and IV．4．

Assume the conditions hold. Since $f(1, \cdots, 1)>$
$g(b, \cdots, b)>a$ and $f(0, \cdots, 0)<g(a, \cdots, a)<b$, it follows by theorem III. II that $f\left(x_{1}, \cdots, x_{n}\right) \in S_{a, b}$,
whenever $x_{i} \in S_{a, b}$. Thus $f\left(x_{1}, \cdots, x_{n}\right)=f\left(x_{1}, \cdots, x_{n}\right)+a=$ $\sum_{(e)_{B}} f\left(e_{1}, \cdots, e_{n}\right) x_{1} e_{1} \ldots x_{n} e_{n}+a>$
$\sum_{(e)_{B}} a^{i} g\left(\eta_{1}, \cdots, n_{n}\right) x_{1}^{e} e_{1} \cdots x_{n}^{e_{n}}+a=$
$\sum_{(e)_{B}} a^{\prime} g\left(\eta_{1}, \cdots, \eta_{n}\right) b x_{1} e_{1} \cdots x_{n}{ }_{n}+a$. By theorem IV.I,
$f\left(x_{1}, \cdots, x_{n}\right)>\sum_{(n)_{S_{a, b}}} a^{1} g\left(\eta_{1}, \cdots, \eta_{n}\right) x_{1}^{\eta_{1}} \cdots x_{n}^{\eta_{n}}+a=$
a' $g\left(x_{1}, \cdots, x_{n}\right)+a=g\left(x_{1}, \cdots, x_{n}\right)$.
Also $f\left(x_{1}, \cdots, x_{n}\right)=b f\left(x_{1}, \cdots, x_{n}\right)+a$ whenever
$x_{i} \in S_{a, b}$ from above. Thus, by theorem IV.I, $f\left(x_{1},{ }^{\circ}, x_{n}\right)=$
$a+b \sum_{(e)_{B}} f\left(e_{1}, \cdots, e_{n}\right) x_{x_{1}} \ldots x_{e_{n}} e_{n}$
$a+b \sum_{(e)_{B}}\left[g\left(\eta_{1}, \cdots, \eta_{n}\right)+b^{1}\right] x_{1} e_{1} \cdots x_{n} e_{n}=$
$a+\sum_{(e)_{B}} g\left(\eta_{1}, \cdots, \eta_{n}\right)\left[b x_{1} e_{1} \cdots{ }_{x_{n}} e_{n}+a\right]=$
$a+\sum_{(n)} g\left(n_{1}, \cdots, \eta_{n}\right) x_{1}^{\eta_{1}} \cdots x_{n}^{\eta_{n}}=a+g\left(x_{1}, \cdots, x_{n}\right)$.
Thus $f\left(x_{1}, \cdots, x_{n}\right)<g\left(x_{1}, \cdots, x_{n}\right)$.
Therefore, $f\left(x_{1}, \cdots, x_{n}\right)=g\left(x_{1}, \cdots, x_{n}\right)$ if $x_{i} \in S_{a, b}$

A homomorphism between boolean algebras B and \bar{B} is a function, h, of one variable such that:
(I) $h(p+q)=h(p)+h(q)$
$(2) h(p q)=h(p) h(q)$
(3) $h\left(p^{\prime}\right)=[h(p)]^{\prime}$
whenever p and q are elements of B.
If h is a homomorphism then $h(0)=h\left(p p^{1}\right)=$ $h(p)[h(p)]^{\prime}=0$ and $h(1)=h\left(p+p^{\prime}\right)=h(p)+[h(p)]^{\prime}=$ 1. Hence the distinguished elements are preserved by the mapping h 。

A boolean homomorphism is a homomorphism which can be expressed as a boolean function.

This section deals with functions between relative boolean algebras of B where the functions are boolean functions.

Let $S_{a, b}$ and $S_{c, d}$ be relative boolean algebras of B. Let h be a boolean function of one variable in B whose domain is $S_{a, b}$ and whose range is $S_{c, d}$. Let $h(x+y)=h(x)+h(y)$ and $h(x y)=h(x) h(y)$, whenever x and y are elements of $S_{a, b}$. For all $q \in S_{a, b}, h(q)=h(q+a)=h(q)+h(a)$. Since the range of h is $S_{C, d}$ if $p \in S_{C, d}$ then there exists a $q \in S_{a, b}$ such that $h(q)=p$. Hence $p=p+h(a)$ for
all p in $S_{c, d^{\circ}}$ Since the distinguished elements are unique and $h(a)$ satisfies axiom $3, h(a)=0$ 。 Similarly it follows that $h(b)=d$. Let $x^{\circ}=b x^{1}+a$ and $x^{+}=d x^{1}+c$, the relative complements of $S_{a, b}$ and $S_{C, d}$ respectively. Also $h\left(x^{0}\right)+h(x)=h\left(x+x^{0}\right)=$ $h(b)=d$ and $h\left(x^{0}\right) h(x)=h\left(x^{0} x\right)=h(a)=0$, thus $h\left(x^{\circ}\right)=[h(x)]^{+}$. Therefore if h is a boolean function with domain $S_{a, b}$ and range $S_{C, d}$ and h preserves meet and join, then h is a boolean homomorphism. If h is a boolean homomorphism with domain $S_{a, b}$ and $h(a)=c, h(b)=d$, then by theorem III. 8 the range of h is $S_{c, d}$.

Theorem V.I
Let $S_{a, b}$ and $S_{c, d}$ be relative boolean algebras of B. The following are equivalent:
(i) $a c=a d$ and $b^{\prime} c=b^{d} d$
(ii) there exists a boolean homomorphism between $S_{a, b}$ and $S_{c, d}$
(iii) there exists a boolean function, h, in B whose domain is $S_{a, b}$ and range is $S_{c, a^{\circ}}$

Proof:
(i) implies (ii): Consider the function f discribed by $f(x)=d x+c, x \quad S_{a, b}$. Since $f(a)=$ $d a+c=a c+c=c$ and $f(b)=d b+c=b a+b^{2} c+c=$ $d b+b^{\prime} d+c=d+c=d$, it follcws from theorem III。 8
that the range of f is $S_{c, d^{*}}$ Since $f(x+y)=$ $d(x+y)+c=(d x+c)+(d x+c)=f(x)+f(y)$ and $f(x y)=d x y+c=(d x+c)(d y+c)=f(x) f(y)$
the binary operations are preserved, and f is a boolean honomorphism from $S_{a, b}$ to $S_{c, d}{ }^{\circ}$
(ii) implies (iii): Since all boolean homomorphisms hate as a range a relative boolean algebra it follows thet there exists a boolean function in B with domain $S_{a, b}$ and $S_{c, d}{ }^{\circ}$
(iii) implies (i): Let f be a function with
 $f(a) f(b)=c$ and $f(a)+f(b)=d$ or $c=f(I) a+f(0) b^{1}+f(I) f(0) a^{1} b$ and $d=f(I) b+f(0) a^{1}$. Thus $c a=f(1) a=$ $a\left[f(1) b+f(0) a^{\prime}\right]=a d$ and $c b^{\prime}=f(0) b^{\prime}=$ $b^{\prime}\left[f(1) b+f(0) a^{1}\right]=b^{1} d$ 。

Note in theorem Vol that if there is any boolean funstion with domain $S_{a, b}$ and range $S_{c, d}$, then there exists a boolean homomorphism with that domain and range. Furihemore the constants a, b, c, and d completely determine the existence of a homomorphism.

$$
\text { If } S_{c, d} \text { is any relative boolean algebra of } B,
$$ thel since $S_{O, I}=B$ and $0 c=0 d$ and $I^{\prime} c=I^{\prime} d$, there is a boolean homomorphism from B to $S_{c,} d^{s}$ namely, $f(x)=d x+c$ 。

Theorem V． 2

Let $S_{a, b}$ and $S_{c, d}$ be relative boolean algebras of B 。 $S_{c, d}$ is a homomorphic image of $S_{a, b}$ ，that is there exists a boolean homomorphism from $S_{a, b}$ to $S_{c, d}{ }^{9}$ if and only if there exists a relative boolean algebra， $S_{k, h}$ ，of B with complementation ${ }^{\circ}$ ，such that $a^{\circ}=\bar{d}$ and $b^{\circ}=c$ 。

Proof：Let $S_{c, d}$ be a homomorphic image of $S_{a_{0}} b^{\circ}$ Then by the previous theorem，$a c=a d$ and $b^{\prime} c=b^{1} d$ ． Thus $d^{\prime} a^{\prime}+c=d a^{\prime}+a c+c=d a^{\prime}+d a+c=$ $d+c=d$ and $d b^{1}+c=c b^{1}+c=c$ ．Hence if 0 is the relative complement with respect to $S_{C,}$ ， 9 then $a^{0}=d$ and $b^{0}=c$ ，as was to be shown．

Let $S_{a, b}, S_{c, d}$ ，and $S_{h, k}$ be relative boolean algebras of B ．Furthermore let $a^{\circ}=k a^{8}+h=d$ and $b^{\circ}=k b^{1}+h=c$ 。 Consider $f(x)=x^{\circ}=k x^{1}+h$ 。 Since $f(a)+f(b)=d$ and $f(a) f(b)=c$ it follows from theorem III． 8 that f has a range $S_{c_{0}} d$ when the domain of f is $S_{a, b}$ ．By theorem V_{0} ，$S_{c, d}$ is a homomorphic image of $S_{a, b}$ ．

Let $S_{a, b}$ and $S_{h, k}$ be relative boolean algebras in B and x° be the relative complement of x with respect to $S_{h, k^{\circ}}$ By theorems II． 6 and $V_{0} 2, S_{b}{ }^{\circ}, a^{\circ}$ is a homomorphic image of $S_{a, b}$ ．

There may be many equations for boolean functions in B which are homomorphisms with domain $S_{a, b}$ and range $S_{c, d}$, but the next theorem shows that if f and g are boolean homomorphisms from $S_{a, b}$ to $S_{c, d}$ then $f(x)=g(x)$ whenever $x_{S_{a, b}}$.

Theorem V .3
Let $S_{C, d}$ and $S_{a, b}$ be relative boolean algebras B. If f is a boolean homomorphism with domain $S_{a, b}$ and range $S_{c, d}$ then $f(x)=d x+c$ whenever $x \in S_{a, b}$. Proof: Since f is a homomorphism from $S_{a, b}$ to $S_{c, d^{2}} f(b)=f(1) b+f(0) b^{\prime}=d$ or $f(1) b=a b$. Also $f(a)=f(1) a+f(0) a^{\prime}=c$ or $f(0) a^{\prime}=0 a^{\prime}$. Let $x \in S_{a, b}$. Then $f(x)=f(1) x+f(0) x^{1}=$ $f(1) b x+f(0) a^{\prime} x^{\prime}=d b x+c a^{\prime} x^{\prime}=d x+c x^{\prime}=$ d $\mathrm{x}+\mathrm{c}$ 。

If $S_{a, b}$ and $S_{c, d}$ are relative boolean algebras of B, and there is a boolean homomorphism from $S_{a, b}$ to $S_{c, d}$, then the function $f, f(x)=d x+c$ is a boolean homomorphism, as was shown in the proof of theorem V.I.

Theorem $V_{0} 3$ does not give the form of the boolean function in B, but if B is the domain then there is a unique boolean function which is a homomorphism from
B to S_{c}, d° Theorem $V .4$ follows from theorem $V .3$

Theorem V． 4
If B is the domain and $S_{c, d}$ is the range of
a boolean homomorphism f then $f(x)=d x+c$ 。 Furthermore f is the only boolean homomorphism from B onto $S_{c, d}$

Let $S_{a, b}$ and $S_{c, d}$ be relative boolean algebras in B and ${ }^{\circ}$ ，+ be the complementation operations in $S_{a, b}$ and $S_{c, d}$ respectively．If $S_{c, d}$ is the homo－ morphic image of $S_{a, b}$ ，then the function f defined by $f(x)=\left(x^{\circ}\right)^{+}$，will be shown to be a boolean homomorphism from $S_{a, b}$ to $S_{c, d^{0}} f(x)=\left(x^{0}\right)^{+}=\left(x b^{1}+a\right)^{+}=$ $d\left(b x^{\prime}+a\right)^{\prime}+c=d a^{\prime} x+d b^{\prime}+c=d a^{\prime} x+c=$ $d a^{\prime} x+c a x+c$ 。 By theorem Vol $c a=d a$ thus $f(x)=d a^{\prime} x+d a x+c=d x+c$ ，and therefore f is a boolean homomorphism．

Let $S_{a, b}$ and $S_{h, k}$ be relative boolean algebras of B and $x^{0}=b x^{\prime}+a, x^{+}=k x^{\prime}+h$ ．On page 14 it was stated that $f(x)=\left(\left(\left(x^{+}\right)^{0}\right)^{+}\right)^{\circ}$ is a homomorphism； this will now be shown．By theorem II．6，$S_{k}{ }^{\circ}, h^{\circ}$ is a relative boolean algebra with the complement of x being $\left(\left(x^{\circ}\right)^{+}\right)^{\circ}$ 。 Thus，from above，$f(x)=\left(\left(\left(x^{+}\right)^{\circ}\right)^{+}\right)^{\circ}$ is a boolean homomorphism from $S_{h, k}$ to $S_{k}{ }^{0}, h^{\circ}$

RELATIVE BOOLEAN ALGEBRAS AND SUB－BOOLEAN ALGEBRAS

A sub－boolean algebra of a boolean algebra B is a subset of B which is closed under meet，join and complementation of B 。

Let S be a submboolean algebra of B 。 Let $x \in S$ then $x^{\prime} \in S$ and $x+x^{\prime}=1 \in S$ ，also $x x^{\prime}=$ OES．Thus S is a boolean algebra with distinguished elements 0,1 。

This section deals with the relationship between relative boolean algebras and sub－boolean algebras．

Let SRBA mean＂sub－boolean algebra of a relative boolean algebra＂，and RSBA mean＂relative boolean algebra of a sub－boolean algebra＂。

It will be shown that if S is a SRBA of B then S is a RSBA of B and if S is a RSBA of B then S is a SRBA of B ，where B is a boolean algebra

Theorem VI．I
If \bar{S} is a sub－boolean algebra of B and $\bar{S}_{a, b}$ is a relative boolean algebra of \bar{S} ，then $\bar{S}_{a, b}$ is a sub－boolean algebra of the relative boolean algebra $S_{a, b}$ of B ．

That is，a RSBA is a SRBA．
Proof：Since $\bar{S}_{a, b}=\{x: a, b, x \in \bar{S}$ ，and $a<x<b\}$ ， it follows that $\bar{S}_{a, b}$ is a subset of $S_{a, b}$ ．The complex
ment in the RSBA， $\bar{S}{ }_{a, b}$ ，is defined by $b x^{1}+a$ ，the same as in $S_{a, b}$ ．Also the meet and join in both $\bar{S}_{a, b}$ and $S_{a, b}$ are the same as in B and thus the same．Hence $\bar{S}_{a, b}$ is a sub－boolean algebra of $S_{a, b}$ ．

Theorem VI． 2
Let $S_{a, b}$ be a relative boolean algebra of B and S a sub－boolean algebra of $S_{a, b}$ ．Then S is a relative boolean algebra of some sub－boolean algebra of B．That is，a SRBA is a RSBA．

Proof：Let $\bar{S}=\{x: b x+a \in S\}$ ．If $x, y \in \bar{S}$ then $x+y$ and $x y$ are elements of \bar{S} since $b(x+y)+a=$ $(b x+a)(b y+a)$ and $b x y+a=(b x+a)(b y+a)$ are elements of S ．Let $x \in \bar{S}$ ．Then $b x^{1}+a$ is the complement of $b x+a$ with respect to $S_{a, b} b^{\circ}$ Thus $b x^{\prime}+a \in S$ and $x^{\prime} \in \bar{S}$ ．Hence \bar{S} is a sub－ algebra of B ．Note that，since $b a+a \in S$ and $b \mathrm{~b}+\mathrm{a} \in \mathrm{S}$ ，then a and b are elements of $\overline{\mathrm{S}}$ 。

Let $\bar{S}_{a, b}=\left\{x: x \in \bar{S}_{,} a<x<b\right\} 。 \bar{S}_{a, b}$ is a relative boolean albebra of \bar{S} ．If $x \in \bar{S}_{a, b} \subset \bar{S}$ ，then $x=b x+a$ ， and by definition of $\bar{S}, b x+a \in S$ ．Hence $x \in S$ and $\bar{S}_{a, b} \subset S$ ．If $x \in S \subset S_{a, b}$ ，then $a<x<b$ and $x=a x+b$ 。 Thus $x \in \bar{S}_{a, b}$ ．Therefore $S=\bar{S}_{a, b^{\circ}}$ Since the complement of x in \bar{S} and S is $b x^{\prime}+a$ ，and since the meet and join are the same as in B ，the boolean algebras $\bar{S}_{a, b}$ and S are identical．Therefore S is a RSBA．

