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Abstract In this study, a new physically based multiscalar drought index, the Standardized Moisture
Anomaly Index (SZI), was developed and evaluated, which combines the advantages of the Palmer
Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). The SZI
is based on the water budget simulations produced with a sophisticated hydrological model, and it also
includes a multiscalar feature to quantify drought events at different temporal scales taken from SPEI.
The Chinese Loess Plateau was selected to evaluate the performance of the SZI. Our evaluation indicates
that the SZI accurately captures the onset, duration, and ending of a multiyear drought event through its
multiscalar feature, while the PDSI, which lacks this feature, is often unable to describe the evolution of a
multiyear drought event. In addition, the variability of the SZI is more consistent with observed streamflow
and the satellite normalized difference vegetation index than that of the Standardized Precipitation Index
and the SPEI. Although the SPEI includes potential evapotranspiration (PE) as water demand, water demand is
often unrealistically estimated based solely on PE, especially over arid and semiarid regions. The improved
drought quantification with the SZI is the result of a more reasonable estimation of water demand by
including evapotranspiration, runoff, and any change in soil moisture storage. In general, our newly
developed SZI is physically based and includes a multiscalar feature, which enables it to provide better
information for drought monitoring and identification at different temporal scales.

1. Introduction

Drought is recognized as one of the costliest natural disasters in the world [Wilhite, 2000], resulting in 55% of
the economic losses caused by natural disasters [Zhai et al., 2005, 2010]. Based on an analysis of precipitation,
streamflow, and drought indices, Dai [2011, 2013] indicated that the area of global drought has increased
significantly since 1950 in many regions. Northern China, as the largest drought-prone region, experienced
severe droughts during the second half of the twentieth century, and the most severe and prolonged
droughts have occurred since 1990 [Zou et al., 2005; Zhai et al., 2010]. In 1997, a severe drought occurred
in the Yellow River basin, the largest river in northern China, resulting in a streamflow disruption at its outlet
for a period of 226 days, which was the longest in recorded history [Zou et al., 2005]. The 2008/2009 winter
drought in the Huang-Huai-Hai River basin in northern China was one of the worst in the past 50 years,
causing an estimated 2.3 billion U.S. dollars in economic loss and subjecting more than 10million people
to water scarcity [A. H. Wang et al., 2011]. Thus, monitoring, understanding, and predicting drought events
are essential to the well-being of northern China.

Drought is a complex climate phenomenon that results mainly from a long-term deficiency in precipitation
[Yuan and Quiring, 2014]. It is defined in several different ways in terms of applications. For example, a simple
precipitation deficiency is commonly referred to as meteorological drought; hydrological drought is caused
mainly by the lack of surface water and groundwater; and agricultural drought results primarily from low
levels of soil moisture [Sheffield et al., 2004; Sheffield and Wood, 2007; Vicente-Serrano and López-Moreno,
2005; Wang et al., 2009; Hao and AghaKouchak, 2013; Rajsekhar et al., 2015]. These different definitions
make it difficult to objectively quantify drought features such as magnitude, duration, and spatial extent
[Dai et al., 2004; Vicente-Serrano et al., 2011, 2012]. Drought indices are a common way to identify drought
events, and development of such an index for varied applications is essential to water resource prediction
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and management [Palmer, 1965]. In recent years, attempts have been made to develop and evaluate
different drought indices to quantitatively account for various drought characteristics [Wells et al., 2004;
Vicente-Serrano et al., 2010; Xu et al., 2012; Hao and AghaKouchak, 2013; Mu et al., 2013; Rajsekhar et al.,
2015]. However, it is still difficult to establish a universal drought index that can monitor and identify all
kinds of drought [Carbone et al., 2008]. Two prominent drought indices that have been widely used in
climate and hydrology studies are (1) the Palmer Drought Severity Index (PDSI) [Palmer, 1965], based on
the water balance equation, and (2) the Standardized Precipitation Index (SPI) [McKee et al., 1993], based
on a probabilistic precipitation approach.

The PDSI uses a water balance model to compute the cumulative moisture departure on the land surface. It
incorporates antecedent and current moisture supply and demand into a hydrological budget system based
on a simple two-layer bucket model. Here water supply is defined as precipitation, and water demand is
evapotranspiration, runoff, and any changes in soil moisture storage. In the computation of the PDSI, an
intermediate term is defined, called the moisture anomaly index (Z), which is used to calculate the surface
moisture anomaly for the current month [Dai et al., 2004]. Although the PDSI is a physically based index, it
still has several drawbacks, including mainly (1) the use of an oversimplified two-layer bucket-type hydro-
logical model that often unrealistically simulates the water balance components, (2) a strong calibration
influence that often generates unrepresentative model parameters, and (3) fixed temporal scales [Alley,
1984; Wells et al., 2004; Vicente-Serrano et al., 2012; Zhang et al., 2012].

The PDSI uses a two-layer bucket-type model that is based primarily on an empirical water balance equation
and does not consider the impacts of complex topography and the spatial heterogeneity of soil and
vegetation on the hydrological processes in a watershed [Xu et al., 2012]. Zhang et al. [2012, 2014] used
the Variable Infiltration Capacity (VIC) model [Liang et al., 1994] to replace the two-layer bucket-type
model in the PDSI calculations and established a physically based Palmer drought index (VIC-PDSI),
which provides an improved hydrological budget for the PDSI. In addition, the self-calibrated PDSI
(sc-PDSI), developed based on the original PDSI, can generate more representative model parameters
at temporal and spatial scales [Wells et al., 2004; Todd et al., 2013]. However, as reported by Vicente-
Serrano et al. [2011, 2012], the PDSI still lacks the ability to identify drought events within a watershed at
multiple timescales.

To improve on the PDSI drawback of a fixed temporal scale, a multiscalar drought index, the SPI, has been used
to take into account the characteristics of drought at temporal scales varying from 1month to several years
[McKee et al., 1993]. It allows users to examine wet and dry spells over a range of timescales. However,
the main limitation of the SPI is that it is based on precipitation (P) and ignores the effects of atmospheric
water demand [McEvoy et al., 2012; Shi et al., 2014]. In an effort to improve the SPI, Vicente-Serrano et al.
[2010] recently developed the Standardized Precipitation Evapotranspiration Index (SPEI), which accounts
for both water supply and demand and uses the difference between P and potential evapotranspiration
(PE) to evaluate the water deficit or surplus. Similar to the SPI, the calculation of the SPEI is also based
on a probabilistic moisture approach, which enables its multiscalar characteristic. The SPEI represents a
more physically based estimate of dynamic drought severity compared to SPI, particularly in regions that
have experienced significant drying and warming over the last century, and the SPEI and sc-PDSI show a
high correlation [Vicente-Serrano et al., 2010; McEvoy et al., 2012]. However, the PE is not the only variable
that affects the water demand and thus drought conditions, while the surface runoff and soil moisture storage
also play important roles in estimating the water demand [Palmer, 1965].

As described by Palmer [1965], a required amount of precipitation that is climatically appropriate for exist-

ing conditions (CAFEC, defined as bP) is computed in the PDSI to estimate water demand. When the amount

of actual P is equal to bP , the local water will remain normal, without a deficit or surplus. As a result, the
difference between the actual and CAFEC precipitation is a good indicator of water deficiency or surplus;

it is called moisture departure and is expressed as d ¼ P � bP [Wells et al., 2004]. The calculation of bP
includes precipitation, soil moisture loss and recharge, runoff, and evapotranspiration, and all these vari-
ables can affect surface water balance and thus drought conditions, whereas PE considers only atmo-
spheric demand for water. In addition, a weighing factor in the PDSI called the climatic characteristic, Kj,
is defined as the ratio between the long-term averaged water demand and supply [Palmer, 1965], which
is a measure of the local significance of moisture departure. The moisture departure, d, is then converted
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into the Palmer moisture anomaly index as Z= Kjd, which is used to characterize the moisture anomaly
condition for a single month. Since it takes all components of the surface water balance into account, Z
is a more realistic moisture deficit or surplus indicator than the difference between P and PE in the SPEI.
Therefore, the objective of this study is to develop and evaluate a new physically based multiscalar drought
index, the Standardized Moisture Anomaly Index (SZI), which is formulated based on the Z value from the
PDSI and the probabilistic moisture approach of the SPEI. This new drought index combines the strengths
of both the PDSI and SPEI. This paper is arranged as follows: Section 2 focuses on the study area and intro-
duces the data and SZI development, section 3 includes our index evaluation results and discussion, and
the conclusion is given in section 4.

2. Study Area, Data, and Methodology
2.1. Study Area

The Loess Plateau in northern China, one of the driest areas in the world, was selected as our drought index
evaluation area. This plateau covers an area of approximately 6.4 × 105 km2 and is traversed by the upper and
middle reaches of the Yellow River (Figure 1). The plateau is 1000–1600m above sea level and is part of the
Asian monsoon region. The annual average temperature over the northwest portion of the plateau is 4.3°C
and 14.3°C in its southeast portion [Zhang et al., 2013]. The annual precipitation ranges from 200mm in
the northwest to 800mm in the southeast. The unevenly distributed rainfall is one of the main reasons that
the plateau is vulnerable to drought. Precipitation events concentrate mainly from June to September,
accounting for approximately 70% of the total annual precipitation, with much of it coming in the form of
high-intensity storms [Y. Q. Wang et al., 2011]. Most water from heavy rainstorms becomes high surface runoff
(because of insufficient soil infiltration), often causing significant drought conditions in the soil [Brocca et al.,
2010, 2014]. Thus, the Loess Plateau was chosen as our study region to examine the performance of different
drought indices.

The Loess Plateau includes arid, semiarid, and semihumid climate zones, and these different zones help
provide a clear understanding of the performance of drought indices. Following previous research [Yan
and Xu, 2007], the Loess Plateau in this study was also divided into six subregions, based on the complete-
ness of the drainage area and the similarity in precipitation patterns, vegetation cover, and geographical
conditions (Figure 1). These subregions are, respectively, located in semiarid (subregions 1 and 5), semihumid
(subregions 2 and 3), and arid (subregions 4 and 6) climate zones [Zhang et al., 2012].

Figure 1. Spatial distributions of the hydrometric and meteorological stations over six subregions of the Loess Plateau.
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2.2. Data

The meteorological forcing data for driving the VIC model with a daily step came from 73 meteorological
stations in the Loess Plateau and its surrounding area for the period of 1971 through 2012, including daily
precipitation, maximum and minimum air temperatures, solar radiation, relative humidity, pressure, and wind
speed. These observed data were obtained from the Data and Information Center of the China Meteorological
Administration (http://data.cma.gov.cn/site/index.html). In addition, these observed meteorological forcing
data were also used to calculate the SPI and SPEI.

Running the VIC model requires three types of user-defined parameters: soil, vegetation, and watershed
definitions. The soil parameters of the VIC model were obtained from the global 10 km soil profile data
set provided by the National Oceanic and Atmospheric Administration (NOAA) hydrology office [Reynolds
et al., 2000]. The VIC vegetation parameters, including architectural resistance, minimum stomata resistance,
leaf area index, albedo, roughness length, and zero-plane displacement, were obtained from the Land Data
Assimilation System at 1 km resolution [Hansen et al., 2000]. A digital elevation model (DEM) data set was
obtained from the advanced spaceborne thermal emission and reflection radiometer global digital elevation
model (http://gdem.ersdac.jspacesystems.or.jp/), with a spatial resolution of 30m, to delineate the boundaries
of the basin in the VIC model. These DEM data were also used to identify the channel networks, water flow
direction, and other features in the watershed.

The observed monthly hydrologic data from 11 key gauge stations along the Yellow River were from the
Hydrology Bureau of the Yellow River Conservancy Commission of China (http://www.hwswj.gov.cn/swjcms/
index.jsp). These data were used to calibrate and validate the VIC model. In order to minimize the impact of soil
and water conservationmeasures, large reservoirs, and dams, the observed hydrological data from Hongqi and
Huaxian stations were chosen to analyze the relationships between drought indices and river runoff, where few
human disturbances are found [Xin et al., 2011]. The Climate Prediction Center (CPC) monthly soil moisture data
set was used to evaluate the performance of the VIC model in simulating the soil water content (http://www.
esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html). The Normalized Difference Vegetation Index (NDVI) data,
which were used to evaluate the performance of different drought indices, were from the NOAA advanced very
high resolution radiometer land data set at a spatial resolution of 8 km at 15day intervals from January 1982 to
December 2006 [Myneni et al., 2001; Tucker et al., 2005]. Figure 1 shows the spatial distributions of the hydro-
metric and meteorological stations as well as the topography of the Loess Plateau.

2.3. Methodology
2.3.1. SPI, SPEI, and VIC-PDSI Calculations
In this study, we calculated the SPI and SPEI in order to compare them with our newly developed SZI. The SPI
was computed using solely monthly P as the input data. This index does not take water demand into account
and therefore neglects other physical processes that drive drought dynamics. The SPEI calculation was made
with the monthly difference (D) between P and PE, though using the Penman-Monteith equation [Allen et al.,
1998] to generate the PE often overestimates water demand, especially in arid and semiarid regions, as
mentioned previously. This overestimation can lead to flawed drought identification. In this study, the
PE in the SPEI was generated with the Penman-Monteith equation [Allen et al., 1998]. For calculating
the SPI at different timescales, a two-parameter gamma distribution was used by McKee et al. [1993].
However, a three-parameter distribution is needed for computing the SPEI at different timescales. In the
two-parameter distributions, the variable, such as P, has a lower boundary of zero, whereas the D series
used in the SPEI often has negative values, which require the three-parameter distribution [Vicente-Serrano
et al., 2010]. That means the three-parameter distribution can be used to calculate both the SPI and the SPEI.
Vicente-Serrano et al. [2010] tested various probability distributions and finally selected the three-parameter
log-logistic distribution for calculating the SPEI. Detailed calculation information for the SPEI can be found
in Vicente-Serrano et al. [2010, 2011]. In order to facilitate comparison, the SPI was also generated by the
log-logistic distribution in this study. The calculation procedure of the VIC-PDSI is similar to that of the
original PDSI [Palmer, 1965]. However, the hydrological budget in the VIC-PDSI is based on the simulation
results of the VIC model, while the hydrological budget in the original PDSI is based on the results of the
two-layer bucket model, as discussed above. The detailed computation procedure of the VIC-PDSI is
included in Zhang et al. [2012, 2014]. With the methods described above, the SPI, SPEI, and VIC-PDSI over
the Loess Plateau from 1971 to 2012 were derived in this study.
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2.3.2. Development of the Standardized Moisture Anomaly Index
2.3.2.1. Simulations of Hydrological Processes
In this work, version 4.1.1 of VIC was used to reconstruct daily water balance components and soil moisture
values at a spatial resolution of 50 km, covering the entire Loess Plateau from 1 January 1971 to 31 December
2012. Due to the limited coverage of observed meteorological data, the model is incapable of running at a
very fine resolution over the Loess Plateau [Wu et al., 2011;Wang et al., 2012]. However, our results are reason-
able when compared with observations (discussed in section 2.3.3), implying that the 50 km resolution data
are still able to capture themain features of hydrological processes in this region of complex terrain. Since the
VIC model uses a grid-based modeling approach, the meteorological forcing fields for each station were
interpolated using an inverse distance weighting method into 50 km×50 km grids [Wu et al., 2007, 2011].

The VIC model divides the soil profile of the study area into three layers. The upper two soil layers of the model
are designed to represent the dynamic response of soil to rainfall events, and the bottom layer is used to
characterize the behavior of seasonal soil moisture. To match the calculation of the SZI, where the soil column
is divided into two layers, the upper two soil layers in VIC were combined, leaving the bottom layer. A similar
method was used in Wu et al. [2007, 2011] and Wang et al. [2012].

Three types of evaporation in VIC were considered: (1) evaporation from the canopy layer (Ec, mm) of each
vegetation type, (2) transpiration (Et, mm) from each vegetation type, and (3) evaporation from the bare soil
(E1, mm) [Liang et al., 1994; Xie et al., 2007; Dan et al., 2012]. The total evapotranspiration over a grid cell was
computed as the sum of these three components.

The Nash-Sutcliffe efficiency (NSE) coefficient was employed to calibrate and validate the model. The NSE is a
normalized statistic reflecting the relative magnitude of the residual variance compared to the measured
data variance [Nash and Sutcliffe, 1970;Wang et al., 2012]. The NSE ranges between�∞ and 1, and the greater
it is, the better the simulation results are. When the NSE is greater than 0.75, the simulation results are usually
regarded as acceptable [Nash and Sutcliffe, 1970; Wang et al., 2012].

There are seven hydrological parameters in the VICmodel that need to be calibratedwith observed streamflow.
The observed streamflows from 11 key hydrometric stations were divided into two groups: (1) Lanzhou,
Toudaoguai, Longmen, Tongguan, Huayuankou, and Huaxian for model calibration (these stations are located
in the mainstream of the Yellow River) and (2) Hongqi, Baijiachuan, Hejin, Zhangjiashan, and Zhuangtou for
model validation (these stations are located in the tributaries of the Yellow River). Figure 2 shows the relation-
ship between observed and simulated annual streamflow over the six calibration and five validation hydro-
metric stations on the Loess Plateau. The annual streamflow simulations at all 11 hydrometric stations closely
matched the observed values, wherein the NSEs ranged between 75.5% and 91.8%, which are all greater than
75%. However, the VIC model overestimated some peak flows. These errors could possibly be attributed to
human soil and water conservation measures on the Loess Plateau, including check dams, fish-scale pits, and
bench terraces, which tend to reduce the peak flows.

It is known that soil moisture is crucial for deriving drought indices such as the PDSI or the SZI. However, it is one
of the least observed variables of the hydrologic cycle in terms of long-term and large-scale measurements
[Sheffield et al., 2004]. Moreover, the representativeness of point measurements of soil moisture for regional
applications is often questioned due to high spatial heterogeneity [Prigent et al., 2005; Mishra and Singh,
2010]. Mishra and Singh [2010] and Mishra et al. [2015] indicated that the drought indices derived from soil
moisture lacks quality data, and quantification of soil moisture supply in the root zone remains a gray area in
the research community of drought. There is a substantial lack of large-scale and long-term in situ observations
of soil moisture [Sheffield et al., 2004; A. H. Wang et al., 2009, 2011]. In addition, the satellite soil moisture data
have an excellent spatial coverage, but their quality is still in question especially for the lower soil depths
[Brocca et al., 2014]. Thus, validation of the model-simulated soil moisture with observations for our study region
is difficult. However, variations of soil moisture are highly correlated with those of precipitation for a long term
[Brocca et al., 2014], and the latter are much better observed. Thus, some soil moisture reanalysis products that
are driven by observed precipitation are useful in evaluating soil moisture variations. In this study, the CPC soil
moisture reanalysis data were used to examine the simulated soil moisture anomalies over the Loess Plateau.

A comparison of CPC and VIC-simulated soil moisture over the Loess Plateau demonstrates that the VIC
model produces generally higher soil water content than CPC during the whole study period, but it captures
the spatiotemporal variations of soil moisture reasonably well (figure not shown). Themean CPC soil moisture
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Figure 2. Comparison of the observed and simulated annual discharge (m3/s) over six calibration and five validation hydrometric stations during 1971–2008 on
the Loess Plateau.
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is around 190mm over the study region, which is about 20% lower than the VIC-simulated soil moisture.
Although the magnitude of CPC soil moisture is different from that of the VIC-simulated soil moisture, it
is the soil moisture anomaly, not its absolute magnitude, which affects the changes in dry and wet spells.
Figure 3 shows the time series of area-averaged soil moisture anomalies from CPC and the VIC model over
the Loess Plateau. It is seen that the VIC soil moisture anomalies agree well with the CPC soil moisture anoma-
lies over the past four decades, and the Pearson correlation coefficient between VIC and CPC soil moisture
anomalies is 0.89 (above the 99% significance level). Thus, the VICmodel can provide reasonable hydrological
variables over the Loess Plateau, and these are used in the calculation of the SZI.
2.3.2.2. The Hydrological Budget
As with the PDSI, the second step in establishing the SZI is to compute the monthly hydrological budget. Each
month of the year, four water balance components related to the soil moisture were computed, alongwith their
potential values. These values are evapotranspiration (ET), moisture recharge (R), surface runoff (RO), moisture
loss (L), potential evapotranspiration (PE), potential recharge (PR), potential runoff (PRO), and potential moisture
loss (PL). The specific calculation methods of the above values are discussed in Zhang et al. [2014].
2.3.2.3. Climatic Coefficients and bP
In this study, the monthly climatic coefficients were computed as the ratios of the monthly climatic averages
of actual to potential values, including the evapotranspiration coefficient (αj), recharge coefficient (βj), runoff
coefficient (γj), and loss coefficient (δj):

αj ¼ ETj=PEj
βj ¼ Rj=PRj

γj ¼ ROj=PROj

δj ¼ Lj=PLj

8>>>><
>>>>:

(1)

where j ranges over the months of a year (i.e., j = 1–12). Each grid cell has the same climatic coefficients
for the same month of different years [Palmer, 1965]. The derived climatic coefficients can be used to
determine the amount of bP :

bP ¼ αjPEþ βjPRþ γjPRO� δjPL (2)

bP more realistically estimates the water demand than PE [Palmer, 1965].
2.3.2.4. Climatic Characteristic and Moisture Anomaly Index

The difference between the actual precipitation andbP is an indicator of the water deficit or surplus, expressed
as follows:

d ¼ P � P (3)

These moisture departures (d) are converted into a moisture anomaly index (Z),

Z ¼ Kjd (4)

Figure 3. Time series of area-averagedmonthly soil moisture anomalies (1m) from CPC and the VICmodel during 1971–2012
over the Loess Plateau.
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where Kj, called the climatic characteristic, is a measure of the local significance of moisture departures and is
computed as follows:

Kj ¼ ETj þ Rj
� �

= Pj þ Lj
� �

(5)

The Z value plays a very important role in measuring the moisture deficit or surplus in the SZI and is regarded
as a better indicator of surface water deficit or surplus than the difference between P and PE in the SPEI.
2.3.2.5. Standardizing the Z Series to Obtain the SZI
The calculated Z values were aggregated at different timescales, following the same procedure as that for the
SPEI [Vicente-Serrano et al., 2010]. Because both the D and Z series can be negative (i.e., they have a similar
range), the three-parameter log-logistic distribution is capable of adopting different shapes to simulate the
frequencies of both the D and Z series [Vicente-Serrano et al., 2010]. Therefore, the log-logistic distribution
was selected to standardize the Z series and finally to derive the SZI at different timescales. The average value
of the SZI is 0, and the standard deviation is 1. The SZI is a standardized variable, and it can therefore be com-
pared with other standardized drought indices over time and space. Because they use the same probability
distribution and the same standardizing methods, the drought threshold levels of the SZI, SPEI, and SPI are
exactly the same [McKee et al., 1993; Vicente-Serrano et al., 2010], as shown in Table 1.
2.3.3. Evaluation of the SZI
In order to evaluate the performance and ability of the SZI, the drought identification results were compared
with the VIC-PDSI and the other two most widely accepted multiscalar drought indices, the SPI and SPEI. As
reported by previous studies [McEvoy et al., 2012; Mu et al., 2013], vegetation cover and streamflow are very
sensitive to moisture availability and climate warming. Therefore, the correlations between vegetation cover
andmoisture availability, as well as the relationships between streamflow and drought variations, were selected
as the evaluation criteria for the performance and ability of each drought index. The results presented herein
are expected to provide a new method for drought identification and to lend scientific support to decision
makers when formulating drought management policies to alleviate the adverse effects of drought.

3. Results and Discussion
3.1. The Advantages of the SZI Over VIC-PDSI

In this section, the SZI is compared with the VIC-PDSI over the Loess Plateau. Figure 4 shows the evolution of
dry-wet spells during 1971–2012 on the Loess Plateau as characterized by the SZI and VIC-PDSI, respectively.
The VIC-PDSI is calculated at monthly scales, while the SZI is generated at monthly, 12month, 24month,
36month, and 48month intervals, respectively, to monitor the drought and wet variations over different
temporal scales. Both the SZI and VIC-PDSI can identify the drought and wet spells at monthly scales.
However, the multiscalar character of a drought index is very important for drought monitoring and water
resource management [McKee et al., 1993; Hayes et al., 1999]. A long-term averaged low precipitation can
produce a severe drought with a long duration, but some individual high-precipitation events during this
period may produce short wet spells in certain months. If we use the VIC-PDSI to characterize a multiyear
drought event, the time-averaged value of VIC-PDSI is needed. However, the time-averaged VIC-PDSI is also
influenced by the individual wet events, which may weaken the severity of the long-term drought and result
in misleading information for water resource management.

For example, over the 48month period of 1999–2002, averaged precipitation is 12% less than its climatology
on the Loess Plateau, as shown in Figure 5a. Thus, such anomalously low precipitation results in the most
severe drought over a 42 year period (1971–2012). This severe drought event is clearly identified by the
48month scale of SZI, with an average value of �1.61 (red line in Figure 5b; SZI values between �1.50 and

Table 1. The Drought or Wet Threshold Levels of the SZI, SPEI, and SPI

SZI, SPEI, and SPI Drought Classification SZI, SPEI, and SPI Wet Classification

�2.0 or less Extreme drought 2.0 or larger Extreme wet spell
�1.50 to �1.99 Severe drought 1.50 to 1.99 Severe wet spell
�1.00 to �1.49 Moderate drought 1.00 to 1.49 Moderate wet spell
�0.50 to �0.99 Mild drought 0.50 to 0.99 Mild wet spell
0 to �0.49 Normal 0 to 0.49 Normal
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�1.99 are defined as severe drought). This index also accurately captures the onset, duration, and ending of
the drought event, as shown in Figure 5b. Based on the 48month SZI, about 30% of the total area of the Loess
Plateau suffers from extreme drought over 1999–2002 (the averaged SZI in these regions is�2.11), and about
half of its area has severe drought over the same period (the averaged SZI in these regions is �1.79).
However, Figure 5b shows that the VIC-PDSI never captures the temporal evolution of this multiyear drought
event. The time-averaged VIC-PDSI value from 1999 to 2002 is only �0.93, indicating that it is a very mild
drought, even with some wet events included (VIC-PDSI values between �0.50 and �0.99 are defined as
incipient drought). Based on the time-averaged VIC-PDSI, there is no region that suffers from severe or
extreme drought. Therefore, the multiscalar character of the SZI has a strong advantage over the VIC-PDSI in
quantifying drought for water resource management.

3.2. The Advantages of the SZI Over the SPI and SPEI
3.2.1. The Relationship Between Hydrological Data and Multiscalar Drought Indices
Previous work has shown that hydrological variables can serve as good indicators of drought and have exhib-
ited strong relationships with drought indices at different timescales [Vicente-Serrano and López-Moreno,
2005; McEvoy et al., 2012]. To gain a better understanding of the performance of the SZI, SPEI, and SPI,
the correlations between observed streamflow and moisture availability identified by different multiscalar

Figure 5. (a) Time series of annual precipitation and 4 year moving average precipitation during the period of 1971–2012 and (b) time series of VIC-PDSI, 48month
SZI, and monthly precipitation during 1999–2002 on the Loess Plateau.

Figure 4. Comparisons of the SZI and VIC-PDSI over 1971–2012 on the Loess Plateau.
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drought indices were examined and evaluated. Each drought index was calculated following the same
procedure. Due to the log-logistic distribution used to calculate the SZI, SPEI, and SPI, we also chose this
probability distribution to standardize the observed streamflow data to get the Standardized Streamflow
Index (SSI) [Vicente-Serrano et al., 2014]. The aim of calculating the Pearson correlation coefficients between
drought indices and streamflow at certain timescales is to evaluate which drought index has the best perfor-
mance in drought identification under the same conditions. Figure 6 illustrates the SSI and spatially averaged
SZI, SPEI, and SPI from the watershed grid cells for Hongqi and Huaxian at different timescales. All drought
indices appear to detect the major drought periods in Hongqi and Huaxian according to the observed
streamflow data. However, the Pearson correlation coefficients of the SZI-SSI at Hongqi station are 0.88,
0.88, 0.87, and 0.85 at the 12, 24, 36, and 48month scale, respectively, which are apparently higher than those
for the SPEI-SSI (ranging from 0.40 to 0.52) and SPI-SSI (ranging from 0.55 to 0.85). Similarly, the Pearson
correlation coefficients between the SZI and SSI at Huaxian station, which range from 0.92 to 0.94, are also
higher than those for the SPEI (0.82–0.91) and SPI (0.77–0.84). Therefore, it is evident that the errors of the
SZI are lowest among the three multiscalar drought indices at each timescale and location, demonstrating
that the SZI provides improved information for drought monitoring.
3.2.2. The Relationship Between the Vegetation Index and Drought Indices
We also evaluated the SZI, SPI, and SPEI with the NDVI over the six subregions in the Loess Plateau. The
Pearson correlation coefficients between the annual mean NDVI and the December 12month scale drought
indices were calculated with correlation analysis (Table 2). It should be noted that the Pearson correlation

Figure 6. The Standardized Streamflow Index (SSI) and spatially averaged SZI, SPEI, and SPI from corresponding watershed
grid cells at (a) Hongqi and (b) Huaxian for 12, 24, 36, and 48months.
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coefficients between the NDVI and
drought indices vary with the climatic
region, which can be attributed to
each subregion of the Loess Plateau
having a different sensitivity to moist-
ure availability. However, it is clear
that the Pearson correlation coeffi-
cients between the SZI and the
NDVI range between 0.51 and 0.76,
which are higher than those for the
SPEI and the NDVI (0.42–0.67) and
for the SPI and the NDVI (0.40–0.67)
in all subregions. The above analysis

indicates that the SZI performs the best among the three multiscalar drought indices in reflecting
vegetation changes.

In addition, based on the time series shown in Figure 4, two specific drought events, one in November 1997
and the other in July 2000, were selected to further characterize the correlation between the NDVI and the
SZI, SPEI, and SPI. As shown in Figure 7, the spatial patterns of the 12month scale drought episode in
November 1997 are identified by the SZI, SPEI, and SPI. However, the drought severity differs; the drought
level characterized by the SPEI is much more severe than that of the SZI or SPI. The correlation coefficient
between the SZI and NDVI is 0.51, which is higher than that of SPEI-NDVI (0.28) or SPI-NDVI (0.43). Therefore,
it is clear that the spatial pattern of the NDVI anomaly is more comparable with that of the SZI than with that of
the SPEI or SPI. During the 12month period from December 1996 to November 1997, the precipitation was

Table 2. The Pearson Correlation Coefficients (r) Between December
12Month SPI, SPEI, and SZI and Annual Mean NDVI (1982–2006) Over Six
Subregions of the Loess Plateau

Subregion SPI SPEI SZI

1 0.50* 0.44* 0.51*
2 0.48* 0.42* 0.56**
3 0.40 0.44* 0.54*
4 0.63** 0.67** 0.73**
5 0.67** 0.60** 0.76**
6 0.66** 0.61** 0.68**

*Significant at the 95% confidence level.
**Significant at the 99% confidence level.

Figure 7. The spatial distribution of the 12month SPI, SPEI, SZI, and NDVI anomaly percentile (relative to 1982–2006) in
November 1997.
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104.3mm lower than the total annual average over the entire study period. The mean bP was 1.4% above the
average over this period, but the PE was 5.8% above the average over the same period. As we have discussed,
bP in the SZI considers evapotranspiration, runoff, and any changes in soil moisture storage in estimating the
water demand [Palmer, 1965], while PE in the SPEI is the only variable used to quantify such a demand. Thus,
we can clearly see that the SPEI has a lower correlation coefficient with the NDVI anomaly when compared with
the SZI (Figure 7).

Figure 8 exhibits the spatial distribution of the 12month SZI, SPEI, and SPI in July 2000, where the spatial
patterns characterized by the three multiscalar drought indices are in accordance with each other, but
the severity is different. The drought severity identified by the SZI and SPEI is higher than that of the SPI.
The correlation coefficients of SZI-NDVI and SPEI-NDVI are 0.46 and 0.44, respectively, which are higher
than that of SPI-NDVI (0.31). The spatial pattern of the NDVI anomaly is more comparable with that of
the SZI and SPEI than with that of the SPI. The total precipitation amount from August 1999 to July 2000 was
103.9mm lower than the total annual average over the entire study period. We found that the mean PE and
bP for this period were 4.4% and 3.1% above average, respectively. As a result, both lower precipitation and
higher water demand are the main reasons for the drought in July 2000. The inclusion of water demand in
the SZI and SPEI enables these indices to better quantify the drought. However, the SPI, which is based simply
on precipitation without considering water demand, has the lowest correlation with the NDVI.

4. Conclusions

In this study, we have described a physically based multiscalar drought index, SZI, which uses the moisture
anomaly index as an indicator of surface water balance and drought conditions. The water budget account-
ing in the SZI is based on the hydrological processes simulated by the VIC model, and the other calculation
procedures of the SZI follow those of the SPEI. The SZI is quantitatively compared with VIC-PDSI and the two
most widely used multiscalar drought indices, the SPI and SPEI.

Figure 8. The spatial distribution of the 12month SPI, SPEI, SZI, andNDVI anomaly percentile (relative to 1982–2006) in July 2000.
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The SZI has a multiscalar advantage over the VIC-PDSI, which is important in monitoring the severity and
duration of droughts at different timescales. The SZI agrees better with the observed changes in the stream-
flow and vegetation index than the SPEI or the SPI, indicating that the SZI performs better than the SPI or SPEI
in identifying drought events at different timescales. The SPI depends only on precipitation and ignores other
components of the surface water balance equation that can lead to increased drought severity. In the calcu-

lation of the SZI, bP includes precipitation, soil moisture loss and recharge, runoff, and evapotranspiration, and
all these variables can affect surface water balance and thus drought conditions, whereas PE considers only
atmospheric demand for water. Such a strategy makes the SZI physically more reasonable and reliable. With
respect to actual water demand and the multiscalar characteristic of drought, the SZI provides better infor-
mation for drought monitoring and identification at various temporal scales.

The main limitation of the SZI is that its computation is more complex and difficult than the computation of
the SPI and the SPEI. To facilitate the use of the SZI for interested researchers, our computer programs and
data related to the calculation of the SZI will be voluntarily provided. Given the opportunity, we would like
to collaborate with agencies such as the China Meteorological Administration to add our drought index,
SZI, into their drought prediction systems, as this will be of great benefit for our research, the agencies,
and water managers. Another limitation of the SZI is that its calculation requires long-term climatic and
hydrologic records, which makes it unsuitable for short-term drought identification. Despite such limitations,
our newly developed drought index more realistically characterizes the variability of dry and wet spells when
compared with some of the other existing drought indices and provides a better tool for monitoring water
resources. Further validation of the SZI will be performed at the global scale.
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