
ar
X

iv
:0

80
1.

43
09

v1
  [

as
tr

o-
ph

] 
 2

8 
Ja

n 
20

08

Reconstruction of Longitudinal Profiles of Ultra-High Energy Cosmic Ray

Showers from Fluorescence and Cherenkov Light Measurements

M. Unger a,∗, B.R. Dawson b, R. Engel a, F. Schüssler a and R. Ulrich a

aInstitut für Kernphysik, Forschungszentrum Karlsruhe, Postfach 3640, 76021 Karlsruhe, Germany
bDepartment of Physics, University of Adelaide, Adelaide 5005, Australia

Abstract

We present a new method for the reconstruction of the longitudinal profile of extensive air showers induced by ultra-high energy

cosmic rays. In contrast to the typically considered shower size profile, this method employs directly the ionization energy deposit

of the shower particles in the atmosphere. Due to universality of the energy spectra of electrons and positrons, both fluorescence

and Cherenkov light can be used simultaneously as signal to infer the shower profile from the detected light. The method is

based on an analytic least-square solution for the estimation of the shower profile from the observed light signal. Furthermore, the

extrapolation of the observed part of the profile with a Gaisser-Hillas function is discussed and the total statistical uncertainty of

shower parameters like total energy and shower maximum is calculated.
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1. Introduction

The particles of an extensive air shower excite nitrogen
molecules in the atmosphere, which subsequently radiate
ultraviolet fluorescence light isotropically. This fluorescence
light signal can be measured with appropriate optical de-
tectors such as the fluorescence telescopes of HiRes [1], the
Pierre Auger Observatory [2] or the Telescope Array [3].

The number of emitted fluorescence photons is expected
to be proportional to the energy deposited by the shower
particles. Recent measurements of the fluorescence yield in
the laboratory confirm this expectation within the experi-
mental uncertainties [4,5,6]. Non-radiative processes of ni-
trogen molecule de-excitation lead to a temperature, pres-
sure and humidity dependence of the fluorescence yield (see
e.g. [7]). For atmospheric parameters of relevance to the
reconstruction of air showers of ultra-high energy cosmic
rays, the pressure dependence of the ionization energy de-
posit per meter track length of a charged particle is almost
perfectly canceled by the pressure dependence of the fluo-
rescence yield (see, for example, [8]). Therefore only a weak
pressure and temperature dependence has to be taken into
account if the number of emitted photons is converted to
a number of charged particle times track length, as has
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been done in the pioneering Fly’s Eye experiment [9]. The
reconstructed longitudinal shower profile is then given by
the number of charged particles as function of atmospheric
depth.

The approximation of assuming a certain number of flu-
orescence photons per meter of charged particle track and
the corresponding expression of the longitudinal shower
development in terms of shower size are characterized by
a number of conceptual shortcomings. Firstly the energy
spectrum of particles in an air shower changes in the course
of its development. A different rate of fluorescence pho-
tons per charged particle has to be assumed for early and
late stages of shower development as the ionization en-
ergy deposit depends on the particle energy [10]. Secondly
the tracks of low-energy particles are not parallel to the
shower axis leading to another correction that has to be ap-
plied [11]. Thirdly the quantity “shower size” is not suited
to a precise comparison of measurements with theoretical
predictions. In air shower simulations, shower size is de-
fined as the number of charged particles above a given en-
ergy threshold Ecut that cross a plane perpendicular to the
shower axis. Setting this threshold very low to calculate
the shower size with an accuracy of ∼ 1% leads to very
large simulation times as the number of photons diverges
for Ecut → 0. Moreover, the shower size reconstructed from
data depends on simulations itself since the shower size is

Preprint submitted to Elsevier 28 January 2008

http://arXiv.org/abs/0801.4309v1


not directly related to the fluorescence light signal.
These conceptual problems can be avoided by directly

using energy deposit as the primary quantity for shower
profile reconstruction as well as comparing experimental
data with theoretical predictions. Due to the proportional-
ity of the number of fluorescence photons to the energy de-
posit, shower simulations are not needed to reconstruct the
total energy deposit at a given depth in the atmosphere.
Another advantage is that the calorimetric energy of the
shower is directly given by the integral of the energy de-
posit profile [12]. Furthermore the energy deposit profile
is a well-defined quantity that can be calculated straight-
forwardly in Monte Carlo simulations and does not depend
on the simulation threshold [13].

Most of the charged shower particles travel faster
than the speed of light in air, leading to the emission of
Cherenkov light. Thus, in general, the optical signal of an
air shower consists of both fluorescence and Cherenkov
light contributions. In the traditional method [9] for the
reconstruction of the longitudinal shower development, the
Cherenkov light is iteratively subtracted from the measured
total light. The drawbacks of this method are the lack of
convergence for events with a large amount of Cherenkov
light and the difficulty of propagating the uncertainty of
the subtracted signal to the reconstructed shower profile.

An alternative procedure, used in [14], is to assume a
functional form for the longitudinal development of the
shower, calculate the corresponding light emission and vary
the parameters of the shower curve until a satisfactory
agreement with the observed light at the detector is ob-
tained. Whereas in this scheme the convergence problems
of the aforementioned method are avoided, its major dis-
advantage is that it can only be used if the showers indeed
follow the functional form assumed in the minimization.

It has been noted in [15] that, due to the universality of
the energy spectra of the secondary electrons and positrons
within an air shower, there exists a non-iterative solution
for the reconstruction of a longitudinal shower profile from
light detected by fluorescence telescopes.

Here we will present an analytic least-square solution for
the estimation of the longitudinal energy deposit profile of
air showers from the observed light signal, in which both
fluorescence and Cherenkov light contributions are treated
as signal. We will also discuss the calculation of the statis-
tical uncertainty of the shower profile, including bin-to-bin
correlations. Finally we will introduce a constrained fit to
the detected shower profile for extrapolating it to the re-
gions outside the field of view of the fluorescence telescope.
This constrained fit allows us to always use the full set of
profile function parameters independent of the quality of
the detected shower profile.

2. Fluorescence and Cherenkov Light Signals

The non-scattered, i.e. directly observed fluorescence
light emitted at a certain slant depth Xi is measured at

the detector at a time ti. Given the fluorescence yield Y f
i

[4,16,17,5] at this point of the atmosphere, the number of
photons produced at the shower in a slant depth interval
∆Xi is

N f
γ(Xi) = Y f

i wi ∆Xi. (1)

Here, wi denotes the energy deposited per unit depth at
slant depth Xi (cf. Fig. 1) and is defined as

wi =
1

∆Xi

∫ 2π

0

dϕ

∫
∞

0

rdr

∫

∆zi

dz
dEdep

dV
, (2)

where dEdep/dV is the energy deposit per unit volume and
(ϕ, R, z) are cylinder coordinates with the shower axis at
R = 0. The distance interval ∆zi along the shower axis
is given by the slant depth interval ∆Xi. The fluorescence
yield Y f

i is the number of photons expected per unit de-
posited energy for the atmospheric pressure and tempera-
ture at slant depth Xi. The photons from Eq. (1) are dis-
tributed over a sphere with surface 4 π r2

i , where ri denotes
the distance of the detector. Due to atmospheric attenu-
ation only a fraction Ti of them reach the detector aper-
ture with area A. Given a light detection efficiency of ε, the
measured fluorescence light flux yf

i can be written as

yf
i = di Y f

i wi ∆Xi, (3)

where the abbreviation di = ε Ti
A

4 π r2

i

is used. For the sake

of clarity the wavelength dependence of Y , T and ε will be
disregarded in the following, but discussed later.
The number of Cherenkov photons emitted at the shower
is proportional to the number of charged particles above
the Cherenkov threshold energy. Since the electromagnetic
component dominates the shower development, the emitted
Cherenkov light, NC

γ , can be calculated from

NC
γ (Xi) = Y C

i N e
i ∆Xi, (4)

where N e
i denotes the number of electrons and positrons

above a certain energy cutoff, which is constant over the full
shower track and not to be confused with the Cherenkov
emission energy threshold. Details of the Cherenkov
light production like these thresholds are included in the
Cherenkov yield factor Y C

i [15,18,19,20].
Although Cherenkov photons are emitted in a narrow

cone along the particle direction, they cover a consider-
able angular range with respect to the shower axis, because
the charged particles are deflected from the primary par-
ticle direction due to multiple scattering. Given the frac-
tion fC(βi) of Cherenkov photons per solid angle emitted
at an angle βi with respect to the shower axis [18,20], the
light flux at the detector aperture originating from direct
Cherenkov light is

yCd
i = di fC(βi)Y C

i ∆Xi N e
i . (5)

Due to the forward peaked nature of Cherenkov light pro-
duction, an intense Cherenkov light beam builds up along
the shower as it traverses the atmosphere (cf. Fig. 1). If
a fraction fs(βi) of the beam is scattered towards the ob-
server it can contribute significantly to the total light re-
ceived at the detector. In a simple one-dimensional model

2
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Fig. 1. Illustration of the isotropic fluorescence light emission (solid circles), Cherenkov beam along the shower axis (dashed arcs) and the
direct (dashed lines) and scattered (dotted lines) Cherenkov light contributions.

the number of photons in the beam at depth Xi is just the
sum of Cherenkov light produced at all previous depths Xj

attenuated on the way from Xj to Xi by Tji:

Nbeam
γ (Xi) =

i∑

j=0

Tji Y C
j ∆Xj N e

j . (6)

Similar to the direct contributions, the scattered Cherenkov
light received at the detector is then

yCs
i = di fs(βi)

i∑

j=0

Tji Y C
j ∆Xj N e

j . (7)

Finally, the total light received at the detector at the time
ti is obtained by adding the scattered and direct light con-
tributions:

yi = yf
i + yCd

i + yCs
i . (8)

3. Analytic Shower Profile Reconstruction

The aim of the profile reconstruction is to estimate the
energy deposit and/or electron profile from the light flux
observed at the detector. At first glance this seems to be
hopeless, since at each depth there are the two unknown
variables wi and N e

i , and only one measured quantity,
namely yi. Since the total energy deposit is just the sum
of the energy loss of electrons, wi and N e

i are related via

wi = N e
i

∫
∞

0

fe(E, Xi) we(E) dE, (9)

where fe(E, Xi) denotes the normalized electron energy
distribution and we(E) is the energy loss per unit depth of a
single electron with energy E. As is shown in [15,19,20], the
electron energy spectrum fe(E, Xi) is universal in shower
age si = 3/(1 + 2Xmax/Xi), i.e. it does not depend on the
primary mass or energy, but only on the relative distance to
the shower maximum, Xmax. Eq. (9) can thus be simplified
to

wi = N e
i αi. (10)

where αi is the average energy deposit per unit depth per
electron at shower age si. Parameterizations of αi can be
found in [10,20]. With this one-to-one relation (Eq. 10)
between the energy deposit and the number of electrons,
the shower profile is readily calculable from the equations
given in the last section. For the solution of the problem,
it is convenient to rewrite the relation between energy de-
posit and light at the detector in matrix notation: Let y =
(y1, y2, . . . , yn)T be the n-component vector (histogram)
of the measured photon flux at the aperture and w =
(w1, w2, . . . , wn)T the energy deposit vector at the shower
track. Using the expression

y = Cw (11)

the elements of the Cherenkov-fluorescence matrix C can be
found by a comparisonwith the coefficients in equations (3),
(5) and (7):

Cij =






0, i < j

cd
i + cs

ii, i = j

cs
ij , i > j,

(12)

where

cd
i = di

(
Y f

i + fC(βi)Y C
i /αi

)
∆Xi (13)

and

cs
ij = di fs(βi) Tji Y C

j /αj ∆Xj . (14)

The solution of Eq. (11) can be obtained by inversion, lead-
ing to the energy deposit estimator ŵ:

ŵ = C−1y . (15)

Due to the triangular structure of the Cherenkov-
fluorescence matrix the inverse can be calculated quickly
even for matrices with large dimension. As the matrix ele-
ments in Eq. (12) are always ≥ 0, C is never singular.
The statistical uncertainties of ŵ are obtained by error
propagation:

Vw = C−1 Vy

(
CT

)
−1

. (16)
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Fig. 2. Example of a simulated 1019 eVproton shower.

It is interesting to note that even if the measurements yi

are uncorrelated, i.e. their covariance matrix Vy is diag-
onal, the calculated energy loss values ŵi are not. This is
because the light observed during time interval i does not
solely originate from wi, but also receives a contribution
from earlier shower parts wj , j < i, via the ’Cherenkov
light beam’.

4. Wavelength Dependence

Until now it has been assumed that the shower induces
light emission at a single wavelength λ. In reality, the
fluorescence yield shows distinct emission peaks and the
number of Cherenkov photons produced is proportional to
1
λ2 . In addition the wavelength dependence of the detector
efficiency and the light transmission need to be taken into
account. Assuming that a binned wavelength distribution

of the yields is available (Yik =
∫ λk+∆λ

λk−∆λ
Yi(λ) dλ), the

above considerations still hold when replacing cd
i and cs

ij

in Eq. (12) by

c̃ d
i = ∆Xi

∑

k

dik

(
Y f

ik + fC(βi)Y C
ik/αi

)
(17)

and
c̃ s
ij = ∆Xj

∑

k

dik fs(βi) Tjik Y C
jk/αj , (18)

where

dik =
εk Tik

4 π r2
i

. (19)

The detector efficiency εk and transmission coefficients Tik

and Tjik are evaluated at the wavelength λk.

5. Validation with Air Shower Simulations

In order to test the performance of the reconstruction
algorithm we will use in the following simulated fluores-
cence detector data. For this purpose we generated proton
air showers with an energy of 1019 eV with the CONEX [21]

event generator. The resulting longitudinal charged parti-
cle and energy deposit profiles were subsequently fed into
the atmosphere and detector simulation package [22] of the
Pierre Auger Observatory. The geometry and profile of the
events in this simulated data sample was then reconstructed
within the Auger offline software framework [23].
Only events satisfying basic quality selection criteria have
been used in the analysis. In order to assure a good re-
construction of the shower geometry, the angular length
of the shower image on the camera was required to be
larger than nine degrees. Moreover, we only selected events
with at least one coincident surface detector tank (so-called
hybrid geometry reconstruction [24]). Furthermore we re-
jected under-determined measured longitudinal profiles by
demanding an observed slant depth length of ≥ 300 g cm−2

and a reconstructed shower maximum within the field of
view of the detector.
An example of a simulated event is shown in Fig. 2, illus-
trating that the shape of the light curve at the detector
can differ considerably from the one of the energy deposit
profile due to the scattered Cherenkov light detected at
late stages of the shower development. The reconstructed
energy deposit curve, however, shows on average a good
agreement with the generated profile.
Since longitudinal air shower profiles exhibit similar shapes
when transformed from slant depth X to shower age s (see
for instance [25]), a good test of the profile reconstruction
performance is to compare the average generated and re-
constructed energy deposit profiles as a function of s nor-
malized to the energy deposit at shower maximum. As can
be seen in Fig. (3), the difference between these averages
is ≤ 1.5% and it can be concluded that the matrix method
introduced here performs well in reconstructing air shower
profiles without a prior assumption about their functional
shape.

4
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Fig. 3. Average generated and reconstructed energy deposit profiles.

6. Shower Age Dependence

Due to the age dependence of the electron spectra
fe(E, si), the Cherenkov yield factors Y C

i and the average
electron energy deposits αi depend on the depth of shower
maximum, which is not known before the profile has been
reconstructed. Fortunately, these dependencies are small:
In the age range of importance for the shower profile recon-
struction (s ∈ [0.8, 1.2]) α varies by only a few percent [20]
and Y C by less than 15% [15]. Therefore, a good estimate
of α and Y C can be obtained by setting s = 1 over the full
profile or by estimating Xmax from the position maximum
of the detected light profile. After the shower profile has
been calculated with these estimates, Xmax can be deter-
mined from the energy deposit profile and the profile can
be re-calculated with an updated Cherenkov-fluorescence
matrix. The convergence of this procedure is shown in
Fig. 5. After only one iteration the Xmax (energy) differs
by less than 0.1 g cm−2 (0.1%) from its asymptotic value.
Note that age dependent effects of the lateral spread of the
shower on the image seen at the detector [26,27], though
not discussed in detail here, have also been included in the
simulation and reconstruction.

7. Gaisser-Hillas Fit

A knowledge of the complete profile is required for the
calculation of the Cherenkov beam and the shower energy.
If due to the limited field of view of the detector only a part
of the profile is observed, an appropriate function for the
extrapolation to unobserved depths is needed. A possible
choice is the Gaisser-Hillas function [28]

fGH(X) = wmax

(
X − X0

Xmax − X0

)(Xmax−X0)/λ

e(Xmax−X)/λ ,

(20)

number of iterations
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Fig. 5. Xmax and energy difference with respect to the tenth shower
age iteration.

which was found to give a good description of measured
longitudinal profiles [29]. It has four free parameters: Xmax,
the depth where the shower reaches its maximum energy
deposit wmax and two shape parameters X0 and λ.
The best set of Gaisser-Hillas parameters p can be ob-
tained by minimizing the error weighted squared difference
between the vector of function values fGH and ŵ, which is

χ2
GH = [ ŵ − f(p)]

T
Vw

−1 [ ŵ − f(p)] . (21)

This minimization works well if a large fraction of the
shower has been observed below and above the shower max-
imum. If this is not the case, or even worse, if the shower
maximum is outside the field of view, the problem is under-
determined, i.e. the experimental information is not suffi-
cient to reconstruct all four Gaisser-Hillas parameters. This
complication can be overcome by constraining X0 and λ to
their average values 〈X0〉 and 〈λ〉. The new minimization
function is then the modified χ2

χ2 = χ2
GH +

(X0 − 〈X0〉)
2

VX0

+
(λ − 〈λ〉)2

Vλ
, (22)

where the variances of X0 and λ around their mean values
are in the denominators.
In this way, even if χ2

GH is not sensitive to X0 and λ, the
minimization will still converge. On the other hand, if the
measurements have small statistical uncertainties and/or
cover a wide range in depth, the minimization function is
flexible enough to allow for shape parameters differing from
their mean values. These mean values can be determined
from air shower simulations or, preferably, from high qual-
ity data profiles which can be reconstructed without con-
straints.
Eq. (22) can be easily extended to incorporate correlations
between X0 and λ and the energy dependence of their mean
values. Air shower simulations indicate a small logarithmic
energy dependence of the latter (≤ 25% and 5% per decade
for X0 and λ respectively [30]). In practice it is sufficient to
use energy independent values determined at low energies,
because at high energies the number of measured points
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Fig. 4. Energy and Xmax reconstruction accuracy as function of the amount of detected Cherenkov light.

is large and thus the constraints do not contribute signifi-
cantly to the overall χ2.

The accuracy of the reconstructed energy, obtained by
integrating over the Gaisser-Hillas function (see below),
and that of the depth of shower maximum, are displayed
in Fig. 4 as a function of the relative amount of Cherenkov
light. Note that the good resolutions of≈ 7% and 20 g cm−2

are of course not a feature of the reconstruction method
alone, but depend strongly on the detector performance
and quality selection. The mean values of difference to the
true shower parameters, however, which are close to zero for
both fluorescence and Cherenkov light dominated events,
indicate that both light sources are equally suited to recon-
struct the longitudinal development of air showers.
A slight deterioration of the resolutions can be seen for
events with a very small Cherenkov contribution of < 10%.
Such showers are either inclined events which developed
high in the atmosphere where the light scattering probabil-
ities are low or deep vertical showers, for which most of the
late part of the shower is below ground level. Both topolo-
gies result in a somewhat worse resolution: The former cor-
respond to larger than average distances to the detector
and the latter to shorter observed profiles.

8. Error Propagation

A realistic estimate of the statistical uncertainties of im-
portant shower parameters is desired for many purposes,
like data quality selection cuts, or the comparison between
independent measurements like the surface and fluores-
cence detector measurements of the Pierre Auger Obser-
vatory or the Telescope Array. The uncertainties of wmax,
Xmax, X0 and λ obtained after the minimization of Eq. (22),
reflect only the statistical uncertainty of the light flux,
which is why these errors will be referred to as ’flux uncer-
tainties’ (σflux) in the following. Additional uncertainties
arise from the uncertainties on the shower geometry (σgeo),
atmosphere (σatm) and the correction for invisible energy
(σinv).

8.1. Flux uncertainty of the calorimetric energy

Even with the flux uncertainties of the Gaisser-Hillas
parameters it is not straightforward to calculate the flux
uncertainty of the calorimetric energy, which is given by
the integral over the energy deposit profile:

Ecal =

∫
∞

0

fGH(X) dX . (23)

To solve this integral one can substitute

t =
X − X0

λ
and ξ =

Xmax − X0

λ
(24)

in the Gaisser-Hillas function Eq. (20) to get

fGH(t) = wmax

(
e

ξ

)ξ

e−t tξ, (25)

which can be identified with a Gamma distribution. There-
fore, the above integral is given by

Ecal = λwmax

(
e

ξ

)ξ

Γ(ξ + 1) , (26)

where Γ denotes the Gamma-function. Thus, instead of do-
ing a tedious error propagation to determine the statistical
uncertainty of Ecal one can simply use it directly as a free
parameter in the fit instead of the conventional factor wmax:

fGH(t) =
Ecal

λΓ(ξ + 1)
e−t tξ (27)

In this way, σflux(Ecal) is obtained directly from the χ2 +1
contour of Eq. (22).

8.2. Geometric uncertainties

Due to the uncertainties on the shower geometry, the
distances ri to each shower point are only known within
a limited precision and correspondingly the energy de-
posit profile points are uncertain due to the transmission
factors T (ri) and geometry factors 1/(4 π r2

i ). Further-
more, the uncertainty of the shower direction, especially

6



the zenith angle θ, affects the slant depth calculation via
Xslant = Xvert/ cos θ and thus Xmax. Finally, the amount
of direct and scattered Cherenkov light depends on the
shower geometry, too, via the angles βi.

The algorithms used to reconstruct the shower geome-
try from fluorescence detector data usually determine the
following five parameters [9], irrespective of whether the
detectors operate in monocular, stereo or hybrid mode:

α = {θSDP, ΦSDP, T0, Rp, χ0}. (28)

θSDP and ΦSDP are the angles of the normal vector of a
plane spanned by the shower axis and the detector (the so
called shower-detector-plane), χ0 denotes the angle of the
shower within this plane and T0 and Rp are the time and
distance of the shower at its point of closest approach to
the detector.
For any function q(α) standard error propagation yields the
geometric uncertainty

σ2
geom(q) =

5∑

i=1

5∑

j=1

dq

dαi

dq

dαj
V α

ij , (29)

where Vα denotes the covariance matrix of the axis param-
eters. As the calorimetric energy and Xmax depend non-
trivially on the shower geometry, the above derivatives need
to be calculated numerically, i.e. by repeating the profile
reconstruction and Gaisser-Hillas fitting for the ten new
geometries given by αi ±

√
V α

ii ≡ αi ± σi to obtain

∆i =
dq

dαi
σi

≈
1

2
[ q(αi + σi) − q(αi − σi) ], (30)

with which Eq. (29) reads as

σ2
geom(q) =

5∑

i=1

5∑

j=1

∆i∆jρij (31)

where

ρij =
V α

ij√
V α

ii V α
jj

(32)

denote the correlation coefficients of the geometry param-
eters αi and αj .

8.3. Atmospheric uncertainties

Whereas the Rayleigh attenuation is a theoretically well
understood process, the molecular density profiles and
aerosol content of the atmosphere vary due to environ-
mental influences and need to be well monitored in order
to determine the slant depth and transmission coefficients
needed for the profile reconstruction. Uncertainties in
these measured atmospheric properties (see for instance
[31,32]) can be propagated in the same way as the geo-
metric uncertainties by determining the one sigma shower
parameter deviations via Eq. (30).
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8.4. Invisible energy

Not all of the energy of a primary cosmic ray particle ends
up in the electromagnetic part of an air shower. Neutrinos
escape undetected and muons need long path lengths to
fully release their energy. This is usually accounted for by
multiplying the calorimetric energy, Eq. (23), with a cor-
rection factor finv determined from shower simulations to
obtain the total primary energy

Etot = finv Ecal. (33)

The meson decay probabilities, and thus the amount of neu-
trino and muon production, decrease with energy, therefore
finv depends on the primary energy. For instance, in [33] it
is parameterized as

finv = (a + bEc
cal)

−1
, (34)

where a, b and c denote constants depending on the pri-
mary composition and interaction model assumed 1 . This
energy dependence needs to be taken into account when
propagating the calorimetric energy uncertainty to the to-
tal energy uncertainty.

Due to the stochastic nature of air showers, the correc-
tion factor is subject to shower-to-shower fluctuations. The
statistical uncertainty of finv was determined in [34] and
can be parameterized as follows:

σ(finv) ≈ 1.663 · 106 · lg(Etot/ eV)−6.36. (35)

Typical values are 2.5% at 1017 eV and 0.9% at 1020 eV.

8.5. Total statistical uncertainty

Summarizing the above considerations, the statistical
variance of the total energy is

σ2
stat(Etot) = E2

tot σ2(finv)

+

(
dfinv

dEcal
Ecal + finv

)2 ∑

i

σ2
i (Ecal), (36)

1 Note that here only the statistical uncertainties of the invisible
energy correction are discussed. For an estimate on the related sys-

tematic uncertainties see [34]
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where i runs over the geometric, atmospheric and flux un-
certainties. Since the invisible energy correction does not
affect the depth of shower maximum, its uncertainty is sim-
ply given by

σstat(Xmax) =

√∑

i

σ2
i (Xmax) . (37)

Again we use simulated events to verify the validity of the
above considerations. The pull distributions of the recon-
structed energy and shower maximum, shown in Fig. 37,
both have a width of approximately one, which means that
the total uncertainties from Eqs. (36) and (37) are good
estimators for the actual event-by-event measurement un-
certainties.

9. Conclusions and Outlook

In this paper a new method for the reconstruction of
longitudinal air shower profiles was presented. With the
help of simulations we have shown that the least square
solution yields robust and unbiased results and that un-
certainties of shower parameters can be reliably calculated
for each event.
Events with a large Cherenkov light contribution are cur-
rently usually rejected during the data analysis (see for
instance [14,35]) However, as we have shown, there is no
justification for rejecting such showers, once experimen-
tal systematic uncertainties are well understood. Because
events with a large Cherenkov contribution have different
systematic uncertainties to those dominated by fluores-
cence light, both event classes can be compared to study
their compatibility.
At energies below 1017.5 eV, where new projects [36,37]
are planned to study the transition from galactic to ex-
tragalactic cosmic rays, events with a large fraction of
direct Cherenkov light will dominate the data samples,
because the amount of light, and thus trigger probability,
of these events is much larger than that of a fluorescence
dominated shower. If at these energies it is still possible to
measure an accurate shower geometry, the fluorescence de-
tectors should in fact be used as Cherenkov-Fluorescence
telescopes.
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