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ABSTRACT

Chemical Changes in Groundwater of

Northern Utah Valley, Utah

by

Paul E. Fairbanks, Master of Science

Utah State University, 1982

Ma jor Professor: Dr. Peter T. Kolesar

Department: Geology

L d

Northern Utah Valley is one of the fastest growing areas of Utah
and has increasing needs for domestic, industrial, and agricultural
water. To meet these needs, groundwater and surface water systems must
be understood to maximize their use. Chemical studies of the sediment
mineralogy and related water-chemistry give insight to the movement of
the water.

There are three major aquifers present in the valley: shallow
Pleistocene; deep Pleistocene; and Tertiary. They are composed of sands
and gravels and are separated by confining layers (aquitards) composed
mostly of clay. Along the flanks of the bordering mountains there are
undifferentiated aquifers which act as conduits supplying water for
aquifers in the valley.

Sediment samples from aquifers and confining layers were obtained
by rotary and cable-tool drilling. X-ray diffraction analyses showed

that the aquifers are mainly composed of quartz, calcite, and dolomite,



whereas the confining layers contain illite and montmorillonite with
some kaolinite, quartz and calcite. One hundred nine water samples were
collected in this study from surface water, spring water,
undifferentiated aquifer water, shallow Pleistocene aquifer water, deep
Pleistocene aquifer water and Tertiary aquifer water.

Results show that the groundwater system has several geochemical
cells in each aquifer, due to diverse areas of recharge. Three major
water types can be 1identified 1in different areas of the shallow
Pleistocene aquifer, three in different areas of the Tertiary aquifer,
and four in different areas of the deep Pleistocene aquifer. The
differences in these water types are related to the composition of the
mountain recharge areas and positions of faults within the valleys. The
aquifer composition exerts relatively little influence on the chemistry
of éhe groundwater. Mountains of predominantly carbonate rocks produce
recharge waters rich 1in calcium and bicarbonate. Mountains of
predominantly granitic rocks produce recharge water low in mineral

content. Valley sediments near major faults produce highly mineralized

waters.

(82 pages)
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STATEMENT OF PROBLEM

Utah Valley is located on the eastern flank of the Basin and Range

Province. It is an elongate basin comprising approximately 800 square
miles. Water in this area of semi-arid climate is high in demand and
one of the most important resources. This report analyzes the

groundwater system in northern Utah Valley, an area embracing 150 square
miles and including the towns of Alpine, American Fork, Lehi, and
Pleasant Grove (fig. 1).

Northern Utah Valley is a growing area, with light industry and
urban residences expanding into previously irrigated agricultural lands.
Before 1947, most water wells were less than 200 feet éeep and three
inches in diameter and were mainly used for domestic irrigation and
livestock watering. From 1947 to 1969, the number of wells five inches
in diameter and greater increased drastically (Hyatt and others, 1969,
Br. @5). These wells include high withdrawal public-supply wells,
industrial wells, and irrigation wells. As a result of these increases
in water demand, a sound policy for future water usage is needed.

In order to supply adequate water for the present and future needs
of this area the groundwater and interrelated surface-water system must
be understood in terms of hydraulic properties of aquifers, movement of
groundwater, and location of recharge areas. Such understanding will
allow development of groundwater resources in strategic areas with

little adverse influence on already allocated waters.
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Groundwater and surface-water are influenced chemically by rocks
and sediments of the area. Chemical changes in the water, when
correlated with the sediment composition of the aquifers, can be used to
trace the groundwater flow path.

The 0.8- Geological Survey (Water Resources Division,
Investigations Section, Salt Lake City) is presently undertaking a large
hydrologic study of northern Utah Valley. The expected results will be
a sufficient understanding of the groundwater system to permit
development of a predictive computer model. This study of the inorganic
chemistry of the water, rocks, and sediments will be used in conjunction
with the larger hydrologic study. Problems dealing with organic
pollutants or insecticides are beyond the scope of this report.

The major objectives of this repo;t are: 1) to correlate the
mineralogy of the rocks and sediments with the chemistry of the water;
2) to identify the areas of recharge according to mineralogy and
corresponding water chemistry; 3) to identify the areas of discharge
based on the chemical characteristics of the sediments and water
chemistry; 4) to observe the changes in water chemistry between

recharge and discharge areas; and 5) to determine the flow paths of the

water.



GEOLOGIC SETTING

General Statement

Northern Utah Valley is a typical area of the Basin and Range
Province, characterized by normal block faulting. The valley is
composed mostly of unconsolidated lacustrine sediments, interbedded
fluvial fanglomerates and glacial outwash (Hunt and others, 1953).
Three different mountain systems surround northern Utah Valley (fig. 2).
The Traverse Mountains are composed of lava and tuff with some
hydrothermally formed onyx, opal, and travertine. The Little Cottonwood
Stock, to the northeast, is composed of granitic rock. The Wasatch
Mountains are mostly limestone (Baker and others, 1949) with some

sandstone and dolostone.

Structures

Larami de

Paleozoic limestones and sandstones of the Wasatch Mountains were
highly deformed from Late Cretaceous to Early Tertiary time. Large
recumbent folds and thrust faults resulted during several successive

eastward movements (Spieker, 1946; Baker and others, 1949).

Basin and Range

Normal block faulting of the Tertiary period is responsible for
the landforms seen today in northern Utah Valley (Hunt and others,
1953). The most prominent of these faults are the Wasatch, Traverse,
and Lake fault zones. The Little Cottonwood stock intruded at this time

of normal block faulting (Smith, 1972). The stock has been



111°45" W.
b il : ‘i 49401 i‘40°
; - ? i

Sararoga Sorings

X lLakeA

\Zane "
N

{ N

\
/V\uran
;v\

EXPLANATION

Fan Deposit: Am. Fk. R.
Fan Deposit : Dry Creek
Granitic Rock
Volcanic Rock

Carbonate Rock

\ Fouit \ \

S
[

N
S

5

A}
QAKE

\

LT

15}

kilometers
4

miles

E::E—E

Hunt and others,

Figure 2.- Generalized geology of northern Utah Valley (modified from
1953 and Brimhall and others,

1976)




radiometrically dated by Grant (1966) at 29 million years (K-Ar).
Volcanic Rocks

Hunt and others (1953) found glassy and distinctly porphyritic
lavas cropping out in the Traverse Mountains. Recent studies by Moore
(1976) describe igneous rocks at Shaggy Peak in the Traverse Mountains.
Laharic breccia deposits underlie latitic lavas, which are overlain by
red-weathering tuffs and breccias. This study points out that the main
period of eruptive activity in the Traverse Mountains was between 31 and
38 million years ago. In addition to the Traverse Mountains lava,
northern Utah Valley was covered with volcanic ash and pyroclastic
debris (Hunt and others, 1953).

Penecontemporaneous with the volcanism, lakes formed in Utah
Valley in which well-stratifiéd volcanic debris accumulated. Valley
deposits identified by Hunt and others (1953) include conglomerates with
interstratified tuffs and reworked ash. Dustin and Merritt (1980)
concluded that volcanic deposits extended to depths greater than 20,000

feet based on drilling by Gulf 0Oil Corporation.
Sedimentary Rocks

Large accumulations of limestone, sandstone and dolostone were
deposited in Paleozoic epeiric seas (fig. 3). These sedimentary rocks
crop out in the Wasatch Mountains, but are also present in parts of the
Traverse Mountains. Stratigraphic studies of these rocks were reported

by Baker (1947), and Baker and others (1949).
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Figure 3.- Generalized stratigraphic section of Paleozoic and
Mesozoic rocks (from Baker,



Unconsolidated Sediments

Tertiary sediments

The Tertiary period began with deposition of coarse conglomerates
followed by a time of relatively quiet deposition of fresh-water lake
deposits (Hunt and others, 1953). At this time extensive deposits of

volcanic debris formed and are now the Salt Lake Formation (fig. 4).

Quaternary sediments

According to Hunt and others (1953) the early part of the
Pleistocene epoch (pre-Lake Bonneville) was dominated by fluvial
deposition of large alluvial fans far into the interior of the Utah
Valley. Fans from the Traverse Mountains were derived largely from
porphyritic énd glassy lavas in that range. Fans from areas east of
American Fork and Pleasant Grove were derived from Paleozoic marine
deposits of the Wasatch Mountains and Tertiary quartz monzonites of the
Little Cottonwood stock. Clay sequences deposited in glacial 1lakes
separate the fan gravels and sands. These fans were subsequently eroded
and weathered with the appearance of Lake Bonneville.

Atwood (1909) recognized and described glaciation (Early
Pleistocene) of Dry Creek Canyon and American Fork Canyon in northern
Utah Valley. The Dry Creek glaciers extended to the mouth of Dry Creek
Canyon and deposited largely granitic material in the form of glacial
moraines and outwash. The American Fork glaciers did not extend to the
mouth of American Fork Canyon, but did contribute glacial outwash of

limestone fragments to alluvial fans.



Unit THAckaens Character of material

Seelontsrees (feet)
Post-Provo 50°% Chiefly unconsolidated alluvial and
deposits colluvial deposits of gravel,cobbles,
and boulders forming slluviel
fans, and stresmechancel de-
posits of gravel along
Recent perennial sireacs.
aod
Pletstocens(?)
it Chiefly uppermost
Lake
a sedioeces in Utah
eposita take
>
"
g
H Unconforamity
'!' ? Ap extensive gravel oember forms deltas end
-4 3 Provo embankmenta. A thinzer and less extensive
. Formation sand mecoer forms bars in the deltas. A
(= silt oember and a clay oecber are confined
¥ to deep-vater deposits.
Unconformity ——
§ Bonpeville 60-150 Chiefly gravel and sand; predominantly fora
Plaistocene S Formation ecbankment deposits.
v (Unconformity ——
i Alpine Principally silt and clay; some gravel aod
Formation sand Dear Canyoo DOUTDA.
Unconformity
Consist of at least ope glacial zoraine of
Pre-lake pre-lake Booneville age and deposits of
Bonpeville 500 2 several pre-lake Bonveville lakes. These
deposits lake depceits are separated by fanglomerates
and other fluviatile deds.
Unconformity
s Pyroclastics, faoglomerates, fresp-vatar
5 Undifferentiatad t lizestopes, and turfs.
b
&

Figure 4.- Generalized stratigraphic section of Tertiary and
Quaternary formations (from Cordova and
Subitsky, 1965)



Lake Bonneville formed during Middle Pleistocene time, and covered
approximately 20,000 square miles, with a depth of 1000 ft at its
maximum extent (Gilbert, 1890). Utah Valley was a bay on the eastern
side of Lake Bonneville (fig. 5). This lake rose to a peak water level
altitude of 5,135 feet. Below this elevation lacustrine landforms,
including many shore terraces, bars, spits, and deltas, predominate. In
contrast, above the peak water level, subaerial landforms are dominant
(Bissell, 1963). The sediments of the lake constitute the Bonneville
Group which is divided into three formations: Alpine (oldest),

Bonneville, and Provo (youngest).

{Sait Lake City

Y
F
1\

\
—~

N

—_—Z P

0 50

Miles

Figure 5.- Lake Bonneville at its maximum size (adapted from Bissell,
1963).
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Lake Bonneville drained from its highest level (Bonneville level)
to a lower level (Provo level) rapidly by way of Cache Valley, Red Rock
Pass, and the Snake River Valley (Gilbert, 1890). From the Provo level
the lake lowered through desiccation to the present level of the Great
Salt Lake.

Utah Lake presently occupies the central part of northern Utah
Valley. Little erosion has téken place since the time of Lake
Bonneville due to the semi-arid climate. Post-Lake Bonneville deposits
include fan and flood-plain deposits of the American Fork River and Dry
Creek. Most noteworthy of these deposits are the fans of gravel and
sand built on Lake Bonneville deposits where the American Fork River
issues from the American Fork Canyon onto Highland bench. A similar
fan, built by Dry Creek on deposits of Lake Bonneville, is ‘located at

Lehi.



12

PREVIOUS HYDROLOGIC STUDIES

Richardson (1906) made the first extensive hydrologic study in
northern Utah Valley. He noted that large numbers of artesian wells
bottomed in Pleistocene (pr;-Lake Bonneville) deposits, whereas some
were in deeper Tertiary deposits. Richardson determined that the bulk
of recharge to this groundwater system was through stream channels,
irrigation ditches, underflow of creeks at mouths of canyons, seepage at
the base of the mountains and some from precipitation in the valley.

Hunt and others (1953) studied the history of water utilization
and the fluctuation in groundwater with respect to surface water supply.
They noted and named four main aquifers: (1) unconfined surface water
and water table; (2)_ confined shallow Pleistocene; (3) confined deep
Pleistocene; and (4) confined Tertiary. By comparing potentiometric
surface data from selected points in the valley, a hydraulic gradient
was seen towards the lake. They noted that the general water quality
decreased with depth, and concluded that large quantities of water pass
upward from underlying aquifers and discharge into Utah Lake as seepage.

Taylor and Thomas (1939) studied the fluctuation of artesian
water-levels by measuring pressure in water wells, and began a network
of regularly measured water-levels that has grown extensively since
1939. Cordova and Subitsky (1965) collected general water-level data
and water-chemistry data, identified water-bearing deposits, and
measured and estimated recharge from streams and subsurface seepage.
This information was compared to discharge from springs, drains, streams

and the estimated subsurface inflow into Utah Lake to obtain an
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estimated water budget of northern Utah Valley. Dustin and Merritt
(1980) studied the subsurface inflow of water to .Utah Lake and
determined that Cordova and Subitsky were much too conservative in their
estimates of this inflow to the 1lake. They utilized a mass-balance
model for water and salt (after Fuhriman and others, 1975) and concluded
that inflow to the lake is three times that estimated by Cordova and
Subitsky (1965).

Other large-scale reconnaissance-type studies have dealt with
northern Utah Valley. Mundorff (1974) studiéd the quality of water
flowing into Utah Valley. Hyatt and others (1969) inventoried waters of
the Utah Valley drainage area. Also, the U.S. Bureau of Reclamation
£1979) prepared an environmental-impact statement for the Central Utah

Project which briefly discussed Utah Valley and its water budget.
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METHODS AND PROCEDURES

Field Work

Time interval

The field work on which this report is based was begun in March,
1980 and continued through September, 1981. Most sample collection
took place, however, between April and September, 1981. Earlier work,
performed between March, 1980 and March, 1981, was preliminary inventory

work primarily to locate new water wells and obtain water-levels.

Drilling

Drill-core samples were obtained from drill holes'E-2 and A-4 by
standard rotary methods. Both wells were drilled close to Utah Lake,
where the aquifers and confining layers are easily differentiated.
Drill-cutting samples were obtained from drill hole C-4 using standard

cable-tool methods. This hole was located about equidistant from the

lake and the mountains.

Sediment sampling

All drill-core samples obtained (many were lost in the drilling
process) from drill holes E-2 and A-U4 were preserved by wrapping them in
aluminum foil, then cheesecloth, and finally by sealing them in wax.
Drill cuttings from hole C-4 were preserved in plastic bags. Two to
four samples were obtained from each of the three artesian aquifers and

the three associated confining layers (aquitards).
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Water sampling

Collection.- Water samples were collected between June and
September, 1981. Seventy two water samples were obtained from
groundwater and surface-water systems representing water in northern
Utah Valley. Surface-water was sampled at progressive intervals
downstream at Dry Creek and American Fork River. Also many of the
springs along the Wasatch Mountain front were sampled. Groundwater was
collected on a regular interval based on a sampling grid (fig. 6). Each
grid section was approximately 10 square miles and was bounded by
equipotential contours and flow lines. Thirty seven additicnal chemical
analyses were obtained from samples taken by other personnel of the U.S.
Geological Survey between 1949 and 1980 (see Appendix III for a complete
listing of the chemical analyses).

Field analysis.- Temperature, pH, specific conductance, dissolved

oxygen and alkalinity were measured in the field according to standard
precedures (U.S. Geological Survey, 1979). The pH was determined using
a Leeds and Northrup model 7417 pH/specific ion/mV portable meter.
Specific conductance was determined with a Beckman Solu-Bridge RB-3
portable meter. Dissolved oxygen was determined with a Yellow Springs
Instrument model 54 portable meter. The Winkler Titration (U.S.
Geological Survey, 1979) was used to determine the alkalinity. At each
location, 500 ml of water was filtered through 0.454m filter paper and
collected for later analysis. One bottle of water (250 ml) was
acidified with reagent grade nitric acid (to prevent ion complexing) to

below a pH of two, for analysis of calcium, iron, magnesium, potassium,
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and sodium. The second bottle of water (250 ml) was used for analysis

of boron, chloride, fluoride, and sulfate.

Laboratory Work

Sediment samples

Grain-size analysis.- The grain-size distribution was determined

for each of the 20 samples. Dry-sieve methods were used for sand size
and larger particles whereas pipet methods were used for silt size and
smaller particles. Both methods were carried out according to standard

procedures outlined by the U.S. Geological Survey (1971).

Mineralogy.- Forty x-ray analyses were made with a Siemens x-ray
diffractometer. The operating conditions were as follows: a copper

tube was operated at 35kV and 16mA with a nickel filter to produce Cu K
radiation. The goniometer regulated the scanning range between 5 - 31°
20 at 2° 28/minute; the counter range was set at 2 or 4 x 104
counts/min, with a statistical error of 4.0%.

Two grams of each of the 20 samples were dispersed in 50 ml of
deionized water and 5 ml of 0.1 N sodium hexametaphosphate. The
particles were disaggregated using an ultrasonic generator, and a
portion of each dispersion was mounted (particles42mm) on a glass plate
and allowed to dry for x-ray analysis. Coarse sand and larger particles
dropped out of suspension and were not analyzed, for it was assumed that
these larger particles had little effect on the groundwater chemistry.
The particular mounting used produces oriented clay samples, and
subsequently allows for easy identification of these clays. The 20

dispersions were then left to settle for two hours, after which only

suspended clay dispersions remained. A portion of this dispersion was
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then mounted (particles#0.002mm) as above, for x-ray analysis.

Cation-exchange capacity.- The cation-exchange capacity (CEC) was

determined for the 20 samples according to standard procedures outlined
by the U.S. Geological Survey (Crock and Severenson, 1980). The results
give total CEC values, one based on the sum of calcium, magnesium,
potassium, and sodium, and the other based solely on sodium. The
procedure entailed mixing each sample with a solution of ammonium
acetate (1.0 N at a pH of 7). All the exchangeable cation sites in the
clays became saturated with ammonium while calcium, magnesium,
potassium, and sodium went into solution. The solution was analyzed by
a Perkin-Elmer model 303 atomic absorption spectrophotometer for each
cation according to standard procedures. Each sample was then mixed
with 1.0 N sodium acetate solution at a pH of 8.2. This process
saturates all exchange sites with soaium. The samples were washed three
times with reagent grade isopropyl alcohol, and the sodium was then
extracted into a 1.0 N ammonium acetate solution. This solution was then
analyzed for sodium, as described previously, using atomic absorption
spectrophotometry. The sum of milli-equivalents (meq) for calcium,
magnesium, potassium, and sodium found with the first solution should

equal the meq of the sodium from the second solution and each is equal

to the CEC total.

Water samples
One hundred forty-four bottles of water (two bottles from each of
the 72 sample sites) were sent to the Denver Central Laboratories of the

U.S. Geological Survey for analysis. Dissolved caleium, iron,
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magnesium, potassium and sodium were analyzed using standard atomic
absorption techniques. Dissolved boron, chloride, fluoride, and sulfate

were analyzed by standard colorimetric techniques.
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RESULTS
Delineation of Aquifers

The three aquifers described earlier in this report (shallow
Pleistocene, deep Pleistocene, and Tertiary) can be differentiated in
areas close to Utah Lake, and mostly below the 4700 foot elevation
contour. Areas of higher elevation and close to the mountains, however,
cannot be differentiated into these aquifers (fig. 7). The three
aquifers (figs. 8, 9, 10, 11, and 12) are identified using drillers logs
(which were reported by the same drilling company and assumed accurate).

They are composed mostly of sand and gravel and allow water to flow, in
many cases, very rapidly. The confining layers (aquitards) between the
aquifers (number one being the uppermost, and number three being the
deepest) are very discontinuous lenses of clay, clay and sand, and clay

and gravel.
Mineralogy by X-Ray Diffraction

Minerals regarded as significant in the aquifers and confining
layers show strong x-ray diffraction peaks, and are present in all three
drill hole sediment sections. The shallow Pleistocene and Tertiary
aquifers both have abundant quartz, whereas the deep Pleistocene aquifer
is composed mostly of calcite. Quartz is abundant in all confining
layer zones. Illite is dominant in the shallow and deep Pleistocene
aquifers and in confining layers one and two (table 1). Montmorillonite
is dominant in the Tertiary aquifer and confining layer three (refer to

Appendix I for a complete listing of the x-ray diffraction analyses).
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Table 1.- Mineralogy of aquifers and confining layers, by x-
ray diffraction.

SEDIMENT ZONE MINERALOGY *
Confining layer 1 Q C B I K M
Shallow Pleistocene aquifer Q € P L K
Confining layer 2 QD I K
Deep Pleistocene aquifer CD i
Confining layer 3 Q€ D M Cl
Tertiary aquifer QD M

*Q=quartz, C=calcite, D=dolomite, P=plagioclase, I=illite,
K=kaolinite, Cl=Chlorite, and M=montmorillonite.

a Cation-Exchange Capacity

Cation-exchange capacities (CEC) were calculated to meq/100 g of
sediment. The results were adjusted to the grézn—size (the results of
grain-size analyses are in Appendix II) assuming that only clay and silt
sized particles will contribute to the CEC, and the final results were
used as a check on the x-ray diffraction results. According to Grim
(1968) a CEC of 10 to 15 meq/100 g indicates the presence of kaolinite,
20 to 50 meq/100 g indicates illite, and 80 to 150 meq/100 g indicates

montmorillonite (table 2).
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Table 2.- Mineralogical comparison of aquifers and confining
layers by cation-exchange capacity.

SEDIMENT ZONE MEAN CEC (Na adj.) CLAY
meq/100g clay MINERALS*®

Confining layer 1 T 255 I K M
Shallow Pleistocene aquifer 188.5 -
Confining layer 2 Q0.7 I M
Deep Pleistocene aguifer 666.8 -
Confining layer 3 87 -0 I M
Tertiary aquifer 152.4 M

#T=zillite, K=kaolinite and M=zmontmorillonite.

Illite, kaolinite and montmorillonite are the major clay
constituents for confining layer one, while illite and montmorillqnite
are dominant in confihing layers two and three. The Tertiary aquifer is
dominated by montmorillonite. CEC values according to calcium +
magnesium + potassium + sodium (see Appendix II for individual CEC
values) are anomalous, most probably because the ammonium acetate
dissolved particles of calcite and dolomite, thus greatly increasing the
calcium and magnesium concentrations in the ammonium acetate solution.
Anomalous values are also encountered in sediments of some aquifer
zones, which may be explained by the fact that perhaps more than the
clay and silt sized particles contribute to the CEC. Aquifers have a

very low clay content and have a larger relative error, based on the

calculated CEC.
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Chemistry of the Water

Water of northern Utah Valley has basically three origins: waters
of springs and streams; groundwater in undifferentiated aquifers; and
groundwater in differentiated aquifers. In each of these major groups,
subgroups 1in particular areas have been identified based on water
chemistry. Mean values were calculated and used as characteristic
values of the particular areas (see individual chemical analyses in
Appendix III).

One hundred nine chemical analyses were obtained from surface
water and groundwater systems in northern Utah Valley. Thirteen
analyses were surface-water, seven were spring water, and 89 were
groundwater. Of the 89 analyses of groundwater, 16 were shallow
Pleistocene waters, 19 were deep Pleistocene waters, 13 were Tertiary
waters, and 41 analyses were waters of undifferentiated aquifers.

Saturation indices were determined for waters in the major groups
and their subordinate groups with respect to calcite, dolomite,
siderite, gypsum, fluorite, chalcedony, quartz, sepiolite, sylvite,
halite, magnesite, calcium dichloride, and anhydrite. These saturation
indices are calculated using the log of the ion-activity product divided
by the solubility product. Negative numbers show undersaturation, zero
is saturation, and positive numbers show supersaturation. PHREEQE (pH-
redox-equilibrium-equations), a computer program of the U.S. Geological
Survey based on ion pairing in aqueous solutions, was used to calculate
the indices. Input needed for this program are concentrations (mg/l) of

calcium, magnesium, sodium, potassium, silica, sulfate, boron, fluoride,
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bicarbonate, and carbon dioxide along with pH, temperature, and redox

potential.

Surface and spring water

Surface water discharging from the Alpine area (Dry Creek and Fort
Creek) is very low in dissolved solids (as compared to most fresh-water
streams and lakes) with only some calcium and bicarbonate present where
the water comes out of the canyon mouth. It is, however, supersaturated
with respect to calcite, dolomite, and quartz (table 3). Pleasant Grove
surface-water (Grove and Battle Creeks) and American Fork River water
contain mainly calcium and bicarbonate (fig. 13), and are supersaturated

with respect to calcite and dolomite and quartz (table 3).

Table 3.- Saturation indices of surface water in the Alpine,
American Fork, and Pleasant Grove areas.

MINERAL AREA
Alpine Am. Fork P1. Grove

calcite « 651 1o ] 1.09
dolomite $53 2.33 1.82
siderite -.61 -.03 -.70
gypsum -3.01 -2.02 -1.98
fluorite -1.97 -2.71 -.98
chalcedony -.04 -.34 -.31
quartz .49 20 w22
sepiolite -4.76 =3 .42 -3.72
sylvite -9.39 -9.95 -9.83
halite -5.01 -5.55 -5.32
magnesite -3.75 -2.76 -2.92
CaC12 i e e -1.30 -1.03
anhydrite -3.65 -2.69 -2.60

NO. OF SAMPLES 4 2 2
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Springs along the Wasatch Mountain front (American Fork and
Pleasant Grove areas) have relatively high concentrations of calcium and
bicarbonate, and medium concentrations of magnesium and sulfate, and are
supersaturated with respect to calcite, dolomite, quartz, and calcium
dichloride (table 4). Springs in the Alpine area, however, are very low
in dissolved solids, and therefore resemble the surrounding surface

water (table 3).

Table 4.~ Saturation indices of spring water in the American
Fork and Pleasant Grove areas.

MINERAL AREA
Am. Fork P1. Grove

calcite «b5 .81
dolomite . 1.03 1.04
siderite =1.18 -. 77
gypsum =1.53 -1.36
fluorite -2.07 =82
chalcedony -.18 -.20
quartz .36 32
sepiolite -4.13 -4.00
sylvite -9.13 -9.25
halite -4 .54 -4.43
magnesite -3.29 -3.03
CaCly $ ol .36
anhydrite -2.17 -1.95

NO. OF SAMPLES 3 2
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Groundwater

Undifferentiated aquifers.- Waters discharging from areas not

easily differentiated into shallow Pleistocene, deep Pleistocene, and
Tertiary aquifers are of three major types: Jordan River; Traverse
Mountains; and Wasatch Mountains. Waters of the Jordan River area have
very high concentrations of all constituents, with particularly high
values of chloride. Waters of the Traverse Mountains area show much
variation. The waters of the Wasatch Mountains can be subdivided into
American Fork, Pleasant Grove and Alpine areas (fig. 14). Wasatch
Mountains water is high in calcium and bicarbonate, and 1is

supersaturated with respect to quartz (table 5).

Table 5.- Saturation indices of water from undiffegentiated
aquifers in the American Fork, Pleasant Grove, and Alpine
areas.

MINERAL AREA

Am. Fork Pl. Grove Alpine
calcite -.03 .67 .50
dolomite ~ 4 30 1+10 S
siderite -1.65 =] -1.09
gypsum -1.54 -1.50 -2.31
fluorite -1.44 -1.84 -2.21
chalcedony .08 -.09 .02
quartz .46 JA43 .56
sepiolite -5.98 -3.26 -4.11
sylvite -9.06 -8.60 -9.01
halite -4.,54 -3.83 =4.74
magnesite -4 .01 =321 -3.76
CaC12 T Tl 281 -.51
anhydrite -2.19 -2.10 -2.96

NO. OF SAMPLES 9 T 3
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Shallow Pleistocene aquifer.-~ Three basic types of discharge water

were encountered in different areas of the shallow Pleistocene aquifer
(fig. 15a). Waters are all high in calcium and bicarbonate. In the
Pleasant Grove area, however, there are higher values of magnesium and
sulfate. Pleasant Grove and Alpine area waters are supersaturated with
respect to calcite, dolomite, and quartz whereas American Fork water is

supersaturated with respect to chalcedony and quartz (table 6).

Table 6.- Saturation indices of shallow Pleistocene water in
the American Fork, Pleasant Grove, and south Pleasant Grove
areas.

MINERAL AREA
Am. Fork P1l. Grove 5. Pl. GE.

calcite 107 Lu6 53
dolomite 2.01 .94 .88
siderite -.57 -1.30 -.55
gypsum -1.53 -1.19 -1.59
fluorite -1.89 -1.77 -1.68
chalcedony +-01 «03 0T
quartz <53 .56 .59
sepiolite -3.72 -3.01 -3.77
sylvite -8.45 -7.99 -7 .49
halite -3.92 -3.18 -2.83
magnesite -2.68 -3.17 -3.27
CaCl, "60 1.4y 1.78
anhydrite -2.11 -1.81 -2.17

NO. OF SAMPLES 6 é 3
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Deep Pleistocene aquifer.- Four specific types of discharge water

are found in different areas of the deep Pleistocene aquifer. Waters in
the American Fork and Pleasant Grove areas have intermediate values for
calcium and bicarbonate, whereas the waters of the north American Fork
and east American Fork have distinctly higher values (fig. 15b). All
waters are supersaturated with respect to quartz, and calcium dichloride

and some with respect to calcite and dolomite (table 7).

Table T7.- Saturation indices of deep Pleistocene water in
the American Fork, north American Fork, Pleasant Grove, and
east American Fork areas.

MINERAL AREA
Am. Fork N. Am. F. P1. Grove E. Am. F.

calcite <52 <15 -.01 «59
dolomite i 1.22 -.27 .94
siderite -.89 -.95 -1.16 -1.05
gypsum -1.96 -1.54 -1.72 -1.38
fluorite -2.14 -2.06 -2.0% -1.99
chalcedony -.08 .02 -.10 -.02
quartz .45 .56 Luy .52
sepiolite -4.95 -4.06 -7.10 -4.49
sylvite -8.69 - -8.91 -8.68
halite -4.52 - -4.60 -3.83
magnesite -3.36 : -3.19 -3.92 -3.29
caCl, - 22 - .09 .67
anhydrite -2.58 -2.17 -2.36 -2.01

NO. OF SAMPLES 1 5 1 2
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Tertiary aquifer.- Three types of discharge water are found in

different areas of the Tertiary aquifer (fig. 15¢). Waters of this
aquifer are all very low in mineral content. Waters of the Lehi area
have some calcium and bicarbonate while the waters of the north Lehi
area have fractionally higher values of sodium and chloride. These two
waters are supersaturated with respect to calcite, dolomite and quartz.
Waters of the Pleasant Grove area have intermediate values of calcium
and bicarbonate and are supersaturated with respect to quartz and

calcium dichloride (table 8).

Table 8.- Saturation indices of Tertiary water in the Lehi,
north Lehi, and Pleasant Grove areas.

MINERAL AREA .

Lehi North Lehi P1l. Grove
calcite .22 .69 -.16
dolomite . 22 1.19 -.55
siderite -.96 -. 9L -1.90
gypsum -2.69 -1.98 -1.69
fluorite -2.04 - 7T -2.06
chalcedony -.06 .07 -.07
quartz .48 .60 .46
sepiolite -3.3%4 -3.68 -7.58
sylvite -8.91 -8.05 -
halite -4.50 -3.50 -5.35
magnesite -3.67 -3.14 -4.04
cacl, .15 1.43 .05
anhydrite -3.35 -2.59 -2.30

NO. OF SAMPLES T 5 1
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CHEMICAL INTERPRETATION OF GROUNDWATER MOVEMENT

The overall movement of water in northern Utah Valley is from the
mountain areas to the undifferentiated deposits which flank the
mountains, to all the differentiated aquifers, and then to Utah Lake.
Potentiometric surface contour maps of all three aquifers (fig. 16) show
this basic trend. Contour maps of the specific conductance (a function
of the dissolved solids) however, show complexities in the flow pattern,

including several geochemical cells (fig 17).
Shallow Pleistocene Aquifer

American Fork area

Waters discharging from this area are possibly recharged by waters
of undifferentiated aquifers of the American Fork-area (fig. 18). The
incﬁease in ion concentration of the discharging water is likely due to
dissolution or reactions of calcite, plagioclase and kaolinite in the
aquifer (table 1). Calcite is wundersaturated in the recharge waters
(log IAP/K=-0.03 from table 5), and supersaturated in the discharge
waters (log IAP/K=+1.07 from table 6).

Another possibility of ©recharge is upward leakage through
confining layer two, from the deep Pleistocene aquifer. This vertical
movement was sSeen in a pump test supervised by David Clark (personal
communication, 1982). The test included pumping water from one aquifer
and measuring water-levels from water wells in all aquifers. The

results showed that water levels of all aquifers were affected.
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Chemical Constituents(meq)

ca? HCO3™ + CO3*
e Mq# \ ,; 504~
K'+Nat o i

l ' 10 o 10

Undifferentiated Aquifer

American Fork Area Shallow Pleistocene Aq.
: ;l; American Fork Area

Figure 18.- A generalized section representing water movement in the
shallow Pleistocene aquifer, American Fork area. Water from the
undifferentiated aquifer of the American Fork area recharges the shallow
Pleistocene aquifer of the American Fork area.

An additional source of ions could be exchange from clay minerals.
A geochemical model can be constructed, us:Lng cation-exchange capacity,
to see 1if the upward moving deep Pleistocene water can react with
sediments of confining layer two and produce shallow Pleistocene water
of this area. If one were to assume that one liter of water passes
through a column five cm in diameter with an average length equal to the
thickness of the confining layer (2815 cm), 442,000 g of sediment (at 2
g/cm3) would be able to react with the one liter of water. There are
0.56 meq/l of ion added to the water, as the water passes through the
confining layer. Because 245,000 meq are available, it is reasonable

that water may move upward through the confining layer, and thereby add

ions to the solution (table 9).
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Table 9.- Geochemical CEC model calculating the feasibility
of upward leakage from the deep Pleistocene aquifer to the
shallow Pleistocene aquifer.

Cations in Solution

Ion Recharge Water Discharge Water Change
meq/1 meq/1 meq/1
calcium 343 233 ~-0.1
magnesium 2.19 2.78 0.59
sodium 0. 741 0.TT 0.06
potassium 0.056 0.061 0.01
TOTAL 0.56

Cations in sediments of Confining Layer 2

CEC (Na )*: 55.4 meq/100g = 0.554 meq/g

Total amount of sediment: 442,000 g

Total exchangeable cations in sediment = 245,000 megq
Exchangeable cations in the sediment (mean values): 230*meq
calcium /100g; 63.7 meq magnesium /100g; T.M meq potassium
/100g; 26.3 meq sodium /100g. i

*Note that CEC was determined wusing sodium saturated
samples. The CEC based on the individual cations is greater
than the CEC based on sodium because of the solution of
calcite and dolomite.

Pleasant Grove area

Waters discharging in this area have relatively high values of
sulfate. A very probable source of this water is from the Wasatch Fault
zone. High sulfate waters possibly travel up along the fault and out
into the valley. Such a mechanism is suggested by one local water
sample found in a shallow undifferentiated aquifer east of the Pleasant
Grove area (fig. 19). As the water travels farther into the valley, it

is possibly diluted by undifferentiated aquifer water from the American



Ly
Fork area, or by water leaking upward from the deep Pleistocene aquifer.
Springs along the Wasatch Mountain front are all relatively high in
mineral content (fig. 13), which may be a result of upward migrating
thermal waters. Using a geochemical mixing model (Truesdell and
Fournier, 1977) with input of temperature and silica concentration, the
spring waters are a possible mixture of thermal waters and between 50%

and 90% surface waters.

Spring ;
Chemical Constituents (meq)
V Plegsant Grove Ared

ce? HCO3™ + CO3*
Mg 504°
K+*Na? 7o) ol

S — |
10 o] 10

Shallow Pleistocene Aq. |
Q7 Pleasant Grove Area

Undifferentiafed Aq.
Local Sample

\

Figure 19.- A generalized section representing water movement in the
shallow Pleistocene aquifer, Pleasant Grove area. Water from the
Wasatch Fault recharges waters of the valley in the Pleasant Grove area
and affects waters of the springs in the Pleasant Grove area.

South Pleasant Grove area

Water from this area resembles water of the undifferentiated
aquifers of the Pleasant Grove area (fig. 20). It has a much higher
concentration, however, of sodium and some chloride. Perhaps calcite is
being dissolved from the aquifer (table 1). This would liberate calcium
ions which could exchange with sodium and increase the concentration of

sodium in solution.
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Chemical Constituents(meq)

co? HCO3™ + CO3*
# 3
Mg 504°
K*Nat e~

W Undifferentiate W e e
Aquifer
Pleasant Grove Ared Shallow Pleistocene Aquifer
) South Pleasant Grove Ared
Figure 20.- A generalized section representing water movement in the

shallow Pleistocene aquifer, south Pleasant Grove area. Water from
undifferentiated aquifers of the Pleasant Grove area recharges the
shallow Pleistocene aquifer in the south Pleasant Grove area.

Deep Pleistocene Water

American Fork area

The water discharging from this area is chemically so very close
to undifferentiated aquifer water of American Fork, that water most
likely flows relatively fast, approximately 1.41 m/day (table 10), from
the recharge area to the discharge area. Hunt and others (1953), while
mapping the geology of unconsolidated valley deposits, found many
channel deposits flanking the American Fork River (fig. 2). Sediments
of the deep Pleistocene aquifer are mostly composed of calcite and
dolomite (table 1), being eroded from the carbonates of the American
Fork Canyon. This indicates that perhaps the deep Pleistocene aquifer
of the area is a combination of channel and fan deposits of the ancient

American Fork River.
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Table 10.- Velocity calculations of water movement in the
deep Pleistocene aquifer.

AREAS

North American Fork American Fork
Wells C=7, Bw5, B-b Gl g5 0B
Average Distance 2,978 m 2,897 m
Vertical Drop 61 m 61 m
Porosity¥* 41.1% 34.7%
Conductivity** 9.54 m/day 23.2 m/day
Velocity**» 0.48 m/day 1.41 m/day

* Porosity is a function of grainsize (after Freeze and
Cherry, 1979)

#¥* Conductivity is a function of grainsize (after Mower,
1974)

*%* Velocity = Conductivity X Vertical Drop / Porosity X
Distance (after Todd, 1980)

Some water probably leaks upward from the Tertiary aquifer and
mixes with water of the American Fork area. This may explain the fact
that the recharge water is slightly more concentrated with respect to
calcium and bicarbonate (fig. 21). Using the geochemical CEC model and
assuming that one liter passes through a column of sediment five cm in
diameter and having an average length equal in thickness to the
confining layer (1636 cm), then 257,000 g of sediment could react with
migrating waters. There are 1.54 meq/l of ion added to the water, most
likely through a combination of dissolution of calcite and dolomite, and
exchanging calcium and magnesium with sodium and potassium. Because
137,000 meq are available, it is feasible for upward moving water to
react with the sediments of confining layer three and produce water of

this area (table 11).
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Chemical Constituents (meq)

Ca'H'

- W HCO3™ + CO3°
Mg S504°
k*Na 't o

l /10 o 10

Undiffercnfiafed Aquifer Deep Pleistocene Aquifer
American Fork Airea American Fork Area

Figure 21.- A generalized section representing water movement in the
deep Pleistocene aquifer, American Fork area. Waters from
undifferentiated aquifers of the American Fork area recharge the deep
Plesitocene aquifer of the American Fork area.

Table 11.~ Geochemical CEC model calculating the feasibility
of upward 1leakage from the Tertiary aquifer to the deep
Pleistocene aquifer.

-

Cations in Solution

Ion Recharge Water Discharge Water Change
meq/1 meq/ 1l meq/1
calcium 185 1.97 0.92
magnesium 0.84 o 0.56
sodium 0423 Q.27 0.04
potassium 0.02 0.04 0.02
TOTAL 1.54

Cations in sediments of Confining Layer 3

CEC (Na)*: 53.4 meq/100 g = 0.534 meq/g

Total amount of sediment: 257,000 g

Total exchangeable cations in the sediment: 137,000 megq
Exchangeable cations in the sediment (mean values): 235 meq
calcium /100g; 64.7 meq magnesium /100g; 8.0 meq potassium
/100g; 36.2 meq sodium /100g.

* Note that the CEC was determined using sodium saturated
samples. The CEC based on the sum of individual ions is
greater than the CEC based on sodium because of solution of
calcite and dolomite.
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North American Fork area
Waters discharged in this area are very much like the waters of
the American Fork area with higher values of calcium, magnesium, and
bicarbonate (fig. 15b). They are most likely recharged from the same
source as the American Fork area. This water moves 0.48 m/day (table
10), which is slower than American Fork water. This water is also more
supersaturated with respect to calcite and dolomite (log IAP/K=+0.75 and
+1.22 from table 7) than is the water of American Fork (log IAP/K=+0.52
and +0.81 from table 7). The differences in water chemistry can be
explained by the fact that movement is slower in northern American Ferk
water, leaving more time for reactions to take place. Perhaps this area

represents floog-plain deposits of the ancient American Fork River.

East American Fork area

Waters of this area are very similar to the waters of north
American Fork (fig. 15b). They can be explained in the same way, as
waters recharged from the undifferentiated aquifers of the American Fork
area, and moveing slowly through flood-plain type deposits. The waters
of this area, however, have higher sulfate content than the waters of
north American Fork. Possibly there are some thermal waters present
from the nearby Wasatch Mountain Fault 2zone, elevating the sulfate

values.

Pleasant Grove area

Pleasant Grove waters are very similar to American Fork waters.
They are 1likely recharged, however, from the nearby Pleasant Grove
surface waters, which represent an environment similar to American Fork

water (fig. 22).
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= Chemscal Constituents (meq)
V Co :: HCO3™ + CO3*
Pleasant . . r\V S04+
Grove Surface Kk tNo ¢l
| SO ——
Water o 0 70
/ Deep Pleistocene Aquifer
Pleasant Grove Area

Figure 22.- A generalized section representing water movement in the
deep Pleistocene aquifer, Pleasant Grove area. Surface waters from the
Pleasant Grove area recharge the deep Pleistocene aquifer in the
Pleasant Grove area.

Tertiary Aquifer

Lehi area

The waters discharging from this area are so low in mineral
content that the most probable origin of the water is surface waters
from the Alpine area. Recharge water probably travels very quickly
along a section of the Wasatch Fault or through gravels and boulders of
fluvial and glacial origin (fig. 23). The higher values of sodium and
chloride in the aquifer can be explained in two possible ways: some
water migrates upward from very deep saline deposits (Dustin and
Merritt, 1980); or recharge water mixes with highly mineralized waters

of the undifferentiated aquifers of the Traverse mountain area.



50

Y Chemical Constituents(meq)
ca ™ HCO3™ + CO3*®
Alpine Mg * Y S04*%
P k*+Nat cr-
Surface Water ;
e .
10 o 10
Tertiary Aquifer T, |
Lehi Area
Figure 23.- A generalized section representing water movement in the
Tertiary aquifer, Lehi area. Alpine surface water recharges the

Tertiary aquifer in the Lehi Area.

North Lehi area

The water discharging from this area is slightly more concentrated
than Lehi water with respect to all major minerals (fig. 15c¢). Recharge
most likely has the same source area as Lehi waters, and the difference
in chemistry is explained in two possible ways: this water moves more
slowly than waters of the Lehi area, allowing for more water-sediment
reactions; or this water 1is mixing with highly concentrated waters of

undifferentiated aquifers of the Traverse Mountains area.

Pleasant Grove area

The water discharging in Pleasant Grove is almost identical to the
water in the deep Pleistocene aquifer of Pleasant Grove (fig. 15¢).
Both of these waters are most likely recharged by waters of the Pleasant

Grove surface-water system.
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SUMMARY

The data gathered in the course of this investigation indicate
tha the groundwater system in northern Utah Valley is very complex,
witi several geochemical cells in each of the three major aquifers. The
mirrralogy of the surrounding mountains controls the water chemistry of
reciarge water. Sediments of the valley affect the water mostly by
incceasing the dissolved mineral content. Major faults of the area may
alS).change the water chemistry by adding highly mineralized thermal
watir.

The general movement of the water is from the mountains, through
theundifferentiated aquifers and differentiated aquifers, to Utah Lake.
Manr times, however, water does not travel in a 1linear fashion or
permendicular to the mountains. Waters may move very rapidly in one
arei, and quite slowly in andther area, even in the same aquifer.
Wat:irs also may move upward vertically because of the higher artesian
preisures of the lower aquifers.

The overall mineralogy of the sediments shows very little
varitation, with quartz, calcite and dolomite being the major

conitituents in most aquifers and confining layers.
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X-Ray Diffraction Analyses
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Zone Depth (ft.)
Confining Layer 1 32
Shallow Pleistocene Ag. 73
Confining Layer 3 206
Tertiary Aquifer 208
Tertiary Aquifer 220
Tertiary Aquifer 2u5
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DRILL HOLE C-4

Zone Depth (ft.) (particles42mm)

Qs gM= K s SDETESBY - 28 Cl
Topsoil 25 S = W S 88 5 W =
Confining Layer 1 50 S W W S S S W W -
Shallow Pleistocene Ag. 125 S =SS S S S = -
Confining Layer 2 180 WS w B ST B ST S s
Deep Pleistocene Aq. 240 W, s/ Si¥s. 88 Siel e
Deep Pleistocene Aq. 255 W - W S S W - - -
Zone Depth (ft.) (particles40.002mm)

g. M K G D Lt B Z SCL
Topsoil 25 W - W = = S = - =
Confining Layer 1 50 W - S W - S - - =
Shallow Pleistocene Agq. 125 W - W S W S - - =
Confining Layer 2 180 W - S WW S -« - =
Deep Pleistocene Aq. 240 W = W W W W = = =
Deep Pleistocene Aq. 255 W = W = = W = = =

EXPLANATION

Strong (S) and weak (W) x-ray diffraction peaks are shown of quartz (Q),
montmorillonite (M), kaolinite (K), calcite (C), dolomite (D),
plagioclase (P), zeolite (Z) and chlorite (Cl).
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SAMPLE Ca Mg K Na CEC(1) CEC(2) CEC(3) Clay+Silt

(depth) )
E-2
32 267.8 97.8 11.2 35.2 412.0 56.8 59.5 95.5
105 308.0 185.5 12.8 31.8 501.1 59.0 59.8 98.7
206 267.8 104.2 11.8 49.5 433.3 57.0 76 .4 74.6
208 144.0  141.5 1.2 41.8 338.5 64.2 103.4 62.1
220 193.8 14.5 5.2 35.0 248 .5 uy .8 211.3 21.2
245 242 .8 149.5 118 42.0 446 .1 63.2 93.0 67.5
A-l >
1 242.0  194.0 15.0 43.5 494 .5 54.5 56.9 95.8
13 156.2 26.5 5.2 27.0 214.9 42.8 265.8 1651
77 242.5 37.0 10.2 29.8 329.5 60.8 4.7 81.4
210 127.8 19.5 4.8 36.0 188.1 50.2 307.9 16.3
303 123.8 24.0 5.8 27.0 180.6 55.0 152.7 36.0
310 310.2 123.5 9.5 26.5 69 .7 63.5 63.5 99.3
435 202.2 14,2 52 27 .8 294 .4 52.8 204 .6 25.8
467 215.2 25.2 4.2 -22.8 267 .4 g .8 97.6 51.0

09



C-u

25 182.5  15.0 4.2 53,2 22149 60.2 200.0 30.1

50 256.8 30.2 5.2 1.5 306.7 54.0 83.3 64.8

125 252.8 12.0 4.2 26.2 295.0 54.0 197.8 27.3

180 256.0  U45.3 7.0 25.5 332.0 47.8 56.0 85.3

240 178.8  52.0 4.0 25.5 213.5 43.5 537.0 8.1

255 176.2 9.0 4.5 28.8 218.5 42.8 1258.8 3.4
EXPLANATION

Individual cation exchange capacity (CEC) are shown for calcium (Ca), magnesium (Mg), potassium (K),
and sodium (Na). CEC (1) is based on the sum of calcium, magnesium, potassium, and sodium. CEC (2)
is based on a sodium saturated solution. CEC (3) is a clay + silt adjusted cation exchange capacity
in which CEC (2) is adjusted to 100% clay + silt. All CEC values are calculated to meq/100g.

9
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Water-Chemistry Analyses
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AMERICAN FORK SPRINGS

WELL T o6 . pH  Si Ca Mg Na K SO C1 B co F HCO
1 16 430 - 10.0 60.0 31.0 6.6 1.3 40.0 7.5 20 - o1 -

2 i 345 7.6 5.1 51.0 1350 2.5 2 22.0 2.7 O sl o2 202
3 " - 7.7 9.6 99.0 41.0 13.0 9 130.0 13.0 20 12+ s 378
Mean 11 ¥y 7.6 8.2 7T0.0 28,3 7.k 8 64.0 il 13 10.1 2 290

Well T SC pH Si Ca Mg Na K SO C1 B co F HCO
1 16 675 7.8 5.5 88.00 31.0 -3 6 90. 75 20 .9 +9 35U
2 16 - 760 7.3 9.2 93.0 39.0 11.0 7 81.0 9.3 20 31.6 .5 376
Mean 16 717 7.6 8.8 90.5 35.0 9.2 6 85.5 8.4 20 Y2~ ¥ 365
ALPINE SURFACE WATER

Well T SC pH Si Ca Mg . Na K S0 Cl B Cco F HCO

1 15 105 8.3 6.5 17.0 1.9 1.9 R o1 1.6 10 =5 -2 65
2 13 138 8.6 1207 13.0 2.8 5.9 1ol 152 3.8 © .9 2 58
3 1 205 7.4 14.0 28.0 3.8 6.5 1 8.5 h.y 10 T 41 D 112
y 9 164 7.0 13.0 26.0 4.3 6.3 11 8.4 3.9 10 16.9 R 108
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SHALLOW PLEISTOCENE AQUIFER, SOUTH PLEASANT GROVE AREA

Well T SC pH Si Ca Mg Na K SO c1 B co F HCO
1 - -~ 787 7.2 12.0 #65.0 271.0 - = 62.0 6.8 - e - 326
2 16 715 T.7 21.0 65.0 28.0 60.0 6.2 70.0 37.0 170 1.5 .3 370
Mean 16 781 7.4 16.5 65.0 27.5 60.0 6.2  66.0 50.5 170 1.5 .3 348
DEEP PLEISTOCENE AQUIFER, AMERICAN FORK AREA

Well T SC pH Si Ca Mg Na K SO c1 B Cco F HCO
1 - 360 - < b2 1.5 W6 5.1 3.6 8.2 0 - - 161
2 12 420 7.9 2.0 Y46.0 2.0 6.1 1.0 50.D 8.1 7 B3 e 261
3 SRR Aan 5 R T TR R | ) T - 30.0 9.5 .+ = - 5 174
y 12 400 T.9 1.0 43.0 18.0 5.6 1.0  43.0 130 - 40 - .2 2

5 13 400 7.8 1.0 41.0 18.0 5.5 .9  42.0 8.0 7 16 i 300
6 - 389 7.7 1.0  43.0 18.0 - - 39.0 1.0 - - - 172
7 13 420 7.4 12.0 44,0 20.0 7.0 1.0 44.0 11.0 20 = 2 -

8 ~ /398 7.3 . 10.0 W60 20,0 - 2 42.0 0.0 - ~ - 178
9 % W7o 7.2  11.0 %52.6 2.0 9.2 1.9 63.0 7.6 10 21.4 .2 212
6 . =399 . 7.8 9.8 4.0 20.0 - - 41.0 11.0 = - - 186
11 - 254 7.5 9.2 2.6 1.0 = - 5.0 5B - i e 142
Mean 13 388 7.4 10.8 39.6 17.1 6.3 1.7 36.6 9.2 1l el 2 198

n
(SIS
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DEEP PLEISTOCENE AQUIFER, NORTH AMERICAN FORK AREA

Well T SC pH Si Ca Mg Na K S0 c1 B co F HCO
1 12 620 7.7 1.0 71.0 28.0 13.0 2.4 71.0 10.0 40 10.7 - .3 298
2 13 630 7.4 W.0 67.0 27.0 21.0 2.3 64.0 23.0 40 19.7 2 296
3 « My TE-- 1.0 BT.0 26,00 - 4 67.0 T8 = - - 308
y 13 600 7.3 14.0 T71.0 23.0 20.0 2.2 60.0 19.0 40 24.7 .1 308
5 11 600 7.8 14.0 68.0 29.0 11.0 1.9  67.0 13.0 30 8.4 .1 294
Mean 12 605 7.5 13.4 68.8 36.6 16.2 2.2  65.8 .5 38 15.9 301
\
DEEP PLEISTOCENE AQUIFER, PLEASANT GROVE AREA
Well T S0 pH Si Ca Mg Na K S c1 B Cco F HCO
1 12 380 - 10.0 49.0 21.0 5.2 1.1 52.0 9.3 0 - 2 186
DEEP PLEISTOCENE AQUIFER, EAST AMERICAN FORK AREA
Well T SC pH Si Ca Mg Na K SO c1 B co F HCO
1 13 hgg 7.3 . 12.0 85.0 240 7.0 1.4 TL0 1.0 10 13.8 .2 190
2 13 760 7.5 13.0 §6.0 32.0 30.0 1.2 130.0 21.0 30 138 5 292
Mean 13 595 7.4 12.5 65.5 =28.0 18.5 1.2 101.5 16.0 20 13.8 .2 211
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TERTIARY AQUIFER, PLEASANT GROVE AREA

Well T SC pH Si Ca Mg Na K S0 Cl B Cco I HCO

1 13 810 6.7 1.0 49.0 21.0 5.3 1.0 58.0 8.5 © - «2 200

UNDIFFERENTIATED AQUIFERS, AMERICAN FORK AREA

Well T SC pH Si Ca Mg Na K SO C1 B (0] 1% HCO
1 1 360 8.0 9.4 52.0 17.0 4.1 ol 51.0 3.4 10 3.4 2 188
2 1 490 7.9 9.6 8550 . 23.0 9.8 1.7 65.0 T2 ' 20 5.5 .2 272
3 13 560 7.8 9.8 68.0 26.0 8.8 1.1 100.0 8.9 20 5.9 1.4 242
L 9 490 7.7 8.5 600 20,0 5.7 <5 TT.0 Bl 10 6.4 .2 202
5 12 440 7.8 12.0 49.0 19.0 12.0 1.8 30.0 6.9 20 5.8 +2 228
6 10 460 7.9 12.0 53.0 25.0 5.4 .8 63.0 b3 .20 4.9 +3 222
7 - 4oL 7.6 8.4 66.0 21.0 - = 79.0 7.5 = - - 215
8 9 480 7.3 8.7 %8.0 21,0 5+3 .8 75.0 T 0 - .3 =
9 10 600 7.5 13.0 - 65.0 29.0 12.0 1.4 4.0 11.0 4o ~ 1 -
Mean 11 486 7.7 0.2 584 22.3 7.9 1.0 68.2 6.9 18 53 4 224
UNDIFFERENTIATED AQUIFERS, PLEASANT GROVE AREA
Well T SC pH Si Ca Mg Na K B0 Cl B co F HCO
1 13- 650 8.3 M50 12:08 31.0 14.0 9 91.0 1.0 = - .2 -
2 13 750 = 7.0 92.0 29.0 25.0 2.9 82.0 32.0 60 - .2 -
3 13 580 T.7 9.8 70.0 24.0 15.0 1.0 51.0 10.0 10 - o1 -

N0 =WwW=NOo

69



4 - 455 7.8 8.9 58.0 21.0 - - 47.0 10.0 - - - 225
5 20 566 T.7 11.00 59.0 26.0 20.0 i B | 59.0 18.0 40 8.9 AU 278
6 - 664 7.6 10.0 87.0 29.0 - - 61.0 13.0 = - - 336
T - 662 7.2 19.0 73.0 31.0 = - 84.0 17.0 - - - 286
Mean 15 W55  T.7 1171 3.0 - 27.3 18.5 1.5 67.8 15.8 37 8.9 .2 281
UNDIFFERENTIATED AQUIFERS, ALPINE AREA
Well T SC pH Si Ca Mg Na K SO Cl B co F HCO
1 10 350 7.8 110" .+ 45.0 15.0 6.7 1.2 14.0 4.6 0 bt 2 202
2 10 280 7.6 14.0 41.0 4.7 6.6 1.6 13.0 4.3 10 6.1 «3 152
3 1 300 7.8 13.0 U5.0 8.3 0 5 12.0 5.4 10 4.3 o 172
Mean 10 i L0 O 12,7 43,7 9.3 6. 1.5 13.0 b1 7 5.2 o2 175
UNDIFFERENTIATED AQUIFERS, TRAVERSE MOUNTAIN 1
Well T SC pH Si Ca Mg Na K SO Cl B Cco F HCO
1 5. B850 7.2 26.0 110.0 40.0 42.0 3.1 160.0 97.0 40 33.8 o1 298
2 14 900 7.4 32.0 88.0 33.0 43.0 3.2 130.0 85.0 4o 18.6 oA 260
3 i 1090 7.6 33.0 96.0 42.0 51.0 4.4 120.0 160.0 40 9.6 o1 238
Mean 15 947 T.4 30.3 98.0 38.3 45.3 3.6 136.7 1M4.0 4o 20.6 S 265
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UNDIFFERENTIATED AQUIFERS, TRAVERSE MOUNTAIN 2

Well T SC pH Si Ca Mg Na K SO Cl B co F HCO
1 16 700 7.3 26,0 69.0 24.0 33.0 2.6 4o0.0 65.0 20 22.7 5 270
2 12 - a3 16.0 79.0 22.0 18.0 2.7 37.0 11.0 4o 292 .2 364
Mean 14 700 7.3 21.0 Th.Dp 23.0 “28.5 2.6 38.5 38.0 30 26.0 o2 317
UNDIFFERENTIATED AQUIFERS, TRAVERSE MOUNTAIN 3
Well T SC pH Si Ca Mg Na K S0 Cl B co F HCO
1 18 - T:8 19.0 @85.0 29.0 8.9 u.u 63.0 8.5 950 58.6 3 358
2 - 902 7.5 13.0 98.06 25.0 - - 129.0 35.0 - - - 391
3 1 740 7.5 5%.0  57.0 22.0 67.0 3.8 66.0 20.0 130 - 3 =
Mean 16 821 7.3 27.7T 80.0 25.3 38.0 4.1 86.0 21.1 90 58.6 o) 374
UNDIFFERENTIATED AQUIFERS, TRAVERSE MOUNTAIN 4
Well T SC pH Si Ca Mg Na K SO Cl B co F HCO
1 13+ 208157 30.0 61.0 28.0 31.0 4.0 38.0 78.0 60 10.1 .3 330
2 15 630 T.4 24,0 58.0 20.0 36.0- 6.5 68.0 43.0 70 - T =
3 15 700 7.4 41.0 47.0 21.0 57.0 2.5 45.0 59.0 100 - A -
Mean 15 683 7.5 31.T 55.3 23.0 H¥1.3 4.3 50.3 60.0 77 10.1 <5 330
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UNDIFFERENTIATEﬁ AQUIFERS, JORDAN RIVER 2

Well T SC pH Si Ca Mg Na K SO Cl B (0] F HCO 0

1 - 1040 7.8 34.0 58.0 28.0 - - 110.0 176.0 - - -~ 206 =

2 - 2760 T.2 27.0 263.0 106.0 - - 322.0 640.0 - - - 156 -

Mean - 19000 7.5 30.5 160.5 67.0 - - 216.0 4og.o - - - 181 -
UNDIFFERENTIATED AQUIFER, LOCAL SAMPLE EAST OF PLEASANT GROVE

Well T SC pH Si Ca Mg Na K SO Cl B co F HCO 0

1 - bo2 7.8 13.0  76.0 29.0 130 5 80.0 20.0 60 - "2 280 -

EXPLANATION

T=Temperature (°C), SC=Specific Conductance (micromhos), Si=dissolved silica (mg/l), Ca=dissolved calcium
(mg/1), Na=dissolved sodium (mg/1l), K=dissolved potassium (mg/l), SO=dissolved sulfate (mg/l), Cl=dissolved
cloride (mg/1), B=dissolved boron (ug/l), CO=dissolved carbon dioxide (mg/1l), F=dissolved fluoride (mg/l),
HCO=dissolved bicarbonate (mg/1l), O=dissolved oxygen (mg/1).

Missing values used in the body of the report were obtained by assuming values from similar waters, and
adjusting reported sodium+potassium values. Redox potential was calculated using dissolved oxygen values.
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Appendix IV.

Sample Locations and Dates of Collection
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Pleasant Grove Springs

1 (D-5-2)22BBB-S1 7/81
2 (D-5-2)16DAB-S1 7/81

Alpine Surface Water

1 (D-4-3)18ADC 6/81
2 (D-4-2)13ABB 6/81
3 (D-4-2) T7DBA-S1 6/81
4 (D-4-2) TDBA-S2 6/81

American Fork Surface Water
1 (D-4-3)32BBD 6/81
2 (D=-4-3)32BBD 6/80
Pleasant Grove Surface Water
1 (D-5=3)22DDC 9/81
2 (D-5=3)22BBD 9/81

Other Surface Water

1 (D-4-3)18ADC - 6/80
2 (D=5-1)35AAB 8/81
3 (D-5-1)12CBA 7/81
4 (p-5-1) 8ADA 7/81
5 (D-5-1) 4ABA 7/81
6 (D-4-1)34ACC 7/81

Shallow Pleistocene Aquifer, American Fork Area

1 (D-5-1)21DBA-2 7/81
2 (D-5-1)16DDD 8/81
3 (D-5-1)16DCD-1 7/81
4 (D-5-1)12CCD-1 7/81
5 (D-5-1)11BDD-1 7/81
6 (D-5-1)17CBC-1 7/81

Shallow Pleistocene Aquifer, Pleasant Grove Area

1 (D-5-1)22CCC 12/57
2 (D-5-2)19DDB-1 7/81
3  (D-5-1)35ADA-1 12/57



4 (D-5-1)27DAA-1 7/81
5 (D-5-1)26BAD-1 7/81
6 (D-5-1)21DBA-2 1/58
7 (D-5-1)36BDB-1 7/81

Shallow Pleistocene Aquifer, South Pleasant Grove Area

1 (D-6-2) 6ACC-1 12/57
2 (D-6-2) 6ACC-1 7/81

Deep Pleistocene Aquifer, American Fork Area

1 (D=5-1)23CAB-2 7/49
2 (D-5-1)22DDC-1 7/81
3 (D=5-1)21DDA-2 127457
4 (D-5-1)21DDA-2 8/80
5 (D=5-1)21DDA-2 7/81
6 (D-5-1)21DDA-3 1/58
7 (D=5-1)21DDA-3 8/80
8 (D=-5-1)23BDB-2 10/5T
9 (D=-5-1)23ABC-1 7/81
10 (D=-5-1)23BAC-1 12/57
11 (D=-5-1)19CCC-1 12/57

Deep Pleistocene Aquifer, North American Fork Area

1 (D-5-1) 3CAA-1 7/81
2 (D-5-1)1TACB-5 7/81
3 (D-5-1)10BAD=-2 8/58
4 (D-5-1) 9ABA-1 6/81
5 (D-5-1) 2BAA-1 7/81

Deep Pleistocene Aquifer, Pleasant Grove Area

1 (D-5-2)29DBD-13 8/81

Deep Pleistocene Aquifer, East American Fork Area

1 (D-5-2)19CCC-~1 7/81
2 (D-5-2)18ABA-1 7/81



Tertiary Aquifer, Lehi Area

1 (D-5-1)20ABA-6 9/81
2 (D-5-1)18CAB-2 8/69
3 (D-5-1)20ABA-6 4/58
4 (D-5-1)17CDD-5 7/81
5 (D=5-1)18CAB-2 3/68
6 (D-5-1)18CAB-2 6/65
7 (D-5-1)14BDC-1 8/81

Tertiary Aquifer, North Lehi Area

1 (D-5-1) 9DBB-1 1/52
2 (D-5-1)12ADD-1 19757
3 (D-5-1)10BCC-1 8/81
4 (D-5-1) 4CDD-1 7/81
5 (D-5-1) UBCC-1 7/58

Tertiary Aquifer, Pleasant Grove Area

1 (D-5-2)29CAA-1 8/81

Undifferentiated Aquifers, American Fork Area

1 (D-4-2)31BDA-1 7/81
2 (D-5-1) 1CDC-1 7/81
3 (D-5-2) 6ACD-1 7/81
4 (D-5-1) 1AAA-1 6/81
5 (D-4-1)35DAA-1 7/81
6 (D=U4-1)36ADC-1 7/81
7 (D-U4-2)31ACD-1 8/58
8 (D-4-2)31ACD-1 8/81
9 (D-4-2)36CAB-1 9/81

Undifferentiated Aquifers, Pleasant Grove Area

1 (D-5-2)21CBA-1 7/81
2 (D-5-2)34CCD-1 7/81
3 (D-5-2)34CAC-1 8/81
4  (D-5-2)29BDA-4 5/58
5 (D-5-2)27BAA-1 7/81
6 (D-5-2)29ABB-1 5/58
7 (D-5-2)21CBA-1 8/58
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Undifferentiated Aquifers, Alpine Area

1 (D-4-2)19CCB-1 7/81
2 (D-4-2)18BDD-1 7/81
3 (D-4-1)24DCD-1 7/81

Undifferentiated Aquifers, Traverse Mountain 1

1 (D-4-1)33DDA-1 7/81
2 (D-4-1)32DAA-1 6/81
3 (D-4-1)33CAA-1 6/81

Undifferentiated Aquifers, Traverse Mountain 2

1 (D=4-1)34BDC-1 7/81
2 (D-4-1)35BAA-1 7/81

Undifferentiated Aquifers, Traverse Mountain 3

1 (D-5-1)10BDD-1 7/81
2 (D-5-1) 4CBC-1 7/58
3 (D-4-1)32DBB-1 8/81

Undifferentiated Aquifers, Traverse Mountain U4

1 (C-5-1) 1CDC-1 7/81
2 (C-U4-1)26AAD-1 8/81
3 (D-4-1)31ADD-2 9/81

Undifferentiated Aquifers, Traverse Mountain 5

1 (C-4-1)36DAA-1 9/81
2 (C-4-1)25CAC-1 5/59

Undifferentiated Aquifers, Traverse Mountain 6

1 (D-5-1) 5CBC-1 7/81
2 (D-5-1) SDAA-1 7/81
3 (D-5-1) 5BBC-1 5/54

4  (D-U4-1)31CBB-2 8/81
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Undifferentiated Aquifers, Jordan River 1

1 (C-5-1)23BDA-1 5/58
2 (D-5-1)24cDC-1 4/60
3 (C-5-1)23BDA-1 5/58
4 (C-5-1)25ABC-1 4/58

Undifferentiated Aquifers, Jordan River 2
1 (C~5=1)14CAA-1 5/58
2 (C-5-1)14BCC-1 4/58

Undifferentiated Aquifer, Local Sample

1 (D-5-2)29CBC-1 5/59



LOCATIONS OF WELLS USED FOR FENCE DIAGRAMS

Section A - A'

(C~-4-1)26ADD
(C-4-1)36BBB-1
(C-4-1)36AAA
(D-5-1) 6BCD
(D-5-1) 5CBB
(D-5-1)18CBC-1
(D-5-1)19ACC

NV EWND -

Section B - B!

(D-4-1)35BAA
(D-4-1)34BDC
(D=4-1)33DDA-1
(D=4-1)33DAD-1
(D=5-1) U4BCC
(D=-5-1) 10BBB
(D=5-1) 9ABA-1
(D-5-1) 4CDD-1
(D=5-1) 9BBA
10 (D-5-1)17CCB
11 (D-5-1)1TCBC

W OO oWVl &Zwih —

Section C - C!

(D-4-2)31ACD-1
(D-4-1)36DAB
(D-5-1) 1BCD
(D-5-1) 1CDC-1
(D-5-1) 11DAA
(D-5-1)12DCC-1
(D-5-1)10CCB
(D-5-1)23AAB
(D-5-1)22DDC

W o~V ZJwh =

Section D - D!

(D=5-2)21DAC=-1
(D=5-2)20DBB
(D=-5-2) 19DDB
(D-5-2) 19CCC
(D-5-1)36ACA
(D-5-1)24CCD
(D=5-1)26BAD

~NOUlEWN =

81



8 (D-5-1)27DAA

Section E - E!

1 (D-5-2)34DAA
2 (D-6-2) 9cce-1
3 (D-6-2) B8BCD-4
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