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ABSTRACT

Extensions and Improvements to Random

Forests for Classification

by

Anna Quach, Doctorate of Philosophy

Utah State University, 2017

Major Professor: Dr. Adele Cutler
Department: Mathematics and Statistics

The motivation of my dissertation is to improve two weaknesses of Random Forests.

One, the failure to detect genetic interactions in higher dimensions when the interacting

genes both have weak main effects and two, the difficulty of interpretation in compari-

son to parametric methods such as logistic regression, linear discriminant analysis, and

linear regression.

There are approximately 10 million single nucleotide polymorphisms (SNPs) in the

whole genome of the human species. We focus on detecting pairwise SNP interactions in

genome case-control studies. Analyzing SNP-SNP interactions is computationally and

methodologically challenging because the search space for k-way interactions of d SNPs

is
(
d
k

)
. We present an efficient filtering method and compare it to leading methods. We

show that our new filtering method is computationally faster with good detection power.

One of the advantages Random Forests has over statistical methods is its capability

of handling data sets when d >> n, where n is the number of observations. It is common

to use Random Forests as a filtering technique to reduce the number of predictors. We

determine the best parameter settings to optimize the detection of SNP interactions and

improve the efficiency of Random Forests specifically for data from the Genome-Wide

Association Studies.
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Random Forests allows us to identify clusters, outliers, and important features for

subgroups of observations through the visualization of the proximities. The old im-

plementation of Random Forests uses a multidimensional scaling plot to visualize the

symmetric proximities. We improve the interpretation of Random Forests through the

proximities. The result of the new proximities are asymmetric and reproduce the predic-

tions in Random Forests. The appropriate visualization of the new proximities requires

an asymmetric model for interpretation. We propose a new visualization technique for

asymmetric data and compare it to existing approaches.

(90 pages)
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PUBLIC ABSTRACT

Extensions and Improvements to Random

Forests for Classification

Anna Quach

The motivation of my dissertation is to improve two weaknesses of Random Forests.

One, the failure to detect genetic interactions between two single nucleotide polymor-

phisms (SNPs) in higher dimensions when the interacting SNPs both have weak main

effects and two, the difficulty of interpretation in comparison to parametric methods

such as logistic regression, linear discriminant analysis, and linear regression.

We focus on detecting pairwise SNP interactions in genome case-control studies.

We determine the best parameter settings to optimize the detection of SNP interactions

and improve the efficiency of Random Forests and present an efficient filtering method.

The filtering method is compared to leading methods and is shown that it is computa-

tionally faster with good detection power.

Random Forests allows us to identify clusters, outliers, and important features for

subgroups of observations through the visualization of the proximities. We improve the

interpretation of Random Forests through the proximities. The result of the new prox-

imities are asymmetric, and the appropriate visualization requires an asymmetric model

for interpretation. We propose a new visualization technique for asymmetric data and

compare it to existing approaches.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In this dissertation, we dive deep into some types of problems for which Random

Forests are shown to do poorly and improve the interpretation, a perceived weakness

of Random Forests compared to traditional models such as linear regression, linear

discriminant analysis, and logistic regression. We propose a new filtering method to

detect genetic interactions, optimize Random Forests for detecting genetic interactions,

and extend the interpretation of Random Forests by introducing a new visualization

method.

The remainder of the introduction presents the background and literature reviews

for interaction detection in Genome-Wide Association (GWA) studies, and for Random

Forests.

1.2 Genome-Wide Association Study Literature Review and Background

GWA studies are a powerful tool used to identify genetic variants that are associated

with diseases. Variation at a single base pair is a Single Nucleotide Polymorphism (SNP).

It is estimated that there are approximately 10 million SNPs on the whole genome of the

human species (National Library of Medicine, 2017). Due to increasing evidence that

individual SNPs only explain a portion of the genetic causes of a disease, researchers have

started analyzing SNPs at two loci (the specific location of a SNP on a chromosome) or

more. k-SNP (k≥ 2) interactions are also known as epistasis or epistatic interactions.

Analyzing gene-gene or SNP-SNP statistical interactions is a challenging task because

the search space for k-way interactions of d SNPs is
(
d
k

)
. Therefore there is a need for

fast implementations to detect epistatic interactions.
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1.2.1 Problem Statement

GWA studies have allowed researchers to investigate the association of diseases

(phenotype data) and SNPs (genotype data containing genetic information of an indi-

vidual). The genotype data that we will be observing are bi-allelic SNPs with a major

allele denoted with a capital letter, A, and a minor allele represented with a lower case

letter, a. There are three possible genotypes: AA, Aa (or aA), and aa. AA, Aa, and

aa are typically coded as values 0, 1, 2, respectively and cases (the disease group) are

usually coded as 1’s and controls as 0’s.

Determining which interacting SNPs are causal of a disease is a d >> N problem,

where d is the number of SNPs, and N is the number of observations. It’s approximated

that there are about 10 million SNPs in the whole genome. Due to a phenomenon called

linkage disequilibrium, the nonrandom association of alleles at two or more loci (Slatkin,

2008), we don’t have to look at every single SNP. Statistically speaking, linkage disequi-

librium is the correlation that occurs between two SNPs. However, the number of single

SNPs remains quite large and obtaining enough cases and controls to be part of a study

is a challenge.

The number of possible 2-way interactions of d SNPs is d×(d−1)
2 , which creates a

computational challenge in detecting real causal SNP-SNP interactions. Many existing

methods are unable to handle the enormous number of possible combinations of SNPs.

It would take years for some of the methods to complete.

Quite a few methods carry out a statistical test to determine the significance of

an epistatic interaction. Handling an immense number of possible interacting SNPs

creates the problem of controlling the number of false positives while retaining high de-

tection power. Therefore developing an efficient and effective method to detect epistatic

interactions is desirable.

1.2.2 Definition of Interaction

The exact definition of an interaction is debatable. Most researchers are familiar

with an interaction in a model-based sense, such as, in linear regression or logistic

regression. Fisher (1918) defined an interaction as two or more variables that deviate

from additive effects. For example, the logistic regression model has the following form:

log

(
P (Y = 1)

1− P (Y = 0)

)
= β0 + β1X1 + β2X2 + β12X1X2 (1.1)
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where X1X2 is the interaction term. A 4 degrees-of-freedom (df) test on the difference

in the log-likelihood of 1.1 and the log-likelihood of:

log

(
P (Y = 1)

1− P (Y = 0)

)
= β0 + β1X1 + β2X2 (1.2)

is a test of the interaction (Wan et al., 2010a). The interaction of two variables can

be determined by referencing an interaction plot (see Figure 1.1). In Figure 1.1a, both

SNPs at locus A and B have a main effect which is apparent in the plot since the odds

of disease increases for every additional copy of the minor allele. The slope for each

genotype at locus B is the same. The SNPs are not interacting because the change in

log odds of disease for every additional copy of the minor allele in A does not depend

on the genotypes at locus B. An illustration of two SNPs interacting can be seen in

Figure 1.1b.

Some of the standard approaches to detect epistatic interactions include logistic re-

gression, chi-square tests, and permutation tests. The problem with traditional methods

is the potential increase in Type I error when statistical tests are performed multiple

times. The gold standard is to use permutation testing to control the number of false

positives. The trade-off to using permutation testing is the computational burden. Other

correction methods, such as Bonferroni are preferred to make the process more compu-

tationally feasible. However, Bonferroni is known to be extremely conservative and can

miss causal SNPs.

(a) (b)

Figure 1.1: The interaction plot in (A) is an example of when two SNPs are
not interacting (lines are parallel) and (B) is an example of two SNPs interacting
(lines are not parallel).
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Table 1.1: The two-way table for the control group, Y = 0, is on the left and
the two-way table for the case group, Y = 1, is on the right. The rows
represent the genotypes at Locus A and the columns represent the genotypes
at Locus B. Nrc and Drc for r, c ∈ 1, 2, 3 are the number of observations for
each combination of genotypes.

Y = 0 BB Bb bb

AA N11 N12 N13

Aa N21 N22 N23

aa N31 N32 N33

Y = 1 BB Bb bb

AA D11 D12 D13

Aa D21 D22 D23

aa D31 D32 D33

Table 1.2: Table 1.1 is reconstructed to test if the distribution of the
combination of genotypes at Locus A and B differ between the cases and
controls.

Y = 0 Y = 1

AA,BB N11 D11

AA,Bb N12 D12

AA,bb N13 D13

Aa,BB N21 D21

Aa,Bb N22 D22

Aa,bb N23 D23

aa,BB N31 D31

aa,Bb N32 D32

aa,bb N33 D33

1.2.3 Methods to Detect Epistatic Interactions

Chi-square tests are commonly used as an exhaustive search in two-locus associ-

ation studies. Typically an 8 df versus a 4 df chi-square test is used. See Tables 1.1

and 1.2. FastChi (Zhang et al., 2009) presents an efficient approach to using the standard

test and Chi8 (Al-jouie et al., 2015) uses Graphics Processing Units (GPUs) to calculate

χ2 for all pairwise SNPs. Chatterjee et al. (2006) proposed a multi-way genetic inter-

action test using Tukey’s 1 df model of interaction. BOOST (BOolean Operation-based

Screening and Testing) fits a log-linear model and uses a 4 df χ2 test to check for two-

way interactions after the screening stage.

Machine learning methods, such as multifactor dimensionality reduction (MDR),

Random Forests (RF), Neural Networks (NN), and Support Vector Machines (SVM)

are alternatives to traditional statistical approaches for detecting SNP-SNP interac-

tions. Upstill-Goddard et al. (2012) reviewed early machine learning approaches such
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as multifactor-dimensionality reduction (MDR), neural networks, Random Forests, sup-

port vector machines, and more recent models such as extensions to MDR and Random

Forests for detecting SNP-SNP interactions. They listed the strengths and limitations of

the early and recent Machine Learning methods. An attractive feature of using machine

learning algorithms is their ability to handle high-dimensional data. The downfalls to

using the machine learning algorithms, compared to using an exhaustive search, e.g.

Pearson χ2 test, are computational time and lack of protection against false detection.

A possible approach to the overall problem is to conduct a two-stage method where

the first stage reduces the number of SNPs or pairs of SNPs and the second stage uses an

existing machine learning algorithm to rank them. However, some researchers use ma-

chine learning algorithms as a feature screening tool before applying an existing method,

or they combine machine learning algorithms to identify interactions (Lin et al., 2012;

De Lobel et al., 2010).

Tree-based approaches are known to do well in detecting SNP-SNP interactions

compared to some existing methods (Goldstein et al., 2010). However, tree-based meth-

ods can fail to detect a joint effect if there are no strong main effect (Winham et al.,

2012). Failure to detect a joint effect can happen because, at each node, a tree chooses

the single variable with the best split, so it is unlikely to choose a variable without a

strong individual effect. In Random Forests this is somewhat ameliorated by the ran-

dom choice of variables at each node because Random Forests can choose variables that

might not have strong individual effects.

There are only a few review papers that make an in-depth comparison of the meth-

ods using simulated data. To the best of our knowledge, there are only two, Wang et al.

(2011) and Shang et al. (2011).

Wang et al. (2011) evaluate five different methods: TEAM (Zhang et al., 2010),

BOOST (Wan et al., 2010a), SNPRuler (Wan et al., 2010b), SNPHarvester (Yang et al.,

2009), and Screen and Clean (Wu et al., 2010) using simulated data with and without a

main effect. The methods are evaluated by detection power, type-1 error rate, scalabil-

ity, and completeness. Overall, BOOST and TEAM are the two methods recommended

if computational cost is not of concern and users want powerful results.

BOOST performs the best in selecting interactions without main effects, was the

fastest with 100, 1000, and 10000 SNPs with 2000 observations in each data set, and

never wrongly prunes the most significant SNP pairs in models with or without main

effects. Wang et al. (2011) found that BOOST had the highest type I error rate and



6

may not be able to detect interactions when there is a weak interaction effect, but the

single SNP association term fits the model well. TEAM performed the best on data

with main effects and was second best in detecting interaction without main effects.

However, TEAM had the second largest Type I error rate. The high error rate may be

due to TEAM having higher statistical power.

Shang et al. (2011) identified 36 different methods, excluding tweaked and special-

ized methods, and categorized the methods according to three different search strate-

gies, i.e., exhaustive, stochastic, and heuristic. Shang et al. (2011) choose to com-

pare five representative methods from the categories: TEAM, BOOST, SNPRuler, An-

tEpiSeeker (Wang et al., 2010) and epiMode (Tang et al., 2009) using simulated data of

different sizes, nine commonly used epistasis models, and data with and without noise.

The types of noise simulated are due to missing data, genotyping error, and phe-

nocopy. The five methods are compared by detection power, robustness, sensitivity, and

computational complexity. Overall, Shang et al. (2011) recommended AntEpiSeeker and

BOOST as the most efficient and effective methods.

AntEpiSeeker performed the best on detecting epistatic interactions with marginal

effects and had good performance on models with no main effects. In comparison to

other methods, AntEpiSeeker has far better robustness to all types of noise on marginal

effect models, has good detection power on models with no marginal effect, is able to

perform well on detecting multiple epistasis for models with main effects, can handle

large-scale data sets in a reasonable amount of time, and is able to deal with higher order

models. AntEpiSeeker was found to be sensitive to SNPs with a strong association with

the phenotype.

BOOST performed the best on identifying epistatic interactions with no marginal

effects. The detection power of models with no main effects was much higher than mod-

els with main effects. BOOST was robust to genotyping error and phenocopy on models

with no marginal effects, is the fastest among the methods they compared, and can

detect multiple epistatic interactions based on a sensitivity analysis. BOOST could not

be evaluated on how well it performed with SNPs with missing values since it removes

any SNPs with missing values. Shang et al. (2011) found that it is more sensitive to

model type compared to SNPRuler based on detection power analysis, it is sensitive to

sample size and SNP number based on a sensitivity analysis, and is limited to detecting

two-way interactions.
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1.2.4 Data Simulation Parameters

There are many different disease models that simulated data can come from, and

those data vary depending on various parameter settings. Some of the possible effects

that can be taken into account are:

1. Main Effect (Marginal Effects) - the strength of single SNP association.

2. Prevalence - the proportion of a population with the disease.

3. Minor Allele Frequency (MAF) - second most frequent occurring allele in a given

population.

4. Heritability - the proportion of variation in the phenotype explained by genetic

variation.

5. Linkage Disequilibrium - the correlation that occurs between two SNPs.

There are existing simulation tools that can simulate epistatic interactions for case-

control association studies. Shang et al. (2011) provides a tool, called epiSIM, offering

simulations of single-locus and epistasis models associated with the phenotype. Wang

et al. (2011) uses simulated data (data without main effect) provided by Dartmouth

Medical School at http://discovery.dartmouth.edu/epistatic_data/. The website

provides 70 different models composed of combinations of two MAF settings (0.2, 0.4),

seven heritability settings (0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4), and five different tables

in terms of probability of disease for a given genotype. Each model is simulated using

four different samples size of 200, 400, 800, and 1600. A thousand SNPs were used for

each data set.

Others have simulated their data using different models. Guo et al. (2014b) used

a multiplicative model, an epistasis model that has been used to describe handedness

and the color of swine, a classical epistasis model, a well known XOR model, and a

three-locus epistasis model. For data with the main effect, Wang et al. (2011) simulated

data based on three common epistasis models. For each model, they used an MAF

of 0.2 and 0.5, and three different main effect values of 0.2, 0.3, and 0.5. They used

2000 samples and 1000 SNPs for each data set. The data sets are available at http://

compbio.ddns.comp.nus.edu.sg/~wangyue/. Shang et al. (2011) used nine commonly

used two-locus epistasis models: three models displaying marginal effects and six models

without marginal effects.

http://discovery.dartmouth.edu/epistatic_data/
http://compbio.ddns.comp.nus.edu.sg/~wangyue/
http://compbio.ddns.comp.nus.edu.sg/~wangyue/
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1.2.5 Simulation Model

Figures 1.2a, 1.2c, and 1.2e are the three most commonly used interaction models

presented by Marchini et al. (2005). The values in the cells of the tables are the odds

of getting a disease where α is the baseline risk and θ represents the increased risk of a

disease allele (either a or b). Some report their disease model in terms of penetrance,

P (D|gi) where D and DC are the disease status. Penetrance is the probability an indi-

vidual will carry a given genotype, gi. The relationship between the odds and penetrance

is shown in Equation 1.3 and Equation 1.4.

ODDgi =
P (D|gi)
P (DC |gi)

=
P (D|gi)

1− P (D|gi)
(1.3)

P (D|gi) =
ODDgi

1 +ODDgi

. (1.4)

There are three possible genotypes for each SNP: the homozygous genotype (AA), the

heterozygous reference genotype (Aa), and the homozygous variant genotype (aa). We

BB Bb bb

AA α α(1 + θ) α(1+θ)2

Aa α(1 + θ) α(1+θ)2 α(1+θ)3

aa α(1+θ)2 α(1+θ)3 α(1+θ)4

(a) Model Additive (b)

BB Bb bb

AA α α α
Aa α α(1 + θ) α(1+θ)2

aa α α(1+θ)2 α(1+θ)4

(c) Model Multiplicative (d)

BB Bb bb

AA α α α
Aa α α(1 + θ) α(1 + θ)
aa α α(1 + θ) α(1 + θ)

(e) Model Threshold (f)

Figure 1.2: The two-way tables of two SNPs in (A), (C), and (E) are genetic
models used to evaluate the performance of methods that can detect epistatic
interactions. α is the baseline risk and θ is the increased risk for having a copy
of the minor allele, a or b. The cells in the tables represents the odds of
disease. (B), (D), and (F) are heatmaps of (A), (C), and (E), respectively in
terms of probability of disease.



9

can determine what α and θ are by using the equation for marginal effect, λ and preva-

lence, p. Marginal effect and prevalence are defined as:

λ =
P (D|Aa)/P (D|AA)

P (DC |Aa)/P (DC |AA)
− 1 (1.5)

p =
∑
i

P (D|gi) ∗ P (gi) (1.6)

where A is the major allele and a is the minor allele of a SNP. See Sohn and Wee (2015)

for a detailed derivation of Equation 1.5 and 1.6 and an explanation of the differences

in disease models. Typical values of λ used in simulated models are 0.2, 0.3, and 0.5,

typical values for prevalence are 0.005, 0.01, and 0.1, and typical settings for the MAF

are 0.05, 0.1, 0.2, and 0.5 (Sohn and Wee, 2015).

Figures 1.2b, 1.2d and 1.2f illustrate the increased chance of disease for the additive

1.2a, multiplicative 1.2c, and threshold model 1.2e, respectively. The risk of disease

increases when the disease allele, a or b occurs in the additive model, risk of disease

increases when a pair of disease alleles across two loci occurs in the multiplicative model,

and risks of disease increases for any existence of disease alleles across two loci in the

threshold model (Sohn and Wee, 2015).

Figures 1.3a, 1.3b and 1.3c describe the existence of an interaction effect for the

additive, multiplicative and threshold models, respectively.

1.3 Random Forests Literature Review and Background

Random Forests are tree-based classification and regression methods developed in

2001 by Leo Breiman (Breiman, 2001). Since then there have been 27,104 (4/4/2017)

(a) (b) (c)

Figure 1.3: (A), (B), and (C) are interaction plots of the three models in
Figure 1.2. The additive model (A) presents no interaction effect but both
SNPs have main effects. The multiplicative model (B) presents both an
interaction effect and main effects. The threshold model (C) has an interaction
effect and slight main effects. In (C), lines for bb and Bb coincide.
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citations (Google Scholar, 2017). Random Forests have been shown to do well in a

wide variety of problems and have been applied in many disciplines. As a matter of

fact, 179 classifiers implemented in Weka, R (R Core Team, 2015), C and Matlab were

evaluated using 121 data sets (from the UC Irvine Machine Learning repository) by

Fernández-Delgado et al. (2014) and Wainberg et al. (2016). Both groups found that

overall Random Forests was one of the best classifiers in terms of accuracy.

Random Forests can be used for either regression or classification problems. In both

cases, the goal is to predict the response variable using one or more predictor variables.

More formally, suppose we have a training set (x1, y1), . . . , (xN , yN ) with N independent

and identically distributed observations, where xi = (xi1, . . . , xiM ) for i ∈ 1, . . . , N . For

regression problems the response variable is continuous, while for classification problems

it is categorical, i.e. yi ∈ 1, . . . ,K for i = 1, . . . , N where K is the total number of

classes.

Types of problems in which Random Forests have been used for classification are

classifying images (Bosch et al., 2007), classifying invasive plant species (Cutler et al.,

2007), and identifying SNPs associated with diseases (Goldstein et al., 2010) among

many others. Regression in Random Forests has been used to: predict customer retention

and profitability (Larivière and Van den Poel, 2005), and predict aqueous solubility

(Palmer et al., 2007).

Random Forests is used as a screening tool to reduce the number unrelated predictor

variables (Lunetta et al., 2004). Some of the extensions of Random Forests include

Random Survival Forests (Ishwaran et al., 2008), Random Jungle (Schwarz et al., 2010),

and Quantile Regression Forests (Meinshausen, 2006). For a more comprehensive review

of the recent developments in Random Forests, both methodological and theoretical, see

Biau and Scornet (2016).

The advantages of using Random Forests in comparison to other statistical methods

are (Cutler et al., 2012):

1. High predictive accuracy.

2. Ability to handle continuous and categorical predictors.

3. Ability to handle more predictors than observations.

4. A novel method of determining variable importance.
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5. Ability to model complex and unknown interactions among predictor variables.

6. Ability to handle correlated variables well.

7. Flexibility to perform several types of statistical data analysis including regression,

classification, survival analysis, and unsupervised learning.

8. Ability to impute missing values.

9. Robustness to outliers in the predictor variables.

10. Insensitivity to monotone transformations of the predictor variables.

11. Scaling well for large sample sizes.

12. Dealing with irrelevant predictor variables.

1.3.1 Classification and Regression Trees

Before Leo Breiman developed Random Forests, he worked on classification and

regression trees (CART) with Jerome H. Friedman, Charles J. Stone, and Richard A.

Olshen (Breiman et al., 1984). The idea of Random Forests is built on the ideas of CART.

CART are binary decision trees that can be used to predict categorical or continuous

response variables. The tree initially contains all observations in the “root node.” The

node is split into two daughter nodes, which are themselves split and so forth.

In classification, the trees are grown until the nodes are pure (observations all

belong to one class), there’s only one case in the node, or a stopping criterion is met.

The nodes at the bottom of the final tree are called “terminal nodes.” The tree will most

likely overfit the data set, i.e. the prediction error will be much larger on new data than

it is on the data used to grow the tree. Therefore a pruning approach is used to find the

optimal tree. The predicted values are determined by dropping each observation down

the tree and computing the most frequent class in a terminal node for classification and

by averaging the response for observations in the terminal node in regression.

A classification tree is built by initially determining the predictor variable that has

the best split for separating the observations in the root node according to their class.

A popular way to measure how well a potential split separates the observations is to

use the Gini impurity, also known as the Gini index (Breiman et al., 1984). The Gini
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impurity, G, for a node is calculated as:

G =
∑
k

∑
l 6=k

pkpl =
∑
k

pk
∑
l 6=k

pl =
∑
k

pk(1− pk) (1.7)

where pk = proportion of class k in the node, and pl = proportion of class l in the node.

Note that in the two-class case G = 2p̂0p̂1 where p̂0 is the proportion of class 0 and p̂1

is the proportion of class 1 in the node. The variable that splits the set will minimize

the splitting criteria, that is, the weighted average Gini impurity:

Gsplit =
SL
∑K

k=1 pkL(1− pkL) + SR
∑K

k=1 pkR(1− pkR)

SL + SR
(1.8)

where SL = number of observations that go left (L), SR = number of observations that

go right (R), pkL = proportion of class k in left node, and pkR = proportion of class k

in right node. Considering all possible splits, the one with the smallest value of Gsplit

is used to split the root node, containing all observations, and the first split creates two

daughter nodes that are more pure than the parent node. Daughter nodes are themselves

split and the process continues.

1.3.2 Tree-Based Methods Naturally Fit Interactions

Tree-based methods are one of the families of machine learning methods that can

naturally fit higher order interactions without the specification of which interactions to

fit. Figure 1.4 is an example of a how a single tree can capture an interaction. Two SNPs

are simulated from the multiplicative model in Figure 1.2c. The minor allele frequency

is set to 0.5, and the main effect is set to 0.4. Details about the simulation models and

settings can be found in Section 1.2.4. The two-way table of the two SNPs contains

a bar plot of the number of controls and cases for each combination of the genotypes.

Whether of not the background of each cell is shaded is determined by the classification

tree in Figure 1.4b built on the two SNPs. The split that best separates the controls and

cases is when the first SNP, x1, splits the genotype AA to the left, and Aa and aa to the

right(between row 1 and 2 in Figure 1.4a). If an observation has the genotype AA for

that SNP, it goes left and gets classified into the control group since the majority of the

observations in the terminal node are in the control group (314 versus 194). Otherwise,

the observations go right and the decision rule continues by determining the next best

split given that the sets of observations have genotypes Aa or aa for SNP x1. The tree
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(a) (b)

Figure 1.4: (A) is a contingency table of two SNPs generated from the
multiplicative model in Figure 1.2c. Each cell in the table displays a bar plot
of the response variable. A classification tree is grown on the two SNPs. The
first best split is when the genotype is AA for x1, that is, between row 1 and 2
in (A). Observations with the genotype AA for x1 splits to the left and get
classified into the control group, otherwise they split to the right and an
additional split is made. There are potentially nine terminal nodes, but the
tree is pruned to prevent overfitting.

could have a maximum of 9 terminal nodes, but the tree is pruned to prevent overfitting.

Tree-based methods can capture complex interactions in ways that a model-based

method could not. However, the disadvantage of using a tree-based method, such as

Random Forests, is the fact that if two SNPs are interacting and neither of them has

a main effect, then the chances of the tree fitting the interacting pair decreases as the

number of predictor variables increases. A second disadvantage may be the lack of

precise indication of where the interacting pairs rank in terms of importance. A possible

solution would be to recode each pair as a single covariate. This approach will work if the

data has a moderate number of SNPs. An approach that can overcome the issues would

be necessary for a tree-based method to be competitive against alternative methods.

1.3.3 Random Forests Algorithm

Random Forests are an extension of CART (Section 1.3.1), the difference being that

Random Forests uses bootstrap samples (repeated sampling with replacement from the

training set) and randomness in the tree-building procedure. Breiman (2001) defined

Random Forests (RF) as “a combination of tree predictors such that each tree depends

on the values of a random vector sampled independently and with the same distribution

for all trees in the forest.”
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The Random Forests algorithm begins with growing a forest of many trees; the

default number of trees is ntree = 500 in R (Liaw and Wiener, 2002). Each tree

is grown on an independent bootstrap sample from the data. At each node, a small

number, say the square root of the number of variables (
√
M), of randomly selected

variables are chosen. The best split on the selected variables is found, as described in

Section 1.3.1. The variables are chosen independently at each node, and the trees are

grown to maximum depth until the terminal node contains only one class in classification.

Each tree is used to predict the observations that were not in the bootstrap sample

(“out-of-bag” observations). The predicted class of an observation is calculated by the

majority vote of the out-of-bag (OOB) predictions for that observation.

1.3.4 Random Forests Variable Importance

Random Forests provide two measures of variable importance, Gini importance,

and permutation importance (Breiman, 2001). Because permutation importance is more

computationally expensive than Gini importance, it is recommended for users to use Gini

importance when permutation importance is infeasible (Breiman and Cutler, 2014).

Gini importance is based on the Gini criterion, see Equation 1.7 and Equation 1.8.

The predictor variable that was used to form a split has the decrease in the Gini node

impurity,

∆G = G− SLGL + SRGR

SL + SR
(1.9)

where G, defined in 1.7, is the Gini index of the parent node, and GL and GR are the Gini

indices of the left (L) and right (R) daughter node, respectively. The Gini importance

for the jth predictor variable is the average of the impurity decrease of all nodes in a

forest where the jth predictor variable was selected for splitting.

To measure the permutation importance of some variable j consider a single tree

and the observations that are OOB. The OOB observations are passed down the tree,

and the OOB error rate for the tree is obtained. The OOB error rate is the number

of OOB observations correctly classified divided by the number of OOB observations.

Randomly permute the values of variable j for the OOB data, so each OOB observation

gets a random value for variable j, and all the other observations are kept at their

original values. Pass the modified OOB data down the tree and compute a new error

rate. If the new error rate is about the same as before this means that the variable does

not appear to be contributing to the accuracy of the classification. If the new error rate
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is higher than before, the variable’s values were useful for accurate classification. The

variable importance measure in Random Forests is the difference between the proportion

of those predicted correctly before and after permuting the jth predictor Xj , that is,

impt(Xj) =

∑
i∈Bc

t
I(Yi = Ŷti)∣∣Bc

t

∣∣ −
∑

i∈Bc
t
I(Yi = Ŷ ∗ti(j))∣∣Bc

t

∣∣ . (1.10)

where I denotes the indicator function, Bc
t is the OOB sample, |Bc

t | is the number of

OOB observations for tree t = 1, . . . , ntree, Ŷti is the predicted class for observation i

from tree t before permuting Xj and Ŷ ∗ti(j) is the predicted class after permuting Xj .

The variable importance measure is found by averaging over all trees:

imp(Xj) =
ntree∑
t=1

impt(Xj)

ntree
. (1.11)

The value of imp(Xj) is used to rank the variables.

1.3.5 Detecting Interactions With Random Forests

An attractive feature of Random Forests and tree-based methods is their ability to

automatically fit complex interactions (2-way or more) between predictors without the

specification of which interactions to fit (Cutler et al., 2012). Random Forests is able to

capture the interactions through the calculation of permutation importance. When one

of the variables is permuted, this breaks the predictive power of the interaction. Thus,

if an interaction between two important variables exists, it is likely that those variables

will show up as important in a Random Forests.

1.3.6 Random Forests Proximities

One of the advantages of Random Forests is that they provide a way to identify

outliers, interesting structures or clusters of subgroups of the same class through prox-

imities. The proximity between the ith and jth observations is defined to be the number

of times observations i and j are both out-of-bag and in the same terminal node divided

by the number of trees in the forest for which i and j are in Bc
t (i.e. out-of-bag). In-

tuitively, the measure of how often a pair of out-of-bag observations occupies the same

terminal node is a measure of how close in proximity that pair of observations is. In a
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more mathematical sense, the proximity measure is:

prox(i, j) =

∑ntree
t=1 I(i ∈ Bc

t )I(j ∈ Bc
t )I(qt(i) = qt(j))∑ntree

t=1 I(i ∈ Bc
t )I(j ∈ Bc

t )
(1.12)

where qt(i) represents the terminal node observation i falls in, in tree t, for all i ∈

1, . . . , N . Two observations that are always in the same terminal node when both out-

of-bag will have a proximity of 1 and observations that are never in the same terminal

node when both out-of-bag will have a proximity of 0.

The proximity between an observation i from the training set (original data), and

observation j from a test set (new data) is found by calculating the following:

prox(i, j) =
1

ntree

ntree∑
t=1

I(qt(i) = qt(j)). (1.13)

Identifying multivariate outliers if there are any and determining any possible structure

in the data may be done by creating a multidimensional scaling (MDS) plot using the

proximities (Breiman and Cutler, 2014). An MDS plot provides a scatter plot of the

N observations in two or three dimensions based on the proximities. The MDS plot is

primarily used as a data visualization tool to identify any clustering of points, where the

points are viewed as a cluster if some points are close to each other and are not so close

to other points that make up another cluster. An MDS plot represents objects that are

close in proximity as points that are close to each other, while points that are quite far

from each other have lower proximities. Pairs of objects that are very similar regarding

the important variables in the classifier will be close to each other on the MDS plot and

have proximities close to 1, while pairs of objects that are very dissimilar will be far

away from each other on the MDS plot and have small proximities (close to 0).

1.3.7 Proximity-Weighted Nearest Neighbors

The motivation for introducing a new approach to approximating proximities be-

tween the ith and jth observation is to improve the Random Forests interpretation and

missing value imputation. We introduce a new measure to calculate the proximities be-

tween two observations. The idea comes from knowing that Random Forests are like a

nearest-neighbor classifier (Lin and Jeon, 2006). Using the proximities defined in Section

1.3.6 as weights for assigning a class label does not accurately reproduce the Random
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Forests predictions. Using the new proximities in Section 1.3.8 as weights for a nearest-

neighbor classifier, perfectly reproduces the Random Forests prediction accuracy.

1.3.8 New Proximities

The proximity matrix is initialized to the identity matrix. After fitting the tth tree,

the proximity matrix is updated for all observations n ∈ Bc
t and m ∈ Bt:

prox(n,m) =

∑ntree
t=1

(
I(m∈TNnt)Rt(m)∑

w∈Bt
I(w∈TNnt)Rt(w)

)
∑ntree

t=1 I(n ∈ Bc
t )

(1.14)

where Bt is the boostrap sample, TNnt is the set of observations in Bt that are in the

same terminal node as observation n, including any repeats, and Rt(m) is the number

of times observation m is in Bt. Set prox(n, n) = 1.

1.4 No Free Lunch Theorem

Random Forests have been shown to work well on a wide variety of problems with-

out much effort in tuning the parameters. However, Random Forests do not perform

the best in every scenario. According to the no free lunch theorem (Wolpert, 1996),

there is no model that works best for every problem. Random Forests do not perform

well in detecting interactions without main effects. Winham et al. (2012) found that

the increase in dimensions, decreases the chance of detecting ground truth more dram-

matically when SNPs are interacting in comparison to non-interacting SNPs. Known as

a black box classifier, Random Forests are not as interpretable as simpler models. The

weaknesses of Random Forests give an opportunity and motivation to improve Random

Forests.

This dissertation focuses on improving the detection of interactions and inter-

pretability of Random Forests. Chapter 2 proposes a filtering method to detect SNP-

SNP interactions. Chapter 3 optimizes the parameter settings of Random Forests. A

two-stage approach, combining Chapters 2 and 3 is applied to data on bipolar disorder

in Chapter 4. In Chapter 5, we introduce a new visualization method and apply it to a

Morse Code data set. Chapter 6 lists potential future work.



18

CHAPTER 2

A NEW FILTERING METHOD TO DETECT EPISTATIC

INTERACTIONS

2.1 Introduction

In this Chapter, we present a new filtering method to detect interactions. We focus

on detecting two-way interactions. Although, the filtering method can be used to detect

three-way interactions or more. We compare the performance of our new method with

leading methods (BOOST and an exhaustive χ2 test with 8 df) by computational speed

and how well the methods detect ground truth.

2.2 Data Simulation Models

In this Chapter, we are using three commonly used epistatic models: additive,

multiplicative, and threshold. For some models, combinations of parameters, and sample

size, solving Equation 1.5 and Equation 1.6 for α and θ to simulate data does not have

a solution. Therefore we restrict the possible parameters used to simulate data for the

MAF, main effect, and prevalence. The parameters have the possible values:

1. MAF: 0.1, 0.2, 0.5

2. Main Effects: 0.2, 0.3, 0.4

3. Prevalence: 0.5

A prevalence of 0.5 simulates a binary response variable with an approximately equal

number of cases and controls. The number of observations is typically 2,000. The number

of predictors simulated varies. The response variable is binary. Only two causative SNPs

are embedded which may or may not be interacting. Without loss of generality, we label

the causative SNPs x1 and x2. None of the simulations incorporate heritability and

linkage disequilibrium. Ultimately the data sets look similar to Table 2.1.
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Table 2.1: Example of data with a binary response from the GWA study.
The 0’s, 1’s, and 2’s represent the genotypes, AA, Aa, and aa, respectively
where A is the major allele and a is the minor allele.

y snp1 snp2 snp3 . . . snp750000

1 ctrl 2 0 1 . . . 0
2 case 0 0 0 . . . 0
3 case 1 0 2 . . . 2
...

...
...

...
... . . .

...
2000 ctrl 0 1 0 . . . 1

2.3 Gini Index Versus χ2 Test

In the process of exploring a new tree-based approach to detect interactions, we

discovered that the Gini index and the χ2 test with 8 degrees of freedom are equivalent

when we have a binary response variable (disease/no disease). Imagine a tree with two

levels with a three-way split at each node (Figure 2.1). Each terminal node represents the

cases and controls for each combination of genotypes at two different loci. The Gini index

is determined from the information obtained at those terminal nodes. We can translate

the information obtained from the terminal nodes into a 9 × 2 table (Table 1.2). The

Figure 2.1: A tree is built on two SNPs. A three-way split on the first SNP
creates three descendent nodes representing each one the SNP’s genotypes. An
additional three-way split on the second SNP creates a total of 9 terminal
nodes. A weighted Gini index on the 9 terminal nodes gives us a measure of
how strongly the two SNPs are interacting. The weighted Gini index is an
equivalent measure to a χ2 test with 8 degrees of freedom (Table 1.2).
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Gini index for Figure 2.1 is calculated as:

G =
2
∑3

i=1

∑3
j=1

NijDij

Nij+Dij∑3
i=1

∑3
j=1(Nij +Dij)

=
2
∑3

i=1

∑3
j=1

NijDij

Nij+Dij

N
(2.1)

The discovery that the Gini index and the χ2 test are equivalent in this special case has

been reported and proved by Grabmeier and Lambe (2007). However, to the best of our

knowledge, no existing method has incorporated the idea.

Grabmeier and Lambe (2007) did prove the equivalence of the χ2 test and the Gini

index, but they did not provide an equation to convert from one value to another. We

propose the following equation that converts a χ2 test statistic to a Gini value:

Gini = 2p0p1

(
1− χ2

N

)
(2.2)

where p0 is the proportion of observations in the control group, p1 is the proportion of

observations in the case group, and N is the number of total observations. The equation

is true only if χ2 and gini are calculated when the response is binary. The conversion is

useful for when we want to determine a pool of SNPs to call statistical significant using

Gini. For example, suppose α = 0.1, df = 8, N = 2000, equal number of cases and

controls, and χ2
crit = 13.36157, then we would have the following Gini critical value:

ginicrit ≈ 2(0.5)(0.5)

(
1− 13.36157

2000

)
≈ 0.49666. (2.3)

A Gini value less than ginicrit is equivalent to statistical significance in the 8 df χ2 test

(Table 1.2).

2.4 Proposed Method

We propose an efficient filtering method that can be used to detect single SNPs

and multiway interactions. It can detect interactions of dependent variables of mixed

data types (it is not necessarily only applicable to three level categorical variables) for

data with a binary response, but we only focus on detecting SNP-SNP interactions. The

filtering method can be summarized in the following steps:
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1. Randomly select pairs of SNPs.

To understand why we randomly select pairs, we observe the pattern found in

Figure 2.2 by executing steps 2 and 3 using Gini to measure the strength of the

interaction between all possible pairs using simulated data for different combina-

tions of parameters and models. We can see the pairs of SNPs that interact with

the causative SNPs tend to have a smaller Gini index. Thus, rather than doing an

exhaustive search, we can randomly select pairs.

2. Recode each pair of SNPs into a 9-level categorical variable.

The pair of SNPs can be recoded efficiently using a linear transformation: 3SNP1+

SNP2 where the SNPs are coded as 0’s, 1’s, and 2’s. This will result in a variable

with nine unique values ranging from zero to eight (see Figure 2.3). For each pair,

we want to determine the best split that best separates the cases and controls on

the 9-level variable. Typically this would be done by looking at all possible splits.

There would be 29−1 − 1 = 255 possible splits in this case.

Figure 2.2: An exhaustive search to detect SNP-SNP interactions using Gini
is applied to simulated data for when the MAF is 0.5, the main effect is 0.2 and
0.4, there are 2,000 observations, and 200 predictors (19,900 pairs) for three
epistatic models. Only 1,500 pairs are shown. The pattern is similar for the
remaining pairs that are not interacting with the causative SNPs, x1 and x2.
Pairs interacting with the causative SNPs tend to have a smaller Gini index.
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3. Split once on each pair.

To avoid looking at all possible splits, we propose a new approach to determine

the best split. A contingency table of the 9-level variable and the response variable

gives the counts of the number of controls and cases for each combination of geno-

types (Figure 2.3). If the number of controls is greater than the number of cases,

then those observations split to the left and get classified into the majority group,

the control group. Otherwise, the observations split to the right and get classified

into the case group. This creates a stump which can translate to collapsing a 9×2

table into a 2× 2 table. See Figure 2.4.

4. Compute Gini index (or χ2).

The Gini index or χ2 test can be used to evaluate the strength of the interaction.

Note that p-values will not be valid because we looked at the response to decide

3×



0
0
0
1
1
1
2
2
2


+



0
1
2
0
1
2
0
1
2


=



0
1
2
3
4
5
6
7
8


=⇒

Y = 0 Y = 1

0 (AA, BB) 411 386
1 (AA, Bb) 226 185
2 (AA, bb) 26 21
3 (Aa, BB) 221 182
4 (Aa, Bb) 59 166
5 (Aa, bb) 5 28
6 (aa, BB) 33 20
7 (aa, Bb) 3 26
8 (aa, bb) 0 2

Figure 2.3: An efficient linear transformation (3SNP1 + SNP2) is used to
create a 9-level categorical variable to represent a pair of SNPs that may be
interacting. Each of the values represent a combination of genotypes listed in
the contingency table. An approximate single split is applied on the 9-level
categorical variable. The levels where the number of controls is greater than
the number of cases (in red) go left and the remaining levels go right.

Y = 0 Y = 1

0, 1, 2, 3, 6 917 794
4, 5, 7, 8 67 222

Figure 2.4: A single split on the 9-level variable in Figure 2.3 sends the
levels to the left when the number of controls is greater than the number of
cases. Gini index measures the strength of the interaction. A contingency
table can be used alternatively to represent the observations in the terminal
nodes. Thus, equivalently, a χ2 test can be used on a 2× 2 contingency table,
a collapsed table from Figure 2.3.
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the split. Figure 2.2 shows the distribution of the Gini index of the first 1,500

pairs if we didn’t randomly sample pairs.

5. Choose 10% of the pairs with the smallest Gini index (or largest χ2 value).

6. Take the sum of the Gini index for each unique SNP randomly sampled in a pair,

and rank the sums.

SNPs that are chosen a higher proportion of times would suggest the SNPs have

a main effect or they are interacting. The SNPs could be ranked by the number

of times the SNPs corresponding Gini value occurs below a certain threshold. An

improved measure would be to take the sum of Gini values in the bottom 10% for

each unique SNP. SNPs with smaller sums in Gini are ranked higher.

7. Keep 50% of the SNPs with the smallest sum from Step 6.

See explanation below.

8. (Optional) Fit Random Forests on the unique set of single SNPs interacting with

at least one SNP from step 7.

We want to choose the number of SNPs to randomly sample such that the proba-

bility of detecting the causative SNPs is high, the number of times the causative SNPs

are in the bottom 10% is high, and the number of unique SNPs in the bottom 10% is

low. The number of SNPs randomly sampled is equal to mM , where m is a multiplier,

and M is the number of predictors. The value for m is set to 5, 10, 20, 30, and 40, and

M is set to 100, 500, 1000. The results are shown in Figures 2.5, 2.6, and 2.7.

The probability of detecting the causative SNPs in the bottom 10% in Gini is calcu-

lated by simulating a thousand data sets and averaging the Gini values of the interacting

pairs in the bottom 10% for each unique SNP divided by the number of unique SNPs. As

the number of randomly sampled SNP pairs increases, the probability of detecting the

causative SNPs increases, but starts to stabilize for a multiplier of 10 when the number

of predictors is 1000 (Figure 2.5). The threshold model for an MAF of 0.5 has a signifi-

cantly lower probability of detection. As to why the particular setting for the threshold

model is more of a difficult problem is not clear. Notice that overall the probability of

detection is approximately above 0.5 for all parameter settings. Therefore, we chose to

keep the top 50% best SNPs ranked by the sum Gini value from step 6.
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Figure 2.6 illustrates that as the number of randomly selected pairs increases, the

percentage of times the causative SNPs are in the bottom 10% increases. However,

in Figure 2.7, as the number of randomly selected pairs increases, the average number

of unique SNPs in the bottom 10% increases and gets quite close to the number of

predictors when the multiplier, m, is 20. For each combination of parameter setting,

model, a sample size of 2,000, and the number of predictors, the plots in Figures 2.6

and 2.7 are approximately the same. Overall, taking in considerations of the plots in

Figures 2.5, 2.6, and 2.7 we decided that a multiplier, m, of 5 was optimal.

2.5 Methods to Compare to

Wang et al. (2011) and Shang et al. (2011) evaluated different approaches compu-

tationally and in terms of ability to detect interactions. Both Wang et al. (2011) and

Shang et al. (2011) found that BOOST performed well overall.

Chi-square tests are commonly used as an exhaustive search in two-locus associ-

ation studies, but Wang et al. (2011) and Shang et al. (2011) did not use the test for

comparison. We compare our filtering method against BOOST and an exhaustive χ2

test.

2.5.1 BOOST

BOOST is a two-stage exhaustive search method for detecting SNP-SNP inter-

actions (Wan et al., 2010a). BOOST uses a Boolean representation of the genotype

data and bitwise operations to obtain contingency tables for each pair of SNPs. The

programming approach is what makes BOOST efficient. The two stages are defined as

follows:

1. Screening Stage: Evaluate all pairwise interactions using χ2 = 2(L̂S−L̂KSA) where

L̂S is the log-likelihood of the saturated model in Equation 2.4 and L̂KSA is the

log-likelihood of the Kirkwood superposition approximation (KSA). The KSA is a

non-iterative method for approximating L̂H , the log-likelihood of the homogeneous

association model in Equation 2.5, that is computationally faster. Nonsignificant

SNP pairs will be filtered out and those pairs that passed a significance threshold

go on to stage 2.

2. Testing Stage: Test each pair where 2(L̂S − L̂KSA) < τ , (τ is the threshold) using

the likelihood ratio statistic 2(L̂S − L̂H).
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Figure 2.5: The number of pairs randomly sampled is the product of the
multiplier and the number of predictors. A larger multiplier increases the
chances of detecting the causative SNPs for each combination of parameters
used to simulated the data but starts to become more steady after a multiplier
of 10.
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Figure 2.6: Data is simulated 100 times and the number of times the
causative SNPs are in the bottom 10% in Gini is recorded. The number of
pairs randomly sampled is the product of the multiplier and the number of
predictors. For each set of predictors, as the number of randomly selected
pairs increases, the percentage of the time the causative SNPs are in the
bottom 10% in Gini increases. The overall pattern is similar for all parameter
settings and models.

Figure 2.7: Data is simulated 100 times and the number of unique SNPs in
the bottom 10% is determined in each iteration. As the number of randomly
selected pairs increases, the number of unique SNPs increases quickly to the
number of predictors used in the simulation. The pattern is consistent for all
parameter settings and models.
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BOOST defines interactions in the logistic sense. The main effect model is a logistic

regression model fitted to a pair of SNPs:

log
P (Y = 1|Xp = i,Xq = j)

P (Y = 0|Xp = i,Xq = j)
= β0 + βiXp + βjXq. (2.4)

The interaction model fits logistic regression on both the main effect terms and the

interaction term:

log
P (Y = 1|Xp = i,Xq = j)

P (Y = 0|Xp = i,Xq = j)
= β0 + βiXp + βjXq + βijXpXq (2.5)

where Y denotes the class label (0 for control and 1 for case) in both Equation 2.4 and 2.5.

BOOST is written in C and the code is publicly available at http://bioinformatics.

ust.hk/BOOST.html. Wan et al. (2010a) sets a default threshold τ to 30. τ = 30

corresponds to an unadjusted p-value of 4.89× 10−6.

2.5.2 χ2 Test With 8 Degrees of Freedom

There are multiple ways to carry out a χ2 test to determine if two SNPs are in-

teracting. The more efficient approach is to use a test of independence. Two possible

approaches are to use a χ2 test on Table 1.1 with 4 df or a χ2 test on Table 1.2 with

8 df. In the 4 df test, we are testing whether the 3 variables, Locus A, Locus B, and

the response, Y , are independent. In practice, we assume Locus A and Locus B are

independent, so we use the 8 df test to see if the distribution of Y is independent of

the observed Locus A Locus B combination. In our preliminary results, not shown here,

an exhaustive χ2 test on simulated data showed that the statistical test with 8 df is a

better test for our purposes.

While neither of the review papers compared the recent methods that detect

epistatic interactions to a χ2 test with 8 degrees of freedom, the test does perform

well in detecting interactions. The χ2 test is dependent on whether or not the SNPs

have a marginal effect. The χ2 test with 8 df can detect marginal effects as well as

interactions. For example, if Locus A = a is associated with an increased risk of disease,

the first 3 rows of Table 1.2 will tend to show lower proportions of Y = 1 than the

remaining rows and this should correspond to high χ2.

An exhaustive search is performed on simulated data with 2,000 observations, with

200 predictors, an MAF of 0.5, with main effect 0.2 and 0.5 for each of the three epistatic

models. Results are shown up to the 1, 500th pair in Figure 2.8. The pattern is similar

http://bioinformatics.ust.hk/BOOST.html
http://bioinformatics.ust.hk/BOOST.html
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to the results when an exhaustive Gini index is applied (see Figure 2.2).

2.6 Performance Criteria

Different criteria can be used to evaluate how well a method detects interactions.

Shang et al. (2011) and Wang et al. (2011) are two review papers that evaluated various

methods by determining how well a method detects ground truth and by how well a

method can handle a large number of SNPs. Shang et al. (2011) evaluated the robustness

to noise using the degree of robustness (DOR), determined how sensitive a method is

given a false discovery rate of 0.01 using the receiver operating characteristic (ROC)

curve, and calculated computational complexity by measuring running time. Wang

et al. (2011) evaluated the performance of epistasis detection by calculating the Type-I

error rate, testing the scalability, and analyzing completeness.

One hundred data sets are used, each containing 2,000 observations and 1,000 SNPs,

and one pair of ground-truth SNPs is embedded. We set λ, the marginal effect, to be

Figure 2.8: An exhaustive search to detect SNP-SNP interactions using a χ2

test is applied to simulated data for when the MAF is 0.5, the main effects are
0.2 and 0.4, there 2,000 observations, and 200 predictors (19,900 pairs) for the
three models. Only 1,500 pairs are shown. The pattern is similar for the
remaining pairs that are not interacting with the causative SNPs, x1 and x2.
Pairs interacting with the causative SNPs tend to have a larger χ2 test
statistic.
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0.2, 0.3, and 0.4, prevalence at 0.5 since typically we would be working with real data

sets that have approximately equal numbers of controls and cases, and the MAF to 0.1,

0.2, and 0.5. We evaluate the performance of our method against other methods using

two different criteria: power and scalability.

2.6.1 Power

Performance is evaluated using general power (GP) and precise power (PP). General

power is defined as the proportion of data sets in which all ground-truth interacting SNPs

are ranked in the top L SNPs, i.e.,

GPL =
1

Q

Q∑
i=1

dgp,i (2.6)

where Q is the number of data sets and dgp,i ∈ {0, 1} is the detection indicator taking

the value 1 if the pair is ranked in the top Lth position (or the ground-truth SNPs are

ranked in the top Lth and L+ 1th position), and 0 otherwise.

Precise power is defined as the proportion of data sets in which all ground-truth

interacting SNPs are ranked highest by a method, i.e.,

PP = GP1 (2.7)

if SNP pairs are ranked and

PP = GP2 (2.8)

if SNPs are ranked.

2.6.2 Scalability

Interaction detection methods are assessed by how well they can scale. Each data

set is generated to have 2000 samples with 100, 1000, 2000, 4000, 6000, 8000, and 10000

SNPs. Each method was timed used on a single core. I have interfaced BOOST in R

version 3.3.2. Run time is done within R and determined using the microbenchmark

package (Mersmann, 2015). A hundred iterations are used, and the median duration is

recorded.
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2.7 Results

The filtering method proposed is compared to BOOST and an exhaustive χ2 test

with 8 degrees of freedom. We refer to the new screening technique in terms of what we

set the multiplier in Figures 2.9 and 2.10. The number of randomly chosen pairs used are

5M , 10M , 20M , 30M , and 40M and SNPs are ranked using the sum of Gini values of the

pairs for each unique SNP in the bottom 10%. Two exhaustive searches using Gini are

used to evaluate pairs. One lists the SNPs using the sum of the Gini values of the pairs

for each unique SNP and the second ranks pairs using the Gini values themselves. The

methods are assessed using precise power (Equation 2.8 and Equation 2.7) and general

power (Equation 2.6). Results are found in Figure 2.9 and Figure 2.10, respectively. In

Figure 2.9: BOOST, an exhaustive χ2 test with 8 degree of freedom, our
filtering method for multipliers 5, 10, 20, 30, and 40, an exhaustive search
using the sum of Gini values to rank SNPs, and an exhaustive Gini index
search are evaluated using the definition of precise power in Equation 2.7 if
SNPs are ranked by pairs and Equation 2.8 if single SNPs are ranked. The
exhaustive χ2 test performs best overall.



31

Figure 2.9, the χ2 test performs the best overall. The Exhaustive Gini Search is second

best, and BOOST is third best. The performance evaluation is expected since the best

three methods test the strength of interaction for each possible pair.

In Figure 2.10, we used a more liberal cutoff. For methods that rank SNPs, the

causative SNPs are considered detected if both SNPs are in the top 50, and if the

approach lists pairs of SNPs, then pairs in the top 31,125 are captured. Results are

shown in Figure 2.10. As expected, detection power has improved for all methods but

more dramatically for the method that is not exhaustive. The probability of detection

is consistently larger when there is a stronger main effect for each method. A larger

Figure 2.10: BOOST, an exhaustive χ2 test with 8 degree of freedom, our
filtering method for multipliers 5, 10, 20, 30, and 40, an exhaustive search
using the sum of Gini values to rank SNPs, and an exhaustive Gini index
search are evaluated using the definition of general power in Equation 2.6.
Causative SNPs are detected if SNPs are ranked in the top 250 and top 31,125
if pairs are ranked. For each combination of the MAF, main effect, and model,
each method improved overall compared to using precise power in Figure 2.9.



32

MAF did not necessarily have a greater probability of detection and is apparent when

the MAF is 0.5 for the threshold model. In particular, the filtering method improved

dramatically. For any of the multipliers used in the screening method, the performance

in detection power is quite similar. Thus a multiplier of 5 seems to be adequate.

A comparison of the median time each method spent for a data set with 2,000

observations shows that the exhaustive χ2 test is slower than BOOST and even slower

than the filtering method with a multiplier of 5. See Figure 2.11. Figure 2.11a shows

the median time in seconds each method took for 100, 1,000, 2,000, 4,000, 6,000, 8,000,

and 10,000 predictors. Alternatively, Figure 2.11b shows the median time in log scale of

milliseconds.

2.8 Conclusions

The number of SNP-SNP interactions grow exponentially as the number of SNPs

increases poses a computational and methodological challenge. It is necessary that SNP

interaction detection approaches are fast with high statistical power for a wide variety

of epistatic models.

We consider only genome-wide case-control studies when the phenotype is binary.

Data is simulated from three common epistatic models, additive, multiplicative, and

threshold. We used five parameters, MAF, prevalence, main effect, sample size, and

(a) (b)

Figure 2.11: An exhaustive χ2 test, BOOST, and the new filtering method
(sampling 5M SNP pairs) are compared using the microbenchmark package in
R. The median time is taken over 100 iterations for data sets with 2,000
observations and 1,000 predictors.
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the number of predictors to generate data. A maximum of one causal interaction is

embedded in each data set.

We compared our filtering method against leading methods that perform well in

terms of power and computational time. Two survey papers compared SNP-SNP de-

tection methods using simulated data, found that overall BOOST performed the best

in terms of detection power and speed. Neither survey papers compared the methods

against an exhaustive χ2 test, but χ2 tests are incorporated in quite a few new inter-

action detection methods. We compared our filtering method against BOOST and an

exhaustive χ2 test with 8 degrees of freedom.

The methods were compared in terms of computational time. We demonstrated

that our screening technique is computationally feasible for hundreds of thousands of

SNPs for thousands of observations and is faster than BOOST and an exhaustive χ2

test.

The methods are evaluated in terms of detection ability using precise power and

general power. See Equations 2.6, 2.7, and 2.8. The exhaustive χ2 search outperforms

BOOST and our method overall if the methods are evaluated using precise power. It is

expected that techniques that don’t look at each possible SNP pair to perform poorly

if they are evaluated using precise power. General power, a more liberal evaluation,

showed that our filtering method performs better than BOOST in some settings and

performs worst against the exhaustive χ2 test in the majority of the scenarios.

In summary, the following lists the advantages and disadvantages of using the fil-

tering method:

1. Advantages

� Can be used on dependent variables of mixed data types.

� Can fit multiway interactions.

� Fast.

� Can detect single SNP associations simultaneously.

� Can control false positives by using Bonferroni correction and Equation 2.2

to convert from a χ2 critical value to a Gini critical value.

� Gini can be interpreted as a probability.

2. Disadvantages
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� Dependent on SNPs with main effects.

� Can’t be used when the response variable is continuous.

The χ2 test cannot handle continuous covariates, it is dependent on whether or

not the SNPs interacting have marginal effects, and cannot be used if the response

variable is continuous. The current implementation of BOOST cannot handle continuous

phenotypes.
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CHAPTER 3

OPTIMIZING RANDOM FORESTS FOR DATA FROM THE

GENOME-WIDE ASSOCIATION STUDY

3.1 Introduction

In this Chapter we show that Random Forests can be improved in its ability to

identify interactions and efficiency by a combination of changes in its parameters settings,

by searching for sensible splits (Sections 3.2.1), using the optimal measure of variable

importance (Section 3.2.2), and by determining the optimal nodesize (Sections 3.2.3).

3.2 Personalizing Random Forests

Random Forests are implemented as a general purpose machine learning method.

The different parameter settings are the number of trees, the number of predictor vari-

ables to be randomly chosen at each node, and how deep to grow each tree by specifying

the max size of the terminal node. There are two situations where the max size of the

terminal node can be exceeded. One, if the variable cannot be split on, that is, if all the

values of the randomly chosen variable are the same. Second, the node is pure, i.e., the

response variable is the same for all observations.

The arguments of the three parameters are most commonly known as ntree, mtry

and nodesize, respectively. The default setting for ntree is 500, for mtry it is
√
M where

M is the number of predictors, and nodesize is set to 1 for classification in the package

randomForest in R (Liaw and Wiener, 2002). While these are the default settings and

they are found to be optimal empirically in Breiman (2001), no theory supports it.

The parameter settings for Random Forests for data from the GWA study should

be optimized to increase the chances of detecting causative SNP-SNP interactions in

higher dimensions. Goldstein et al. (2010) used larger values for mtry, increased the

number of trees, used the default node size of 1, and used the permutation importance

to determine significant SNPs. Winham et al. (2012); Kim et al. (2009); Wright et al.
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(2016) evaluated how well Random Forests detected causative interacting SNPs.

Winham et al. (2012) found that it was optimal to use 5,000 trees where the predic-

tion error was low and the variable importance measures stabilized and mtry = 0.1M .

In conclusion, they found that Random Forests failed to detect interaction effects in

high-dimensional data when a strong marginal component was absent, increasing ntree

did not improve the probability of interaction detection, and increasing mtry to 0.5M

improved the prediction error, but not detection of interactions. However, Winham et al.

(2012) did not optimize nodesize.

Wright et al. (2016) evaluated how well the Gini importance and permutation im-

portance from Random Forests can detect gene-gene interactions and compared it to

pairwise importance measures and a joint variable importance method. They stated

that in the majority of the scenarios, the proportion of detected SNPs was larger for

each of the four variable importance methods used when there were only marginal ef-

fects present in comparison to a model with an interaction effect only. Gini variable

importance was able to detect interactions at least as well as permutation variable im-

portance in the majority of the scenarios. This is important because Gini importance is

computationally faster than permutation importance.

3.2.1 Making Logical Splits

In Random Forests, from a subset of mtry variables chosen at random, the variable

that best separates the disease versus non-disease groups is selected to be split on at that

node. In the original implementation, Random Forests looks at all combinations of a

categorical variable to decide the optimal split. The total number of possible separations

for a categorical variable with k levels is 2k−1−1. An example of this for a single SNP is

shown in Figure 3.1. Note that going left or right is equivalent, so we do not consider the

splits where the nodes are reversed. However, in GWA study data, some combinations of

the genotypes would be unlikely to be biologically sensible. For example, a split should

not send AA and aa one way and Aa the other. Thus Random Forests has the potential

to improve computationally by only considering biologically meaningful separations.

3.2.2 Permutation Versus Gini Variable Importance

One of the best uses of Random Forests is that it can handle data sets where the

number of variables is much greater than the number of observations. Unlike some ma-

chine learning methods, Random Forests can rank variables using a permutation variable
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Figure 3.1: There are three distinct binary splits for a single SNP.

importance measure or a Gini variable importance measure.

Permutation variable importance is known to be a better measure of variable im-

portance in comparison to Gini variable importance (Strobl et al., 2007). For larger data

sets, it is advised to use Gini variable importance to reduce the number of variables due

to its lower computational cost.

Figure 3.2 compares the chances of detecting the causative SNPs in each of the

three models presented in Section 1.2.5. The number of SNPs is set to 20, 1000, 2500,

and 5000, 2,000 observations are simulated, prevalence is set to 0.5, the MAF is set to

0.1 and 0.5, and the main effect is set to 0.2 and 0.4. For each combination of the set-

tings, 100 data sets are simulated to determine the probability of detecting the causative

SNPs, x1 and x2. The default parameters in Random Forests are used, i.e., mtry is set

to
√
M , nodesize is set to 1, and ntree is set to 500. The Gini variable importance

measure consistently outperforms the permutation variable importance measure. This

is consistent to what Winham et al. (2012); Kim et al. (2009); Wright et al. (2016) have

reported.

3.2.3 Node Size

The number of observations in the terminal node for each tree grown is an op-

tional parameter usually set to one. We want to optimize nodesize in terms of detecting

causative SNPs when there are 100 predictors, 2,000, 3,000, 4,000, 5,000, 10,000 obser-

vations, prevalence is 0.5, MAF is 0.1, 0.2, 0.5, and the main effect is 0.2, 0.3, and 0.4.

For each combination of the settings, 100 data sets are simulated and the probability of

detecting the causative SNPs, x1 and x2, is determined using Gini variable importance.

Nodesize is set to varying proportions, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, of the sample size. Figure 3.3 shows the results for the first causative SNP

and when the main effect is 0.2. The results are similar for the second causative SNP

when the main effect is 0.3 and 0.4 (not shown here). Overall, the chance of detecting
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Figure 3.2: For each of the epistatic models, parameter setting of the MAF,
and the main effect, the Gini variable importance measure outperforms
permutation variable importance from Random Forests.

the causative SNPs is approximately the same for each possible combination of the data

simulation parameters used. There is some variability in the probability for the multi-

plicative and threshold model for when MAF is 0.1. In this case, it would be optimal to

use a smaller nodesize.

A sample size of 2,000 observations is further examined in Figure 3.4 to determine

which nodesize is optimal. There are little differences in the probabilities. A nodesize

equal to 5% or 10% is optimal for the majority of possible combinations used. A larger

nodesize would grow trees that are more shallow, but it would be computationally faster

so it may be a preferable to use 10% of the sample size for those with much larger data

sets.

3.2.4 Number of Trees

As with any Random Forests classification model, the number of trees should be

grown until both the class errors have become constant and the variable importance

measures have stabilized. It is expected that the number of trees required should in-

crease as the number of predictors increases. An example is shown in Figure 3.5. Two
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Figure 3.3: For each possible data simulation parameter setting, model, 100
predictors, sample size combination, and main effect of 0.2, the probability of
detecting the causative SNPs is approximately the same, indicating that
growing deeper trees is fitting a lot of noise.

thousand observations, a prevalence of 0.5, MAF of 0.1, a main effect of 0.2, and the

threshold model are used to simulate data. Using Gini importance as a measure to

identify relevant SNPs and varying the number of predictors and the number of trees

grown, Figure 3.5a shows that the probability of detection becomes approximately con-

stant for 1,000 predictors when 5,000 trees are grown and increasing the number of trees

grown to 10,000 does not significantly improve the likelihood of detection. The chances

of detection are similar with 2,000 predictors. If we fix the number of trees grown to

5,000 and increase the number of predictors, Figure 3.5b shows that as the number of

predictors increases beyond 1,000 and 2,000, the probability of detecting the causative

SNPs decreases.
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Figure 3.4: For each possible data simulation parameter setting, model, 100
predictors, and a sample size of 2,000, the probability of detecting the
causative SNPs is close to optimal when the nodesize is either 5% or 10%.

3.3 Conclusions

Statistical methods, such as logistic regression and linear regression are unable to

handle data sets when the number of dependent variables exceeds the number of obser-

vations (M >> N). Machine learning methods, such as Random Forests is commonly

used as an alternative approach to reduce the number of predictors or as a means to

detect interactions.

Random Forests can naturally capture multiway interactions without specifying

which ones to fit. However, studies have shown that Random Forests fails to identify

genetic interactions in higher dimensions when interacting SNPs both have weak main

effects. In this Chapter, we optimized Random Forests by:

1. The variable importance measure.

Permutation variable importance is computationally expensive but is generally a

better measure of variable importance in comparison to Gini variable importance.

It is recommended that Gini variable importance should be used if the resources
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(a) (b)

Figure 3.5: A hundred data sets are generated from the threshold model
with a MAF of 0.1, main effect of 0.2, and 2,000 observations. Random Forests
is applied to each data set with the default setting for mtry (

√
M) and node

size equal to 10% of the sample size. The probability of detecting the causative
SNPs is determined using Gini variable importance. In (A), as the number of
trees grown increases, the probability of detecting the causative SNPs
stabilizes and does not improve after 5,000 trees. This is similar for 2,000
predictors. Fixing the number of trees to 5,000 and increasing the number of
predictors in (B), the probability of detecting the causative SNPs decreases.

are limited. We showed the performance of Random Forests detection of causal

SNP interactions was best for each possible data simulation setting when the Gini

variable importance measure ranked the SNPs. The explanation as to why Gini

variable importance outperformed permutation variable is not well understood.

2. nodesize.

Gini variable importance is further used to determine the best setting for nodesize.

Our simulation results show that it is unnecessary to grow deep trees. A nodesize

of 5% or 10% of the sample size captured the causative SNPs best.

3. The number of trees.

We illustrate that the increase in the number of predictors requires more trees.

The number of trees grown should be sufficient such that the class error becomes

constant and the variable importance measure has stabilized. We showed that for

1,000 predictors, the probability of detection stabilized after 5,000 trees were grown

and similarly for 2,000 predictors. Fixing the number of trees grown to 5,000, as
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the number of predictors increases, the probability of detecting the causal SNPs

decreased. It is recommended that the number of trees grown should be as much

as the user can afford.

Also, we showed that the efficiency of Random Forests could improve by doing

logical splits. The combination of using the mean decrease in Gini as a measure of

variable importance and growing shallow trees improved the efficiency and predictive

power in Random Forests.



43

CHAPTER 4

AN APPLICATION OF THE NEW FILTERING METHOD

4.1 Introduction

Bipolar disorder is a psychiatric disorder that affects approximately 1% of the

population (Smith et al., 2011). Patients that suffer from bipolar disorder experience

dramatic shifts between depression and mania. The risk of suicide for those individuals

is as high as 17%. Evidence from studies of families, twins, and adoption show that there

is a genetic component that plays a primary role in the psychiatric disorder (Barrett and

Cardon, 2006; Consortium, 2005; Murray and Lopez, 1996). GWA studies have allowed

us to search for possible genetic variants that increase the risk of bipolar disorder.

We apply our new filtering method on a bipolar disorder GWA study data set. The

individuals are of European ancestry, comprised of 1,034 controls and 1,001 cases. We

focus on the 21st chromosome that has a total of 12,143 SNPs.

Previous analysis that looked at all chromosome (769,672 SNPs) has been published

in Smith et al. (2009) and Smith et al. (2011). More information regarding the quality

control of the bipolar data set is found in the Supplementary material provided from

Smith et al. (2009). Neither paper looked at all possible SNP-SNP interactions. Smith

et al. (2009) did not identify any SNPs that passed the level of significance of 5× 10−8.

When they performed a fixed effects meta-analysis with SNPs found in common in the

Wellcome Trust Case Control Consortium bipolar data set, they found no genome-wide

significant association. Smith et al. (2011) conducted a GWA study involving a sample

of individuals of European ancestry and African ancestry. They did not identify any

SNPs that passed the level of significance of 5 × 10−8 in both samples. They reported

the top two SNPs, rs5907577 and rs10193871, with the strongest statistical evidence for

association with bipolar disease in the European ancestry sample, and rs2111504 and

rs2769605 were identified in the African ancestry sample.



44

SNPedia (2017) lists SNPs that have been reported to increase the risk for bipo-

lar disorder. None listed any statistically significant two-way SNP interactions. Hu

et al. (2010) analyzed each possible pair of SNPs from the WTCCC bipolar disease

GWA study data and did not find any statistically significant interactions. They se-

lected potential SNP pairs based on a set of criteria to be used for a replication study

and found two potential pairs, rs10124883-rs178069 and rs10124883-rs6004133. The

replication study included 475 bipolar patients from the Chinese Han population. The

first pair, rs10124883-rs178069, had a p-value of 0.026 and the second pair, rs10124883-

rs6004133, had a p-value of 0.021. In addition, Hu et al. (2010) found the follow-

ing risk pairs: rs10124883-rs6004133 (p-value = 0.027), rs10124883-rs165730 (p-value

= 0.038), rs10124883-rs165596 (p-value = 0.035), and rs10124883-rs178069 (p-value =

0.031). Prabhu and Pe’er (2012) analyzed the WTCCC bipolar data set and found only

one statistically significant pair: rs10925490 within RYR2 on chr1q43, and rs2041140

and rs2041141 within CACNA2D4 on chr12p13.33.

4.2 Quality Control

The real data set initially has a total of 2,035 observations and 12,143 SNPs in the

21st chromosome. The snpStats package in R was used to carry out the data cleaning

(Clayton, 2015). SNPs were removed for the following reason:

1. SNPs with 5% or more missing values

2. MAF is less than 0.1

3. SNPs with only two categories

There are 9,993 remaining SNPs. No observations are removed. Missing value

imputation is done by substituting the most frequent occurring genotype.

4.3 Results

The filtering method presented in Chapter 2 is applied to the bipolar disorder data

set. The data set is split into two data sets, a training set and a test set. The training

set contains two-thirds of the observations that are randomly sampled from the data

set, and the test set contains a third of the observations from the data set that are not

in the training set. The following steps are applied to the training set:
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1. There are approximately 9,993(9,992)/2 ≈ 50 million SNP pairs. 5(9, 993) =

49, 965 SNP pairs are randomly selected.

2. Each pair of SNPs is recoded into a 9-level categorical variable. See Figure 2.3.

3. A single split is determined for each variable in Step 2.

4. Gini index is calculated on the split from Step 3 to measure the strength of the

interaction.

5. Ten percent of the pairs in Step 4 with the smallest Gini index is retained.

6. The SNPs from Step 5 are ranked by taking the sum of the Gini index of the

interacting SNP pairs for each unique SNP.

7. Fifty percent of the SNPs in Step 6 with the smallest sum value in Gini are kept.

After Step 7 is applied, there were 2,515 SNPs remaining. Random Forests is fit

on the unique set of single SNPs. mtry is set to the default (
√

2, 515 ≈ 50), nodesize

is set to 10% of the sample size (.1(2, 035) ≈ 204), and 25,000 trees are grown. The

SNPs are ranked using Gini variable importance. See Figure 4.1. The number of SNPs

considered important in predicting bipolar disorder is determined by the jumps in the

mean decrease in Gini. In this case, either 1, 2, 3, or 5 SNPs are a reasonable number

of SNPs to keep.

The position, MAF, and the χ2 test used to test for a main effect using the test

set on the top 5 important SNPs with the largest mean decrease in Gini are listed in

Table 4.1. Only one SNP, 8578860, passes the Bonferroni adjusted χ2 critical value.

The 5 important SNPs determined from Random Forests in Figure 4.1 are validated

using the test set. Random Forests do not provide information about which pairs of SNPs

are interacting. We carry out an exhaustive χ2 test with 8 df search on the 5 important

SNPs identified. The pairs and it’s corresponding χ2 test statistic are listed in Table 4.2.

The adjusted χ2 critical value using Bonferroni is 13.52 for a level of significance of 0.05.

Of the 10 pairs, none are considered statistically significant.

4.4 Conclusions

We analyzed a bipolar disorder GWA study data set. Of the 12,143 SNPs from the

21st chromosome, 9,628 are removed. We split the data set into two sets, a training set
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Table 4.1: Additional information is listed for the top 5 most important
SNPs determined using Gini variable importance from Random Forests. The
SNPs are validated using a χ2 test with 2 df on the test set. The SNPs are
considered significant if it passes a Bonferroni adjusted threshold of 3.32.

SNP Mean Decrease in Gini Position MAF χ2 2 df (χ2
crit = 3.32)

1 8578860 0.41 37724743 0.28 4.01
2 8579214 0.39 42829968 0.44 1.57
3 2019016 0.29 37810614 0.28 3.07
4 2019010 0.24 37771610 0.27 2.50
5 2008118 0.24 24093103 0.08 1.74

and a test set. The training set contains two-thirds of the observations, and the test set

contains the remaining observations. We applied our filtering method on the training

data, and 2,515 SNPs are fit into a Random Forests model. Gini variable importance

ranked the SNPs, and 5 potential SNPs were identified as important predictors. The

5 important SNPs are validated using the test set. An exhaustive χ2 test is used to

determine which pairs are statistically significant. Of the 10 pairs, none of the pairs

were identified statistically significant after Bonferroni correction. However, a χ2 test

on the single SNPs identified a statistically significant SNP after Bonferroni correction.

Smith et al. (2009) and Smith et al. (2011) analyzed similar data with all chromosomes

and did not identify and statistically significants SNPs.

Previous studies that found significant SNP-SNP interactions looked at all chro-

mosomes and did not find any statistically significant risk pairs in the 21st chromosome

(Hu et al., 2010; Prabhu and Pe’er, 2012).

Table 4.2: The top 5 most important SNPs determined using Gini variable
importance from Random Forests are validated using an exhaustive χ2 test
with 8 df search on a test set. Pairs are considered significant if it passes a
Bonferroni adjusted threshold of 13.52.

SNP Pair χ2 8 df (χ2
crit = 13.52)

1 8578860 - 8579214 7.63
2 8578860 - 2019016 6.35
3 8578860 - 2019010 10.34
4 8578860 - 2008118 7.15
5 8579214 - 2019016 5.76
6 8579214 - 2019010 6.38
7 8579214 - 2008118 11.38
8 2019016 - 2019010 6.79
9 2019016 - 2008118 6.48
10 2019010 - 2008118 7.44
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Figure 4.1: Random Forests is applied to a bipolar disorder data set with
2,515 SNPs, 1,034 controls, and 1,001 cases. The SNPs are ranked using Gini
variable importance. The top 30 SNPs with the largest mean decrease in Gini
are shown. The jumps in the mean decrease in Gini provide a guideline as to
how many SNPs are considered important predictors of bipolar disorder.
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CHAPTER 5

IMPROVING THE INTERPRETATION OF RANDOM FORESTS

THROUGH PROXIMITIES

5.1 Introduction

In Chapter 1 Section 1.3.8 we introduced an improved calculation of the proximi-

ties in Random Forests. The new proximities perfectly reproduce the Random Forests

predictions. The old implementation of Random Forests provides symmetric proximi-

ties, and a Multidimensional Scaling plot is used to visualize the proximities in two or

three-dimensional space. The new proximities are asymmetric and require an appropri-

ate visualization method for interpretation.

There are existing models that can visualize asymmetric data in two-dimensional

space. We can apply those visualization methods to asymmetric proximities.

In Section 5.1.1, we introduce examples of asymmetric data. In Section 5.1.2, we

present a matrix decomposition that is often used in visualizing asymmetric proximities.

In Section 5.4, we describe an interesting Morse code data set from Rothkopf (1957).

We apply two visualization methods from Sections 5.2 and 5.3 to the Morse code data

in Section 5.4. In Section 5.5, we introduce a new visualization method and compare

the results to those from the existing methods.

5.1.1 Asymmetric Data

Suppose we were to measure distances between the capitals in each state in the

United States of America. The distance, say between Boise and Salt Lake City, is the

same if we were to measure it from Boise to Salt Lake City or from Salt Lake City to

Boise. In matrix form, the rows being the initial starting point and the columns repre-

senting the ending point, we would have a square symmetric matrix containing distances

between all the capitals. Multidimensional Scaling (MDS) could then be applied to give

us a 2-dimensional configuration of the relative distances between the capitals (Cox and
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Cox, 2000). Unlike distances, in many different scenarios, we could obtain a square

proximity matrix that deviates from symmetry. For example, suppose each person in

a classroom was to rate each other’s friendship. Joe may not rate his friendship with

Jane the same as Jane would rate their friendship, resulting in asymmetry. In another

example, subjects were given two Morse code signals and asked to judge whether the

two were the same. The i, j element of the proximity matrix contains the number of

subjects who thought signals i and j were the same when presented with signal i followed

by signal j. The proximity matrix is asymmetric because the presentation order makes

a difference (Rothkopf, 1957). Other examples include relationships among managers

of a firm (Okada et al., 2005), brand switching among margarine brands (Okada and

Tsurumi, 2012), dyadic interactions in a social system (Solanas et al., 2006), branch ri-

valry of Spanish financial sector restructuring (Sagarra et al., 2014), relationships among

soft drink brands (Okada, 2014), and evaluating the effect of a new brand (Okada and

Tsurumi, 2014). The traditional approach to model asymmetric data is to assume that

the asymmetry is due to some error. If that is the case, we can visualize the asymmetric

data by symmetrizing the matrix by replacing the asymmetric pairs by their average

and performing MDS on the symmetrized matrix. However, it may be the case that the

differences we observe in the asymmetric pairs are not due to error and that the nature

of the asymmetry is important. Applying MDS would then be inappropriate, and we

would lose information.

5.1.2 Decomposition of Asymmetric Data

Every square asymmetric matrix P can be uniquely decomposed into a symmetric

component and a skew-symmetric component:

P = S + A (5.1)

where S is a symmetric matrix of averages S = (P + P′)/2 and A is a skew-symmetric

matrix defined as A = (P−P′)/2. The result can be found in numerous linear algebra

textbooks and also in Borg and Groenen (2005). We can think of the symmetric matrix

S as departing from asymmetry and the skew-symmetric matrix A as departing from

symmetry. A property of the decomposition of the asymmetric matrix is that the sum-

of-squares of the asymmetric matrix P can be partitioned into the sum-of-squares of the
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symmetric matrix and the sum-of-squares of the skew-symmetric matrix, that is,

∑
i,j

p2i,j =
∑
i,j

s2i,j +
∑
i,j

a2i,j . (5.2)

where S = [si,j ]i,j=1,...,n and A = [ai,j ]i,j=1,...,n (Borg and Groenen, 2005). Since we can

decompose the asymmetric matrix, we can model the two components individually.

Asymmetric proximities can always be decomposed into a symmetric and a skew-

symmetric component. Thus, existing methods for asymmetric data do one of three

things. They use a special visualization technique just on the asymmetric component,

represent the asymmetry along with the symmetric component simultaneously, or di-

rectly model the asymmetric matrix. The Gower model visualizes the asymmetric com-

ponent by applying a singular value decomposition (Constantine and Gower, 1978).

Newer models such as modeling skew-symmetry by distances were proposed by Borg

and Groenen (2005). Models that incorporate both the symmetric and skew-symmetric

component do so by applying MDS on the symmetric component and then embedding

the non-symmetric component to the MDS configuration. Borg and Groenen (1996)

embedded skew-symmetries as drift vectors. Last, we can analyze asymmetric proxim-

ities by directly fitting a model to the asymmetric data. Gower (1977) suggested using

a simple distance model called unfolding.

5.2 Gower Model

The Gower model analyzes asymmetric data by applying the singular value de-

composition (svd) to the skew-symmetric component. From Gower (1977), the skew-

symmetric component can be written in matrix form as A = V ΣJV ′ where V is an

orthogonal matrix, Σ is a diagonal matrix containing singular values σ1, σ1, σ2, σ2, . . .,

and J is a matrix containing the 2 × 2 matrix

 0 1

−1 0

 along its diagonal. From the

svd, we can obtain coordinates of the position of each observation and thus we can get

a two-dimensional configuration.

5.3 Drift Vectors in MDS Plots

An alternative to modeling asymmetric data is to simultaneously model the sym-

metric and skew-symmetric component in one plot. Modeling both the symmetric and
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skew-symmetric component can be done by applying MDS to the symmetric compo-

nent of the asymmetric data then embedding drift vectors to each of the points. The

approach makes it possible to see the relationship between the symmetric and skew-

symmetric components. The length of the arrows is determined by calculating the unit

length between a point and all the other points and multiplying each length by its

corresponding skew-symmetry. Averaging the unit lengths will give the length of the

vector for a single point. The direction angle relative to the y-axis is determined using

trigonometry.

5.4 Morse Code Data Set

The Morse code data set was collected by Rothkopf (1957). The data that we will

be using includes 36 Morse codes consisting of 26 letters and ten numbers (0 to 9). Each

letter and number are represented by a Morse code that consists of either short or long

beeps or both. Five hundred and ninety-eight subjects are presented with 362 pairs of

Morse code signals which they listened to and were asked to judge whether the two

signals were the same or different. Each number in Table 5.1 refers to the percentage of

the 598 individuals who said that the two signals were the same. The rows in Table 5.1

are the Morse code signals that were presented first and the columns refer to the signals

that were presented second. See Table 5.2 in Appendix 5.7 for the Morse code signal

for each letter or digit. Large values away from the diagonal indicate confusion between

the signals. Clearly, the relationship is not symmetric. Subjects are more confused for

some orderings of the Morse code signals pairs than others. For example, highlighted

in red, are the percentages of subjects who said that the pairs XB, BX, YZ, and ZY

are the same. A larger percentage of individuals were confused when B was presented

before X than vice versa and similarly when Z was presented before Y. However, a higher

percentage of individuals thought the pairs BX and XB were the same in comparison to

the pairs YZ and ZY. This can be explained by observing that the Morse code signals

for B and X are quite similar.

We can determine how asymmetric the Morse code data are by first decomposing

the asymmetric data by using Equation 5.1 and using Equation 5.2 to calculate the
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Table 5.1: The values represent percentage of people out of the 598 that said
the Morse code signals were the same (Rothkopf, 1957). See Table
refmorse in Appendix
refAppendixA for the complete list of the Morse code signals for each letter or
digit.

Morse Code A B C . . . X Y Z 1 2 3 . . . 8 9 0

. A 92 4 6 . . . 12 7 3 2 7 5 . . . 6 2 3

. . . B 5 84 37 . . . 84 30 42 12 17 14 . . . 17 4 4

. . C 4 38 87 . . . 32 82 38 13 15 31 . . . 24 18 12
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . X 7 64 45 . . . 91 48 26 12 20 24 . . . 16 17 6
. Y 9 23 62 . . . 44 86 23 26 44 40 . . . 33 23 16

. . Z 3 46 45 . . . 36 42 87 16 21 27 . . . 47 15 15
. 1 2 5 10 . . . 17 19 22 84 63 13 . . . 32 57 55
. . 2 7 14 22 . . . 17 30 13 62 89 54 . . . 21 16 11
. . . 3 3 8 21 . . . 22 25 12 18 64 86 . . . 17 8 10

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . 8 3 23 40 . . . 24 35 50 42 29 16 . . . 89 61 26
. 9 3 14 23 . . . 11 21 24 57 39 9 . . . 56 91 78

0 9 3 11 . . . 12 15 20 50 26 9 . . . 52 81 94

sum-of-squares for the symmetric and skew-symmetric components. From Equation 5.1:

P =


92 4 6 · · ·

5 84 37 · · ·

4 38 87 · · ·
...

...
...

. . .



=


92.0 4.5 5.0 · · ·

4.5 84.0 37.5 · · ·

5.0 37.5 87.0 · · ·
...

...
...

. . .


+


0.0 −0.5 1.0 · · ·

0.5 0.0 −0.5 · · ·

−1.0 0.5 0.0 · · ·
...

...
...

. . .


.

From Equation 5.2:
∑
i,j
p2i,j = 671533+26821 = 698354. Then the proportion of the sum-

of-squares due to the symmetric component is 671533
698354 = 0.96 and the proportion of the

sum-of-squares due to the skew-symmetric component is 26821
698354 = 0.04. The symmetric

portion is dominating, and the proportion of the sum-of-squares explained by the skew-

symmetric portion is minor. However, further analysis of the skew-symmetric portion

or the asymmetric data as a whole may reveal interesting relationships about the Morse

code data.
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Figure 5.1 is a Gower diagram for the Morse code data. The plot is interpreted by

drawing a triangle with vertices at the origin and two Morse code signals, say B and

X. The area of the triangle is a measure of how asymmetric the Morse codes B and X

are. In this case, the asymmetry is quite large because one of the orders is more often

confused than the other order. To determine which order is more confused in the data,

we look at clockwise rotations. The letter that comes first is B; therefore B is more

often confused with X than vice versa. We can see why this is the case if we look back

at what the Morse code looks like for B and X. The Morse code for B is . . . and the

Morse code for X is . . . The two Morse code signals are quite similar. It may be

that individuals are more confused if B is presented first then X because the last beep

is short for B making it more difficult to know when the signal of B has ended.

When interpreting the Gower model for skew-symmetries, note that if points lie on

the vertical or horizontal axes, which are the lines through the origin, then there is no

asymmetry since the area of the triangle would be zero. See Gower (1977) for a more

in-depth introduction of the Gower model.

A two-dimensional configuration of the model with drift vectors embedded in the

MDS plot can be found in Figure 5.2 applied to the Morse code data. The configuration

reveals a clear pattern, that is, most of the arrows are directed in the northwest direction.

The vertical axis can be interpreted as the length of the Morse code signal. The letters,

for example, E, T, M, N, A, and I near the top of the Figure have short Morse code

signals, whereas, the digits near the bottom, ranging from two to eight have long Morse

signals. The length of the arrows suggests that the shorter Morse code signals tend to

be more confused with longer signals than vice versa.
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Figure 5.1: Gower diagram applied to the Morse code data. See Table 5.2 in
Appendix 5.7 for the Morse code signal for each letter or digit. The origin
occurs at the intersection of the black lines. Coordinates are obtained from the
svd.

5.5 New Method

An alternative way to visualize asymmetric data is to address the asymmetry

directly. We propose a simple new model that can be easily interpreted. Given an

asymmetric matrix, such as the Morse code data:
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Figure 5.2: Multimensional scaling plot with drift vectors representing the
asymmetric component applied to the Morse code data set. See Table 5.2 in
Appendix 5.7 for the Morse code signal for each letter or digit.

P̃ =


0.92 0.04 0.06 · · ·

0.05 0.84 0.37 · · ·

0.04 0.38 0.87 · · ·
...

...
...

. . .


we can symmetrize the matrix P̃ by reflecting the upper triangle of P̃ about it’s

diagonal (replacing the existing lower triangle) to obtain:
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U =


0.92 0.04 0.06 · · ·

0.04 0.84 0.37 · · ·

0.06 0.37 0.87 · · ·
...

...
...

. . .


Similarly, we can symmetrize P̃ by taking the lower triangle of P̃ and reflecting it to

give us a new upper triangle:

L =


0.92 0.05 0.04 · · ·

0.05 0.84 0.38 · · ·

0.04 0.38 0.87 · · ·
...

...
...

. . .


.

Since both matrices are symmetric, we can run MDS on each of them to give us two

two-dimensional plots. It is preferable to visualize the result in one plot, so we include

each of the configurations in one figure. Since the two configurations may be off by some

rotation, we rotated to minimize the sum of the distances between each of the two posi-

tions of the entities. See Figure 5.3 for the visualization applied to the Morse code data.

The points for the two possible solutions for each Morse code signal are connected giving

us an overall idea of how big the difference is between the two MDS configurations. If

the Morse code data set were close to symmetry, then we would expect the solid and

open points to be quite close to each other. However, this is not the case, giving us a

reason to believe that an asymmetric model is more appropriate for the Morse code data

set.

Notice that the relative positions of the Morse code signals in Figure 5.2 and Fig-

ure 5.3 are quite similar, for example, letter E, T, M, N, A, and I are near each other.

One of the major differences between Figure 5.2 and Figure 5.3 is the Morse code signal

for 7. The length of the arrow for 7 in Figure 5.2 is quite short while the line segment

is quite long in Figure 5.3. Looking back at the Morse code proximities, it shows that

15% of the subjects said the signals for 7 and 4 are the same, but when the signals

were presented in reverse order, the percent of subjects claiming the signal are the same

increases to 32%. The new method proposed may introduce new insight to asymmetric

proximity data and perhaps may be more interpretable.
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Figure 5.3: Two-dimensional configuration representation of the asymmetry
in the Morse code data set. Solid dots represent the configuration of the MDS
plot applied to the matrix symmetrized from the upper triangle, whereas, the
open dots use the matrix symmetrized by the lower triangle. See Table 5.2 in
Appendix 5.7 for the Morse code signal for each letter or digit.

5.6 Conclusions

The current implementation of Random Forests provides a symmetric proximity

matrix informing us the proportion of times two observations fall in the same terminal

node. Improvement in the interpretation of Random Forests is done through the prox-

imities. The new proximities perfectly reproduce the prediction accuracy in Random

Forests. However, the new proximities are asymmetric. It would not be suitable to

visualize the asymmetric proximities using a MDS plot. Existing asymmetric models

such as the Gower model or embedding the skew-symmetric component into an MDS
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plot can be used to visualize asymmetric data.

We introduced a new visualization model for asymmetric data. The model can be

applied to asymmetric data that weren’t produced from a Random Forests model. The

new visualization model directly fits a model to the asymmetric data. The asymmetric

data is split into two components, the upper and lower triangle. Each component is

symmetrized about it’s diagonal, and MDS is applied to each matrix. Both configura-

tions are combined into a single plot, and a line segment is drawn for each entity. The

length of the line measure the size of the asymmetry.

We compare our new model against the Gower model and a model that embeds

the skew-symmetric component into an MDS plot using the Morse code data set. The

Gower model shows the asymmetry of pairs of entities, while our new method shows

the asymmetry of the entity itself. The Gower model interprets asymmetry through the

areas of the triangles. The model that embeds the skew-symmetric component interprets

the asymmetry through the axes and the direction and length of the arrows. The Gower

model and embedding drift vectors into an MDS plot would be impossible to understand

for larger data sets. It would be easier to interpret the asymmetries for big data using

our new model because it would be easier to identify large segments.
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5.7 Appendix

Table 5.2: Table of the letters and digits corresponding Morse code signal.

Morse Code Letter/Digit

. A
. . . B
. . C
. . D

. E

. . . F
. G

. . . . H

. . I

. J
. K

. . . L
M

. N
O

. . P
. Q

. . R

. . . S
T

. . U

. . . V

. W
. . X
. Y

. . Z
. 1
. . 2
. . . 3
. . . . 4
. . . . . 5

. . . . 6
. . . 7

. . 8
. 9

0
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CHAPTER 6

FUTURE WORK AND CONCLUSIONS

In Chapter 2 we presented a new filtering method. The filtering method could

further be evaluated the following ways:

1. How well it can capture three-way interactions and compare it to methods proposed

by González-Domı́nguez and Schmidt (2015), Leem et al. (2014), Moore et al.

(2006), or Guo et al. (2014a).

2. How well it can handle the incorporation of genetic heritability and linkage dise-

quilibrium.

3. How well it can capture multiple embedded epistatic interactions.

4. How well it can capture continuous and mixed dependent variable data type in-

teractions.

5. Compare against faster methods than BOOST. In Niel et al. (2015), they stated

that Genome-Wide Interaction Search (GWIS) is faster than BOOST. However,

Goudey et al. (2013) found that Rapid (RApid Pair IDentification) was faster than

GWIS.

Quite of few interaction detection methods incorporate a χ2 test, but not all are

equivalent. It would be interesting to evaluate the performance of a χ2 test with 8

degrees of freedom (9× 2 table) against 4 degrees of freedom (3× 3× 2 table).

In Chapter 4, there are many approaches to impute missing values to the real data

set. Further analysis of the bipolar disorder data set could be done:

1. Carry out a replication study to determine if the interacting SNPs found are as-

sociated with bipolar disorder.
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2. Compare results with BOOST and the exhaustive χ2 test.

3. Look at all chromosomes.

4. Look at SNP-environment interactions.

5. Carry out a single SNP analysis using new filtering method.

The new proximities introduced in Chapter 1 and the new visualization method to

visualize the proximities could be further explored by:

1. Applying the new visualization method to simulated data to better understand

when asymmetry occurs in Random Forests.

2. Using interactive plots to help interpret the asymmetric data.

3. Providing a numerical value to measure how asymmetric an entity is.

4. Building a single tree to represent the asymmetric data.

5. Evaluating how well the proximities detect outliers.

6. Providing numerical values that identify outliers.

Methods compared against our filtering method presented in Chapter 2 and models

compared against our visualization method presented in Chapter 5 are not available in

the libraries found in R. Potential packages could be created in R:

1. BOOST.

2. New filtering method.

3. Gower Model.

4. Drift Vectors in MDS plot.

5. New Visualization Method.
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