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ABSTRACT 

Predictively Mapping the Plant Associations of the North Fork John Day Wilderness 

in Northeastern Oregon Using Classification Tree Modeling 

by 

Alison M. Kelly, Master of Science 

Utah State University , 1999 

Major Professor: Dr. Mary E. Barkworth 
Department: Biology 

lll 

Shifting perspectives on restoration and management of public lands in the inland 

West have resulted in an increased need for maps of potential natural vegetation which 

cover large areas at sufficient scale to delineate individual stands . In this study, 

classification tree modeling was used to predictively model and map the plant association 

types of a relatively undisturbed wilderness area in the Blue Mountains of northeastern 

Oregon. Models were developed using field data and data derived from a geographic 

information system database. Elevation, slope, aspect, annual precipitation, solar 

radiation, soil type, and topographic position were important predictor variables. The 

model predicted plant association types with a relatively high degree of accuracy for most 

plant association types, with the lowest accuracy for the types within the grand fir series. 

Fuzzy confusion analysis was used to analyze model performance, and indicated the 

overall model accuracy was 72%. 

(69 pages) 



iv 

ACKNOWLEDGMENTS 

This thesis could not have been completed without full support from the Umatilla 

National Forest. Karl Urban supported this work from its inception and provided 

anything and everything that was needed. Kari Yanskey greatly assisted me by 

identifying plant specimens and by helping me negotiate the forest GIS database. The 

friendship and support of all the botanists of the Umatilla are greatly appreciated. 

Additionally, I would like to thank Charles Johnson for sharing plot data. 

I would like to thank my committee, Drs. Mary Barkworth, Ted Evans , Janis 

Boettinger , and David Roberts, for all their support throughout this process. I would 

especially like to thank Dave Roberts for his patience, his assistance with all manner of 

software problems , and his infinite interest in the forests of eastern Oregon. 

Warm thanks goes to the Kelly family, who supported and encouraged me 

continually. I would also like to thank Olivia Messinger, Kim Pierson, Joe Mendelson, 

and all my friends who kept me laughing, never lost patience, and helped in every way 

imaginable. 

This work is dedicated to the late Karl Urban. 

Alison Kelly 



v 

CONTENTS 

Page 

ABSTRACT ..................................................................... ............................... ............... iii 

ACKNOWLEDGMENTS ....... ................................. ............................... ....................... iv 

LIST OF TABLES ......................................................................................................... vi 

LIST OF FIGURES .................................................. ..................................................... vii 

INTRODUCTION ............................................ ............................................................ .... 1 

OVERVIEW ..................................................................................................................... 3 

Potential Natural Vegetation .................................................... ............................ 3 
Vegetation Response Analysis ............................................. .............. ................. .4 
Predictive Modeling: Concepts and Methods ..................................................... 6 
Selection of Predictor Variables ........................................................................... 8 

MATERIALS AND METHODS ............................... .................................................... 11 

Study Site .................................................. ......................................................... 11 
Database ............................................................ ................................................. 16 
Predictive Modeling ...................... ............... ....................................... ............... 25 

RESULTS ................... ................. ................................................... ................................ 29 

Plant Association Data ................................. .......................................... ........... .29 
Predictive Modeling ........................................................................................... 29 

DISCUSSION ................................................................................................................ 37 

Examining the Tree Model .............................. ................................................... 37 
Fuzzy Confusion Analysis ................................................................................ .40 
Considerations and Conclusions ....................................................................... .42 

LITERATURE CITED ....................................................................................... ........... 44 

APPENDICES ............................... ............................................................. .................... 49 

Appendix A: Soil Data Tables ................... ....................................................... 50 
Appendix B: Species List .................................................................................. 53 
Appendix C: Table of Similarity Values .............. .......................... ................... 57 
Appendix D: Fuzzy Analysis of Final Model ................................................... 59 
Appendix E: Fuzzy Analysis of Secondary Model ........................................... 61 



vi 

LIST OF TABLES 

Table Page 

1 Summary of environmental predictor variables and their sources ................... .. 24 

2 Summary of plant associations, codes , number of sample points, and 
codes in the final model ..................... ................................ ............. ............... ... .30 

Al Summary of specific soil properties for each soil mapping unit defined 
in Ehmer (1978) ................................................................................................. 51 

A2 Complexes which occur within the study site ........ ..... ....................................... 52 

Cl Similarity matrix for plant association types based on inventory plot 
data and data given by Johnson (unpubl.) ........... ........... .................. ......... ......... 58 



Vll 

LIST OF FIGURES 

Figure Page 

1 Location of the North Fork John Day Wilderness in Oregon ........... ................. 12 

2 Map of the 200 known plant association data points within the study area ....... 17 

3 Elevation in meters for the North Fork John Day Wilderness .................. ......... 19 

4 Soil types of the North Fork John Day Wilderness .................. ........... ............... 21 

5 Diagram of the tree model produced to predict the plant associations of 
the North Fork John Day Wilderness ............. ........................ ........ ................ .... 31 

6 Diagram of the secondary tree model produced to predict the plant 
associations of the North Fork John Day Wilderness ........ ................................ 33 

7 Predicted plant associations of the North Fork John Day Wilderness ............... 35 

8 Map of the fuzzy probability for each terminal node ................ ......................... 36 



INTRODUCTION 

Current concerns over declines in forest health and the anticipated effects of 

global climate change have led to an increased interest in the spatial representation of 

vegetation at the landscape, regional, and global scale. Unfortunately, traditional 

methods of vegetation mapping are too expensive and time-consuming to implement over 

large areas . The development of geographic information systems (GIS) and other tools 

for spatial analysis and visualization and the recent combination of these tools with 

predictive models have allowed for maps of predicted vegetation to be created over large 

areas (e.g., Moore et al. 1991; Brzeziecki et al. 1993; Franklin 1998). 

A major focus of some recent mapping efforts is in representing the climax or 

potential natural vegetation (PNV) at a landscape scale for the purposes of environmental 

management, restoration , or investigating vegetation-environment relationships (Moore 

et al. 1991; Lees & Ritman 1991; Palmer 1991; Lynn et al. 1995). On a landscape level, 

the factors affecting the distribution of PNV are those which influence the amount of 

water, solar radiation, and nutrients available to plants. Because of this, the PNV 

supported by a site is an indication of the natural conditions operating there (Pfister & 

Arno 1980 ; Kalkhoven & van der Werf 1988; Brzeziecki et al. 1993) and can be thought 

of as an index of site potential (Layser 1974). Representing PNV spatially in a GIS is 

valuable for land management decisions in complex or mountainous terrain, allows for 

manipulation of the data, and permits the combining of these data with other spatially 

explicit models. 

In order to predictively model and map the PNV for an area, there must be 



sufficient representation of mature or climax vegetation from which to draw information 

about correlated environmental variables. There must also be spatially interpolated 

values for these correlated environmental variables for the area, preferably stored in a 

GIS. If botr. of these conditions are met, then it is possible to extrapolate small, point

based field observations of mature vegetation types within a study area to predict the 

PNV over fr.e entire study area. 

The Jbjectives of this research were to develop, analyze, and spatially represent a 

predictive rr.odel for the potential natural vegetation of a small, relatively undisturbed 

wilderness area in northeastern Oregon. This area has experienced a minimum of 

disturbance Jue to humans, has many representative stands of mature vegetation, and is 

irn;;Iuded inc. fairly extensive GIS database managed by the Umatilla National Forest. 

Little is kno wn about the relationships between the vegetation of the Blue Mountains and 

the controlli ng climatic and edaphic variables , and there are current concerns of the 

health of forests in the region. Therefore, this is an ideal site for such a mapping effort. 

2 
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OVERVIEW 

The goal of predictively mapping potential natural vegetation is relatively new 

and is related to the increasingly widespread use of GIS and other tools for spatial 

analysis. However , many of the concepts underlying the idea are derived from a more 

established , yet dynamic , theoretical base. This section begins with a short definition and 

background of the notion of potential natural vegetation. Next, because predicting the 

distribution of vegetation requires an understanding of its correlated or controlling 

environmental factors, an overview of vegetation response analysis is given. Then, a 

brief summary of predictive vegetation modeling concepts and methods is presented, with 

comments on the current trends. Finally, a comment on the selection of predictor 

variables used in predict ive modeling is given. 

Potential Natural Vegetation 

The potential natural vegetation of an area can be defined as the vegetation that 

would develop at a site if left without human disturbance for a sufficiently long period of 

time . Reaching a dynamic equilibrium with the current climatic , hydrological, and 

edaphic conditions, the site will eventually consist of those species that are able to 

establish, persist, and reproduce. This probable assemblage of species, projected from 

existing conditions, is referred to as the potential natural vegetation (Tiixen 1956 in 

Kalkhoven & van der Werf 1988). Thus, while the existing plant community can be 

indicative of a site's PNV, the two often differ (Kalkhoven & van der Werf 1988). The 

basic unit of classification of the PNV in the Rocky Mountains is traditionally termed the 

"habitat type," which "is a collective term for those physical environments capable of 



supporting a particular climax plant association" (Layser 1974, p. 354). In the Pacific 

Northwest Region, the Forest Service uses the term "plant association" instead of habitat 

type, and this convention has been adopted for this study. 

Classifications of plant associations were first employed in the western U.S. by 

Daubenmire (1952), and have since been used commonly to categorize the environment 

across much of the inland West (Pfister & Arno 1980). The advantages of PNV 

classifications over earlier and more generalized methods, evidence of the increased 

acceptance of the method by the early 1970s, and applications of these classifications are 

reviewed by Layser (1974). Because the PNV is an indication of the natural conditions 

functioning at a site, mapping PNV over landscapes can be useful for ecological research 

and land management (Layser 1974; Pfister & Arno 1980; Kalkhoven & van der Werf 

1988; Brzeziecki et al. 1993). Producing maps of PNV or existing vegetation over large 

areas in the traditional manner (Deitschman 1973) is costly and time-consuming, and 

recent efforts have focused on developing predictive models which can then be linked to 

a geographic information system (GIS) for spatial representation. 

Vegetation Response Analysis 

4 

The basis in ecological theory for predictive vegetation modeling is the concept of 

the niche, defined by Hutchinson (1957) as the hypervolume, determined by 

environmental factors, in which a species can survive and reproduce. In nature, biotic 

forces such as competition reduce this hypervolume, which is then referred to as the 

"realized niche" or, more commonly in vegetation response analysis, "species response 

volume" (Franklin 1995). Drawing from Gleason's (1926) individualistic concept of a 



plant species' unique response to the environment, work in the 1950s and 1960s focused 

on community-level , continuous distributions of plant species along environmental 

gradients. This continuum concept has come to be the generally accepted model of plant 

community structure, and communities are seen as continuously varying along the 

continuum. Until recently, the shape of a species response along a gradient was 

considered to be bell-shaped and unimodal (Whittaker 1956; Gauch & Whittaker 1972). 

However , recent empirical evidence shows that skewed and bimodal responses occur 

more commonl y than normal responses (Austin et al. 1990; Collins & Glenn 1990). 

These findings mean that the statistical assumptions of many tools used in vegetation 

response analysis have been violated, and consequently nonparametric approaches to 

modeling plant response surfaces have been employed with increasing frequency (Bio et 

al. 1998) . 

The major tools for analyzing vegetation response to the environment fall into 

three main categories: ordination , regression techniques, and machine-learning methods. 

Ordination methods used in plant community analysis include principal components 

analysis (PCA) (Bradfield & Scagel 1984), detrended correspondence analysis (DCA) 

(Hill & Gauch 1980), nonmetric multidimensional scaling (NMDS) (Whittaker 1987), 

and canonical correspondence analysis (CCA) (ter Braak 1987). These represent 

techniques which allow for both linear (PCA) and nonlinear (DCA, NMDS, CCA) 

responses to the environment. Regression techniques include general linear models, 

generalized linear models (GLMs) introduced by Austin et al. (1984), and the non

parametric extension of these, the generalized additive models (GAMs). Of these , the 

GAM is the least restrictive, allowing for both linear and complex vegetation responses, 

5 



and it includes smoothers that can fit any shape of response curve (Bio et al. 1998). For 

these reasons, GAMs have been employed in several recent studies to determine species 

response surfaces (Austin et al. 1990; Bio et al. 1998) and to predict plant species 

distribution by linking these models with a GIS (Austin et al. 1994c; Brown 1994; 

Franklin 1998). 

The machine-learning methods used in exploring vegetation-environment 

relationships are neural networks and classification and regression trees. Presumably 

because they require skill and experience to use successfully (Austin et al. 1994b), neural 

network techniques are not used widely in vegetation modeling. Much more frequently 

used in predictive vegetation modeling, classification and regression trees (CART) were 

developed by Breiman (1984). Suggested for use in vegetation analysis by Verbyla 

(1987), CART was previously applied in optimization and prediction in medicine and 

industry. Although the conditional rules of CART models make it difficult to examine 

species response surfaces (Austin et al. 1994a), they do provide reasonable curves that 

are similar, and in some cases, "at least as good" as those produced by GLM and GAM 

models (Austin et al. 1994a). Of the methods of vegetation response analysis mentioned 

above, the GLM, GAM, and CART models are currently the most commonly employed 

in predictive vegetation modeling and mapping. 

Predictive Modeling: Concepts and Methods 

6 

The concept of combining vegetation analysis methods with a GIS to represent 

predictions spatially was introduced by Kessell (1979; in Franklin 1995). Since that time , 

a set of different techniques has been used predictively with many different mapping 



goals, incluiing representing the existing vegetation, PNV, plant species richness, 

diversity, , aid vegetation structure. A full review of this topic can be found in Franklin 

(1995); pmented here is a brief outline of some of the trends in predictive vegetation 

modeling aid mapping and some comments on more recent work. 

Sorre of the earliest predictive vegetation models were based on Boolean logic . 

These predd one class per location based on ranges of explanatory data variables , and 

these data rmges can be modeled or actually observed . A number of statistical models 

have also been used. Earlier examples of parametric models would include maximum 

likelihoo d models, linear regression , discriminant analysis, logistic regression models , 

and GLMs . Because vegetation responses to the environment have been found to be 

ngnlin{:ar and nonnormal, the assumptions of these parametric models are violated. 

Recently , the nonparametric GAMs have been used with increasing frequency , and these 

models, like classification trees, predict the probability of class membership. Lastly, 

machine-lea~ning type models such as expert systems and CART have been employed to 

predict vege :ation distribution . Expert systems , where someone very familiar with the 

vegetation and ecology of an area subjectivel y makes predictive rules to determine the 

distribution of vegetation, are often time-consuming to develop and not repeatable. 

7 

The CART method is advantageous because it is nonparametric, tends to be 

robust to outliers (Verbyla 1987), captures hierarchical relationships well (Michaelson et 

al. 1994), and provides output in the form of a dichotomous key that is easy to implement 

in the field. Because it is difficult to extend GAMs beyond a binary response such as 

presence or absence of a species, CART is advantageous in certain modeling efforts , as it 

handles multiple possible classes directly. Classification trees differ from regression 



trees in that the response variable is categorical, such as a plant association, and the 

predictions are class membership probabilities for these categories; regression trees 

predict average values and the response variables are continuous. This study focuses 

primarily on classification trees. 

8 

The first use of classification trees in predictive vegetation modeling and mapping 

was by Moore et al. (1991), where a tree classifier was linked with a GIS and 

subsequently used to predictively model and map 30 forest types in southeastern 

Australia . Lynn et al. (1995) used classification tree modeling to predict PNV in central 

New York State, and Skidmore et al. (1996) employed this method in predicting 

kangaroo habitat across Australia. Recently, comparisons of results from CART, GLM, 

and GAM models have been undertaken . Austin et al. (1994 a,b) found that, overall, 

GAMs performed best in predicting several Eucalyptus species distributions, but the tree 

models in this study were not pruned as suggested by Clark and Pregibon (1992). 

Franklin (1998) compared the predictions of these models for 20 species of shrubs in 

southern California. For each species, the three models generated all had similar levels of 

accuracy, but classification trees "yielded the lowest prediction errors (lower by 3-5% )" 

(Franklin 1998, p. 733). 

Selection of Predictor Variables 

The major factors affecting the distribution of potential natural vegetation are 

those which influence the amount of water, solar radiation , and nutrients available to 

plants. Over regional scales, climate exerts the greatest control over the pattern of 

vegetat ion (Covington et al. 1994). On smaller scales where climatic conditions do not 



9 

vary WJ.dely, such as the landscape level, topography and parent material most greatly 

affect ~ite moisture, radiation, and nutrient levels and therefore plant distribution. Austin 

et al. (J984) define two major types of gradients based on these ideas. "Direct gradients " 

are those which have a direct physiological effect on a plant, such as amount of solar 

radiaticn or available water. "Indirect gradients ," the second type of gradient , are those 

that rei:resent a number of interrelated factors that act together to affect a resource needed 

by a plmt and are often location-specific. Examples would include aspect , elevation, and 

topogr aphic position . As the direct gradients of moisture and nutrient availability are 

often difficult to measure in the field , surrogate factors which affect these gradients 

indirect ly are used to predict PNV (Roberts & Cooper 1987; Moore et al. 1991). For 

exam ple, the moisture budget of a site can be influenced by a number of topographic and 

edaphic factors, including slope curvature , topographic position , surface and subsurface 

soil texture , and soil depth . Moore et al. (1991) comment that the use of indirect 

gradients in predicting vegetation can result in a complex model, but further note that 

exclusive use of direct gradients may not be feasible "as it would require prior 

specification of the relationships between the direct gradients and the many topographic 

and edaphic variables that determine these" (Moore et al. 1991, p. 60). 

In this study, both direct and indirect factors were used to predict PNV over the 

study area. Recent radiation modeling efforts (Dubayah 1994) have resulted in good 

estimates of solar radiation over landscapes, and these data were used in this study. 

Improved spatial hydrologic models are also being developed ( e.g., Tarboton 1997), 

which aid in determining moisture gains and losses due to the flow of water over uneven 

terrain. Future work could be done based on Moore et al. (1993a) in predicting soil 



attributes over landscapes based on digital elevation models. Interpolating direct soil

related gradients could be very useful in predictive vegetation mapping , as it may 

overcome some of the current limitations of traditional soil maps , which can have large 

variation within mapping units for many properties which affect plants. 

10 
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MATERIALS AND METHODS 

Study Site 

The North Fork John Day Wilderness (Figure 1) was established by the Oregon 

Wilderness Act of 1984. About 344 krn2 in size , it includes parts of both the Greenhorn 

and Elkhorn Ranges of the Blue Mountains in northeastern Oregon . The area is highly 

variable with respect to physiography and parent material. The Wilderness is dissected 

by the generall y east-west flowing North Fork John Day River , along which the lowest 

elevations (about 1050 m) can be found. Surrnunding the steep river canyon are rolling 

benches, mountain meadows, rocky side canyons , and abrupt ridges . The highest point in 

the study site is Desolation Butte, which rises to 2135 m. 

The Blue Mountains were formed by the collision of oceanic and continental 

plates during the early Triassic period , about 200 million years ago . The subducting 

ocean plate added material to the then coastal mountains, which were composed of 

sedimentary rocks of the coastal plain and from the ocean floor. Extensive volcanism 

followed , covering large areas with basalt material until around 35 million years ago. At 

this time , granitic intrusions formed further inland in smaller areas. Another period of 

volcanism occurred in the Miocene, about 20 to 25 million years ago, which added more 

basaltic rock to northeastern Oregon (Alt & Hyndman 1978). Major volcanic activity in 

the Blue Mountains ended 12 million years ago. During the Pleistocene, two million 

years ago, alpine glaciation occurred in the highest peaks of the Greenhorn, Elkhorn, and 

Strawberry ranges and resulted in redistribution of upper elevation geologic materials, 

including intrusive granite. The major parent materials evident in the Blue Mountains 
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Fig. L Location of the N01th Fork John Day Wilderness in Oregon (projection in Universal Transverse Mercator). 
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today include marine sedimentary rock, meta-volcanics, granite, and basalt (Ehiner 

1978). 

The diversity of parent materials contributes to the variety of soils found in the 

North Fork John Day Wilderness. Additionally, the eruptions of both Glacier Peak 

(12,000 years ago) and Mount Mazama (6,800 years ago) resulted in the deposition of ash 

over most of the Blue Mountains. This ash was later redeposited by wind and water 

(Johnson & Clausnitzer 1992). The silt-sized ash is a major influence on many of the 

soils of the region. In contrast to the draughty basalt-derived soils, ash-influenced soils 

tend to have higher water-holding capacities and fewer coarse fragments in the rooting 

zone. Thus , these soils tend to hold more water during the dry summer months 

characteristic of this region (Geist & Strickler 1978). Across the Wilderness, soils vary 

from shallow , coarse soil mapping units with basaltic or granitic parent materials to units 

with deep clays or clay loams derived from tuffs and pyroclastics (Ehiner 1978). Specific 

soil properties for each mapping unit found within the Wilderness are listed in Appendix 

A. 

Most of the precipitation in this part of the Blue Mountains occurs during the 

winter months. Local relief influences both precipitation and temperatures, with higher 

elevations being both colder and wetter than the values reported here, which were 

recorded in Ukiah, Oregon, at approximately 1100 m. The 30-year (1966 to 1996) 

average annual snowfall is 97.8 cm and less than one-fifth of the mean annual 

precipitation of 41.6 cm falls in June, July, and August. Temperatures vary widely, with 

annual average highs of 14.8 °C and lows of -2.3 °C (Anon. 1999). 

The potential natural vegetation in the Wilderness includes plant associations 
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within the subalpine fir (Abies lasiocarpa (Hook.) Nutt.), grand fir (A grandis (Dougl. 

ex D. Don) Lindl.), Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco), 

lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Wats .), and ponderosa pine 

(Pinus ponderosa P.& C. Lawson) series. Subalpine fir associations occur only at fairly 

high elevations within the study area, generally above 1800 m. Stands within this series 

at lower elevations tend to occur in frost pockets (Franklin & Dymess 1988). In general, 

these stands are indicative of the coolest and wettest sites in the Wilderness. The 

desiccation of sites by wind has been noted as one factor limiting the distribution of 

subalpine fir plant associations (Johnson et al. 1994). 

Occurring at lower elevations than subalpine fir, the grand fir series is widespread 

throughout the study site and is especially common on northerly aspects and in sheltered 

canyons. Grand fir plant associations comprise the most extensive midslope forest zone 

in the Blue Mountains. They typically occur on volcanic ash soils (Franklin & Dyrness 

1988). The common plant associations within the series range from characteristically 

mesic types with twinflower (Linnaea borealis L.) and queen's cup beadlily (Clintonia 

uniflora (Schult.) Kunth.) in the understory to drier types with pinegrass (Calamagrostis 

rubescens Buckl.) present in the herbaceous layer. Intense fires at intervals of less than 

150 years tend to result in dense, seral stands dominated by lodgepole pine on sites 

supporting this species (Agee 1994 ). 

Douglas-fir plant associations are also widespread but tend to occupy slightly 

drier and warmer sites than the grand fir. Several of the associations within this series 

ccmmonly occur on steep canyon slope positions (Agee 1994 ). While not always locally 



abundant in the Blue Mountain region (Franklin & Dyrness 1988), many stands within 

the Dougla s-fir series can be found within the Wilderness . 

15 

Found mainly on southerly aspects or rolling topography at elevations below 1600 

m, ponderosa pine plant associations are open, parklike stands. These climax 

communities tend to occur on "coarse, sandy soils and where fissures in the underlying 

bedrock permit the tree to tap deep moisture sources" (Agee 1994). Franklin and 

Dyrness (1988) report that the soil moisture regime is the most important factor in 

determining the plant association within this series . This vegetation type is the most 

stable with regard to disturbance in the Blue Mountain landscape (Agee 1994, p. 30). 

The lodgepole pine series is represented in the Blue Mountains by a single plant 

association, the lodgepole pine/pinegrass association. This type is thought to be a 

topographic and edaphic climax, following Tansley ' s (1935) polyclimax concept. It 

occurs only in frost pockets where cold air tends to accumulate. These sites are 

characterized by frosty, wet soils that are unsuitable for survival and reproduction of 

other tree species (Johnson & Clausnitzer 1992). Because soil moisture is important for 

lodgepole pine seeding establishment, this plant association is never found on steep 

south-facing slopes (Agee 1994). While seral lodgepole stands occur over many parts of 

the Wilderness, the climax plant association is uncommon. Also uncommon, wet 

meadows and scattered, dry grasslands dominated by Sandberg bluegrass (Poa secunda J. 

Presl), occur only over small areas of the study site. 
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Database 

Both field observations and data from GIS layers were used to develop the 

database for input into the classification tree model. Field observations were collected in 

a stratified random fashion during the summers of 1996 and 1997. Plant association 

point data were recorded when representative stands were located and were found to 

correspond to the plant associations described in Johnson and Clausnitzer (1992). For 

each of the 200 known data points across the Wilderness (Figure 2), the plant association 

type was determined according to Johnson and Clausnitzer (1992) . Meadow plant 

associations, not addressed in Johnson and Clausnitzer (1992), were recorded as 

"meadow" types . In the field, the points were georeferenced using a hand-held GPS, and 

the slope, aspect, and elevation were found using a clinometer, a compass, and a 7 .5" 

topographic map, respectively. In order to minimize errors associated with inaccurate 

GPS readings, location coordinates were always determined at least 100 m away from 

any transition in vegetation type. 

At representative plant associations, a total of 26 inventory plots were designated 

to further characterize plant species composition and soil attributes of the major plant 

associations of the Wilderness. Each type was represented by a least three inventory 

plots. Circular plots with a radius of 11.32 m (0.1 acre in area) were established, and 

coverage percentage of all vascular plant species was determined visually according to 

Johnson and Clausnitzer (1992). Voucher specimens of plant species were collected , 

dried in a standard plant press , and deposited in the Intermountain Herbarium at Utah 

State University. Species identifications were made using Hitchcock and Cronquist 

( 1973), and specimens of difficult taxa were verified by two botanists of the Umatilla 
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National Forest, Karl Urban and Kari Yanskey. Taxonomic circumscriptions and name 

changes were carefully considered and nomenclature follows the USDA PLANTS 

database . At each plot site, soils were characterized using abbreviated pit descriptions . 

Soil pits were excavated to bedrock or to a depth of 120 cm, whichever was shallower. 

For each horizon , moist and dry colors were determined using the Munsell notation, and 

the texture and clay content were found using the texture-by-feel method. Also, dry, 

moist , and wet consistence was recorded, the pH for each horizon was determined using 

colorimetry, and the volume of coarse fragments was visually estimated. Samples of 

soils from each horizon for each site were also air-dried at room temperature and stored 

for future analysis. These soil data were intended to supplement data for mapping units 

in the Umatilla National Forest Soil Resource Inventory, and to aid in the determination 

of soil characteristics with predictive value for plant associations. 

The GIS layers used in the development of the database were provided by the 

Umatilla National Forest and manipulated using ARC/Info Version 7 .1.2 on a PC with 

the Windows NT operating system. The digital elevation models (DEMs) for each 

quadrangle representing part of the Wilderness were merged to create a single elevation 

coverage (Figure 3). The DEMs and all other GIS layers utilized have a resolution of 30 

m. From the DEMs, slope and aspect were calculated using ARC/Info . Aspect in 

degrees is not handled well by classification tree model, as values such as 1 ° and 359° 

both represent north-facing slopes but are very different numerically. Because of this, 

these data were transformed into aspect values using the equation 

aspect value= (cos (aspect0 
- 30) + 1) I 2 
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from Roberts and Cooper (1987). 

Topographic position was also derived from the elevation layer and was obtained 

using the program Toposcale, written by Niklaus Zimmerman (unpubl.) to run in the 

GRID module of ARC/Info. This program calculates topographic position values by 

calculating the mean elevation value for square cell neighborhoods and subtracting the 

mean value for the center cell. The program operates on multiple scales by iterating with 

different numbers of cells per set. For example, values would first be calculated using a 3 

x 3 cell neighborhood, then again using a 5 x 5 cell set. For the final value of each cell , 

the program compares the standardized values of each iteration from the largest cell set to 

smallest , and the smallest values are chosen . The final layer has a range of values from 

negative to positive, with highly negative values indicating lowest slope positions such as 

stream channels, zero indicating flat areas, and positive values representing higher 

position s such as ridgelines. 

The geology layer contained categorical data relating to parent material. This 

layer was originally digitized by the Umatilla National Forest from a 1 :500,000 map 

drawn by the U. S. Geological Survey. Also consisting of categorical data, the soil type 

layer (Figure 4) contained mapping units that are described in detail in Ehmer ( 1978) and 

summarized briefly in Appendix A. These data and also data calculated from this source 

by Busskohl (unpubl.) were used to create separate layers describing aspects of the 

mapping units thought to influence the distribution of plant associations. These 

continuous data layers were created in ARC/Info and included total soil depth, the 

estimated water holding capacity of the rooting zone, the percentage of coarse fragments 

in the rooting zone, the thickness of the ash layer in the soil profile, soil taxonomic 
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moisture and temperature regimes, and mineralogy class. All of these data layers 

represent average values for each soil attribute for numerous observations within each 

soil mapping unit. 
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The precipitation layer was produced for the Umatilla Forest by the Oregon State 

Climate Service Center and originally contained only contours representing annual 

precipitation in 5-inch intervals . These data were manipulated in ARC/Info so that each 

cell would contain a numerical value . Values for the entire map were generated 

through the use of the ARC/Info Triangulated Irregular Network algorithm and these 

values were then stored in a new precipitation layer. 

A layer approximating average annual direct solar radiation was developed using 

the Solarflux Version 2.1 program (Hetrick 1996). A full description of this program can 

be found in Dubayah (1994) . Briefly , this program uses as input a DEM, start and end 

times, the Julian day, the latitude and longitude of the site , and the local time meridian . It 

also includes a feature that calculates the shading of areas over the landscape produced by 

local topography. Calculations for daily total solar radiation were made for every ten 

days of a calendar year, and these values were then added and expressed in 

kilojoules/m 2 /year . 

In order to estimate soil moisture due to runoff across the study area, a simple 

topographic wetness index was calculated as: 

where Wi is the wetness index, A is contributing area, and ~ is the slope angle in degrees 

(Moore et al. 1993b). The contributing area was calculated using the Dinf method, which 



first calculates flow direction and then upslope catchment area by proportioning flow 

between downslope pixels (Tarboton 1997). The data layer was created in ARC/Info 

Grid. 
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Other layers relating to the hydrology and therefore soil moisture of the study site 

were created using algorithms in ARC/Info Grid. A grid with values approximating 

surface curvature based on a 3 x 3 cell neighborhood was created using the CURVE 

function in Grid. Also, the distance downslope to a stream was calculated from the Dinf 

grid representing contributing area described above. 

After all of the data layers were prepared, the field data point positions were used 

to sample each layer in order to extract the data corresponding to that location. The 

resulting text file was then compared with the field database to check for agreement 

between field-measured and ARC/Info-generated values for elevation, slope, aspect, and 

topographic position. With the exception of aspect, the data values for the two sources 

were similar. Brzeziecki et al. (1993) also noted this discrepancy. There was a mean 

difference of 40.3 degrees between the aspect values from the two sources. Because the 

accuracy of the GIS-derived aspect values depended upon the resolution of the DEM and 

was therefore known to be lower than the field values, the actual measured aspect values 

were used in the final database in their raw form and were also used as the basis for 

transformed aspect values for input into the classification tree model. A summary of the 

data layers and their sources is included in Table 1. 

Predictive Modeling 

The classification tree was developed using the "tree" function in S-Plus 4.0 for 
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Table 1. Summary of environmental predictor variables and their sources. 

Variable 

elevation 

slope 

slope aspect 

transformed aspect value 

precipitation 

geology type 

soil type 

-soil depth 

-rooting zone water capacity 

-percent coarse fragments 

-ash thickness in soil profile 

-soil moisture regime 

-soil temperature regime 

-mineralogy class 

solar radiation 

topographic position 

wetness index 

surface curvature 

distance to stream 

Source 

DEM 

derived from DEM 

measured in field 

calculated as indicated from field values for aspect 

Oregon Climate Service 

Umatilla National Forest 

Umatilla National Forest, from Ehmer (1978) 

-derived from soil type from above 

-derived from soil type from above 

-derived from soil type from above 

-derived from soil type from above 

-derived from soil type from above 

-derived from soil type from above 

-derived from soil type from above 

Solarflux program (Hetrick 1996) 

Toposcale program 

based on Dinf method and Moore et al. (1993b) 

CURVE algorithm in ARC/Info 

FLOWLENGTH algorithm in ARC/Info 
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Windows. The input is a text file with environmental variables as labeled columns and 

sample plots as rows. The classification tree model is then used to model plant 

association type as a function of these variables. In particular, the model selects in 

stepwise fashion those environmental variables that best distinguish successive subgroups 

of the specified association types from each other. In producing the tree, the 

classification model repeatedly selects the predictor variable that splits the data points 

into the two purest, or most homogeneous, classes. In essence , the model minimizes the 

number of misclassified data points at each split based on values for predictor variables. 

The splitting rules are made using a likelihood ratio statistic called deviance, and this 

determines the purest or best split at each node using the data. It is important to note that 

as the tree continues to grow, there are less data at any given node, so confidence in the 

splitting rules decreases (Aitken 1998). Any predictor variable may be used once, more 

than once , or not at all in the development of the tree . Also, predictor variables can be 

both categorical and continuous in nature . Partitioning continues until less than five class 

members remain (Clark & Pregibon 1992). 

This resulting tree is always overfitted, so that some of the splits are not actually 

informative (Breiman et al. 1984). To correct for this problem, the tree was pruned to an 

optimal size, which was determined through 10-fold cross-validation. In cross

validation, the original data set is divided into 10 subsamples without replacement. 

Withholding one of the subsamples, a tree is developed using the remaining 90% of the 

original data set. The excluded data points are then classified using this tree and used to 

estimate the misclassification error rate. This process is repeated until all subsamples 

have been withheld sequentially, and the mean misclassification rate from the 10 trials is 
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taken as the cross-validated estimation of accuracy (Verbyla 1987). From a plot of the 

cross-validated deviance versus the number of terminal nodes, the tree of optimal size, 

with the lowest deviance value, can be determined . Because it has been noted that the 

optimal tree size varies slightly each time a cross-validation is performed (Roberts pers. 

comm .), 10 cross-validations were performed and the optimal tree size was inferred from 

an overlay of the results . The original tree was then reduced to this size using the cost

complexity pruning method (Clark & Pregibon 1992). 

The preliminary trees developed using this method always used the categorical 

soil and geology types as predictors . Because not all of the soil and geology types (or 

combinations of the types) present in the study site were represented in the data set, it 

was necessary to develop a second tree using only continuous data as predictors. This 

second tree would be used only in those instances where the primary tree did not 

adequately describe the conditions of the site. Further information on this method can be 

found in Aitken (1998). 

To further analyze the model developed for the Wilderness, a program based on 

fuzzy set theory (Roberts 1999) was used. This program, fuzzy confusion analysis, uses 

as input a similarity matrix and the tree model. The similarity matrix was constructed 

using data from the 26 plant association plots and additional plot data provided by C. 

Johnson (unpubl.). Similarity values were calculated using the natural log of the 

coverage values. Overall, the effect of using fuzzy class membership is that "near 

misses" in prediction are taken into account in analyzing the tree. If the tree predicts a 

plant association which is incorrect, but very similar to the actual plant association, then 

the error is regarded as less severe . The program calculates weighted errors, based on the 
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ratio of the mean similarity among different plots of the same plant association to the 

similarity between the two plant associations. These weighted errors are used to calculate 

significant fuzzy errors of commission, omission, bias, and the estimated fuzzy accuracy 

of prediction for each type. The program also produces a confusion matrix, a table of the 

actual type versus the tree-predicted type. The level of confusion in the error matrix is 

given by KHAT (Cohen 1960) and ranges from -4 to 1, with values closer to one indicating 

higher levels of agreement. Lastly, the fuzzy analysis includes a fuzzy probability value 

for each terminal node in the tree . This value gives an indication of the probability that 

the prediction at that node is correct or similar to the correct value . This program was 

used to analyze both the main model and the secondary tree constructed using only 

continuous predictor variables. 

The process of predictive modeling is an iterative one, so that a model is made, 

examined for weaknesses, and the model database adjusted or expanded in the hope of 

improving predictions in the next model generated . For this study, preliminary models 

did not predict four of the five plant associations within the grand fir series . Because of 

this, these four types were aggregated into two classes as indicated in Table 2. The 

ABGR/V AME and ABGR/LIBO associations were combined to form an "wet ABGR" 

type, and the ABGR/CARU and ABGR/V ASC types formed the "dry ABGR" type. 

Additionally, few stands within the subalpine fir series were encountered, and no single 

association had more than five sample points. Because of this, all plant association 

points for this series were aggregated into a single subalpine fir type. 

The final map of the plant associations of the North Fork John Day Wilderness 

was created in the GRID module of ARC/Info using the final, pruned tree. First, the tree 



was rewritten as a series of conditional statements. Then these statements were used to 

classify each cell of a grid using the DOCELL command of GRID. Each model 

parameter existed as a grid, which GRID called up as needed in order to determine the 

value for that parameter. GRID then proceeded through the predictive key to arrive at a 

designation of a plant association for each cell. This process continued on a cell-by-cell 

basis until a complete map of the plant associations of the study area was produced . As 

noted above, a second model, created from only continuous data, was used to classify 

those pixels that could not be described by the original tree. 

28 
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RESULTS 

Plant Association Data 

Two hundred known plant association points were recorded in the North Fork 

John Day Wilderness. These represented a total of 14 different plant association types, 

12 within five forested series and two within non-forested types . Table 2 summarizes the 

plant association names, codes, the number of data points, and the codes used in the final 

model for each type. 

The vascular plant species that were encountered in the 26 plant association plots 

are reported in Appendix B. These data were combined with data provided by C. 

Johnson (unpubl.) to create a matrix of similarity values between plant associations. This 

similarity matrix , used in the fuzzy uncertainty analysis , appears in Appendix C. 

Predictive Modeling 

The initial, unpruned model for the Wilderness had 30 terminal nodes and used 

nearly every environmental variable as a predictor of plant association types. This tree 

was pruned to the optimal size of eight terminal nodes, and the predictors used in this 

smaller tree were soil type, slope, precipitation, elevation, and aspect. The final 

classification tree developed for the Wilderness predicted eight different plant 

associations with an initial estimated accuracy of 40%. The tree is presented in Figure 5. 

The types predicted by this main tree were dry ABGR, ABGR/CLUN, ABLA, 

MEADOW, PICO/CARU, PIPO/CAGE, PIPO/CARU, and PSME/PHMA. 

The model developed with only continuous environmental variables as predictors 

also initially had 30 terminal nodes, and used nearly every continuous predictor in the 



Table 2. Summary of plant associations, codes , number of sample points, and codes in the final model. 

Plant Association Code Number of points 

Abies grandis/Calamagrostis rubescens Buckl. ABGR/CARU 19 

A. grandis/Clintonia uniflora ABGR/CLUN 11 

A. grandis/Linnea borealis ABGR/LIBO 11 

A. grandis/Vaccinium membranaceum Dougl. ABGR/VAME 12 

A. grandis/Vaccinium scoparium Leiberg ABGR/VASC 12 

Abies lasiocarpa type ABLA 21 

MEADOW type MEADOW 21 

Pinus contorta/Calamagrostis rubescens PICO/CARU 10 

P. ponderosa/Carex geyeri Boott PIPO/CAGE 22 

P. ponderosa/Calamagrostis rubescens PIPO/CARU 16 

Paa secunda J. Presl/Danthonia unispicata (Thurb.) Munro POSE/DA UN 8 

Pseudotsuga menziesii/Carex geyeri PS ME/CAGE 7 

Pseudotsuga menziesii/ Calamagrostis rubescens PSME/CARU 14 

Pseudotsuga menziesii/Physocarpus malvaceous (Greene) Kuntze PSME/PHMA 16 

Code in model 

dry ABGR 

ABGR/CLUN 

wetABGR 

wetABGR 

dry ABGR 

ABLA 

MEADOW 

PICO/CARU 

PIPO/CAGE 

PIPO/CARU 

POSE/DA UN 

PS ME/CAGE 

PSME/CARU 

PSME/P 

(.).) 

0 
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6667414,6700014,8200014,9400014 

Soil type: 
3000014,4600014, 
8200014 

Soil type: 
4646614, 6667414, 
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pico/caru 

root 
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Soil type: 3900014, 
4800014,58000014, 
6636614 

elev< 1681 
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elev> 1681 
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4700014,5700014, 
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aspect> 300 
abgr/clun 

Fig. 5. Diagram of the tree model produced to predict the plant associations of the North Fork John Day 

Wilderness. Codes for soil types correspond to Ehmer (1978). 



32 

dataset. This tree was pruned to six terminal nodes, and used slope, precipitation, 

topographic position, elevation, and solar radiation as predictors. This secondary tree 

predicted six different plant associations. Only one of these, the wet ABGR type, was not 

also predicted by the main model. The initial estimated accuracy of the secondary tree 

was 33%, and it is presented in Figure 6. 

The results of the fuzzy confusion analysis of the main tree, including the fuzzy 

confusion matrix , are shown in Appendix D. The overall fuzzy accuracy of the main tree , 

which as stated earlier takes into account near-misses in prediction, is 72%, with slightly 

under 145 correct predictions out of 200. There was significant bias (overestimation) in 

the prediction of the ABLA, MEADOW , PIPO/CARU, and PSME/PHMA types. For the 

main tree , the fuzzy KHAT value was 0.6781. In examining the fuzzy confusion matrix for 

the main tree, several trends are apparent. With the exception of the ABGR /CLUN and 

MEADOW types with low (53%) fuzzy accuracy values , the plant associations which 

were predicted had fairly high accuracies. Two types, the PIPO/CAGE and 

PSME/PHMA associations were correctly predicted 94% and nearly 100% of the time, 

respectively. The other ponderosa pine plant association, PIPO/CARU, was predicted 

accurately 81 % of the time. And finally, the dry ABGR, ABLA, and PICO/CARU types 

had fuzzy accuracy values of 78%, 75%, and 71 %, respectively. 

For the secondary tree, the overall fuzzy accuracy was somewhat lower at 67%. 

The results of the fuzzy confusion analysis for this model are summarized in Appendix 

E. This tree had significant fuzzy bias in all six types that were predicted. The fuzzy 

KHAT value for this tree, 0.6151 , indicated lower agreement between observations and 

predictions than in the main tree. The fuzzy confusion matrix for the secondary tree 
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Fig. 6. Diagram of the secondary tree model produced to predict the plant associations of the North Fork John Day 

Wilderness. 
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indicated that the ABGR/CLUN type was actually more accurately predicted by this 

model, which lacked soil and geology type as possible predictor variables, than by the 

main tree. This type was predicted accurately over 96% of the time, as compared to the 

53% presented above. A very high accuracy value of nearly 100% was found for the 

PICO/CARU type. This model predicted the dry ABGR, PIPO/CAGE, and MEADOW 

types with the same or slightly lower levels of accuracy than the main model. Finally, the 

dry ABGR type, which was not predicted by the main tree, was correctly predicted 84% 

of the time . In comparison with the main model, this tree did not predict the ABLA, 

PIPO/CARU, or PSME/PHMA types. 

Using both of the trees, the final map of the plant associations predicted in the 

North Fork John Day Wilderness is presented in Figure 7. A map of the fuzzy 

probability of correct prediction for each terminal node of the model is shown in Figure 

8. The main tree was used to classify 83% of the study area, and the second tree was 

used to predict plant associations over the remaining 17% of the Wilderness. Plant 

associations observed but not predicted in the study area were POSE/DAUN, 

PSME/CAGE, and PSME/CARU. 
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Fig. 8. Map of the fuzzy probability for each tenninal node. 
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DISCUSSION 

The study met its objective of predictively modeling and mapping the potential 

natural vegetation of the North Fork John Day Wilderness. The main tree model 

predicted a total of eight different plant associations, and, in combination with the 

secondary tree, allowed for the spatial representation of nine different plant associations 

across the study site. The fact that the tree model uses soil type, slope, precipitation, 

elevation, and aspect as predictors is not surprising. These are factors which are very 

commonly used by predictive vegetation models, and together they represent major 

influences on gradients of nutrients, light, and moisture. 

Examining the Tree Model 

In examining the main tree itself, the first splits are made using soil types, which 

was somewhat unexpected. Other studies (Moore et al. 1991; McCullough 1995) have 

noted that variables which act broadly over the landscape, such as elevation and geology 

type, tend to be selected as predictors high up in the tree. These same authors also 

comment that the reverse is true, that predictors which tend to affect the environment 

more locally are selected lower in the tree models. At first, the results from this study 

seem to contradict these findings. Soil type, which is a more locally acting predictor than 

elevation, slope, aspect, or precipitation is selected twice as a predictor before these more 

broadly acting variables. However, to examine the soil splits further, I created maps that 

showed the areas classified by each leaf in the tree model. From the maps, the soil type 

split generally divided the Wilderness into steeply sloping areas along the main river 

canyon and areas of more rolling relief in the uplands surrounding the canyon. From this 
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and subsequent examination of the soil type descriptions, I believe that for the most part, 

the model is initially dividing the dataset into wetter sites characterized by deeper soil 

mapping units found on rolling topography and drier sites characterized by more shallow 

soil units on steeper slopes. 

Classifying the study area in this manner makes sense ecologically, and a close 

relationship between vegetation and soil types in the region has been shown. Geist and 

Strickler (1978) noted strong agreement between parent material (ash or basalt) and 

overstory dominants in the Blue Mountains . Lentz and Simonson ( 1987) found that soil 

types closely corresponded with plant community types in southeastern Oregon. 

However, it is not clear why the topographic wetness index or any of the specific soil 

properties, especially water-holding capacity in the rooting zone and soil depth, were not 

selected as predictors along with or instead of soil type categories. Even the secondary 

model, developed without soil type and geology as predictors, failed to use any of these 

variables and instead used slope at the first split. While the soil types were mapped with 

considerable detail, the variation in soil properties within mapping units must still have 

been considerable. This variation may not have been adequately addressed by the data 

derived from the soil type coverage, and may partially explain why the indirect and 

complex gradient of soil type was preferred as a predictor. Alternatively, soil type may 

represent multiple correlated factors affecting plants in a single value and may therefore 

be the single best predictor of plant association type in the dataset. 

Within the wetter soil types, slope and precipitation are the next predictors that 

are used . Slope is used to separate meadow types from subalpine fir, and this may reflect 

different drainage patterns. Slopes less than 3.5%, essentially flat, are used to predict the 
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meadow type, which are certainly flatter areas with poor drainage of water. It is 

interesting to note here that one plant association generally found on dry sites, the 

PIPO/CARU type, is predicted here by relatively low precipitation instead of being 

included with the dry soil type group. The precipitation variable is used to separate this 

type from the PICO/CARU type, which is a topographic and edaphic climax in frost 

pockets . A layer representing the flow and pooling of cold air over the landscape would 

probably serve as a better predictor for this type. The extremely limited distribution of 

this association in the Wilderness has led to a somewhat artificial prediction of 

PICO/CARU. This plant association occurs only in one small cold-air depression area, 

which also happens to have a relatively high amount of precipitation as compared to the 

rest of the study site. Most likely, this explains why the precipitation variable was used 

as a predictor, not because the lodgepole association is actually controlled by 

precipitation . This observation is an important one. The predictions of the model are 

based on the dataset and can reveal its limitations in splits that are ecologically unsound. 

Within the drier soils group, elevation and untransformed aspect are selected as 

the next best predictors of plant association type. Higher elevations are used to 

differentiate the dry grand fir types from the PSME/PHMA plant association. Based on 

field observations, this splitting rule is fairly good for the study site but would not apply 

outside the Wilderness, since both plant associations can be found outside of these 

elevational limits. The untransformed aspect variable separates the PIPO/CAGE plant 

association from the more mesic ABGR/CLUN type, with northwest- to north-facing 

aspects predicting the grand fir association. This is a rational split, since northerly 

aspects tend to be wetter sites and thus more suited to the grand fir. 
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In comparing the main and secondary trees, similar trends are seen in both 

models. Instead of soil type, the secondary tree selected slope as the best initial split. 

This seems to confirm the observed differences in the two main soil groups described 

above. Within the less steeply sloped group, precipitation is the next best predictor. 

Next, low topographic position values are used to separate meadows from the dry ABGR 

types. This split is consistent with ecological understanding, since meadows typically 

occupy lower slope positions which accumulate water. Again, high precipitation values 

are used to predict the PICO/CARU type. As discussed earlier, this is an artifact of the 

dataset and does not represent an ecologically based splitting rule. 

Within the group on steep slopes , solar radiation and elevation are the next 

predictors selected . Lower values for solar radiation separate two grand fir types, the 

ABGR/CLUN and the wet ABGR, from the PIPO/CAGE type. Recall that in the main 

tree , a similar split was made using aspect as a predictor. Finally, high elevations 

distinguish the wet ABGR type from the ABGR/CLUN plant association. This is 

consistent with field observations but is again not applicable to areas outside the 

Wilderness. The ABGR/CLUN type is usually found at low slope positions along 

drainages, which corresponds to low elevations within the study site. Overall, the two 

models are fairly similar in the manner that they predict plant associations for the study 

area. 

Fuzzy Confusion Analysis 

In examining the fuzzy confusion matrix for the main tree, most of the predicted 

plant associations were predicted with a high accuracy, with six of the eight associations 
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having accuracy values of 72% or higher. Interestingly, the most distinct type of all the 

plant associations, the meadow, was predicted with only 53% accuracy. While this type 

is correlated with only a few soil types, the soil type alone does not produce accurate 

predictions. It is surprising that the topographic moisture index was not used as a 

predictor for meadows, since this index gives high values for areas in which water tends 

to accumulate . 

The inability of the model to predict five of the plant association types was a 

major limitation. This is a result of several factors . Plant associations occurring 

infrequently in the Wilderness and having few observations, such as the POSE/DAUN 

and PSME/CAGE types, were probably not predicted because of a lack of data. Were 

this study to continue , the addition of more known points for these associations would 

increase the likelihood of prediction . However , in initial models, four of the five grand 

fir plant associations , each with greater than 10 observations, were not predicted . This 

included the ABGR/CARU type, which had a relatively high number of observations 

( 19). The combining of the grand fir plant associations as described in Table 2 resulted 

in the final model , which predicts all of the grand fir types. Whereas this combination 

was helpful in predicting the very common grand fir plant associations across the 

Wilderness, it is not entirely clear why regrouping the plant associations was necessary. 

Several comments have been made about the pruning process in the refining of 

classification trees. Austin et al. ( 1994a) report that accuracy is lost by pruning the tree 

models and did not prune them at all. Franklin ( 1998) uses the same method of pruning 

as that presented here, but chooses what appears to be a large tree size (22 nodes) based 

on the range of optimal tree sizes reported (10 to 24 nodes) for pruning of all 20 models 
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developed . In this study, pruning resulted in the inability of the model to predict five of 

the 12, or nearly half of the plant association types observed in the Wilderness. This is an 

important consideration, because the utility of mapped predictions in certain land 

management applications is related to the number of associations predicted by the model. 

In comparison with the initial accuracy estimates provided by the S-Plus software, 

the overall fuzzy accuracy estimates were much higher. The increase in accuracy in the 

main tree from 40 % to 72 % indicates that a large proportion of the misclassification 

errors were not severe, that is, the plant association that was predicted was similar to the 

actual plant association. This is consistent with other findings. Lynn et al. (1995) 

comment that although they found a high rate of misclassification using classification tree 

modeling to predict PNV in central New York, in many cases the actual type was similar 

to the predicted type . Roberts (1999) reports that accuracy values for forested types 

predicted in western Wyoming increased from 49% to 83% when analyzed with the fuzzy 

confusion method. The results of the fuzzy confusion analysis are especially useful in 

light of the practical applications of the predictive model developed for the Wilderness . 

Since the model may be used in restoration and other management practices in which 

relatively general plant community information is needed, the knowledge that most plant 

associations are not seriously misclassified is important. 

Considerations and Conclusions 

Based on field observations and the results discussed above, most of the plant 

associations in the study area are predicted satisfactorily using this method. The problem 

of misclassification and lack of prediction within the grand fir series, especially before 
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the combining of plant associations into two major types, is difficult to explain . The 

series as a whole has wide ecological amplitude within the study site, and occupies a 

wide variety of sites. Based on the results of the secondary tree, it seems that soil type is 

not the best predictor variable within this series. 

Michaelson et al. ( 1994) suggest that the classification tree method works best 

with at least 300 to 400 observations , but is still possible with datasets as small as 100. 

This study employed 200 observations in training the model. To improve the accuracy of 

the model and the number of plant association types predicted , further data collection 

would be necessary and should focus on plant associations within the grand fir series. 

Along with expanding the number of observations, future work in this area should 

focus on expanding the data layers used as environmental predictors. Most importantly , 

both the spatial resolution and the detail of the soil database should be expanded . At 

present , no soil nutrient characteristic data are available for the study area. Ash

influenced soils are known to have a different nutrient status than soils derived from other 

materials , and this could be affecting plant distribution. Also , very recently, GIS layers 

representing precipitation by month have become available, and these could be used to 

model differences in growing season precipitation in the study area. Lastly, a spatially 

explicit model for cold air drainage across a landscape would aid in an ecologically based 

prediction of the lodgepole pine plant association. 
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Appendix A. Soil Data Tables 
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Table Al. Summary of specific soil properties for each soil mapping unit defined in 
Ehmer (1978). 

Soil Total Soil Volcanic Root Zone Root Zone Bedrock Type 
Mapping Depth (cm) Ash Coarse Water 
Unit Thickness Fragment% Holding 

(cm) Capacity 
(cm) 

3000014 152.4 50.8 0 6.90 Tuff 
3900014 60.9 0 190.5 1.06 Andesite 
4600014 50.8 0 0 15.74 Metavolcanic 
4700014 48.2 0 88.9 7.11 Meta volcanic 
4800014 76.2 45.7 0 14.17 Metavolcanic 
4900014 106.6 45.7 0 14.17 Metavolcanic 
5600014 101.6 0 12.7 11.73 Granite 
5700014 111.7 0 12.7 5.58 Granite 
5800014 203.2 0 12.7 19.73 Granite 
5900014 30.4 0 190.5 0.91 Granite 
6200014 187.9 55.8 0 17.32 Granite 
6700014 127.0 66.0 12.7 19.15 Tuff 
6800014 66.0 25.4 0 12.59 Tuff 
6900014 91.4 27.9 0 14.96 Tuff 
7000014 111.7 22.8 0 8.66 Tuff 
7100014 152.4 45.7 0 23.62 Tuff 
7300014 40.6 0 165.1 2.03 Tuff 
7400014 101.6 63.5 0 19.68 Tuff 
7600014 127.0 68.5 0 21.25 Tuff 
8100014 66.0 55.8 0 17.32 Sedimentary 
8200014 124.4 55.8 0 17.32 Sedimentary 
9000014 304.8 0 203.2 0.50 Andesite 
9100014 10.1 0 203.2 0.40 Basalt 
9200014 7.6 0 203.2 0.22 Tuff 
9400014 10.1 0 165.1 0.81 Metavolcanic 



Table A2. Complexes which occur in the study site. 

Complex 

4147214 
4343714 
4646614 
4747314 
4747614 
4834814 
4848614 
4949614 
6065914 
6636614 
6667414 
6669714 
6969314 
9292714 
9494714 
9494814 

Constituent map units 

4100014, 7200014 
4300014,4700014,9400014 
4600014,4900014 
3000014,4700014 
4700014,6800014, 7600014 
3000014,4700014,4800014 
4800014,6700014 
4900014,6000014 
5900014,6000014,9400014 
3000014,6600014,6900014 
6600014, 7200014 
6600014,6900014 
6900014, 7300014 
7000014,9200014 
4700014,9400014 
4700014,4800014,9400014 
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Appendix B. Species List 



List of the vascular plant species encountered within the 26 inventory plots in the North 
Fork John Day Wilderness. 

Abies grandis (D. Don) Lindi. 
Abies lasiocarpa (Hook.) Nutt. 
Acer glabrum (Hook.) Dippel var. douglasii 
Achillea millefolium L. 
Agoseris grandifiora (Nutt.) Green e 
Agrostis spp. 
Allium tolmiei S. Wats. var. tolmiei 
Antennaria dimorpha (Nutt.) Torr. & Gray 
Antennaria stenophylla (Gray) Gray 
Apocynum androsaemifolium L. 
Arctostaphylos uva-ursi (L.) Spreng . 
Arenaria congesta Nutt . 
Amica cordifolia Hook. 
Artemisia rigida (Nutt.) Gray 
Aster foliaceus DC. 
Astragalus whitneyi Gray 
Bromus carinatus Hook. & Arn . 
Bromus tectorum L. 
Bromus vulgaris (Hook.) Shear 
Calamagrostis koelerioides Vasey 
Calamagrostis rubescens Buckl. 
Calochortus eurycarpus S. Wat s. 
Carex geyeri Boott 
Castilleja hispida Benth . 
Castilleja tenuis (Heller) Chuang & Heckard 
Ceanothus velutinu Hook. 
Cerastium arvense L. 
Cercocarpus ledifolius Nutt. 
Chimaphila menziesii (D. Don) Spreng . 
Chimaphila umbellata (L.) W. Bart. 
Cirsium arvense (L.) Scop. 
Cirsium neomexicanum (Petrak) Welsh var. utahense 
Cirsium scariosum Nutt. 
Cirsium vulgare (Savi) Ten. 
Collinsia parvifiora Lindi. 
Collomia grandifiora Lindi. 
Dactylis glomerata L. 
Danthonia unispicata (Thurb.) Macoun 
Deschampsia cespitosa (L.) Beauv. 
Deschampsia elongata (Hook.) Munro 
Elymus elymoides (Raf.) Swezey ssp. elymoides 
Elymus glaucus Buckl. ssp. glaucus 
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Epilobium angustifolium L 
Epilobium brachycarpum K. Presl 
Erigeron chrysopsidis Gray 
Eriogonum heracleoides Nutt. 
Eriogonum umbellatum Torr. 
Erythronium grandifiorum Pursh 
F estuca occidental is Hook. 
F estuca rubra L. 
Fragaria vesca L. 
Fragaria virginiana Duchesne 
Galium aparine L. 
Geum triflorum (Pursh) Fassett var. ciliatum 
Goodyera oblongifolia Raf. 
Helianthella uniflora (Nutt.) Torr. & Gray 
Hieracium albifiorum Hook. 
Hieracium cynoglossoides Arv.-Touv. 
Hieracium scouleri Hook. 
Hypericum anagalloides Cham. & Schlecht. 
Juncus ensifolius Wikstr. 
Juniperus occidentalis Hook. 
Larix occidentalis Nutt. 
Ligusticum canbyi Coult. & Rose 
Linanthus harknessii (Curran) Greene 
Linnaea borealis L. 
Listera caurina Piper 
Lomatium triternatum (Pursh) Coult. & Rose 
Lonicera spp. 
Lupinus caudatus Kellogg 
Lupinus sericeus Pursh 
Luzula campestris (L.) DC. 
M ahonia repens (Lindl.) G. Don 
Melica bulbosa Porter & Coult. 
Moehringia macrophylla (Hook.) Fenzl 
Orthilia secunda (L.) House 
Osmorhiza occidentalis (Torr. & Gray) Torr. 
Paxistima myrsinites (Pursh) Raf. 
Pedicularis groenlandica Retz. 
Pedicularis racemosa Benth. 
Phacelia hastata Lehm. 
Phleum pratense L. 
Physocarpus malvaceus (Greene) Kuntze 
Picea engelmannii Engelm. 
Pinus contorta S. Wats. var. latifolia 
Pinus ponderosa P.& C. Lawson 
Plagiobothrys tenellus (Hook.) Gray 
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Paa nervasa (Hook.) Vasey 
Paa pratensis L. 
Paa spp. 
Palemonium pulcherrimum Hook. 
Palygonum douglasii (Meisn.) Hickman ssp. majus 
Patentilla glandulosa Lindl.ssp. glandulosa 
Potentilla gracilis Hook. 
Pseudoroegneria spicata (Pursh) A. Love ssp. spicata 
Pseudotsuga menziesii (Beissn .) Franco var. glauca 
Pyrracoma carthamoides Hook. var. carthamaides 
Ranunculus uncinatu G. Don 
Rosa nutkana K. Pres! 
Rosa woodsii Lindl. 
Salix spp. 
Scutellaria angustifalia Pursh 
Sedum stenopetalum Pursh 
Sedum stenopetalum Pursh 
Spiraea betulifalia Pallas 
Symphoricarpos albus (L.) Blake 
Taraxacum afficinale Wiggers 
Tragopagan dubius Scop . 
Trifolium longipes Nutt. 
Trifolium pratense L. 
Trifolium repens L. 
Trisetum spp. 
Trisetum wolfii Vasey 
Vaccinium membranaceum Torr. 
Vaccinium scoparium Coville 
Vahlodea atrapurpurea Hartman 
Valeriana sitchensis Bong . 
Viola adunca Sm. 
Viola orbiculata Holz 
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Appendix C. Table of Similarity Values 



Table Cl. Similarity matrix for plant association types based on inventory plot data and data given by Johnson (unpubl.). 

Plant association type 

dry abgr 

abgr/clun 

wet abgr 

abla 

meadow 

pico/earn 

pi po/cage 

pipo/caru 

posa/daun 

psme/cage 

psme/caru 

psme/phma 

Number of plots 

8 

3 

8 

7 

1 

3 

3 

4 

2 

3 

4 

2 

Similarity values 

0.42 0.28 0.35 0.25 0.00 0.28 0.21 0.33 0.12 0.35 0.36 0.33 

0.28 0.56 0.39 0.16 0.00 0.06 0.02 0.11 0.01 0.06 0.16 0.19 

0.35 0.39 0.39 0.27 0.01 0.20 0.14 0.17 0.08 0.18 0.25 0.24 

0.25 0.16 0.27 0.47 0.02 0.37 0.11 0.16 0.15 0.22 0.18 0.18 

0.00 0.00 0.01 0.02 1.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 

0.28 0.06 0.20 0.37 0.04 0.52 0.19 0.25 0.27 0.28 0.22 0.21 

0.21 0.02 0.14 0.11 0.00 0.19 0.52 0.35 0.16 0.32 0.37 0.35 

0.33 0.11 0.17 0.16 0.00 0.25 0.35 0.45 0.17 0.45 0.44 0.32 

0.12 0.01 0.08 0.15 0.00 0.27 0.16 0.17 0.57 0.08 0.13 0.07 

0.35 0.06 0.18 0.22 0.00 0.28 0.32 0.45 0.08 0.62 0.43 0.39 

0.36 0.16 0.25 0.18 0.00 0.22 0.37 0.44 0.13 0.43 0.49 0.30 

0.33 0.19 0.24 0.18 0.00 0.21 0.35 0.32 0.07 0.39 0.30 0.37 
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Appendix D. Fuzzy Analysis of Final Model 



Appendix D. Fuzzy confusion matr ix and data for the final model: 

Actual 
Predicted dry abgr wet abla mead. pico / pipo/ pipo/ pose/ psme/ psme psme/ 

abgr /clun abgr cam cage earn daun cage /earn phma 

dry abgr 23.2 0 0.5 3.7 0 0 0 0 0 0.4 1.1 0 29 80.0 
abgr/clun 0 6.1 0 0 0 0 1.9 0 0 0 0 0 8 76.0 
wet abgr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
abla 1.6 0 0.6 16.2 7.8 0 0 0 1.5 0 1.3 0 29 55.8 
meadow 0 0 0 0 11.2 2.8 0 0 0 0 0 0 14 80.2 
pico/earn 0 0 0 0 0 7.0 0 0 0 0 0 0 7 100.0 
pi po/cage 3.0 0 0 1.5 0 0 40.0 2.0 0.7 2.9 1.7 0.2 52 76.9 
pi po/earn 0.6 0 1.1 0 1.0 0 0.7 11.1 3.5 0 0 0 18 61.5 
pose/daun 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
psme/cage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
psme/caru 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
QSme/Qhma 1.5 5.3 4.2 0 1.0 0 0 0.6 0 0 0.4 30.0 43 69.8 
total 30.0 11.4 6.5 21.5 21.1 9.8 42.5 13.6 5.7 3.3 4.4 30.2 200 
corrected 77.5 53.5 0 75.4 53.3 71.7 93.9 81.l 0 0 0 99.5 144.8 72.4 

Significant fuzzy bias: 
type predicted actual relative fraction 

abla 29.0 21.5 .3512 
meadow 14.0 21.l -.3356 
pi po/cage 52.0 42.5 .2222 
pipo/caru 18.0 13.6 .3192 
psme/phma 43.0 30.2 .4248 

Number correct= 144.79 of 200.00 
KHAT= .6781 0\ 

0 
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Appendix E. Fuzzy Analysis of Secondary Model 



Appendix E. Fuzzy confusion matrix and data for the secondary model: 

Actual 

Predicted dry abgr/ wet abla mead. pico/ pipo/ pipo/ pose/ psme/ psme/ psme/ 
abgr dun abgr earn cage earn daun cage earn phma 

dry abgr 19.0 0 0 2.3 3.0 0 3.0 0.5 3.2 0 0 0 31 61.3 
abgr/clun 1.3 29.2 0 0 0 0 1.9 3 0 2.7 0 4.9 43 67.8 
wet abgr 1.2 0 20.6 2.1 1.0 0 0 0 0 0.7 2.4 0 28 73.4 
ab la 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
meadow 3.0 0 3.9 1.0 11.1 0 0 2.0 0 0 1.0 1.0 23 48.5 
pico/cam 0 0 0 1.9 5.8 18.2 0.6 0 0.5 0 0 0 27 67.3 
pi po/cage 2.5 1 0 0.8 0 0 36.2 1.8 2.2 1.5 2 0.3 48 75.3 
pi po/earn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
pose/daun 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
psme/cage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
psme/carn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
esme/ehma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
total 27.0 30.1 24.5 8.1 20.9 18.2 41.7 7.3 5.8 4.9 5.4 6.1 200 
corrected 70.4 96.8 84.1 0 53.3 100 86.7 0 0 0 0 0 134 67.1 

Significant fuzzy bias: 
type predicted actual relative fraction 

dry abgr 31.0 27.0 .1487 
abgr/clun 43.0 30.1 .4280 
wet abgr 28.0 24.5 .1450 
meadow 23.0 20.9 .1007 
pico/earn 27.0 18.2 .4864 
pipo/cage 48.0 41.7 .1513 

Number correct = 134.17 of 200.01 
K11AT = .6151 0\ 

N 
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