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Abstract 14 

Understanding the evolutionary origins of social behavior in insects requires understanding the 15 

physiological basis for reproductive plasticity. Solitary bees and wasps, or those living in small, flexible 16 

societies, will be key to understanding how conserved pathways have evolved to give rise to 17 

reproductive castes. Nutrient-sensing and endocrine pathways are decoupled from reproduction in 18 

some life stages of social insects. Heterochrony, particularly as it is related to diapause physiology, may 19 

be an important mechanism by which this decoupling occurs. Additional research is needed to 20 

understand how these pathways became sensitive to cues from the social environment. Future research 21 

targeting species with a diversity of social behaviors and diapause strategies will be key to 22 

understanding the physiological basis of social evolution. 23 

 24 

Highlights 25 

• Nutrient-sensing, endocrine pathways decoupled from reproduction in social insects 26 

• Diapause requirements may shape the evolution of these relationships 27 

• Heterochronic shifts in these pathways may facilitate the origins of castes 28 

• Sensitivity to the social environment evolves with eusociality 29 

Introduction 30 

Variation in reproductive success is one of the defining features of sociality amongst insects, whereby 31 

some individuals lay eggs and others care for eggs laid by their nestmates. Yet surprisingly little is known 32 

about the physiology underlying this reproductive variation in most social insect species. This is 33 

particularly true for species representative of the solitary ancestors from which sociality was derived or 34 

species that represent the earliest stages of this transition, in which behavior and reproduction are 35 

flexible among castes. Understanding the factors that influence reproductive physiology in these groups 36 



will provide a foundation upon which to build our understanding of how changes in these relationships 37 

have given rise to fixed reproductive castes found among the most advanced social insect species. 38 

 39 

Here I review recent insights into the nutritional, endocrine, and social influences on reproductive 40 

physiology in the Hymenoptera (bees, ants, wasps), with particular focus on those species that are 41 

solitary or with social organization representative of the early stages of social evolution. The 42 

physiological basis of reproductive development in ants (Family Formicidae), honey bees (Apis 43 

mellifera), and bumble bees (Bombus sp.) has been thoroughly reviewed elsewhere [1-4]. I present the 44 

highlights of this research primarily to establish the foundation for comparison to reproductive 45 

physiology in those species more closely aligned with conditions at the origins of eusociality. 46 

 47 

Overview of reproductive physiology in non-Hymenopteran insects 48 

Egg maturation (i.e., oogenesis) involves synthesis and incorporation of essential compounds, such as 49 

hormones and nutrients necessary for development, into developing oocytes [5]. The target-of-50 

rapamycin (TOR) and insulin/insulin-like signaling (IIS) pathways are the two most highly conserved 51 

nutrient sensors involved in regulating this process, while juvenile hormones (JH) and ecdysteroids are 52 

classes of highly conserved lipophilic hormones that interact with these nutrient sensing pathways [6]. 53 

These pathways play an important role in reproductive development in insects, but the details of how 54 

they influence each other and their relative positions within reproductive regulatory networks are highly 55 

variable across species [6]. 56 

 57 

In most insects, activation of the IIS and TOR stimulates the synthesis of JH and ecdysteroids [5,6]. The 58 

TOR pathway can be activated directly when free amino acids bind to receptors on the cellular 59 

membrane [5]. IIS is a systemic nutrient sensor, because insulin like peptides (ILPs) are released 60 



primarily from the brain and bind to insulin receptors (IRs) in the periphery (e.g., ovary, fat body) in 61 

response to glucose [5,7]. The IIS also stimulates the TOR pathway via the binding of ILPs to IRs on the 62 

cellular membrane, so TOR participates in both a direct and indirect response to nutrients [6]. JH is 63 

synthesized in the corpus allatum (CA), and circulates in the hemolymph. When detected by the fat 64 

body, it triggers transcription of the Vg gene responsible for transcribing the yolk precursor protein 65 

vitellogenin [8]. JH is the sole regulator of Vg in most insects, but in some lineages (e.g., Diptera), 66 

ecdysteroids are more important for egg development [6,8]. Ecdysteroids are a class of cholesterol-67 

derived hormones that includes ecdysone (E) and 20-hydroxy-ecdysone (20E), all of which are 68 

synthesized in the ovary, and stimulate the uptake of yolk by developing oocytes [5,9]. Activation of the 69 

IIS and TOR pathways also triggers the transcription of Vg, and thus stimulates vitellogenesis both 70 

directly and indirectly through endocrine pathways [6,10-13].  71 

 72 

Variation in how these pathways regulate reproductive physiology within and among species likely 73 

promotes and enables the immense diversity of reproductive strategies found among insects. This is 74 

likely a prerequisite for the origin of social insect castes, among which nutrient-sensing and endocrine 75 

pathways can function independently of each other and are decoupled from reproduction in some 76 

individuals. 77 

 78 

Nutritional influences on caste-related reproductive physiology may be constrained by diapause  79 

Among the Hymenoptera, the nutritional influences on reproductive development are best understood 80 

in two species: honey bees that live in highly eusocial societies and bumble bees that are obligately 81 

eusocial, but go through a solitary phase during nest initiation each year. In these species, nutrition 82 

plays an important role in caste determination, and in parallel, reproductive development, but with 83 

some important differences. In the earliest stages of honey bee development, the relationship between 84 



the IIS, TOR and the lipophilic endocrine pathways are mostly similar to patterns observed in other 85 

insects. Early stage larvae destined to become queens receive more of the highly proteinaceous royal 86 

jelly, which leads to elevated JH titers via activation of the IIS and TOR pathways [4,14-16]. However, the 87 

regulatory relationship between nutrition, IIS, and reproduction is drastically altered among later larval 88 

stages and adults. Among fourth and fifth instar larvae, expression of both insulin receptor genes and 89 

tor are down-regulated in queen-destined larvae [4,17]. Although adult queens continue to have better 90 

access to nutritious royal jelly, and thus more nutrient stores than workers, they have lower expression 91 

of IIS genes [18].  92 

 93 

In contrast, bumble bee reproduction seems to be mediated by a conserved relationship between 94 

nutrition and physiology. In the European buff-tailed bumble bee (B. terrestris), ILP, insulin-like growth 95 

factor-1 (IGF-1), and several hexamerin protein storage transcripts are more abundant in reproductive 96 

queens than in workers or virgin and diapausing queens [19,20]. Conversely, insulin receptors InR-1 and 97 

InR-2 are down-regulated in reproductive queens, which is consistent with known feedback responses 98 

within an activated IIS [20].  99 

 100 

This difference in the relationship between nutrient-signaling and reproductive physiology in honey bees 101 

and most other insects, including bumble bees, is generally assumed to be a product of advanced stages 102 

of eusocial evolution [1,21]. While this is likely true, there is another difference between honey bees and 103 

most other insects in which reproductive physiology has been studied – diapause (Figure 1). Unlike 104 

bumble bees and many other insects, honey bees are able to survive the winter on food stores in the 105 

hive, and thus avoid diapause. In most other temperate insects, however, nutrient signaling also plays a 106 

major role in diapause [22,23]. In fact, genes involved in diapause regulation in bumble bee queens also 107 

tend to be differentially expressed between queens and workers [23]. This suggests the effects of 108 



nutrition on reproductive physiology and the evolution of social castes is likely constrained by diapause 109 

requirements. 110 

 111 

Clues regarding how the influence of diapause has shaped the relationship between nutrition and 112 

reproduction over the course of social evolution come from studies in species with more flexible social 113 

organization. Paper wasps in the vespid subfamily Polistinae live in small groups with a reproductive 114 

division of labor and cooperative brood care. Unlike for obligately eusocial species, polistine castes are 115 

not morphologically specialized, and they retain totipotency throughout their lifetimes. This flexibility 116 

provides insight into physiological changes that accompany the earliest stages of caste evolution. Among 117 

new nest foundresses, workers, and queens of Polistes metricus, lipid stores and ovary development are 118 

positively correlated, and are also correlated with expression of IIS genes [24]. Consistent with this, 119 

hexamerins and several genes in the IIS are up-regulated in queen-destined larvae, as compared to 120 

worker-destined larvae [25,26]. Nutrient restriction of lab-reared larvae led to significant up-regulation 121 

of genes involved in lipid metabolism, though the resulting transcriptional profile was only partially 122 

similar to that of workers [27]. A separate study with a similar experimental design found significant 123 

effects of larval diet on reproductive development at emergence [28]. When protein was restricted for 124 

larvae-rearing foundresses, offspring emerged with traits very similar to that of workers, including more 125 

developed ovaries, than when protein was unrestricted or supplemented. P. metricus gynes (i.e., 126 

females that will become nest foundresses the following spring) emerge from development with 127 

inactivate ovaries, ready to overwinter in diapause, while worker ovaries are somewhat activated at 128 

emergence, since they do not overwinter [29]. Indeed, ovarian development among P. dominula 129 

workers has been shown to depend on diet upon emergence [29]. Collectively, these results suggest 130 

larval diet has more direct influence over diapause requirements than reproductive development in 131 

Polistes wasps, but diet directly influences reproductive physiology in adults.  132 



 133 

Larval nutrition may also influence the reproductive fate of females that function similarly to workers in 134 

the small carpenter bee, Ceratina calcarata [30]. As larvae, these so-called eldest dwarf daughters 135 

receive a smaller pollen mass, composed of different floral resources, than the pollen provided to her 136 

reproductive siblings. Upon emergence, the queen physically coerces this daughter into foraging for the 137 

colony [31]. Presumably as a result of her small size and energy expenditure during foraging, this 138 

daughter is unable to diapause, and thus never becomes reproductive. This influence of larval diet on 139 

diapause outcome in a temperate species further suggests that nutritional influences on reproduction, 140 

and its correlated social behavior, may have evolved under constraints related to the physiology of 141 

diapause. 142 

 143 

Tropical species that do not diapause thus make for an interesting comparison, because the influence of 144 

diet on reproductive physiology is likely to be more congruent across life stages. Megalopta genalis 145 

(Halictidae) is a tropical sweat bee with flexible social behavior [32]. A recent study found that several 146 

genes in the glycolysis pathway are up-regulated in worker abdominal tissue in this species, as 147 

compared to reproductive females [33]. The glycolysis pathway is activated primarily in the fat body, 148 

and is responsive to the nutrient-sensing IIS and TOR pathways [34]. This up-regulation could thus 149 

indicate that M. genalis workers are storing energy in response to low nutrient levels, which is known to 150 

inhibit reproductive development in other insect orders [5,6]. The finding that M. genalis workers have 151 

significantly lower vitellogenin titers than queens is also consistent with a conserved pattern of IIS/TOR 152 

regulation on reproductive physiology in this species [35]. M. genalis workers perform the majority of 153 

the foraging for their colony, and donate food to nestmates through trophallaxis [36,37]. It is therefore 154 

likely that they are undernourished, and that this may play a role in reproductive suppression.  155 

 156 



Larval nutrition is also likely to influence reproductive physiology in this species. Among cells collected 157 

from M. genalis nests, the quantity and quality of larval provisions found with female-destined eggs was 158 

significantly more variable than those found with male-destined eggs, which is what one would expect if 159 

nutrition was an important factor in reproductive caste determination [38]. Moreover, when newly 160 

emerged females are kept in the lab under standard environmental and nutritional conditions, some 161 

females reach reproductive maturity, while others do not develop ovaries at all [35]. The primary source 162 

of this variance is likely to be the amount of nutrient stores these females have carried over from 163 

development, and thus variation in larval diet.  164 

 165 

An effect of size and quality of larval diets on reproductive caste determination has also been observed 166 

in temperate halictid bees that diapause, including Halictus ligatus [39] and H. scabiosae [40]. 167 

Interestingly, worker-destined and queen-destined diets in these species differed in sugar content, 168 

which contributes to lipid stores [41], and is thus likely to have an indirect effect on reproduction 169 

mediated through diapause survival [22]. In the non-diapausing M. genalis, protein content, but not 170 

sugar content, varied among female larval diets [38]. Protein stores are more likely to influence 171 

oogenesis, as amino acids stimulate the TOR pathway and are necessary for vitellogenesis [5,6]. This 172 

may reflect a direct influence of larval diet on reproductive physiology, independent of diapause. This 173 

provides additional support for the hypothesis that evolutionary changes in the role of nutrient-signaling 174 

on reproductive maturation related to caste determination may be different for diapausing and non-175 

diapausing species. Additional comparisons of dietary influence on reproductive maturation in closely 176 

related species that differ in social behavior, but also with different diapause patterns, will be necessary 177 

to test this hypothesis. 178 

 179 



Solitary bees and wasps will be especially important in these comparisons, as they most closely 180 

represent the ancestors that gave rise to eusociality. However, the requirements for reproductive 181 

development have not been studied in most solitary Hymenoptera, and especially those that vary in 182 

diapause patterns. Progress in this area was recently made with a greenhouse study of the blue orchard 183 

bee, Osmia californica. All emerging females had small, undeveloped terminal oocytes, and only those 184 

females that consumed pollen (the primary dietary source of protein for bees) were able to complete 185 

oogenesis and commence egg-laying after 10 days [42]. It is not clear how far this result extends to 186 

other solitary Hymenoptera, because Osmia overwinter as adults, and reproductive development is 187 

initiated prior to breaking diapause [43]. Another member of the solitary family Megachilidae, 188 

Megachile rotundata, overwinters as prepupae and can develop mature oocytes when reared in the 189 

laboratory with access to pollen and mates [44]. Whether either or both of these is required has not 190 

been tested. 191 

 192 

Conversely, protein consumption did not have a significant effect on ovary activation in newly emerged 193 

females of the solitary alkali bee (Nomia melanderi) [45]. These halictid bees diapause as prepupae, and 194 

activate reproductive maturation upon emergence. Lab-reared 10-day-old females had significantly 195 

longer terminal oocytes than newly emerged bees, whether they were given access to protein or not. 196 

However, the lab-reared bees did not develop fully mature oocytes, which could suggest that mating or 197 

ecological cues are necessary to complete oogenesis in this species, as for many insects [46]. 198 

Nevertheless, protein is likely required for continued egg production throughout the season, because it 199 

was recently discovered that alkali bees consume pollen on a daily basis [47]. Similar experiments 200 

involving additional species of solitary bees and wasps are needed to determine how nutrition is linked 201 

to reproductive physiology across the Hymenoptera. These studies will also need to address the effects 202 

of larval nutrition on diapause outcomes and reproductive maturation in order to test the hypothesis 203 



that the link between nutrition and reproduction has been shaped by diapause physiology, in addition to 204 

social evolution. 205 

 206 

Endocrine influences on reproductive physiology may evolve via heterochrony 207 

The evolutionary origins of the queen and worker caste must have necessarily accompanied functional 208 

changes in endocrine pathways, but the nature of these changes is unknown. The ancestor that gave rise 209 

to social insect castes is presumed to have had endocrine-mediated ovarian cycles coupled with 210 

maternal care behavior, such that periods of foraging and brood defense occurred during a period of 211 

ovary inactivation following egg-laying [48,49]. This hypothesis, called the ovarian ground plan 212 

hypothesis (OGPH), posits that changes in endocrine cycles that bridge these correlated suites of 213 

behavior and physiology enabled decoupling of discreet stages of the ancestral cycle. This decoupling 214 

gave rise to queens specialized on egg-laying with activated ovaries and workers specialized on brood 215 

care and foraging with inactivated ovaries [48,49]. In support of this hypothesis, there is substantial 216 

evidence that JH and ecdysteroids have attained novel functions in highly social species (e.g., honey 217 

bees [50,51], ants [52,53], swarm-founding wasps [54]), and species with flexible social behavior (e.g., 218 

Polistes wasps [55,56]). This indicates that there have been evolutionary changes in the endocrine 219 

pathways mediating the association between behavior and reproductive physiology, but the ancestral 220 

pathways from which these changes evolved are unknown.  221 

 222 

One of the most significant of these changes has been disruption of the regulatory relationship between 223 

JH and vitellogenesis in adult honey bees [51] and some ants [57,58]. At least for honey bees, however, 224 

the conserved gonadotropic effects of JH are conserved during the final stages of pre-imaginal 225 

development [4,59,60]. This temporal shift in function of JH led Rodrigues & Flatt [61] to hypothesize 226 



that heterochrony is a key axis of endocrine flexibility that may have allowed for the decoupling, and 227 

subsequent neofunctionalization, of endocrine pathways in social evolution.  228 

 229 

There may be some evidence to support this hypothesis in bumble bees. In gynes preparing for 230 

diapause, nutrient sensing pathways normally stimulate lipid storage, rather than JH synthesis and 231 

oogenesis. However, JH treatments during this stage leads to ovary activation at the expense of nutrient 232 

storage [62]. Upon emergence the next spring, JH titers, ecdysteroids, and Vg expression increase and 233 

remain high in egg-laying queens [21,63]. This suggests that the conserved gonadotropic role of these 234 

hormones is intact among bumble bee queens. These relationships are less clear among queenless 235 

workers, however. JH treatment in newly emerged queenless workers leads to an increase in Vg 236 

expression and subsequent ovary activation by 7 days of age [64], but no JH-associated increase in Vg 237 

expression was observed after 4 days [21]. One possible explanation for this seemingly inconsistent 238 

result is that the role of JH in reproductive development is temporally variable in workers, as suggested 239 

by the heterochrony hypothesis of Rodriguez & Flatt [61].  240 

 241 

Temporal plasticity of conserved endocrine pathways may also occur in the paper wasp lineage, but this 242 

is most evident at the colony level. A gonadotropic function of JH has been demonstrated in Ropalidia 243 

marginata [65] and among pre-diapause gynes of Belonogaster longitarus [66] and B. petiolata [67]. P. 244 

dominula queens and queenless workers have higher JH titers than workers in queenright colonies [68], 245 

and JH treatments increase fertility in queens [69] and newly emerged workers [70] in this species and 246 

the closely related P. metricus [71]. However, a recent study performed in the late pre-emergent phase 247 

of the colony cycle (e.g., with foundresses, pupae, but no adult offspring) found no association between 248 

JH or ecdysteroids with ovary activation in either P. dominula or P. smithii [72]. This is in contrast to 249 

findings from studies that focus on the earliest stages of colony founding in P. dominula (e.g., with 250 



foundresses, but no brood) [73,74]. Together, these results indicate that JH can become dissociated 251 

from its gonadotropic function within very short time periods of an individual lifetime, and this 252 

functional shift is likely condition-dependent [69,70]. 253 

 254 

Additional insight regarding endocrine-mediated reproductive plasticity comes from recent studies of 255 

swarm-founding paper wasps. Queens of the neotropical Synoeca surinama have higher ovarian 256 

ecdysteroids and JH titers than workers [75]. This species displays advanced features of sociality, such as 257 

swarm founding, but has retained caste flexibility, such that queens can transition to workers, and vice 258 

versa, depending on colony need and social opportunity. These results thus provide insight into the 259 

endocrine aspects of reproductive plasticity, disentangled from other aspects of social behavior.  260 

 261 

The tropical facultatively eusocial bee M. genalis provides similar insight. Foundresses in the early stages 262 

of nest initiation have higher JH levels than age-matched workers, suggesting that the gonadotropic 263 

function of JH is conserved in this species [76]. However, older reproductive females in solitary nests do 264 

not have significantly higher JH levels than workers, which could suggest that JH function changes with 265 

age or reproductive phase. Along these lines, reproductive queens have significantly higher JH levels 266 

than age-matched reproductive solitary females, which suggests that JH has attained novel functions 267 

related to social dominance in this species. 268 

 269 

Very little is known about the function of hormones in reproductive physiology of solitary bees and 270 

wasps. Repeated treatments with the JH-analog methoprene led to increased oocyte development in 271 

fertilized females of the solitary eumenine wasp Euodynerus foraminatus [77] and the solitary 272 

megachilid bee O. rufa [78]. Both of these species overwinter as adults, but the wasp study was 273 

performed on newly emerged females prior to diapause, while the bee study was performed on 274 



diapausing females. The observed gonadotropic effects of the methoprene treatments were thus 275 

coupled with simultaneous effects on diapause termination. This may suggest that JH retains its 276 

gonadotropic effects on reproductive development throughout most phases of the early life-stages in 277 

solitary Hymenoptera.  278 

 279 

The effects of JH have only been studied in one solitary species that overwinters in a pre-adult stage. JH 280 

promotes ovary activation in unmated, newly emerged females of the solitary alkali bee (N. melanderi) 281 

[45,79]. However, JH does not have any short term effects (< 4 h) on reproductive organs among actively 282 

nesting females [79]. This suggests there could be a critical window in which JH is most likely to impact 283 

reproductive development in solitary bees. Further research on endocrine function in different life 284 

stages of solitary species is imperative for fully testing the heterochrony hypothesis.  285 

 286 

Caste-related reproductive physiology evolves via sensitivity to social cues 287 

A notable source of variation in reproductive physiology among ants, bees, and wasps is the role of the 288 

social environment on nutritional and endocrine pathways. Exposure to larvae as young adults has 289 

significant effects on Vg expression, JH levels, ovary activation, and foraging behavior among honey bee 290 

workers [80]. Likewise, exposure to queen pheromones suppresses ovarian activation [81] and JH 291 

synthesis [82] in worker honey bees, and this is mediated through the Notch signaling pathway in the 292 

ovaries [83]. In bumble bees (B. impatiens), however, exposure to pheromones of either brood or 293 

queens is not enough to suppress oogenesis, Vg expression, or JH levels among workers [84], and this is 294 

consistent with what has been found for B. terrestris [85,86]. However, direct aggression from queens 295 

and other workers can inhibit Vg expression and ovarian activation in these species [21,84]. 296 

 297 



In vespid wasps, the social environment influences reproductive physiology via endocrine pathways. In 298 

P. dominula, JH levels increased among workers after queen removal [68]. Under queenless conditions, 299 

JH is associated with aggression, but no such association exists in queenright colonies. This suggests that 300 

endocrine function is also responsive to the social environment, and this may be a mechanism by which 301 

neofunctionalization occurs during social evolution [70]. The social environment also appears to regulate 302 

JH in the epiponine wasp S. surinama, as JH titers increase in replacement queens when they are left 303 

alone on a nest [75]. 304 

 305 

There is some evidence that the social environment also regulates reproductive physiology in M. genalis. 306 

When workers are left alone in the nest, they become reproductive, and this is associated with down-307 

regulation of genes in the glycolysis pathway in the abdomen [33,87]. This suggests that social inhibition 308 

of reproduction could be mediated through nutrient-sensing channels in this species. Associations 309 

between behavior and JH levels suggest that aggressive queen-worker interactions may contribute to 310 

reproductive suppression in workers [32,37,76], but this hypothesis has not been tested experimentally. 311 

Aggression is also associated with fertility in the sub-social carpenter bee, C. calcarata, but whether 312 

social interactions directly influence reproductive physiology is unknown [88]. 313 

 314 

The social environment was found to have no influence on reproductive physiology in the solitary alkali 315 

bee (N. melanderi). In a recent study, newly emerged females were given JH or control treatments, and 316 

reared in cages either alone or with an older, reproductive female [45]. The social treatment did not 317 

influence the effects of JH on ovary activation. Comparisons between the nutritional and endocrine 318 

pathways regulating reproduction in alkali bees and social halictid bees are likely to reveal the 319 

evolutionary mechanisms by which reproductive networks become sensitive to cues from the social 320 

environment. 321 



 322 

Future directions 323 

Filling the gaps in our understanding of reproductive physiology at the origins of sociality will clearly 324 

require research involving additional species, particularly those that most closely resemble the 325 

ancestors that gave rise to sociality. Basic studies of the nutritional, endocrine, and social influences on 326 

reproductive development in solitary species in the families Apidae, Halictidae, and Vespidae will 327 

provide the phylogenetic scaffolding required for comparative physiology (Figure 1). Such studies will be 328 

most informative if they target species that vary in diapause patterns, and include both larval and adult 329 

stages of development. It is likely that plasticity in the coupling of nutrient-sensing and endocrine 330 

pathways underlying reproductive development enabled the evolutionary origins of castes. 331 

Understanding crosstalk among these signaling pathways in species close to the origins of sociality thus 332 

promises to be a fruitful area of future research.  333 

 334 

Figure Legend 335 

 336 

Figure 1. Summary of social biology and reproductive physiology in species covered in this review. ✓: 337 

experimentally-validated effects on reproductive physiology; +: correlative evidence to suggest effects; 338 

X: effects have been tested and were not found; ?: no direct tests have been made. Diapause stage – A: 339 

adult, P: prepupae; - : no diapause; Nest-founding strategy – S: solitary, F: facultative cooperation, Sw: 340 

swarm-founding; V: variable 341 
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