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ABSTRACT 

Tapirs and Rhinoceroses in Captivity: An Examination of the 

North American Captive Populations and their Husbandry 

by 

Lisa A Nordstrom, Doctor of Philosophy 

Utah State University, 2006 

Major Professor: Dr. John A Bissonette 
Program: Ecology 

A..11 species of Tapiridae and Rhinocerotidae are threatened or endangered in the 

wild. Captive populations have been established for most of these species, but successful 

management has proved challenging. Effective ex situ conservation strategies, however, 

rely on the ability of zoological institutions to maintain and breed these endangered 

species. In this study, I examined the captive environment to identify the factors 

associated with reproduction, mortality, and health of rhinos and tapirs. Zoological 

institutions in the North American region that currently housed rhinos and/or tapirs were 

surveyed in 2003. Attaining an approximately 90% response rate, I compiled information 

on the following variables to describe the captive environment: number of enclosures, 

enclosure type, enclosure area, number of animals, public viewing, percent of walls 

surrounding the enclosure, enclosure substrate, topography, vegetation, mud wallows, 

pools, shelters, percent shade, climate, diet, feeding regime, time spent by keepers, and 

vaccinations. Information regarding the incidence of health problems also was obtained 



through the survey. Studbook data was used to obtain life history and demographic 

information. 

lV 

Three species of tapirs [Baird's (Tapirus bairdii), South American (T terrestris), 

and Malay (T indicus)] and three species ofrhinos [black (Diceros bicornis), white 

(Ceratotherium simum), and Indian (Rhinoceros unicornis)] were included in this study. 

Due to the small captive population sizes, genetic and demographic Allee effects were 

detected. While tapirs responded similarly to their captive environment, each rhino 

species responded differently. Both exhibit area and compleYJty were associated with the 

responses of captive tapirs and rhinos. Climate also was an influential factor for both 

groups of species. Other key factors included density, diet, keeper time, percent of public 

perimeter, and vaccinations. Complex interactions among the variables were found, 

including a nonlinear relationship between mean exhibit size and reproduction for black 

rhinos. 

The results of this study can be used to improve the captive management of tapirs 

and rhinos. By identifying the patterns associated with successful reproduction, reduced 

mortality, and fewer health problems, we can move towards establishing self-sustaining 

populations for these species. This goal is critical for the continued husbandry and 

conservation of these species. 

(130 pages) 
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CHAPTER 1 

INTRODUCTION 

Environmental conditions and resources affect an organism's growth, 

reproduction, health, and survival [Begon et al., 1990] In zoological parks, enclosures 

provide the environment in which captive animals live. Only under optimal conditions 

will an organism be able to maximize its fitness. To some degree, fitness is 

anthropogenically controlled in zoos. Yet captive animals may still have lower 

productivity due to inadequate living conditions, dietary deficiencies, limited mating 

choices, or other factors [Hediger, 1965; Mellen, 1991; Smith and Read, 1992]. 

However, few data exist on the relationship between the captive environment and 

reproduction, mortality, and health. As a consequence, curators have little scientific 

information to base husbandry requirements for captive species [Seidensticker and 

Doherty, 1996; Carlstead, 1999]. 

Successful husbandry is important for the establishment of effective ex situ 

conservation strategies. Wildlife populations are increasingly threatened with the risk of 

extinction [Pimm et al., 1995; Rosser and Mainka, 2002]. Zoos can provide a safeguard 

against the total extinction of a species through captive breeding and reintroduction 

programs [Cohn, 1988; Ryder, 1997; Swaisgood, 2004a, b]. While captive breeding 

alone cannot solve the problems of species extinctions, The World Conservation Union 

(IUCN) views captive breeding programs as complementary to in situ efforts [Emslie and 

Brooks, 1999] and recommends that ex situ conservation be initiated before population 

sizes become too small to establish viable captive populations [Swaisgood, 2004a, b]. 



Once established, viable, self-sustaining captive populations eliminate the need to remove 

individuals from endangered populations in the wild. Unfortunately, captive breeding is 

often a difficult task, fraught with many problems and failures due to an insufficient 

understanding of the target species, as well as suboptimal conditions in the captive 

environment [Swaisgood, 2004a]. In order for captive breeding to be successful, 

zoological institutions need to know the species' environmental, housing, dietary, 

medical, social, and behavioral requirements to determine proper husbandry [Kleiman, 

1980; Mellen, 1994; Swaisgood, 2004a]. Thus, there is an urgent need for scientific 

research to provide solutions for the effective conservation of captive species, particularly 

when conservation strategies in the wild fail to result in stable populations. 

The philosophy on the role of zoos has undergone many changes in recent 

decades [Gibbons et al., 1995; Hutchins and Conway, 1995; Hutchins et al., 1995; Mench 

and Kreger, 1996]. Historically, little consideration was given to the animals' well-being 

or ex situ conservation. Zoological exhibits basically consisted of square, kennel-like 

cages [Hediger, 1950; Seidensticker and Doherty, 1996]. Today, there is greater 

emphasis on conservation research, education, endangered species management, 

standards of animal care, and enclosure design [Hutchins and Conway, 1995; Hutchins et 

al., 1995, Kleiman et al., 1996; Swaisgood, 2004a]. Demographic and genetic 

management of captive populations are now integral parts of ex situ conservation 

programs established for species [Ballou and Foose, 1996; Earnhardt et al., 2001]. The 

typical square cages also have been transformed into more naturalistic exhibits [Gibbons 

et al., 1994; Forthman et al., 1995]. Unfortunately the redesign of enclosures is usually 

based on assumptions and aesthetics, rather than on empirical data concerning the 
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biology and behavior of the organism [Carlstead, 1999]. This lack of knowledge has led 

to numerous problems for the care of captive animals, including inadequate reproduction, 

health problems, and mortality. For example, captive management ofrhinoceros remains 

problematic, with productivity levels below demographic and genetic sustainability, for 

unknown reasons [Smith and Read, 1992; Fouraker and Wagener, 1996; Carlstead, 1999; 

Carlstead et al., 1999; Emslie and Brooks, 1999; AZA Rhino Advisory Group, 2002]. 

Enclosures contain many different features that could affect the captive animal. 

At the basic level, the enclosure must contain at least adequate food, water, shelter, and 

space. However, the natural history, social behavior, mating systems, and other 

ecological requirements of species also need to be taken into account. Burghardt [1975] 

categorized the variables operating in a zoo environment into five main factors: the 

enclosure, husbandry procedures, keepers, public visitors, and the organism. The 

combination of these factors defines the captive environment and the response of the 

organism, ultimately determining its health, reproduction, and survival. 

Debate currently exists regarding the relative importance of enclosure size and 

structural complexity for captive animals. Hediger [1950] asserted that enclosure size 

should be based on flight distances of the wild animal in captivity, but that tame animals 

only need enclosures that are several times the length of their bodies to satisfy their 

physiological needs. Indeed, the quality of space, rather than quantity, is assumed to be 

more important for the management of captive species [Hediger, 1950; Besch and 

Kollias, 1994]. However, some species, such as rhinos, are known to have large spatial 

requirements, which scale allometrically with body size [McNab, 1963]. Evidence also 

appears to indicate that wide-ranging carnivores respond negatively to captivity [Clubb 
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and Mason, 2003]. Fueling the debate between enclosure size and complexity are 

discrepancies between research results; several studies have found that enclosure size is 

insignificant [Wilson, 1982; Mellen, 1991; Kreeger et al., 1996; Lyons et al., 1997], 

while others have found it to be correlated with reproductive success and mortality 

[McCusker, 1978; Miller-Schroeder and Paterson, 1989; Roberts, 1989; Carlstead et al., 

1999]. The differences in enclosure size significance may be due to species perceptions 

and mobility. Species that are able to climb or fly would tend to view a more three­

dimensional, rather than two-dimensional surface [Holling, 1992]. Scale domains that 

encompass relevant ecological processes also may create discontinuities or thresholds in 

species response to enclosure size [Holling, 1992]. For instance, breeding success may 

increase and mortality decrease as exhibit size increases, until a threshold is reached. 

Beyond this threshold, enclosure size may no longer be a significant factor. 

Furthermore, the importance of size and complexity are not mutually exclusive, 

but may both influence species response. Miller-Schroeder and Paterson [1989] found 

that area, volume, and structural complexity were all associated with breeding success for 

gorillas. Increasing complexity may actually offset the potential effects of small exhibit 

sizes by increasing usable surface area or providing refuge areas within the enclosure. 

Conversely, animals kept in simple, sterile environments tend to have decreased health, 

lower reproduction, impaired brain and neural functioning, and more abnormal behaviors 

compared to those in enriched environments [Rosenweig and Leiman, 1968; Rosenweig 

et al., 1978; Carlstead, 1996; Kempermann et al., 1997; lLAR, 1998; Brown et al., 2003; 

Dukas and Mooers, 2003; Marashi et al., 2004]. By adding particular attributes within 
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enclosures, such as mud wallows, pools, shade, or grass substrate, the captive 

environment may more closely meet the specific biological needs of a species. 

Density also can influence reproduction and mortality, as a result of negative 

density dependent processes or Allee effects. Increasing the number of individuals 

reduces the relative amount of space for each individual within the enclosure and 

increases competition among individuals. Since tapirs and rhinos, excluding the white 

rhino, are primarily solitary, multiple males or females may lower breeding success and 

increase mortality. For example, Carlstead et al. [1999] found that zoos with a single 

black rhino female had a higher reproductive rate compared to zoos with multiple 

females, and that the mean age of first reproduction was significantly lower for those 

single female rhinos. 

In the captive environment, stress can be a major factor for animals. Carlstead et 

al. [ 1999] found a correlation between mortality and the percent public access. Increases 

in the amount of public access along the enclosure perimeter may increase fear and stress 

for individuals in the enclosure. Chronic stress has been shown to have serious negative 

physiological and behavioral effects on individuals, which can impact the viability of 

captive populations [Carlstead, 1996]. Similar to public presence, keepers also may be a 

source of stress, particularly because of the close proximity between animals and keepers. 

The amount of time spent per day by keepers may be a useful measure of the response of 

tapirs and rhinos to humans. 

In addition, diet and feeding regimes are known to impact the health of animals. 

Inadequacies in diet can lead to reduced reproduction and higher mortality rates [ Asa, 

1996; Fouraker and Wagener, 1996]. Improper nutrition also can create health problems, 
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such as nutrient deficiencies, colic, or various disease syndromes [Fouraker and Wagener, 

1996]. Furthermore, the conditions in zoological institutions are often conducive to the 

transmission of diseases among individuals [Dobson and May, 1986; Lafferty and 

Gerber, 2002]. High densities in captivity, exposure to other species, poor nutrition, and 

increased stress can increase the susceptibility of individuals to infectious agents [Dobson 

and May, 1986; Hinshaw et al., 1996; Lafferty and Gerber, 2002]. Preventive medical 

treatments, such as vaccinations, can help reduce the chance of disease outbreaks that 

jeopardize captive populations [Hinshaw et al., 1996]. 

Lastly, climate may have an effect on captive species when species adapted to a 

tropical/subtropical environment are kept in the temperate climate of North America. 

Temperature and precipitation can affect reproduction and survival if conditions are 

beyond species tolerance limits [Begon et al., 1990]. Furthermore, the amount of time 

that the animals are kept in the indoor enclosure will most likely be correlated with 

climate, with the zoos in the higher latitudes unable to provide outdoor access during the 

winter months. 

The American Zoo and Aquarium Association (AZA) Minimum Husbandry 

Guidelines recommend standards for the management of species, including specifications 

for indoor and outdoor facilities, enclosure features, sanitation, diet, social groupings and 

veterinary care. Unfortunately, few scientific data exist on which to base these 

guidelines. For instance, AZA Minimum Husbandry Guidelines recommend that each 

adult tapir have an outdoor enclosure of at least 18.6 m
2 

[Barongi, 1997]. However, 

whether this is the optimal size is unknown. Innis et al. [ 1985] suggest that the 

appropriate enclosures size can be calculated using the number of animals and the 
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minimum preferred distances between individuals for a particular species. How to 

determine the preferred distance between individuals, however, is unclear, which could 

lead to potentially erroneous enclosure size calculations. Comparisons between the AZA 

suggested appropriate enclosure sizes and results from research studies on the actual 

effects of enclosure size could prove useful for developing better guidelines and models 

for calculating spatial requirements. This approach, using empirical data, could be 

applied to all of the factors that define the captive environment. By measuring 

environmental factors across multiple zoos and determining species response, the 

reliability of these guidelines may be improved, increasing the chance of success for 

captive management and conservation of threatened and endangered species. 

STUDY ORGANISMS 

Tapirs and rhinos were selected for this study for several reasons: ( 1) their 

worldwide threatened and endangered status; (2) presence in zoological institutions; 

(3) locomotory abilities, which affect their perception of the environment as a two­

dimensional surface; (4) size differences between the two taxonomic families; 

(5) similarity in trophic level and digestive morphology; (6) social behavior, all being

primarily solitary except for the white rhino; and (7) taxonomic relatedness, both 

members of the Order Perissodactyla. Captive management of tapirs, especially the 

Malay (Tapirus indicus) and lowland (T ten·estris) species, has been fairly successful in 

recent years, despite their threatened and endangered status in the wild [Barongi, 1993; 

Barongi, 1997]. The worldwide captive population of Baird's tapir ( T bairdii) remains 

low though, compared to the Malay and lowland tapirs [Barongi, 1993]. Reproduction 
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among tapirs, however, is fairly commonplace, despite medical and behavioral problems 

that occur mainly due to lack of experience and knowledge [Barongi, 1997). Conversely, 

rhinos have experienced numerous problems in captivity, resulting in the lack of self­

sustaining populations for several species [Smith & Read, 1992; Carlstead, 1999; 

Carlstead et al., 1999; AZA Rhino Advisory Group, 2002). Successful reproduction is a 

major problem for white rhinos (Ceratotherium simum), whereas high mortality is 

problematic for the black rhino (Diceros bicornis) in captivity [AZA Rhino Advisory 

Group, 2002). The captive population oflndian rhinos (Rhinoceros unicornis) has fewer 

demographic problems, but its genetic diversity is low and many individuals are afflicted 

with foot problems [AZA Rhino Advisory Group, 2002). The environment provided for 

each of these species may have a significant effect on reproduction, mortality, and health 

and needs to be further examined. 

OBJECTIVES 

The main objectives of this research are to assess the relationship between the 

captive environment and response of rhinos and tapirs. Reproduction, mortality, and 

health were used as the response variables. The frequency of health problems may 

provide a more sensitive measure of the effect of enclosure attributes on these species, 

considering that individuals in poor health are less likely to reproduce and more likely to 

die. The factors that are correlated with the response variables may vary among species, 

but the following descriptive variables were predicted to be biologically significant: 

exhibit size, animal groupings and density, overall enclosure complexity, enclosure 

attributes such as mud wallows, pools, shade, and substrate, the percentage of enclosure 
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perimeter open to public access, time spent by keepers, diet, number of feedings, 

preventative medical treatments, and climate. Each of these variables and their 

interactions can impact the well-being of rhinos and tapirs, as previously described. 

Empirical data on husbandry and environmental factors across multiple zoos were 

acquired through a survey of North American zoos currently housing rhinos and tapirs. 

Studbook data was used to provide demographic information for each species at each 

zoo. Although individual behavior is an important aspect to be considered, this research 

only addressed how behavior translated into reproduction, mortality, and health. 

Knowledge of how the captive environment affects rhinos and tapirs can be 

applied to improve captive management, as well as to provide a better understanding of 

rhinos and tapirs themselves. Human intervention and individual behavioral differences 

among animals, along with other factors that cannot be accounted for, may have affected 

the results of this study. Furthermore, because the data obtained are observational, only 

correlations between factors can be demonstrated. However, identifying the relationship 

between environmental factors and demographic and health parameters is a fundamental 

step for further developing successful management programs for rhinos and tapirs in 

captivity. One of the primary goals of the AZA Species Survival Plan for Rhinoceros is 

the "improvement of captive husbandry and management through research in health, 

nutrition, behavior, and reproduction to facilitate development of viable populations ex 

situ ... " [AZA Rhino Advisory Group, 2002; p. 8]. The AZA Tapir Taxon Advisory 

Group (TAG) also has established similar objectives. This comprehensive, and largely 

exploratory, study fulfills that objective and provides much needed information for 
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captive management of tapirs and rhinos. Consequently this research was approved by 

both the Rhino and Tapir TAG. 

The following chapters address the relationship between the captive environment 

and species response for tapirs and rhinos, indicate important trends for reproduction, 

mortality, and health in the captive environment, and identify possible explanatory 

factors that need further investigation. Chapter 2 examines these topics for the family 

Tapiridae. Individual species responded similarly to their captive environment and 

consequently were analyzed as a group. Chapter 3 focuses on three individual species of 

rhinos, each responding slightly differently to their captive environment. Finally, chapter 

4 compares and synthesizes the major results for each of these groups. 
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Tapirs qualify as a charismatic megavertebrate (i.e., large, interesting animals that 

could serve as a flagship species for conservation efforts [Cohn, 1988]), yet they have 

received relatively little scientific or public attention [Barong i, 1993; Janssen et al., 1996; 

Brooks et al., 1997]. Despite their large size and unique morphology, these animals 

remain ecologically and publicly obscure. In a study of visitor reactions to tapir exhibits 

at zoos, Seitz [2001] found that tapirs were misidentified as 86 different animals. Tapirs 

are among the largest mammals in the neotropics, but can go unnoticed due to their 

solitary lifestyle, crepuscular/nocturnal behavior, and habitat preference for moist areas in 

tropical forests. This also makes them particularly difficult to study, resulting in a lack of 

information regarding their distribution, population dynamics, and basic biology. Despite 

their long history in zoos, potentially extending back to 1704 in Europe [Kourist in 

Padilla and Dowler, 1994], there is also a paucity of research of tapirs in captivity. 

Unfortunately, all tapir species are threatened with extinction, creating an imperative 

need for research, both in the wild and in captivity. 

Related to rhinos and horses in the order Perissodactyla, tapirs belong to the 

family Tapiridae, which consists of four extant species: Baird's (Tapirus bairdii), South 

American (T terrestris), mountain (T pinchaque), and Malay (T indicus) tapir . The 

Baird's, South American, and mountain tapirs occur in the neotropics, whereas the Malay 

tapir's range is in southeast Asia (Fig. 2-1 ). All four species have similar life histories, 
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behavior, and ecological requirements [Barongi, 1993]. Adult tapirs range in size from 

200-450 kg, with the Malay tapir being the largest and the mountain tapir, the smallest 

[Barongi, 1993; Janssen et al., 1996]. Like most large mammals, tapirs have a low 

reproductive rate, with usually only a single calf produced after approximately 13 months 

gestation [Read, 1986; Barongi, 1993; Padilla and Dowler, 1994; Brooks et al., 1997]. 

Tapirs are herbivorous and eat a variety of browse, grasses, and fruit [Williams and 

Petrides, 1980; Bodmer, 1990; Barongi, 1993; Padilla and Dowler, 1994; Brooks et al., 

1997; Henry et al., 2000; Downer, 2001]. Their elongated proboscis aids in foraging and 

provides them with an acute sense of smell [Barongi, 1993; Padilla and Dowler, 1994; 

Brooks et al., 1997]. Rivers, lakes, or other water sources are frequently used by tapirs, 

who are commonly found swimming or using mud baths [Barongi, 1993; Padilla and 

Dowler, 1994]. Although Baird's tapirs use both primary and secondary forest habitat 

[Foerster and Vaughan, 2002], limited evidence suggests that Malay tapirs prefer 

undisturbed forest habitat [Williams and Petrides, 1980; Medici et al., 2003] . 

Many of these traits have made tapirs particularly vulnerable to extinction. They 

are federally listed as endangered species, although the lowland and Malay tapirs are 

categorized as vulnerable, and only Baird's and mountain tapirs as endangered under The 

World Conservation Union (IUCN) Red List [AZA Tapir TAG, 2004; IUCN, 2004]. The 

main threats are habitat loss across their entire range and hunting particularly in Central 

and South America [Janssen et al., 1996; Brooks et al., 1997; Medici et al., 2003] 

Overexploitation of tapir populations can occur at even low levels of extraction, due to 

their low population growth rate capacity and low densities across their range [Brooks 

et al., 1997; Medici et al., 2003]. Home range size can vary from approximately 1 km2 in 
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optimal habitat to 12.75 km2
, with densities ranging from 0.035-1 individual per km2 

[Williams and Petrides, 1980; Brooks et al., 1997; Foerster and Vaughan, 2002; Medici 

et al, 2003]. Consequently , large areas of habitat are required to maintain sustainable 

populations. Fragmentation further exacerbates the effects of habitat loss and hunting, 

increasing the chances for local extinction. If current rates of deforestation continue , the 

Malay tapir in Sumatra is predicted to go extinct within 50 years or less, regardless of its 

current population size, which is estimated between 900 and 3,000 [Medici et al., 2003]. 

The mountain tapir is the most critically endangered, with only 2,500 individuals or less, 

and may become extinct within the next two decades given current habitat destruction 

and hunting pressures [Brooks et al., 1997; IUCN, 2004]. Currently all four species of 

tapirs are decreasing in number [IUCN, 2004]. In situ conservation, in conjunction with 

ex situ efforts, is needed to help protect these decreasing populations. 

In general, tapirs are successfully bred and managed in captivity, with similar 

husbandry for all tapir species [Barongi, 1993, 1997, 2003; Shoemaker et al., 2003]. The 

captive populations of Baird's and Malay tapirs have been designated as a part of the 

American Zoo and Aquarium Association (AZA) Species Survival Plan, requiring a 

captive breeding program and management to preserve genetic diversity and 

demographic sustainability [ AZA Tapir TAG, 2004]. Genetic diversity of captive 

populations is limited by the number and heterozygosity of the wild-caught founders and 

their fitness. Maintaining this limited genetic diversity can be challenging due to the 

small population sizes and need for long-term management [Ballou and Foose, 1996]. 

However, loss of genetic diversity through inbreeding and genetic drift can have 

profound effects on species viability and suitability to be reintroduced back into their 
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native range [Allendoif and Leary, 1986; Gilpin and Soule, 1986; Ballou and Foose, 

1996]. Increasing captive population sizes can reduce their vulnerability to genetic losses 

and extinction [Gilpin and Soule, 1986; Ballou and Foose, 1996], but limitations on 

available space generally preclude sizable populations [Earnhardt et al., 2001]. In order 

to achieve larger population sizes, only two tapir species, Baird's and Malay, were 

chosen as the primary focus of the North American captive tapir management program, 

although all four species have been exhibited [AZA Tapir TAG, 2004]. 

Husbandry and medical problems of tapirs have been attributed mainly to lack of 

knowledge concerning basic biology and individual variation [Barongi, 1993, 1997, 

2003; Shoemaker et al., 2003]. Janssen et al. [ 1996] found that the primary health 

problems were noninfectious gastrointestinal diseases and infectious respiratory diseases 

( e.g., pneumonia, tuberculosis). Once a major problem with a high incidence rate 

[Barongi, 1993], rectal prolapse has become less common in captive tapirs [Janssen et al., 

1996]. This is potentially due to improvements in husbandry, diet, and the captive 

environment, although the effect of these factors on North American captive tapirs has 

not been evaluated. 

As in natural habitat, captive environments can have profound effects on 

reproduction, health, and survival of individuals. Although husbandry standards have 

been established, scientific studies examining the effects of husbandry practices and 

enclosure design are lacking. The relative importance of size versus complexity of 

enclosures has been a debated issue in captive management. Hediger [1950] first asserted 

that the quality of space (i.e., the characteristics that define the animal's living space) is 

more important than the total area. Research results, however, are equivocal. Positive 



relationships with reproduction and enclosure size have been reported (e.g. , black rhinos 

(Diceros bicornis) [Carlstead et al., 1999]), as well as no relationship between enclosure 

size, nor complexity, with reproductive success ( e.g. , small felids [Mellen, 1991 ]). 

Disturbances outside the enclosures, such as public presence and transfers of individuals 

into and out of zoological institutions , also may affect the health and fitness of tapirs. In 

the wild, tapirs tend to avoid areas with increased human disturbances, either spatially 

[Tobler, 2002] or possibly through shifts in temporal patterns of activity [Foerster and 

Vaughan, 2002]. Disturbances can increase stress, which may cause abnormal behaviors 

and physiological changes that reduce reproduction and increase mortality and health 

problems [Carlstead , 1996]. Carlstead and Brown (2005] found that chronic stress may 

be caused by exposure to zoo visitors, interactions with keepers, and intraspecific social 

relationships for rhinos, which may negatively influence captive white (Ceratotherium 

simum) and black rhino populations . Furthermore, temperature and humidity have long 

been known to affect breeding success [Hediger , 1965] and disease susceptibility [Besch 

and Kollias, 1994] of captive animals. The climate in North American zoos may 

influence tapir reproduction and health, especially considering that all tapir species are 

associated with tropical environments. 

19 

Understanding how these environmental factors may affect tapirs could be applied 

to improve captive management of tapirs. If husbandry standards are indeed "the 

foundation for any program of successful and humane tapir management" [Shoemaker et 

al., 2003] , captive management research is instrumental for attaining tapir management 

goals. The objectives of this study were to assess the reproduction, mortality, and health 
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of North American captive tapir populations and to identify relationships with husbandry 

and enclosure attributes . 

METHODS 

All four species of tapirs (i.e., Baird's, South American, mountain, and Malay) 

were included in this study. The International Central American (Baird's) Tapir 

Studbook [Roman, 2005], North American Regional South American Tapir Studbook 

[Goff, 2005], and International Malay Tapir Studbook [McLain, 2005] were used for life 

table information for each species. A studbook, containing the history of each individual 

in the captive population, has not been established for the mountain tapir. Data on birth 

origin, rearing type, number of years housed within a zoo, and number of transfers 

between zoos also were obtained from studbook data. Institutional summary reports were 

created using the Single Population Analysis and Records Keeping System (SP ARKS) 

[ISIS , 2004]. Demographic analysis, including calculations of population growth rate , 

genetic diversity, and mean inbreeding, was performed using Population Management 

2000 [Pollak et al., 2005]. 

In addition , I conducted a census of all North American zoos housing tapirs. 

Using the International Species Information System (ISIS) Species Holdings [ISIS, 

2003], I identified 52 institutions in the United States and Canada currently housing 

tapirs . In 2003, I mailed a questionnaire to these zoological institutions to gather 

information on enclosure attributes and management practices. The American Zoo and 

Aquarium Association (AZA) Tapir Taxon Advisory Group (TAG) approved this survey 

[Barongi, pers. comm.] and a letter of support was included with the survey forms. A 
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nearly 90% response rate was achieved. Variables on the survey that were used in 

analyses included: number of enclosures , total enclosure area, percent of public access 

along enclosure perimeter, enclosure substrate, topography, percent shade, amount of 

vegetation , number of water pools and mud wallows, diet, and frequency of health 

problems. 

Climate for each zoo was determined using climatic data from the National 

Climatic Data Center [2004] and Utah Climate Center [2005]. I used the nearest weather 

stations to each institution to obtain data on the mean number of days with a minimum 

temperature of 32 ° F or lower , mean number of days with a maximum temperature of 90° 

F or higher, mean annual temperature, standard deviation of normal daily mean 

temperature , and the mean normal precipitation, including the liquid water equivalent of 

snowfall. Density was calculated by dividing the number of living animals at an 

institution by the total main exhibit area. An index of complexity was generated using 

the number of attributes within the enclosure and a ranking of topography, with level 

being ranked lowest and hills highest. Attributes included the presence of trees , shrubs, 

pools, mud wallows, and shelters. Mortality for each species at an institution was 

calculated by dividing the total number of deaths by the number of individuals held at the 

institution and by the total number of years that each species was housed, in order to 

#deaths ). 1 standardize across institutions (i.e., Mortality rate= For examp e, 
[N(tapirs) ·#years] 

a zoo housing 5 Baird's tapirs over 15 years with 2 deaths during that period would have 

a mortality rate of 0.0267. Reproductive rate was similarly determined by dividing the 

total number of births, regardless of survival of the young, by the number of females held 



22 

at the institution and by the total number of years housed (i.e., Reproductive rate= 

#births ). 
[N(females) · #years] 

Reproduction was calculated only for institutions that held at 

least one potential breeding pair. Health problems were grouped into the following 

categories: foot, eye, skin, dental/oral, respiratory diseases, colic, chronic diarrhea or 

vomiting, hemolytic anemia, parasitic infections, rectal prolapse, vasculopathies, and 

stereotypic behavior. The overall, combined health at a zoological institution was 

measured using the occurrences of each health problem, weighted by its frequency rank 

of common, rare, or no occurrences. 

This was primarily an observational and exploratory study, examining the 

relationships among the response variables (i.e., reproduction, mortality, and frequency 

of health problems) with the various husbandry and captive environment variables. 

Because of this, cause and effect relationships cannot be demonstrated, but rather 

correlations were identified that need further examination. Identifying the model that 

best described the data was the primary objective . 

Data analysis was performed using SAS [SAS Institute, 2003] and JMP IN [SAS 

Institute , 2004]. Data were pooled across all tapir species, unless there were significant 

differences between species. Summary statistics were calculated for each of the 

explanatory variables and correlations among variables were analyzed. Categorical data 

analysis was performed to assess differences in life history traits between species, sex 

(male or female), birth origin (wild or captive born), rearing type (parent or hand reared), 

and number of transfers between zoos. Kruskal-Wallis tests were used due to skewed, 

nonparametric distributions. 
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A principal components analysis was used for highly intercorrelated climatic 

variables. The first two principal components for climate described 81% of the variation 

(Table 2-1). The first component (wl) was characterized by higher mean annual 

temperature, fewer days below freezing, and less annual variation in temperature . The 

second component (w2) was primarily a moisture variable, with decreasing precipitation 

and increasing days above 90° F. 

Multiple linear regression models (70 total) for reproduction, mortality, and health 

were constructed to evaluate four main effects: enclosure size, complexity, disturbance , 

and climate. Size effect included three variables: total number of enclosures (N), density 

(D), and the coefficient of variation of enclosure area (Acv). The percent variation in 

area served as a measure of difference between smaller night quarters or holding areas 

and the larger main exhibit areas. This difference in enclosure sizes may be important for 

captive tapirs since animals are kept indoors during inclement weather. An index of 

complexity (C), measuring the amount of heterogeneity within the enclosure, was used to 

assess a complexity effect. Disturbance effect consisted of the number of transfers per 

year (T) and the percent of public access along enclosure perimeter (P) . Climate included 

the first two principal components (wl, w2; Table 2-1). Akaike weights, calculated from 

Akaike's information criterion corrected for small sample size (AICc), were used to rank 

the models and the relative importance of the explanatory variables [Burnham and 

Anderson, 2002]. Evidence ratios were used to further evaluate the models in the set. 

In addition, health was investigated using polytomous ordinal logistic regression 

to examine the most common health problems reported on the zoological survey. Skin 

problems were predicted to be associated with drier climate, fewer water variables (i.e., 
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pools, mud wallows, and showers), and less complexity. Topography and substrate were 

primarily thought to influence foot health, although exhibit area, complexity, and climate 

also were examined. Eye problems were predicted to be a negative function of percent 

enclosure shade and warmer climates. Lastly, relationships between dental/oral health 

and diet and number of feedings were analyzed. 

RESULTS 

Studbook Analysis 

The North American captive tapir populations are relatively small (Table 2-2). 

The entire captive mountain tapir population (N = 6) is in North America [AZA Tapir 

TAG, 2004], making it very rare in captivity, as well as in the wild. The captive tapir 

populations have increased in size from a small number of wild-born founders, reaching a 

maximum of 38 Baird ' s, 96 South American, and 61 Malay tapirs (Fig. 2-2). The Baird's 

tapir has the fewest number of founders , and consequently the lowest genetic diversity 

and highest mean inbreeding compared to the South American and Malay tapirs (Table 2-

2) . The maximum number of Baird's, South American, and Malay combined was 159 

individuals in 1993. The current captive tapir populations are entirely captive born (Fig. 

2-2). 

Demographic analysis of the Baird's, South American, and Malay tapir studbooks 

shows stable population growth (A ;:::; 1 ), with nearly equal sex and age distributions 

(Table 2-2). Life history traits, including fecundity and survivorship, are similar between 

tapir species (Table 2-2, Fig. 2-3) . Fecundity appears erratic, but it is not an accurate 

estimate or model of true fecundity due to small sample sizes in each age class. No 
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seasonality of reproduction was found, with births occurring year-round. Of 556 births 

recorded across all three species, only 2 birth events from South American tapirs had a 

litter size of 2, with the rest composed of only l calf Nearly all recorded tapir rearings 

across all species (n = 923) were by the parent (88%, n = 816), with less than 3% by hand 

(n = 24) . 

The age of first birth was similar for all three tapir species, but differed between 

birth type, with wild born females giving birth later, on average, than captive born 

females (84 vs. 7.0 years, ,.x._2 = 5.66, 1 df, P = 0.02). Mean interval between births was 

slightly lower for South American tapirs compared to Baird's and Malay tapirs (x2 = 

11.97 , 2 df, P < 0.01; Table 2-2). However birth intervals did not significantly differ 

between birth origin (i.e., wild or captivity). The number of births varied between 

species, with the Baird 's tapir having more offspring than the South American or Malay 

tapirs (x2 = 7. 79, 2 df, P = 0.02; Table 2-2). Controlling for species, no significant 

differences were found between birth origin or sex on the number of births . The number 

of transfers between zoos did not appear to influence individual reproduction. 

Longevity, however , did differ between number of transfers , with mean longevity 

slightly increasing with the number of transfers (i: = 269.5, 3 df, P < 0.0001). The 

relationship held when individuals living less than one year were excluded from the 

analysis (x2 = 32.58 , 3 df, P < 0.0001). The mean longevity for adult individuals never 

transferred, transferred a single time, transferred 2 times, and transferred 3 or more times 

were approximately 8.6, 8.7, 10.9, and 15.6 years, respectively. No significant 

differences were found between species, sex, or birth origin for longevity. Mortality of 

offspring within the first year after birth represents over one quarter of tapir mortality, 
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with mortality within the first thirty days comprising the majority of these deaths (Table 

2-2) . 

Zoological Survey 

No significant differences were found among species for reproductive or mortality 

rate (Table 2-3). Consequently, regression models included all tapir species in the 

analysis. Table 2-4 summarizes the mean and variation of the variables used in the 

models, excluding climate principal components 1 (wl) and 2 (w2). 

Reproduction was found to be a function of number of transfers per year, number 

of enclosures , and complexity (Table 2-5; Fig. 2-4) . Considerable model selection 

uncertainty exists, with no single best model, shown by the low Akaike weights . 

However, using multimodel inference to rank the explanatory variables, only the number 

of transfers per year was relatively important , compared to the other variables (Table 2-

6) As transfers per year increase , birth rate at a zoo also increases. The number of 

enclosures and complexity index also were moderately important , both showing slightly 

positive relationships with reproduction. 

None of the models adequately explained the variation in mortality , with the null 

model ranked highest (Table 2-5). Upon further examination using nonparametric 

correlation analysis, mortality was found to be positively correlated with health problems 

(Spearman's Rho = 0.254, P = 0.08) . 

The most common health problems were skin, foot, eye, and oral (Table 2-7). 

Regression analysis revealed a relationship between weighted frequency of health 

problems and percent perimeter of public access, density, and the coefficient of variation 
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of enclosure areas (Table 2-5). Similar to the reproduction model analysis, no single 

model best explained the health problems data . Percent perimeter of public access ranked 

highest in relative importance, with density and coefficient of variation of area ranked 

next highest (Table 2-6). Health problems were a negative function of public perimeter 

and coefficient of variation of area, but a positive function of density (Fig. 2-5). One 

outlier, corresponding to a zoo with a small main exhibit (- 70 m2
) with three Malay 

tapirs kept separate, was identified for density. However, removing this outlier did not 

significantly change the relationship between health problems and density (Fig. 2-5). The 

combined model including public perimeter, density, and coefficient of variation of area 

was added to the model set for exploratory data analysis. However this model did not 

explain the data better than the "best" model. The combined model was ranked second in 

the model set, but was approximately equivalent to the density and perimeter model with 

an evidence ratio of 1. 16 (i.e., nearly 1: 1). 

Examining specific health problems revealed species differences for eye and skin 

problems. Malay tapirs tend to have a greater frequency of eye problems, while Baird's 

tapirs have a lower frequency of skin problems (Table 2-7). Skin health was associated 

with mud wallows (G2 = 6.77, 1 df, P < 0.01), but not with climate, complexity index, 

pools, or number of showers. Zoological enclosures with more mud wallows tended to 

have tapirs with fewer skin problems. A relationship between enclosure shade and eye 

health was not found. However a relationship between climate (wl) and eye health was 

identified ( G2 
= 3. 19, 1 df, P = 0. 07), with zoos located in warmer climates experiencing 

more eye problems. Foot problems also were a function of climate (wl: G2 = 12.02, 1 df, 

P < 0.01 ; w2: G2 
= 3.37, 1 df, P = 0.07), along with exhibit area (G2 

= 5.40, 1 df, P = 
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0.02). Zoos in warmer , wetter climates with large enclosure sizes had fewer foot 

problems reported. Excluding climate and exhibit size as explanatory variables, 

complexity index became important for explaining foot health (G2 = 5.47, 1 df, P = 0.02). 

Interestingly , there is a positive correlation between complexity index and main exhibit 

area (Spearman's Rho= 0.3461 , P = 0.01) and warm climates (wl: Spearman's Rho= 

0.3903, P < 0.01). Substrate and topography, while a factor of complexity, did not reveal 

a relationship with foot health. No relationship was found between oral health problems 

and diet or number of feedings. 

DISCUSSION 

Captive management of tapirs has made great strides in the last two decades. 

International and regional studbooks were created [Barongi, 1993 ], establishing a record 

for each individual in the captive population and a database for demographic and genetic 

analyses. In 1991, the AZA Tapir TAG was formed "to enhance conservation initiatives 

for all species of tapir in the wild and in captivity" [ AZA Tapir TAG, 2004] . AZA 

minimum husbandry guidelines for all four tapir species were printed in 1997 and 

recently updated in 2003 [Barongi, 1997, 2003]. More thorough tapir husbandry 

standards, covering all aspects of abiotic (e.g., temperature, shade, space) and biotic (e.g ., 

social grouping, diet) conditions in captivity, also were developed in 2003 [Shoemaker et 

al., 2003]. Following the first International Tapir Symposium in 2001, The IUCN 

Species Survival Commission (SSC) Tapir Specialist Group (TSG) established a Zoo 

Committee, to facilitate coordination among international institutions . Most recently, the 

AZA Tapir TAG, with IUCN/SSC TSG, created a North American Regional Collection 
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Plan (RCP) , approved by the AZA 's Wildlife Conservation and Management Committee 

in 2004 . The RCP delineates captive management recommendations based on 

demographic and space analyses and conservation status of the taxon. The IUCN/SSC 

TSG is currently working on updating an international tapir conservation action plan 

( original published in 1997 [Brooks et al., 1997]), which also will be incorporated as a 

part of the RCP. 

Captive tapir species in North America have remarkably similar life history traits 

and are now entirely captive born. Although the North American captive populations for 

each tapir species, excluding the mountain tapir , are self-sustaining [ AZA Tapir TAG, 

2004 ], the populations are not sufficient for long-term viability, in terms of population 

persistence and the maintenance of genetic diversity above a 90% threshold, without new 

individuals [Barongi , 2003 ; Lewis Greene , pers . comm.]. Currently , the North American 

captive tapir population has a greater percentage of Baird's tapir , but fewer South 

American tapirs compared to the composition of the worldwide captive population , which 

is composed of approximately 50% lowland, 40% Malay, and 10% Baird's [Barongi , 

1993]. The total captive carrying capacity for tapirs in North America was estimated to 

be approximately 150, constraining target population sizes for the Baird's and Malay to 

75 individuals each [AZA Tapir TAG, 2004]. There was a moratorium placed on 

breeding South American tapirs in 1996 [Janssen et al., 1996] and the current captive 

population is being phased out because of space limitations in zoological institutions and 

their lower conservation status [AZA Tapir TAG, 2004]. 

Given historical captive tapir population trends (Fig. 2-2), 150 total individuals is 

a reasonable estimate of current space availability for tapirs in North America. However, 
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target population sizes of 75 individuals are still relatively small and will require 

intensive management to maintain viable populations. Small populations are particularly 

vulnerable due to random variation in birth and death rates and loss of genetic variability 

[Gilpin and Soule, 1986; Belovsky et al., 1994]. Earnhardt et al. (2001] found that 

increases in current population size, target population size, and mean generation time 

have little effect on time to the 90% viability risk threshold when populations have 

genetic diversity levels already close to the threshold. For the Baird's tapir population, 

current genetic diversity is already below the 90% threshold (Table 2-2). Norton and 

Ashley [2004] found high levels of allelic diversity for North American captive Baird's 

tapirs, despite the few number of founders, but found evidence of increased divergence 

from wild populations . Increasing current genetic diversity, while minimizing inbreeding 

and loss of genetic diversity, can greatly lengthen the time to the 90% viability risk 

threshold [Earnhardt et al., 2001]. This will require: (1) new founders into the North 

American captive populations through exchanges with zoos in other regions (e.g., Central 

America as suggested by N01ton and Ashley [2004]) and (2) transfers of individuals 

within the population to actively manage reproduction in order to equalize ecological 

fitness among individuals and maintain genetic diversity. 

Fortunately, tapirs do not appear to be negatively affected by transfers between 

zoos. In fact, a positive relationship was found between longevity and number of 

transfers. This, however, may be an artifact of life span, with longer lives allowing more 

opportunities for transfers between zoos. Thus, the likelihood of being transferred to 

another zoo increases with age. While individual reproduction was not correlated with 

number of transfers, birth rate at zoos tended to increase with transfer rate. This 



potentially reflects the reproductive management of tapirs, with zoos transferring in 

individuals for mating and transferring out young from successful matings . In fact, 

reproductive rate was highly positively correlated with the number of transfers of 

individuals out per year (Spearman's Rho= 0.6239, P < 0.01). 

Reproductive rate at zoos also was positively correlated with number of 

enclosures and complexity . As number of enclosures increases, the total enclosure area 

increases providing more space available to individuals. Carlstead et al. [1999] found a 

positive correlation between total enclosure area and number of births at a zoo for black 

rhinos . Not surprisingly, zoos with more enclosures also tended to house more tapirs 

(Spearman's Rho= 0.4152 , P < 0.01) . Consequently, zoos with more females that are 

currently living had a higher reproductive rate (Spearman's Rho= 0.4152, P < 0.01). 

In addition to the number ofliving tapir females, the level of enclosure 
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complexity may influence reproductive rate. While no single complexity component was 

strongly correlated with tapir reproduction , greater complexity in terms of the total 

combination of topograph y and the number of trees , shrubs, shelters, mud wallows , and 

pools helped further explain the variance in reproductive rates . Similarly, Miller­

Schroeder and Paterson [ 1989] concluded that larger, more complex enclosures increased 

the likelihood of successful reproduction for captive gorillas (Gorilla gorilla) . While 

complexity tends to be a qualitative rather than quantitative variable, it generally refers to 

the number and variety of features in the environment. Cage area/volume, provisions for 

vertical cage use, such as ladders or ropes, live vegetation, and nesting material were all 

factors associated with gorilla reproduction [Miller-Schroeder and Paterson, 1989]. In 

this study, I used a relative measure of complexity using topography and number of 
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enclosure attributes for comparisons among zoos and found a positive relationship 

between the complexity index and reproductive rate . However, since complexity was 

correlated with main exhibit size, it is uncertain whether complexity alone, without 

concurrent increases in enclosure size, would affect tapir reproduction. Both factors may 

play a role in reproductive success. 

Mortality of tapirs was associated with health problems, but enclosure size, 

complexity, disturbances, or climate were not useful predictors. Survivorship for larger, 

long-lived species typically follows a type I curve, with the majority of mortality 

occurring in older age classes [Pearl and Miner, 193 5; Gotelli, 1995]. The survivorship 

curves for North American captive tapirs, however, appear to be closer to a type II or III, 

with mortality increasing in the younger age classes and nearly equal proportions in the 

remaining age classes (Fig. 2-3). Approximately one fifth of tapir mortality occurred 

within the first 30 days of life. Thus, mean life expectancy is much lower than the 

maximum longevity of 36 years. Monitoring and analyzing juvenile mortality would be 

profitable , especially because inbreeding depression can result in reduced survivorship 

and fecundity [Falconer, 1981; Frankel and Soule, 1981; Ralls and Ballou, 1983]. 

Percent public perimeter, density, and percent variation between enclosure areas 

were useful predictors of health. Interestingly, as public perimeter increased, the 

frequency of health problems decreased. The percent public perimeter was not strongly 

correlated with enclosure area nor any other measured descriptive variable, including 

position of the public relative to the animals (i.e., same level, higher, or lower). Number 

of transfers per year and percent public perimeter were both classified as disturbance 

variables, with the prediction that disturbances may lower reproductive success and 
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health. However, these research findings support the assertion by Shoemaker et al. 

[2003] that tapir species are not particularly sensitive to stimuli outside their enclosures. 

Indeed, Thompson [ 1989] found that ungulates in their extra large size class, of which 

tapirs would qualify, were less vigilant towards the public Alternatively, the public may 

serve as a form of positive stimulation for tapirs. Captive environments can be stimulus 

impoverished, leading to various negative behavioral changes [Carlstead, 1996]. If 

public presence was acting to reduce boredom, then the probability of stereotypic 

behaviors might be lower in zoos that had a greater percent public perimeter. This, 

however, was not found to be the case (G2 = 0.34, 1 df, P = 0.56) . It is also possible that 

percent public perimeter is positively correlated with distance from enclosure edge or 

spacing of people along the perimeter, decreasing the impact of public presence. 

Unfortunately, neither of these variables were measured to test these hypotheses. 

As predicted , health problems did tend to increase with increasing density . 

Recommended outdoor enclosure size is 55.74 m2 per animal [Shoemaker et al., 2003] 

with a minimum of at least 18.58 m2 per animal [Barongi , 1997, 2003]. The minimum 

outdoor enclosure requirement would result in a density of 54 individuals/I 000 m2 that is 

much higher than that observed in this study (Table 2-4) and considerably higher when 

compared to maximum densities in the wild of O.001 individuals/I 000 m2
. Increased 

densities levels could affect tapir behavior and disease transmission. Clubb and Mason 

[2003] found a positive relationship between home range size and stereotypic pacing for 

35 different species of carnivores. Stereotypic behavior may become well-developed for 

some tapirs even after they have been moved among several larger exhibits, as found in a 

study examining the effects of activity-based exhibition of Malay tapirs and four other 
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captive mammals [White et al., 2003]. While infectious diseases only accounted for one-

third of captive tapir mortalities, respiratory diseases were identified as an important 

cause of death across age classes [Janssen et al., 1996]. Disease transmission rates are 

typically density-dependent, with the risk of infection increasing with population density 

[Anderson and May, 1981]. 

Furthermore, a negative correlation between health problems and the variation 

between enclosure areas exists. Larger outdoor exhibit sizes coupled with indoor 

quarters and/or outdoor holding areas may be important for minimizing health problems. 

Indoor quarters and outdoor holding areas are recommended to be 16.72 and 37.16 m2 in 

size [Shoemaker et al., 2003]. Using the recommended enclosure sizes, the coefficient of 

variation of enclosure area would be 53 .41 %. This is lower than the observed variation 

in enclosure area (Table 2-4). Thus, tapir health may benefit from increasing outdoor 

enclosure sizes, which would reduce density and increase the variation in area. 

Climate also seemed to play a role in specific health problems, such as foot and 

eye problems. Zoos in warmer, wetter climates with larger, more complex enclosures 

experienced fewer foot problems. Zoos in colder climates need to keep tapirs indoors for 

longer periods, where they are subject to harder, concrete surfaces. These harder surfaces 

tend to lead to foot abrasions and lameness [Janssen et al., 1996; Shoemaker et al, 2003]. 

Thus, climate serves in part as a surrogate to time on harder surfaces. Climate was also 

important for eye health, particularly for Malay tapirs. Zoos in warmer climates 

experienced more eye problems, indicating that shade may not be sufficient for these 

forest-dwelling species. 
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While rectal prolapse was historically a major problem for captive tapirs 

[Barongi , 1993], the incidence was reported to be rare and occurred in only 2% of the 

zoos surveyed. Consequently, the conditions associated with the incidence of rectal 

prolapse could not be adequately examined . However, pools were thought to be an 

important factor for preventing rectal prolapse [Barongi, 1993, 1997, 2003; Shoemaker et 

al., 2003 ], and it should be noted that all zoos in this research had at least one pool in a 

main exhibit. Despite the improvement in rectal prolapse health, skin problems still 

appear to be a health concern for tapirs. An acute vesicular skin disease of unknown 

etiology that results in skin lesions and occasionally rear limb weakness has been 

documented for tapirs in several zoos [Finnegan et al., 1993; Barongi , 1993, 2003 ; 

Shoemaker et al., 2003]. The presence of mud wallows may help improve skin health, 

particularly for South American and Malay tapirs which showed a higher frequency of 

skin problems. In the wild, tapirs are known to use wallowing holes, in addition to lakes 

and rivers [Padilla and Dowler, 1994; Foer ster and Vaughan , 2002]. Mud wallows can 

serve several different functions for animals, including social behavior, thermoregulation , 

grooming , and reducing ectoparasites , biting insects, and skin irritations [Fouraker and 

Wagener , 1996; McMillan et al., 2000]. However , mud wallows can be a reservoir for 

disease pathogens (e.g., leptospirosis [Neiffer et al., 2001]) , so proper maintenance and 

sanitary conditions are advised . 

These research findings provide empirical evidence that substantiate the AZA 

husbandry standards [Shoemaker et al., 2003] for the variables measured in this study. 

Given that Malay, South American, and Baird ' s tapirs have similar life history traits, with 

no apparent differences in disease patterns [Janssen et al., 1996] or behavior [Barongi , 
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1993 ], similar management appears appropriate. Exceptions include increased shade 

requirements for Malay tapirs in zoos in hotter climates and current breeding restrictions 

for the phase-out population of South American tapirs. Increases in enclosure size and 

complexity could provide increases in breeding success for an institution and 

improvement in health of tapirs. However, considering space restrictions in zoos, 

complexity may be easier to manipulate, by adding various attributes such as trees, 

shrubs, pools, mud wallows, and topographic relief to exhibits. Increasing complexity 

over its range would potentially yield an increase of nearly 1 birth per female over 10 

years, with the odds of successful reproduction 14 times more likely. Foot problems also 

may occur less frequently in more complex exhibits. Furthermore, increasing the amount 

of exhibit edge exposed to the public may confer health benefits for unknown reasons and 

should be further examined. Tapirs are known to have considerable individual variation 

in behavior [Barongi, 1993, 1997, 2003; Shoemaker et al., 2003 ], which could influence 

specific responses to environmental variables. Behavioral research , akin to the Methods 

of Behavioral Assessment Project [Carlstead , 1999], may be useful to account for this 

individual variation and to monitor behavioral changes in relation to husbandry practices. 

CONCLUSIONS 

1. The captive tapir populations in North America are relatively small, requiring 

new founders and intensive genetic management for maintaining genetic diversity . This 

is particularly critical for the Baird's tapir , since genetic diversity is already below the 

90% viability risk threshold. Currently the captive tapir populations have an even sex 

and age distribution, with zero population growth. Although increases in population size 



to the target of 7 5 individuals for the Baird ' s and Malay tapirs will help reduce 

demographic stochasticity , the founder effect will still be considerable. Inbreeding 

depression will likely increase without new individuals brought into the North American 

captive populations . 
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2. Both area and complexity may play a role in reproduction and health of tapirs 

in captivity Zoos with larger enclosure variation and lower tapir density tend to have 

fewer health problems. Reproduction also increased with the number of enclosures and 

the complexity of the enclosures. 

3. In addition to pools, mud wallows may reduce the frequency of skin problems 

in tapirs. The incidence of rectal prolapse has been greatly reduced , possibly due to the 

current establishment of pools in tapir enclosures . 

4. Additional research is needed to further examine the correlations identified . A 

correlation between eye health and climate was found , indicating that the percent shade 

was still insufficient for Malay tapirs in warmer climate zoos. However , the amount of 

shade that is sufficient to reduce eye problems still needs to be identified. In addition , 

factors influencing individual reproduction and infant mortality should be investigated , 

especially in relat ion to inbreeding. Constructing individual behavioral profiles may 

facilitate reproduction management and husbandry of captive tapirs. 

5. In general, these research findings support the AZA husbandry 

recommendations for managing tapirs in captivity. 
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Table 2-1 . Eigenvectors for the first two principal components of the climate principal 
components analysis. 
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Climate Variables Principal Component 1 (wl) Principal Component 2 (w2) 
Days :S 32 F 
Days 2: 90 F 
Mean annual temperature 
SD temperature 
Precipitation 
Percent Variance 
Explained 

- 0.54857 
0.37252 
0.55149 

- 0.46820 
0.19225 

61.46% 

0.03575 
0.56921 
0.12651 
0.24190 

- 0.77473 

19.83% 



Table 2-2. Summary demographics of captive tapir populations in North America. 

Baird's South American* Malay Allt 

Current captive population size 34 (22 0 , 12 S?) 40 (23 0, 17 S?) 52 (23 0, 29 S?) 125 (65 0 , 58 S?) 

Number of founders 8 17 30 55 

Population growth rate 1.00 1.00 0.99 1.00 

Current genetic diversity 0.86 0.90 0.96 0.91 

Mean Inbreeding 0.031 0.015 0.001 0.016 

Mean I Median age at first birth (years) 5.3 I 4 5.8 I 4 5.6 I 5 5.6 I 4.3 
(0=3.7; n=l 7 S?) (0=2.7; 11=86 S?) (0= 1.8; n=50 S?) (0=1.8; n= l 16 S?) 

Range of age at first birth (years) 2.2-12 1.7-14 2.8-11.1 1.7-14 

Mean I Median birth interval (days) 744 I 722 709 I 637 749 I 736 727 I 679 
(0=17 5; n= l6 S?) (0=395; n=62 S?) (0=153; n=3 8 S?) (0=308; n=l 16 S?) 

Mean number of offspring 4.9 (0=3.0; n=33) 3.6 (0=2.8; n= l63) 3.8 (0=2 .6; n=85) 3.8 (0=2.8; n=281) 

Percent mortality for < 30 days old 16% (n=85) 24% (n=297) 18% (n=l 76) 21 % (n=558) 

Percent mortality for < 1 year old 20% (n=85) 30% (11=297) 26% (n=l 76) 27% (n=558) 

Longevity (years) 22 0 , 27 S? 36 0 , 30 S? 36 o ,31 S? 36 0 ,31 S? 

* South American tapir is currently designated as a Phase-Out Population, defined as "currently in AZA institutions but should be 
phased out throu gh a monitored breeding moratorium " [AZA Tapir TAG, 2004]. 
t Excluding mountain tapir; no studbook established for current population of 6 individuals in North America. 

..,,. ..,,. 
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Table 2-3. Summary of mean tapir reproductive rate, mortality rate, and weighted 
frequency of health problems for zoological institutions in North America. 

Baird's South Malay Mountain All 
American 

N (zoos) 13 14 22 4 53 

Reproduction 0.0568 0.0477 0.0567 
* 

0.0540 
(cr = 0.0704) (cr = 0.0389) (cr = 0.0717) (cr = 0.0620) 

Mortality 0.0153 0.0136 0.0192 
* 

0.0166 
(cr = 0.0306) (cr = 0.0145) (cr = 0.0353) (cr = 0.0291) 

Health 3 .1 3.7 5.0 3.0 4.1 
Problems (cr = 2.2) (cr = 2.7) (cr = 2.4) (cr = 3.6) (cr = 2.6) 

* No studbook data 



Table 2-4. Summary statistics for model variables. 

Variables Model N Mean 

Number of enclosures N 53 3.9 

CV Area of enclosures Acv 50 120.3 

Mean main exhibit area (m2
) 53 3587.7 

Density (# individuals/I 000 m2
) D 45 5.13 

Complexity Index c 53 5.0 

% Perimeter with public access p 51 32.5 

Number of transfers per year T 49 0.47 

Median SD 

4.0 1.8 

126.9 24.5 

358.0 13505.6 

3.08 6.91 

5.0 1.36 

26.4 20.9 

0.42 0.27 

Range 

1-9 

62.1-161.4 

70-92900 

0.03-43.06 

2-8 

0-100 

0.07-1.33 

.j::,. 
0\ 
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Table 2-5. Top five regression models and their associated Akaike weights (wi). The 
regressions models included number of enclosures (N), density (D), coefficient of 
variation of area (Acv), complexity index (C), number of transfers per year (T), percent 
public access along enclosure perimeter (P), and climate principal components (wl and 
w2). K is the number of parameters in the model, AI Cc is Akaike's information criterion 
corrected for small sample size, and Li is the difference between the selected model from 
the best model in the set. 

Models 
Reproduction: 

NCT 
NT 
T 
CT 
DCT 

Mortality: 
0 (Intercept) 
Acv 
w2 
AcvC 
D 

Health Problems: 
DP 
AvP 
DPT 
AvCP 
p 

K 

5 
4 
3 
4 
5 

2 
3 
"' -' 
4 
"' -' 

4 
4 
5 
5 
3 

AI Cc Li Wi 

-247.37309 0 0.13849 
-247.18563 0.18746 0.12610 
-246.74403 0.62907 0.10112 
-246.62691 0.74619 0.09537 
-245.16011 2.21298 0.04580 

-306.94728 0 0.10873 
-306 .58895 0.35833 0.09090 
-305. 11282 1.83446 0.04345 
-305.11191 1.83537 0.04343 
-304.94445 2 .00283 0.03994 

70.24052 0 0.23128 
70.90332 0.66280 0.16604 
72.57838 2.33785 0.07186 
72.70264 2.46212 0.06753 
72.73909 2.49856 0.06631 



Table 2-6. Relative importance of the explanatory variables in the multiple regression 
models for reproduction and health problems . Rankings were based on the sum of the 
Akaike weights (wi) across models that contain each variable divided by the number of 
models in the set (M) . 

Reproduction Health Problems 
Variables Iwi/M Ranking Iwi/M Ranking 

T 0.028509 l 0.007539 4 
N 0.017128 2 0.002313 4 
c 0.012234 3 0.007344 4 
p 0.007527 4 0.029116 1 
D 0.006664 4 0.017933 2 
Acv 0.004574 4 0.014495 3 
wl 0.004923 4 0.004302 4 
w2 0.001288 4 0.001120 4 
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Table 2-7. Health problems by category for each tapir species, ranked by occurrence at 
zoological institutions in North America. Rare is defined as occurring infrequently in any 
individual; common is occurring multiple times for one individual or occurring in several 
individuals. The remaining percentages for each health problem reflects no occurrences . 

Health Problems Baird 's So. American Malay Mountain All 
% (n = 13) % (n = 14) % (n = 22) % (n = 3) % (n = 52) 

Skin 
Rare 46 64 55 0 52 
Common 0 14 27 67 19 

Foot 
Rare 31 21 38 33 31 
Common 15 21 24 33 22 

Eye 
Rare 15 36 14 33 22 
Common 23 7 52 0 29 

Oral 
Rare 31 29 36 33 33 
Common 8 14 5 0 8 

Stereotypic Behavior 
Rare 23 14 43 0 27 
Common 0 0 0 0 0 

DiarrheaNomiting 
Rare 15 7 29 33 20 
Common 7 0 0 0 2 

Parasitic Infections 
Rare 0 21 24 33 18 
Common 0 0 0 0 0 

Respirator y 
Rare 15 14 18 0 15 
Common 0 0 0 0 0 

Colic 
Rare 8 0 14 33 10 
Common 0 0 0 0 0 

Hemolytic Anemia 
Rare 0 7 5 0 4 
Common 8 0 0 0 2 

Rectal Prolapse 
Rare 0 7 0 0 2 
Common 0 0 0 0 0 

Vasculopathies 
Rare 0 7 0 0 2 
Common 0 0 0 0 0 
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Fig. 2-1. Distribution map ofTapirus spp. (adapted from Brooks et al., 1997). Shaded regions represent extent of distribution; 
actual distribution is highly fragmented within these regions. 
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and (C) Malay tapirs from years 1900 to 2004. 
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Fig . 2-5. Partial regression plots for the percent of public access along enclosure 
perimeter (P), number of individuals per 1000 111

2 (D) , and coefficient of variation in area 
(Acv) in the health problems regression model (Y = ~o - 0.061 OP + 0.0881 D - 0.0225Acv ; 
R2 = 0.34). Symbols indicate tapir species: + Baird ' s, 0 South American, • Malay tapirs. 



INTRODUCTION 

CHAPTER3 

RHINOS IN CAPTIVITY 

Among the largest terrestrial mammals, rhinos are threatened with the risk of 

extinction. Ex situ conservation measures have been established for four of the five 

extant rhino species: black (Diceros bicornis), white (Ceratotherium simum) , Indian 

(Rhinoceros unicornis) , and Sumatran (Dicerorhinus sumatrensis). The rarest rhino 

species, the Javan rhino (Rhinoceros sondaicus), is not currently held in captivity and 

only four Sumatran rhinos occur in captivity in No1ih America [Foose, 2005]. Much is 

known about rhinos as evidenced by the extensive bibliography containing over 8500 

publications, compiled by the Rhino Resource Center [Rookmaaker, 2003]. 

Unfortunately captive management of rhinos is still a challenge . Current problems 

include high mortality of black rhinos, problems with reproduction for white rhinos, and 

the foot health problems oflndian rhinos [AZA Rhino Advisory Group, 2002]. One of 

the goals of the American Zoo and Aquarium (AZA) Species Survival Plan (SSP) Rhino 

Masterplan is "improvement of captive husbandry and management through research in 

health , nutrition, behavior, and reproduction to facilitate development of viable 

populations ex situ and to transfer results as appropriate to intensively managed 

populations in situ" [AZA Rhino Advisory Group, 2002]. Although highly complex, 

examining the individual factors that comprise the captive environment is essential to 

achieve this goal. 
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Despite some physical similarities, each rhino species is unique in its distribution, 

ecological requirements , and social behavior . The Indian rhino occurs in the grassy 

floodplains in northern India and the Chi ta wan Valley in Nepal [Laurie et al., 1983; 

Fouraker and Wagener , 1996], whereas both the black and white rhinos are African 

species (Fig. 1 ). The black and white rhinos differ in their habitat preferences, with white 

rhinos occupying mainly savannahs and black rhinos occupying a range of scrubland and 

savannah woodland habitat types [ Groves, 1972; Hillman-Smith and Groves , 1994; 

Fouraker and Wagener , 1996]. Indian and white rhinos are primarily grazers, though 

Indian rhinos are recorded consuming fruit and browse as a small portion of their diet 

[Groves , 1972; Laurie et al , 1983; Fouraker and Wagener , 1996]. Conversely , black 

rhinos are mainly browsers , foraging on leaves, twigs, and forbs [Hillman-Smith and 

Grov es, 1994; Fouraker and Wagener , 1996]. Indian and white rhinos are also larger in 

size than black rhinos, ranging from 1,800 to 2,200 kg compared to 800 to 1,350 kg for 

black rhinos [Fouraker and Wagener , 1996]. The social structure of these rhino species 

varies from mainly solitary to semi-social. Black and Indian rhinos are usually solitary, 

although females and subadults may form temporary associations [Laurie et al., 1983; 

Hillman-Smith and Groves, 1994; Fouraker and Wagener , 1996]. Being possibly less 

solitary than the Indian rhino, black rhinos may have overlapping home ranges [Fouraker 

and Wagener , 1996]. White rhinos are semi-social, with fomales and subadults 

commonly in groups and males usually solitary [Groves, 1972; Owen-Smith, 1974; 

Fouraker and Wagener , 1996]. 
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Understanding the ecological and behavioral differences between each of the 

rhino species is important for determining adequate conditions in captivity. An AZA 

Rhinoceros Husbandry Resource Manual [Fouraker and Wagener, 1996] was developed 

to provide guidelines for the optimal management of captive rhinos. The recommended 

minimum grouping size for breeding is at least one male and two or more females for 

white rhinos, one breeding pair for black rhinos, and one breeding pair held separate until 

peak estrus or held together in large exhibits for Indian rhinos . Enclosure design for 

breeding is recommended to include an outdoor enclosure that is - 2,322 m2 in size for 

black rhinos and - 2, 787 m2 in size for white and Indian rhinos . The minimum outdoor 

area per individual rhino is stipulated as 139 m2 [Fouraker, 1997]. Fouraker and 

Wagener [1996] suggest that rhinos be kept mainly outdoors within temperature 

constraints, but that indoor housing be provided particularly for zoos in colder climates . 

Other recommended enclosure attributes include the presence of pools , mud wallows, 

visual barriers such as trees, logs , or dirt mounds, shade shelters, and scratching posts. 

The purpose of this research is to identify the factors associated with captive rhino 

reproduction , mortality , and health problems . Previous studies have indicated a number 

of variables that may influence successful husbandry, including the number of 

individuals , enclosure size, climate, solid walls surrounding the enclosure, public access 

around the exhibit perimeter , response to keepers, pools, mud wallows , soft substrates, 

overall enclosure complexity , diet, and vaccinations. For example, Carlstead et al. 

[ 1999a] found that zoos with a single black rhino female had higher reproductive rates 

than zoos with multiple females. Lindemann [ 1982 in Emslie and Brooks, 1999], 



however, found that white rhino reproduction was significantly higher when zoos had 

multiple males. 
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Rhinos are generally known to have large space requirements for breeding due to 

their physical size and aggressive courtship behavior . White rhino reproduction has been 

observed to be successful in large enclosures with large group sizes [Emslie and Brooks, 

1999]. A positive relationship between reproduction and enclosure size also was 

identified for black rhinos [ Carl stead et al., 1999a]. Similarly for Indian rhinos, Lang 

[1975] attributed lack of reproduction at several zoos to inadequate space. 

Climate also may affect reproduction, health, and activity patterns of rhinos . 

Kretzschmar et al. [2004] found that free-ranging adult male white rhinos had higher 

testicular activity, measured by androgen metabolite concentrations , during the rainy 

season. Ambient temperature and percent sunshine can influence peaks in activity, with 

feeding and resting periods being altered [O'Connor, 1986]. Moreover, climate may 

indirectly cause differences in reproduction rates through differences in husbandry 

practices , because zoos in colder climates keep rhinos indoors during cold periods for 

protection [Rawlins in O'C onnor , 1986]. 

Other indirect effects of climate are related to additional correlations with 

husbandry or enclosure variables. Carl stead et al. [ 1999a, b] found that zoos in colder 

climates had a higher percentage of solid enclosure walls, which were correlated with 

behaviors negatively associated with black rhino female reproductive success. _Another 

example includes foot problems oflndian rhinos, which may be more prevalent in colder 
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climate zoos because of the time spent indoors on hard , abrasive surfaces [ von Houwald , 

2001]. 

The percentage of enclosure perimeter that the public could access was found to 

be positively correlated with black rhino mortality [ Carl stead et al., 1999a ], and higher 

stress levels among black rhino individuals, measured by mean corticoid concentration 

[Carlstead and Brown , 2005]. O'Connor [1986] speculated that public proximity may 

influence white rhino activity patterns, though no apparent behavioral changes were 

observed . Reactions to keepers also may be important. White rhino stress levels may 

differ depending on the degree to which an individual behaves friendly towards keepers, 

with individuals that are "friendlier" having lower mean stress hormone concentrations 

[Carlstead and Brown, 2005]. In a study of several different species of ungulates , 

Thompson [ 1989] found higher vigilance and less time eating and drinking while the 

keeper was within the enclosure . 

Hediger [1950] was among the first to emphasize the importance of quality over 

quantity of space . Mud wallows and pools are two critical elements for rhino enclosure 

design . Wallowing in mud is a common activity among rhinos [Groves, 1972; Laurie et 

al., 1983; Fouraker and Wagener, 1996] and helps to regulate temperature and maintain 

skin health by reducing ectoparasites , biting insects, and skin irritations [Laurie et al., 

1983; Fouraker and Wagener , 1996; McMillan et al., 2000]. Access to pools is 

particularly important for Indian rhinos, who can spend up to 70% of the day feeding or 

resting in lakes and rivers in the wild [Laurie in von Houwald, 2001]. Substrate and 

topography are other features which may influence rhinos. Abrasive surfaces, such as 
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concrete or gravel, are considered to be the primary cause for Indian rhino foot problems 

[ von Houwald , 2001]. Carl stead et al. [ l 999a] also suggest that visual barriers or 

topographic relief may offset total enclosure size. All of these factors combined create 

the total enclosure complexity . 

Diets of captive rhinos are recommended to follow the equine nutritional model 

[Fouraker and Wagener , 1996; Oftedal et al., 1996; Fouraker , 1997], but this regime may 

be inadequate for providing the specific nutritional needs of rhinos [Fouraker and 

Wagener, 1996]. The diet of rhinos has been implicated in various health problems 

[Fouraker and Wagener , 1996] and as a cause for poor captive reproductive rates in black 

rhinos [Emslie and Brooks, 1999]. Diet also may be a cause of foot problems for Indian 

rhinos by potentially lacking in essential nutrients , such as biotin, or by attributing to 

increased weight [ von Houwald, 2001] . 

The health of rhinos varies between species, with the black rhino known to be 

plagued with the most disease syndromes [Fouraker and Wagener, 1996]. Skin problems , 

colic, and infectious diseases , such as tuberculosis and encephalomyocarditis, can affect 

all species of rhinos. Indian rhinos have had a high incidence of chronic foot problems 

[ von Houwald , 2001] . Black rhinos, however , appear to be more susceptible to diseases 

of unknown etiology [Fouraker and Wagener, 1996; Fouraker, 1997]. A major cause of 

death for black rhinos has been hemolytic anemia, which may be associated with 

Leptospirosis interrogans infection, exposure to chemical compounds , diet, or a number 

of other stressors [Miller et al., 1987; Fouraker and Wagener , 1996]. Vaccinations 

against leptospiral bacteria, particularly for black rhinos , are recommended [Fouraker and 



Wagener , 1996; Fouraker, 1997]. Other vaccinations include tetanus , rabies, 

encephalitis, and West Nile virus . 
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Each of these factors will be examined to describe the captive environment 

experienced by rhino species in North America . I constructed models to better 

understand the relationships and interactions between variables by relating husbandry and 

enclosure variables to reproduction , mortality, and health . Since reproduction and health 

are inadequately known for rhinos [Fouraker and Wagener , 1996], these descriptive 

models for each rhino species may help elucidate the patterns important for their 

successful captive management. 

METHODS 

Black, white , and Indian rhinos were included in this study. No1ih American 

Regional Rhino studbooks [Foose , 2005] were used to calculate reproduction and 

mortality for each species. institutional summary reports were created using the Single 

Population Analysis and Records Keeping System (SP ARKS) [ISIS , 2004]. 

In addition , I conducted a census of all North American zoos housing rhinos. 

Using the International Species Information System (ISIS) Species Holdings [ISIS, 

2003] , I identified institutions in the United States and Canada currently housing rhinos . 

In 2003 , I mailed a survey instrument to these zoological institutions to gather 

information on enclosure attributes and management practices . The American Zoo and 

Aquarium Association (AZA) Rhino Advisory Group approved this survey [Blumer, 

pers. comm.] and a letter of support was included with the survey forms. Over 90% 

response rate was achieved. Variables used in analyses that were included on the survey 
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were: main outdoor enclosure area, indoor enclosure area, percent of public access along 

enclosure perimeter , percentage of enclosure perimeter that obstructed an animal's view 

(i.e.,% walls), enclosure substrate, topography, percent shade, amount of vegetation, 

number of water pools and mud wallows, diet , number of feedings per day, time spent per 

day by keepers, vaccinations, and frequency of health problems. 

Climate for each zoo was determined using climatic data from the National 

Climatic Data Center [2004] and Utah Climate Center [2005]. I used the nearest weather 

stations to each institution to obtain data on the mean number of days with a minimum 

temperature of32° For lower, mean number of days with a maximum temperature of90° 

F or higher , mean annual temperature, standard deviation of normal daily mean 

temperature, and the mean normal precipitation, including the liquid water equivalent of 

snowfall. Because these climatic variables were highly intercorrelated, a principal 

components analysis was used to summarize climate. The first two principal components 

for climate described 81% of the variation (Table 3-1). The first component (Climate 

Prin 1) was characterized by lower mean annual temperature and more days below 

freezing . The second component (Climate Prin2) was primarily a moisture variable , with 

increasing precipitation and days above 90° F. Fig . 3-2 shows a comparison of Climate 

Prin 1 and Climate Prin 2 values for each of the climatic variables. 

Area per individual , as a measure of density, was calculated by dividing the total 

main exhibit area by the number of living animals at an institution . An index of 

complexity was generated using the number of attributes within the enclosure and a 

ranking of topography, with level being ranked lowest and hills highest. Attributes 
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included the presence of trees , shrubs, pools , mud wallows , and shelters . Mortality for 

each species at an institution was calculated by dividing the total number of deaths by the 

number of individuals held at the institution and by the total number of years that each 

species was housed , in order to standardize across institutions : 

I
. #deaths 

Morta 1ty rate = - -------
[ N(rhinos) ·#years] 

(Eq . 1) 

Reproductive rate was similarly determined by dividing the total number of births , 

regardless of survival of the young , by the number of females held at the institution and 

by the total number of years housed: 

. #births 
Reproductive rate = ------ - --

[N(females) ·#years] 
(Eq. 2) 

Reproduction was calculated only for institutions that held at least one potential 

breeding pair. Health problems were grouped into the following categories: foot , eye, 

skin, dental/oral , respiratory diseases, colic, chronic diarrhea or vomiting , hemolytic 

anemia, parasitic infections , rectal prolapse , vasculopathies , and stereot ypic behavior . 

The overall, combined health at a zoological institution was measured using the 

occurrences of each health problem , weighted by its frequency rank of common , rare, or 

no occurrences . 

Data analysis was performed using SAS (SAS Institute, 2003] and JMP IN (SAS 

Institute , 2004]. Due to significant differences among species, each species was analyzed 

separately . Summary statistics were calculated for each of the explanatory variables and 

correlations among variables were analyzed. This was primarily an observational and 

exploratory study, examining the relationships among the response variables (i.e., 
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reproduction, mortality, and frequency of health problems) with the various husbandry 

and captive environment variables. Because of this, cause and effect relationships cannot 

be demonstrated, but rather correlations identified that need further examination. 

Identifying the model that best described the data was the primary objective. 

Classification and regression trees (CART) for reproduction, mortality, and health 

were constructed for each of the rhino species. CART was chosen as an analysis tool 

because of its ability to deal with non-normally distributed data, correlations among 

variables, and complex interactions among variables [Breiman et al., 1984; De'ath and 

Fabricius, 2000; Karels et al., 2004]. As a nonparametric technique, CART splits the 

data into two groups, increasing the homogeneity within each group. Splits with the 

largest effect size were chosen . The recursive partitioning of the data was continued until 

the best fit with the lowest misclassification rate was achieved. A 5-fold cross validation 

was performed to calculate a cross-validated R2 

In addition, polytomous ordinal logistic regression was used to examine the most 

common health problems reported on the zoological survey. Health problems that were 

further investigated included foot problems for Indian rhinos, hemolytic anemia for black 

rhinos, and skin problems for all three species of captive rhinos. Hemolytic anemia and 

white rhino skin problems were analyzed using the presence or absence of these 

conditions rather than the ranked frequencies due to few common occurrences. 
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RESULTS 

Mean reproduction, mortality, and health differed between rhino species (Table 3-

2) . Variation among zoos was considerable, but on average, reproductive rate in captivity 

was highest for black rhinos and the least for white rhinos. White rhinos appeared to 

have the highest mortality rates , but the mean was strongly influenced by two outliers. 

Excluding these outliers resulted in a mean mortality rate of 0.0053 (n = 38; cr = 0.0068). 

Indian rhinos had the lowest mortality rates , but a high frequency of health problems, 

along with black rhinos . On average, white rhinos had the fewest number of health 

problems. Although frequency of specific health problems differed, skin problems were 

universal for all three rhino species, ranking first for black and white rhinos and second 

for Indian rhinos (Table 3-3). Foot problems were most prevalent for Indian rhinos. 

Considerable variation between zoos also existed for the enclosure and husbandry 

variables used to describe the captive environment (Table 3-4) . Density and enclosure 

areas differed most among rhino species, though the distribution of the data is highly 

skewed. Using median values for exhibit area, white and Indian rhinos still tended to 

have larger enclosure areas (1985 m2 and 1208 m2
, respectively) than black rhinos, with a 

median exhibit area of 910 m2
. 

Despite being based on the equine model, diet varied among zoos for each of the 

species (Table 3-5). In general, rhinos are fed mainly hay and commercial grain pellets. 

Black rhinos were fed nearly equal proportions of alfalfa and mixed grass hay, whereas 

white and Indian rhinos were fed a greater proportion of mixed grass hay. Black rhinos 

also were fed a greater percentage of browse, though it only comprised a small 
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percentage of their total diet. Overall, more browse and produce was included in the diet 

for black and Indian rhinos than for white rhinos. In addition , over half the zoos 

surveyed provided food continuously for Indian rhinos compared to approximately one-

third for black and white rhinos (Table 3-4). 

Black Rhino 

Black rhino birth rates were best explained by climate and mean exhibit area, 

accounting for nearly three quarters of the total variation (R2 
= 0. 74; Fig. 3-3a). Zoos in 

warm, wet climates had the highest birth rates and exhibit sizes < 583 m2 at zoos in 

cooler, drier climates had the lowest birth rates. However, a non-linear relationship with 

exhibit size was found . Exhibit sizes 2: 583 m2 yielded a higher birth rate, but exhibit size 

beyond 1047 m2 ranked the next lowest for birth rate. The estimated error of this model, 

determined using 5-fold cross-validation, was minimal with a cross-validated R2 equal to 

0.67. 

Mortality was grouped by exhibit area, climate, and exhibit complexity (Fig. 3-

3 b) . The lowest death rates were among zoos with the mean exhibit area < 1115 m2 and 

the complexity index 2: 4.25. Complexity index values at or above this level indicate 

exhibits with some topographic relief and the presence of three or more enclosure 

attributes such as trees, shrubs, pools, mud wallows, and shelters . The highest mortality 

occurred in zoos in warm, wet climates with mean exhibit area 2: 1115 m2
. This model 

explained over half of the total variation (51%), with a cross-validated R2 of0.46 . 

Health of black rhinos was best described by the number of males, vaccinations, 

and mean exhibit area, although only 40% of the variation was explained by this model 



(Fig . 3-3c) . Health problems were minimized for zoos with less than 2 males and mean 

exhibit areas 2 786 m2
. The highest weighted frequency of health problems occurred in 

zoos with two or more males and Jess than two different types of vaccinations. With a 

cross-validated R2 of 0.28, however, this model is speculative. 

No significant correlations were found when examining black rhino skin health. 
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Hemolytic anemia, however, was associated with total number of individuals and percent 

of alfalfa in their diet (G2 = 8. 56, 2 df, P = 0.01). In general, zoos that held only one pair 

had a lower probability of hemolytic anemia occurring than zoos that held three or more 

individuals. Increases in alfalfa also showed a positive relationship with hemolytic 

anemia. 

White Rhino 

The number of males and total density accounted for 66% of the variation in 

white rhino birth rates (Fig. 3-4a). The cross-validated R2 of the model was 0.59. Zoos 

holding more than two male white rhinos had the highest birth rate . For zoos with less 

males, density was a critical factor, with higher birth rates in zoos with < 4 70 m2 per 

individual. 

Analysis of white rhino mortality was complicated by two zoos with high 

mortality rates , which heavily influenced model selection . Both these zoos managed 

white rhinos for less than five years and do not currently hold this species. Including 

these zoos , no model could be identified that best explained the white rhino mortality 

data. Consequently these outliers were excluded, leaving 38 zoos that were used for 

further analysis. Mortality rates were grouped by mean exhibit area, density, and 
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vaccinations (R2 = 0.54; Fig. 3-4b). Among these zoos, the highest mortality rates 

occurred in zoos with mean exhibit area 2: 1858 m2 and administered less than 2 different 

types of vaccinations for diseases. The lowest mortality rates occurred in zoos with mean 

exhibit area < 1858 m2 in size, with 2: 376 m2 per individual. The error rate was small 

with a cross-validated R2 of 0.48. 

Diet was a major factor for white rhino health. Zoos that provided diets 

containing 2: 40% pellets had the highest weighted frequency of health problems (Fig. 3-

4c) . Diets that were composed of < 40% pellets and contained zero produce had the least 

health problems . Climate also was a factor, but only contributed 14% of the model sum 

of squares and explained approximately 6% of the total variation in the data . Both 

Climate Prin 1 and Climate Prin 2 were weighted equally for variable selection, having 

the same sum of squares. Interestingly, zoos in warm, dry climates had more health 

problems . The entire regression tree explained 41 % of the total variation, with a cross­

validated R2 of O 32. 

Skin problems were the most frequent problem for white rhinos, but most 

zoological institutions reported it as a rare occurrence. Analysis of the presence or 

absence of skin problems indicated that climate, diet, and the time spent by keepers were 

important factors for white rhino skin health . Climate Prin 1 was negatively associated 

(G2 
= 3.94 , 1 df, P = 0.05), while Climate Prin2 showed a positive relationship with skin 

health (G2 = 6.13, 1 df, P = 0.01). In other words, the probability that white rhinos 

experienced skin problems was higher for zoos in colder climates, and less for zoos in 

warmer , wet climates. Moreover, the three zoological institutions that provided an indoor 
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pool did not report any skin problems for white rhinos, although this finding is anecdotal 

at best. The model that best described skin health, however, was the mean percent 

produce (i.e., fruit and vegetables) in their diet and the amount of time spent by keepers 

(G2 = 14.38, 2 df, P < 0.01). As these variables increase, so did the probability of skin 

problems. 

[ndian Rhino 

Indian rhino birth rates were best split between feeding categories. Zoos that 

continuously fed their rhinos had nearly ten times the birth rate of zoos that fed their 

rhinos one to two times per day (Fig. 3-Sa). This husbandry variable explained 

approximately 46% of the variation (R2 = 0.46) . Due to the small dataset (n= l3), 5-fold 

cross-validation was not performed. 

Another husbandry variable, average time spent by keepers per day, was 

associated with mortality for Indian rhinos. Zoo exhibits that required < 5 hours per day 

had a lower mean mortality rate than zoos with an average keeper time of 2: 5 hours per 

day (Fig . 3-Sb ). Keeper time was significantly correlated with climate (Climate Prin2) , 

with less time spent in zoos in warm, wet climates (Spearman's Rho = -0.6727, P < 0.01). 

Nevertheless, keeper time better explained the data with an R2 of 0.57, compared to 0.37 

for Climate Prin2. 

Climate, however , did explain differences in health. Climate Prin2 explained 

approximately 31 % of the total variation, with health problems minimized at zoos with 

warm, wet climates (Fig. 3-Sc) . Foot and skin problems were the two most common 

health problems for Indian rhinos. Climate Prin 1, along with minimum indoor area, bore 



a relationship with foot health (G2 = 10.88, 2 df, P < 0.01). The odds of foot problems 

increased in colder climates and as the minimum indoor area increased. Interestingly, 

foot problems were positively correlated with the complexity index, though the 

relationship was weak (G2 = 3.77, 1 df, P = 0.05). 

Several variables were correlated with skin health, but no single model was 

identified that best explained this health problem. Increases in complexity index 
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(G2 
= 4.51 , 1 df, P = 0.03), presence of grass substrate (G2 

= 5.10, 1 df, P = 0.02), area 

per individual (G2 
= 5.67, 1 df, P = 0.02), and minimum indoor enclosure area (G2 

= 4.60, 

1 df, P = 0. 03) reduced the frequency of skin problems. Combined models including 

these variables were significant (P < 0.05), but usually rendered one or both of the 

variables insignificant, indicating positive correlations among these factors (Spearman's 

Rho P < 0.05). A combined model of Climate Prin2 and mean exhibit area also 

explained skin health ( G2 = 7. 18, 2 df, P = 0. 03 ), though individually neither variable was 

significant. In general , zoos in warmer, wet climates with larger exhibit areas tended to 

experience fewer skin problems among their Indian rhinos. 

DISCUSSION 

Black, white, and Indian rhinos appear to respond differently to their captive 

environment. Demographic problems exist for both black and white rhinos, resulting in 

non-sustainable captive populations [ AZA Rhino Advisory Group, 2002]. While 

reproduction tended to be high, black rhinos had the highest frequency of health problems 

and high mortality rates. White rhinos presented the reverse scenario, having low 

reproduction rates and a low frequency of health problems. Indeed, successful 
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reproduction has occurred mainly among a small proportion of the founder population , 

with many individuals exhibiting reproductive abnormalities [Patton et al., 1999; Brown 

et al., 2001 ; AZA Rhino Advisory Group , 2002 ; Carlstead and Brown , 2005]. 

Conversel y, the captive population of Indian rhinos appeared to be performing well 

demographically , which is supported by studbook analyses [ AZA Rhino Advisory Group , 

2002]. However , the international captive Indian rhino population has experienced high 

juvenile mortality rates and showed evidence of outbreeding depression, due to the low 

genetic diversity of captive Indian rhinos [Zschokke et al., 1998; Zschokke and Baur , 

2002]. In this study, the frequency of health problems, particularly foot and skin 

problems , was relatively high. 

Black Rhino 

Climate, exhibit area, and number of individuals held at a zoo were identified as 

important explanatory variables for black rhino reproduction, mortality, and health . 

Given that black rhinos are a tropical/subtropical species, the fact that the North 

American temperate climate has an effect is not surprising . Higher birth rates were found 

in zoos located in warm, high precipitation regions with little seasonal variation . These 

regions more closely resemble the climate of their native range (Fig. 3-1 ) . Hediger 

[ 1965] noted that temperature , day length, and humidity can greatly affect successful 

reproduction . While individuals are able to tolerate a wide range of climatic conditions , 

the range of optimal conditions for reproduction is typically much narrower [Begon et al., 

1990]. Climate is also correlated with other enclosure and husbandry variables, such as 

the amount of time outdoors and exhibit area. Zoos in colder regions keep animals 



indoors during inclement weather [Fouraker and Wagener, 1996], which can extend for 

several months for some zoos. O'Connor [1986] suggested that this difference in 

husbandry practices possibly accounted for the longer mean birth intervals and fewer 

births at Whipsnade Park, Great Britain compared to San Diego Wild Animal Park, 

United States . 
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Zoos with a more "tropical" climate also tended to have a larger mean exhibit area 

(Climate Prin2; Spearman's Rho= 0.4476, P = 0.01). Carlstead et al. [1999a] found a 

positive relationship between the natural log of enclosure area and an institution's 

breeding success . In this study, exhibit area showed a nonlinear relationship with black 

rhino reproduction. A minimum outdoor enclosure space of 583 m2 was associated with 

higher birth rates, but a threshold was reached at approximately 1048 m2
. Increasing 

mean exhibit area beyond this threshold did not confer any additional reproductive 

advantage. 

Climate and exhibit area also were associated with mortality, but in an unexpected 

way. The conditions that lead to increased reproduction appear to be associated with 

higher mortality. A positive linear relationship between birth and mortality rates 

substantiates this finding. This could possibly be due to juvenile mortality rates ; 

approximately 16% of the total mortality for black rhinos occurs within the first 30 days 

[Foose , 2005]. It should also be noted that higher mortality rates occurred in very large 

exhibit sizes (2:: 1115 m2), which exceed the threshold identified for birth rates. 

For exhibit sizes less than 1115 m2, complexity was a factor , with lower mortality 

rates in more complex exhibits, containing multiple structural components (i.e., pools , 



mud wallows, trees, shrubs, and shelters) and topographical variation . Studies on 

laboratory animals have shown that "enriched" environments, with larger cage sizes and 

greater spatial heterogeneity , can improve neurological functioning [Rosenzweig and 

Leiman, 1968; Rosenzweig et al., 1978; Kempermann et al., 1997; Brown et al., 2003] , 

reduce stress and aberrant behaviors [Marashi et al., 2004] , increase mating success 

[Dukas and Mooers , 2003] and promote general physical and psychological well-being 

[ILAR, 1998]. Conversely, captive animals are known to develop various negative 

physiological and behavioral responses to small, sterile enclosures [Carlstead, 1996]. 

This interaction between exhibit size and complexity suggests that complexity may 

mitigate the effects of confined space for captive black rhinos. 
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Nevertheless , zoos with exhibit sizes greater than 786 m2 had fewer health 

problems . In addition to exhibit area, the social environment may play a significant role 

in black rhino health. The frequency of health problems was greater in zoos that housed 

multiple males. Black rhino males are typically solitary [Hillman-Smith and Groves , 

1994), so the presence of another male may cause stress and increased aggression . 

Carlstead and Brown [2005] found that stress hormone variability, fighting behaviors , 

and mortality were higher for breeding pairs kept together daily. While adult males are 

housed separately, visual, auditory, and olfactory communication may still occur . Zoos 

that house multiple males also may be more likely to keep breeding pairs together, 

particularly since a breeding pair has been the recommended group size for the husbandry 

of captive black rhinos [Fouraker and Wagener , 1996]. 
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Furthermore , disease transmission may be density dependent [Altizer et al., 2003]. 

Neiffer et al. [2001] documented leptospirosis in two black rhinos , speculating that the 

second rhino acquired the disease directly from the first infected rhino or indirectly from 

contaminated mud wallows. Minimizing contact between infected animals and 

vaccination against leptospira were recommended to prevent disease [Neiffer et al., 

2001]. In this study, two or more vaccinations reduced the frequency of health problems 

for zoos that kept multiple males. However , this does not signify that the more 

vaccinations , the better. In a competing model, four or more vaccinations were found to 

be associated with higher mortality rates . Adverse reactions can occur [Fouraker and 

Wagener , 1996], so using caution when administering vaccinations may be prudent. 

Similar to the health model, hemolytic anemia was associated with number of 

individual rhinos kept at an institution . As the number of individuals increased, the 

probability of hemolytic anemia increased. Interestingly , leptospirosis has been found in 

half of all cases [Fouraker and Wagener , 1996]. The percentage of alfalfa in the total diet 

also was linked with its incidence . Inadequacies in diet have been suspected as a cause of 

health problems [Miller et al., 1987; Fouraker and Wagener , 1996; Emslie and Brooks, 

1999; AZA Rhino Advisory Group, 2002] . Black rhinos are browsers , but browse 

comprised a very small percentage of their diet (Table 3-5) . The majority of their diet 

was composed of alfalfa, mixed grass hay, and commercial pellets. Grant et al. [2002] 

found similar result s for the captive black rhino diet, with the following average percent 

composition: 61% hay, 28% pellet , 6% produce , and 5% browse. An exclusive alfalfa 

diet has been discouraged , but a mixture of legume and grass hays, supplemented with 
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browse , has been the recommended diet [Fouraker and Wagener, 1996; Fouraker, 1997]. 

Alfalfa differs nutritionally from grass hay, by having higher lignin, crude protein , 

calcium, magnesium , and sulfur and lower neutral detergent fiber, manganese, and zinc 

[Oftedal et al., 1996; Van Soest, 1996]. High amounts of alfalfa in the diet are known to 

cause colic, diarrhea, and mineral imbalances [Fouraker and Wagener, 1996]. 

Differences in vitamin and mineral concentrations between wild rhinos, consuming a 

browse diet, and captive rhinos have been found, which may account for some of the 

diseases expressed in captivity [Clauss et al, 2002a; Dierenfeld et al., 2005]. 

While hemolytic anemia was one of the leading causes of death for captive black 

rhinos, particularly between 1976 and 1980, Dennis [2004] found that it is not currently a 

major health issue. Of the zoos surveyed, 67% reported no incidences of hemolytic 

anemia, with the remainder primarily reporting rare occurrences. Skin problems, 

however, are a significant health problem for black rhinos, but unfortunately no 

associations could be identified. 

White Rhino 

In contrast to their fellow African rhino species, social groupings, density, and 

diet appear to be important factors for white rhinos . White rhinos display the most social 

behavior of the rhino species. Females have overlapping home ranges and commonly 

aggregate in small groups ranging from a single female and her calf to multiple females 

and subadults [Groves, 1972; Owen-Smith, 1974; Fouraker and Wagener, 1996]. While 

most associations between subadults are temporary , the groupings may serve an 

important function by reducing aggressive attacks by territorial bulls and aiding in 
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dispersal [Shrader and Owen-Smith, 2002]. Although mainly solitary, dominant 

territorial males will tolerate inferior or subadult bulls, which may coinhabit the territory 

[ Owen-Smith, 197 4; Fouraker and Wagener, 1996]. In captivity, the minimum 

recommended grouping for breeding is at least two females and one male, with a herd of 

four females, one male, and an extra male held separately, being preferred [Fouraker and 

Wagener , 1996]. 

I found that zoos holding more than two males had higher reproductive rates . 

Lindemann [ 1982 in Emslie and Brooks, 1999] found a similar result for white rhinos in 

captivity, with females having lower reproductive success if there was only a single male. 

Patton et al. [1999] speculated that mate choice was important for the reproductive 

behavior of females since their home ranges in the wild can include territories of several 

different males. Besides preferentially selecting territorial males, more females were 

found present in territories held by large bulls with large horns [Kretzschmar , 2002]. 

Furthermore , limited evidence shows that white rhino females rarely reproduce if kept as 

single male-female pairs, but may successfully reproduce with the introduction of a new 

male [Patton et al, 1999]. Castley and Hall-Martin [2003], however, found that white 

rhino reproduction on private land in South Africa did not greatly differ between 

populations with more than one bull (66%) and a single bull (70%). The total population 

size per property, though, may have influenced this result [Castley and Hall-Martin, 

2003] 

In fact, the entire social structure may be a critical factor in the successful 

reproduction of this species. Hediger [1965] recognized that reproduction was often 
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dependent on group size. In an examination of the causes ofreproductive failure among 

captive born females, Swaisgood et al. [In press] found that captive born females were 

more likely to reproduce if housed with other wild born females, including their mother. 

In this study, the number of males was positively correlated with the number of females 

housed at a zoo (Spearman's Rho= 0.5537, P < 0.01), which may have contributed to the 

higher reproduction. 

Besides number of individuals, density was associated with white rhino 

reproduction and mortality . For zoos that had fewer males, densities greater than O. 0021 

individuals/m2 showed higher birth rates. This result is contrary to density-dependent 

reproduction, where fecundity has been shown to decrease with increasing density 

[Mduma et al., 1999; Coulson et al., 2000; Focardi et al., 2002; Rode! et al., 2004]. 

Negative density dependent effects in populations can be caused by competition for 

depleting resources at higher densities. In captive environments, competition is 

negligible, since food and other resources are supplied. The higher densities may in fact 

serve an important function for social species. Johnson et al. [2000] showed that social 

mustelids , with larger breeding group sizes, actually had smaller home range sizes than 

solitary populations. In addition, white rhino males that had a high frequency of females 

within their territory had greater mating success than males with territories where females 

spent less than 70% of their time [Kretzschmar, 2002]. 

This positive relationship between density and a component of fitness (i.e., 

reproduction) could represent an Allee effect, as defined by Stephens et al. [ 1999] Allee 

effects typically emerge at low population sizes, when competition is minimal, as a result 
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of demographic or genetic stochasticity , or facilitation among individuals [Courchamp et 

al., 1999]. Sociality and spatial distribution of a species may actually be a measure of 

Allee effects on individual fitness [Stephens and Sutherland , 1999]. Based on the 

relationship between Allee effects and mating systems, Stephens and Sutherland [2000] 

speculated that "if mate choice is restricted in small or low density populations , then low 

parental investment and low reproductive output may result. Such a phenomenon would 

certainly correlate with low reproductive rates and success in many species of zoo 

animals ... " 

The interaction between group size, enclosure area, and Allee effects may be an 

important determinant for white rhino social structure and spacing, and subsequently their 

breeding success and mortality. Both exhibit area and density were correlated with 

mortality . Zoos that had a mean exhibit area less than 1858 m2
, with greater than 376 m2 

per individual, had the lowest mortality rate . Reducing exhibit area would increase 

density, but mortality was higher in densities above 0.0027 individuals/m2
. This 

potentially indicates a non-linear relationship between mortality and density, with a 

threshold reached at approximately 376 m2 per individual. Exceeding this threshold , 

negative density-dependent mechanisms may be operating, such as increased aggression 

between individuals [Poole and Morgan , 1973], increased stress [Arakawa , 2005 ; 

Carlstead , 1996], or increased disease transmission [Altizer et al., 2003]. Densities in 

captivity are on average several times higher than those in the wild, which can vary from 

0.23 to 5. 7 individuals/km2 [Kretzschmar , 2002]. The optimal area per individual for 

reproduction and mortality may lie somewhere between 376 and 470 m2 in the captive 



environment. This reflects a balance between Allee effects and negative density 

dependence, which can produce maximum population growth and ecological fitness at 

intermediate population densities [Courchamp et al., 1999; Stephens and Sutherland, 

1999; Stephens et al., 1999]. 

The number of vaccinations also was important for reducing mortality in large 

exhibits . Several different reasons could explain this result. First, the number of 

individuals is positively correlated with exhibit size (Spearman's Rho= 0.4726, 
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P < 0.01). Even though density is reduced in larger exhibits, the total number of 

individuals may be a more significant factor for disease transmission in zoos . Social 

structure and mating behavior can influence the opportunities for disease transmission, 

with larger group sizes and promiscuity increasing the risk of infection [Altizer et al., 

2003]. Furthermore, individuals may be exposed to more pathogens in larger, naturalistic 

exhibits. For example, ticks, which are potential disease vectors, are known parasites of 

white rhinos [Groves , 1972]. Stoebel et al. [2003] detected Lyme disease, a tick-borne 

illness, in approximately 10% of the various captive ungulate and carnivore species 

tested, with differences in prevalence found between species and zoos. This difference 

was in part attributed to the degree of exposure, which is determined by its captive 

environment and its suitability for tick infestations. 

The frequency of health problems, however, was mainly determined by diet. 

Diets composed of 40% or more pelleted feed were associated with increased health 

problems. White rhinos are grazers, selecting high quality grass species when foraging 

[Groves, 1972; Kretzschmar, 2002]. In zoos, the diet of white rhinos primarily consisted 
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of mixed grass hay and pellets (Table 3-5). Pelleted feeds are recommended to provide 

nutritionally balanced diets, but only 25-40% of the total diet [Lintzenich and Ward, 

1997] or less than one-third of the total calorie intake [Fouraker and Wagener, 1996] are 

advised. Gastrointestinal problems are known to result from excessive consumption of 

pellets, which lack the necessary fiber for digestion [Oftedal et al., 1996]. 

Furthermore, zoos that provided produce as a part of the diet reported more health 

problems. For instance, skin problems were found to be associated with percent produce 

and keeper time. As the percent of produce increased, the odds of skin problems greatly 

increased by several orders of magnitude. Fruits and vegetables are not a natural 

component of their diet, but have been suggested as beneficial [Fouraker, 1997]. Most 

commercial produce provided in captivity, however, is low in plant fiber and high in 

sugars, which can cause digestive problems [Oftedal et al., 1996]. Thus, Oftedal et al. 

[1996] cautioned against providing fruit and recommended that vegetables only be used 

moderately in herbivore diets. The recommendation to restrict the use of produce seems 

appropriate for white rhino diets, considering that even small amounts of produce were 

associated with increased frequency of health problems. 

Keeper time was also a useful predictor of skin problems . As the amount of time 

that keepers spent per day increased, the probability of skin problems occurring 

increased. Thompson [ 1989] found that vigilance towards zookeepers was greater for 

larger sized ungulates , particularly females, and that the proportion of time spent foraging 

decreased when keepers were in the enclosure. Stress was suggested as a possible cause 

for this reduction in foraging behavior. The findings of Carlstead and Brown [2005] 



appear to support this assertion that keepers are a source of stress. White rhinos that 

showed fewer "friendly to keeper" behaviors, such as allowing touching, had higher 
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mean corticoid levels [Carlstead and Brown, 2005]. As added evidence for stress, I 

found that stereotypic behavior was more likely as keeper time increased (G2 = 4.20, 1 df, 

P = 0.04). Chronic stress is known to cause multiple adverse physiological effects, such 

as immune suppression and delayed wound healing [Carlstead, 1996; Dhabhar, 2000; 

French et al, 2006]. Given that increased chances of infection and slower rates of 

healing can both influence skin health, as well as the general health of the animal, the 

correlations between skin health, reactions to keepers , and stress should be forther 

evaluated. 

Finally, skin problems and the overall frequency of health problems were related 

to climate . In general, warm, wet climates appeared to be more conducive to white rhino 

skin health . Like black rhinos, this climate reflects the one in their native range (Fig. 3-

1 ) . The relationship between climate and frequency of health problems , however, was 

not as direct, with zoos in warm, dry climates experiencing more problems than zoos in 

cooler , wet climates . Climate Prin 2 was marginally correlated with the percent of pellets 

in the diet (Spearman's Rho= 0.2842 , P = 0.08), indicating that zoos in warmer, wet 

climates tended to feed a greater proportion of pellets. Considering the effect of diet on 

health , this may explain the lower frequency of health problems in cooler climates. 

Moisture also might be the key factor, since Climate Prin 2 was associated with both skin 

and overall health . Examination of each of the individual climatic variables (i.e., 

temperature and precipitation), however , did not reveal any significant relationships with 
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frequency of health problems. Thus, diet appears to be a better predictor for frequency of 

health problems in white rhinos. 

Indian Rhino 

Due to the smaller dataset for Indian rhinos, complex relationships among the 

explanatory variables and reproduction , mortality, and health could not be thoroughly 

examined. However, climate and husbandry variables, such as number of feedings and 

time spent by keepers , were identified as important factors in the response of Indian 

rhinos to their captive environment. 

Reproduction was related to the number of feedings per day, with higher birth 

rates when food was provided continuously instead of separated into one or two feedings 

per day. Captive diets were mainly composed of mixed grass hay (Table 3-5) and 

composition did not significantly differ between the two feeding regimes (Kruskal-Wallis 

tests, P > 0.05). The digestive tract morphology, forage quantity and quality, and/or 

Indian rhino behavior , however , could potentially account for the observed relationship 

between birth rate and number of feedings. Like all rhinos, Indian rhinos are 

nonruminant, hind gut fermenters [Owen -Smith, 1988; Oftedal et al., 1996; Van Soest, 

1996]. Food intake is restricted by longer retention times in their digestive tract , which 

allow greater fermentation and digestion of fiber [Owen-Smith, 1988]. Clauss et al. 

[2005a] recorded mean retention times of particles for Indian rhinos at 61 hours, the 

longest time recorded for hindgut fermenters . Given the slower food passage rates, the 

continuous feeding regime may facilitate efficient digestion . Lower digestive efficiency 

can affect nutrient absorption [Van Soest, 1996; Clauss et al., 2005b], leading to potential 



nutrient deficiencies, which are known to negatively affect reproduction [ Asa, 1996; 

Hutchins et al., 1996; Wildt, 1996]. 

Alternatively, the increased availability of food may allow individuals to 

selectively consume a higher nutritive diet [Van Soest, 1996]. In other words , if the 

"salad bar" is always open, individuals have the opportunity to select higher quality, 
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more palatable items among the food offered. Increases in food quantity and quality are 

known to increase reproduction [ Asa, 1996; Hutchins et al., 1996; Geisser and Reyer, 

2005]. However, Clauss et al. [2005b] estimated that digestible energy intake for captive 

Indian rhinos was well above required metabolic levels, even for some individuals on a 

roughage-only diet. Because unlimited food and increased weight gain can result in 

health and reproductive problems , Clauss et al. [2005b] cautioned against husbandry 

guidelines for the provision of ad libitum hay [Fouraker and Wagener , 1996; Fouraker , 

1997], and recommended a restricted diet. Consequently , the relationships among 

feeding regime, food availability, diet selection opportunities , and reproduction are 

unclear . 

Lastly, the behavioral response oflndian rhinos to a continuous feeding regime 

may have influenced the resulting pattern in birth rates . Concentrated feedings may 

reduce feeding times and create boredom, frustration, and/or stress, all of which can 

produce negative effects, such as stereotypic behavior [Carlstead, 1996; Swaisgood and 

Shepherdson , 2006]. For captive tapirs, the availability of food and natural vegetation 

tended to increase activity levels and reduce resting periods during the day [Seitz, 2001]. 

Oftedal et al. [ 1996] recommended using hay in herbivore diets since it prolongs foraging 



activity, which in turn may deter aberrant behaviors. Similarly, Carlstead [1996] 

recommended the use of feeding enrichment to improve captive animal welfare . 

Although in a meta-analysis, Swaisgood and Shepherdson [2006] did not find any 

significant differences in the efficacy of feeding versus non-feeding enrichment 
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strategies. Whether the concentrated feeding regime is associated with stress is uncertain , 

but stress can reduce reproduction [Christian, 1956; Christian and Davis, 1964; Asa, 

1996; Carlstead , 1996]. Unfortunately , I was unable to detect any relationship between 

presence of stereotypy at a zoo and number of feedings or feeding enrichments. 

Nevertheless, stress may be a factor in Indian rhino mortality. Similar to the 

results found for white rhino skin problems , increased time spent by keepers was 

associated with higher mortality rates. As stated previously, humans may cause stress for 

captive individuals. In fact, Lott and McCoy [ 1995] found that wild Indian rhinos were 

disturbed from foraging and became more vigilant during tourist visits, particularly when 

proximity was less than 12 m While captive rhinos may be more habituated to humans 

than their wild counterparts , human-rhino proximity is also much closer in captive 

settings . Furthermore , Indian rhinos tend to be more solitary than black or white rhinos 

[Fouraker and Wagener , 1996], which may make them more intolerant of intrusions into 

their space. Carlstead and Brown [2005] found correlations between stress, the percent 

of public access, and mortality for black rhinos and between stress and behavior towards 

keepers for white rhinos . However, whether keeper time directly relates to stress as a 

causal mechanism for mortality has yet to be determined. 
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Keeper time may simply be a correlate for climate, since the time spent by 

keepers was found to increase in zoos located in cold, dry climates. Along with higher 

mortality, the frequency of health problems also increased in colder, drier climates . Skin 

and foot problems, specifically, were both associated with climate. For example, the 

likelihood of skin problems significantly decreased with larger mean exhibit areas and 

warm, wet climates. Skin problems, however, may be multi-causal since exhibit area was 

correlated with several other variables, including density and complexity . While mud 

wallows and pools are known to help maintain skin health [Laurie et al., 1983; Fouraker 

and Wagener, 1996; Fouraker, 1997], significant relationships could not be identified. 

However, the general trend was a decrease in skin problems with an increase in mud 

wallows and pools. Furthermore, a significant relationship was found between the 

complexity index, which includes mud wallows and pools, and skin health, with the 

probability of skin problems reduced with increasing complexity. 

Whereas skin problems were less frequent in large, more complex enclosures , 

foot problems actually were found to increase with increasing complexity. However, 

climate and indoor area showed a stronger relationship with foot health. In a 

comprehensive study examining Indian rhino foot problems, von Houwald [2001] 

provided several possible reasons for this pathology: hard, abrasive enclosure substrates, 

weight problems of animals, diet and nutrient deficiencies, aggressive behavior of males, 

access to water , foot morphology changes that lead to chronic trauma vulnerability, and 

genetic predisposition. The fact that I found colder climates to be associated with foot 

problems is not surprising, considering that the husbandry of rhinos in cold climates 
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necessitates increased time indoors on hard, concrete surfaces. The relationship between 

complexity and foot problems, however, was surprising , yet may reflect increased 

opportunities for foot trauma, particularly if individuals have already become abnormal 

"pad-walkers" [ von Houwald, 2001]. The use of softer substrates in enclosures, such as 

mulch, grass, or bedding, and the provision of pools and mud wallows have been 

recommended to reduce the development of foot problems [Fouraker and Wagener, 1996; 

von Houwald, 2001]. Unfortunately, no relationships between foot problems and mud 

wallows, pools, or grass substrates were found, possibly due to our small dataset. von 

Houwald [2001] also recommended that all indoor enclosures contain a pool, since Indian 

rhinos are known to spend considerable time in and around water . Only two zoos in our 

study provided indoor pools for Indian rhinos and both zoos reported foot problems . I 

also found that the incidence of foot problems was higher in zoos with larger indoor 

areas. Minimum indoor area was not correlated with either climate variable, but may 

indicate a degree of exposure to hard surfaces . The larger concrete areas may allow 

increased movement and subsequent abrasions on their feet. von Houwald [2001] 

suggested that activity level played a role in the development of foot problems, pointing 

to the fact that 100% of the males in the study were afflicted with foot problems 

compared to only 53% of the females, which are know to be less aggressive than males. 

Indoor activity level may account for our finding, although more research is needed . 

Lastly, I was not able to identify any correlation between diet or number of feedings and 

foot health, despite the possible connection. 
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Implications 

The intent of this study was to identify key factors important for the management 

of captive rhinos. While each rhino species responded differently to their captive 

environment, several factors emerged as potentially important husbandry considerations. 

For instance, both the African and Indian rhinos appeared to be affected by the temperate 

North American climate. Zoological institutions are not capable of altering their climate, 

but can try to further mitigate the effects of cold, dry weather through the use of water 

pools, heaters, and humidity controls. 

Diet, in terms of composition and feeding regime, also appeared to have a 

significant effect, particularly on rhino health. Diet varied among rhino species, though it 

generally consisted of mainly hay and commercial pellets. Black rhinos have been the 

focus of diet inadequacies due to the low level of browse in their diet [ AZA Rhino 

Advisory Group, 2002; Grant et al., 2002] and the possible lack of tannins [Clauss et al., 

2002b; Clauss, 2003]. I found that high levels of alfalfa also may be problematic for 

black rhinos . For white rhinos, the proportion of pellets and produce were important for 

health. In fact, the use of produce in white rhino diets should be reevaluated given the 

correlation with health problems. In addition to diet composition , the feeding regime 

may be important for rhinos, specifically Indian rhinos. Considering its possible effect 

on reproduction and health, diet should be further examined for all rhino species. 

While not all institutions have sufficient enclosure sizes recommended for 

breeding, the mean area per individual exceeded the minimum 139 m2 required 

[Fouraker, 1997]. Rhinos may require large areas, but thresholds in enclosure size may 



exist. Exhibit sizes ranging between approximately 600 and 1100 m2 may be important 

for the successful management of black rhinos, in terms of their reproduction , mortality, 

and health. Similarly, a range of densities, between 376 and 470 m2 per individual, may 

be significant for white rhinos. Larger social groupings , however , appeared to be a 

greater influence on white rhinos, whereas black rhinos may respond better if kept more 

solitary. Indian rhinos are typically kept solitary except for breeding [Fouraker and 

Wagener , 1996] and I did not find any evidence that suggested this is inappropriate. 
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Finally, the relationship between husbandry variables and stress may be 

consequential for successful rhino husbandry . Density and human presence may be 

sources of stress, which could potentially account for the relationships observed in this 

study. For instance, zoos that kept two or more black rhino males reported a greater 

frequency of health problems . Moreover, a positive relationship between keeper time and 

health problems and mortality rates were found for white and Indian rhinos, respectively . 

Minimizing the time spent by keepers , or degree of human disturbance , may in fact be 

beneficial However , the linkage between these variables, stress, and animal welfare still 

needs to be established . Indeed , further research is needed to determine the exact 

mechanisms that have created all of the patterns described in this study. 

Other factors, such as vaccinations, complexity , and indoor area, were found to be 

related to rhino health, though to a lesser degree . Nevertheless , consideration should be 

given to their potential effect on captive rhinos for optimal captive management. 

Tradeoffs, however , may exist when attempting to optimize multiple response variables. 

For example, continuous feeding was associated with Indian rhino reproduction , but 
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overweight individuals may experience more foot problems. Similarly, increases in 

complexity may reduce Indian rhino skin problems, but may increase foot problems. 

Reproduction was also positively correlated with mortality, so that improvements in the 

conditions for reproduction may increase mortality rate. In this case, efforts directed at 

reducing juvenile mortality may resolve this paradox. Unfortunately, higher infant 

mortality rates tend to be associated with larger, wide-ranging species [Clubb and Mason, 

2003]. Considering the popularity oflarge animals, such as rhinos, in zoos [Ward et al., 

1998] and the conservation role that zoos serve for these endangered species [Emslie and 

Brooks , 1999; AZA Rhino Advisory Group , 2002] continued effort should be invested in 

the improvement of captive breeding and management to attain sustainable populations. 

CONCLUSIONS 

1. Black, white, and Indian rhinos respond differently to their captive 

environment. 

2. Climate appears to be an important factor for all three rhino species. 

3. Nonlinear relationships were identified for exhibit area . 

4. Socioenvironmental factors , such as the number of individuals and density, 

may be critical for the husbandry of white rhinos . 

5. Diet composition was associated with health problems for black and white 

rhinos, while feeding regime was associated with Indian rhino reproduction . 

6. Human presence may be a significant factor, given the relationships between 

time spent by keepers and rhino mortality and health. 
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7. Various other husbandry and environmental factors may be important for the 

successfu l management ofrhinos . Table 3-6 summarizes the responses found for each of 

the rhino species . 

8. The descriptive models for each of the rhino species can be used to better 

understand the patterns between the captive environment and rhino reproduction , 

mortalit y, and health and help guide captive management decision s. 
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Table 3-1. Eigenvectors for the first two principal components of the climate principal 
components analysis. 

Climate Variables 
Days :S 32 F 
Days 2: 90 F 
Mean annual temperature 
SD temperature 
Precipitation 
Percent Variance 
Explained 

Principal Component 1 
0.56626 

- 0.37340 
- 0.56606 

0.46762 
- 0.02880 

58.68% 

Principal Component 2 
0.09526 
0.46568 
0.09608 
0.42004 
0.76708 

22.27% 
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Table 3-2. Summary of mean rhino reproductive rate , mortality rate, and weighted 
frequency of health problems for zoological institutions in North America. 

Black White Indian 

N (zoos) 33 40 19 

Reproductive Rate 0 .0263 0.0122 0.0154 
(cr = 0.0263) (cr = 0.0197) (cr = 0.0182) 

Mortality Rate 0.0113 0.0342* 0.0045 
(cr = 0.009 9) (cr = 0.1588) (cr = 0.0064) 

Health Problems 5.7 2.6 4.6 
(cr=4 .1) (cr = 2.9) (cr = 2.5) 

* Two outliers identified ; mean mortality rate excluding outliers 
equals 0.0053 (cr = 0.0068). 
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Table 3-3. Health problems by category for each rhino species, ranked by occurrence at 
zoological institutions in North America . Rare is defined as occurring infrequently in any 
individual; common is occurring multiple times for one individual or occurring in several 
individuals. The remaining percentages for each health problem reflect no occurrences. 

Health Problems Black White Indian All 
% (n = 32) % (n = 38) %(n=l8) % (n = 88) 

Skin 
Rare 47 53 35 47 
Common 38 3 35 22 

Foot 
Rare 34 26 44 33 
Common 9 5 39 14 

Stereotypic Behavior 
Rare 41 26 47 36 
Common 28 0 12 13 

Eye 
Rare 22 37 18 28 
Common 13 3 6 7 

Diarrhea/Vomiting 
Rare 28 16 12 20 
Cornman 9 

,.., 
0 5 ., 

Parasitic Infections 
Rare 9 18 24 16 
Common 6 5 12 7 

Oral 
Rare 31 8 12 17 
Common 9 0 0 3 

Hemolytic Anemia 
Rare 31 5 6 15 
Common 6 0 0 2 

Respiratory 
Rare 16 11 6 11 
Common 6 0 0 2 

Vasculopathies 
Rare 19 5 6 10 
Common 6 0 0 2 

Colic 
Rare 9 13 17 13 
Common 0 0 0 0 

Rectal Prolapse 
Rare 0 5 17 6 
Common 0 0 6 1 



Table 3-4. Summary statistics for enclosure and husbandry variables for each of the rhino species. 

Continuous Variables 

# Males I zoo 

# Females I zoo 

Exhibit Area (m
2
)

Minimum Indoor Area (m
2
)

Area (m
2
) I individual 

Complexity Index 

Outdoor Pools 

Mud Wallows 

Public Perimeter (%) 

Keeper Time (hrs.) 

Vaccinations 

Categorical Variables 

# Feedings I day (continuous vs. 1-3x) 

% Walls (>50% vs. :::50%) 

Grass substrate (presence vs. absence) 

Black 

(n = 33 zoos) 

Mean SD 

1.7 1.0 

1.2 0.8 

1309.5 1739.0 

33.1 18.3 

865.0 830.3 

4.4 1.4 

0.5 0.5 

1.2 0.8 

31.5 18.0 

4.1 2.5 

1.8 1.6 

Probability 

0.34 

0.19 

0.52 

White 

(n = 40 zoos) 

Mean SD 

1.9 1.7 

2.2 2.6 

85155.5 326802.3 

72.3 146.9 

14480.1 50363.1 

5.1 1.6 

0.7 0.9 

2.6 4.1 

35.9 26.3 

3.5 2.9 

1.2 1.5 

Probability 

0.29 

0.23 

0.63 

Indian 

(n = 19 zoos) 

Mean SD 

1.2 1.0 

1.6 2.9 

24060.8 64757.0 

35.2 13.7 

20563.2 71186.5 

4.9 1.5 

1.0 0.7 

1.7 2.2 

26.7 14.5 

4.1 3.1 

1.3 1.5 

Probability 

0.56 

0.11 

0.58 
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Table 3-5. Summary of the diets for each of the rhino species at the North American 
zoos included in this study. Mean percentage and standard deviation of each diet 
category are provided; total diet percentage may not equal 100% due to rounding errors. 

Diet Black White Indian 
Composition (n = 32) (n = 39) (n = 18) 

% SD % SD % SD 

Alfalfa 34 25.8 15 21.1 3 8.4 

Mixed Grass 28 25.5 58 26.4 67 18.3 

Commercial 26 19.5 24 15.6 19 17.7 
Pellets 

Browse 7 9.6 1 3.7 4 4.8 

Produce 5 4.9 2 3.4 6 3.6 



Table 3-6. Responses of each of the rhino species to the husbandry and environmental factors in North American zoos. Direction 
of the response is indicated by a"+" for a positive relationship or"-" for a negative relationship for reproduction (R), mortality 
(M), and health problems (H). 

Black White Indian --

Zoo Variables R M H R M H R M H 

Climate (Prin l or 2) + + - -

§!

# Males I zoo + + 

Total number of individuals I zoo +* 

Exhibit Area (m2
) +/- + - + -

§ 

Minimum Indoor Area (nl) _§ +; 

Area (m2
) I individual - - -

, 

Complexity Index - -

§ 

Keeper Time (hrs.) + 
§ 

+ 

Vaccinations - -

# Feedings I day (continuous vs. 1-3x) + 

Diet 

% Pellets + 

%Alfalfa +* 

% Produce + § 

Grass substrate (presence vs. absence) -

§ 

* hemolytic anemia; § skin problems; t foot problems

0 
w 



Fig. 3-1. Distribution map of black, white, and Indian rhinos [Fouraker and Wagener, 1996; Foose and van Strien, 1997; Emslie 

and Brooks, 1999]. Shaded regions represent extent of distribution; actual distribution is highly fragmented within these regions. 
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Fig. 3-4. CART diagrams for white rhino reproduction (A), mortality (B), and health (C). 
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CONCLUSION 
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The objective of this study was to identify key elements in the captive 

environment that were associated with reproduction, mortality, and htealth of tapirs and 

rhinos in North American zoological institutions. Relationships betwE�en various 

husbandry factors and species response were found, that could help gmide captive 

management decisions. The importance of each of the explanatory facctors, such as 

density, exhibit size, structural complexity, diet, and climate, dependecd on both the 

species, or family group, and specific response (i.e., reproduction, mortality, and health). 

The observed correlations, however, do not necessarily indicate a cau:sal  relationship, but 

rather indicate aspects that need further examination. 

Different analysis techniques were used for tapirs and rhinos because of 

differences in the datasets. Multiple linear regression was used for the Larger tapir 

dataset, whereas nonparametric modeling was used for the individual rhrino species 

datasets, which did not satisfy the assumptions of parametric statistics. Each statistical 

tool had its own advantages and disadvantages. By using Akaike's infonmation criterion 

for model selection among the set of tapir regression models, I was able to evaluate the 

weight of evidence for each model, more reliably identify the best model!( s:) in the set, 

and rank the importance of each variable [Burnham and Anderson, 2002T This 

technique, however, was somewhat limited for exploratory data analysis.. Selecting the 

set of candidate models can be challenging if little is known about the system. 

Furthermore, the number of a priori models that can be appropriately cv:al1uated is 
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restricted by the size of the dataset. Even exceeding this limit, valuable models may have 

been left out of the model set. Classification and regression trees allowed for greater 

flexibility. However, choosing the appropriate model, or tree size, was more complicated 

due to problems with model stability and over-fitting the data. For this reason, cross 

validation techniques were used to help determine the most parsimonious model that best 

fit the data. Despite their differences, both statistical analyses for tapirs and rhinos 

yielded informative and useful results. 

The three tapir species [i.e., Baird's (Tapirus bairdii), South American 

(T terrestris), and Malay (T indicus)] were found to respond similarly to theiir captive 

environment. On average, tapirs have been successfully managed, with stable or 

increasing captive populations. Zoological institutions with more enclosures, greater 

overall exhibit complexity, and more individuals housed and transferred, tended to have 

higher reproductive rates. No significant correlations were found between tapir mortality 

and their captive environment, though mortality did appear to be related to their health. 

Health problems tended to decrease with decreasing density, increasing variatiion between 

outdoor and indoor enclosure sizes, and increasing public perimeter. Mud waJlows were 

associated with fewer skin problems, while climate was related to both eye arnd foot 

problems. Significantly correlated, exhibit size and complexity also were factors in tapir 

health and together may be important for tapir management. 

Each rhino species, on the other hand, responded differently to their eruptive 

environment. Moreover, the captive populations of black (Diceros bicornis) mnd white 

(Ceratotherium simum) rhinos have been demographically unstable. The needl for new 
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individuals from the wild to supplement declining captive populations undermines the 

conservation goals of zoos and further exacerbates the endangered status of these species. 

While the captive population oflndian rhinos (Rhinoceros unicornis) is self-sustaining, 

Indian rhinos have experienced numerous foot and other health problems. Factors 

potentially important for captive rhino management included climate, exhibit area, social 

groupings, enclosure complexity, diet, human presence, and vaccinations. Climate was 

correlated with reproduction, mortality, or health for all three rhino species, with warmer, 

wet climates seemingly better suited for rhino husbandry. In addition to climate, black 

rhinos appeared to be responding to exhibit size and number of individuals, particularly 

males. This is likely due to the primarily solitary behavior of males in the wild. White 

rhinos, however, showed evidence of social grouping requirements for successful 

reproduction. AJthough Indian rhinos are more successfully managed, possible 

improvements could be made by altering feeding regime, reducing time spent by keepers, 

increasing exhibit size, and minimizing area and time on hard indoor surfaces. Special 

considerations for each rhino species are needed to help improve reproduction, lower 

mortality rates, and prevent health problems. 

The following question then remains: why do captive rhinos experience 

reproductive failure, high mortality, and numerous health problems whereas tapirs are, in 

general, successfully managed in captivity? Multiple reasons may explain this 

phenomenon. First, there is obviously a size difference between these two groups. 

Rhinos are approximately five to six times the size of tapirs in terms of body mass. 

Indian and white rhinos, the largest rhino species, range in size from 1,800 to 2,200 kg 



[Fouraker and Wagener, 1996], whereas the largest tapir species, the Malay tapir, can 

weigh 450 kg [Barongi, 1993]. Clubb and Mason [2003] found that carnivores with 

larger home range sizes experienced higher infant mortality and stereotypic behavior in 

captivity. Similar to their findings, rhinos in this study had a higher incidence of 

stereotypic behavior than tapirs (Tables 2-7, 3-3). 
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Home range sizes can vary considerably depending on resource availability, 

resource distribution, organism traits, species interactions, and other factors. However, as 

initially demostrated by McNab [ 1963 ], home range size tends to scale allometrically 

with body size in the following form: 

H=YoM
b (Eq. 1)

where H is home range size, M is body mass, Yo is a constant, and b is the scaling 

exponent or slope. Home range sizes for tapir and rhinos have been reported between 1 

to 12.75 km
2 

and 2 to 133 km
2
, respectively [Groves, 1972; William and Petrides, 1980; 

Laurie et al., 1983; Hillman-Smith and Groves, 1994; Brooks et al., 1997; Foerster and 

Vaughan, 2002; Kretzschmar, 2002; Medici et al., 2003]. McNab [1963] originally 

proposed that home range size would scale to the % power in relation to metabolic rate 

and body mass. This allometric scaling law has been repeatedly examined and adjusted 

to try to account for deviations [ e.g., Swihart et al., 1988; Holling, 1992; Haskell et al., 

2002]. Constructing a model that incorporated the resource distribution and structure of 

the environment, Haskell et al. [2002] concluded that the scaling exponent should vary 

over a range of 3/4 to 11/12 for herbivores in a two-dimensional environment. Applying 
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this theory in the captive environment to assess how closely enclosure sizes scale to body 

mass and home range size may prove informative. 

Mean body size and median exhibit sizes were used to calculate the scaling 

exponent observed in captive environments (Fig. 4-1 ). Not surprisingly, the scaling 

exponent (b = 0.52) was much lower than the range predicted by Haskell et al. [2002]; if 

enclosure sizes scaled similarly to home range sizes, the scaling exponent should be 

between 0.75 and 0.92. The lower scaling exponent for tapir and rhino enclosures 

indicates that the proportional increase in enclosure sizes is approximately 30% or more 

below the allometric scaling pattern observed in nature. Thus, the larger rhino species 

appear to have less space available in captivity as a function of their body size compared 

to tapirs. Exhibit size as a proportion of home range size, however, did not significantly 

decrease with body size (F1.4 = 0.62, P = 0.47; Fig. 4-2). Consequently, differences 

between the captive populations of tapirs and rhinos cannot be solely explained by 

differences in space allocation in relationship to their body mass and home range size, 

although it may contribute to some of the problems experienced by captive rhinos. As 

noted in the previous chapters, enclosure size was found to be a key factor for both tapirs 

and rhinos in captivity. 

Another possible reason why captive management of tapirs has been more 

successful than rhinos is the species level differences among rhinos. A cookie cutter 

approach to captive rhino management would not work for all rhino species since each 

has their own requirements. For example, black rhinos are browsers and have specific 

dietary needs. Being fed a standard grazing diet used for the other rhino species has 
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created problems [Fouraker and Wagener, 1996]. In this study, I found that higher levels 

of alfalfa were associated with the incidence of hemolytic anemia. Furthermore, social 

behavior differs between rhino species. Unlike the pattern shown for black or Indian 

rhinos, reproductive rate for white rhinos was higher with more males and higher 

densities. Conversely, tapirs have very similar life history traits and ecological 

requirements. This coupled with their smaller size may contribute to their relative ease of 

management in captivity. 

Interestingly, the main health problems experienced by rhinos were the same as 

for tapirs; skin and foot problems were prevalent for both families. Climate appeared to 

play a major role, particularly for skin problems. Eye problems of Malay tapirs also were 

associated with climate. Both tapirs and rhinos are tropical/subtropical species, so the 

North American temperate climate may present suboptimal environmental conditions for 

these species. Special considerations to moderate the effects of climate, such as the 

provision of shade and adequate water sources, are needed to offset potential health 

problems. 

As shown in this study, the environment provided within the zoo can be critical 

for the maintenance of self-sustaining captive populations and the conservation of 

wildlife species that are threatened with extinction in their native habitat The 

relationships among the various factors that define the captive environment and species 

responses, however, are highly complex. Multiple interactions and correlations among 

variables make unraveling husbandry problems a challenge. Tradeoffs between factors, 

logistical constraints, and individual behavioral differences further confound the problem. 
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The patterns identified across the multiple zoological institutions in this study are 

intended to help elucidate key factors important for the successful management of captive 

tapirs and rhinos. An adaptive management approach should be employed to test the 

effects of these factors on reproduction, mortality, and health. While studbook data 

provide valuable life history information, similar databases should be kept regarding the 

specific husbandry procedures and enclosure design. Assessing the changes and effects 

over time may be critical, particularly for long-lived species such as tapirs and rhinos. 

Ultimately, this information can be used to improve husbandry guidelines and to bring us 

one step closer to reaching captive management and conservation goals. 
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