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Recent carbonate sediments from Jamaican north coast 

fringing reefs display variation in constituent composition, 

texture, and mineralogy related to their location on the 

reef. Sam pl es were collected along lines which traversed 

the back reef and fore reef (0.5m to 70m). 

The sediment is dominated by highly comminuted coral 

f r a g m e n t s , p 1 a t e s o f t h e c a l c a r e o u s g r e e n a 1 g a , ~~ e d a , 

coralline algae, and the encrusting Foraminifera, Homotrema 

rubrum, with lesser amounts of other taxonomic groups (For­

aminifera; molluscs; echinoderms). Relative abundances of 

these biotic components vary between sites. Q-mode cluster 

analysis indicates that constituent composition can be used 

to delineate the different reef zones which have been de­

scribed from analyses of the macrofauna. 

For most sediment, grain-size frequency distributions 

indicate that greater than 90% (by weight) of the sample is 

contained in the interval of 0.125mm to 2.000mm. Mean grain 

size approaches 0.5mm for most sites with little depth 

related variation. Sorting, however, becomes progressively 



xiii 

poorer from the shallow (Sm) fore reef terrace to the upper 

deep fore reef (?Om). 

X-ray diffraction and insoluble residue analyses indi­

cate that total CaC03 in these sediments is generally great­

er than 95% by weight. Aragonite is the most abundant 

carbonate phase, followed by high-Mg calcite , and low-Mg 

cal cite. Amorphous siliceous sponge spicules and organic 

matter comprise the remaining non-carbonate fraction of 

these sands. Significant differences in the proportions of 

aragonite and high-Mg calcite between fore reef terrace 

sediments and sediments from other reef zones results from 

the contribution of high-Mg calcite to fore reef terrace 

sediments by coralline algae, Foraminifera (principally 

Homotrema rubrum) and echinoderms, which are relatively less 

abundant sediment constituents elsewhere on the reef. 

The 120,000y.b.p.(Sangamon) Falmouth Formation along the 

north coast of Jamaica displays variability in sedimen­

tological and faunal components analogous to that of back 

reef and shallow fore reef environments of the modern Jamai­

can fringing reef system. 

X-ray analysis of the mineralogy of Falmouth limestones 

reveals that surface exposures of fore reef grainstones 

exhibit greater diagenetic alteration than surface exposures 

of back reef packstones. This indicates variability in 

diagenetic processes most likely related to original sedi­

ment textural characteristics. 

(101 pages) 



CHAPTER I 

INTRODUCTION 

In recent years, geologists have turned to the study of 

Holocene carbonate accumulations in an attempt to better 

understand the physical factors involved in the development 

of ancient carbonate rocks. Much of the work of geologists 

has centered on peripheral areas of the Caribbean such as 

South Florida (Ginsburg, 1956), the Belize Shelf (Wantland 

and Pusey, 1975), and Barbados (Scoffin, ~ ~ - , 1980). 

These studies have done much to increase our knowledge of 

carbonate depositional environments. 

The north coast of Jamaica provides a unique opportunity 

for detailed analysis of a classic fringing reef environ-

ment . For the present study, quantitative measurements of 

reef biota were made by transecting a number of reef zones 

(Liddell,!_!~-, 1984a and b). This information will be 

used in analyses of sediment constituents to reveal the 

relationship between reef-community composition and the 

biological, textural, and mineralogical composition of reef­

derived sediments. 

Finally, the utility of using sediment constituent 

composition as an indicator of specific reef-environment 

will be tested. By applying information gained from study 

of the Holocene sediments, an interpretation of the paleoen­

vironments of the Pleistocene Falmouth Fm. will be made. 



CHAPTER II 

PATTERNS OF CONSTITUENT COMPOSITION AND TEXTURE 

OF JAMAICAN FRINGING REEF SEDIMENTS 

INTRODUCTION 

Fringing coral reefs along the north coast of Jamaica 

display a striking pattern of biological zonation which is 

related to the environmental tolerances of the reef biota 

(Gareau, 1959; Gareau and Gareau, 1973; Kinzie, 1973; Ohl­

horst, 1980; Liddell and Ohl horst, 1981; Liddell, ~ ~-, 

1984a). The continual degradation of the calcareous skele­

tons of these organisms by biological and mechanical proces­

ses produces sediment which accumulates in reef interstices 

and in sand channels (grooves) adjacent to reef spurs. 

Extensive sampling and analysis of these Recent carbon­

ate sands was undertaken in an effort to better understand 

the physical and biological aspects of sediment production, 

composition, and transport within the fringing reef system. 

In order to accomplish this, it was necessary to: 1) deter­

mine the constituent composition and textural features of 

reef sediments; 2) determine the relationship of sediment 

composition to reef community structure; and 3) determine if 

sediment composition alone could be used to delineate reef 

microfacies. 
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PREVIOUS WORK 

Modern efforts to quantify the composition of Recent 

calcareous deposits were begun by Thorp (1934; 1936). He 

described the composition of carbonate sediments from south­

eastern Florida and the Bahamas, and from · the Pearl and 

Hermes reefs of the central Pacific. In reading Thorp's 

accounts, one is impressed by his apparent surprise that 

skeletal remains of calcium-carbonate secreting organisms 

were the dominant components of these sediments. He al so 

recognized the importance of calcareous algae as sediment 

contributors. 

In the period following the pioneering studies of Thorp, 

a tremendous volume of geological research has been dedi ­

cated to the analysis of Recent carbonate facies and their 

relationship to specific depositional environments. These 

studies have centered on the classic tropical localities of 

the Caribbean (Ill ing, 1954; Ginsburg, 1956; Purdy, 1963a 

and b; Mil 1 iman, 1967; Wantland and Pusey, 1975) and Austra­

l i a ( Fa i r b r i d g e , 1 9 5 O ; M ax w el 1 , !_.! ~. 1 9 6 1 ; M ax w e 1 l , !_.! 

~. 1963; Maiklem, 1970; Davies and West; 1981) but, have 

also come from the Central Pacific (Chave, !_.! ~-. 1972), 

the Middle East (Friedman, 1968), and the Indian Ocean 

(Stoddardt and Yonge, 1971). Excellent reviews of this 

subject have been authored by Bathurst (1971) and Milliman 

(1974). The reader is referred to these works for addition­

al background information. 

Ill ing (1954) produced a monumental treatise on the 
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calcareous sands of the Bahamas. This work illustrated, 

through aerial photographs, thin-section analysis, and de­

scription of grain-types, the carbonate facies of the Bahama 

Bank. Al so, Ill ing made speculative judgements concerning 

the origin of non-skeletal . grains such as pellets, ooids, 

and grapestones. 

Ginsburg (1956) continued the study of Recent carbonates 

with a s·urvey of carbonate sedimentation in south Florida. 

Ginsburg was able to recognize two distinct sedimentary 

environments in this region: Florida Bay and an Outer Reef 

Tract seaward of the Florida Keys. He noted that faunal 

components in sediments from these two areas were quite 

distinct. He attributed variation in constituent composi­

tion of these sediments to variation in the abundance of 

sediment-contributing organisms due to their environmental 

tolerances. 

Purdy (1963a) extended Illing's (1954) observations of 

sedimentation around the Bahamas using newly developed mul­

tivariate techniques. Using a computer to measure the cor­

relation between all pairs of sediment grain-types, he was 

able to delineate several "reaction groups" or clusters of 

grain-types which were found to occur together. Based upon 

these reaction groups, Purdy was able to define and map five 

distinct sedimentary facies within the Bahama Platform. 

In similar fashion, Pusey (1975) conducted a study of 

carbonate sediments on the Belize Shelf in Central America. 

In this case, factor analysis was used to delineate eight 

4 



sedimentary facies which were related to physical (wave and 

current energy) and biological (constituent composition) 

aspects of the various shelf environments. 

Gareau and Gareau (1973) discussed some general aspects 

of the composition of sediments from Jamaican north coast 

reefs. In particular, they noted changes in the proportions 

and species composition of Halimeda plates in the sediment 

with depth, and suggested that the different Halimeda spe­

cies could serve as excellent environmental indicators. 

Moore,~ .!l.:_ (1976) used the Hali_!!!eda species composition 

of island slope sediments as evidence of the transport of 

reef sand from the fore reef slope (24-55m) to the upper 

island slope (122-295m). 

Several quantitative studies of reef-community structure 

have been conducted on Discovery Bay reefs (Bonem and Stan­

ley, 1977; Ohlhorst, 1980; Liddell and Ohlhorst, 1981; Lid­

de l l , ~.! .!l.:_, 1 9 8 4 a ; Li d de l l , !_! .!l.:_, 1 9 8 4 b) . The s e stud i e s 

extended observations from the back reef to the near limit 

of scleractinian-dominated reef growth on the fore reef 

slope (55m). In general, each of these studies has found 

similar patterns of community composition, bottom cover, and 

species diversity. Coral cover is high throughout the depth 

range studied, although a distinct reduction is found at 24m 

due to the unstable nature of the fore reef escarpment. 

Cover by macroalgae (including Halimeda), filamentous algae 

and fleshy sponges increases with depth from Sm to 55m, 

whereas cover by coralline algae and boring sponges de-
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creases with depth. 

This investigation presents the results of analyses of 

the sediments accumulating on reefs at Discovery Bay and 

relates sediment composition and texture to changes in bio­

logical (reef community structure) and physical (wave ener­

gy) processes occurring within the fringing reef system. 

LOCATION OF STUDY 

Field work for this study was conducted from the Dis­

covery Bay Marine Laboratory of the University of the West 

Indies during the summer of 1982. This facility is located 

on the Jamaican north coast at Discovery Bay (lat. 180 30' 

N, long. 770 20' W) and provides easy access to the modern 

fringing reef {Fig. 1). Following this period of field 

work, detailed analyses of sediment samples and data were 

conducted at Utah State University. 

METHODS 

Sampling Procedures 

Divers using SCUBA collected shallow cores of sediment 

on the fringing reef in 15cm length x 5cm diameter plastic 

cylinders. Approximately 200g of sediment were collected in 

each of 125 cores. Samples were collected along three 

parallel transects on the fringing reef (Fig. 1). Each of 

these transects extended from near shore and across the back 

reef (1-Sm), fore reef terrace (5-14m), fore reef escarpment 

(14-24m), fore reef slope (24-SSm) and upper deep fore reef 

6 
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(70m)(Fig. 2; terminology after Gareau, 1959; Gareau and 

Gareau, 1973; Gareau and Land, 1974). Detailed descriptions 

of collection methods in each reef zone are presented below. 

Back Reef (l-5m) 

The back reef lagoon at Discovery Bay extends from the 

shore to the reef crest through a distance of approximately 

300m. Paired cores of sediment were collected from four co­

equally spaced sites extending from near shore to the reef 

crest. These sites were: 1) shal 1 ow water ( lm) in the rocky 

and tur!Julent near-shore zone of the back reef; 2) a patch 

of the turtle grass, Thalassia testudinum (160m beh i nd the 

reef crest and 80m from shore); 3) an area inhabited and 

highly bioturbated by callianassid decapods (80m behind the 

reef crest and 160m from shore); and 4) immediately behind 

the reef crest (240m from shore). Sample sites ranged in 

depth from lm to Sm. 

Fore Reef Terrace (5-14m) 

Sediment collections on the fore reef terrace were taken 

at depth intervals of 3m between Sm and 14m. This depth 

interval was chosen because of its coincidence with the 

striking biological zonation which has been described for 

Jamaican reefs (Gareau, 1959; Gareau and Gareau, 1973; Kin­

zie, 1973) as ~vell as its correlation to distinct physical 

changes in reef morphology. Thus, it was potentially possi­

ble to relate sediment composition to the biota and struc-

8 
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ture of each reef zone. 

At each site on the fore reef terrace, two shallow 

sample cores were taken from sediment which was ponded on or 

within reef framework, and two samples were collected from 

adjacent sand channels. This allowed for comparison of 

sediment deposited on the reef proper (and presumably de­

rived from reef framework very near the site of deposition) 

and sediment which had been sloughed into the sand channels 

(which may have been transported from other reef zones). 

Fore Reef Escarpment and Slope, 
and Deep Fore Reef (i4-70m) 

Sampling in these areas was restri c ted by constraints on 

usable bottom time using SCUBA and by the physiological 

limitations imposed by deep diving . As a result, fewer 

samples were collected, and they were collected over a 

greater interval of depth than the shallower samples. Sedi­

ments were taken from the fore reef escarpment (24m), fore 

reef slope (32m, 46m, and 55m) and the upper deep fore reef 

(?Om). Where possible, the sampling procedure was the same 

as that for the fore reef terrace (i.e., 2 samples from reef 

framework, and 2 samples from adjacent sand channels). Hov,­

ever, on the vertical to overhanging wall of the deep fore 

reef, samples were collected on small ledges which provide 

the only available sites for sediment accumulation. 

Processing of Sediment Samples 

Following collection of each core, the sediment was 



placed into a 1000ml graduated cylinder and washed with 

distilled water. The sediment was then allowed to settle 

for 6 hours in order to limit the loss of fine-grained 

particles. After this period of settling, the water was 

removed from the cylinder with a siphon; and the sediment 

again washed with distilled water. The supernatant from 

each wash was passed through a Buchner Funnel apparatus and 

pre-weighed Whatman's #1 Filter Paper to capture any remain-

ing suspended sediment. This process was repeated 3 times 

for each sample, after which the sediment was removed from 

the cylinder and dried at l05oC. Following the drying 

period, each sample was placed into a plastic bag for ship-

men t. The filters containing suspended sediment were also 

dried and weighed to determine the amount of fine-grained 

c a r b. o n a t e w h i c h w a s l o s t f r o m t h e b u l k s a m p l e . I n a 1 1 

cases, this was found to be a negligible amount (averaging 

only a few tenths of a gram per 200g sample). 

At Utah State University, the sediment samples were 

split into co-equal portions using a mechanical splitter. 

Each of these portions was used for either point-counting to 

determine constituent composition or, sieve analysis of 

grain-size characteristics. 

Constituent Particle Analysis 

Subsamples of each of 125 sediment samples were impreg­

nated with a commercial casting resin and sectioned for 

petrographic analysis. Standard point-counting techniques 

11 



were utilized, and rarefaction analysis (Hurlbert, 1971; 

Heck, et. ~. 1975) used to determine the adequacy of 

points counted for each section. Using this method, a curve 

is constructed which shows the number of "species" (grain 

types) present in the sample per unit measure (points count­

ed). As can be seen in Figure 3, these curves rise rapidly 

at first, but soon begin to level off, and at some point 

become asymptotic. After this point is reached, the curve 

can be expected to rise only slightly and at long intervals 

due to the addition of exceedingly rare constituents. No 

significant changes in constituent proportions are expected 

beyond the asymptotic point and one may be confident that 

the s a mple is an adequate representation of constituent 

diversity. For this study it was found that 600 points were 

necessary to sufficiently describe the constituent composi­

tion of each sediment sample. Results of constituent par­

ticle analysis are presented in Tables 1-3. 

Grain Size Analysis 

Sieve analysis was used to determine the grain size 

characteristics of the 125 sediment samples. Subsets of 12 

samples (4 from the back reef and 1 each from the remaining 

sites on the fore reef) were sieved at 1 ¢intervals using 

both wet- and dry-sieving techniques to determine which 

method would yield the most satisfactory results. To test 

the significance of variation in grain-size frequencies 

resulting from these two techniques, the Chi-squared statis-

12 
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RAREFACTION ANALYSIS : SEDIMENT CONSTITUENTS 
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FIG. 3. Rarefaction curves constructed from sediment 
thin-section point-counts. These curves repre­
sent average curves for sediments collected from 
back reef (1-5m), fore reef terrace (5, 8, 11, 
14m), escarpment (24m), slope (32, 46, 55m), and 
deep fore reef (?Orn) sites. 



TABLE 1. Mean constituent composition(%) and 95 i confi­
dence limits for back reef sediments, Discovery 
Bay, Jamaica. 

t.OOTIOII IIACIC ~!'.l".P 

IJEPTII• !IS TII CA CR A II Slteo 

~AHl'l.E STZL!.ul_ 3 4 6 5 18 

8/lITOtt TYPE•• s s s s s 

COHSTITII f.llTS 

Coral 27. l :!: 4.2 H.2 :!: 15 . 7 38 . 2 :!: 14. 2 45 , 8 :!: 16.7 41.) :!: 6,8 

llnl lm1:dn 38. 7 :!: l 7. J 16.6 :t 14 . 4 27. 2 :t 14,9 17 . 2 :t 8.7 24.0 :t 9 , 6 

Cora I lino olgae 16 . 2 :!: 14 . 3 11. 7 :!: 1.0 12. 5 :!: 4.5 13,4 :!: 4 , 0 13 , 2 :!: I. 9 

~~ o. 1 :!: 0,6 1.8 :t I. 7 2.3 ± 2. 1 7. 8 ± 13. 5 ), 5 :!: ) , 5 

l'oramlnl fore I. 7 :!: 0 , 9 ) . ) :!: I. 9 1.9 ± I. 9 I . 8 :!: 2 . I 2.1 :t o. 7 

Hol luace 2 ,2 :t 3,2 4. 2 ±. 3,6 ) . 6 :!: I. 8 ) . 7 :!: l. 1 ). 5 :t 1 , 0 

Ec h I nodtt rm• ).0 :t 14 . 6 2. I .:!: 3 , 7 2 . 8 :!: 1. 4 2 , 0 ± 3.0 2 , 8 ;t. 1.4 

Cryploc..-yatolllne 6 .6 :t 11. 2 6 . 7 .±, 4,0 6.8 :!: ) , ) 5 , 9 ± 5.5 7. 5 :!: I. 8 

Compoa I l• 0.9 :!: I , 3 1.5 :!: 1.7 1. 8 ± 1.8 0.5 ± 1.0 1. 2 ± 0 , 6 

llnlJontlfleJ 0,6 ± 2.3 o. 4 ±. 0,6 0,4 ± 0 , 4 1.2 ± l ,8 0, 7 .±, o. 5 

Otl1er 0, 3 !_ 1, 2 0 , 6 ± I . 2 0 .4 ± o. 3 0,4 ± 0,5 0,4 ± 0 , 2 

"DACK REEF DEPTIIS VARY FROH 1 - 5H; NS - BACK REEF, NEAR SHORE; TH - BACK REEF• THALASSIA BEDS; CA - DACK REEF, CALLIANASSA HOUNDS; CR - DACK REEF• BEIIIND REEF CREST. 
.. OOTTOH TYPE REFERS TO OOTTOH SUOSTRATE: R -REEF FRAMEWORK; s -UNSTABLE SAND. 



TABLE 2. 

LOCATlOH 

Df(PTII 5., 

SM1Pl.1!: SIZE (n) 6 

IIOTIOH TYPE• R 

cousnnir.rrrs 

Corel 62.6 :!: 6.8 

!fa! fmeda 0.4 ± 0,4 

Cora llloe .1, .. 1),5 ± 6.7 

Homotrema 8.1 .:!:. 5.6 

Fors<a1nltere I. 8 .:!: 1.6 

Hol luac1 1.4 :!: 0.8 

!chtnoJerme I. 7 ± I. 7 

Cryptocry1t1llioe 6.6 .:!: l.8 

Coropo•tte l. 2 .:!:. l.6 

Unld•ntltl•d 0.4 .:!:. o. 7 

Other 0 . 4 :!: 0.4 

•eonoH TYPE REFERS 

Mean constituent composition(%) and 95 i confi­
dence limits for fore reef terrace sediments, 
Discovery Bay, Jamaica. 

FOR! REEF TDIUC! 

8m llm 14m 

- 6 6 6 8 6 6 

s R s R s R s 

60.3 ± 6 . 8 61. 7 ± 7.5 63. l .:!:. 6,8 58.8 .:!:. 4.3 54.5 ± 3.6 56.2 :!: 

3.6 ± ),6 3 .4 ± 2.9 3.0 .± l.6 8. 2 .± 6. 1 10.1 ± 9.5 6. l .± 

1).7 .:!:. 10 , 1 11.6 ± 6.6 8.4 .:!:. l.8 9.0 .:!:. 3.4 5 . 8 ± 3.0 9.l ± 

8,6 ± 6.0 9.2 ± 3.7 9.5 ± 5,9 6,4 ± 2.8 8.l ± 5.6 7.3 .:!:. 

1.5± 1.4 1.3 .:!: 0.5 2.4 ± 1.2 3.2 ± 1.0 2 . 5 ± 2.2 3.3 .:!:. 

2. 7 ± I. 7 2,8 ± 2 . 0 2.4 ± 1.5 2.4 ± 0.9 4.6 ± 2.7 3.8 ± 

2.0 ± 1.0 2, I:!: 1.6 l.l ± 2.7 3.6 :!: 2.2 2. 2 .± 0.4 3 . 0 :!: 

5. 3 :!: 3.7 6.3 ± 2.3 6.0 :!: 3 . l 6.2 .:!:. 4.7 8,9 ± 5.7 6.9 :!: 

1. 5 !. 1.2 1.0 ± 0.9 l.2± 0.6 o.il ± 0,4 2.2 :!: I. 2 2.8 ± 

O.l ,t 0.5 0. 3 !, 0.6 0.4 ± 0,6 0,9 ± 1, 9 o. 6 ± 0.9 0.6 !. 

0.5 :!: 0.5 0.4 :!: 0.2 0.4 :!: 0.3 0.5 :!: 0.2 O.l :!: O.l 0 . 7 ± 

TO BOTT OH SUBSTRATE: R . REEF FRAHEWORK; s . UNSTABLE SAND, 
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I OCAf IOU 

DEPTII 

St-JJl:.LU lZ Liu.}_ 

f,1lTTOH TYPE 

COtlST !TI/ HITS 

Cocal 

!!~lime~~ 

Coralline .1, .. 

.!!.:!~.~ 

For•llllnlhre 

Holluoca 

!ch1110Jerma 

Cryptocryetellloe 

Co.,poo it• 

Unidentified 

Other 

TABLE 3. 

FORf R HF fSCARl'HEIIT 

1~in 

1 1 

R s 

46.2 ± 9. 1 39.7 ,±. 

Mean constituent composition (I) and 95 i confi­
dence limits for sediments from the fore reef 
escarpment, fore reef slope, and upper deep fore 
reef, Discovery Bay, Jamaica. · 

FOR[ Utr Storr: 

32m 46m 5511 

5 6 6 6 7 6 

R s R ~ A ~ 

6.4 44,9 ± ,.6 41,6 ,±. 1.1 50,8 :!:, 4 , 8 44,5 ± ,., 39.9 ± 8, I 40.3 ! 7. l 

14.0 ! 12.0 25.0 ! 12. I 15,0 ± 7.2 13, 5 ± 6. l 15,0 ± 6,4 14.2 ± 3.3 19,5 ± 10,6 111.5 ± 10.9 

8. 7 ± 6.0 9.l ± 4,l 9.l ±. 6.2 14,3 ± 7.4 4. 7 :!:. 1.9 10.7 ± 5.0 7 .5 ± 6,1 10.6 ± 2.9 

7. 2 ± 2,) 3.6 ± 2. l 4.) ± 4.5 1.9 ± I. 9 2.0 ,:!: 0.9 1.6± 1.4 2. 7 ± l,l 2.6 ± 2.0 

2. 9 ± 0.9 4. 5 ± 2. 1 3.5 ± 0.7 4.6 ± 2.8 3.2 ± 0.4 5.5 ± 2.0 4.6 ± 2. l 4.7 ± 2.5 

4. 5 ± 3. 0 l.2 + 2.5 5.1 ± ).7 7.0 ± 6.0 4.5 ± 2.2 3.3 ± 1.1 4 .l ,±. 1.1 4.9 ± 2.4 

1.8±_ 1.0 0.9 + 0.4 1.8±_ 1.0 1.8,±. 1.4 1.4 ± 0.4 2.1 ± I. l 2.0 ±. 1. 7 1.7,±. 0.8 

10.1 ±. 6.2 8.9 ,±. ).9 10.7 ± o. 7 10.l ± 6.9 ll.6 ,:!: 4 . 2 tl. 7 ± l. l 14.0 ±. 4.8 12. l ! 2.8 

3.9 ± 1.8 3. 7 ± 3.) 4.9 ± 3.9 3.9 ± l.2 3 .8 ± 2. l l.O ± 2.7 3.9 ±. 2.3 l.4 ±. 1.6 

0,) ± 0 . 4 0.6 ± 0.1 O.l ,:!: 0.2 I.I,±. 1.5 0.6 ± 0.8 0.8 ± l. 5 1.0 :!:. 1.6 0.5 ± 0.4 

0.4 ,±. 0.2 0.4 + 0 . 3 0.4 ± o. 5 0.5 ± 0.5 0.6 ± O.l o. 8 ± 0.5 0.1 ± 0.4 o. 5 :t 0.2 

•aoTT0H TYPE REFERS TO BOTT OH SlJOSTRATE: R - REEF FRAMEWORK; s -UNSTABLE SAND. 

IJEEP FORf HfF 

7011 

11 

• 

30.9 ± 4.1 

29.2 ! 9.2 

5. l ± 2.5 

1.1 ± 0.8 

3.4 ! 1.8 

l.5 ± 1.2 

1.6 ! 0,4 

14.4 ± 2.5 

8.1 ± 4,8 

1.1 :t 1.8 

o. 7 :t 0,4 
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tic (Johnson, 1976) was employed (o<.= 0.05). The results of 

x2 testing indicate that the observed variation in grain 

size frequencies is not significantly different from the 

expected variability due to the action of random agencies. 

It was therefore decided to analyze the remaining samples 

with the more efficient and less time-consuming dry-sieve 

method. Each sample was loaded into a stack of standard 1 9l 

sieves (-2 - to 4 -) and placed on a Ro-Tap shaker for 10 

minutes (Ingram, 1971). Then, the contents of each sieve 

were weighed with an electronic analytical balance and 

placed into a separate plastic bag for storage. Cumulative 

frequency curves were constructed from grain-size weight 

percentages and used to determine mean grain size ( M;;; Folk 

and Ward, 1957). Frequency histograms were used to compare 

the gross textural characteristics of the sediments (Figs. 4 

- 6) . Tables 4 to 7 present the results of grain - size 

analyses. 

Cluster Analysis 

A computer-based program of hierarchical cluster analy­

sis (CLUSTAR) was utilized (Romesburg, 1984; Romesburg and 

Marshall, 1984) to examine the constituent particle and 

grain-size data. It was believed that Q-mode analysis of 

multivariate sediment constituent and textural data would 

assist in delineating patterns of association which could 

not be resolved using simpler statistical methods. For this 

study, mean values for constituent proportions from each 

17 
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TABI [ 
, .. 
.) . Gr·J in - size frequencies and mean grain size (Folk 

and Ward, 195 7) for sediments collected on the 
fore reef terrace, Discovery Bay. Jam ·a i ca. 

1_.QC:~I!!:)N 
FORE Rf.El' TERRACE 

Ot:l' TII Sin 8m 11111 

SAt!l'U :_ S IZE.J.!.!L.._ 6 6 6 6 8 6 

[\l_!J'JH 1 .. TI'.!.'_J·'·- -- R s R s R s R 

CHA!tl S!f~ tlf.AN % and 95 % COllfU>ENCE HITERVAL 

D IIUD 

-2 4,000 0.11 ± 0, I 1.40 ± 3.5 o. 21 .:!:. 0.5 0.48 ± 0.8 0.20 .:!:. 0.2 I. 74 .:!:. 

- I 2,000 I • 20 ± l. 2 1.00 ± 0.9 0.97 ± 1.4 1.52 ± I. 2 - 0.71 ± 0.3 2. 24 .:!:. 

0 1,000 19.40 ± 16.6 14.10 .:!:. 12 . 7 14. 10 .:!:. 17 .1 16.84 ± 4.9 10.52 ± 3.4 21.11 .:!:. 
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4 0 . 062 o. 55 ± 0.3 o.ao ± i .o 0.54 ± 0.) 1.61 ±. 1.6 0.04 _t 0.6 2.26 .:!:. 

)4 (0.062 0 . 49 ± 0.4 0,80 ± 0.7 0 .44 ± 0.4 2.22 ± 3. 1 0.48 ±. 0.2 I. 65 ± 

(;J,Al'II IC:_ ttLA~;1111F~i t!t!>N and _ 25 X COIIFTOENr.F. lNTEIIVAl. 

HHll GHAIN SIH <,> 0,8-] ± 0.6 I. 07 ±. 0.6 1.01 .:!:. 0.6 0,87 .:!:. 0.l 0.99 ± 0.2 o. 72 .:!:. 
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Grain-size frequencies and mean grain size (Folk 
and ~Jard, 195/) for sediments collected on the 
fore reef escarpment and fore ~eef slope. 
Discovery Bay, Jamaica. 
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TAl3L[ 7. Grain-size frequencies and mean grain size (Folk 
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site were analyzed using the Euclidean metric distance mea­

sure. This was combined with the Unweighted Pair-Group 

Method with simple Arithmetic Averages (UPGMA) clustering 

method. These two options were chosen over others simply 

because of their broad applicability and familiarity to 

other researchers. The Euclidean metric measures the dis­

tance between the individuals i and l defined by: 

p 
d.:Ll. = [L (X;k 

k=l -

where d.:Ll_ is the Euclidean distance, Xik is the kth variable 

for the ith object and Xl!_ is the kth variable for the jth 

object (Everitt, 1974). The UPGMA measures the average 

distance between all pairs of individuals (objects) in each 

of the clusters . Separate runs of the CLUSTAR program were 

conducted on constituent composition data, grain size data, 

and combined constituent and grain size data. 

RESULTS 

Constituent Particle Analysis 

Thin-section study of these sediments indicates that 

major constituents include highly comminuted fragments of 

coral (27.1% !._ 4.2 to 63.1% !._ 6.8), plates of the calcareous 

green alga, Hali_!!!eda (0.4 % !._ 0.4 to 38.7 % !._ 17.3), coralline 

algae (4.7% + 1.9 to 16.2 % + 14.3) and the encrusting 

F o r a m i n i f e r a , .!:!.£.!!! o t r e .!!!i r u b r u m ( 0 . 7 % !._ 0 • 6 t o 9 . 5 % + 5 . 9 ) , 

with lesser amounts of other taxonomic groups (molluscs, 

1.4 % + 0.8 to 7.0 % + 6.0; echinoderms, 0.9 % + 0.4 to 5.0 % + 
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14.6; other Foraminifera, 1.3% + 0.5 to 5.5% + 2.0). Rela­

tive proportions of these constituents vary from site to 

site. Results of Chi-squared testing (o<.= 0.05) indicate 

that the mean composition of sand channel sediments from 8m, 

llm, 14m, 24m, 32m, 46m and 55m, is not significantly 

different from that of sediment trapped on and within reef 

framework at adjacent sample sites. 

Grain Size Analysis 

Sieve analysis of these sediments reveals that the mean 

grain size (M~} for all sites approaches 0 . 5mm with no 

depth-related variation. Sorting, however, becomes progres­

sively poorer with increasing depth (Fig . 7) from Sm to 70m 

for both sediment c ollected on reef framework and in adja­

cent sand channel s (Pearson Pr oduct Moment Correlation Coef ­

ficient , r, = 0.94 and 0.91, respectively; significant at p 

< 0.01). Additionally, reef framework sediments tend to be 

slightly more poorly sorted at al 1 depths when compared to 

sediment in adjacent sand channels (Tables 4 to 7). 

Cluster Analysis 

Q-mode analysis of constituent particle data produced 

the dendrogram il 1 ustrated in Figure 8. The four wel 1-

defi ned associations are formed from sediments of varying 

composition from the back reef, fore reef terrace, fore reef 

escarpment and fore reef slope, and deep fore reef. 

Q-mode analysis using textural characteristics of the 
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same sediments failed to produce meaningful groupings, due 

to an absence of location-specific trends in the textures of 

the sediment. 

Q-mode clustering of combined constituent and grain size 

information produced nearly the same groupings as analysis 

of constituent data al one. However, these clusters invari­

ably joined at higher 1 evel s (i.e. greater Euclidean dis­

tances) than those based solely on constituent particle 

data. This reflects the influence of non-speci fie textural 

data on the calculation of Euclidean distance. 

DISCUSSION 

Constituent Particle Analysis 

Averaged rarefaction curves derived from thin-section 

point-counts (Fig. 3) show that constituent particle diver­

sity in these sediments is quite high. The steep slope of 

these curves below 600 counted points indicates that esti­

mates based on fewer counted points may give spurious or 

misleading results. 

Variation in the abundance of major sediment consti­

tuents is related to changes in the biotic composition of 

adjacent reef communities. For example, the abundance of 

coral-derived sand in the sediment corresponds favorably to 

percent 1 iving cover of corals at the sample sites (Ohl -

hors t, 198 0; Lid de 1 and Oh 1 hors t, 198 1 ; Lid de 1 1 , ~ ~. 

1984a; Liddel 1, ~ ~. 1984b). Coral fragments represent a 

1 arge proportion of the sediment on the fore reef terrace, 
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and decrease with depth to 70m. Also, living colonies of 

Homotrema rubrum are most abundant in the shallow waters of 

the fore reef terrace (Mackenzie,~ ..!l.:_, 1965). Sand-sized 

grains of Homotrema are also relatively abundant in sediment 

from the fore reef terrace, but are much reduced in sand 

from other reef zones (Boss and Liddel 1, 1983; Boss,~~. 

1984). Additionally, the proportion of Halimeda in the 

sediment varies in relation to the proportion of Hali~eda 

living on the reef. The living Halimeda are abundant in the 

back reef, much reduced in numbers on the fore reef terrace, 

and abundant again on the fore reef escarpment and deeper 

s i t es ( Lid de l l , ~ ~. 198 4 a and b) • 

Goreau and Goreau (1973) have suggested that variation 

in the species composition of Hali~eda with depth could 

serve as a useful environmental indicator. This method is 

encumbered by the fact that most researchers are not suffi­

ciently well-versed in the systematics of the genus Halimeda 

to be able to identify disarticulated plates as to species, 

especially in thin-section! However, variation in the gross 

morphology of Halimeda plates is associated with changes in 

species distribution with depth (Goreau and Goreau, 1973). 

Observations from this study indicate that shallow-water 

species of Hali~eda exhibit plates which are relatively 

thick and sturdy, related to the high energy conditions of 

the shallo~"i-water environment. Al so, the size of these 

plates is somewhat reduced when compared to plates of deep­

w a t e r s p e c i e s o f H a l i m e d a . T h e d e e p - 1-J a t e r H a l i m e d a h a v e 
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plates which are much broader and thinner than their shal­

low-water counterparts. These two different plate morphol­

ogies are easily recognized in hand-specimen and thin-sec­

tion (Fig. 9), and may be differentiated into a "shallow­

water Halimeda sui te 11 and a "deep-water Halimeda suite" .• 

Recognition of these two suites has proven invaluable in 

analyzing Recent sediments, and should prove useful in 

pal eoenvironmental interpretations of Pleistocene or older 

reef 1 imestones. 

Grain Size Analysis 

The grain size distributions of reef sediments (Tables 4 

to 7) are modified · by two factors. First, production of 

sediment over the entire spectrum of grain sizes is occur­

ring at all depths on these reefs due to biological and 

mechanical erosion of the reef edifice. Second, texture­

modifying phenomena such as wave turbulence and sediment 

resuspension diminish significantly with increasing depth 

under modal wind, wave, and tide conditions. Of these t·"'o 

factors, the former appears to be the more important in 

determining sediment textural characteristics. Localized 

sediment production from the continual disintegration of 

calcareous biota at all depths on these reefs introduces 

material over the entire spectrum of grain sizes. This 

aspect is most important ·.oJhere it affects the coarse and 

fin ·e end-members of the grain size distribution. 

An increase in the proportion of materiai coarser than 
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FIG 9. Photograph of typical Hal-imeda plates from shallow. 
water (lower left) and deep-water (upper left) 
environments and their appearance in thin-section 
(lower right= shallow-water; upper right= deep. 
water). Scale at top in centimeters. Field of view 
in bottom photos is 2mm. 
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2.00mm is highly correlated with an increasing abundance of 

Halimeda in sediments from both sand channels (Pearson Pro­

duct Moment Correlation Coefficient, r, = 0.92; significant 

at p 2. 0 . 01) and reef framework (r = 0.90; significant at p 

2. 0.01) with increasing depth (Fig. 10). This relationship 

is substantiated by visual observations during the sieving 

process that Halimeda plates were the dominant component of 

detritus collected on the -1 ~ and -2 ~ sieves. A similar 

increase in the amount of fine-grained carbonate (<0.125mm) 

in sediments with increasing depth is associated with the 

decrease in wave turbulence and sediment resuspension in the 

deeper reef zones (Boss and Liddell, 1984a). 

The compositional similar i ty of sediment collected on 

reef framework and in adjacent sand channels (below 8m 

depth) attests to the absence of sufficiently competent 

sand-transport mechanisms under modal wind, wave and tide 

conditions. This conclusion is contrary to the concept of 

Gareau and Land (1974), Moore, ~ ~. (1976), and Moore and 

Shedd (1977) that sand channels act as "sediment conveyor 

belts" continually transporting reef detritus from shallow 

reef zones into the deep ocean basin. It is more likely 

that significant sediment transport of sand-sized material 

occurs only on steep slopes (such as the fore reef escarp­

ment and lower fore reef slope) and during isolated distur­

bances such as major storms and hurricanes (Meany, 1973; 

Boss and Liddell, in preparation). 

Turbulence created by waves impinging on these reefs 
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must have some effect in modifying the grain size distribu­

tions of sediments on the shallow {5-14m) fore reef terrace. 

Moore and Shedd (1977) have suggested that turbulence 

created by these waves transports silt-sized carbonate (pro­

duced by the boring of cl ion id sponges) in suspension from 

shallow reef zones into deeper water. Indeed, Boss, et al. 

(in preparation) have shown that sediment resuspension in 

shallow water (5m or less) results in measured summer sedi­

mentation rates which are 2.7 times greater than net sedi­

ment accretion and that up to 63.5% of the sediment trapped 

from suspension on the fore reef terrace is derived from 

clionid bioerosion (Boss and Liddell, 1984a). However, most 

of this material is settling from suspension with only 

minimal off-reef transport into deeper water (Moore and 

Shedd , 19 7 7; Boss, ~ ~. in prep a rat i on) . 

Modi f i ca ti o n o f gr a i n - s i z e di st r i but i on s due to the 

winnowing action of wave-surge appears to be more prevalent 

in sand channels than on reef spurs (Tables 5-6). An exami­

nation of sediment sorting from both sites shows that sedi­

ments collected from reef framework were slightly more poor­

ly sorted at al 1 depths than sediments collected from sand 

channels nearby. Apparently, the open network of interlock­

ing corals composing the reef frame modifies circulation 

patterns through frictional attenuation of wave energy and 

provides sheltered pockets in which fine-grained carbonate 

accumulates. 
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Cluster Analysis 

Initial attempts at Q-mode analysis were frustrated by 

the apparent compositional similarity of back reef and deep 

reef sediments. However, a re-evaluation of constituent 

data led to the differentiation of shallow- and deep-water 

Halimeda suites. Modification of the data to account for 

the occurrence of each of these distinctive suites produced 

the dendrogram illustrated in Figure 8. As can be seen, the 

back reef, fore reef terrace, fore reef escarpment and fore 

reef slope, and deep fore reef are readily distinguished 

using this method . 

SUMMARY 

Constituent particle analysis of Recent Jamaican fring­

ing reef sediments has shown that these sands display varia­

bility in biotic composition related to the community struc­

ture of different reef zones. Q-mode cluster analysis has 

demonstrated that sediment composition is a reliable indica­

tor of specific reef environment (Fig. 8) and can be used 

efficiently to resolve facies relationships on these reefs. 

Sediment sorting becomes progressively poorer with in­

creasing depth due to local sediment production at all 

depths and the decreasing competence of sorting mechanisms 

with increasing depth. The similarity of the composition of 

sediment from both reef framework and sand channels to the 

com po s i ti on of adj ace n t re e f comm uni ti es prov i de s com p e 1 l i n g 

evidence that these sands are truly autochthonous deposits. 
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The results of this study should provide a useful data base 

for future research. The application of standard petro­

graphic techniques and multivariate statistical procedures 

in the analysis of these Recent deposits demonstrates the 

utility of using such methods with respect to microfacies 

analysis of Pleistocene and older reef limestones. 
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CHAPTER I II 

ENVIRONMENTAL SIGNIFICANCE OF MINERALOGY IN 

FRINGING REEF SEDIMENTS FROM NORTH JAMAICA 

INTRODUCTION 

38 

Few attempts have been made to assess the impact of reef 

community structure on the mineralogy of Recent carbonate 

sediments. Disarticulation and disintegration of the skele­

tons of marine organisms in a heterogeneous community will 

produce sediments whose grain constituents reflect the dis­

tribution of biotic constituents within that community 

(Ginsburg , 1956; Newell,~~- . 1959; Purdy, 1963a and b; 

Wantland and Pusey, 1975; Boss and Liddell, 1983) . If the 

organisms in the community display different skeletal miner­

alog i es, then the gross sediment mineralogy should also 

reflect antecedent zonal patterns. Fringing reefs of the 

Jamaican north coast exhibit a striking biological zonation 

related to the environmental tolerances of sessile and 

frame-building invertebrates and algae (Goreau, 1959; Gareau 

and Gareau, 1973; Kinzie, 1973). The present study examines 

the mineralogy of some fringing reef sediments from north 

Jamaica to determine whether or not observed fluctuations in 

biotic components have an important and recognizable effect 

upon gross mineralogic characteristics of the resulting 

sediments. 

PREVIOUS WORK 

Many workers (most notably Chave, 1954a and Lowenstam, 



1954) have shown that skeletonized invertebrates in the 

modern oceans secrete primarily aragonite, high-Mg calcite, 

and low-Mg calcite. Variations in skeletal mineralogy are 

related to biological and physical/environmental factors 

such as taxonomic group {Chave, 1954a), growth stage of the 

organism {Dodd, 1963; Stenzel, 1963; Lowenstam, 1954) and 

temperature {Lowenstam, 1954). 

Analyses of the mineralogy of Recent carbonate sedi­

ments are well documented {Chave, 1954b and 1962; Stehl i and 

Hower, 1961; Friedman, 1964; Land, 1967; Milliman, 1967; 

Land, 1973; Nair and Hashimi, 1981; Hashimi, !.!il·, 1982). 

These analyses indicate that for tropical, shallow marine 

env i ronments, the metastable phases aragonite and high-Mg 

c alc i te predominate over low - Mg calcite . I n modern carbon ­

ate ac cumulations, low-Mg calc i te appears to become an 

important mineralogic constituent only in sediments from the 

deep ocean basins {due to contributions from planktonic 

Foraminifera and calcareous nannoplankton; Stehl i and Hower, 

1961) and at high latitudes {due to lower ocean-surface 

temperatures; Chave, 1954a and b). Aside from these 

generalizations, few attempts have been made to assess the 

impact of community structure on overall sediment mineralo­

gy. 

Chave (1962) analyzed the mineralogy of carbonate sedi­

ments from Bermuda and Campeche Bank. His results revealed 

that lagoonal areas contained the highest proportion of 

aragonite, whereas the highest levels of high-Mg calcite 
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were encountered in "reef and near-reef" settings. He at­

tributed differences in sediment mineralogy to the abundance 

of calcareous green algae (HaliE!eda) in the back reef la­

goons and to relatively high concentrations of coralline 

algae (Lithothamnium and Lithophyllum) and encrusting For­

aminifera (Homotrema rubrum) in reef environments. 

Nair and Hashimi (1981) and Hashimi, et al. (1982) 

examined the mineralogy of carbonate sediments on the conti­

nental shelf of India. Here, aragonite-rich sediments were 

associated with mollusc-dominated communities. High-Mg 

calcite became more prevalent in areas where benthic forami­

nifera were abundant sediment constituents. 

The only previous documentation regarding the mineralogy 

of Recent Jamaican carbonates is given by Land (1973) for 

seven unconsolidated reef-sediment samples. Data for the 

percent aragonite in each sample were presented, but no 

attempt was made to relate sediment mineralogy to the compo­

sition of the reef community at each site. 

Boss and Liddell (1983) have shown that sediment con­

stituent composition is correlated with reef community 

structure. Because sediment mineralogy is inherited from 

the mineralogic constitution of bioclasts which compose the 

sediment, sediment mineralogy should be related to community 

structure as wel 1. 

LOCATION OF STUDY 

Field work for this project was conducted during August 
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and September of 1982 from the Discovery Bay Marine Labora­

tory of the University of the West Indies. This facility is 

located on the Jamaican north coast at Discovery Bay (lat. 

180 30' N, long. 770 20' W), and provides easy access to the 

modern fringing reef. Samples were collected through a 

depth range of 1 to 70m on LTS reef (Fig. 11; A-A'). Fol­

lowing this period of field work, all samples were trans­

ported to Utah State University for detailed analysis. 

METHODS 

Sampling and Preparation 

51 samples of Recent fringing reef sands were obtained 

from shallow cores (15cm long x 5cm diameter) collected by 

SCUBA divers. Each core contained approximately 200g of 

sediment. The sampling interval was chosen to coincide with 

five geomorphic zones which have been described for Jamaican 

reefs (Fig. 12). These zones were the back reef, fore reef 

terrace, fore reef escarpment, fore reef slope, and upper 

deep fore reef (Goreau, 1959; Goreau and Goreau, 1973; 

Goreau and Land, 1974; Moore,~~-, 1976;). In the fore 

reef zones, replicate shallow cores were collected from 

sediment accumulations in sand channels (grooves) as wel 1 as 

sand ponded in shallow depressions within the reef framework 

(spurs). Back reef sediments were collected on sandy bottom 

from four distinct community environments: 1) the shore 

zone; 2) a Thalassia testudinum community (80m from shore 

and 160m behind the reef crest); 3) a Callianassa community 

41 



42 

r 
N 

DISCOVERY 
lOO "" 

· 40..- ... • 

F I G . l 1 . 8 a t h y m e t r i c m a p o f D i s c o v e r y 8 a y , J a m a i c a s h o 1-1 -

ing location of transect A - A'(modified from 
Liddell and Ohlhorst, 1981). 



70m 55m 32m 24m 14m Bm 5m 1 - 5m 

I 

A ------~---_!~--;;~:; ____ J_~A~-~p~a~lm~a:la~:;;;;ar,-J ___ ~ IZone 
terrace --,r------~_/ A 

escarpment rtJ~'J!if;"f ~t~­
O'JOOn 
Zone 

Shore 
Zone 

Deep 
Fore 
Reef 

40 
m 

fl11tP 
A. cervlcornis 

Zone 

100 m 

,,.. Barren 
Mixed/ zone 
Buttress 

Zone 



(160m from shore and 80m behind the reef crest); and 4) the 

rear zone (an area immediately behind the reef crest). 

Following collection, all sediments were placed into a 

1000ml graduated cylinder and washed with distil 1 ed water. 

The sediment was then allowed to settle for 6 hours in order 

to limit the loss of fine-grained constituents. After this 

period of settling, the water was removed from the cylinder 

using a siphon, and the sediment was washed again with 

distilled water. The supernatant from each wash was passed 

through a Buchner Funnel and pre-weighed Whatman's #1 Filter 

Paper to capture any remaining suspended sediment. This 

process was repeated three times for each sample, after 

which the sediments were removed from the cylinder and oven 

dried at 105oC. The filters were also dried and weighed to 

determine the amount of fine-grained sediment which was lost 

from the bulk sample. In all cases, this was found to be a 

negligible amount (averaging a few tenths of a gram for each 

200g sample). Following the drying period, each sample was 

placed in a plastic bag and sealed for shipment to Utah 

State University. There, subsamples for X-ray analysis were 

pulverized and passed through a 115 (3~) mesh sieve onto 

Vaseline-coated glass pl ates. 

X-ray and Insoluble-Residue Analysis 

Mineralogical analyses of the 51 sediment samples were 

made using a Siemens X-ray Diffractometer. Operating condi­

tions for the diffractometry unit \vere 35kV and 16mA. The 
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sample was bombarded with nickel-filtered copper Ko<. radia-

tion (l.54~) and the specimen rotated at 20 29 per minute. 

Initially, 13 samples (four from the back reef and one 

each from the sample sites at Sm, 8m, llm, 14m, 24m, 32m, 

46m, 55m, and 70m on LTS reef) were scanned over 450 29 (40 

to 490 29). Only aragonite, high-Mg calcite, and low-Mg 

calcite were present. The 38 remaining samples were assumed 

to be relatively pure carbonate as well and were only scan-

ned from 220 to 310 2Q. 

Quantitative determinations for aragonite, high - Mg 

calcite, and low-Mg calcite were accomplished using the 

method of Stehl i and Hower (1961). A working curve for the 

determination of aragonite percent was prepared by combining 

various known weight fractions of pure aragonite and c al­

c ite. First, the peak heights of the aragonite (111) re­

flection (26.20 29) and the calcite (104) reflection (29.40 

29) were measured from the x-ray di ffractograms. The ratio 

of these intensities (peak heights) was then plotted against 

percent aragonite to construct the curve shown (Fig.13). 

This curve shows good agreement with that of Chave (1954a). 

The next step in this process was to determine the composi­

tion of the remaining carbonate with respect to high-Mg 

calcite (MgC03 > 4 mol%) and low-Mg calcite (MgC03 .:. 4 

mol %). For purposes of this study, it was assumed that the 

presence of MgC03 in the calcite did not si ·gnificantly 

affect the mass absorption coefficient (and thus, reflected 

X-ray intensity) of that phase. The reported error for this 
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assumption is rather large, being 5-18% (Stehl i and Hower, 

1961; Chave,1962; Runnells, 1970). However, it makes pos­

sible the direct comparison of peak heights as a measure of 

the concentrations of high-Mg calcite and low-Mg calcite. 

The ratio of the peak heights of the (104) reflections for 

these two phases were measured and the percent of each 

mineral proportioned according to the percent carbonate 

remaining (100 minus % aragonite} for each sample. 

For all samples, the mole% Mg in solid solution within 

the lattice of high-Mg calcite was determined using the 

method of Goldsmith,!:_!~- (1955). Their data indicate a 

.linear relationship between the change in the d(l04) dimen­

sions and mol % MgC03 up to 21 mol % MgC03 in the system 

Caco 3 -MgCo 3. This change in the d(l04) dimension results in 

a shift of the (104) spacing to lower d-values. The d(l04) 

in high-Mg calcite can be calculated directly from the 

angular position of the (104) reflection on the diffracto­

gram using the Bragg equation. Once the d-spacing of the 

Mg-rich calcite is known, the mol % MgC03 in the system can 

be found using the formula: 

[(3.035 - ds) 7 0.261] x 100 = mol % MgC03 

where ds is the d(l04) spacing calculated for the sample 

from the diffractogram. Table 8 shows the results of these 

analyses and the mineralogical composition of the 51 

samples. Figurel4 is a ternary plot of the mineralogical 

data. 

The non-carbonate fraction in each of the 51 samples was 



TABLE 8. Mineralogical composition of LTS 
Discovery Bay, Jamaica. 

LOW-Ila 
LOCAfI;JN SAMPLE# . ARAGONI TE \ CALCiTE . 
Baci: ;:i ! ~ r 
o :'\n s. .I. r., s u" u 0 I b 
8Rth Jms JA 015 80 

JA 016 80 
BRc a Sos JA 013 80 

JA 014 78 
a Re r 2r.is JA 045 77 

JA 071 89 
JA 073 82 

MEAN and 95\ C. l. Bl .!. 3. 2 5 
MEDI AN and 95~ c. l. 80 ..:. 2. 0 4.5 

Fore Reef Terrace 
er J 0 

JA 14 7 76 
8mr JA 141 67 

JA 14 Z 49 
ams JA 138 75 

JA 143 74 
ttr,r JA 140 74 

JA 145 79 
llms JA 137 75 

JA 139 75 
14n,r JA 146 80 

JA 14 9 78 
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determined by immersing each sample in 20% HCl solution 

until all carbonate had been dissolved. Following acid 

treatment, the insoluble residue was thoroughly rinsed with 

distilled water, dried in an oven at 6Qo C, and weighed. 

The results of this analysis are presented in Table 9. X­

ray diffraction analysis of five of these insoluble frac­

tions (one from each reef zone) was conducted to determine 

their mineralogy. 

RESULTS 

The various polymorphs of calcium carbonate usually 

comprise greater than 95% by weight of these sediments with 

acid-insoluble residues constituting the remaining weight 

fraction. X-ray analysis of 5 of these residues (one from 

each reef zone) failed to produce any reflections through a 

450 range of 2@ (4o to 490 2@). Ohl horst (1980) showed 

that these residues are composed entirely of amorphous 

siliceous sponge spicules and organic matter. There were 

no discernable trends in the variation of insoluble material 

with depth or reef zone. 

X-ray analyses of the carbonate fraction of the 51 

sediment samples for this study reveal that they are domi­

nated by aragonite (49-89%), followed by high-Mg calcite (8-

46%) and low-Mg calcite (2-12%). Back reef sediments exhibit 

the highest aragonite content (X=81% .!_ 3.2%), whereas sands 

of the fore reef terrace contain the most high-Mg calcite 

(X=23% + 4.8%). 
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TABLE 9 • Weight percent 
CaC03 i n LTS 

LOCATION SAMPLE 

Back re~f 
oRns !ms \IA 048 
BRth 3ms JA 015 

J,\ 016 
B Re a 5ms JA 013 

J,\ 014 
B Re r 2ms J,\ 04 5 

J,\ 071 
JA 073 

MEAN and 951 C. I. 
MEDIAN and 95'.!, C.I. 

For-e Reef Terrace 
,mr u" 

JA 147 
8mr JA 141 

JA 142 
8ms JA 138 

JA 143 
llmr J,\ 140 

JA 145 
llms JA 137 

JA 139 
I 4mr JA 146 

JA 149 
14ms JA 150 

JA 151 
MEAN and 95'.t C. I. 
MEDIAN and 95'.tC.I. 

Fore Reef Escarpment 
24mr JA 009 

JA 148 
J A 113 
JA 134 
J A I 3 5 

24ms JA OIi 
JA 096 
JA 110 
JA 11! 

MEAN and 95'.!, C. I. 
MEDIAN and 95'.!, C. I. 

Fore Ree f S1 ope 
3,mr u/., ll 6 

JA 120 
32ms JA 105 

JA 108 
46mr JA 106 

JA 107 
46ms JA 109 

JA 114 
55mr JA 115 

JA 11 7 
5 Sm s JA 112 

JA 118 
MEAN and 95'.!, C. I. 
Mrn!AN and 9 5 '.!, C. I. 

Deep Fore Reef 
, umr J~ 061 

JA 062 
JA 065 
JA 066 
JA 067 
JA 0 68 
J A 129 
JA 130 

MEAN and 95'.!, C. I. 
~ED!AN ana 95 '.!, C. I. 

, 
Reef 
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i nsol ubl e fraction and total 
sediments. 

t; INSOLUBLE 

1. l 
0.9 
0. 3 
4.8 
6. 2 
1.3 
1.3 
1.2 

2.1 .± 1.8 
1.3 .: 3.6 

1.4 
0.8 
7.0 
0.4 
1.9 
1.6 
l. 7 
2.4 
2. 2 
1.4 
2.0 
4. 7 
0. 7 

2 . 1 .t 1.0 
1.7.:0.6 

I. 7 
2. I 
2. 4 
2. 3 
1.1 
1.9 
1.9 
2.8 
1.0 

1. 9 .!. o. 5 
1.9.: 0.4 

l.l 
0.9 
l. 0 
1.0 
2. 3 
1.5 
0. 7 
1.2 
2. 0 
4.4 
1.7 
2. 3 

1.7_:0.6 
1.4..±_0.7 

l.o 
1.8 
1.3 
1.5 
2.0 
I. 7 
I. 7 
1.7 

I. 7 .:. 0. 2 
I. 7 .!. o. 2 

98. 9 
99. l 
99. 7 
9 5. 2 
93.8 
98 . 7 
98. 7 
98.8 

97.9 ±. 1.8 
98.8 .: 3.6 

98. 6 
99 . 2 
93.0 
99.6 
98. l 
98.4 
98 . 3 
9 7. 6 
9 7 . 8 
98 . 6 
98.0 
95.3 
99. 3 

97.9 .±. 1.0 
98 . 4 .±. 0.6 

98. 3 
97.9 
97. 6 
9 7. 7 
98. 9 
98. l 
98. l 
97.2 
99.0 

98 . l .±. 0. 5 
98. l t O. 4 

98 . 9 
9 9. l 
99.0 
99.0 
9 7. 7 
98.5 
99.3 
98.8 
98.0 
95.6 
98.3 
9 7 • 7 

98.3 .: 0.6 
98.7.:0-7 

98. 4 
98.2 
98. 7 
98.5 
93 .0 
98.3 
98 .3 
98.3 

98.J.::. 0.2 
98.3 !. 0.2 



To test the significance of the observed variability in 

mineralogy between sites, the Mann-Whitney U statistic was 

employed (Johnson, 1976). This statistic assumes that two 

samples are the same (Ho: s1 = s2). The value for U is 

calculated from the sample data and compared to a standard 

table for the critical values of U («= 0.05). If the 

calculated U is greater than this critical value, the null 

hypothesis (Ho) is rejected and the alternate hypothesis 

(Ha: S1 ~ S2) is accepted. The results of this analysis are 

presented in Table 10. A significant difference between the 

mineralogy of fore reef terrace sediment and sediment from 

other reef zones is evident. This indicates that shallow 

reef sediments may be distinguished from their lagoonal and 

deep-water c ounterparts on the basis of mineralogy alone. 

DISCUSSION 

The observed differences in mineralogy between fore reef 

terrace sediments and sediments from other reef zones are 

almost certainly the result of variable sediment contri­

bution by different taxonomic groups in these reef zones. 

Sedimentol ogic data from Discovery Bay reefs indicate that 

the green alga, Halimeda, contributes significant quantities 

of aragonitic skeletal debris to back reef and deep reef 

sediments (up to 52%; Boss and Liddell, 1983). Additionally, 

other green algae such as Penicillus, Rhipocephalus, and 

Udotea contribute fine (<62 ml aragonite mud to reef sedi­

ments (Lowenstam and Epstein, 1957; Stockman, et al., 1967; 
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TABLE 10. 

Back Reef 

Fore Reef 
Terrace 

Fore Reef 
Escarpment 

Fore Reef 
S1 ope 

Deep Fore 
Reef 

Back Reef 

Fore Reef 
Terrace 

Fore Reef 
Escarpmet 

Fore Reef 
Slape 

Deep Fa re 
Reef 

Back Reef 

Fore Reef 
Terrace 

Fa re Reef 
Escarpment 

Fore Reef 
S 1 op e 

Deeo Fore 
Reef 

"Ha: S1 Sz 

Ha:S11-Sz 
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Results of Mann-Whitney U tests* using mineral­
ogical data from each sample site on LTS Reef. 

Bad: 
Reef 

X 

Back 
Reef 

Back 
Reef 

X 

Fore Reef 
Terrace 

X 

Fore Reef 
Terrace 

X 

X 

X 

Fore Reef 
Terrace 

X 

X 

X 

Fore Reef Fa re Reef Deep Fa re 
Escarpmen; 

Fore Reef 
Escarpr.ient 

Fore Reef 
Escarpment 

Slope Reef 

ARAGON ITE 

Fore Reef Deep Fore 
Slope Reef 

LOW-MAGUESIUM CALCITE 

Fore Reef 
Slope 

DeeD Fore 
Reef 

HIGH-MAG~ESIUM CALCITE 

x = H0 rejected at°'-= 0.05 

cannot reject H0 at ~ = 0.05 



Neumann and Land, 1975). On the fore reef terrace, coral­

line algae and the Foraminiferan, Homotrema rubrum, provide 

the major sources of high-Mg calcite (5.8-13.5% and 6.4-

9.5%, respectively; Boss and Liddell, 1983), with lesser 

amounts contributed by other benthic Foraminifera (1.8-3.3%) 

and echinoderms (1.7-3.6%). 

Variations in the mineralogic composition of carbonate 

sediments may have a profound influence on post-depositional 

diagenetic phenomena. Maxwell,~~- (1963) suggested that 

sediments initially rich in high-Mg calcite would be more 

susceptible to dolomitization than sediments with minor 

amounts of high-Mg calcite. Schlanger (1957) has shown that 

coralline algae are particularly susceptible to dolomitiza­

tion. In borings from Funafuti Atoll, the coralline algae 

in Eocene carbonates display recrystallization to dolomite . 

Gross (1965) provides similar data from drilling records in 

carbonates on Plantagenet Bank, Bermuda where poorly ordered 

dolomite (43 mol't MgC03) was detected in a core from 20m 

below the sediment-water interface. Thin section study of 

these sediments revealed that the dolomite occurred as ce­

ment binding red-algal bioclasts. Additionally, Land and 

Epstein (1970) found poorly ordered dolomite (41-44 mo1 % 

MgC03) in coral 1 ine algae from Pleistocene reef carbonates 

near Discovery Bay, Jamaica. The limestones in which these 

dolomitized algae occur have faunal and sedimentological 

features comparable to Recent, shallow fore reef environ­

ments (Boss and Liddel 1, 1984b) and are presumed to have had 
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similar original mineralogies. This indicates that fore 

reef terrace sediments (relatively enriched in high-Mg 

calcite) may be more susceptible to dolomitization than back 

reef or deep-reef sediments. Further, magnesium may be 

selectively leached from high-Mg calcites (Stehli and Hower, 

1961; Friedman, 1964; Gavish and Friedman, 1969). Through 

this process, substantial quantities of magnesium may be 

added to pore fluids. Increasing the Mg/Ca ratio in this 

manner may further influence dolomitization of carbonate 

deposits. 

Matthews (1968) speculated that abundant calcitic grains 

dispersed throughout carbonate sediments would hasten solu­

tion of aragonite and precipitation of low-Mg calcite ce­

ments by providing nucleation sites for calcite crystal 

growth. In Pleistocene reef deposits of Barbados, he noted 

that some fossil coral heads still exhibited their original 

aragonitic mineralogy while associated reef sediments showed 

extensive alteration to low-Mg calcite. 

Certainly, factors other than original sediment miner­

alogy will affect diagenetic processes in carbonate sedi­

ments. Sediment textural properties such as porosity and 

permeability may be limiting factors in the movement of 

water and concomitant dissolution/precipitation kinetics 

(Matthews, 1968). Also, tectonic history and position of 

these deposits with respect to the freshwater vadose zone, 

freshwater phreatic zone, or marine phreatic zone will af­

fect the outcome of diagenetic processes (Friedman, 1964; 
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Gavish and Friedman, 1969; Land, 1973; Land and Epstein, 

1970; Longman, 1980). Presently, there are insufficient 

data to determine the contribution of these factors to the 

diagenetic hi story of Pleistocene reef 1 imestones of 

Jamaica. However, future studies of carbonate diagenesis 

should consider the possible role of original sediment 

mineralogy in the diagenetic history of limestones. 
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CHAPTER IV 

DEPOSITIONAL ENVIRONMENTS OF THE FALMOUTH FORMATION: 

BACK REEF AND FORE REEF ANALOGS IN THE 

PLEISTOCENE OF NORTH JAMAICA 

INTRODUCTION 

57 

Holocene fringing reefs of the Jamaican north coast are 

among the most intensively studied coral reefs in the world. 

Numerous studies of reef community structure (Goreau, 1959; 

Goreau and Goreau, 1973; Kinzie, 1973; Bonem and Stanley, 

1977; Ohlhorst, 1980; Liddell and Ohlhorst, 1981; Liddell, 

~ ~. 1984a; Liddell,~~. 1984b) and sedimentology 

(Land, 1970; Land and Goreau, 1970; Land, 1973; Goreau and 

Gareau, 1973; Aller and Dodge, 1974; Goreau and Land, 1974; 

Boss and Liddell, 1983; Boss and Liddell, 1984a and in 

preparation; Boss,~~. 1984 and in preparation) have 

been made. 

In sharp contrast to the wealth of knowledge concerning 

the community structure and depositional environments of 

these fringing reefs, no detailed paleontologic or sedimen­

tologic studies of the Pleistocene reef systems have been 

conducted, although several diagenetic studies have been 

performed (land and Epstein, 1970; Land, 1973). The 120,000 

y.b.p. (Sangamonian) Falmouth Formation (land, 1973) repre­

sents an emergent fringing reef complex exposed along the 

north coast of Jamaica. During Sangamon time, Falmouth Fm. 

reefs were constructed upon a submerged erosional surface at 

an approximately +Sm sea level (Cant, 1973; Land, 1973). 



Lowering of sea level after this interval resulted in trun­

cation of the Falmouth Fm. and the formation of a number of 

terraces, some of which are now submerged and mantled by 

Holocene reef growth (Liddell and Ohlhorst, 1981). At Dis­

covery Bay, the Falmouth Fm. is typically exposed at the 

present shore and in an eroded terrace surface located a few 

meters above sea level. 

The close juxtaposition of this Pleistocene reef lime­

stone and Recent fringing reef environments provides an 

excellent opportunity for the application of uniformitarian 

principles in comparative sedimentology and microfacies 

analysis. Boss and Liddell (1983) and Boss, et al., (1984) 

have developed a model for microfacies analysis of Holocene 

reef deposits using constituent composition of associated 

sediments. This paper presents the results of a study 

conducted on selected outcrops of the Falmouth Formation to 

test the utility of this model with respect to the analysis 

of fossil reef limestones. 

PREVIOUS WORK 

In general, the Pleistocene reefs exposed throughout the 

Caribbean region have not been extensively examined. How-

ever, several comparative studies relating Late Pleistocene 

reef facies to equivalent Holocene reef environments have 

been conducted. Most notable of these studies are those of 

Stanley (1966) on the paleoecology of the Key Largo Lime­

stone of Florida, Mesolella, et al. (1970) and James, et al. 
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(1977) on the Pleistocene reefs of Barbados, and Tebbutt's 

(1975) analysis of the Pleistocene carbonates of Ambergris 

Cay, Belize. 

Stanley (1966) analyzed the preserved faunal and sedi­

mentological characteristics of the Key Largo Limestone and 

compared these attributes with faunal and sedimentological 

aspects of modern carbonate accumulations on the Florida 

shelf. Based primarily upon consideration of the ecology of 

the preserved coral fauna, he was able to describe the Key 

Largo Limestone as a series of coalescing patch reefs de­

veloped in water 6.5 - 13 meters deep. 

Mesolella, et al. (1970) and James, et al. (1977) con-- -
ducted extensive surveys of the Pleistocene reefs of Barba­

dos. Again, making their interpretations primarily upon a 

consideration of the ecology of preserved scleractinian 

faunas, they were able to define a number of distinctive 

facies within these Pleistocene reefs. Also, they described 

all of the major zones which have been described from modern 

West Indian coral reefs. This fossil zonation included 

environments equivalent to back reef, reef crest, shallow 

fore reef and deep fore reef. 

Using the same criteria as the above-mentioned studies, 

Tebbutt (1975) was able to delineate reef crest, back reef, 

shelf lagoon, and mud bank facies in the Pleistocene of 

Ambergris Cay, Belize. In addition, Tebbutt recognized 

variability in the extent of diagenetic alteration which he 

attributed to variation in porosity and permeability as well 
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as primary mineralogy of skeletal components in these lime­

stones. 

In Jamaica, the dep9sitional setting of the Falmouth 

Formation has been briefly described in several publ ica­

tions. Cant (1973) provides a brief description of 

generalized facies geometries within the Falmouth Formation 

near Oracabessa on the Jamaican north coast. Here, he 

illustrates the areal distribution of reef frame\vork and 

sandy back reef deposits upon an exposed low terrace of the 

Falmouth Formation 4km east of Oracabessa. In addition, 

Land and Epstein (1970) examined diagenetic phenomena within 

Falmouth 1 imestones near Discovery Bay. They concluded from 

petrographic and isotopic studies that the observed post ­

depositional alteration of these reef carbonates resulted 

from the interaction of these deposits with meteoric wat~rs 

in the vadose zone associated with subaerial exposure during 

the Wisconsin glaciation. 

Each of these studies utilized analyses of preserved 

macrofauna within the Falmouth Formation to define facies 

relationships. In this paper, it will be shown that the 

analysis of associated sediments can be used with equal 

effectiveness to delineate the various facies of this fossil 

reef accumulation. 

LOCATION OF STUDY 

Measurement and sampling of Falmouth limestones was made 

at 6 locations along the Jamaican north coast in the vicini-
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ty of Discovery Bay (lat. 180 30' N, long. 770 20' W)(Fig. 

15). Outcrops were sampled at approximately 0.5km intervals 

between Rio Bueno Harbour on the west and Discovery Bay on 

the east. Analyses of Falmouth Formation rocks were conduc­

ted at Utah State University. 

METHODS 

Sampling 

Line Transects 

The excellent preservational quality of the Falmouth 

Formation enabled the utilization of line transecting 

techniques to make quantitative estimates of the Pleistocene 

reef community composition. At each outcrop, the point 

intercept method of transecting was used (c.f. Liddell, et 

al., 1984a). Here, a 10m length of cord marked at 20cm 

intervals was stretched across the outcrop. At each marked 

point, a hammer was used to break through the weathered 

calcareous crust, thus exposing a fresh surface of the 

1 imestone for examination. The nature of the substrate 

(whether 1 ithi fied sediment or reef frame) and faun al com­

ponents occurring beneath each marked point were noted. 

After all points on the line were counted, the cord was 

moved lm parallel to the first transect. A second transect 

was then made in the same manner described above. This 

process was repeated until a minimum of 150 points were 

recorded for each site. The results of transecting are 

presented in Table 11. 
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Constituent Particle Analysis 

Hand specimens of Falmouth limestones were collected at 

each outcrop. A total of 64 samples were collected from the 

6 measured outcrops. 32 of these samples were selected as 

representatives to be sectioned for petrographic analysis of 

constituent particle composition. Standard point-counting 

techniques were utilized and rarefaction analysis {Hurlbert, 

1971; Heck, et.~. 1975) used to determine the adequacy of 

thin-section samples. Using this method, a curve is con­

structed which shows the number of "species" {grain types) 

present in the sample per unit measure {points counted). 

These curves rise rapidly at first, but soon begin to level 

off and at some point become asymptotic {Fig.16). After 

this point is reached, the curve can be expected to rise 

only slightly and at long intervals due to the addition of 

exceedingly rare constituents. No significant changes in 

constituent proportions are expected beyond the asymptotic 

point and one may be confident that the sample is an ade­

quate representation of constituent diversity. For this 

study it was found that a count of 600 points was needed to 

accurately describe the constituent composition of each 

sediment sample. Results of constituent particle analysis 

are presented in Table 12. 

Cluster Analysis 

A computer-based program of hierarchical cluster analy­

sis {CLUSTAR) was utilized (Romesburg, 1984; Romesburg and 
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1 2. C o t.: p a r i s o n o f c o n s t i t u c n t c o n1 µ o s i t i o n o f F J l -
mouth Formation f a cies and Rec e nt back reef and 
shallow fore reef sediments, Discovery !lay, 
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11.0+2.7 

1.5 + 0.5 

1.1 + 0.8 

0. 0 + 0. 0 

0.0 + 0.0 

0.4 t 0.2 

RECEIIT OACK REEF* FALMOIITlt GRAINSTOIIE 
SEOlMEIITS FACILS 

4 I • 3 + fi . 8 

24.0 + 9 . 6 

13.2 + 1.9 

).5 + 3.5 

2.1 + 0.7 

3.5 + :.o 

2.8 + 1.4 

7.5 + 1.8 

1. 2 t 0. 6 

0.7 + 0 . 5 

0 . 4 + 0 . 2 

57.0 + 6.3 

1. 1 + 0.9 

23.7 + S .3 

4.4 + 2.7 

0.3 + 0.5 

10 . 7 + 4.2 

2.8 + 1.3 

0.0 + 0.0 

4. 0 i ; • 4 

0 . 8 + 0.7 

0.3 + 0.4 

•co111po~tllc111 of Hec ent se,ll111r.nts fr ·orn Boss a11cl Liddell (1903). 

RECENT FORE REEF* 
SEOIMEIITS 

61 . 5 + 7 . 0 

2 . 5 + 2. 3 

12.9 + 9. 5 

8.6 + 5. I -
I. 5 + 1.2 

2.3 + 1.5 

1.9 + 1.5 

6. 1 + 3.3 

I. 9 + ). 9 -
0 . 3 + 0.6 

0 . 4 + 0. 4 



Marshall, 1984) to compare sediment constituent characteris­

tics. It was believed that Q-mode analysis of multivariate 

sediment constituent data would assist in delineating pat­

terns of association which could not be resolved using 

simpler statistical methods. For this study, values for the 

constituent proportions of each sample were analyzed using 

the Euclidean metric di stance measure. This was combined 

with the Unweighted Pair-Group Method with simple Arithmetic 

Averages (UPGMA) clustering method. These two options were 

chosen over the others simply because of their broad appl i-

cation and familiarity to other researchers. The Euclidean 

metric measures the distance between the individuals 

defined by: 

and .J. 

where d..:!1 is the euclidean distance, Xik is the kth variable 

for the ith object and x~ is the kth variable for the jth 

object (Everitt, 1974). The UPGMA measures the average 

distance between all pairs of individuals (objects) in each 

of the clusters. The dendrogram produced from this analysis 

is illustrated in Figure 17. To test the significance of 

derived clusters, the Chi-squared test {0<. = 0.05) was used. 

X-ray Analysis of Mineralogy 

Mineralogical analyses of 64 limestone samples were made 

using a Siemens X-ray Diffractometer. Operating conditions 

for the diffractometry unit were 35kV and 16mA. The sample 
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was bombarded with nickel-filtered copper Ko< radiation 

(l.54~) and the specimen rotated at 2° 2Q per minute. 

Quantitative determinations for aragonite, high-Mg 

calcite, and low-Mg calcite were accomplished using the 

method of Stehl i and Hower (1961). A working curve for the 

determination of aragonite percent was prepared by combining 

various known weight fractions of pure aragonite and cal­

cite. First, the peak heights of the aragonite (111) re­

flection (26.2° 2Q) and the calcite (104) reflection (29 . 4° 

2Q) were measured from the x-ray diffractograms. The ratio 

of these intensities (peak heights) was then plotted against 

percent aragonite to construct the curve shown (Fig.18). 

This curve shows good agreement with that of Chave (1954a). 

The next step in this process was to determine the composi­

tion of the remaining carbonate with respe c t to high - Mg 

calcite (MgC03 > 4 mol %) and low-Mg calcite (MgC03 ~ 4 

mol %). For purposes of this study, it was assumed that the 

presence of Mgco 3 in the calcite did not significantly 

affect the mass absorption coefficient (and thus, reflected 

x-ray intensity) of that phase. Although the reported error 

for this assumption is rather large, being 5-18 % (Stehl i and 

Hower, 1961; Chave, 1962; Runnells, 1970), it makes possible 

the direct comparison of peak heights as a measure of the 

concentrations of high-Mg calcite and low-Mg calcite. The 

ratio of the peak heights of the (104) reflections for these 

two phases were measured and the percent of each mineral 

proportioned according to the percent carbonate remaining 
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(100 minus% aragonite) for each sample. 

For all samples, the mole% Mg in solid solution within 

the lattice of high-Mg calcite was determined using the 

method of Goldsmith,~~- (1955). Their data indicate a 

linear relationship between the change in the d(l04) dimen­

sions and mol % MgC03 up to 21 mol % MgC03 in the system 

CaC03-MgC03. This change in the d(l04) dimension results in 

a shift of the (104) spacing to lower ct-values. The d(l04) 

in high-Mg calcite can be calculated directly from the 

angular position of the (104) reflection on the diffracto­

gram using the Bragg equation. Once the ct-spacing of the 

Mg-calcite is known, the mol % MgC03 in the system can be 

found using the formula: 

[(3.035 ·- ds) 7 0.261] x 100 = mol % MgC03 

where ds is the d(104) spacing calculated for the sample 

from the diffractogram . Tables 13 and 14 show the mineralo­

gical composition of the 64 samples. Figure 19 is a ternary 

plot of the mineralogical data. 

RESULTS 

Line Transects 

Table 11 illustrates the faunal composition of Falmouth 

1 imestones as determined from transect data for four of the 

six localities studied along the Jamaican north coast. This 

table clearly depicts the differences in observed coral 

abundance and community composition of sampled localities. 

Note in particular the increase in abundance of corals at 
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TABLE 13. Minera16gical composition of Falmouth Formation 
back reef facies limestones, Jamaica. 

LOIi-Mg HIGH-Mg : 1-1 g CG a i n 
LOCAT!ON SAMPLE! . AiiAGON I TE i CALCITE . CALCITE HIGH-Hg (,l.,~C iTE . . 
, , ; 9 . 15) 

FAL Ba 12 . ' I• 14 l 4 
FAL Sb 29 55 16 l 2 
FAL 9b 41 43 i6 1 2 
FAL 4 41 45 14 0 
FAL Sa 36 48 16 12 
FAL Sb 41 48 11 8 
F Al 6a 44 45 11 1 7 
FAL 6b 45 41 14 14 
FAL 6c 43 44 13 12 

MEAN and 95~ C. I. 35 . 7. 3 50 + 7. 3 14 + 1. 6 12 • 2. ; - - - -
FAL4la 28 64 8 16 
FAL4ib 29 65 6 1 5 
FAL4lc 33 50 17 l E 
FAL42a 28 60 1 2 14 
F Al4 2 b 29 58 13 12 
FAL.43a 28 62 10 1 2 
F AL 4.1b 30 57 1 3 l 4 

2 FAL43c 29 54 l 7 4 
FAL44 26 64 10 16 
FAL45 38 52 10 17 
FAL4oa 2 i 6 l 1 2 
FAL46D 27 62 11 4 
FAL46c 29 60 11 lt 

MEAN and 95: C. I. 29 . 1. 9 59 + 2. 9 12 .. J. 8 12 . 3. l - - - ---------------------------------------------------------------------------------
FAL24a 35 51 14 16 
FAL24b 40 47 13 14 
FAL24c 24 58 18 l 4 
FAL25 24 55 21 8 
FAL26a 34 50 16 14 
FAL26b 32 50 18 12 
FAL26c 29 67 4 1 2 
FAL27a 31 53 16 12 
FAL27b 35 49 16 15 
FAL27c 31 56 13 16 
FAL28 29 55 l 6 l 4 
FAL29a 25 GO l: l ~ 
FAL29b 31 57 12 16 

MEAN and 95~ C. I. 31 + 2. 9 55 + 3. 3 15 + 2. 5 14 . 1. 6 - - -
F AL34 53 28 9 l 6 
FAUS 28 60 1 2 12 

4 FAL38 12 76 10 4 
FAL39 40 4 9 11 l 5 
FAL40 28 57 l 5 14 

MEAN and 95: c. l. 34 - 2 3. 5 54 + 22.6 11 + 2. 9 1 2 + 6. 2 



TABLE 
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14. Mineralogical composition of Falmouth Formation 
fore reef faices limestones, Jamaica. 

LO~Hg HIGH-Hg 1 HgC02 in 
LOCATION SAMPLE I 1 ARAGONI TE 1 CALC !TE 1 CALC !TE HlliH-Mg ALCITE 
(Fig. 151 

FALll 13 87 0 
5d. FAL18 16 84 0 

FAL23 l 99 0 
MEAN and 951.C.I. 10 + 19 . 7 90 + 19.7 0 + o.o 
-----· --------------------------------------------------------------------------

Sb 

KEAN and 

Sc 

MEAN and 

FALlO 
FAL12 
FALIS 
FAL2l 
F AL22 

95: C. I. 

FAL13 
FAL16 
FAL48 
FAL14 
FAL17 
FAL19 
FAL20 

95: c. 1. 

FAL l 
FAL 2 

6a FAL 3 
FAL 4 

MEAN and 951 C.I . 

FAL lb 
6b FAL 2b 

FAL 3b 
MEAN and 951 C.I. 

21 
22 

9 
24 
17 

19 + 7.4 

60 
63 
69 
61 
67 
63 
48 

62 + 

29 
29 

7 
1 

6 . 3 

17 + 23.J 

60 
68 
44 

57 + J0.3 

71 

19 

75 
67 
78 
64 
71 
+ 7 . 1 

24 
17 
14 
21 
14 
15 
27 
+ -
71 
71 
93 
99 

4 .9 

84 + 23.3 

26 
21 
31 

26 + 12 . 4 

10 

20 

4 
11 
13 
12 
12 
.,. 4. 5 

16 
20 
17 
18 
19 
22 
25 
+ 2.9 

0 
0 
0 
o 

o + o.o 
14 
11 
25 

17 + 17 .7 

• Location subscr1pts refer to posi t1on of samples on vert1cal face 
of exposed Falmouth limestones: 

a • tap of section 
b • middle of section 
c ~ base of section 

13 

13 

10 
12 
16 
16 
10 
+ 3.8 

8 
16 
12 
14 
12 
12 
17 
+ 2 . 8 

10 
12 
14 

12 + 7.0 
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the Rio Bueno Harbour site and the high proportion of mol­

luscs at the other localities. 

Field examination of Falmouth limestones revealed the 

presence of two distinctive lithologies within the study 

area. The most common 1 i thol ogy in the Discovery Bay area 

is a dense, well-lithified, muddy limestone which contains 

abundant molluscs (Fig. 20) and occasional isolated coral 

heads, principally Montastrea annuiaris (Fig. 21) and 

Porites furcata (Table 11). These deposits are encountered 

at 1 ocal i ties 1 - 4 of Figure 15. 

The second lithotype exposed in the study area is poorly 

lithified and contains an abundance of frame-building corals 

(Table 12). A vertical section through these deposits is 

illustrated (Fig. 22) from the margin of Rio Bueno Harbour 

(locality 5, Fig. 15). Here, the branching coral, Acropora 

cervicornis is shown in growth position at the base of the 

section with large fronds of Acropora ~~ata occurring 

immediately above the~ cervicornis horizon. The upper lm 

of this section (not pictured) has been extensively altered 

by diagenetic processes to form a dense but friable caliche 

cap (Land 1973). 

Constituent Particle Analysis 

Thin-section study of Falmouth limestones reveals 

variability in the biotic composition of the sediment which 

results from the influence of reef community composition 

upon sediment composition (Boss and Liddell, 1983; Boss, et 

75 



!.l_., 1984). Two distinctive lithologies are again recog-

nized from the study area (Figs. 23 and 24). 

The most common lithology is represented by specimens 

from localities 1 - 4 (Fig. 15). This skeletal packstone 

contains abundant plates of the calcareous green alga, Hali ­

meda (X = 22.8% ~ 3.1), as well as comminuted coral (X = 

32.6% ~ 3.7), coralline algae (X = 24.9% ~ 3.7) and molluscs 

(X = 11.0% ~ 2 . 7), with lesser amounts of Foraminifera (X = 

4.5% + 1.3) and echinoderms (X = 1.5% + 0.5). 

The second l ithology is exposed around the margins of 

R i o B u e n o H a r b o u r ( l o c a· 1 i t i e s 5 a n d 6 , F i g • 1 5 ) • These 

skeletal grainstones are poorly lithified with constituent 

com po s i ti on do m i n ate d by sand- s i zed coral (X = 5 7. 0 % + 6. 3) 

a n d c o r a 1 l i n e a 1 g a e (X = 2 3 • 7 % + 5 • 3 ) , w i t h o n 1 y m i n o r 

amounts of Ha 1 i med a (X = 1. 1 % + O. 9 ) • 

Cluster Analysis 

Q-mode cluster analysis (CLUSTAR) using constituent data 

from all 32 sectioned-samples of Falmouth Formation 1 ime­

stones illustrates the distinctive nature of the previously 

mentioned lithologies. The dendrogram produced from this 

analysis (Fig. 17) shows two prominent groupings. The upper 

cluster is represented by the packstones collected from 

localities 1 - 4 (Fig. 15). The lower cluster is formed by 

the grainstones which occur within the Falmouth Formation at 

localities 5 and 6 (Fig. 15). 

Chi-squared tests ( o<..= 0.05) between individual pair 
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FIG. 20. Hand specimen of Falmouth Fm. back reef facies 
showing abundant moll uses. Sample collected 
from surface exposure of the Falmouth Fm. at 
location 2 (Fig. 15). Bar scale= 5cm. 
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FIG. 21. Photograph of Falmouth Fm. outcrop of the back 
reef facies showing an individual coral (Mont­
astrea annul ari s) enclosed in muddy, cal carena-
ceous matrix at location 2 (Fig.15). 35mm film 
cannister for scale. 
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FIG. 22. Vertical exposure of Falmouth Fm. fore reef 
facies along eastern margin of Rio Bueno Harb ou r . 
Note the abundance of fram e building corals, 
in cluding Acropora cervicornis (AC) and A. 
palmata (AP).(From Liddell, !_! ~-, 1984c) . 
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groups within each cluster showed that variation in the 

constituent composition of samples within the cluster were 

not significant. However, a X2 test using the mean consti­

tuent composition of the two major clusters showed them to 

be significantly different, supporting the contention that 

these two lithologies represent different sedimentary facies 

of the Falmouth Fm. 

X-ray Analysis of Mineralogy 

80 

X-ray analysis of the mineralogy of Falmouth limestones 

shows that low-Mg calcite is the dominant CaC03 phase (X = 

53.9'.t .:!_ 3.8) in the packstone facies, occurring primarily as 

void filling cement and micrite. Aragonite is the next most 

ab u n d ant m i n er a 1 (X = 3 2. 0 '.t + 2. 7 ) f o 11 owed by h i g h - Mg 

calcite (X = 13.0 '.t + l.O)(Table 13). 

The grainstone facies displays a continuum of mineralo­

gies from little-altered sediments (X aragonite = 61.6 % + 

-6 • 3 ; X h i g h - M g c a 1 c i t e = 1 9 . 6 '.t !_ 2 . 9 ; X 1 o \'/ - M g c a 1 c i t e = 

18.9 % !_ 4.9) exposed at the base of the outcrop to nearly 

complete conversion of sediments to low-Mg calcite (X arago­

nite = 10.0% !_ 19.7; X high-Mg calcite= 0.0 %; X low-Mg 

calcite= 90.0 % + 19.7) which is associated with the devel­

opment of a lm thick cal iche cap at the top of the section 

(Table 14). 

DISCUSSION 

Compar is on of the d istribut i on of Falm o uth Formation 



FIG. 23. Thin-section photomicrograph for comparison of 
Pleistocene and Recent back reef sediments. 

A) Falmouth Fm. 

B)Recent sediments from Discovery Bay. 

1 = coral 
2 = Halimeda s pp. 
3 = cora 111 ne aTgae 
4 = moll uses 
5 = echinoderms 

Note the abundance of Halimeda in both photo­
micrographs (Field wi~~2mm in both pho­
tos) . 
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IG . 24. Thin - section photomicr ogr aphs for comparison of 
Pleistocene and Recent shallow (5 - 8m) fore 
reef dep osits. 

A) Falmouth Fm. 

B) Recent sediments from Discovery Bay 
reefs. 

1 = coral 
2 = Halimeda spp. 
3 = cora 111 ne algae 
4 = moll uses 
5 = e c h i .n o d e rm s 

Note the abundance of coral and cor alline al gal 
fragm ents and the absence of Halimeda in these 
s e d i m e n t s ( F i e l ct w i d t h = 2riirr1Tnb o t h p h o -
to s) . 
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FIG 25. 

For• Reef loc Ir: I eef 

c, •• , 

Slop• Terrace 

55 45 30 22 15 5 0.5 1 Depth(m) 

1001ft 

[ 20'.1, 

Acropor• cervicorni1 

Acropora pot111•to 

A9•ricio •1•ric i t•• 

A9•rici• 1pecie1 

Modracit mira~ili1 

Monto1trea onn\llori, 

,orite1 01treoide1 

Spindle diagram _showing the bathymetric distri­
bution of common coral species within the modern 
fringing reef system, north Jamaica (From Lid­
dell and Ohl horst, in preparation). Note in 
particular restricted range of Acropora palmata 
and A. cervicornis. 
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corals with the distribution of the same species within the 

modern fringing reef system (Liddell and Ohlhorst, 1981 and 

in prep.; Liddell,!_!~. 1984a; Fig. 25) provides inter­

esting insights into the depositional environments of the 

Falmouth Fm. 

On Holocene fringing reefs, Acropora cervicornis is 

shown to occur in abundance only in the shallow waters of 

the fore . reef terrace, especially between 8 - 15m depths. 

~ palmata is shown to be restricted to a narrow band along 

the reef crest between 0.5 - Sm depths. Montastrea annu­

laris, on the other hand, is shown to have a much broader 

bathymetric range than either of the acroporid species . 

Therefore, based principally upon the occurrence of Acropora 

cervicornis and~ palmata around the marg i ns of Rio Bueno 

Harbour, the Falmouth Formation here is interpreted to rep­

resent a shallow (5 - 8m deep) fore reef environment. 

The muddy character, reduced coral species diversity, 

and numerous molluscs of the remaining Falmouth Formation 

sites (localities 1 - 4, Fig. 15) are suggestive of the 

modern back reef environment at Discovery Bay. 

These tentative interpretations based upon analysis of 

preserved macro fauna are supported by the constituent par­

ticle data acquired from thin-section study of Falmouth 

rocks and by the results of Q-mode cluster analysis using 

constituent data. The high proportions of Hali~eda and 

carbonate mud in the packstone facies (Fig. 23) are consis­

tent with the observed frequency of Halimeda and mud in 



Recent Jamaican back reef sediments (Boss and Liddell, 1983, 

1984b, and in prep.; Table 12). High values for Hali~eda 

content are also reported for back reef sediments from south 

Florida (Ginsburg, 1956) and Belize (Pusey, 1975). 

Notable characteristics of Falmouth grainstones from the 

Rio Bueno Harbour locations (Fig. 24) are the high propor­

tions of coral (57.0% + 6.3) and coralline algae (23.7% + 

5.3) and the conspicuous reduction in the amount of Halimeda 

(1.1% + 0.9). Each of these features is consistent with the 

composition of sediments collected from the Recent shal 1 ow 

(5 - 8m) fore reef where coral and coralline algae are 

abundant (62% - 55 % and 12 % - 21 %, respectively), and Hali ­

!!!_eda comprises only 0.4% - 3 . 6% of the sediment (Boss and 

Liddell, 1983; 1984b, and in prep .; Table 12). 

These comparisons show conclusively that paleoenviron­

mental interpretations using the composition of sediments 

within the Falmouth Formation agree favorably with paleoen­

vironmental interpretations based upon analyses of preserved 

macrofauna. Additionally, it has been demonstrated that Q­

mode cluster analysis using sediment constituent composition 

can be used effectively to delineate distinctive facies 

within the Falmouth Formation. 

The mineralogy of Falmouth 1 imestones suggests that 

original sediment texture plays an important role in con­

trolling the extent of diagenetic alteration. Examination 

of Figure 19 shows that fore reef deposits exposed at the 

top of the Rio Bueno Harb .our sections show near complete 
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conversion to lo\-1-Mg calcite. This is associated with the 

development of a lm thick cal iche cap at the top of these 

exposures. By contrast, subaerially exposed back reef depo­

sits retain much of their original aragonite and high-Mg 

calcite, and contain low-Mg calcite primarily as void fil-

1 ing cement and micrite. 

Variability in the extent of diagenetic alteration ex­

hibited by these two facies almost certainly results from 

variations in permeability of these deposits related to 

characteristics of original sediment texture. Grain size 

analysis of Recent back reef and shallow fore reef deposits 

{Boss and Liddell, 1983, 1984b, and in prep.) indicates that 

back reef sed i ments are generally more poorly sorted and 

contain greater quantities of fine - grained carbonate than 

shall ow fore reef sediments. These factors combine to re­

duce the permeability of back reef sediments, thus enhancing 

their preservation potential. Conversely, the better sort­

ing of shallow fore reef deposits increases their permeabi­

lity and susceptibility to alteration by percolating fluids. 

Several authors provide data in support of this permea­

bil ity-preservabil ity hypothesis. Matthews (1968) reports 

that Pleistocene reef sediments of Barbados often display 

conversion to low-Mg calcite, whereas less-porous coral 

heads in the same deposits retain their primary aragonitic 

mineralogy. Additionally, Tebbutt (1975) describes Pleisto­

cene outcrops from Ambergris Cay, Belize where corals with 

relatively high permeabilities are preferentially dissolved 
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while less permeable corals weather in relief from the 

surrounding low-Mg calcite limestone matrix. 

In conclusion, this study demonstrates that detailed 

analyses of biotic and physical parameters of Recent reef 

deposits can provide information pertinent to the analysis 

of depositional environments of Pleistocene reefs. These 

observations may then be combined to develop greater insight 

into and understanding of the dynamics of more ancient reef 

systems. 

87 



CHAPTER V 

SUMMARY 

88 

Recent carbonate sediments from Jamaican north coast 

fringing reefs were collected along three parallel transects 

in the vicinity of Discovery Bay. Each transect extended 

from near shore across the back reef (1-Sm), fore reef 

terrace (5-14m), fore reef escarpment (14-24m), fore reef 

slope (24-55m) and upper deep fore reef (?Om) . Sediment 

samples display variation in constituent composition and 

texture (sorting) which is correlated with their location on 

the reef. 

The sediment is dominated by highly c omminu te d coral 

fragments (27.1 % + 4.2 to 63.1 % + 6.8), plates of the cal­

careous green alga,~~!~ (0.4 % ~ 0.4 to 38.7 % + 17.3), 

coralline algae (4.7 % + 1.9 to 16.2 % + 14.3) and the en­

crusting Foraminifera, Homotrema rubrum (0.7 % + 0.6 to 9.5 % 

+ 5.9), with lesser amounts of other taxonomic groups (For­

aminifera, 1.3 % + 0.5 to 5.5 % ~ 2.0; molluscs, 1.4 % + 0.8 to 

7.0 % ~ 6.0; echinoderms, 0.9 % + 0.4 to 5.0 % + 14.6). Rel a­

tive abundances of the biotic constituents vary between 

sites, reflecting general patterns of reef community compo­

sition. 

Sieve analyses of these sediments reveal that mean grain 

size (Mi!) approaches 0.5mm at most sites, with little depth­

related variation. Sorting, however, becomes progressively 

-poorer with increasing depth for sediments from both _ sand 

channels (r = 0.91; significant at p < 0.01) and sand trap-
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ped by reef framework (r = 0.94; significant at p < 0.01). 

This relationship results primarily from the influence of 

local sediment production combined with decreasing compe­

tence of sorting mechanisms (wave turbulence) with increas­

ing depth. 

Q-mode cluster analysis using sediment constituent data 

demonstrates that sediments from the back reef (1 - Sm), fore 

reef terrace (5-14m), fore reef escarpment (14-24m) and fore 

reef slope (24-55m), and deep fore reef (70ml are readily 

distinguished. Application of these techniques to the anal­

ysis of ancient reef limestones shou l d permit the delinea­

tion of similar microfacies. 

X-ray diffraction and insoluble- r esidue analyses were 

conducted on 51 Recent fringing reef sed i ments from north 

Jamaica. Samples were collected across the back reef and 

fore reef (0.5m to 70m). These analyses indicate that total 

CaC03 in these sediments is generally greater than 95 % by 

weight. Amorphous siliceous sponge spicules and organic 

matter comprise the remaining non-carbonate fraction of 

these sands. Aragonite is the most abundant carbonate phase 

(49-89 %), followed by high-Mg calcite (8-46 %) and low-Mg 

calcite (2-12 %). Significant differences in the proportion 

of aragonite and high-Mg calcite between fore reef terrace 

sediments and sediments from other reef zones is attributed 

to the influence of reef community composition on sediment 

mineralogy. Specifically, this difference results from the 

contribution of high-Mg calcite to shallow reef sediments by 

coralline algae, Foraminifera (principally Homotrema) and 



90 

echinoderms, which flourish in the clear, agitated waters of 

the fore reef terrace. These organisms are relatively less 

abundant sediment constituents elsewhere on the reef. Pri­

mary sediment mineralogy may influence solution/precipita­

tion kinetics and can play an important role in initiating 

specific post-depostional processes in carbonate sediments. 

The 120,000 y.b.p. (Sangamonian) Falmouth Formation 

represents an emergent Pleistocene fringing reef complex 

exposed along the north coast of Jamaica. Line transects 

were conducted on selected outcrops to quantitatively deter­

mine macrofaunal components of the fossil reef community. 

Thin-sections of rock samples were made and the constituent 

compositions determined using standard point-counting 

methods . Q-mode cluster analysis using constituent data 

reveals two distinctive lithologies which display variabili­

ty in sedimentological and faunal components analogous to 

back reef and shallow (5 - 8m deep) fore reef environments 

of the Holocene Jamaican fringing reef system. The most 

common lithology of the Falmouth Fm. in the Discovery Bay 

area is a skeletal packstone containing abundant plates of 

t h e c a 1 c a r e o u s g r e e n a 1 g a , ~~ e d a ( X = 2 2 . 8 % + 3 . 1 ) , a s 

well as comminuted coral (X = 32.6 % + 3.7), coralline algae 

(X = 24.9% + 3.7) and molluscs (X = 11.0% + 2.7), with 

1 e s s e r a m o u n t s o f F o r a m i n i f e r a (X = 4 . 5 % + 1 . 3 ) a n d e c h i n o -

derms (X = 1.5% + 0.5). A back reef interpretation for 

these packstones is supported by observed low coral diver­

sity (dominated by Porites furcata and Montastrea annularis) 
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and abundant molluscs. The second lithotype is located in 

the vicinity of Rio Bueno Harbour. These skeletal grain­

stones are poorly lithified, with constituent composition 

indicating a shallow (5 - 8m deep) fore reef environment. 

Sediments here are dominated by sand-sized coral fragments 

(X = 57.0 % + 6.3) and coralline algae (X = 23.7 % + 5.3), 

w i t h o n 1 y m i n o r a m o u n t s o f H a 1 i ~ e d a (X = 1 . 1 % .:!:_ 0 • 9 ) . T h i s 

is consistent with the composition of sediments collected 

from the Recent shallow fore reef environment where coral 

and coralline algae are abundant and Halimeda comprises only 

0 . 4 - 3.6 % of the sediment. Higher coral diversity and the 

p r e s e n c e o f c o r a 1 s s u c h a s A c r o p o r a p a 1 ~~i a n d ~ c e r v i -

cornis also indicates a shallow fore reef setting for this 

locality. 

X-ray analysis of the mineralogy of Falmouth limestones 

reveals that fore reef grainstones exhibit greater diagene­

tic alteration than back reef packstones. This suggests 

variability in the extent of diagenetic alteration which is 
\ 

related to characteristics of original sediment texture. 

The results of this study demonstrate the utility of 

various quantitative methods in the interpretation of Holo-

cene and Pleistocene reef carbonates. Application of the 

same techniques may assist in the interpretation of more 

ancient 1 imestones. 
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