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ABSTRACT: 

This project applies machine learning techniques to remotely sensed imagery to train and validate predictive models of vegetation health 

in Bangladesh and Sri Lanka. For both locations, we downloaded and processed eleven years of imagery from multiple MODIS datasets 

which were combined and transformed into two-dimensional matrices. We applied a gradient boosted machines model to the lagged 

dataset values to forecast future values of the Enhanced Vegetation Index (EVI). The predictive power of raw spectral data MODIS 

products were compared across time periods and land use categories. Our models have significantly more predictive power on held-out 

datasets than a baseline. Though the tool was built to increase capacity to monitor vegetation health in data scarce regions like South 

Asia, users may include ancillary spatiotemporal datasets relevant to their region of interest to increase predictive power and to facilitate 

interpretation of model results. The tool can automatically update predictions as new MODIS data is made available by NASA. The tool 

is particularly well-suited for decision makers interested in understanding and predicting vegetation health dynamics in countries in 
which environmental data is scarce and cloud cover is a significant concern. 

 

1. INTRODUCTION 

Remotely sensed measures of vegetation health, such as the 

Normalized Difference Vegetation Index (NDVI) or the 

Enhanced Vegetation Index (EVI), are widely used to monitor 

agricultural responses to drought (Peters et al., 2002; Rhee, Im, 

& Carbone, 2010).  Providing managers and farmers with 

accurate information about vegetation health increases system-

wide capacity to prepare for and adapt to water scarcity 

(Dessai, 2009; Ziervoge et al., 2010).  In many tropical 

countries, however, persistent cloud cover causes significant 

gaps in data availability.  In this paper, we describe an open 

source tool we have developed that predicts vegetation health at 

a relatively high spatial resolution worldwide.1  The tool 

applies a gradient-boosted machine model (GBM) to 16-day 

250 meter resolution Moderate Resolution Imaging 

Spectroradiometer (MODIS) datasets which are openly 

available on NASA’s LP DAAC server.  The model learns 

potentially complex relationships between past remotely sensed 

variables (and their interactions) and future vegetation health as 

measured by the Enhanced Vegetation Index (EVI).  The tool 

forecasts vegetation health 16-days out and can be used to 

impute missing data in highly cloudy locations.  In this paper, 

we apply the tool in two South Asian countries with extremely 
high levels of seasonal cloud cover:  Sri Lanka and Bangladesh.  

1.1 Sri Lanka 

Sri Lanka is a small island nation located off of the eastern 

coast of India that covers approximately 66,000 square 

kilometers and is home to nearly 21 million people 

(Government of Sri Lanka, 2010).  The country receives two-

thirds of annual rainfall during the northeast monsoon which 

                                                           
1 For more information about tool development and testing, 

please refer to the paper by Nay et al. (2016). 

lasts from October to December.  The southwest monsoon lasts 

from May to October and brings rain primarily to the 

southwestern region of the island.  This rainfall pattern creates 

two distinct cultivation seasons, the wet Maha season and the 

dry Yala season (Senaratne & Scarborough, 2011). During the 

wet season, most farmers cultivate rice, which is a stable of the 

Sri Lankan diet.  Farmers capture wet season rainfall in 

reservoirs, known locally as tanks, and cultivate rice during the 

dry season with this stored water.  During water scarce dry 

seasons, farmers cultivate other field crops such as soy, maize, 

and grain.  Field size is small in Sri Lanka, with over 70 

percent of farmers cultivating less than 2.5 acres of land 

(Withananachchi et al., 2014). 

1.2 Bangladesh 

Bangladesh is, apart from a few small city-states, the most 

densely populated nation on earth, with approximately 160 

million people living on 150,000 square kilometers (Lewis, 

2011, p. 13).  Bangladesh has a monsoon climate, with an 

average of approximately 2100 mm of rainfall in May through 

September, compared to 90 mm in November through March. 

Rice cultivation is the dominant agricultural activity, 

accounting for roughly 40% percent of total land use (60% of 

cultivated land) and 10% of GDP (World Bank, 2009).  There 

are three distinct seasons: aman rice, traditionally the dominant 

crop, is planted during the monsoon rains in July/August, and is 

harvested in November/December; aus rice is planted toward 

the end of the dry season, in March/April, so as to catch the 

early rains in late April through May, and is harvested in early 

summer (June/July); boro rice is planted in December/January, 

after the aman harvest, and is irrigated with ground water and 

harvested in the spring, April/May (USDA, 2013).  Boro rice, 

which generally consists of high-yielding seed varieties, has 

significantly greater yields than either aman or aus. Boro rice 
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has grown from almost nothing at the time of independence, in 

1971 to constitute more than half of national rice production 

(Lewis, 2011, p. 137-8).  Expansion of boro rice, combined 

with increased productivity of aman rice has tripled annual 

production since the 1970s (Baffes & Gautam, 2001).  Boro 

production is limited by access to seed and fertilizer, but even 

more so by access to suitable groundwater and electricity to run 

irrigation pumps. The number of acres under irrigation has 

roughly tripled since 1980 (Census of Agriculture, 2008).  

Throughout the nation, irrigation withdrawals have 

significantly lowered the water table, and salinity in the 

groundwater, due both to naturally saline aquifers and to 

salinity intrusion in the coastal areas, is constraining production 

(Dasgupta et al., 2014). Field size is also small in Bangladesh 

with 84 percent of farmers cultivating less than 2.5 acres 

(Census of Agriculture, 2008).   

 

2.  METHODS 

In this study, we measure variations in vegetation health using 

the Enhanced Vegetation Index (EVI) which is a proxy for the 

health of agricultural crops (Cai & Sharma, 2010; Galford et 

al., 2008; Gumma, 2011; Sakamoto et al., 2005; Xiao et al., 

2006), highly correlated with the leaf area index (Huete et al., 

2002), and positively linearly related to vegetation fraction 
estimates (Small & Milesi, 2013).  The EVI is measured as:  

𝐸𝑉𝐼 = 𝐺
𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+𝐶1 𝑥 𝜌𝑅𝐸𝐷−𝐶2 𝑥 𝜌𝐵𝐿𝑈𝐸+𝐿
          (1) 

where ρ is atmospherically corrected surface reflectance, L is 

the canopy background adjustment, and C1 and C2 are the 

coefficients of the aerosol resistance term, which uses the blue 

band to correct for aerosols in the red band (Huete et al., 2002).  

EVI values approaching one indicate high levels of 
photosynthetic activity.   

We created a set of Python scripts to automate downloading 

and processing MODIS data from the MOD09A1 and 

MOD13Q1 datasets. The software downloads, mosaics, clips, 

and projects HDF files downloaded from the LP DAAC server 

and masks all pixels not flagged as “good quality” by each 

dataset’s quality mask.  8-day datasets are transformed to a 16-

day time step by computing the average of two quality-masked 

8-day pixels.  All datasets are resampled to match the spatial 

resolution of the EVI dataset (250 meters).  These scripts, along 

with the modeling and validation scripts, are open source and 

can be used to download any MODIS tile for any MODIS 

dataset found on NASA’s LP DAAC server 

(http://johnjnay.com/forecastVeg).  The user has the option of 

including ancillary geospatial datasets such as land use 

information, socioeconomic data, or climate data to increase 

the predictive power of the model.  For our analysis, we 

included gridded world population (CIESIN, 2005), land use 

(Survey Department, 2011) and an El Niño sea surface 

temperature index (Rayner et al., 2003).  The Niño 3.4 SST 
Index was used in Sri Lanka and Bangladesh.  

We computed the spatial autocorrelation functions of the 

MOD13Q1 imagery to divide the final matrix into a grid of 

independent areas.  In both regions, autocorrelation functions 

approached zero at a lag of 150 pixels (approximately 35 

kilometers).  We divided each image into a grid of 150-pixel by 

150-pixel cells and randomly assigned a subset of these cells to 
training and testing data. 

We selected a model that performs well in supervised learning 

tasks where complex functions link the predictor and outcome 

variables and there is missing predictor variable data: the 

gradient boosted machine (GBM) model.  To contextualize 

quantitative performance measures of our model, we compared 

its performance to a simple model that uses approximate 

nearest neighbor search to find k spatial-temporally close pixel-

time observations in the hold-out data and averages their EVI 
values.  

We used a GBM implementation in h2o, an open-source library 

that allowed us to hold hundreds of millions of rows of data in 

memory (H2O.ai Team, 2015). The GBM iteratively adjusts 

model parameters in the direction of lower prediction errors by 

using gradient computations and improves an ensemble of base 

models by adjusting the training data. The base models are 

binary split trees that divide predictor variable values into 

distinct regions (Hastie, Tibshirani, & Friedman, 2009).  The 

GBM is ideal for our regions of interest because it can handle 

missing predictor variables by incorporating missing values in 

the overall tree structure. The model can also automatically 

learn interactions between predictor variables. Manually 

specifying all potential interactions would be time-intensive 

and the interactions that lead to the best predictive performance 

can vary by location. The algorithm learns which interactions 
are useful. 

The GBM has hyper-parameters that need to be tuned. We used 

a Tree of Parzen Estimators search algorithm to model the 

effect of the hyper-parameters on the mean-squared error of the 

model's predictions of a held-out subset of the training data 

(Bergstra, Yamins, & Davis, 2013).  We selected the hyper-

parameters with the highest performance on the training data.  

Then we trained the model with those hyper-parameter settings 

on the full training data and used this model to forecast EVI in 

the hold-out validation data to test our best model on unseen 
observations.  

 

3. RESULTS 

3.1 Performance across Space 

We measured the performance of the model by calculating the 

correlation between the vector of 16-day ahead predictions of 

EVI and vector of actual values of EVI in the held-out data.  

We computed the correlation for each land use category and 

found that model performance relative to the baseline is high in 

all categories of land use (Figure 1).  In both regions, the 

correlation in agricultural areas is above 0.75 (0.86 in 

Bangladesh and 0.76 in Sri Lanka). Predictive power more than 

doubles in agricultural areas compared to the baseline model. 
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Figure 1:  Correlation between predicted and actual EVI in (A) 
Bangladesh and (B) Sri Lanka across land use categories 

3.2 Performance across time 

In Sri Lanka, there was variation in the performance of our 

model across periods of the year (Figure 2).  We computed the 

average percent of missing data at each time period of the year 

and found that the drops in correlation occurred after increases 

in the percent of missing data.  Many of the lowest drops in 

correlation occurred during the wet season (October – 

February), during which the majority of the island is covered in 

clouds. Similarly, in Bangladesh the largest drop in correlation 

between actual and predicted EVI values through time occurred 

during the wet season, which lasts from May to September.  

Even during these highly cloudy periods, correlations were 
generally at or above 0.75.  

 

 

Figure 2:  Correlation between predicted and actual EVI in (A) 
Bangladesh and (B) Sri Lanka across time periods 

3.3 Performance across values of EVI 

In Figure 3 we plot the performance for held-out agricultural 

pixels. The x-axis histogram displays the distribution of hold-

out predicted agricultural EVI values, and the y-axis displays 

the distribution of actual agricultural EVI values.  If our model 

made perfect predictions, all points in the scatter plot would 

line up on the dotted line.  In Sri Lanka, the strongest 

predictions of EVI are at values indicative of healthy 

vegetation, between 0.5 and 0.8.  Predictive performance 

decreases for low EVI values, which are suggestive of stressed 

vegetation or atmospheric noise.  The low predictive 
performance for extreme EVI values in Sri Lanka may be due 
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to high levels of atmospheric noise.  In Bangladesh, we see far 

more actual EVI values at or below zero.  This is likely due to 

the fact that a large portion of the county located in the Ganges-

Brahmaputra Delta floods seasonally, causing pixel values to 

drop.  This seasonal flooding is often sudden and difficult to 

predict.  In some cases, flooding is actively managed by 

humans. In both regions, the highest density of points 

(indicated by the contour lines) falls along the dotted line, 
suggesting that our predictive power is high. 

A.

 

B.

 

Figure 3:  Correlation between predicted and actual EVI in (A) 
Bangladesh and (B) Sri Lanka across measured values of EVI 

 

CONCLUSION 

In this paper, we have tested a user-friendly and open source 

set of scripts that download, process and predict high resolution 

values of vegetation health for any MODIS tile.  All scripts and 

data are open source (http://johnjnay.com/forecastVeg/) and 

well-documented.  The final tool can be used to capture field-

level variations in vegetation health and support local and 

regional decision-making.  We have tested the tool in two 

locations with known data availability issues, where cloud 

cover is a serious concern that prevents decision makers from 

using remotely sensed data to support regular decisions.  We 

propose that this tool can be used to “nowcast” remotely sensed 

data in regions in which large sections of data are regularly 

missing from remotely sensed images.  The tool can be used to 

monitor and predict vegetation health at a high resolution in 

regions in which no local data is available, where it could 

support agricultural decision-making. 

Future research could combine our scripts with additional 

ancillary data to model the effects of particular social and 

institutional factors on vegetation health.  In addition, the 

integration of machine learning techniques and remote sensing 
data could be used to predict other environmental phenomena.    
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