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ABSTRACT 

Relationships between tributary catchments, valley-bottom width, 

debris-fan area, and mainstem gradient on the Colorado 

Plateau: A case study in Desolation and 

Gray Canyons on the Green River 

by 

Caroline M. Elliott, Mastecof Science 

Utah State University, 2002 

Major Professor: John C. Schmidt 
Department: Geology 

The alluvial forms of the rivers that drain the Colorado Plateau are a product of 

the water and sediment load that tributaries deliver to the trunk streams. Where the 

Green and Colorado Rivers cross structural barriers, narrow canyons have been incised. 

In the steep terrain adjacent to many of these canyons debris flows occur in the 

catchment basins of tributaries and deliver coarse sediment to the mainstem river 

corridor. Over time, debris flow deposits have aggraded in trunk stream valleys and 

created landforms known as debris fans. The sizes of these debris fans are related to the 

accommodation space available for fan formation. Lithologic variation in the layer-cake 

stratigraphy of the Colorado Plateau has led to varying valley widths. Tributary 

catchment, debris fan, depositional site, and mainstem river characteristics are examined 

over the 156-kilometer reach of the Green River through Desolation and Gray Canyons. 

II 



Desolation and Gray Canyons provide some of the widest valley widths and resultant 

debris fan areas on the Colorado Plateau. 

(129 pages) 
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CHAPTER I 

INTRODUCTION 

The Colorado Plateau region of the United States is known for its spectacular 

landforms. In this semi-arid and sparsely vegetated region, a thick sequence of relatively 

flat-lying sedimentary rocks are exposed. The geomorphology of the region is greatly 

influenced by geology; escarpments, such as the Vermillion Cliffs and Book Cliffs, have 

formed due to differential erosion where resistant sandstones overlie softer shales. 

Laccolithic mountain ranges, such as the Henry Mountains and La Sal Mountains stand 

high above surrounding lowlands riddled with canyons and narrow gorges. 

The region supports few perennial drainages compared to wetter regions. The 

Colorado River system drains at least 90 percent of the area of the Colorado Plateau 

(Patton et al., 1991). The Colorado River and its major tributaries, the Green River and 

the San Juan River, all have headwaters high in the Rocky Mountain province adjacent to 

the Colorado Plateau where the majority of their streamtlow originates. However, most 

of the sediment in these systems originates from more local sources, with fine-grained 

sediment primarily supplied from tributaries such as the Price, Escalante, and Paria 

Rivers. These and many other similar tributaries that drain low semiarid regions supply 

considerable sediment, especially where less-resistant shale and mudstone lithologies 

such as the Wasatch, Mancos, Morrison, Chinle, and Moenkopi formations outcrop 

(Andrews, 1990). Coarse sediment is delivered to the system where coarse alluvial 

deposits lie adjacent to the modem stream or where hillslope processes in regions with 

steep slopes connect tributaries with the mainstem river through the process of debris

flow. 



steep slopes connect tributaries with the mainstem river through the process of debris

flow. 
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Debris flows occur and aggrade in the mainstem river valley as debris fans on the 

Green and Yampa Rivers in the eastern Uinta Mountains (Graf, 1979; Hammack and 

Wohl, 1996; Grams and Schmidt, 1999, 2002), and in the Green River's canyons through 

the Tavaputs Plateau in central Utah (Schmidt and Rubin, 1995). On the Colorado River, 

debris flows occur and create debris fans in Westwater and Cataract Canyons in Utah, 

and Glen and Grand canyons in northern Arizona (Webb et al., 1988, Melis et al., 1995). 

This report is divided into two main body chapters. This introduction provides a 

background and context for the study. Chapter II addresses the characteristics of 

tributary catchments, debris fans, their depositional valleys, and effects on the mainstem 

channel for 162 debris fans on the Green River through Desolation and Gray Canyons in 

east-central Utah. This is the first work focusing on tributary debris fans and their 

catchments on this reach of the Green River where considerably wider valley settings and 

a higher frequency of large debris fans occur compared to other canyons on the plateau. 

Field investigation, photogeologic mapping, and digital elevation model analysis were 

used to characterize the tributary catchments, debris fans, river valley, and mainstem 

Green River channel. Plates of geomorphic mapping of this 135-km segment of the 

Green River and tables of data collected can be found in the appendix to this report. 

Chapter III provides a wider perspective and context on the factors controlling 

debris fan size on various reaches of the Green and Colorado Rivers. The data set 

presented in Chapter II has been added to a larger data set of debris fan size and valley 

widths compiled from existing data for other canyons on the Colorado Plateau. This 



provides the first regional synthesis of debris-fan size on the Colorado Plateau focusing 

on Lodore, Desolation, Gray, and Grand Canyons. 
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CHAPTER II 

TRIBUTARY DEBRIS FANS, CATCHMENT CHARACTERISTICS, 

AND MAINSTEM INTERACTION ON THE GREEN RIVER IN 

DESOLATION AND GRAY CANYONS, 

EAST-CENTRAL UTAH 

ABSTRACT 

Hillslope and channel linkages are described through debris flow processes in 

tributaries to the Green River through Desolation and Gray Canyons. In the 135-km 

study reach tributaries frequently deliver coarse sediment to the canyon bound mainstem 

valley and create coarse debris fans that often obstruct the river resulting in rapids. 

Tributary catchment, debris fan, depositional site, and mainstem river channel 

characteristics are described for this reach of the Green River. This study area provides 

wider valley widths and larger debris fans than other comparable Colorado Plateau 

canyons with debris fans. Debris fan size is controlled by accomodation space availible 

in valley bottoms, not drainage basin area as has been demonstrated for debris and 

alluvial fans deposited in unconstrained valleys. Valley bottom width is influenced by 

changes in geology where variation in lithology provides variation in erosional resistance. 

Models of fan reworking and fan-river linkage were developed to further relate mainstem 

slope with debris fan frequency. Fan river linkage is defined by a connectivity between 

tributary processes and the mainstem river through an incised channel, and the presence 

of reworked gravel bars associated with debris fans. Debris fan frequency rather than 

arva explains the steep gradient of the Green River in fan-eddy dominated reaches. 



Furthermore, where debris fans are incised with channels coarse sediment is delivered 

directly to the river debris fans create a steeper mainstem gradient. Reaches with debris 

fans and frequent gravel bars are responsible for the steep gradient of the Green River 

through Desolation and Gray Canyons. 

Introduction 

Hillslopes and channels are linked at the base of slopes and at tributary mouths. 

At these points, hillslope processes deliver hillslope-derived sediment to the channel, 

resulting in adjustments in the main channel and downstream. Sediment transfer from 

hill slopes to channels is a stochastic process that varies with climate, geology, and 

topography. A continuum of types of linkages exists from smalJ-scale hillslope rills, to 

mass failures that block or constrain streamflow in a valley, to perennial tributaries that 

deliver a coarse tributary load to a master stream and thereby reset the longitudinal 

pattern of downstream fining (Rice, 1994). One type of linkage occurs where debris 

flows from steep tributaries enter the valley of a master stream. At these junctions, the 

hydrologic and geologic processes of the tributary drainage that give rise to debris flows 

become linked with the processes of the master stream influencing its water and sediment 

flux. At the linkage point, tributary and mainstem processes combine to define the 

mainstem' s geomorphic organization. 

The purpose of this paper is to describe the linkages that occur as tributary 

catchments join the master stream of a canyon on the Colorado Plateau. The study reach 

is Desolation and Gray Canyons on the Green River in east-central Utah. In Desolation 

and Gray Canyons, variation in catchment and geologic characteristics in tributaries and 



variation in geologic characteristics in the master valley cause longitudinal patterns in 

the geomorphic organization of the Green River. In this system, catchment-scale 

processes interact with the geologic control of valley width to create distinctive attributes 

of mainstem channel form. I explore the relationship between debris fans and the Green 

River at several scales, focusing on the tributary catchments, debris fans, characteristics 

of the river valley, and their effects on the mainstem Green River channel. 

Previous research 

Catchment processes: debris-flow initiation 

arul frequency 

Debris flows are an important sediment delivery process that connects hillslopes 

to fluvial channels in a wide variety of climatic settings in high relief regions such as the 

arid southwestern United States (Blackwelder, 1928; Hooke, 1967), the Appalachian 

Mountains (Miller, 1990), the Pacific Northwest (Pierson, 1982; Benda, 1990; Grant and 

Swanson, 1995), the Idaho Batholith (Meyer et al., 2001), and the Colorado Plateau 

(Cooley et al., 1977; Webb et al., 1988; Cannon et al., 2001). Steep slopes, fine-grained 

source material, and a means of saturation are important factors related to debris-flow 

initiation (Costa, 1984). Initiation sites on hillslopes often have slopes between 25-40°

(Johnson and Rodine, 1984). Abundant source material in the form of thick colluvial 

soils, weathered bedrock, and colluvium-filled hollows are necessary for debris-flow 

initiation (Johnson and Rodine, 1984). Source-material saturation occurs through high 

intensity rainfall events, rain-on-snow events, or ground-water infiltration (Caine, 1980; 

Costa, 1984). 



In Grand Canyon National Park on the Colorado Plateau, four mechanisms of 

debris-flow initiation have been identified to occur: 1) failure of weathered bedrock; 2) 

the "firehose effect"; 3) colluvial wedge failure; and 4) combinations of these processes 

(Griffiths et al., 1996, 1997). The "firehose effect" occurs where a stream of water from 

an upslope area saturates a pile of colluvium is stored at the base of cliffs, initiating a 

debris flow (Johnson and Rodine, 1984). Many debris flows in Grand Canyon, especially 

those occurring after intense rainfall events, occur from a combination of these trigger 

mechanisms (Griffiths et al., 1996). Precipitation is an important factor for debris-flow 

initiation in Grand Canyon. Debris flows have occurred in Grand Canyon with rainfall 

events with intensities greater than 20 mm/hr, with event totals ranging between 25 - 50

mm (Melis et al., 1995). Debris-flow generating storms in Grand Canyon have been both 

localized and regional, including summer monsoon thunderstorms, dissipating tropical 

cyclones, and winter frontal storms (Melis et al., 1995). Rain-on-snow events on high

elevation areas near the canyon rim are believed to increase runoff over cliffs in winter 

and spring (Melis et al., 1995). 

Debris-flow frequency is highly variable and depends on local geology, climate, 

and disturbance history. Disturbed landscapes, such as areas affected by fire, human 

development, or volcanic eruptions tend to have a higher frequency of debris flows than 

undisturbed lands (Pierson, 1982; Wohl and Pearthree, 1991; Meyer et al., 1995). In 

Grand Canyon, the overall recurrence interval between debris flows varies between 30-

50 years, and there is a higher rate for eastern Grand Canyon tributaries of 10-15 years 

(Webb et al., 1996). 



Debris fans and their depositional settings 

Fan-shaped landforms that are primarily built by debris flows are often termed 

debris-flow fans or debris fans (Schumm et al., 1987; Whipple and Dunne, 1992). Like 

alluvial fans, debris fans are deposited where a channel undergoes a transition from 

confinement in an upland drainage basin to a wider valley where deposition can occur, 

such as a mountain front or where a tributary enters a master valley. Sediment is 

deposited atthis point, because supply exceeds transport capacity (Harvey, 1990). Debris 

fans occur in a range of physiographic, geologic, and climatic settings, and these settings 

give rise to a wide variety of debris fan sizes, shapes, and slopes (Leece, 1990; Harvey, 

1990; Blair and McPherson 1994; Mills, 2000). 

Pioneering research describing relationships between watershed characteristics 

and debris fan form was conducted by Bull (1964), who demonstrated power function 

relations between tributary catchment area and fan area, as well as catchment slope and 

fan slope. Bull also showed that relief, lithology, and climate created distinctive 

watershed processes that led to distinctive debris flow characteristics. Such relations 

apply to fans that form along mountain fronts in large structural basins where there are 

few constraints to fan size (Bull, 1964; Harvey, 1990; Leece, 1990; Blair and McPherson, 

1994). These fans tend to be very large, with radii on the order of several kilometers. 

Debris flows occur and build fans in other physiographic settings, however, and 

fan size can be more limited where debris flows enter narrow valleys. Debris fans that 

form in intramontane valley settings occur at tributary valley junctions (Kostaschuck et 

al., 1986; Harvey, 1990; Kochel, 1990; Sorrisio-Valvo et al., 1998; Milana and Ruzycki, 

1999; Taylor, 1999; Mills, 2000). Intramontane valley fans have been well studied in the 



Appalachians where narrow valleys control their size and shape (Kochel and Johnson, 

1984; Kochel, 1990; Mills, 2000; Taylor, 1999). Mills (2000) recognized that many 

tributary junction fans in the Appalachians are not fully accommodated in a master 

stream valley but a m occupy the lower part of the tributary valley as well. He called 

these intrabasinal fans (Mills, 2000). 

Debris flows provide ixture of clay to boulder-sized sediment and build debris 

fans in the mainstem valley, constricting the Colorado and Green Rivers and creating 

most of their rapids. These debris fans rar;ige widely in size and shape. Hereford et al. 

(1996) described debris flows in Grand Canyon as: 1) fan forming, resulting in large, 

broad, and flat fan surfaces, and 2) channelized, which are smaller in area and dissect the 

broad fan surfaces and form fans at the mouths of the channels (Hereford et al., 1996). In 

the eastern Uinta Mountains, Martin (2000) determined all historic debris flows were 

channelized. 

Debris fans on the Colorado and Green Rivers are deposited in valleys much 

wider than the depositional settings of the Appalachians, but much narrower than the 

structural basins of the Basin and Range. Thus, relations between watershed 

characeristics and fan size are potentially confounded by the width of the master valley, 

and fan size is not a simple function of drainage basin area. One objective of our 

research is to define this relationship. Martin (2000) found the size of debris fans to be 

dependent on the lithology and structure of mainstem and tributary canyons. Larger 

debris fans occur at the mouths of tributaries located along large faults in a wide section 

of the mainstem canyon in Lodore Canyon (Martin, 2000). 



Studies of debris-fanlmainstem river 
interaction: the linkage point 

10 

Debris fans deposited in valleys often experience post-depositional modification 

by higher order streams (Kochel, 1990). Fan-truncation and lateral erosion have been 

documented in many settings, including the Shenandoah Valley in the Appalachians 

(Kochel; 1990; Whittecar and Ryter, 1992; Mills, 2000), the Bow River Valley in Alberta 

(Kostaschuck et al., 1986), and Yellowstone National Park (Meyer et al., 1995). Complex 

inset relationships can result from fan and stream interaction over time leading to fan-cut 

stream terraces. Narrow valleys in the Appalachians often experience lateral fan erosion 

and truncation leading to interfingered master-stream and debris fan deposits (Mills, 

2000). Debris flow deposits affect the distribution of sediment in channels and valley 

floors in the Oregon Coast Range (Benda, 1990). Grant and Swanson (1995) defined a 

model in which debris fans have varying effects on channels related to the valley width of 

depositional sites. Benda (1990) found 65% of meanders in third and fourth order 

streams to be associated with debris fans. 

Landform and process scale are key factors in determining the relative amounts of 

fan preservation and reworking. A small stream in a wide valley may meander around a 

large fan with minor post-depositional modification or change in mainstem slope 

(Germanoski and Barclay, 2000). Conversely, the longitudinal profile of a small stream 

that flows in a narrow valley may be controlled by the spatial distribution of debris flow 

deposits. The ratio of depositional valley width to master stream width, as well as fan 

width to valley width, are important factors in determining the effectiveness of master 

stream reworking. 



11 

Perhaps the process of main-stem and debris-fan interaction on a large river is 

most striking on the Colorado River in Grand Canyon. Tributary debris fans constrict the 

river and create large rapids over its 445-km course from Lees Ferry, downstream from 

Glen Canyon Dam, to the Grand Wash Cliffs (Powell, 1875; Dolan et al., 1978; Webb et 

al., 1988). John Wesley Powell was the first geologist to encounter these rapids and 

observe that large rapids occurred at tributary mouths, although he did not recognize 

debris flows as the process responsible for the transport of large boulders to the Colorado 

River (Powell, 1875; Melis et al., 1995). Large debris-flow events occurred in several 

locations in Grand Canyon in the winter of 1966, and Cooley et al. (1977) were the first 

to document debris flows as a process responsible for debris fan aggradation and rapid 

formation. The correlation between tributary debris-flow processes and the formation 

and reworking of rapids in Grand Canyon was not well understood until over a century 

after Powell's first observations (Howard and Dolan, 1981; Kieffer, 1985; Webb et al., 

1988). 

Howard and Dolan (1981) related the canyon's rock type and structure to tributary 

and rapid location, and argued that geology ultimately controls the locations of fine

grained sediment deposition in eddies upstream and downstream from rapids. Debris 

fans have been shown to influence the Colorado River in Grand Canyon over the length 

of a fan-eddy complex (Schmidt and Rubin, 1995). This sequence of deposits consists of 

an upstream backwater of ponded flow and fine-grained terraces and eddy deposits, a 

rapid of turbulent flow and coarse material located at the point where the fan constricts 

the river, a downstream region of recirculating flow and fine-grained sediment 

deposition, and a downstream gravel bar consisting of reworked debris flow material. 



In the canyons of the eastern Uinta Mountains, Grams and Schmidt (1999, 

2002) argued that the number of debris fans controls river gradient; steeper reaches 

havemore debris fans. Grams and Schmidt (1999) found that 76% of the rapids in 

Lodore, Whirlpool, and Split Mountain Canyons to be constricted by tributary fans, and 

the remaining 24% to be constricted by expansion gravel bars downstream from debris 

fans. Debris-fans do not control geomorphic organization in all bedrock canyons of the 

major rivers draining the Colorado Plateau, however. On the Green River, the 

confluences of large, low-gradient tributaries such as the Yampa, Duchesne, and White 

Rivers have little influence on mainstem gradients (Harden, 1983). Debris fans do not 

exhibit strong control in Labyrinth and Stillwater Canyons on the Green River (Harden, 

1983; Schmidt and Rubin, 1995), because tributaries in these reaches do not support 

debris flows. These tributaries drain the Green River desert, which do not produce 

significant runoff nor coarse sediment. 

Desolation and Gray Canyons 

12 

The first scientific expedition to explore the Green River through Desolation and 

Gray Canyons and encounter its rapids was led by John Wesley Powell in 1869 (Powell, 

1975). A survey crew from the United States Geological Survey, including hydraulic 

engineer R.R. Wooley, and geologist J.B. Reeside, floated the Green River from Green 

River, WY, to Green River, UT, in 1922 (Wooley, 1922; Reeside, 1923). The principal 

products of the 1922 trip were 5-ft contour water surface survey maps of the plan and 

profile of the Green River with 20-ft contours of the adjacent canyon topography (U. S. 

Geological Survey, 1924). These maps still provide the most accurate available 
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longitudinal profile of the Green River. A second scientific river expedition in 1940 

by the Bureau of Reclamation, led by geologist M. Merriman, collected detailed data on 

potential dam sites in the canyons between Ouray, UT, and Green River, UT. Both 

Wooley (1922) and Merriman (1940) observed that rapids with coarse debris generally 

occurred at tributary junctions. 

Orchard and Schmidt (1998) mapped deposits in the river corridor, repeated 

historical photos, and surveyed 22 cross sections in four 8-km study reaches of 

Desolation and Gray Canyons. This research was done in order to provide geomorphic 

assessment of habitat for humpback chub (Gila cypha), one of the endangered endemic 

fishes of the Colorado River basin. Reach scale surficial geolgic mapping focused on 

active channel and debris fan deposits adjacent to the river finding that debris fans 

occupy as much as 58 percent of the spatial area of the alluvial valley (Orchard and 

Schmidt, 1998). Graf (1979) determined that tributary locations corresponded with rapid 

locations in Desolation and Gray Canyons. This study explores the nature of these 

prominent features of Desolation and Gray Canyons, their catchment basins, depositional 

sites, and interaction with the Green River. 

Setting 

Geographic Setting 

The study area is the 135-km long segment of the Green River between Sand 

Wash and Swasey's Rapid (Figure 1), known as Desolation and Gray Canyons. The 

climate is semi arid, and the region is sparsely vegetated (see appendix H for details). 

There is some inconsistency in identification of the upstream end of Desolation Canyon. 
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Figure 1. Map of study area with detailed study sites indicated. 

Fan locations indicated are site number, name, and locations, 

defined as river mile upstream from mile O located at the railroad 

bridge in Green River, UT. 
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For instance, Powell (1875) and the U.S.G.S. (1924) maps of the Green River 

designated Jack Creek to be the beginning of Desolation Canyon. However, Reeside 

(1923) designated Desolation Canyon as the reach between Nine Mile Canyon and the 

Roan Cliffs, and Merriman (1940) refer to the section from Ouray to the Roan Cliffs as 

Desolation Canyon. Belknap and Evans (1974) and Rampton (1992), both popular 

recreational river guides, referred to the section from Sand Wash to the Roan Cliffs as 

Desolation Canyon. For purposes of this study, Desolation Canyon begins at Sand Wash, 

and Gray Canyon begins at Wire Fence Rapid, 96 km downstream from Sand Wash 

(Figure 1). River elevation at Sand Wash is 1405 m and is 1250 m at Swasey's Rapid at 

the downstream end of Gray Canyon (Figure 2). Thus, the average slope of the Green 

River through the study reach is 0.00116 m/m. Locations in this report are given in river 

kilometers and miles upstream of Green River, UT, because that is the location scheme in 

common use on the Green River (USGS, 1924; Belknap and Evans, 1974; Rampton, 

1992). Distances and all other measures are in the SI system. 

Geologic setting 

The couse of the river in Desolation and Gray Canyons is through the Cretaceous 

and Tertiary rocks of the Tavaputs Plateau. The river flows against the prevailing 

regional dip of the rocks, and elevations of the Tavaputs Plateau typically increase to the 

south until the Tertiary rocks are truncated by the Roan Cliffs (Figure 2). This is the 

approximate location where the river leaves Desolation Canyon and enters Gray Canyon 

near river kilometer 59.2 (river mile 37). Elevations at the drainage divide on the 

Tavaputs Plateau are more than 3000 m; approximately 1500 m above the Green River. 
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Incision of the Tavaputs Plateau has led to high relief in the drainages that are tributary 

to the Green River. 

The Cretaceous Mancos shale outcrops at the base of the Book Cliffs, and as one 

moves upstream, one moves upsection (Figure 3). Rocks have a regional northward tilt 

into the Uinta Basin. In Gray Canyon, the river flows through the Cretaceous Mesa 

Verde Group, consisting of the Blackhawk Formation, Castlegate Sandstone, Bluecastle 

Tongue, and the Tuscher and Farrer Formations, an alternating sequence of sandstones, 

limestones, and shales (Witkind et al., 1978). The less resistant rocks of the North Horn 

Formation, a fluvial conglomerate, and the Aagstaff Formation, a lacustrine limestone, 

occur above the Mesa Verde Group (Witkind et al., 1978). 

The Tertiary Green River Formation in Desolation Canyon is made up of 

sequences of siltstones, sandstones, and mudstones deposited in an extensive lake system 

that once occupied the Uinta Basin, north from Sand Wash (Reeside, 1923, Rowley et al., 

1979). A large north-draining fluvial system brought coarser material into the lake 

margins (Dickinson et al., 1986). The Colton member of the Wasatch Formation was 

deposited in this fluvial environment. The Colton is a relatively resistant and variable 

unit consisting mostly of sandstones and conglomerates, with some interbedded shales. 

The basal unit of the Colton Formation in the region of the Roan Cliffs is shale-rich. 

Sandy facies of the Green River Formation were deposited in shallower water on the lake 

margins to the north and are dominant in the upstream sections of Desolation Canyon. 

As one travels south and downstream, the Colton becomes more prevalent (Reeside, 

1923; Merriman, 1940). In most of Desolation Canyon, the Colton Formation and the 
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sandy facies of the Green River Formation are extensively interfingered (Belknap and 

Evans, 1974; Dickinson et al., 1986). 

Methods 

Mapping 

19 

Various methods were used to characterize and examine the debris fans of 

Desolation and Gray Canyons, their catchment basins, depositional sites, and attributes of 

the Green River. The catchment basins were primarily examined through the analysis of 

10-meter digital elevation models in a geographic information system. Debris fan and 

Green River channel and valley characteristics were examined using a map database 

created for this study. Field investigation was used to aid and verify mapping, and in the 

collection of detailed surveys of the debris fans. 

A surficial geologic map of 134--km of the Green River valley was created for this 

study and entered into a geographic information system (Plates 1 and 2). The map base 

was established using digital elevation map data derived from 10-meter scale USGS 

digital elevation models of the field area. Contour maps were created and overlain on 

digital orthophoto quadrangles taken in July 1987 at a discharge of 255 m3/s. Mylar 

overlays on 1 :5000 stereo aerial photograph pairs taken of the field area on October 5, 

1993, at a discharge of 55 m3/s were used to map 75 debris fans and adjacent Green River 

deposits in the field. River deposits visible in the aerial photographs but submerged on 

the map base were mapped as submerged deposits. Map unit polygons were digitized 

and entered into the GIS. Map units include debris fans and their related channels, as 

well as mainstem gravel bars, sandbars, and fine-grained river terraces, talus and other 



colluvial units in the Green River valley were also mapped. All air photo series used 

in mapping are listed in appendix I. 

Cataloging of significant tributaries 

20 

Tributaries that intersect the bedrock valley of the Green River were catalogued to 

create a database of debris-fan and drainage basin attributes. Criteria similar to those 

defined by Melis et al. (1995) for tributaries in Grand Canyon were used to determine 

"geomorphically significant tributaries." Geomorphically significant tributaries are those 

drainages that have a potential to produce debris flows or significant amounts of 

streamflow sediment where they intersect the valley of the mainstem Green River. These 

tributaries generally have drainage areas larger than 0.01 km2
, stream channels that are 

designated on USGS topographic maps as perennial or ephemeral, clearly terminate at the 

mainstem river in a single channel, or contribute to the formation of obvious debris fans 

or rapids (Melis et al., 1995). A list of all the geomorphically significant tributaries in 

Desolation and Gray Canyons is included in appendix A. 

Catchment analysis 

Analysis of the tributary drainages in the study area was performed using merged 

10-m digital elevation models. Stream networks were generated using flow direction and

flow accumulation commands in Arc Grid. Once drainages were delineated, areas were 

derived for all 164 tributaries in the study area. Basin relief and basin length/width ratio 

were measured for 96 representative drainages, comprising about 60% of all 

geomorphically significant tributaries. Longitudinal profiles of these % drainages were 

created by overlaying a clipped trunk stream coverage on an elevation grid. The resultant 
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longitudinal distances and elevations were exported to a spreadsheet to derive channel 

relief and gradient. Drainage basin channel gradient was calculated as basin relief 

divided by drainage basin length. An additional metric to characterize the percent of 

steep terrain in a catchment near the river corridor was measured using Arc View and Arc 

Info. A threshold distance of 1000 meters from the channel was used based on debris 

flow initiation data available for Grand Canyon National Park (Melis et al., 1995). A 

threshold slope value of slopes >35% was used to characterize steep terrain. These data 

sets were combined to determine the percent of a tributary drainage with slopes greater 

than 35% within 1000 meters of the Green River. Catchment characteristics of 

Desolation and Gray Canyon's geomorphically significant tributaries are found in 

Appendix B. 

Valley characteristics 

Rock type in Desolation and Gray Canyons was determined from geologic maps 

and river guides (Reeside, 1923; Witkind et al., 1978; Belknap and Evans, 1974). 

Bedrock hardness was determined semi- quantitatively using a measure of rock mass 

strength (RMS) according to the methods of Selby (1993). Measurements of RMS 

collected by Roberson and Pederson (2001) for the major bedrock units in Desolation and 

Gray Canyons were used in this study. Supplemental RMS data was collected for the 

rock units exposed in the Mesa Verde Formation and Mancos Shale using a Schmidt 

Hammer and various indices of rock weathering according to the methods of Selby 

(1993). Valley bottom characteristics for geomorphically significant tributaries are listed 

in appendix C. 
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Mainstem Green River valley-bottom width was determined by measuring the 

width between bedrock walls on the GIS database in Arc View. Widths measured at the 

upstream and downstream limits of each fan as well as the fan midpoint were averaged to 

determine valley width at each tributary junction. Tributary valley widths were also 

measured in Arc View where they intersect the mainstem valley. 

Detailed fan characteristics 

Detailed data to characterize debris fans were collected during river expeditions to 

the field area. These trips were conducted when the discharge of the Green River was 

between 40-250 rn3/s; a majority of these trips were conducted at discharges less than 

42.5 m3/s, which facilitated mapping of river deposits. 

Surveys of fan topography were conducted on 28 fans using a Topcon geodetic 

total station. Where fans are incised by a channel, topographic cross-sections were 

surveyed at the fan apex, near the fan midpoint, and fan mouth, and at the 42.5 m3/s water 

surface line. These measurements were used to determine: 1) the elevation of the fan 

apex, or the highest elevation point on the fan surf ace within the bedrock valley of the 

Green River, 2) the degree of channel incision, measured from the fan surface to the base 

of the channel at the apex, midpoint and mouth, 3) the height of a debris-fans cutbanks 

above mainstem river level, and 4) the respective slopes of the fan surface and fan

channel. All measurements are relative to the 42.5 m3/s water level, a common late

summer low water level discharge of the Green River in Desolation and Gray Canyons. 

Debris fan characteristics and measurements are included in appendix D. 
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Grain size of these 28 debris fans was also characterized. The intermediate axis 

diameter for 100 particles was measured on the reworked portion of a debris fan exposed 

at 42.5 m3/s on transects parallel to the river channel. Measurements were made every 

0.25 m and where large boulders occurred only one measurement was made. The b-axis 

of the 10 largest boulders on the reworked portion of debris-fans exposed above 42.5 m3/s 

was also measured. Gravel counts to characterize the grain sizes of reworked 

downstream gravel bars were also performed using the methods of Wolman (1954). 

Grain size data is reported in appendix J. 

Attributes of fans and rapids 

The locations of tributary junctions with the Green River were assigned river 

miles to the nearest 0.1 mi based oh the river mile distance upstream from Green River, 

UT (Belknap and Evans, 1974, Rampton, 1992). Names of tributaries and rapids were 

determined from river guides and the 9 USGS 7.5-minute topographic maps of the river 

corridor in the study reach. 

Many fan and river attributes were collected for each fan in the database using 

methods similar to Melis et al. (1995) and Martin (2000). Most of the attributes collected 

from the map database were established directly from the 1987 digital orthophotos. 

Therefore, channel width measurements and rapid lengths were collected for a fairly high 

discharge of 255 m3/s. Plan-view fan area was determined from the GIS map database. 

Locations where debris fans from multiple drainage basins coalesce in the Green River 

valley were mapped in the field to determine subtle differences in the slopes and 

boundaries of these fans. Fan shape was characterized by measuring the ratio between 
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the maximum length of the fan parallel to the river channel and the width of the fan 

perpendicular to the river. 

Green River channel widths upstream and downstream from the most constricted 

portion of the debris fan were made and averaged to determine average channel width at 

the river discharge of 255 m3/s at each debris fan in the study reach. Constriction of the 

Green River at each debris fan was calculated using these channel width values using the 

methods of Webb et al. (1996). Webb et al. (1996) use Cw: 

Cw= [ 1- 2Wr/(Wu+Wd)] x 100 (1) 

where Cw is constriction width, Wr the channel width at the rapid, Wu the constriction 

width in the upstream backwater, and Wd the channel width in downstream of the debris 

fan. Fan and rapid attributes for each fan eddy complex are listed in appendix E. 

Results 

I. Characteristics of tributary drainages

to the Green River

There are 164 geomorphically-significant tributaries that join the Green River in 

the 135-km long study area. The frequency of 1.2 geomorphically-significant tributaries 

per river kilometer is comparable to the frequency of such tributaries in Grand Canyon 

(Schmidt et al., 2002). The geologic and topographic characteristics of these tributary 

basins ultimately determine the effect that catchment processes of the Tavaputs Plateau 

have on the Green River. 
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Two tributaries the Price River and Minnie Maud Creek have no evidence of 

debris flows reaching the Green River, and their drainage areas are largest and gradients 

the lowest. The Price River has a drainage area of 3,988 km2 and heads on the Wasatch 

Plateau, 150-km northwest from its confluence with the Green River. The Price River 

has a mean annual discharge of 4.87 m3/s, as gaged near its confluence with the Green 

River at Woodside, UT (US Geological Survey gaging station 09314500), and its valley 

separates the Beckwith Plateau from the Book Cliffs itself. Only 7.5% of the terrain in 

Price River's drainage within 1000 meters of the Green River contains steep slopes 

(greater than 35% ). The Price River has a bed of sand and gravel and a slope of 0.00398 

m/m at its confluence with the Green River. Although there is no debris fan at its mouth, 

a gravel bar occurs immediately downstream from its confluence with the Green River. 

Minnie Maud Creek flows in Nine Mile Canyon and drains the northern part of 

the West Tavaputs Plateau. It has a basin area of 1156 km2
, and its perennial flow is 

ungaged. Minnie Maud Creek's gradient near the mouth of 0.00758 m/m is nearly twice 

as steep as the Price River. Minnie Maud Creek's catchment within 1000 meters of the 

Green River, like the Price contains a relatively small percentage of steep slopes (7.8%). 

This creek forms a large alluvial fan where it enters the valley of the Green River, and the 

surface of this fan has several fine-grained alluvial terraces established across its surface. 

There is no evidence of debris flows having occurred near the mouth of this stream. 

The other 162 tributaries draining the Eastern and Western Tavaputs Plateaus 

produce debris flows that can reach the Green River. The largest drainage of these 

tributaries is Range Creek at 369 km2
, and the smallest drainage is 0.09 km2

• We defined 

large basins as those draining areas between 50 and 500 km2
, intermediate basins as those 
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with areas between 5 and 50 km2
, and small basins as those whose basin are less than 5

km2 (Figure 4). The geographic arrangement of these basins consists of the intermediate 

and small basins nested within an exterior framework determined by the large basins, as 

well as the Price River and Minnie Maude Creek (Figure 5). Therefore, the mouths of 

tributaries draining large basins are separated by longer distances along the Green River 

than are the distances between tributaries draining small basins (Figure 6). Large 

percentages of the terrain within 1000 meters of the Green River in tributaries that 

support debris flows includes steep slopes (Table 1). 

Large tributary basins typically have the highest total relief, the lowest basin

average gradient of the main channel, and the lowest gradient of the channel at the 

confluence of the Green River (Table 1; additional drainage basin data available in the 

appendix). Total drainage lengths for large basins are between 15 and 40 km from the 

Green River. Total relief in large basins is between 640 and 1650 m above the Green 

River and exceeds that of smaller basins. The slopes of tributary channels draining the 

large basins are between 0.012 and 0.046 mlm at their mouth. 

The long distance between the headwaters of these large basins and the Green 

River and the low slope of these channels where they enter the Green River Valley are 

such that debris flows initiated. in the far headwaters of these basins typically do not reach 

the Green River. Field inspection, however, indicates that each of these tributaries have 

had some debris flows that have reached the Green River. No systematic investigation 

was taken to determine debris-flow initiation sites, but most of these basins include high 

gradient terrain relatively near the Green River, which is the most likely source of debris 

flows that might reach the Green River (Table 1). Field evidence also suggests that 
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flows that might reach the Green River (Table 1). Field evidence also suggests that 

debris-flow sediment from sites close to the river are more likely to contribute to debris 

fans. For example in Desolation Canyon, Jack Creek is a low-gradient, high-order 

tributary with steep terrain adjacent to the river. Low-order drainages that drain this 

steep terrain form small debris fans in the Jack Creek valley that contribute sediment to 

the main Jack Creek debris fan. Such small high gradient sub-drainages are likely to 

support debris flows that enter the Jack Creek channel and ultimately reach the Green 

River than distant headwaters. 

Intermediate-sized basins have other basin characteristics in between those of 

29 

large and small size basins (Table 1). These basins are geographically nested within the 

space between the large basin divides and the Green River (Figure 5). Total relief of 

these basins is between 460 and 1500 m. Channel slopes at their mouths range between 

0.019 and 0.066 m. These drainages include named tributaries such as Cedar Ridge 

Canyon, Wire Fence Canyon, and Three Fords Canyon. The majority of these tributaries 
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TABLE 1 

Drainage-basin data for selected debris fans 

Drainage Drainage Basin Basin Basin Percent of steep 
Drainage Name and River Mile' Basin Area channel Relief Length Sbap slopes near 

(km') gradient (m) (km) e river 
(1/w) 

Very Large Drainages > 1000 km2 

Price River 3988 0.00398 1738 131.2 2.7 7.5% 
Nine Mile Can;ton 1156 0.00758 1413 78.4 2.8 7.8% 
Large Drainages 50-500 km2 

Range Creek 369. 0 0.022 1845 44.6 3.0 7.9% 
Jack Creek 69.8R 121.9 O.o35 1354 24.0 3.3 47% 
Flat Canyon 63 R 118.4 0.049 971 12.3 3.3 39% 
Firewater Canyon 65.8L 50.6 0.053 1128 14.6 2.6 44% 
Mean o[ size class 143.0 0.0493 1318 19.4 2.4 34% 

Intermediate Drainages 5-50 km2 

Rabbit Valley 28.9R 28.7 0.052 656 8.6 1.4 19% 
Cedar Ridge Canyon 65.5R 26.2 0.055 1241 12.3 3.3 39% 
Wild Horse Canyon 58.4L 23.2 0.084 1092 9.2 2.2 41% 
Trail Canyon 45.9R 22.6 0.106 1490 9.2 2.8 36% 
Three Fords Canyon 35.5L 22.4 0.092 1423 6.9 1.3 10% 
Rock House Canyon SOR 22.1 0.037 653 8.6 2 25% 
Joe Hutch Creek 41.5L 19.2 0.134 1320 7.1 1.6 39% 
Little Rock Hou�e Canyon 79L 18.9 0.058 658 15.3 3.1 23% 
Butler Canyon 16. IL 16.5 0.046 691 9 2.1 27% 
Snap Canyon 51.3R 11.8 0.096 1372 9.6 5.7 51% 
Fretwater 59.4R 8.4 0.142 1066 6.1 2.2 36% 
Stone House 14.3L 7.0 0.099 496 3.2 1.1 14% 
Joe Hutch Canyon 40.SR 6.6 0.139 1191 5.6 2.5 22% 
Wire Fence Canyon 37R 6.4 0.109 1025 5.6 2.6 1% 
Mean of size class 14.l 0.098 977 6.9 2.4 30% 

Small Drainages < 5krn2 

Spring Wash Canyon 32.3L 5.7 0.098 848 4.6 2 8% 
Unarned drainage 49L 3.8 0.243 1345 2.9 1.5 48% 
Log Cabin 34.7L 3.4 0.287 1012 3.2 2.3 54% 
Unarned drainage 66L 3.0 0.304 673 3.2 2.5 53% 
Unarned Drainage 56.5R 2.4 0.201 931 2.9 2.3 49% 
Moonwater Canyon 42.9R 1.2 0.173 663 2 2.9 23% 
Unarned drainage 54.3L 1.1 0.320 979 2 1.8 39% 
Belknap Falls 48.6L 0.9 0.304 808 1.5 1.1 54% 
Unarned drainage 28R 0.7 0.297 551 2.1 2.7 11% 
Unarned drainage 65L 0.7 0.310 717 1.5 2.6 56% 
Curry Canyon 28.3R 0.09 0.095 642 4.6 2.3 8% 
Mean of size class 1.2 0.260 730 2.0 2.1 37% 
I River mile upstream from the railroad bridge at Green River, UT; 2 Percent of catchment area within 1000 meters of river with slopes
greater than 30 percent. 



have a total drainage length less than 10 km, and debris flows initiating anywhere in 

the basin have the potential to reach the river. 

Small drainages occupy hillslope hollows, and their headwaters often do not 

extend to the canyon rim. Most small drainages are unnamed, however, named rapids 

such as Belknap Rapids, Log Cabin Rapids, and Moonwater Rapids lie at the base of 

small drainages. Tributaries draining these basins enter the Green River with steep 

gradients between 0.175 and 0.49 m/m. Debris flows initiated in these basins are likely 

to reach the Green River. 
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Although there is a general tendency of tributaries to have lower gradients if they 

drain larger basins, the profiles of some tributaries arc determined by geologic conditions. 

Some tributary profiles are stepped and do not display a smooth profile (Figure 7). Cliff

forming sandstone units that control the width of the Green River alluvial valley, as 

discussed below cause a knickpoint at the mouths of some tributaries. Thus, the lower 

portions of some low gradient streams may include short channel reaches whose steep 

gradients may support debris flow transport. 

II. Characteristics ofthe Green River Valley

The alluvial valley of the Green River in Desolation and Gray Canyons occupies 

45.2 km2
, in the 135-km long study area and consists of the Green River and its channel 

margin alluvial deposits, and alluvium and colluvium from tributaries. The average 

width of the Green River alluvial valley is 335 m, although overall variation is between 

100 and 850 m in the study area (Figure 8). The characteristics and distribution of the 

deposits that occur within the valley are described in the next section. 
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The ultimate control on valley width is the hardness of the rocks and their 

erodibility as controlled by faults or joints. In general, the alluvial valley of the Green 
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River is wider where formations with lower mass-strengths occur at river level (Figure 9). 

Well-cemented sandstones in the Mesa Verde Formation have the highest rock mass 

strength. The weakest rock measured is a shale in the lowest section of the Colton 

Formation (Figure 3, data available in appendix K). 

Bedrock geology also affects the cross-sectional profile of the canyon. Rock-type 

controls valley-bottom width and canyon form (Figure 10). Near-vertical canyon walls 

are characteristic of harder rocks such as those occurring between river kilometers 48 to 

32 (Figure 10). A wider valley profile occurs where the Roan Cliffs cross the river near 
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kilometers 64 through 51 (Figure 8). This reach of river is characterized by a wide 

valley inset within the main canyon. In Gray Canyon, the Mancos Shale is exposed at 

river level, and is capped by more resistant formations of the Mesa Verde Formation. 

Therefore, the valley in lower Gray Canyon is wide with near-vertical canyon walls in the 

high terrain above the river. 

Channel width of the modem Green River does reflect major changes in the width 

of the alluvial valley. Channel width fluctuates between 50 m and 320 m with an average 

width of 120 m. The river channel is narrowest at debris fan constrictions and widest in 

backwaters above and expansion zones below debris fans (Figure 11). The widest 

channel widths occur upstream and downstream from debris fan constrictions between 

river kilometers 72 to 56. Channel widths are consistently less than 180 m between river 
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kilometers 56 and 24 in the narrowest reach of the river. 

Ill. Photogeologic mapping ofth esurficial geology 

of the Green River alluvial valley 
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The alluvial valley of the Green River was mapped within bedrock walls at a scale 

of 1:12,000. The valley is filled with Green River alluvium, tributary alluvium, hillslope 

colluvium, and aeolian dunes (Figure 12). Full unit descriptions are found in appendix F 

of this report. Plates of mapping of the entire field area are also included. The total 

mapped area is 45.2 km2 (Table 2). 

Mapped Green River alluvial deposits include gravel bars and sandbars in the 

active channel, channel margin deposits, and terraces. Th.e river and its alluvial deposits 

occupy two-thirds of the entire map area, about 30.4 km2 (Table 2). Approximately a 

third of this total includes Green River terraces, which were subdivided into high terrace, 

intermediate terrace, and floodplain subunits. The active channel, and adjacent gravel 

bars, sand bars, and channel margin deposits occupy a total of 37.2% of the mapped area. 

Colluvial units were differentiated into debris fans, talus, and small colluvial fans. 

Debris fans occupy a total area of 11.7 km2, or 25.9% of the valley in Desolation and 

Gray Canyons. Debris fans were sub-divided into debris fan surfaces and channels. 

Where bouldery deposits occur at debris fan mouths a bouldery channel sub-unit is 

indicated. Other colluvial deposits including talus and small colluvial fans make up 6.8% 

of the mapped area. Aeolian sand dunes lie on top of debris fan and terrace surf aces and 

occupy 1.3% of the total area of the valley. 
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TABLE2 

Mapped Deposits in the Green River valley 

Deposit Map Unit area Percent 
(km2) of total 

deposits 
river 15.6 34.0 
alluvium 14.79 33.0 

bars 0.46 1.0 
0.96 2.2 

channel margin deposits 0.43 0.9 
terraces 12.9 28.5 

colluvium 14.75 33.0 
debris fans 11.7 25.9 
talus 0.82 1.8 
small colluvial fans 2.24 5.0 

aeolian dunes 0.60 1.3 

total: 45.2 

IV. Fan characteristics

Debris fans comprise 26% of the valley's unconsolidated deposits, and fans of 

varying sizes occur throughout the study area (fable 3). The two largest debris fans in 

the study area both occur near river mile 40; the largest of these is nearly 500,000 m2 in 

area (Figure 13 ). Small debris fans occur in wide and narrow valley settings. 

Debris-fan areas in Desolation and Gray Canyons are larger than fans in Lodore 

Canyon or Grand Canyon. The average plan-view area of debris fans in the study area is 

70,000 m2
• The largest fans in Grand Canyon are about 200,000 m2 in area, and they 

average 12,000 m2 (Webb et al., 1996; Melis, 1997). In Lodore Canyon debris fan areas 

are as large 110,000 m2 and their median size is 17 ,000 m2 (Martin, 2000). 

Most debris flows of record have occurred in August or September. Storm 

histories and intensities were difficult to determine due to a lack of climate stations in the 

region. Debris flows large enough to alter rapids in the mainstem channel of the Green 
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TABLE3 

Debris fan data 

Fan Fan Fan Fan Channel AVERAGE Cut bank 
Fan Name and Area 1/w Max Slope Slope Entrench- height 2 

RiverMile1 
m

2 He!ght2 
meot' 

Joe Hutch Creek 41.5L 476,450 2.86 32.6 0.082 0.030 4.06 8.4 
Trail Canyon 45.9R 218,535 0.77 19.4 0.099 0.077 5.26 8.1 
Three Fords Canyon 36.5L 187,405 1.75 20.l 0.177 0.100 3.1 4.9 
Moonwater Canyon 42.9R 173,430 1.32 26.5 0.199 0.081 3.0 8.3 
Rock House Canyon SOR 165,174 2.09 14.8 0.054 0.049 1.55 5.2 
Firewater Canyon 65.8L 134,378 0.61 17.7 0.059 0.061 3.07 3.4 
Jack Creek 69.8R 130,504 2.67 10.7 0.036 0.024 2.43 4 
Fretwater 59.4R 116,702 2.73 26.8 0.065 0.058 3.16 10.6 
Joe Hutch Canyon 40.5R 113,897 2.22 18.6 0.062 0.051 2.56 6.7 
Little Rock House Canyon 79L 113,201 2.57 14.7 O.G78 0.070 2.57 7.4 
Snap Canyon 51.3R 104,813 1.73 20.2 0.103 0.053 5.61 8.8 
Unamed tributary 49L 101,440 2.02 21.8 0.193 0.163 5.63 10.6 
Wire Fence Canyon 37R 99,547 1.98 33.l 0.114 0.087 2.62 2.6 
Aat Canyon 63R 94,181 1.82 8.8 0.070 0.062 1.65 1.3 
Unamed tributary 66L 84,333 0.52 24.5 0.304 Noch. 7.1 
Log Cabin 54.7L 77,452 2.52 23.6 0.127 0.134 6.06 I0.2 
Wild Horse Canyon 58.4L 74,629 1.8 18 0.116 0.070 3.39 4.7 
Cedar Ridge Canyon 65.5R 69,950 0.52 14.5 0.105 0.118 3.65 9.8 
Unamed Canyon 54.3L 59,280 1.42 0.116 0.083 7.08 
Stone House 14,3L 56,297 1.54 6.5 0.083 0.060 2.98 6.4 
Unamed Canyon 65L 54,440 1.8 26.8 0.183 0.225 2.7 6.1 
Unamed Canyon 56.5R 48,187 2.16 18.5 0.111 0.120 6.09 I0.7 
Belknap Rapid 48.6L 38,715 1.24 �-5 0.344 0.107 7.66 9.8 
Spring Wash Canyon 32.3L 36,6% 4.11 6.8 0.035 O.G38 2.13 1.6 
Curry Canyon 28.3R 16,611 1.6 8 0.100 Noch.
Butler Canyon 16. lL 15,798 1.55 9.3 0.025 0.021 3.38 6.8 
Rabbit Valley 28.9R 15.528 1.53 5.9 0.018 0.185 1.08 3.7 
Unamed Canyon 28R 8,IIO l.l 7.8 0.282 Noch.

I River mile upstream from the railroad bridge at Green River, UT; 2 Height measurements refer to height above the Green River 
channel at low flow (42.5 m3/s); 3 Entrenchment depths measured from fan surface to channel bottom

River occurred in at least 6 tributaries during the past 25 years (Table 4). Field 

evidence in the form of fresh-looking levees and lobes deposited in debris flow channels 

and damaged vegetation suggests small recent debris flows have been deposited in the 

past few years on several debris fans (14d; see Appendices D and G for details). 

Most debris fans in the study area consist of an extensive inactive debris fan 

surface with a relatively small area of active channel that covers about 7.5% of the fan 

surface. This percentage is less than the 17% reported by Hereford et al. (1996) for 

Grand Canyon debris fans. Inactive fan surfaces have extensively varnished and 
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TABLE4 

Channel altering debris flow events in Desolation and Gray Canyons 

Date Location Event Source/evidence 

8/1987 Belknap Falls (48.6L) Debris flow event, created new rapid Rampton, 1992 
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Late Cedar Ridge Canyon Large channelized debris flow; Backed up Green Joan Bacon, river runner, pers. comm. 
1980's (65.SR) River, deposited bonders in channel 
8/1994 Moonwater Canyon Debris flow added boulders to channel large Brad Higdon, BLM ranger 

(42.9R) 
1994 Joe Hutch Canyon Debris flow added boulders to channel Paul Grams, photos 

(40.SR) 
1974 Wire Fence Canyon 1974 event altered rapid Joan Bacon, river runner pers. comm; 
8/1987 (37R) 8/87 Debris flow event backed up Green River, Brad Higdon, Dennis Willis, Mike Hart, 

flowed across fan (BLM); BLM photos 
1987 Three Fords Canyon Aerial photo evidence suggests an event Rampton, 1992; 

(36.SL) de�sited boulders in channel in fall 1987 ehotos 

weathered surface boulders, aeolian dunes, and dense pinyon-juniper forest communities 

(Figure 14a). These surfaces have abandoned channels and boulder levees. Active 

channels are typically incised into the fan surface, and all debris flows reported during 

the past 20 years have occurred in incised channels. Active incised channels expose fresh 

gravel, contain woody debris, and may have perennial vegetation within them (Figure 

14b). Inactive incised channels have gently sloping banks, varnished large boulders in 



Figure 14. A. View of fan at river mile 41. 6R. Debris fan is composed of a large extensive 
surface with pinyon-juniper forest and large extensive dunes cut by a central channel. B. Active 
channel at Joe Hutch Canyon (river mile 40.5R). This channel is entrenched below fan surface 
and experienced a large debris flow in 1994, and a flash flood event in 2000. C. View looking at 
deeply entrenched channel towards river from fan surface at debris fan located at Steer Ridge 
Rapid (river mile 56.5R). D. Small, fresh debris flow deposit in channel at Bull Canyon (river 
mile 44.2). This debris flow stopped just short of the Green River. 



the channel, and trees growing in the channel bed (Figure 14c). Several inset terrace 

levels occur adjacent to the active channel. 
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The extent of fan entrenchment on a single fan varies because the slope of the fan 

surface and its channel may differ. Debris fan surface slopes vary 0.025 to 0.344 m/m 

(Table 3). Fan slopes are usually steeper than channel slopes, but there are a few 

exceptions, particularly on smaller debris fans. Fan channel entrenchment ranges 

between 1.08 to 7.66 m below debris fan surfaces. Channels with entrenchments over 3 .. 5 

mare considered deeply entrenched (Figure 14c). 

There are a few unchannelized debris fans in the study area. They typically occur 

at the base of small tributary basins, less than 5 km2, and are thus scattered throughout the 

course of the Green River, because small basins occur throughout the study area. These 

fans have aggrading surfaces, because debris flows do not reach the Green River and 

their surfaces are typically steeper than incised fans. Slopes of unchannelized fans are 

often as steep as 0.344 m/m. Their surfaces are typically strewn with boulder levees and 

contain multiple shallow channels with ridge and swale topography 

Debris fans in Desolation and the lower 12 km of Gray Canyon are often very 

large and coalesce with fans from adjacent drainages, forming a bajada-like apron of 

alluvial sediment. These fans have multiple feeder channels, and often exhibit subtle 

differences in fan-slope towards their source drainages. In some cases large coalesced 

fans are difficult to correlate with source-basins. 



V. Relations between drainage basin and

debris fan characteristics

Debris fans in the 135-km study area display the wide variation of characteristics 

described above, including wide ranges in fan area and the degree of fan incision. Except 

for the occurrence of the two largest fans near river kilometer 65 and deeply entrenched 

fans between river kilometers 90 and 67, other characteristics are heterogeneously 

dispersed along the river. A wide range of fan characteristics are encountered as one 

travels downstream on the Green River. We sought to determine if this heterogeneous 

longitudinal distribution in the range of fan characteristics was due to inherent 

randomness in fan characteristics, or because of the heterogeneous spatial distribution of 

tributary catchments encountered by the river. Thus, we sought to identify whether 

specific attributes of tributary catchments give rise to specific attributes of debris fans. 

Larger fans typically occur at the base of intermediate and large drainage basins 

and where the alluvial valley is wide, although there is wide scatter in the relationships 

among these parameters. There is not a simple power function relationship between 

tributary basin area and fan area (Figure 15a; n=157, y=30243*x0
·
25

, R2=0.09) as has been 

found in fans that form in large structural basins (Bull, 1964, Leece, 1990, Blair and 

McPherson, 1994). In Desolation and Gray Canyons, large drainage basins usually 

produce large fans, and small fans are generally associated with smaller basins. Some of 

the scatter in this relationship may be a result of variations in valley width. Narrow 

valley settings limit debris fan size, for instance valleys under 250 m wide do not contain 

debris fans over 40,000 m2
• Large drainages in narrow valley settings do not form large 
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debris fans. Wide valley bottom widths allow for the formation of both large and small 

debris fans. 

Debris fans are typically larger where the width of the alluvial valley is greater 

(Figure 15b; n=157, y=0.27*x 2
·
04

, R2=0.25). Variability is probably due to several 

factors , including fan accommodation within tributary valleys and reworking of fan 

deposits. Weak fan area and valley width relationships have been reported for some 

groups of debris fans in the central Appalachians (Taylor, 1999). Taylor (1999) 

concluded that valley width does not necessarily dictate fan size but does affect the style 

and role of fan growth and preservation. Wider valleys allow inherent variation in 

sediment supply between drainage basins to exhibit a stronger control on fan size. Small 

valley widths limit fan size by restricting the amount of depositional space for fan 

formation . 

Variation in drainage basin, fan area, and valley width relationships could be 

additionally due to differences in fan geometry , tributary spacing, and fan erosion by the 

mainstem Green River . Lateral confinement occurs when tributary spacing is close and 

adjacent fans either coalesce or limit space for fan formation . The river's path within the 

mainstem valley is determined by of the occurrence of bedrock outcrops, tributary 

spacing, and debris fan size and geometry. Opposing tributaries entering from either 

side of the river can deflect the channel, eroding one fan more than another. 

Longitudinal variation in geologic and valley characteristics, fan characteristics, 

and the heterogeneous distribution of types of fan linkage and gravel bars led to the 

designation of nine distinct reaches to be discussed in detail in later in this paper. The 

reach-averaged relationship for debris fan size and valley-bottom width characteristics is 



47 
strong (Figure 16; n=9, R2=0.93, with a significant slope at a=0.05). Thus, the role of 

valley width as accommodation space available for fan formation is more clearly defined 

when the relationship is reach-averaged filtering out some of the inherent natural 

variability in fan area due to river reworking, coalesced fans, and interbasinal fans. 

VI. Relationship between debris fans 
and the Green River 

Although there is a general relationship between debris .fan occurrence and 

average gradient of the Green River (Figure 2), the control on channel form at a smaller 

scale is more complex . Thus , I characterized the relationship between each debris fan 

and local form of the Green River based on analysis of surficial geologic mapping. 

Some debris fans are tightly coupled with river process, resulting in a sequence of 

associated deposits; rapids and extensive gravel bars, while others exhibit very little 

interaction with the mainstem Green River. The degree of coupling, or linkage, was 

defined by the presence of incised channels, rapids, the extent of reworked gravel bar 

deposits, and the existence of fine-grained sediment deposited in zones recirculating flow 

(Figure 17). 

Debris fan channels act as conduits for sediment transfer from tributary 

catchments to the Green River. Aggrading debris fans lack channels and do not deliver 

coarse sediment to the mainstem river channel. Debris fans are linked to the river by 

these incised channels which range in entrenchment between 1.08 and 7.66 m below the 

main debris fan surface (Figure 18). Fans are most deeply entrenched between river 

kilometers 90 and 67; the reason for this spatial pattern was not investigated. 
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Entrenchedfans are most likely to transfer of debris flows from tributaries to the Green 

River rather than directly on debris fan surfaces . 

Debris fans that display a high degree of linkage with mainstem river processes 

have incised channels with rapids at their mouths, and often have extensive gravel bars, 

and sandbars deposited in zones of flow recirculation below rapids. Many debris fans the 

study reach fit the classic model of a fan-eddy complex as defined by Schmidt and Rubin 

(1995). These fans constrict the river and have upstream regions of ponded flow with 

fine-grained sediment deposition (Figure 17a). Large gravel bars are defined as those 

over 3000 m2 in plan view area. In many cases, modern eddy deposits are adjacent to 

higher fine-grained terraces deposited in recirculating flow at higher discharges. Rapids 

formed in fan-eddy complexes are usually fairly short in length and associated 

downstream zones of recirculation are large. Many fan channels show signs of fairly 

recent activity and have had historic debris flows. 

A second style of debris fan with a high degree of linkage with the Green River 

consists of a long reworked rapid and gravel bar with little or no recirculating flow 

(Figure 17b). These fans have extensive downstream gravel bar deposits (with areas 

greater than 3000 m2
, yet lack significant eddies. Zones of lateral waves often form 

downstream of rapids in place of recirculating eddies. Fine-grained sediment deposition 

may occur in the vicinity of these lateral waves. Although flow constriction occurs 

extensive gravel bar deposits allow no room for significant flow recirculation. In wide 

valley settings these fans are large; in very narrow valleys topography constrains fan 

form to boulder piles in the channel that create large and long rapids. Linked debris fans 

in Desolation Canyon are often very large with radii up to 0.5 km and may create 



significant meander bends on the Green River within the incised bedrock valley walls 

(Figure 17c). The river flows around these fans resulting in, small rapids, extensive 

gravel bars, and no room for eddy recirculation. A high proportion of the fan surface is 

often inactive cut by small incised channels. 
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Many fans in the study area exhibit little to no interaction with the river. Many 

debris fans with little linkage are aggrading and lack incised channels that convey debris 

flows to the river corridor (Figure 17e). These fans tend to be quite steep and bouldery. 

Where small fans occur in wide canyon settings they often are too small to interact with 

the main-stem river unless the river's course flows near the fan. In narrow valley 

settings, fans with little linkage often mildly constrict the river yet often have large 

downstream eddies. Channelized fans with little linkage are often isolated from 

mainstem processes by fine-grained terraces and channel margin deposits that separate 

the active channels of debris fans from the main-stem river (Figure 17d). There is often 

no change in mainstem slope as the river flows by isolated debris fans. Small riffles and 

coarse material are often exposed on the river bed near these fans at very low flows 

suggesting that at one time these fans may have been linked to the mainstem river. 

Debris fans also supply coarse sediment to the mainstem river though the process 

of lateral fan truncation by the Green River. This process is evident by the existence of 

both large cutbanks and fan-cut terraces. Highly eroded fans exhibit a reduction in fan 

symmetry. These fans have cutbanks up to 12 m high where the river has cut into the fan. 

Small riffles often extend the full length of the fan adjacent to cutbanks where coarse 

sediment is directly eroded into the Green River. The Trail Canyon and Bluebell Creek 

fans show signs of significant truncation by very large river flows in the past. This 



process appears to be prevalent where valleys are widest and there is more space for 

fan accommodation . 
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There is variation in where various types of fans occur longitudinally in the study 

area (Figure 19). Unlinked debris fans occur throughout Desolation and Gray Canyons. 

Linked debris fans, with the exception of three debris fans that lack extensive gravel bars 

do not occur above river kilometer 112 (river mile 70). Below this point, debris fans that 

deliver coarse material to the Green River occur in abundance . Large fans that create 

meander bends or are truncated by the river, (Figure 17c) occur in discrete reaches where 

the alluvial valley is its wide such as that occurring from river kilometers 56 to 96 (Figure 

9). 

Longitudinal variation in geologic and valley characteristics, fan characteristics , 

and the distribution of types of fan linkage and gravel bars led to the designation of nine 

distinct reaches to be discussed in detail in the next section. The average gradient of 

these reaches were used to further investigate the connection between mainstem slope 

and debris fan linkage. 

Mainstem reworking of debris fan sediment results in the formation of gravel bars 

and changes rapids and the river over time. The existence and relative abundance of 

gravel bars is a surrogate for degree of fan-river linkage through reworking. There are 

longitudinal patterns of gravel bar abundance in the study area (Figure 20). This suggests 

that either the frequency of debris fans, or the linkage between debris fans and the Green 

River is variable throughout the canyons . Of the 164 tributary drainages that form fans in 

the Green River Valley along the 135-km study area, 89 (42%) constrict the Green River, 

and 80 (50%) of the total fans are associated with rapids or riffles. 
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The gradient of the Green River is steepest in reaches where tributary debris fans 

deliver coarse debris (Figures 17, 19). However, the occurrence of tributary fans alone 

does not explain the gradient of the Green River in the study area. Debris fans that are 

not linked to river processes do not change the slope of the mainstem Green River. 

Although debris fans in narrow canyons have been shown to affect mainstem river slope, 

fan frequency alone does not account for the slope of the mainstem Green River (Figure 

21a). Tributaries that are coupled with main-stem processes often constrict the mainstem 

channel and have associated coarse reworked deposits (Figure 18). Most of the 

longitudinal drop of the river occurs either in rapids at debris fan mouths or through 

gravel bars. Therefore the reach-averaged total area of gravel bars and reworked rapid 

deposits offers the best explanation of the slope of the Green River through the study area 

(Figure 21b). 
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A classification of Desolation and Gray 
Canyons into geomorphically 
distinct reaches: 

57 

Orchard and Schmidt (1998) divided the Green River between Sand Wash and the 

town of Green River into three main geomorphic segments: Desolation Canyon, Gray 

Canyon, and a long flat gradient reach upstream from Desolation Canyon in the Uinta 

Basin. Each segment has similar river level geology and distinctive geomorphic 

attributes. We have further subdivided the designations of Orchard and Schmidt into 

distinct reaches based on river-level geology, valley width, debris-fan characteristics, and 

fan-channel linkage (Table 5). 

The upper reaches of Desolation Canyon flowing through the Green River 

Formation has the lowest gradient of 0.00018- 0.00024 m/m, a sand bed, no significant 

rapids, and few constricting debris fans (Figure 19). This segment of Desolation Canyon 

with its flat-gradient and sand-bed has more geomorphic similarity to the Uinta Basin 

upstream from Sand Wash than the steeper gravel-bedded canyon reaches downstream. 

The first reach from river kilometers 153.6- 128.2 (miles 96 to 80.1) has been named 

after the Uinta Basin, characterized by frequent tight bedrock meanders and open high 

terraces. Valley widths are moderate (Figure 9, Figure 22a), with fairly low debris fan 

areas (Figure 23b). Tributaries draining the low relief terrain adjacentt o the river form 

small fans on high terraces and do not interact with the Green River (Figure 2). A 

gradual lateral rock-type change occurs near river mile 80 and continues for many 

kilometers downstream, where the Green River Formation's shales begin to interfinger 

with sandy units of the Colton Formation. This change marks the beginning of the other 

low-gradient sub-reach, named for Peter's Point, a large 9.5-km incised bedrock meander 



TABLE 5 

Reaches in Desolation and Gray Canyons 

REACH 

Desolation 
Canyon 

RIVER 
MILE' 

RIVER 
KM' 

AVG. 
REACH AVG. VALLEY AVG % AREA % AREA 
LENGTH SLOPE' WIDTH3 FAN DEBRIS GRAVEL 
(KM) AREA3 FANS' BARS' 

Uinta Basin 96-80.1 153.6-128.2 25.4 0.00024 258 50,000 13.6 0.6 
Peter's Point 90.1-70.1 128-112.2 16.0 0.00018 337 56,000 12.7 0.0 
Cedar Ridge 70.1-59.5 112.2-95.2 17.0 0.00105 367 76,000 33.7 6.3 
Rock Creek 59.5-46.2 95.2-73.9 21.3 0.00229 318 80,000 36.0 12.2 
Joe Hutch 46.2-37.7 73.9-60.3 13.6 0.00223 521 134,000 40.6 9.1 

Roan Cliffs 37.7-35.8 60.3-57.3 3.0 0.00327 530 112,000 32.1 16.4 
Gray Canyon Upper Gray 35.8-28.6 57.3-45.8 11.5 0.00103 195 26,000 8.9 12.2 

Coal Creek 28.6-20.1 45.8-32.2 13.6 0.00167 146 11,000 12.0 15.7 
Lower Gray 20.1-11.6 32.2-18.6 13.6 0.00097 309 45,000 17.7 7.2 

average 135.0 0.00133 330 70,000 23.0 8.8 

%AREA %AREA 
SAND TERRACES' 
BARS' 

0.21 65.7 
0.04 30.6 
0.17 17.5 
0.57 45.0 
0.30 15.0 
0.28 23.0 
0.24 35.9 
1.17 22.5 
1.13 30.1 
0.46 31.7 

Vl 
00 
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bend. This reach extends 16.8-km, from river kilometers 128.2-112.2 (miles 80.1-

70.1), is low-gradient and sand-bedded, with the exception of two fan-eddy complexes 

where gravel locally underlies the channel at Rock House and Little Rock House 

canyons. With the exception of Tabyago Canyon, Rock House, and Little Rock House 

canyons debris fans in the sand-bedded Uinta Basin and Peter's Point reaches of 

Desolation Canyon do not interact with the Green River (Figure 19). These fans are 

deposited on high-terraces of the Green River and are not channelized to the river and 

often lack incised channels (Figure 23a). 
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Downstream from Jack Creek at river kilometer 112.2 (mile 70), the first gravel 

bars occur and Desolation Canyon has an order-of-magnitude considerably steeper 

gradient of 0.0010- 0.0023 m/m, a wider valley, frequent constricting tributary debris 

fans, and abundant coarse bed material (Figure 2). The Cedar Ridge sub-reach is 17.8-

km long, occurring over river kilometer 112.2-95 .2 (miles 70.1-59.5), has a slope of 

0.00105 m/m exhibits wider valley widths and larger debris fans than upstream reaches 

(Figure 22). The bedrock geology at river level and in the canyon walls still consist of 

interfingered Green River Formation and Colton Formation. Several large tributaries 

enter the river in the Cedar Ridge reach, including Jack Creek, Firewater Canyon and Flat 

Canyon. The Colton Formation is strongest and supports a narrower valley in the Rock 

Creek reach of Desolation Canyon through river kilometers 95.2 - 73.9 (miles 59.5

46.2) (Figure 23a). In this sub-reach frequent debris fans constrict the river and create 

rapids and downstream gravel bar constrictions (Figure 20). Downstream of Chandler 

Canyon the Colton Formation becomes increasingly more shale-rich, and valley widths 

reach the widest in the study region through river kilometers 73.9 - 60.3 (miles 46.2 -
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37.7) in the Joe Hutch reach (Figure 23a). With this available accommodation space, 

debris fans are often very large, with sizes up to 476,000 m2 and generally above 100,000 

m2 (Figure 23b). Truncated fans, large cutbanks, and fan-cut terraces also are abundant 

in the Joe Hutch reach (Figure 23). It is within the Rock Creek and Joe Hutch sub

reaches that most fan channels are deeply entrenched and fan surfaces to not grade to 

river level (Figure 15). In the wide valley of the Joe Hutch sub-reach it is common for 

the river to meander around very large debris fans, which are associated with either large 

reworked rapids, or little interaction (Figure 17 c ). 

In the Roan Cliffs region from river kilometers 60.3 - 57.3 (miles 37.7 - 35.8), the 

river's drop is the highest in the study area at 0.0024 meters per meter, and valley widths 

are wide (Figure 22). Tributaries drain high terrain of the Roan Cliffs, which occur here 

in close proximity to the river (Figure 2). At river-level, the Aagstaff Limestone and 

North Hom Formation conglomerate outcrop, and form a wide valley and low-elevation 

terrain, yet resistant bedrock outcrops occur near the river (Figure 23c) . Wire Fence 

Rapid, and Three Fords Rapid, catchment areas of 6.5 and 22.5 km2 respectively are two 

of the largest rapids in the region (Table 4). 

From the Roan Cliffs to Swazey's Rapid, the river's alluvial valley narrows in 

Gray Canyon. Gray Canyon was separated into three reaches also based on lithologic 

changes in the Cretaceous marine units. Gradients in Gray Canyon range between 

0.00097 to 0.00187 m/m, lower than the upstream reaches in Desolation Canyon, yet 

debris fans and coarse bed material are still abundant (Figures 19 and 20). The upper 

Gray Canyon reach, river kilometers 57.3 -45.8 (miles 35.8-28.6) has low topographic 

relief, and fairly narrow valley widths (Figure 22a). Debris fans are very small, with 
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areas below 36,000 m2

. Fans often constrict the river, but are not associated with 

major riffles or rapids. The gradient of the upper Gray Canyon reach is low at 0.00103 

m/m, gravel bars are less frequent, and debris fans in this reach exhibit little interaction 

with the river and are often isolated from the river by densely vegetated fine-grained 

terraces (Figure 17e). Coarse material enters the channel at Range Creek and Rabbit 

Valley, where there are large rapids and gravel bars that extend downstream. The valley 

narrows even further in the Coal Creek reach occurring between river kilometers 45.8 -

32.2 (miles 28.6-20.1) where steep cliffs of Farrer Sandstone outcrop at river level and 

side tributaries enter the canyon as pour-offs . Mainstem gradient is 0.00167 m/m and 

small debris fans with areas below 30,000 m2 frequently constrict the river causing large 

zones of recirculation and fine -grained sediment deposition (Figure 23d) . Gravel bars are 

also abundant. Two major tributaries, Coal Creek and Rattlesnake Creek create debris 

fans and rapids with abundant piles of coarse material obstructing the channel. Extensive 

fine-grained terraces occur below these tributaries at several levels. Fan-eddy complexes 

are common, and most debris fans interact with the Green River. Lower Gray Canyon 

begins as the Mancos shale appears at river level at the base of the Mesa Verde Group 

from river kilometers 32.2 - 18.6 (miles 20.1 - 11.6). This soft rock formation is 

associated with slightly lower main-stem slope of 0.00097, a wider canyon, and hillslopes 

are mantled with thick colluvium. Debris fans are larger than the uper reaches of Gray 

Canyon due to wider valley widths in lower Gray Canyon . 

The reach-averaged relationship for debris fan size and valley-bottom width 

characteristics is strong (Figure 24) . The role of valley width as accommodation space 

available for fan formation is more clearly defined when the relationship is reach-



averaged filtering out some of the inherent natural variability in fan area due to river 

reworking, coalesced fans, and interbasinal fans. 

Discussion and Conclusions 

Over the Green River's 135-km course through Desolation and Gray Canyons 

there is considerable variety in debris fan size, slope, and linkage with the mainstem 

river. Tributary catchment size does not explain variation in debris fan size. 

Longitudinal heterogeneity in bedrock geology creates a canyon with varying alluvial 

valley widths. Where weaker rocks outcrop, wide valleys occur. In these wide valley 

settings both large and small debris fans build at tributary mouths. The Green River 

meanders around large debris fans within the main canyon in wide valleys. Where 

stronger rocks outcrop, narrow valleys limit the accommodation space available for fan 

formation and only small fans form at tributary mouths. The river' course is constrained 

in bedrock meanders in narrower reaches and fans are more likely to be overtopped by 

Green River floods. 

Drainage basins that drain high relief terrain on the Tavaputs Plateau produce 

debris flows that reach the canyon to form debris fans. Debris-flow sediment supply, 

initiation, and event frequency and occurrence are important factors in maintaining 

linkage with the river not addressed by this study. The climatic and geologic factors 

influencing debris flow initiation, magnitude, and frequency in the Tavaputs Plateau 

region are not well understood. A more complete record of the debris flow histories of 

individual drainages would provide a more complete understanding of fan and river 

interaction. 
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The abundance of gravel bars is just one way to define debris fan and river 

linkage. Debris fan form and geometry has also been shown to constrict the river, and 

affect the locations and sizes of fine-grained sediment deposition (Schmidt and Graf, 

1990; Melis et al., 1995). The existence of zones of recirculation and therefore fine

grained sediment deposition vary with fan and reach geometry. Orchard and Schmidt 

(1998) found that zones of recirculation are associated with major constrictions. Very 

large fans, and fans with large and long rapids tend to have limited space for flow 

circulation and therefore opportunity for fine-grained sediment deposition. These fans 

tend to occur in but are not limited to wide valley settings. In reaches with wide valley 

widths, or in reaches with few constricting debris fans most fine-grained sediment is 

stored as channel margin deposits. In narrow valley settings most debris fans constrict 

the river channel and have large recirculating eddies. 
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The debris fans in Desolation and Gray Canyons display similar control on 

mainstem processes as seen in other narrow canyons on the Colorado Plateau (Schmidt 

and Rubin, 1995). Fan-eddy complexes consisting of the same sequences of deposits 

occur in on the Green and Colorado Rivers, in Grand Canyon, Lodore Canyon, Whirlpool 

Canyon, and Split Mountain Canyon (Schmidt and Rubin, 1995; Grams and Schmidt, 

1999). Many tributaries that terminate as fans in the mainstem valley in Grand Canyon 

and Lodore Canyon do not result in rapids, so a spectrum of fan-river linkage also exists 

in these canyons. Large and small debris fans as well as narrow and wide valley settings 

occur in all Colorado Plateau canyons. 

Truncation and reduction of fan symmetry on higher fan surfaces such as 

described by Hereford et al. (1996) in the Furnace Flats region of Grand Canyon is seen 
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in the widest reach of Desolation Canyon. This process appears to be prevalent in both 

canyons where valleys are widest and there is more space for fan accommodation. Fan 

deposits are likely to have a longer residence time in these wider reaches, and older 

deposits are preserved. Only very large river floods significantly rework debris fans 

(Kieffer, 1985). In narrower canyon reaches, a rise in discharge represents a much larger 

rise in stage than in wider reaches, and reworking of entire fans is more likely to occur on 

smaller fans in narrow-valley settings. 

Hillslope-channel linkages occur at many different scales. In this study, hillslope-

scale debris flow processes control the gradient and organization of coarse and fine-

grained sediment on a large river. The Green River's rapids and eddies are a product of 

tributary drainage -basin scale processes, driven by slope, sediment supply, and regional 

climate patterns. 

Debris fans control the organization of deposits on the main-stem Green River 

channel. Bedrock geology and drainage basin characteristics directly and indirectly 

influence debris fan form through sediment delivery and depositional site variation 

leading to geomorphically distinct reaches and sub-reaches within the canyons. Debris 

fan size is controlled by the amount of space available in the valley bottom where a 

tributary meets the Green River. Debris fans create a steeper mainstem gradient where 

coarse material is delivered to the river channel and debris fans are linked to river 

processes. 
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CHAPfER III 

RELATIONS BETWEEN TRIBUTARY CATCHMENTS, 

VALLEY-BOTTOM WIDTH, DEBRIS-FAN AREA,AND 

MAINSTEM GRADIENT ON THE COLORADO PLATEAU 

ABSTRACT 
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The mainstem rivers of the Colorado Plateau cross structural barriers leading to 

the incision of deep canyons surrounded by steep terrain. In tributary catchments where 

sufficient sediment supply and a means of saturation exist, debris flows occur. These 

debris flows deliver slurries of sediment including coarse boulders that aggrade in the 

narrow canyons of the Green and Colorado Rivers to produce debris fans. Debris fan size 

is dependant on the accommodation space available in the mainstem valley. This is 

contrary to relationships developed for alluvial and debris fans deposited in 

unconstrained valleys where drainage basin area is directly related to fan size. Valley

bottom width varies with lithologic changes in the layer-cake stratigraphy of the 

Colorado Plateau giving rise to geomorphically distinct reaches with characteristic valley 

widths and debris fan sizes. The mainstem gradient is steepest where more debris fans 

occur, not where debris fans are the largest. 



73 

INTRODUCTION 

On the Colorado and Green Rivers of the Colorado Plateau , longitudinal variation 

in river gradient, bed sediment size, and geomorphic organization are ultimately 

determined by: 1) lithologic characteristics of bedrock geology; and 2) lithologic, 

physiographic, and climate characteristics in tributary catchments that control sediment 

transport from tributaries to the main channel (Howard and Dolan, 1981; Webb et al., 

1988). Steep, coarse-bedded reaches with frequent rapids occur in narrow canyons where 

debris flows deliver coarse sediment to the main valley thereby creating fan-eddy 

complexes (Howard and Dolan, 1981; Schmidt and Rubin, 1995; Grams and Schmidt, 

1999). Variability in valley width and physical and climatic characteristics of tributaries 

leads to a wide variety in fan size between and within the narrow canyons of the region. 

Although several studies have described debris flow processes and resultant 

landforms in Grand Canyon (Webb et al. , 1989; Hereford et al., 1996; Melis, 1997), such 

studies have not been integrated with similar observations elsewhere so that a regional 

perspective can be provided about controls on debris fan form and river slope. The 

purpose of this paper is to provide and summarize available data describing tributary 

catchement characteristics, mainstem valley width, debris fan area, and reach-averaged 

gradients for most of the debris-fan affected segments of the Green and Colorado Rivers 

in Utah, Colorado, and Arizona. 
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GEOLOGIC SEfTING AND BACKGROUND 

Debris-fans occur in narrow canyons on the Colorado and Green Rivers of the 

Colorado Plateau where debris flows occur in tributary basins (Figure 24). These rivers 

have incised narrow canyons in the eastern Uinta Mountains, the Tavaputs Plateau, and 

the Grand Canyon creating regions of high relief with steep terrain adjacent to the trunk 

stream valleys. Hillslopes are linked to the main Colorado River system in these canyon 

regions through debris-flow processes which deliver coarse material to the mainstem 

rivers. Debris flows aggrade in the river valley and create debris fans in eastern Uinta 

Mountains in Red , Lodore , Whirlpool , and Split Mountain canyons over a total of 80 

river kilometers (Grams and Schmidt, 1999, 2002) . Downstream on the Green River , 

debris flows from tributaries draining the Tavaputs Plateau aggrade as debris fans over a 

distance of 135 kilometers through Desolation and Gray Canyons in east-Central Utah. 

On the Colorado River in northern Arizona , debris fans occur in 445-km long reach of 

Marble and Grand Canyons (Webb et al., 1988) as well as in the 25 km of Glen Canyon 

immediately downstream of Glen Canyon Dam (Grams et al., 2002) . 

These rivers flow through gently dipping Precambrian to Cenozoic rocks of the 

Colorado Plateau (Hunt, 1%9). Where the river crosses structural uplifts, it flows in 

steep-sided valleys with as much as 1500 m relief between the river corridor and tributary 

drainage basin headwaters. Varying resistances in lithologies has led to variation in 

valley width in river reaches (Harden, 1990; Grams and Schmidt, 1999; Roberson and 

Pederson, 2001). Less erodible rocks such as well-cemented sandstones, quartzites , 
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granites, and schists tend to form narrow steep-walled canyons, whereas softer rock 

types such as shales and conglomerates are associated with wider, open valleys , and more 

gently sloping valley walls (Harden, 1990). 

Powell (1875) remarked on the conespondence of rapids to tributary mouths in 

the Grand Canyon . Subsequent researchers have described the rapids through which 

most of the vertical drop occurs on the Colorado River in Grand Canyon (Leopold, 1%9; 

Webb et al., 1988) and the Green River (Graf, 1979; Schmidt and Rubin , 1995; Grams 

and Schmidt, 1999). Cooley et al.(1977) was the first to recognize debris flows as the 

sediment delivery process responsible for boulder transport, debris fan aggradation, river 

constriction and the formation of rapids in the Grand Canyon. Howard and Dolan (1981) 

documented debris-fan aggradation in the Grand Canyon . Webb et al. (1988) determined 

that debris flow processes are responsible for the formation of all major rapids on the 

Colorado River in Grand Canyon. Initiation processes have been investigated in Grand 

Canyon and include bedrock failures, colluvial failures, the "firehose effect" where a 

stream of water pours off a cliff and mobilizes debris (Johnson and Rodine, 1981), and a 

combination of these processes (Griffiths et al., 1996). 

Webb et al. (1988), and Howard and Dolan (1981) determined that the spacing of 

most of the rapids on the Colorado River in Grand Canyon corresponds with tributary 

location, and rapids appear to be maintained by episodic debris flows. Grams and 

Schmidt ( 1999) determined this to be true in the canyons of the Eastern Uinta Mountains 

as well. Grams and Schmidt (1999) also argued that bedrock geology both in the 

lithology exposed at river level and in tributary basins strongly influences the 

longitudinal profile, cross-section geometry, and patterns of sediment deposition on the 



Green River. Resistant boulders that remain in rapids are one way that bedrock 

lithology indirectly influences river form (Grams and Schmidt, 1999). In both Grand 

Canyon and Lodore Canyon, tributary junctions are aligned with regional geologic 

structures and faults (Howard and Dolan, 1981; Grams and Schmidt, 1999). 

METHODS 
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Tributary catchment area, mainstem valley width, mainstem channel width, and 

debris-fan area measurements were assembled from the literature and from measurements 

made in the study areas (Table 1). Reach averaged values for debris fan area, valley 

width, and river gradient for Red Canyon, Browns Park, Whirlpool and Split Mountain 

Canyons and Glen Canyon are from Grams and Schmidt (1999), Grams et al. (2002a), 

and Grams et al. (2002b). The data for debris-fan area, drainage-basin area, and valley 

width for each debris fan in Lodore Canyon is from Martin (2000). For Desolation and 

Gray Canyons, tributary drainage area was determined by analyzing 10-m digital 

elevation models. A map database of the surficial deposits within the Green River's 

valley was created in Arclnfo using field maps and air photos. Field data, including field 

verification of surficial geologic maps, was collected on river expeditions. Various 

metrics such as plan-view fan area, valley width, and channel width were measured for 

every fan from this database. Drainage-basin areas and debris fan areas were complied 

for selected debris fans in Grand Canyon (Melis, 1997; Melis pers. comm., 2002), and 

GIS Databases of mapping within reaches in Grand Canyon (Schmidt et al., 1999b; and 

Schmidt et al., 2002). Valley width data for debris-fan sites and reaches in Grand 

Canyon were collected using digital orthophoto quadrangle maps, GIS maps, and 



TABLE I. REACHES OF THE GREEN AND COLORADO RIVERS WITH DEBRIS FANS 

River/ Canyon/ Reach 

Green River 
Red Canyon 
Red.Canyon I 
Upper Brown, Park 
Debri1 Fanree:ch 
Swallow Canyon 
Lo"er Brown, Park 
Lower Browns Perl:. n 
E .. tern Ubita Mtn.1 
Lodore Canyon 
Echo Park 
Whirlpool Canyon 
Island Park: 
Split Mountain Canyon 
Uinta Buln Canyon, 
UintaBuinA 
UintaBuinB 
Dc10latiot1 Cmnyon 
Desolation A 
DctolationB 
Desolation C 
Roan Cllff1 
Gray Canyon 
Gray Canyon A 
Gray Canyon B 
Oray Canyon C 
Colorado RJver 
Grand Canyon 

River Mile' 

290-283.5 

278.9-273.0 
265-263.5 

258.5-243.3 

243.3-225 
225-223 
223-214.2 
214.2-207 
207-199.5 

96.0-80.1 
80.1-70.1 

10.1-59.5 

59.5-46.2 
46.2-37.7 
37.7-35.8 

35.8-28.6 
28.6-20.1 
20.1-11.6 

Reach 
length 
(km) 

10.5 

9.3 
3.8 

25.0 

28.5 
3.2 
14.2 
11.6 
12.1 

26.7 
16.8 

17.8 
22.3 
14.3 
3.2 

12.1 
14.3 
14.3 

Average 
gradient' 

0.0021 

O.OOll 
0.0005 

0.0003 

0.0029 
0.0006 
0.0023 
0.0007 
0.0037 

0.0002 
0.00019 

0.00105 
0.00231 
0.00218 
0.00167 

0.0009l 
0.00163 
0.00109 

River level 
geology' 

pCu 

PCu; Top 
pCu 

Top 

pCu 
Paleo. 
Paleo. 

Me10. 
Paleo. 

Tg 
Tg 

Tg;Tc 
Tg; Tc 

r, 

TKfn 

Km, 
Km, 
Km 

Valley width 
(m)' 

49 

118 
56 

906 

95 

335 
79 
407 
92 

250 
32l 

350 
305 
500 
l!O 

185 
140 
295 

Channel 
widtb(m)' 

48 

6l 
l3 

141 

60 
201 
63 
1l8 
68 

140 
130 

110 
85 
100 
160 

90 
15 

105 

# of 
Debris 
fans' 

31 

RI 
1 
.<3 
5 
l5 

;4 
13 

30 
31 
19 
6 

10 
18 
19 

Debris 
fans/km1 

1.7 

0.4 
0.8 

0.1 

2.8 
0.3 
3.7 
0.4 
2.9 

0.2 
0.1 

0.8 
0.9 
1.0 
2.0 

0.4 
I.I 
0 8  

Average 
Debri1 Fan 
area (m2)1 

6500 

7700 
1800 

2300 

9000 
5600 
4800 
2700 
8000 

50000 
55000 

80000 
80000 
135000 
115000 

11000 
17200 
53000 

Pennian Section 0-11.3 18.08 0.00099 Pk; Ptw; Pc; Ph 200 100 i5 0.88 11000 
Supe.i Gorge 11.3-22.5 17.76 0.00140 P• 150 80 26 l.46 6000 
R.odwall Gorge 22.5-3!1.9 2 l.28 0.0CH-'O Mt I IO 80 42 1.64 6000 
Lo\VerMarble Canyon 3.S.9-61.!l 40.8 0.00100 Cm;Cb;Ct 150 130 59 1.!19 19000 
Furnace Flats 61.5-77.4 2!1.28 0.00210 Ct; pCu 230 130 49 1.938 18000 
Upper<mnitcOorge 77.4-117.8 64.48 0.00230 pCu;pCz 80 70 100 1.!135 4000 
Ai,!., 117.8·12l.l 12.16 0.00170 C1; pCv 110 105 24 1.97 11000 
Middle Onmitc Oorge 12!1.!l-139.9 22.88 0.00200 Ct; pCu; pCv 90 80 47 2.0!l 5000 

MuavOorge 140-159.9 31.84 0.00120 Cm 70 60 24 0.879 3000 
Lower Canyon 160-213.J 86.08 0.00130 Cm;Cb 130 120 113 1.3 18000 
LowerOranitcOorge 213.9-225 19.04 0.00160 PCv 90 105 30 1.62 13000 
1River miles measured in Miles up,treun from the railroad bridge in Green River, ur on the Green River, and miles downstream from Olen Canyon Dem oo the Colorado River; 2 Green and Colon.do Rh·er gradient data from 1922-1923 USOS 
1wvey e,cped.ition; 10eologic Fonnations: pCu-Preca.mbria.n Uinta Mtn Quartzite, Tbp-Tertiary Browns Park Formation; Paleo· Paleozoic 1edimtntaty units; Tg-Tertwy Green River Fm Shales and sandstone,; Tc- Tertiary Colton Fm aandstones; 
TKfn· Tcrtiarty and Cretaceous Flag1taff Limo1toru, and North Hom Formation Conglomerate; JC.ma. Creataoeous Mesa Verde Fm interbedded se.odstones and shale Wlits ; Km- Cretaceow Manco• Shale; Pk- Pennian Kaibab limestone; Ptw· 
Pennian Toroweap Sandstone; Pc- Permian Coconino 940d.,tono; Ph- Permian Hennit shale; Pt- Premia.n Supe.i Oroup sandstones; Mr-Mesozoic Redwall Limesone; Cm- Cambrian Muav Limestone; Cb- Cambrian Bright Angel Shale; 
Ct- Cambrian Tapeatl Sandstono; pCu- Precambrian Unlcar Oroup nndstones; pCv- Precambrian Vishnu Schist; e· Precambrian ZorasterOra.nitc;' Valley width data for Red Canyon/Brown, Park: Gtams et al., 2002; 

�:ti�: C:o!��=�=dtc::���� = "r:"on: this study; Channel width data: Red Canyonffirowns Park: Grams et al., 2002; Lodore Canyon: Grams and Schmidt, 1999; 

frequency and area, from: Grams et al., 20002, Martin, 2000, and Melis, unpublishod data. 

--.) 
00 
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topographic maps. River-gradient data for the Green and Colorado Rivers is from the 

U. S. Geological Survey water surface elevation survey conducted on a river expedition 

in 1922-23 (USGS, 1923, 1924). 

RESULTS 

Tributary catchments that contribute sediment to debris fans in Lodore Canyon, 

Desolation and Gray Canyons, and Grand Canyon have areas ranging between 0.1 and 

934 km2
• Tributaries to these canyons have comparably sized catchment areas. The 

spatial arrangement of drainages with respect to the longitudinal profile of the master 

stream is random in Lodore, Desolation , Gray, and Grand canyons (see Chapter II of this 

report for details on Desolation and Gray Canyons) . 

Valley-bottom widths at debris-fan locations in the canyons of the Colorado and 

Green Rivers range between 70 - 760 m. Average valley-width is 150 m in Lodore 

Canyon, 130 m in Grand Canyon, and 350 m in Desolation and Gray Canyons . Valley

bottoms are therefore, on average over twice as wide in Desolation and Gray Canyons 

than other Colorado Plateau Canyons (Figure 25a). 

Debris fans range in size from 300 to 450,000 m2 on the Colorado and Green 

Rivers. The average debris fan has an area of 17 ,000 m2 in Lodore Canyon, 70,000 m2 in 

Desolation and Gray Canyons, and 15,000 m2 in Grand Canyon. Reach averaged debris 

fan areas for debris-fan affected reaches range between 4000 m2 and 135,000 m2
• Debris 

fans on the Green River in Desolation and Gray Canyons are on average 7 times larger in 

plan-view area than the average fan sizes in the canyons of the eastern Uinta Mountains 

and in Grand Canyon (Figure 25b ). 
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Catchment area does not predict debris fan area in Colorado Plateau canyons 

(Figure 26a). This is contrary to allometric relationships for alluvial fans developed in 

the Basin and Range and Central Valley provinces of the United States (Bull, 1968; 

Hooke, 1967; Leece, 1990), and later applied to alluvial and debris fan settings in a wide 

variety topographic and climatic settings (e.g., Kostaschuk et aL, 1986; Kochel, 1990; 

Mills, 2000). 

Instead, valley bottom width predicts debris fan area based on a power function in 

the canyons of the Colorado Plateau (Figure 26b ). Accommodation space in the valley 

of the master stream provides space for debris-fan aggradation. Fundamental differences 

in rock strength, as well as the locations of faults and fractures allow for variation in 

valley width. Fans are larger in part because average valley width is wider in Desolation 

and Gray Canyons than the other canyon reaches. There is simply more space in the 

main-stem valley for debris-fan deposits. 

Main-stem river slope is steeper in debris fan affected reaches than in neighboring 

canyon and alluvial reaches on the Colorado Plateau (Schmidt and Rubin, 1995; Grams 

and Schmidt, 1999). However, the steepest reaches do not occur where fans are largest 

(Figure 27a). The steepest reach gradients occur in Ladore Canyon and Grand Canyon, 

not Desolation Canyon (Figure 27b ). Debris-fan frequency, as argued by previous 

researchers, influences main-stem slope more than debris fan size (Grams and Schmidt, 

1999). 
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Figure 26. A) Relationship between debris-fan area and drainage-basin area for fans in 

Lodore Canyon, Desolation and Gray Canyons, and Grand Canyon. B) Relationship 

between debris-fan area and valley-bottom width in Lodore Canyon, Desolation and 

Gray Canyons, and Grand Canyon. 
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Figure 27. A) Correlation between reach-averaged debris-fan area 

and mainstem river slope for Colorado Plateau reaches in narrow 

canyons listed in Table 1. B) Relationship between reach-averaged 

mainstem river slope and debris-fan frequency for Colorado Plateau 

reaches in narrow canyons listed in Table 1. 
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DISCUSSION AND CONCLUSIONS 

Debris-flow event frequency and magnitude, while not addressed in this study, 

may play important roles in determining mainstem slope. Climate variation between the 

northern and southern Colorado Plateau may be related to differences in debris flow 

activity within the region . Debris-flow generating storms in Grand Canyon have been 

both localized and regional including summer monsoon thunderstorms, dissipating 

tropical cyclones, and winter frontal storms (Melis et aL, 1995). The role of the summer 

monsoon decreases as one moves northward on the Colorado Plateau . Martin (2000) 

suggested that fire cycles may play a greater role in determining debris flow frequency on 

the more densely forested northern edge of the region in the Uinta Mountains. It is lildey 

also , that the varying lithologies in catchments affects debris flow magnitude and 

frequecy, and therefore debris fan size. 

Desolation and Gray Canyons have the largest debris fan areas and widest valley 

widths on the Colorado Plateau. Allometric fan-basin relationships deveoloped for 

alluvial and debris fans in unconstrained valleys do not apply to narrow canyons. 

Instead, debris fan size is controlled by valley the accomodation space avalible for fan 

formation in valley bottoms . Bedrock valley width is determined by the lithology and 

structure of geologic units. Ultimately, tributary spacing is also dependant on canyon 

lithology and structure, therefore mainstem slope is most directly related to the geologic 

setting of the canyon, both in determining fan spacing, valley width, whether debris flows 

occur, and the sizes and lithologies of boulders that end up in the river channel. 
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CHAPTER IV 

CONCLUSION 
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Debris flow processes and debris fans are not unique attributes of streams of the 

Colorado Plateau. They occur in a wide variety of climatic settings and regions 

throughout the world. However, debris fans that form in narrow gorges with 

considerable trunk streams are unique attributes of the Colorado and Green Rivers. 

These debris fans are limited in size by the alluvial valley width of their depositional site. 

Characteristic alluvial valley widths of the Colorado and Green Rivers are created by 

differential erosion of the geologic units that outcrop on the Colorado Plateau. 

The secondary process of debris fan re-working by the Colorado and Green 

Rivers is important as it shapes both debris fan and river form. In most settings the 

Colorado and Green Rivers do not flow on bedrock, but through alluvium and tributary 

debris fan deposits that have filled these canyons. In narrow canyon settings where 

resistant lithologies outcrop the alluvial valley is hardly wider than a channel width, 

debris fans often occur as boulder piles in the channel significantly constricting the 

channel creating large rapids that are substantial obstacles to navigation. In wide valley 

settings where less resistant rock units outcrop debris fans can reach considerable sizes, 

yet may mildly constrict the river which meanders around debris fans much like an 

alluvial stream meanders through a wide floodplain. Large debris fans in wide valley 

settings typically support smaller rapids yet frequent gravel bars. 
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In contrast to debris fans formed in unconstrained structural valleys, or debris 

fans formed in narrow valleys with minor trunk streams, the sizes of debris fans in 

narrow canyons are controlled by both the size of the alluvial valley at a depositional site, 

and the degree to which the mainstem river reworks the debris fan. Therefore, drainage 

basin size does not play a major role in determining debris fan size for debris-fan affected 

canyons on the Colorado Plateau. Bedrock valley width is determined by the lithology 

and structure of geologic units and ultimately, tributary spacing is also dependant on 

canyon lithology and structure, therefore mainstem river slope is most directly related to 

the geologic setting of the canyon, both in determining fan spacing, valley width, whether 

debris flows occur, and the sizes and Jithologies of boulders that end up in the river 

channel. Thus , the unique geologic history and varied lithologies of the Colorado Plateau, 

as well as the hydrology of the Colorado and Green Rivers and their tributaries shape the 

landscape to create the unique landforms of the region. 
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APPENDIX A. List of Geomor�hicallr Significant Tributaries 
River River side Tributary Name Rapid Name USGS Topographic 
mile km And Rating Quadrangle 

(Belknae, 1992) 

96 154.5 R Sand Wash Ouches Hole 

94.3 151.8 R Ouches Hole 

93.7 150.8 R 9 -Mile Canyon Ouches Hole 

92.2 148.4 L Ouches Hole 

90 144.8 L Ouches Hole 

88 141.6 R Ouches Hole 

87.5 140.8 L Ouches Hole 

87 140.0 L Ouches Hole 

86.8 139.7 L Tahyago Canyon Tabaygo Riffle Ouches Hole 

86.7 139.5 L Ouches Hole 

84.7 136.3 R Ouches Hole 

84 135.2 R Maverick Bottom Ouches Hole 

83.l 133.7 R Ouches Hole 

82.8 133.3 R Ouches Hole 

81.5 131.2 L Gold Hole- Rincon Ouches Hole 
Ouches Hole/Firewater Cyn 

81.4 131.0 L Gold Hole- Rincon N 
Ouches Hole/Firewater Cyn 

80.9 130.2 R N 

� 128.7 R Rock House Canyon Rock House Rapids (I) Firewater Canyon North 

79 127.1 L Little Rock House Canyon Little Rock House Rapids (I) Firewater Qmyon North 

77.7 125.0 L Firewater Canyon North 

77.3 124.4 L Firewater Canyon North 

75.3 121.2 R Firewater Cany�,n North 

74.4 119.7 R Firewater Canyon North 

74 119.l R Firewater Canyon North 

73.9 118.9 R-A Fuewater Canyon North 

73.9 118.9 R-B Firewater Canyon North 

71.4 114.9 L Firewater Canyon North 

71.1 114.4 L Fuewater Canyon North 

70.7 113.8 L Fuewater Canyon North 

69.8 112.3 R Jack Creek Jack Creek Rapids (3) Fuewater Canyon North 

68.8 110.7 R Lunt's Horse Pasture Cedar Ridge Canyon 

68.7 110.6 R Lunt's Horse Pasture Cedar Ridge Canyon 

68.4 110.1 R Lunt's Horse Pasture Cedar Ridge/Fuewater Cyn N 

68.3 109.9 R Lunt's Horse Pasture Firewater Canyon North 

67.5 108.6 R Firewater Canyon North 

67.5 108.6 L Firewater Canyon North 

67 107.8 L Big Canyon Big Canyon Rapids (2) Firewater Canyon North 

66.5 107.0 L Fuewater Canyon North 

66.3 106.7 R Firewater Canyon North 

66.1 106.4 L Firewater Canyon North 

66 106.2 L Upper Firewater Canyon Firewater Canyon North 

65.8 105.9 L Firewater Canyon Firewater Rapids (2) Firewater Canyon North 

65.5 105.4 R Cedar Ridge Canyon Cedar Ridge Rapids (2) Firewater Canyon North 

65 104.6 L riffle (1) Firewater Canyon North 
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River River side Tributary Name Rapid Name USGS Topographic 
mile km And Rating Quadrangle 

(Belkna�, 1992) 

64.8 104.3 L Firewater Canyon Nonh 

63.9 102.8 R Cedar Ridge Canyon 

63.6 102.4 R Cedar Ridge Canyon 

63 101.4 R Flat Canyon Flat Canyon Rapids (2) Cedar Ridge Canyon 

62.2 100.1 L Cedar Ridge Canyon 

62.1 99.9 L Cedar Ridge Canyon 

62 99.8 L Dripping Springs riffle (2) Firewater Canyon Nonh 

61.9 99.6 L Firewater Canyon Nonh 

61 98.2 R Steer Ridge 

60.8 97.8 L Steer Ridge 

60.4 97.2 L Steer Ridge 

60.2 96.9 L Steer Ridge 

60.2 96.9 R riffle (2) Steer Ridge 

60 96.6 L Steer Ridge 

60 96.6 R riffle (2) Steer Ridge 

59.4 95.6 R Fretwater Fretwater Falls (3) Steer Ridge 

58.8 94.6 R Steer Ridge 

58.4 94.0 L Wild Horse Canyon Wild Horse Rapids (I) Steer Ridge 

57.9 93.2 L riffle Steer Ridge 

57.6 92.7 L Steer Ridge 

57.5 92.5 L riffle (3) Steer Ridge 

57.3 92.2 R riffle (3) Steer Ridge 

56.8 91.4 L Steer Ridge 

56.5 90.9 R Steer Ridge Rapids (5) Steer Ridge 

56.4 90.8 R Steer Ridge Canyon Steer Ridge 

55.9 90.0 R riffle (2) Steer Ridge 

55.8 89.8 R Surprise Canyon Surprise Rapid ( 4) Steer Ridge 

55.4 89.2 L Steer Ridge 

55.1 88.7 L Steer Ridge 

54.9 88.4 L Steer Ridge 

54.7 88.0 L Log Cabin Log Cabin Rapids (3) Steer Ridge 

54.3 87.4 L small rapid (3) Steer Ridge 

54.2 87.2 L Steer Ridge 

54 86.9 R Rock Creek Rock Creek Rapids (2) Steer Ridge 

52.9 85.1 R Steer Ridge 

52.7 84.8 R riffle (1) Steer Ridge 

52.4 84.3 R Calf Canyon Calf Canyon Rapids (2) Steer Ridge 

51.3 82.6 R Snap Canyon riffle (3) Steer Ridge 

51 82.1 L Snap Canyon Rapids (4) Steer Ridge 

50.8 81.8 L riffle (2) Steer Ridge 

49.8 80.I R Three Canyon Rincon riffle (1) Steer Ridge/Chandler Falls 

49.7 80.0 R Three Canyon Rincon Chandler Falls 

49 78.9 L small rapid (2) Chandler Falls 

48.6 78.2 L Belknap Belknap Falls (5) Chandler Falls 

48 77.2 R Lion Hollow riffle (1) Chandler Falls 

47.5 76.4 L Chandler Falls 

47.2 76.0 R riffle (I) Chandler Falls 
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River River side Tributary Name Rapid Name USGS Topographic 
mile km And Rating Quadrangle 

(Belkna�, 1992) 

47 75.6 L Chandler Canyon Chandler Falls (3) Chandler Falls 

46.1 74.2 R riffle Chandler Falls 

45.9 73.9 R Trail Canyon Trail Canyon Rapids (3) Chandler Falls 

45.8 73.7 L riffle Chandler Falls 

45.7 73.5 L riffle Chandler Falls 

45.5 73.2 L Bluebell Creek riffle Chandler Falls 

44.2 71.l R Bull Canyon Bull Canyon Rapids (2) Chandier Falls 

44.1 71.0 L riffle Chandler Falls 

43.3 69.7 R very small riffle Chandler Falls 

43 69.2 L riffle Chandler Falls 

42.9 69.0 R Moonwater Canyon Moonwater Rapids (3) Chandler Falls 

42.6 68.6 R Big Canyon Red Point Rapids (3) Chandler Falls 

42.2 67.9 L riffle Chandler Falls 

41.5 66.8 L Joe Hutch Creek Joe Hutch Creek Rapid (4) Chandler Falls 

40.9 65.8 R riffle Chandler Falls 

40.5 65.2 R Joe Hutch Canyon Joe Hutch Canyon Rapid (4) Chandler Falls 

39.9 64.2 L riffle (2) Chandler Falls 

39.6 63.7 L riffle (2) Chandler Falls 

38.9 62.6 R Rain Canyon riffle Chandler Falls 

38.7 62.3 L Florence Creek riffle (2) Three Fords Canyon 

38 61.2 L Three Fords Canyon 

37.3 60.0 L Three Fords Canyon 

37 59.5 R Wire Fence Canyon Wire Fence Rapid(4) Three Fords Canyon 

36.5 58.7 L Three Fords Canyon Three Fords Rapid ( 6) Three Fords Canyon 

35.2 56.6 R Three Fords Canyon-R riffle Three Fords Canyon 

35.2 56.6 L riffle Three Fords Canyon 

34.4 55.4 L Three Fords Canyon 

34.2 55.0 L Three Fords Canyon 

33.4 53.8 R Three Fords Canyon 

32.5 52.3 R Last Chance Canyon Three Fords Canyon 

323 52.0 L Spring Wash Canyon Last Chance Rapid (l ) Three Fords Canyon 

31.5 50.7 R Range Creek Range Creek Rapids (3) Three Fords Canyon 

30.9 49.7 L Three Fords Canyon 

29.5 47.5 L Beaver Slide Bottom Three Fords Canyon 

28.9 46.5 R Rabbit Valley Rabbit Valley Rapids (3) Three Fords Canyon 

28.7 46.2 L Three Fords Canyon 

28.3 45.5 R Curry Canyon riffle (1) Three Fords Canyon 

28 45.1 R Curry Rapids (I) Three Fords Canyon 

27.8 44.7 R Three Fords Canyon 

27.2 43.8 L Three Fords Canyon 

26.8 43.l L Saleratus Canyon Saleratus Rapids (I) Three Fords Canyon 

26.8 43.1 R Saleratus Rapids Three Fords Canyon 

263 42.3 R Three Fords Canyon 

26.2 42.2 R Coal Creek Rapid Three Fords Canyon 

26.2 42.2 L Coal Creek Coal Creek Rapid (6) Three Fords Canyon 
25.6 41.2 R Butler Canyon 

253 40.7 L Poverty Canyon Poverty Rapid (I) Butler Canyon 
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River River side Tributary Name Rapid Name USGS Topographic 
mile km And Rating Quadrangle 

(Betknae, 1992) 

23.1 37.2 R riffle Butler Canyon 

23 37.0 R Butler Canyon 

22.9 36.9 R Butler Canyon 

22.3 35.9 R School Section Canyon Butler Canyon 

22.2 35.7 L Rattlesnake Canyon Rattlesnake Rapids ( 4) Butler Canyon 

21 33.8 R Butler Canyon 

21 33.8 L riffle (1) Butler Canyon 

20.l 32.3 L Nefertiti Canyon Nefertiti Rapids (2) Butler Canyon 

19.3 31.1 R Butler Canyon 

19.1 30.7 R Butler Canyon 

18.2 29.3 R Priee River Butler Canyon 

17.1 27.5 L Riffle (1) Butler Canyon 

17 27.4 L Butler Canyon 

16.8 27.0 R Butler Canyon 

16.5 26.6 R Butler Canyon 

16.3 26.2 R Butler Canyon 

16.I 25.9 R Butler Rapids Butler Canyon 

16.l 25.9 L Butler Canyon Butler Rapids (2) Butler Canyon 

15.2 24.5 R Sand Knolls Canyon Sarni Knolls Rapids (3) Tusher Canyon 

14.8 23.8 L Tusber Canyon 

14.3 23.0 L Stone House Stone Cabin Rapids ( 4) Tusher Canyon 

14 22.5 L Tusher Canyon 

13.l 21.1 R Short Canyon Short Canyon Rapids (3) Tusber Canyon 

12.8 20.5 R Tusber Canyon 

12.3 19.7 R Long Canyon Swasey's Rapid (2) Tusber Canyon 

12.3 19.7 L Swasey's Swasey's Rapid (2) Tusber Canyon 
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APPENDIX B. Drainage-basin Characteristics 
River River side Tributary name Drainage Basin Basin Basin Trib. Slope Basin Basin Basin Basin 
Mile km Basin Max. Min. total Chao. oflast Max Max. Vw Rugg. 

Arca elev. elev. relief Total IOOOm length Width 

(km') (m) (m) (m) slope Trib (m) (m) 
m/m Cb. 

96 154.5 R Sand Wash 27.66 2ITT3 1418 655 0.0405 0.0269 12450 3264 3.81 0.12 

94.3 151.8 R 2.62 

93.7 150.8 R 9-Mile Canyon 1156.0 2819 1406 1413 0.0076 0.0006 56718 17851 3.18 0.04 

92.2 148.4 L 7.51 

90 144.8 L 1.69 

88 141.6 R 0.93 1727 1411 316 0.1385 0.1160 1231 1048 1.17 0.33 

87.5 140.8 L 0.64 

87 140.0 L 0.80 

86.8 139.7 L Tabyago Canyon 231.30 

86.7 139.5 L 1.41 

84.7 136.3 R 1.46 

84 135.2 R Maverick Bottom 7.32 1868 1407 461 0.0682 0.0390 4387 2901 1.51 0.17 

83.1 133.7 R 0.41 

82.8 133.3 R 0.88 

81.5 131.2 L Gold Hole- Rincon 0.09 

81.4 131.0 L Gold Hole- Rincon 3.26 

80.9 130.2 R 2.05 1874 1404 470 0.1104 0.1130 2633 1170 2.25 0.33 

80 128.7 R . Rock House Canyon 22.19 2055 1402 653 0.0371 0.0294 8595 4310 1.99 0.14 
Little Rock House 

79 127.1 L Canyon 18.92 2058 1400 658 0.0584 0.0450 15340 4920 3.12 0.15 

77.7 125.0 L 0.51 

77.3 124.4 L 0.69 

75.3 121.2 R 2.01 

74.4 H9.7 R 2.04 

74 119.l R 3.31 2021 1401 620 0.1200 0.0771 2984 1812 1.65 0.34 

73.9 118.9 R -A 1.40 

73.9 118.9 R -B 0.91 

71.4 114.9 L 0.88 

71.1 114.4 L 0.50 

70.7 113.8 L 0.68 

69.8 1123 R Jack Creek 126.06 2750 1396 1354 0.0352 0.0277 24002 7170 3.35 0.12 

68.8 110.7 R Lunt's Horse Pasture 0.13 2065 1397 668 0.1923 0.0840 2400 852 2.82 1.87 

68.7 110.6 R Lunt's Horse Pasture 9.08 2130 1394 736 0.0936 0.0609 5270 3172 1.66 · 0.24 

68.4 110.l R Lunt's Horse Pasture 0.15 1845 1399 446 0.3203 0.3203 656 400 1.64 1.14 

68.3 109.9 R Lunt's Horse Pasture 0.45 2009 1398 611 0.3761 0.3760 1250 840 1.49 0.91 

67.5 108.6 R 0.48 

67.5 108.6 L 0.48 

67 107.8 L Big Canyon 61.48 2423 1392 1031 0.0362 0.0360 15340 4290 3.58 0.13 

66.5 107.0 L 0.26 

66.3 106.7 R 0.31 

66.1 106.4 L 0.14 1850 1397 453 0.3766 0.3768 790 340 2.32 1.21 

Upper Firewater 
66 106.2 L Canyon 3.02 2066 1393 673 0.1541 0.1205 3200 1270 2.52 0.39 

65.8 105.9 L Firewater Canyon 50.61 2519 1391 1128 0.0531 0.0460 14640 5555 2.64 0.16 
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River River side Tributary name Drainage Basin Basin Basin Trib. Slope of Basin Basin Basin Basin 
Mile km Basin Area Max. Min. t otal Chan. last Max Max. Vw Rugg. 

(km') elev. elev. relief Total IOOOm length Width 

(m) (m) (m) slope Trib Ch. (m) (m) 
(m/m) 

65.5 105.4 R Cedar Ridge Canyon 26.28 2632 1391 1241 0.0548 0.0572 12275 3700 3.32 0.24 

65 104.6 L 0.71 2107 1390 717 030')8 0.2230 1540 590 2.61 0.85 

64.8 104.3 L 0.31 2025 1390 635 0.3754 0.3757 860 710 1.21 1.14 

63.9 102.8 R 0.88 2036 1390 646 0.2878 0.1855 1520 1060 l.43 0.69 

63.6 102.4 R 1.51 2169 1391 778 0.3191 0.1715 2130 980 2.17 0.63 

63 101.4 R Rat Canyon 118.47 2362 1391 971 0.0495 0.0310 12330 3760 3.28 0.09 

62.2 100.I L l.71 

62.1 99.9 L l.23 

62 99.8 L Dripping Springs 0.30 

61.9 99.6 L 4.12 

61 98.2 R 0.38 2077 1384 693 0.4677 0.4670 1000 540 l.85 1.13 

60.8 97.8 L 0.17 

60.4 97.2 L 0.51 1929 1382 547 0.1604 0.0920 1330 760 l.75 0.77 

60.2 96.9 L 7.45 2269 1382 887 0.1383 0.0560 4780 2710 l.76 0.33 

60.2 96.9 R 0.25 

60 96.6 L l.24 2031 1381 650 0.1761 0.0930 1960 !410 l.39 0.58 

60 96.6 R 11.93 2489 1380 1109 0.0946 0.0590 8425 1875 4.49 0.32 

59.4 95.6 R Fretwaler 8.43 2449 1383 1066 0.1421 0.0623 6050 2700 2.24 0.37 

58.8 94.6 R 0.36 2052 1379 673 0.4489 0.4490 1050 580 l.81 1.13 

58.4 94 L Wild Horse Canyon 23.26 2469 1377 1092 0.0838 0.0516 9200 4100 2.24 0.23 

57.9 93.2 L 0.62 

57.6 92.7 L 0.51 2124 1375 749 0.3420 0.2580 1540 640 2.41 l.04 

57.5 92.5 L 11.87 2378 1375 1003 0.1229 0.0550 6290 2982 2.11 0.29 

57.3 92.2 R l.24 

56.8 91.4 L 0.96 2152 1369 783 0.274-0 0.2880 1780 1020 1.75 0.80 

56.5 90.9 R 2.46 2302 1371 931 0.2010 0.0980 2940 1270 2.31 0.59 

56.4 90.8 R Steer Ri dge Canyon 15.47 2513 1369 1144 0.1176 0.0503 8181 3451 2.37 0.29 

55.9 90 R 0.36 1921 1372 549 0.2559 0.2560 104-0 540 1.93 0.91 

55.8 89.8 R Surprise Canyon l.42 2155 1370 785 0.2492 0.1576 1770 1400 1.26 0.66 

55.4 89.2 L 0.15 2033 1365 668 0.4238 0.4237 890 280 3.18 1.71 

55.l 88.7 L 0.37 2152 1365 787 0.4902 0.4900 1125 580 1.94 1.30 

54.9 88.4 L 0.10 2151 1366 785 0.4888 0.4888 1140 480 2.38 2.52 

54.7 88 L Log Cabin 3.42 2375 1363 1012 0.2871 0.0926 3230 1420 2.27 0.55 

54.3 87.4 L 1.17 2318 1339 979 0.3200 0.0175 2000 1100 1.82 0.90 

54.2 87.2 L 0.70 

54 86.9 R Rock Creek 146.59 3000 1358 1642 0.0506 0.0215 21255 13810 l.54 0.14 

52.9 85.I R 0.54 

52.7 84.8 R 0.91 2168 1353 815 0.3195 0.2290 1560 1050 l.49 0.85 

52.4 84.3 R Calf Canyon 7.03 2597 1358 1239 0.1555 0.0617 5025 2070 2.43 0.47 

51.3 82.6 R Snap Canyon 11.82 2721 1349 1372 0.0965 0.0510 9600 1690 5.68 0.40 

51 82.1 L 7.00 2383 1347 1036 0.1681 0.0550 4820 2160 2.23 039 

50.8 81.8 L 8.82 2421 1345 1076 0.1148 0.0659 6560 2140 3.07 0.36 
49.8 80.1 R Three Canyon Rincon 2.04 

49.7 80 R Three Canyon Rincon 41.16 

49 78.9 L 3.88 2900 2000 1345 0.2432 0.0662 2900 2000 1.45 0.68 



River River side 
Mile km 

48.6 78.2 L 

48 77.2 R 

47.5 76.4 L 

47.2 76 R 

47 75.6 L 

46.1 74.2 R 

45.9 73.9 R 

45.8 73.7 L 

45.7 73.5 L 

45.5 73.2 L 

44.2 71.l R 

44.1 71 L 

43.3 69.7 R 

43 69.2 L 

Tributary name 

Belknap 

Lion Hollow 

Chandler Canyon 

Trail Canyon 

Bluebell Creek 

Bull Canyon 

42.9 69 R Moonwater Canyon 

42.6 68.6 R 

42.2 67.9 L 

41.5 66.8 L 

40.9 65.8 R 

Big Canyon 

Joe H utcb Creek 

40.5 65.2 R Joe Hutch Canyon 

39.9 64.2 L 

39.6 63.7 L 

38.9 62.6 R 

38.7 623 L 

38 61.2 L 

373 60 L 

Rain Canyon 

Florence Creek 

37 59.5 R Wire Fence Canyon 

Drainage Basin Basin Basin Trib. Slope or Basin 
Max 

length 
Basin Area Max. Mio. total ClialL last 

(km') elev. elev. relief Total lOOOm 

0.91 

3.05 

0.24 

1.65 

(m) (m) (m) slope Trib Ch. (m) 

(m/m) 

2146 1338 808 0.3037 0.2183 1490 

2378 1341 1037 0.2007 0.0790 3530 

2320 1339 981 0.2537 0.0950 2358 

189.50 2709 1332 1377 0.0518 0.0307 18080 

1.70 

22.68 

0.42 

l.l l 

1.01 

6.31 

1.25 

2.27 

3.23 

1.26 

24.36 

1.24 

19.22 

1.01 

6.68 

2.01 

2.99 

2377 1329 1048 0.2475 0.1410 2860 

2820 1330 1490 0.1064 0.0418 9230 

1806 1330 476 0.2510 0.2510 940 

2184 1327 857 0.1921 0.0668 1943 

2594 1327 1267 0.1603 0.0500 5130 

2465 1324 1141 0.1351 0.060(} 4950 

2404 1320 1084 0.2464 0.0600 3210 

1981 1318 663 0.1726 0.0560 2035 

2709 1318 1391 0.0868 0.0380 8600 

2065 1315 750 0.2145 0.1121 !650 

2637 1317 1320 0.1335 0.0560 7135 

2502 1311 1191 . 0.1387 0.0433 5615 

2309 1307 1002 0.2128 0.0509 2780 

2466 1307 1159 0.1880 0.0601 4150 

7.58 2448 1308 1140 0.1226 5147 

143.12 2846 1313 1533 0.0493 0.0232 19430 

2.14 

1.88 

6.47 2325 1300 1025 0.1087 0.0308 5630 

36.5 58. 7 L Three Fords Canyon 22.46 2723 1300 1423 0.0923 0.0402 6875 
Three Fords Canyon-

35.2 56.6 R R 5.70 

35.2 56.6 L 

34.4 55.4 L 

34.2 55 L 

33.4 53.8 R 

32.5 52.3 R Last Chance Canyon 

323 Si L Spring Wash Canyon 

1.67 

1.54 

0.89 

0.61 

8.92 

5.79 

2846 1313 1533 0.0934 0.0370 1298 

2012 1298 714 0.1292 0.0663 2270 

1565 1295 270 0.1431 0.1170 1530 

2137 1293 844 0.0583 0.0600 5015 

2139 1291 848 0.0983 0.0416 4620 

31.5 50.7 R Range Creek 369.55 3135 1290 1845 0.0211 0.0120 40000 

30.9 49.7 L 2.39 

29.5 47.5 L Beaver Slide Bottom 2.49 

28.9 46.5 R Rabbit Valley 28.73 

28.7 46.2 L 

28.3 45.5 R 

28 45.1 R 

27.8 44.7 R 

27.2 43.8 L 

26.8 43.1 L 

Curry Canyon 

Saleratus Canyon 

0.17 

8.18 

0.80 

037 

0.58 

2037 

1812 1289 523 0.1171 0.1590 2545 

1941 1285 656 0.0519 0.0190 8635 

1648 1285 363 0.2207 0.2207 835 

1925 1283 642 0.0952 0.0660 4570 

1834 1283 551 0.2973 0.2550 2090 

1764 1282 482 0.2543 0.2543 1185 

2673 1279 1394 0.0821 0.0248 9570 

Basin 
Max. 

Width 
(m) 

1311 

1070 

1225 

19719 

840 

3290 

660 

775 

2820 

1800 

1560 

700 

5185 

1010 

4360 

2260 

1150 

1150 

2630 

12060 

2165 

5320 

2194 

970 

770 

2019 

2310 

15000 

1240 

6165 

310 

1950 

770 

550 

3165 

Basin 
1/w 

Basin 
Rugg. 

1.14 0.85 

3.30 0.59 

1.92 0.76 

0.92 0.10 

3.40 0.80 

2.81 0.31 

1.42 0.73 

2.51 0.81 

1.82 1.26 

2.75 0.45 

2.06 0.60 

2.91 0.59 

1.66 0.28 

1.63 0.67 

1.64 0.30 

2.48 0.46 

2.42 0.71 

3.61 0.67 

1.96 0.41 

1.61 0.13 

2.60 0.40 

1.29 0.30 

0.59 0.64 

2.34 0.55 

1.99 0.29 

2.48 0.28 

2.00 0.35 

2.61 .096 

2.05 0.33 

1.40 0.12 

2.69 0.87 

2.34 0.25 

2.71 0.62 

2.15 0.79 

3.02 0.31 

97 
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River River side Tributary name Drainage Basin Basin Basin Trib. Slope of Basin Basin Basin Basin 
Mile km Basin Area Max. Min. total Chan. last Max Max. 1/w Rugg. 

(km') elev. elev. relief Total lOOOm length Width 
(m) (m) (m) slope Trib Ch. (m) (m) 

(m/m) 

26.8 43.l R 0.82 

26.3 423 R 036 

26.2 42.2 R 1.16 

26.2 42.2 L Coal Creek 69.84 2846 1278 1568 0.0523 0.0272 18665 8185 2.28 0.19 

25.6 41.2 R 0.27 

25.3 40.7 L Poverty Canyon 26.83 2190 1273 917 0.1726 0.0517 10940 3770 2.90 0.18 

23.1 37.2 R 3.23 

23 37 R 0.34 

22.9 36.9 R 0.77 

School Section 
223 35.9 R Canyon 13.16 1947 1270 677 0.0832 0.0533 5470 3330 l.64 0.19 

22.2 35.7 L Rattlesnake Canyon 158.91 2881 1268 1613 0.0393 0.0168 25670 9980 2.57 0.13 

21 33.8 R 1.07 

21 33.8 L 3.27 

20.1 323 L Nefertiti Canyon 8.18 1948 1265 683 0.0992 0.0348 4730 1900 2.49 0.24 

19.3 31.1 R 1.31 

19.1 30.7 R 1.74 

18.2 29.3 R Price River 3026.94 2998 1260 1738 0.0040 0.0033 0.31 

17.1 27.5 L 8.77 

17 27.4 L 0.40 

16.8 27 R 0.26 

16.5 26.6 R 0.48 

16.3 26.2 R 0.32 

16.I 25.9 R 1.43 1789 1257 532 0.1920 0.5889 2200 990 2.22 0.44 

16.1 25.9 L Butler Canyon 16.58 1948 1257 691 0.0465 0.0395 9000 4300 2.09 0.17 

15.2 24.5 R Sand Knolls Canyon 7.66 1842 1256 586 0.0880 0.0379 5260 2200 2.39 0.21 

14.8 23.8 L 0.18 

14.3 23 L Stone House 7.06 1746 1250 496 0.0989 0.0294 3180 2800 1.14 0.19 

14 22.5 L 0.28 

13.1 21.1 R Short Canyon 16.0l 1884 1256 628 0.0620 0.0259 5400 2670 2.02 0.16 

12.8 20.48 R 0.94 

12.3 19.68 R Long Canyon 52.19 1890 1251 639 0.1041 0.0287 4500 2600 1.73 0.09 

12.3 19.68 L Swasey's 6.86 2073 1418 655 0.0405 0.0269 12450 3264 3.81 0.12 
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APPENDIX C. Valler-bottom Characteristics 
River Rivc:r side Tributary name Bedrock unit exposed Average Tributary Ratio ofvalley 

mile km at river level valley- valley width to average 
bottom bottom channel width 

width {m} width {m} 

96 154.5 R Sand Wash Green River Fm 448 145 1.95 

94.3 151.8 R Green River Fm 425 70 2.74 

93.7 150.8 R 9-Mile Canyon Green River Fm 439 175 2.86 

92.2 148.4 L Green River Fm 451 120 2.73 

90 144.8 L Green River Fm 405 80 2.66 

88 141.6 R Green River Fm 505 85 

87.5 140.8 L Green River Fm 525 90 3.18 

87 140.0 L Green River Fm 281 85 1.88 

86.8 139.7 L Tabyago Canyon Green River Fm 331 180 5.10 

86.7 139.5 L Green River Fm 379 95 3.79 

84.7 136.3 R Green River Fm 424 110 3.10 

84 135.2 R Maverick Bottom Green River Fm 411 155 2.22 

83.1 133.7 R Green River Fm 303 75 1.89 

82.8 133.3 R Green River Fm 268 100 1.95 

81.5 131.2 L Gold Hole- Rincon Green River Fm 455 235 2.28 

81.4 131.0 L Gold Hole- Rincon Green River Fm 500 340 3.03 

80.9 130.2 R Green River Fm 333 65 2.29 

80 128.7 R Rock House Canyon Green River/Colton 426 145 2.22 

79 127.l L Little Rock House Canyon Green River/Colton 335 180 2.18 

77.7 125.0 L Green River/Colton 390 95 3.18 

77.3 124.4 L Green River/Colton 444 60 3.11 

75.3 121.2 R Green River/Colton 299 140 2.30 

74.4 ll9.7 R Green River/Colton 231 90 1.71 

74 ll9.l R Green River/Colton 311 90 2.49 

73.9 ll8.9 R-A Green River/Colton 350 114 2.92 

73.9 ll8.9 R-B Green River/Colton 373 110 2.57 

71.4 114.9 L Green River/Colton 391 85 2.90 

71.1 114.4 L Green River/Colton 373 105 3.10 

70.7 113.8 L Green River/Colton 373 95 3.47 

69.8 112.3 R Jack Creek Green River/Colton 380 155 2.48 

68.8 110.7 R Lunt's Horse Pasture Green River/Colton 353 60 4.15 

68.7 ll0.6 R Lunt's Horse Pasture Green River/Colton 414 285 4.07 

68.4 110.l R Lunt's Horse Pasture Green River/Colton 440 85 3.66 

68.3 109.9 R Lunt's Horse Pasture Green River/Colton 452 120 3.47 

67.5 108.6 R Green River/Colton 268 35 1.76 

67.5 108.6 L Green River/Colton 268 65 1.75 

67 107.8 L Big Canyon Green River/Colton 394 205 2.79 

66.5 107.0 L Green River/Colton 260 15 2.00 

66.3 106.7 R Green River/Colton 333 70 2.15 

66.1 106.4 L Green River/Colton 330 90 2.20 

66 106.2 L Upper Firewater Canyon Green River/Colton 354 150 2.92 

65.8 105.9 L Firewater Canyon Green River/Colton 406 200 4.67 

65.5 105.4 R Cedar Ridge Canyon Green River/Colton 358 175 2.49 
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River River side Tributary name Bedrock unit exposed Average Tributary Ratio of valley 

mile km at river level valley- valley width to average 
bottom bottom channel width 

width {m} width {m} 

65 104.6 L Colton Formation 278 I.SO 2.78 

64.8 104.3 L Colton Formation 316 90 2.81 

63.9 102.8 R Colton Formation 333 110 4.16 

63.6 102.4 R Colton Formation 421 145 3.16 

63 101.4 R AatCanyon Colton Formation 360 160 2.10 

62.2 100.1 L Colton Formation 318 I.SO 3.43 

62.l 99.9 L Colton Formation 358 I.SO 4.77 

62 99.8 L Dripping Springs Colton Formation 450 125 6.00 

61.9 99.6 L Colton Formation 509 235 3.13 

61 98.2 R Colton Formation 320 80 2.06 

60.8 97.8 L Colton Formation 319 75 2.97 

60.4 97.2 L Colton Formation 528 230 5.86 

60.2 96.9 L Colton Formation 560 120 6.59 

60.2 96.9 R Colton Formation 550 15 6.23 

60 96.6 L Colton Formation 323 110 2.42 

60 96.6 R Colton Formation 498 250 4.66 

59.4- 95.6 R Fretwater Colton Formation 316 190 1.69 

58.8 94.6 R Colton Formation 325 140 2.17 

58.4 94 L Wild Horse Canyon Colton Formation 293 180 2.19 

57.9 93.2 L Colton Formation 328 I.SO 2.18 

57.6 92.7 L Colton Formation 443 .so 4.54 

57.5 92.5 L Colton Formation 456 140 2.85 

57.3 92.2 R Colton Formation 384 30 3.34 

56.8 91.4 L Colton Formation 273 100 2.87 

56.5 90.9 R Colton Formation 317 120 3.39 

56.4 90.8 R Steer Ridge Canyon Colton Formation 338 175 3.56 

55.9 90 R Colton Formation 267 93 1.98 

55.8 89.8 R Surprise Canyon Colton Formation 263 123 2.82 

55.4 89.2 L Colton Formation 261 30 2.09 

55.1 88.7 L Colton Formation 259 30 2.77 

54.9 88.4 L Colton Formation 240 90 2.29 

54.7 88 L Log Cabin Colton Formation 296 105 3.12 

54.3 87.4 L Colton Formation 281 70 3.38 

54.2 87.2 L Colton Formation 296 80 3.17 

54 86.9 R Rock Creek Colton Formation 298 175 2.59 

52.9 85.1 R Colton Formation 270 80 1.77 

52.7 84.8 R Colton Formation 429 90 3.68 

52.4 84.3 R Calf Canyon Colton Formation 436 170 3.85 

51.3 82.6 R Snap Canyon Colton Formation 318 I.SO 2.93 

51 82.1 L Colton Formation 465 I.SO 4.89 

50.8 81.8 L Colton Formation 430 105 5.55 

49.8 80.1 R Three Canyon Riocon Colton Formation 280 330 2.43 

49.7 80 R Three Canyon Riocon Colton Formation 345 215 5.31 

49 78.9 L Colton Formation 353 145 3.85 

48.6 78.2 L Belknap Colton Formation 288 95 2.92 
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River River side Tributary name Bedrock unit exposed Average Tributary Ratio of valley 
mile km at river level valley- valley width to average 

bottom bottom channel width 
width {m} width {m} 

48 77.2 R Lion Hollow Colton Formation 255 95 2.22 

47.5 76.4 L Colton Fm- shale unit 350 20 2.92 

47.2 76 R Colton Fm- shale unit 365 110 3.84 

47 75.6 L Chandler Canyon Colton Fm- shale unit 354 280 2.ITT 

46.l 74.2 R Colton Fm- shale unit 278 110 2.16 

45.9 13.9 R Trail Canyon Colton Fm- shale unit 654 190 5.23 

45.8 73.7 L Colton Fm- shale unit 708 30 5.15 

45.7 73.5 L Colton Fm- shale unit 767 135 6.26 

45.5 73.2 L Bluebell Creek Colton Fm- shale unit 713 210 6.20 

44.2 71.1 R Bull Canyon Colton Fm- shale unit 366 320 3.05 

44.1 71 L Colton Fm- shale unit 500 75 435 

43.3 69.7 R Colton Fm- shale unit 404 115 3.85 

43 69.2 L Colton Fm- shale unit 468 165 3.90 

42.9 69 R Moonwater Canyon Colton Fm- shale unit 516 250 4.13 

42.6 68.6 R Big C..anyon Colton Fm- shale unit 403 185 3.22 

42.2 67.9 L Colton Fm- shale unit 421 190 2.57 

41.5 66.8 L Joe Hutch Creek Colton Fm- shale unit 523 385 2.80 

40.9 65.8 R Colton Fm- shale unit 423 95 3.52 

40.5 65.2 R Joe Hu!ch Canyon Colton Fm- shale unit 408 220 4.53 

39.9 64.2 L Colton Fm- shale unit 318 150 3.81 

39.6 63.7 L Colton Fm- shale unit 444 140 4.23 

38.9 62.6 R Rain Canyon Colton Fm- shale unit 649 230 5.72 

38.7 623 L Aorence Creek Colton Fm- shale unit 729 100 4.86 

38 61.2 L North Hom Fm 460 170 2.85 

37.3 60 L North Hom Fm 443 190 3.05 

37 59.5 R Wire Fence Canyon North Hom Fm 320 240 2.78 

36.5 58.7 L Three Fords Canyon Flagstaff Limestone 365 335 2.03 

35.2 56.6 R Three Fords Canyon-R Flagstaff Limestone 483 230 2.00 

35.2 56.6 L Mesa Verde Fm 443 110 2.39 

34.4 55.4 L Mesa Verde Fm 276 ll5 2.81 

34.2 55 L Mesa Verde Fm 243 5 2.49 

33.4 53.8 R Mesa Verde Fm 260 10 2.89 

32.5 52.3 R Last Chance Canyon Mesa Verde Fm 283 40 5.30 

32.3 52 L Spring Wash Canyon Mesa Verde Fm 284 80 2.79 

31.5 50.7 R Range Creek Mesa Verde Fm 335 95 2.45 

30.9 49.7 L Mesa Verde Fm 280 105 2.55 

29.5 47.5 L Beaver Slide Bottom Mesa Verde Fm 174 75.0 1.53 

28.9 46.5 R Rabbit Valley Mesa Verde Fm 206 150 2.03 

28.7 46.2 L Mesa Verde Fm 150 35 2.07 

28.3 45.5 R Curry Canyon Mesa Verde Fm 184 20 2.04 

28 45.1 R Mesa Verde Fm 159 25 1.51 

27.8 44.7 R Mesa Verde Fm 163 25 1.57 

27.2 43.8 L Mesa Verde Fm 135 30 1.69 

26.8 43.1 L Sa!eratus Canyon Mesa Verde Fm 163 60 l.68 

26.8 43.1 R Mesa Verde Fm 163 30 l.84 
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River River side Tributary name Bedrock unit exposed Average Tributary Ratio of valley 
mile km at river level valley- valley width to average 

bottom bottom channel width 
width {m} width {m} 

26.3 423 R Mesa Verde Fm 120 10 1.71 

26.2 42.2 R Mesa Verde Fm 144 10 1.18 

26.2 42.2 L Coal Creek Mesa Verde Fm 148 55 1.34 

25.6 41.2 R Mesa Verde Fm 139 10 1.34 

25.3 40.7 L Poverty Canyon Mesa Verde Fm 128 30 1.20 

23.l 37.2 R Mesa Verde Fm 204 120 2.31 

23 37 R Mesa Verde Fm 200 60 2.11 

22.9 36.9 R Mesa Verde Fm 228 55 2.28 

223 35.9 R School Section Canyon Mesa Verde Fm 223 65 2.02 

22.2 35.7 L Rattlesnake Canyon Mesa Verde Fm 188 100 1.63 

21 33.8 R Mesa Verde Fm 175 45 1.98 

21 33.8 L Mesa Verde Fm 175 75 1.75 

20.1 32.3 L Nefertiti Canyon Mesa Verde Fm 179 100 1.79 

193 31.1 R Mancos Shale 198 130 1.98 

19.1 30.7 R Mancos Shale 199 130 1.73 

18.2 29.3 R Price River Mancos Shale 7A3 370 1.64 

17.1 27.5 L Mancos Shale 345 130 2.62 

17 27.4 L Mancos Shale 454 160 3.18 

16.8 27 R Mancos Shale 308 100 3.15 

16.5 26.6 R Mancos Shale 199 85 2.09 

16.3 26.2 R Mancos Shale 268 75 2.10 

16.1 25.9 R Mancos Shale 318 115 3.34 

16.1 25.9 L Butler Canyon Mancos Shale 353 145 3.20 

15.2 24.5 R Sand Knolls Canyon Mancos Shale 315 85 2.05 

14.8 23.8 L Mancos Shale 283 30 3.32 

14.3 23 L Stone House Mancos Shale 291 80 2.65 

14 22.5 L Mancos Shale 343 75 3.26 

13.l 21.1 R Short Canyon Mancos Shale 408 140 3.40 

12.8 20.48 R Mancos Shale 410 75 2.89 

123 19.68 R Long Canyon Mancos Shale 518 80 4.14 

12.3 19.68 L Swasey's Mancos Shale 558 100 331 
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APPENDIX D. Debris-Fan Characteristics 

River River side Tributary name Debris Fan Fan Debris Debris fao Debris flow history/channel 
fan channd 

Mile km fan area length Width 1/w Aggrading activity index 1-5 
(m') (parallel (m) or Incising I =most active 

to ch.) S=most inactive 
m 

96 154.5 R Sand Wash 254763 1095 405 2.7 flash flood events common ; I 

943 151.76 R 4194 125 40 3.13 A 

93.7 150.8 R 9-Mile Canyon 218451 850 360 236 I perinnial tributary ; 0 

92.2 148.38 L 26622 310 160 1.94 A 

90 144.84 L 66448 565 160 3.53 

88 141.62 R 5255 170 50 3.4 A 

87.5 140.82 L 16150 235 90 2.61 A 

87 140.01 L 25675 300 125 2.4 A 

86.8 139.69 L Tabyago Canyon 65988 400 230 l.74 perionial streamllow ; 0 

86.7 139.53 L 11880 195 80 2.44 A 

84.7 136.31 R 34142 275 190 1.45 A/I 

84 135.18 R Maverick Bottom 112436 585 250 2.34 A 

83.1 133.74 R 9220 160 75 2.13 A 

82.8 133.25 R 14574 210 85 2.47 A 

81.5 131.16 L abandoned Green River meander- two 
Gold Hole- Rincon main drainages; coalesced fans 

81.4 131 L 
80.9 130.2 R 45603 330 195 1.69 A 

80 128.75 R Rock House Canyon 165174 710 340 2.09 A/I 2 
small debris flow 2001 deposited in 

127.14 L Little Rock House Canyon 113201 295 115 2.57 fan channel ; I 

77.7 125.05 L 39743 235 180 131 

773 124.4 L 79331 415 215 1.93 A 

753 121.18 R 12330 250 60 4.17 

74.4 119.73 R 15162 230 90 2.56 

74 119.09 R 55926 295 200 l.48 A 

73.9 118.93 R-A 36344 190 210 0.9 A 

73.9 118.93 R -B 40539 260 185 1.41 A 

71.4 114.91 L 70255 400 250 1.6 A 

71.1 114.42 L 36559 310 155 2 I 

70.7 113.78 L 20497 215 125 1.72 

69.8 112.33 R Jack Creek 130504 800 300 2.67 I streamllow 200 I spring/summer ; 2 

68.8 110.72 R Luot's Horse Pasture 71326 300 245 1.22 A/I 3 

68.7 110.56 R Luot's Horse Pasture 136731 326.l 338 0.96 A/I 3 

68.4 110.08 R Luot's Horse Pasture 39425 177 263 0.67 A 3 

68.3 109.92 R Luot's Horse Pasture 71254 360 217 1.66 A 3 

67.5 108.63 R 6438 125 65 1.92 A 

67.5 108.63 L 7595 175 70 2.5 A 

67 HY7.83 L Big Canyon 155990 785 280 2.8 2 

66.5 107.02 L 2325 100 50 2 A 

66.3 106.7 R 14644 165 114 1.45 A 

66.1 106.38 L 16869 300 120 2.5 A 

66 106.22 L Upper Firewater Canyon 84333 228 437 0.52 A 4 

65.8 105.89 L Firewater Canyon 134378 535 330 1.62 2 
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River River side Tributary name Debris Fan Fan Debris Debris fan Debris flow history/channel 
ran cbanod 

Mile km fan area length Width 1/w Aggrading activity index 1-5 
(m

z
) (parallel (m) or Incising I =most active 

to ch.) S=most inactive 
m 

Large channelized debris flow 
65.5 105.41 R Cedar Ridge Canyon 69950 415 215 1.93 changed rapid in the late 1980's ; I 

65 104.61 L 54440 370 205 1.8 4 

64.8 104.29 L 37231 210 200 1.05 

63.9 102.84 R 93947 560 230 2.43 

63.6 10235 R 170021 785 280 2.8 

63 10139 R Rat Canyon 94181 590 325 1.82 perinnial streamflow ; 3 

62.2 100.I L 58021 325 260 1.25 

62.1 99.94 L 21327 150 175 0.86 A 

62 99.779 L Dripping Springs 143151 220 410 0.54 

61.9 99.618 L. 102831 215 385 0.56 A 

61 98.17 R 32706 180 110 1.64 A 

60.8 97.848 L 11662 175 85 2.06 A 

60.4 97.204 L 670 375 1.79 A 

60.2 96.882 L 215523 275 235 1.17 A 

60.2 96.882 R 35921 245 170 1.44 

60 96 . .56 L 87081 310 150 2.07 

60 96.56 R 108662 485 290 1.67 

59.4 95.595 R Fretwater 116702 670 245 2.73 A 4 

58.8 94.629 R 9061 120 100 1.2 

58.4 93.985 L Wild Horse Canyon 74629 450 250 1.8 2 

57.9 93.181 L 81989 460 230 2 A 

57.6 92.698 L 82972 330 340 0.97 A 

57.5 92.537 L 224722 505 445 1.13 3 

57.3 92.215 R 3698 90 50 1.8 

56.8 91.411 L 26880 330 165 2 

56.5 90.928 R 48187 410 190 2.16 3 

56.4 90.767 R Steer Ridge Canyon 85231 490 260 1.88 3 

55.9 89.962 R 30548 255 170 1.5 4 

55.8 89.801 R Surprise Canyon 53081 450 170 2.65 3 

55.4 89.157 L 46096 325 160 2.03 

55.I 88.675 L 41216 365 230 1.59 4 

54.9 88.353 L 37868 300 175 1.71 

54.7 88.031 L Log Cabin 77452 530 210 2.52 A in Ca 3 

543 87387 L 59280 320 225 1.42 3 

54.2 87.226 L 54974 315 220 1.43 

54 86.904 R Rock Creek Cultivated fan/terrace perinnial streamflow ; 3 

52.9 85.134 R 24840 270 140 1.93 A 

52.7 84.812 R 87676 310 370 0.84 5 

52.4 84.329 R Calf Canyon 220981 830 365 2.27 5 

51.3 82.559 R Snap Canyon 104813 555 320 1.73 streamflow 2001 spring/summer; 0 

51 82.076 L 154983 490 460 1.07 4 

50.8 81.754 L 175662 700 380 1.84 5 

49.8 80.145 R 
abandoned Green River meander (2 

Three Canyon Rincon drainages) streamflow 2001 spring/summer; 0 
49.7 79.984 R 
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River River side Tributary name Debris Fan Fan Debri:!I Debris fan Debris flow history/channel 
ran cbaond 

Mile km fan area length Width 1/w Aggradiog activity index 1-5 
(m') (paraUel (m) or Incising 1 =most active 

to ch.) S=most inactive 
m 

49 78.858 L 101440 575 285 2.02 3 

Large debris flow event late 
48.6 78.214 L Belknap 38715 260 210 1.24 summer 1987 ; 1 

48 77.248 R Lion Hollow 62736 650 150 4.33 4 

47.5 76.444 L 93163 640 230 2.78 

47.2 75.961 R 71468 260 460 0.57 4 

periennial streamflow; debris flow 
event in mid l 980's washed out road 

47 75.639 L Chandler Canyon 149631 860 290 2.97 ;O 

46.1 74.191 R 26713 147 250 0.59 4 

45.9 73.869 R Trail Canyon 218535 480 623 0.77 4 

45.8 73.7fY8 L 33734 180 160 1.13 

45.7 73.547 L 88312 275 310 0.89 3 

45.5 73.225 L Bluebell Creek 271774 790 550 1.44 flash flood event summer 2000 ; 1 

recent (2001 ?) small debris flow 
stopped short of Green River in 

44.2 71.133 R Bull Canyon 116062 625 300 2.fY8 debris fan channel ; I 

44.l 70.972 L 8322 130 115 1.13 

43.3 69.684 R 69338 490 240 2.04 

43 69.202 L 90105 520 330 1.58 

8/94 debris flow event deposited 
42.9 69.041 R Moonwater Canyon 173430 370 280 1.32 large boulders in channel ; 1 

42.6 68.558 R Big Canyon 66806 310 155 2 

42.2 67.914 L 137233 670 280 2.39 2 

41.5 66.788 L Joe Hutch Creek 476450 1415 495 2.86 2 

40.9 65.822 R 30695 150 250 0.6 

1994 major debris flow event; 
40.5 65.178 R Joe Hutch Canyon I 13897 355 160 2.22 channel flash flood 2000 season; 

some gravel deposited on fan at 
mouth and sandbar ; l 

39.9 64.213 L 73048 270 250 l.(Y8 

39.6 63.73 L 181023 650 350 1.86 

38.9 62.603 R Rain Canyon 363089 800 560 1.43 

38.7 62.281 L Aorenoe Creek 1833 30 15 2 perinnial streamflow ; 0 

38 61.155 L 154925 705 300 2.35 

37.3 60.028 L 133739 555 315 1.76 

1974 debris flow altered rapid; 8/87 

large debris flow overtopped 
37 59.546 R Wire Fenoe Canyon 99547 535 270 1.98 channel and deposited on fan, 

backed up Green River, and altered 
rapid; channel flash flood event 
2000 some gravel deposited at 
channel mouth; 2001 summer flood 
event ; I 
1987 debris flow reached Green 

36.5 58.741 L Three Fords Canyon 187405 350 200 1.75 River; I 

35.2 56.649 R Three Fords Canyon-R 59363 410 235 1.74 

35.2 56.649 L 37612 330 190 1.74 

34.4 55.361 L 146621 390 260 1.5 

34.2 55.039 L 2376 55 55 

33.4 53.752 R 2325 60 45 1.33 

32.5 52.304 R Last Chanoe Canyon 1356 60 40 1.5 2 

32.3 51.982 L Spring Wash Canyon 36696 185 45 4.11 2 

31.5 50.694 R Range Creek 20271 210 140 1.5 2 

30.9 49.729 L 10391 180 105 1.71 



River River side Tributary name 
Mile km 

29.5 47.477 L Beaver Slide Bottom 

28.9 46.512 R Rabbit Valley 

28.7 46.19 L 

283 45 . .546 R Curry Canyon 

28 45.063 R 

27.8 44.741 R 

27.2 43.776 L 

26.8 43.132 L Saleratus Canyon 

26.8 43.132 R 

263 42.327 R 

26.2 42.166 R 

26.2 42.166 L Coal Creek 

25.6 41.201 R 

253 40.718 L Poverty Canyon 

23.1 37.177 R 

23 37.016 R 

22.9 36.855 R 

22.3 35.89 R School Section Canyon 

22.2 35.729 L Rattlesnake Canyon 

21 33.797 R 

21 33.797 L 

20.l 32.349 L Nefertiti Canyon 

19.3 31.061 R 

19.l 30.74 R 

18.2 29.291 R Pric;;, River 

17.l 27.521 L 

17 27.36 L 

16.8 27.038 R 

16.5 26.555 R 

16.3 26.233 R 

16.1 25.911 R 

16.1 25.911 L Butler Canyon 

15.2 24.463 R Sand Knolls Canyon 

14.8 23.819 L 

14.3 23.014 L Stone House 

14 22.532 L 

13.1 21.083 R Short Canyon 

12.8 20.6 R 

12.3 19.796 R Long Canyon 

12.3 19.796 L Swasey's 

Debris 
fan area 

(m') 

16268 

15528 

5564 

16611 

8110 

11405 

5300 

3349 

2500 

2122 

3341 

18423 

5461 

2838 

18492 

15382 

27063 

32195 

25324 

1012 

6803 

19706 

16235 

14683 

Fan Fan Debr Debris fan 
. . channel 

length Width IS Aggrading 

(parallel (m) fan or Incising 

to ch.) Vw 
m 

250 JOO 2.5 

230 150 1.53 

100 70 1.43 

160 100 1.6 A 

115 105 I.I A 

210 115 1.83 

120 90 1.33 

115 65 1.77 

95 55 1.73 

80 45 1.78 

110 50 2.2 

submerged debris fan 

105 75 1.4 

65 55 1.18 

205 105 1.95 

225 105 2.14 

270 130 2.08 

360 175 2.06 

160 40 4 

45 22 2.05 

190 105 1.81 

110 60 1.83 

245 110 2.23 

210 120 1.75 

Debris How history/channel 
activity index 1-S 

I =most active 
S=most inactive 

3 

3 

2 

2 
small debris flow deposit in channel 
mid-fan; I 

3 

perinnial sneam flow ; 3 

perinniaJ streamflow activity; 
large flash flood event fall 1999; 0 

perinniaJ streamflow USGS gage 
09314500 mean annual discharge 

no debris fan at mouth of Price River =8 cms 
Woodside ; 0 

73877 375 310 1.21 3 

49575 245 180 1.36 3 

14658 175 100 1.75 

11438 160 80 2 

8203 130 75 1.73 

25674 210 215 0.98 

15798 225 145 1.55 3 

62666 370 320 1.16 

16737 200 130 1.54 

56297 385 250 1.54 3 

35065 250 215 1.16 

125292 550 375 1.47 

107281 460 310 1.48 

111971 435 320 1.36 

43124 280 250 1.12 

106 
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APPENDIX E. Green River Channel Characteristics at Debris Fans 

River River side Tributary name Channel Channel Channel Average Rapid Constriction 
Mile km width width width at Channel Length width in% 

upstream downstream rapid Width at (m) (after Webb. et al., 
of fan {m) offan {m) {m) fan {m) 1996) 

96 154.5 R Sand Wash 240 215 205 230 9.9 

94.3 151.76 R 150 160 155 

9'3.7 150.8 R 9-Mile Canyon 275 100 85 153.3 54.7 

92-2 148.38 L 115 215 165 

90 144.84 L 130 175 152.5 

88 141.62 R 30 40 35 

87.5 140.82 L 180 150 165 

87 140.01 L 175 125 150 

86.8 139.69 L Tabyago Canyon 100 95 65 160 

86.7 139.53 L 100 100 100 

84.7 136.31 R 160 165 85 136.7 47.7 

84 135.18 R Maverick Bottom 225 220 110 185 50.6 

83.1 133.74 R 150 170 160 

82.8 133.25 R 145 130 137.5 

81 5 131.16 L Gold Hole- Rincon 200 200 200 

81.4 131 L Gold Hole- Rincon 200 130 165 

80.9 130.2 R 100 190 145 

80 128.75 R Rock House Canyon 200 270 105 191.7 160 55.3 

79 127.14 L Little Rock House Canyon 220 165 75 153.3 115 61 

77.7 125.05 L 125 120 122.5 

77.3 124.4 L 135 150 142.5 

75.3 121.18 R 125 135 130 

74.4 ll9.73 R 150 120 135 

74 119.09 R 140 110 J.25 

73.9 118.93 R-A 105 135 120 
73.9 118.9'3 R-B 130 160 145 

71.4 ll4.91 L 155 115 135 

71.l 114.42 L 130 llO 120 

70.7 113.78 L 115 100 107.5 

69.8 112.33 R Jack Creek 235 135 90 153.3 2<.17 51.4 

68.8 110.72 R Lunt's Horse Pasture 85 85 85 

68.7 110.56 R Lunt's Horse Pasture 90 130 85 101.7 22.7 

68.4 ll0.08 R Lunt's Horse Pasture 120 120 120 

68.3 109.92 R Lunt's Horse Pasture 130 130 130 

67.5 108.63 R 170 135 152.5 

67.5 108.63 L 170 135 152.5 

67 107.83 L Big Canyon 200 138 85 141 180 49.7 

66.5 107.02 L 130 130 130 

66.3 106.7 R 160 150 155 
66.l 106.38 L 170 130 150 

66 106.22 L Upper Firewater Canyon 148 94 85 121 29.8 

65.8 105.89 L Fuewater Canyon 94 87 80 87 140 11.6 

65.5 105.41 R Cedar Ridge Canyon 205 130 95 143.3 120 43.3 

65 104.61 L 135 75 90 100 14.3 

64.8 104.29 L 95 130 112.5 
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River River side Tributary name Channel Channel Channel Average Rapid Constriction 
Mile km width width width at Channel Length width 

upstream downstream rapid Width at (m) (after Webb. et al.,
of fan (m} of fan (m} (m} fan (m} 1996} 

63.9 102.84 R 115 115 90 80 21.7 

63.6 10235 R 170 160 70 133.3 57.6 

63 101.39 R Rat Canyon 165 260 90 171.7 57.6 

62.2 100.l L 110 75 92.5 

62.1 99.94 L 75 75 75 

62 99.779 L Dripping Springs 75 75 75 

61.9 99.618 L 105 220 162.5 

61 98.17 R 250 135 80 155 58.4 

60.8 97.848 L 145 70 107.5 

60.4 97.204 L 110 70 90 

60.2 96.882 L 90 80 85 

60.2 96.882 R 100 75 90 88.33 

60 96.56 L ISO 135 115 1333 19.3 

60 96.56 R 90 ISO 80 106.7 60 33.3 

59.4 95.595 R Frerwatcr 280 200 80 186.7 170 66.7 

58.8 94.629 R 150 150 ISO 

58.4 93.985 L Wild Horse Canyon 100 240 60 133.3 128 64.7 

57.9 93.181 L 210 90 ISO 80 

57.6 92.698 L 90 105 97.5 

57.5 92.537 L 110 210 160 170 

57.3 92.215 R 80 ISO 115 

56.8 91.411 L 90 100 95 

56.5 90.928 R 110 90 80 93.33 170 20 

56.4 90.767 R Steer Ridge Canyon 90 100 95 160 

55.9 89.962 R 90 90 90 135 

55.8 89.801 R Surprise Canyon 94 110 75 93 165 26.5 

55.4 89.157 L 110 170 95 125 32.I

55.l 88.675 L 135 90 55 93.33 SI.I 

54.9 88.353 L 100 110 105 100 

54.7 88.031 L Log Cabin llO 105 70 95 300 34.9 

54.3 87387 L 100 75 75 83.33 135 14.3 

54.2 87.226 L 75 125 80 93.33 20 

54 86.904 R Rock Creek 135 130 80 ll5 39.6 

52.9 85.134 R 185 120 152.5 

52.7 84.812 R 160 llO 80 116.7 185 40.7 

52.4 84.329 R Calf Canyon 135 140 65 113.3 215 52.7 

51.3 82.559 R Snap Canyon 140 120 65 108.3 140 50 

51 82.076 L 150 70 65 95 185 40.9 

50.8 81.754 L 75 80 Tl.5 280 

49.8 80.145 R Three Canyon Rincon 160 70 115 

49.7 79.984 R Three Canyon Rincon 55 75 65 

49 78.858 L 120 75 80 91.67 215 17.9 

48.6 78.214 L Belknap 120 110 65 98.33 80 43.5 

48 Tl.248 R Lion Hollow 110 140 95 ll5 75 24 
47.5 76.444 L 120 120 120 

47.2 75.961 R 130 80 75 95 176 28.6 
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River River side Tributary name Channel Channel Channel Average Rapid Constriction 
Mile km width width width at Channel Length width 

upstream downstream rapid Width at (m) (after Webb. et al.,
of fan {m} of fan {m} {m} fan {m} 1996} 

47 75.639 L Chandler Canyon 75 220 75 123.3 200 49.2 

46.1 74.191 R 205 85 95 128.3 170 34.5 

45.9 73.869 R Trail Canyon 140 150 85 125 190 41.4 

45.8 73.708 L 130 145 137.5 95 

45.7 73.547 L 140 105 122.5 100 

45.5 73.225 L Bluebell Creek 105 145 95 115 200 24 

44.2 71.133 R Bull Canyon 125 150 85 120 211 38.2 

44.l 70.972 L 115 115 115 

43.3 69.684 R 160 90 65 105 48 

43 69.202 L 115 160 85 120 140 38.2 

42.9 69.041 R Moonwater Canyon 165 130 80 125 280 45.8 

42.6 68.558 R Big Canyon 120 140 115 125 155 11.5 

42.2 67.914 L 140 260 90 163.3 280 55 

41.5 66.788 L Joe Hutch Creek 270 205 85 186.7 210 64.2 

40.9 65.82'.! R 200 90 70 120 70 51.7 

40.5 65.178 R Joe Hutch Canyon 100 110 60 90 160 42.9 

39.9 64.213 L 80 90 80 83.33 90 5.9 

39.6 63.73 L 95 120 100 105 90 7.0 

38.9 62.603 R Rain Canyon 100 100 140 113.3 60 

38.7 62.281 L Florence Creek 130 160 160 150 160 

38 61.155 L 125 290 70 161.7 66.3 

37.3 60.028 L 290 85 60 145 68 

37 59.546 R Wire Fence Canyon 120 150 75 ll5 120 44.4 

36.5 58.741 L Three Fords Canyon 160 320 60 180 200 75 

35.2 56.649 R Three Fords Canyon-R 450 205 70 241.7 135 78.6 

35.2 56.649 L 280 205 70 185 75 71.l 

34.4 55.361 L 110 130 55 98.33 54.2 

34.2 55.039 L 110 85 97.5 

33.4 53.752 R 90 90 90 

32.5 52.304 R Last Chance Canyon 100 60 53.33 

32.3 51.982 L Spring Wash Canyon 100 HO 95 101.7 40 9.52 

31.5 50.694 R Range Creek 195 120 95 136.7 450 39.7 

30.9 49.729 L 120 100 110 

29.5 47.477 L Beaver Slide Bottom 115 160 65 113.3 52.7 

28.9 46.512 R Rabbit Valley 100 125 80 101.7 250 28.9 

28.7 46.19 L 60 85 72.5 

28.3 45.546 R Curry Canyon 100 120 50 90 85 54.5 

28 45.063 R 125 130 60 105 52.9 

27.8 44.741 R 130 120 60 103.3 52 

27.2 43.776 L 80 110 50 80 47.4 

26.8 43.132 L Saleratus Canyon 95 105 90 96.67 10 

26.8 43.132 R 95 105 65 88.33 125 35 

26.3 42.327 R 60 80 70 

26.2 42.166 R 145 125 95 121.7 29.6 

26.2 42.166 L Coal Creek 135 115 80 llO 260 36 

25.6 41.201 R 130 110 70 103.3 41.7 
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River River side Tributary name Channel Channel Channel Average Rapid Constriction 
Mile km width width width at Channel Length width 

upstream downstream rapid Width at (m) (after Webb. et al., 
of fan (m} of fan {m} {m} fan {m} 1996} 

25.3 40.718 L Poverty Canyon 130 130 60 106.7 120 53.8 

23.1 37.177 R 105 95 65 8833 35 

23 37.016 R 95 95 95 

22.9 36.855 R 100 100 100 

22.3 35.89 R School Section Canyon 100 175 55 110 60 

22.2 35.729 L Rattlesnake Canyon 150 120 75 115 245 44.4 

21 33.7'.17 R 110 80 75 88.33 21.1 

21 33.7'.17 L 110 130 60 100 50 

20.1 32.349 L Nefertiti Canyon 110 130 60 100 60 50 

193 31.061 R 105 95 100 

19.l 30.74 R 90 195 60 115 160 57.9 

18.2 29.291 R Price River 125 170 147.5 

17.1 27.521 L 140 190 65 131.7 70 60.6 

17 2736 L 175 110 142.5 

16.8 27.033 R 105 90 97.5 

16.5 26.555 R 80 110 95 

16.3 26.233 R 115 140 127.5 

16.1 25.911 R 90 130 65 95 75 40.9 

16.1 25.911 L Butler Canyon 135 130 65 110 75 50.9 

15.2 24.463 R Sand Knolls Canyoa 160 250 50 153.3 180 75.6 

14.8 23.819 L 80 90 85 

143 23.014 L Stone House 150 100 80 110 100 36 

14 22.532 L 100 110 105 

13.1 21.083 R Short Canyon 175 100 85 120 160 38.2 

12.8 20.6 R 100 250 75 141.7 57.1 

12.3 19.796 R Long Canyon 180 110 85 125 220 41.4 

12.3 19.796 L Swascts 320 100 85 1683 220 59.5 



APPENDIXF. 
Unit Descriptions for mapping of mainstem 

Green River Deposits and tributary debris fans in 
Desolation and Gray Canyons, East-Central, Utah 

Tributary alluvial and colluvial deposits 
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Debris fan surface: Extensive fan-shaped surfaces occurring at the mouths of most 
tributary canyons. Debris fan surfaces range between approximately 1000 km2 to 
500,000 km

2 
in plan-view area. Stratigraphy consists of both tributary debris flow and 

stream flow deposits. Debris flow deposits are poorly sorted and lobate in cross-section 
containing clasts of varying sizes (from several mm to several meters in diameter) 
suspended in a fine-grained matrix of sand, silt, and clay. Some debris flow deposits 
exhibit inverse grading. Stream-flow deposits exhibit sorting, stratification, and 
downstream imbrication and occur alternately with poorly sorted debris-flow deposits. 
Debris fan surfaces often exhibit ridge and swale topography with abandoned channels 
flanked by boulder levees. A prominent active channel exists on most debris fans that 
cuts through the main fan surface and connects with the Green River Channel. Large and 
often weathered and varnished boulders in excess of 2 m in diameter usually occur 
scattered on debris fan surfaces. Clasts consist of locally-derived sandstones and shales 
and vary according to the geology of the tributary source area. Cryptogamic crusts are 
prevalent on most debris-fan surfaces, and some debris fans surfaces have an incipient 
calcic soil horizon, although soil development in general is weak. Greasewood O and 
sagebrush () communities are often well established on debris fan surfaces. In some 
regions of the canyons pinion O and juniper O forests colonize fan surfaces. Debris fan 
surfaces are between 1.5 and 9 meters in elevation above the modem Green River in the 
study region. Debris fan surfaces slope downstream from tributary source areas towards 
the Green River, and slopes in the field area range between 0.01 to 0.34 mlm.

Main tributary channel: Channel cut into debris fan surface, which acts as a conduit 
for sediment deposition from tributary drainage basins to the Green River. Channel 
widths vary from 1.5-20 meters wide throughout field area. Channel entrenchment 
relative to debris fan surface elevation also varies, ranging from 1.2 to 10.7 meters. 
Channels display a wide range of activity varying from very active to inactive (See 
Appendix 7 for more details). Active channels display a 1-2 meter wide region of bare 
sands, silts, and gravels inset into the main channel flanked by inset terraces, gravel bars, 
and a mixture of streamflow and debris-flow deposits. Active channels have less 
vegetation than inactive channels. Very wide channels display ridge-and-swale 
topography and contain lobes and levees of debris flow deposits. Sediment in channel is 
deposited by either streamflow or debris-flow processes, yet is likely to be re-worked by 
flash floods between debris-flow events or by recessional streamflow activity following 
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debris flows. Active tributary channel deposits are generally well sorted and often 
show downstream imbrication. Channels often exhibit a step-pool morphology, 
steepening at their upstream ends as the channel enters a more confined, tributary channel 
and often flows on bedrock. Channel walls of more active channels are vertical in cross
section and contain exposures of debris fan sediment. Woody debris and high water 
marks are seen in and above the channel in active channels. Less active channels are 
generally narrower, v-shaped in cross-section, with eroding and gently sloping banks 
with few exposures of debris fan material. Less active channels contain denser 
vegetation including trees and show no signs of recent inundation. Boulders are often 
well weathered and covered in lichens and varnish in inactive channels. 

Active channel debris fans: Bouldery tributary debris fan material regularly inundated 
by the active Green River channel. Deposits occur on the distal end of tributary fans 
where the fan splays into the mainstem Green River channel. Fines and small clasts are 
typically winnowed away during inundation, leaving large angular to sub-angular 
boulders up to 6 meters in diameter behind. The average clast size for debris fan deposits 
in the active channel ranges from 123 - 427 mm. These deposits often constrict the main 
channel to form riffles and rapids where coarse gravel and boulders are exposed. 

Alluvial deposits of the Mainstem Green River 

Channel margin fines: Fine-grained deposit near channel margin composed mostly of 
silts, sands, and muds. HigWy cohesive, and slippery/sticky when wet Can have high 
organic content. Horizontal bedded deposits are common where flow velocities are low 
such as in backwater reaches above channel constrictions and flatwater reaches. Sand 
deposited along main channel in regions of downstream flow. Generally exhibits 
horizontal bedding or bedforms such as small wave ripples. Occurs at low elevations 
adjacent to the channel. 

Gravel bars: Accumulation of coarse sub to well-rounded gravels that have been 
transported by the Green River. Clasts include local sandstones, limestones, and some 
shales with fine-grained sands and silts filling interstitial spaces. Average clast sizes for 
gravel bars range from 33- 89 mm. Material is moderately to well sorted and often 
imbricated. Gravel bars often occur at the downstream end of tributary junctions and 
rapids. From river kilometers 112 to 20 gravel bars are very frequent in the channel and 
often occur as mid-channel bars. 

Eddy bars: Undifferentiated sand bar deposited in recirculating flow. Includes both 
separation bars formed as recirculating flow separates from the main downstream current, 
and reattachment bars where flow once again joins the main current. Stratigraphy 
exhibits cross-stratification and signs of upstream flow such as migrating ripples. 
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Colluvium deposited in the Active Channel 

Active channel talus: Angular to sub-angular unconsolidated debris deposited by 
rockfall or other slope processes at the bottoms of hillslopes and cliffs into the active 
channel. Clast size is highly variable from several mm to tens of meters in diameter. 
Talus deposited in the active channel usually has large interstitial spaces where fine
grained material deposition occurs. Talus in the channel often obstructs the downstream 
current near the banks and causes small zones of flow recirculation where sand 
deposition occurs. 

Green River Terraces and Terrace-like Deposits 

Floodplain: The modem floodplain of the Green River. This surface consists of fine
grained sands and silts, and occurs adjacent to the active channel. It is often vegetated 
with thick stands of tamarisk (tamarix sp.), as well as willows and other riparian species. 
It is typically higher in elevation than sands deposited in the active channel, and is 
inundated less frequently than deposits in the active channel, overtopped by flooding 
approximately 2 out of every 3 years (Orchard and Schmidt, 1998). 

Undifferentiated intermediate terrace: Fine-grained alluvial intermediate terrace level 
often referred to as the "cottonwood terrace", or the "box-elder terrace" . This level is the 
prominent surface of large Fremont Cottonwood (populus fremonti) germination in the 
fan-eddy complex dominated canyons below river kilometer 112, and in the restricted 
meandering reaches occurring between river kilometers 156 and 112 is the prominent 
surface of box-elder germination . The surface is also vegetated with mature tamarisk 
(tamarix sp.), and willow (salix) as well as non-riparian vegetation including grasses, 
greasewood, sagebrush, and cacti. This terrace level is higher in elevation than modem 
floodplain, usually 3+ meters above the modem Green River and is no longer inundated 
by Green River floods. However, driftwood found on this elevation is very weathered 
but contains evidence of historic inundation such as sawn logs in drift piles. It is likely 
that this surface was the Green River's floodplain during the early third of this century. 
Abandonment of this floodplain by the Green River has been linked to climate changes 
since the 1930's (Allred and Schmidt, 1999), possibly the invasion of non-native species 
such as tamarisk (tamarix sp.), and the closure of Flaming Gorge Dam, which is 
approximately 300 km upstream from Sand Wash and was closed in 1963 (Allred and 
Schmidt, 1999). 

Undifferentiated high terrace: High terrace deposit of sandy fine-grained alluvium 
above intermediate terrace level. Stratigraphic exposures sometimes exhibit horizontal 
laminations, and some exposures exhibit intertounging with debris fan material. Terrace 
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is often vegetated with thick grasses, greasewood (),sagebrush() and box-elder(), as 
well as pinion () and juniper () in some locales. Soils show an incipient calcic horizon, 
and few other signs of development although this terrace often has well-developed 
cryptogamic crusts on its surface. This terrace level is generally 5+ meters above the 
modem channel of the Green River and does not contain evidence of historic inundation. 

High gravel terrace (Pleistocene?): High abandoned channel surfaces of the Green 
River. Cobble sized gravel lag contains abundant local clasts and trace amounts of exotic 
clasts including quartzites with sources in the Uinta Mountains, and igneous and 
metamorphic rocks from the Wind River Range and Yampa River Drainage. Gravels are 
sometimes capped with fine-grained silts. These terraces are often eroding, and exist as 
remnants. Calcic soil horizon development varies from stage I-IV. High gravel terraces 
tend to be preserved in regions where the alluvial valley is very wide, or where the 
channel has shifted or abandoned a meander bend and left a rincon. 

Colluvium 

talus: Piles of pebble to boulder size angular clasts mantling hillslopes and spilling onto 
debris fans and Green River terraces. Largest clasts can be in excess of 10 m in diameter. 
Talus generally made up of large angular sandstone clasts including rockfall and 
landslide deposits . Interstitial spaces generally are open, although when moderately to 
well consolidated interstitial spaces can be filled in with fine-grained material. Source 
areas of talus deposits are local; talus often falls from a nearby cliff and accumulates in 
plies at the base of the slope. Various stages of weathering exist on talus deposits from 
little to no varnish or lichens on clasts to very weathered friable clasts with dark 
varnished surfaces with abundant lichens. 

Colluvial fan: Undifferentiated piles of talus, slopewash, and other locally derived 
material mantling hillslopes. Collects as fan-shaped piles in colluvial hollows often with 
bedrock pour-offs. Generally contain a higher percentage of fine-grained deposits and 
fewer large boulders than talus deposits. Deposited on debris fans and Green River 
terrace deposits that fill the bottom of the alluvial valley in the canyons . 

Aeolian deposits 

aeolian sands and silts: Wind blown sand dunes, often colonized with sagebrush, 
grasses, prickly pear cactus, and greasewood . Some areas have cryptogamic crust soil 
growth and lichens. Few clasts are evident, except for a surface mantle of small gravels 
occasionally found in swales. Fine-grained sands and silts, cross bedded dune forms, 
usually light brown in color. Hummocky topography . Found at the toes oflarge fans 
above the modem river channel or on high or intermediate level Green River Terraces. 
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Level Index 

Primary Recently Active 
Debris-Fan Active 
Channel 

Recent debris flow No debris flow 
Debris flow deposit in channel history available; 
activity activity; a record of a signs of activity 

large debris flow event in channel such 
in past 25 years as broken or 

stained 
vegetation or 
woody debris 
debris under 
boulders 

Bare active-looking Bare gravels in 
Channel gravels or recent channel bottom, 
bottom debris flow-deposit in signs of recent 
condition channel bottom streamflow 

activity 

Little to no woody Woody 
vegetation vegetation; some vegetation on 

perennial vegetation intermediate 
( rabbi thrush) terraces, but not 

prevalent in 
active channel 

Low Low or intermediate 
intermediate terrace generally 
Terrace sparsely or not 
Condition vegetated, bare gravels 

Vertical or nearly 
Channel vertical channel banks 
Cutbanks 

Cross-section 

fo;:; 
CJ 

--

Example Fans Joe Hutch Canyon Big Canyon 
Wire Fence Canyon 
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ill IV v 

Moderately Inactive Very Inactive 
Active 

No debris flow No debris flow No debris flow history 
history history 

Some Cryptogamic crusts on 
cryptogamic crust channel bottom 
on channel High percentage of 
bottom gravels and boulders in 

channel bottom cove.red 
in CaC03, lichen, and 
varnish 

Woody Sagebrush, and Large diameter woody 
vegetation rabbi thrush in vegetation (sagebrush) 
such as channel bottom, dominant in channel 
sagebrush small Juniper, bottom and on 
exists in cottonwood and intermediate terraces 
channel bottom tarnrisk grow in Large Juniper, 
and on inset channel bottom cottonwood and tamrisk 
terraces grow in channel bottom 

Terraces have developed 
cryptogarns, lichen, 
varnish and CaC03 on 
rocks and large woody 
vegetation 
V-shaped cross section; 
eroding banks, many
boulders from channel 
walls have fallen into the 
main channel 

.<> 
o· 

a� 
t, ·  

0 

Steer Ridge Trail Canyon Lion Hollow 
Calf Canyon 
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APPENDIX H. Climate Stations and Data around Desolation Canyon 

Station Location Elev. Record Mean annual Summer Winter July-Sept 
(m) length precipitation Precipation Precipitation Precipitation 

(mm) % % % 
Sunnyside, 39 34'N 110 22' 2068 4/58-7/88 1335.0 56 44 33 
UT w 

Nutters 39 48'N 110 1764 7/63-10/01 1162.0 57 43 31 
Ranch, UT 15'W 
Price BLM, 39 36'N 110 1690 7/68-10/01 1523.0 52 48 32 
UT 49'W 
Myton, UT 40 12'N 110 1548 7/48-10/01 669.3 59 41 30 

04'W 
Wellington, 39 33'N 110 1645 6/80-10/01 931.4 58 42 36 
UT 4l 'W 
Bonanza 40 0l' Nl 01 1661 7/48- 6/93 886.3 57 43 29 

l l 'W 
Ouray 4008 Nl 09 39 1423 8/55-10/01 6%.0 58 42 30 

w 

Woodside, 39 16'N 110 1414 5/40-12/58 693.l 52 48 28 
UT 2l 'W 
Green 38 59'N 110 09' 1240 1/47-10/01 665.8 54 46 31 
River, UT w 

Aviation 

Station Station Elev. Record Mean annual Avg Avg.annual Avg. annual 
number (m) length precipitation annual low temp(F) snowfall 

(mm) high temp (in) 

(F) 
Sunnyside, UT 428474 2068 4/58-7/88 1335.0 58 33.4 36.5 
Nutters Ranch, UT 426340 1764 7/63-10/01 1162.0 62.1 30.2 45.6 
Price BLM, UT 1690 7/68-10/01 1523.0 
Myton, UT 425969 1548 7/48-10/01 669.3 61.9 30.2 14.49 
Wellington, UT 1645 6/80-10/01 931.4 
Bonanza 420802 1661 7/48- 6/93 886.3 62.6 33.� 24.5 
Ouray 4NE 42658 1423 8/55-10/01 696.0 63.7 31.7 15.5 
Woodside, UT 1414 5/40-12/58 693.1 
Green River, UT 423418 1240 1/47-10/01 665.8 69.6 35.4 6.29 
Aviation 



APPENDIX I. Air Photo Information 
Date 

Aerial Photographs 
9/16/36 
Fall or Spring 1963 
10/5/93 

Digital Orthophotos 
7/87 

Discharge m3/s 

64 
57 
55 

255 

ft3/s 

2260 
2000 
1950 

9000 

Scale 

1: 12,000 
1: 4,000 
1: 5000 

1: 25,000 

Source 

National Archives 
Unknown 
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Bureau of Reclamation, Salt Lake City, 
UT 

USGS 
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APPENDIX J. Grain-size data for detailed stud! sites 
Average Largest Average 
si7.e of boulder diameter of 10 

Fan Name reworked Diameter largest 
River particles2 

(m) boudlers 3(m)
Mile' (cm) 

80 R Rock House Canyon 13.21 1.90 1.32 
79 L Little Rock House Canyon 25.74 1.85 1.48 

69.8 R Jack Creek 20.67 1.50 1.19 
66 L -

65.8 L Firewater Canyon 31.64 2.10 1.59 
65.5 R Cedar Ridge Canyon 17.6 1.25 0.95 
65 L -

63 R Aat Canyon 13.79 1.25 0.89 
59.4 R Fretwater 42.76 4.30 3.19 
58.4 L Wild Horse Canyon 24.71 1.20 0.89 
56.5 R - 25.38 6.71 2.85 
54.7 L Log Cabin 23.11 2.28 1.24 
54.3 L - 38.89 4.30 3.4 
51.3 R Snap Canyon 24.49 3.10 1.36 
49 L - 26.14 3.30 2.79 

48.6 L Belknap 21.95 4.70 2.46 
45.9 R Trail Canyon 28.86 2.76 2.30 
42.9 R Moonwater Canyon 23.26 1.89 1.44 
41.5 L Joe Hutch Creek 35.57 4.33 3.20 
40.5 R Joe Hutch Canyon 34.17 2.03 
37 R Wire Fence Canyon 26.53 2.65 1.71 

36.5 L Thre.: Fords Canyon 26.53 4.70 3.55 
32.3 L Spring Wash Canyon 15.22 1.90 1.45 
28.9 R Rabbit Valley 27.76 2.45 1.60 
28.3 R Curry Canyon 26.07 1.85 1.38 
28 R -

16.l L Butler Canyon 
14.3 L Stone House 33.21 1.77 1.65 
Cyn
Av .

I River mile upstream from the railroad bridge at Green River, UT; 2 Gravel counts were conducted 
in reworked segment of debris fan at low Green River flow (42.5 m 3/s); 3Largest boulders also located
in reworked segment of debris fan 
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Appendix K. Rock Hardness Data 
Mesa Verde Group- Mesa Verde Group-

Parameter Green River Fm-sh] Sstl sst2 Mesa Verde Group sstJ 

rock type Shale/sst Sandstone grey sandstone sandstone 

age Tertiary Creataceous Cretaceous Cretaceous 
RL above Nefertiti RM 

location Uinta Basin RL@ Nefertiti RM 20 21 RL below Rattlesnake M22 

Intact rock strength 
(Schmidt Hammer 'R') 24-42 44-60 44-56 46-52 

average 35.3 55.9 52.65 55.2 

r: 5 18 18 18 

Weathering moderately wx slightly weathered slightly wx slightly wx 

r: 7 9 9 9 

Joint Spacing (m) 1-0.3 1-0.3 1-.3 1-0.3

r:21 21 21 21 
fair; nearly horizontal fair; nearly horizontal fair; nearly horizontal 

Joint orientations dips dips dips fair; nearly horizontal dips 

r: 14 14 14 14 

Width of Joints (mm) 5-20 l-5 mm 1-5 5-20 mm 

r:4 5 5 4 

continuity of joints few; continuous continuous; thin infill continous; thin infill continuous; no infill 

r: 5 4 4 5 

outflow of groundwater none none trace none 

r: 6 6 5 6 

Moderate (3) Strong (2) Strong (2) Strong (2) 

Total Ratio!!: 62 77 76 77 

Harden (1980) rating 2 7 7 7 

28 38 33 52 60 58 52 48 50 52 50 62 

Schmidt Hammer Data: 34 28 40 46 60 58 48 48 52 60 48 54 
36 42 40 56 56 60 44 54 52 52 54 48 
42 44 40 52 52 54 50 52 54 46 56 48 
44 38 42 52 58 44 52 54 48 58 52 52 
24 38 28 46 60 58 48 56 48 56 52 46 
30 24 30 52 60 54 56 52 52 60 46 50 

34 38 28 48 58 54 56 52 52 52 48 48 
34 40 38 50 56 56 56 56 58 62 52 1600 
28 32 26 58 52 60 58 56 56 58 58 29 
38 44 1164.0 48 56 58 56 48 48 62 58 55.1724 
32 22 35.3 50 60 54 �8 52 54 379 

20 52 56 52 �8 50 50 
Total: 46 60 56 54 58 56 
Average: 50 60 56 46 56 2580 

50 60 2796 48 48 
60 54 55.92 50 42 52.653 
58 60 42 56 0612 
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Mesa Verde Group Mesa Verde Group 

Parameter sst4 sst5 Mancos Shale I Mancos Shale2 

rock type sandstone sandstone shale/siltstone shale/siltstone 

age Cretaceous Cretaceous Cretaceous Cretaceous 

RL below Rattlesnake RL@mouthof RMI! DS from 

location M22 Rattlesnake swasey's Jensen Bridge- RM182 

Intact rock strength 
(Schmidt Hammer 'R') 54-64 30-52 18-28 20-40

average 59.8 46.3 22.3 29.18 

r: 18 14 5 5 

Weathering slightly wx slightly wx moderately wx moderately wx 

r: 9 9 7 7 

Joint Spacing (m) l--.3 1-.3 300-50 mm 300-50

r: 21 21 15 15 

fair;oearly horizontal fair; nearly horizontal fair; nearly horizontal 

Joint orientations dips dips dips fair; nearly horizontal dips 

r: 14 14 14 14 

Width of Joints (mm) 5-20mm 5--20mm 5-20mm >20 mm

di 4 4 2 

continuity of joints continuous; no infill continuous; no infill continuous; thin infill continuous; thin infill 

r: 5 5 4 4 

outflow of groundwater none none none none 

r: 6 6 6 6 

Strong (2) Strong (2) weak (4) weak (4) 

Total Rating 77 73 SS 53 

Harden (1980) rating 7 7 

Schmidt Hammer Data: 56 58 56 30 46 42 28 24 24 22 26 20 

60 58 62 42 44 42 28 22 26 22 22 28 

54 62 58 50 40 52 12 16 20 22 26 38 

54 60 64 50 38 50 40 16 22 24 22 40 

62 52 60 48 42 42 22 20 18 26 18 18 

68 62 62 48 46 48 18 18 12 30 26 40 

50 54 58 50 46 42 18 18 20 28 28 42 

56 54 54 52 38 50 28 20 22 26 24 42 

58 58 1736 52 48 1344 30 22 646 30 32 44 

58 62 34 44 14 20 18 36 934 

Total: 54 52 59.86 42 46 46.34 26 ·22 22.27 20 22 

Average: 26 26 29.18 

20 



PLATE 1: 
Surficial Geology of Desolat ion Canyon 
on the Green River, east-central Utah 
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PLATE 2: 
Surficial Geology of Gray Canyon on 
the Green River east-central Utah 
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