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Abstract

Background: The configuration of necrotic areas within the retinal pigmented epithelium is an important element
in the progression of age-related macular degeneration (AMD). In the exudative (wet) and non-exudative (dry) forms
of the disease, retinal pigment epithelial (RPE) cells respond to adjacent atrophied regions by secreting vascular
endothelial growth factor (VEGF) that in turn recruits new blood vessels which lead to a further reduction in retinal
function and vision. In vitro models exist for studying VEGF expression in wet AMD (Vargis et al., Biomaterials
35(13):3999–4004, 2014), but are limited in the patterns of necrotic and intact RPE epithelium they can produce and in
their ability to finely resolve VEGF expression dynamics.

Results: In this work, an in silico hybrid agent-based model was developed and validated using the results of this cell
culture model of VEGF expression in AMD. The computational model was used to extend the cell culture investigation
to explore the dynamics of VEGF expression in different sized patches of RPE cells and the role of negative feedback in
VEGF expression. Results of the simulation and the cell culture studies were in excellent qualitative agreement, and
close quantitative agreement.

Conclusions: The model indicated that the configuration of necrotic and RPE cell-containing regions have a major
impact on VEGF expression dynamics and made precise predictions of VEGF expression dynamics by groups of RPE
cells of various sizes and configurations. Coupled with biological studies, this model may give insights into key
molecular mechanisms of AMD progression and open routes to more effective treatments.

Keywords: Micropatterning, Auto-regulation, Vascular endothelial growth factor, Age-related macular degeneration,
Retinal pigment epithelial cells, Age-related macular degeneration

Background
Age-related macular degeneration (AMD) is a leading
cause of irreversible blindness, particularly among adults
over the age of 50 [2–4]. In AMD, degeneration of reti-
nal pigment epithelial (RPE) cells, a type of neural cell
that provides metabolic support to photoreceptor cells,
severely damages vision. There are two forms of AMD,
one involving acellular debris (dry AMD), and the other
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involving neovascularization of the retina from the under-
lying choriocapillaris (wet AMD) [5].
Cell culture models that control the spatial organiza-

tion and growth of RPE cells can provide valuable tools
for understanding cell behavior in AMD and its inter-
action with vascular endothelial growth factor (VEGF).
VEGF is the primary signaling molecule that stimulates
angiogenesis [6] and is an important biomarker of AMD
[7]. In the retina, VEGF is secreted in the RPE and is
the primary driver of retinal vasculature development
[8, 9]. Monitoring the expression of VEGF within con-
trolled environments of model systems can lead to new
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insights that improve our understanding of the initiation
and progression of AMD.
In the cell culture model of AMD that is simulated in

this study, micropatterning techniques are used to restrict
the location and shape of the substrate on which cells
can attach and grow [10–12]. The impact of micropat-
terning on cellular functions and morphologies has been
investigated with many types of cells including fibrob-
lasts [13], neuronal cells [14], stem cells [15], epithelial
cells [16], cancer cells [17], and retinal pigment epithelial
cells [1, 18–21]. Vargis et al. [1] used micropatterned sur-
faces to control the spatial organization of RPE cells to
explore how atrophy or tissue damage within the retina
affect VEGF production (Fig. 1). While cell culture pro-
vides a model for replicating disease states associated with
the deterioration of retinal tissue during AMD, the stim-
uli leading to enhanced VEGF secretion from RPE cells
and the subsequent neovascularization of the choroid are
still not fully understood [22, 23], and little is known
about how VEGF production is regulated in the eye [9].
In addition, much remains to be learned about how anti-
angiogenic drugs work in the retina [24], how and why
AMD and other retinal diseases become resistant to treat-
ment, and the types of patients that can benefit most from
anti-angiogenic drugs [25]. Computational approaches
combined with experimental studies have the potential to
shed light on these issues by providing a platform for gen-
erating and testing hypotheses related to the regulation of
VEGF production and transport in the retina [26].
Developing an in silico framework for the cell culture

micropatterning AMDmodel provides a beneficial system
for evaluating the spatiotemporal effects of VEGF trans-
port and expression within these controlled environments

and in replicating the pathology of AMD to gain new
insights on disease progression and outcomes. In silico
models can also be used to study internal and external
regulatory mechanisms influenced by feedback from the
evolving cellular environment. Developing these predic-
tive models is essential to identify biological pathways that
may be targeted by new pharmaceutical agents.
The goal of this study was to develop an in silico model

to replicate and extend the cell microprinting model for
AMD reported in [1]. The in silico model employs a two
dimensional representation of the cellular culture because
in themicroprintingmodel, a monolayer of RPE cells form
on the printed disks. While a two dimensional model is
sufficient to replicate this bioengineered study, more real-
istic models that incorporate photoreceptors, and bipolar,
amacrine, ganglion cells would require three dimensions.
Using this computational model, we studied the growth

of RPE cells in discrete patches of different sizes and
configurations to learn how cell arrangements can effect
VEGF expression. The level of VEGF in each group of
cells was studied as a function of cell number and patch
area over time. To explore the hypothesis that VEGF
expression is linked to global VEGF concentration, VEGF
expression from various sized patches was quantified fol-
lowing VEGF administration. This study complements
experiments using cell culture and provides a framework
that can be used to investigate the influence of cell pat-
terning on the secretion of VEGF by the RPE and opens
a path towards mimicking the effects of tissue damage.
This model extended the study of Vargis et al [1] and
made predictions about VEGF regulation and expression
in cell configurations that could not have been produced
experimentally. The in silico model has the potential to

Fig. 1 Patch configurations. The top row shows cropped images of the experimental patches of fluorescent fibronectin that was used to form the
patches for cell growth. The white scale bars are 100μm. The bottom images show the simulated configurations of the cells (the blue circles). In all
cases, patches occupied the same total area (1.131 mm2) that comprised 20% of the total simulation domain (2.4 mm × 2.4 mm.)
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examine the effects of anti-VEGF agents that may aid in
the optimization of anti-angiogenic therapeutics and to
be extended to other disorders that involve localized cell
death within an epithelium.

Methods
Hybrid agent-based model framework
The agent-based modeling framework known as iDy-
noMiCs [27] was extended to simulate the effect of RPE
cell distribution on VEGF expression. This modeling
framework consists of discrete and continuous elements,
making this a hybrid model. The discrete elements are
particles each representing an individual cell. Particles
mechanically interact with one another and secrete, con-
sume or react to soluble molecules. They are positioned
in space and occupy the volume of a single cell. The con-
tinuous elements of the model are a collection of soluble
molecules (referred to as solutes) that could include nutri-
ents, oxygen, and signaling molecules such as VEGF. A set
of partial differential equations (PDEs) defines the interac-
tions of molecules with cells and each other as they diffuse
and participate in a variety of reactions.
Reactions between solutes and particles drive particle

growth. As the mass of a particle increases, so does its
radius. When the radius equals or exceeds a maximum
state-specific particle size (for RPE cells, rsp is defined in
Table 1), the particle is divided in two along a random
cleavage plane, such that the sum of the volumes of the
new spherical particles approximately equals the specified
maximum volume. The two smaller particles are posi-
tioned without mutual overlap in the place of the parent
particle.
As the simulation proceeds, particles move because of

growth and division, and solute distributions change due
to reactions and diffusion. In a single simulation step, first
the biomechanical forces arising from growth are relaxed
by moving particles to avoid overlap [27], then a PDE
solver is applied to resolve all the local changes in solute
concentrations. The solute fields are kept in steady-state
with respect to the particle movement because reactions
and diffusion occur much more rapidly (on the order of
seconds or minutes) than changes in cell positions (on the
order of hours to days).

Table 1 Model’s parameter descriptions

Parameter Value Units Description Ref

DV 5.8 × 10−11 m2/s Diffusion coefficient [28]

αM 1.0194 1/h Max. growth rate for RPE cells [29]

k 0.13 pg/ml Half saturation rate [30]

αV 0.09 1/h Max. VEGF secretion rate [30]

β 0.850 unitless Binding affinity [30]

rsp 6.2996 μm Cell division radius [1]

Cyclic boundary conditions are used for the sides of
the 2D simulation domains illustrated in Fig. 1. This
boundary type allows the representation of larger domains
by assuming that the computation domain is repli-
cated indefinitely. Solute concentrations are kept constant
across cyclic boundaries, and any particle crossing one of
the cyclic boundaries is instantly moved to the connected
boundary.

Modeling different RPE configurations
The distributions of cells studied by Vargis et al. were
replicated as shown in Fig. 1. Patch diameters were 100,
200, 300 and 400 μm. In these configurations, the total
area of the domain was 5.76 mm2 and the area occupied
by patches that could support the growth of cells was con-
stant across all simulations and equal to 1.13 mm2 or 20%
of the simulation domain.
The number of cells in each patch at the beginning of

the simulations is given in Table 2. The doubling time was
36 h, and the simulations ran for 72 h.
The VEGF distribution is determined by diffusion

through the medium, secretion as a function of particle
massM and local VEGF concentrationV as given by Eq. 1.
The diffusion coefficient of VEGF (DV ) is set to 5.8 ×
10−11m2/s, from experiments described in [28]. The first
term of Eq. 1 accounts for VEGF concentration changes
due to diffusion, and the second term accounts for the
auto-regulation of VEGF through negative feedback.

∂V
∂t

= DV �2 V + αV
k

βV + k
M (1)

Vargis et al. [1] studied the effect negative feedback of
VEGF on its own production by adding a form of VEGF
that was not detected in their VEGF assay (denoted asVa).
The extended model is given in Eq. 2.

∂V
∂t

= DV �2 V + αV
k

β(V + Va) + k
M (2)

The growth rate of RPE cells is given by Eq. 3. This
equation assumes that cell growth is exponential through-
out the simulation, a reasonable assumption given the
low initial cell densities in each patch and the limited

Table 2 Initial number of cells in each patch. These values match
those used in the Vargis et al. study [1]

PatchSize (μm) Initial number of cells.

100 15

200 74

300 189

400 351
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amount of time (2 cell doublings over 72 h) over which the
simulation runs.

∂M
∂t

= αM Ṁ (3)

Table 1 summarizes the parameters and their values
used in the equations above.

Results
VEGF expression
The amount of VEGF expressed per cell was calculated
by determining the total amount of VEGF produced over
the course of each simulation and dividing this by the final
number of cells. Figure 2 presents the simulated values
shown alongside those measured in cell culture by Vargis
et al. [1]. The agreement is excellent, with the results
showing an inverse relationship between VEGF concen-
tration per cell and patch size. This observation was
hypothesized in [1] to be due to the locally higher VEGF
concentrations experienced by cells in larger patches
resulting in lower VEGF expression per cell because of
negative feedback. The fact that the simulation captured
this effect qualitatively and was able to accurately quantify
it provides support for the model.
The performance of the model in simulating the time

course of VEGF expression over the model run is shown
in Fig. 3. The qualitative agreement is excellent. In this
case, the amount of VEGF produced per cell increases in
each configuration of cells over the course of both the
cell culture study (panel a) and the simulation (panel b).
Notably, the model once again captured the inverse rela-
tionship between patch size and VEGF production across
all time points. The quantitative agreement is strong par-
ticularly at the end of the simulation (for example, note
the virtually identical VEGF expression in cells in 100 mm
patches at 72 h in the cell culture and simulation stud-
ies) and less so at times less than 72 h. For these earlier
times, the model predicts higher VEGF expression than
measured in the cell culture study. However, even at these
time points, the agreement between the experimentally
measured and predicted VEGF levels differs at most by

a factor of 1.3 (this is for the predicted/observed VEGF
values in 100 μm patches at 48 h). In short, the model
can predict the qualitative trends accurately and can make
quantitative predictions that differ by less than 50% from
measured values.

Exploration of autoregulation of VEGF expression
We hypothesized that there would be higher levels of
VEGF per cell expressed in small patches because these
cells experienced lower initial levels of VEGF than did
the cells in larger patches. Although cells were plated
at the same cell density in all patch configurations, cells
in the smallest patches have a greater chance of being at
the edge of a patch rather than surrounded by neighbor-
ing cells. This edge effect would lead to a lower average
VEGF concentration around each cell. Given the negative
feedback loop that regulates VEGF expression, cells in
smaller patches are predicted to produce more VEGF.
A prediction of this hypothesis is that adding VEGF
early in the model run will suppress VEGF production,
particularly from cells in the smallest patches. This pre-
diction was tested and shown to be correct in the cell
culture system. Experimentally, this was accomplished
by the addition a form of VEGF (represented as Va) that
binds with equal affinity to the RPE receptors, but can
be distinguished from the VEGF produced by cells at
assay [1]. In a simulation, this effect of the added VEGF is
represented in Eq. 2.
In the simulation and cell culture studies, VEGF was

added at a concentration of 5 ng/ml 20 h after the initial
cell seeding. This VEGF concentration is roughly 5-fold
higher than the maximum VEGF levels produced after 72
h of in vitro cell culture. A comparison of the simulated
and experimentally determined results is shown in Fig. 4.
These results are expressed as the percentage change in
VEGF produced per cell relative to the control without
added VEGF.
As for previous results, the simulated and experimen-

tal results are in qualitative agreement. Cells in smaller
patches on average did respond more strongly than cells
in larger patches to the added VEGF. However, on average

Fig. 2 VEGF expression is given as the concentration of VEGF per cell at the end of the cell culture study of Vargis et al. [1] (open bars) and the end of
the 72 h simulation (closed bars). Error bars show one SD. a Experimental results, b Simulated results
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Fig. 3 Time course of VEGF expression measured in cell culture (panel a) and predicted by the model (panel b); Error bars show one SD).
a Experimental results, b Simulated results

the model predicted about a 2-fold lower response to
added VEGF in the medium relative to the experimental
observations. A possible explanation for this discrepancy
is that the values for VEGF binding affinity β and half sat-
uration k, two key parameters that control negative feed-
back for VEGF production (see Eq. 2), are estimated from
a computational study [30]. Slight discrepancies between
the estimated and actual, but unknown, values of β and k
could easily lead to the mismatch between experimental
and simulated values.
In both the cell culture investigation and the simu-

lation, the VEGF levels per cell obtained from smaller
patch sizes (100, 200, 300 μm) decreased after the VEGF
was added. This result supports the hypothesis that cells
within these smaller patches reduce VEGF expression lev-
els because of the increased levels of VEGF within their
local environment. Cells in patches of larger sizes (400
μm) already encountered higher levels of VEGF. There-
fore, they showed smaller changes in VEGF expression
levels after VEGF addition.

Using the Model to Extend Experimental Observations -
VEGF Distributions
Having established the utility of themodel, we applied it to
extend experimental observations of VEGF distributions

that are important in shaping tissue responses to VEGF
but cannot be studied using current experimental meth-
ods. Figure 5 shows the predicted VEGF distribution
profiles over the course of model runs with different
patch sizes. These distributions are due purely to VEGF
diffusion and metabolism and do not account for any
circulation of VEGF. The results are striking in at least
two ways. First, they show that the predicted VEGF dis-
tribution is much more uniform across the simulation
domain for small patches than for large patches. Next,
they support the idea that cells in small patches expe-
rience a much lower average VEGF concentration than
cells in larger patches, particularly at earlier times. This
observation supports the negative-feedback hypothesis
for why cells in smaller patches are expected to express
more VEGF per cell than cells in larger patches. Take as
a whole, these predictions of VEGF distributions in dif-
ferent cellular configurations highlight the importance of
the geometry and dimensions of damaged and undamaged
tissue in AMD and other disorders that involve necrosis.

Using the Model to Study the Effect of New Cellular
Configurations
Current micropatterning technologies allow printing uni-
form circular domains for cell growth on a tissue culture

Fig. 4 Effect of VEGF addition on the VEGF production [1]. The VEGF agonist (Va), not detectable in the VEGF assays, was added 20 h after the plating
the cells. a Experimental results, b Simulated results
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Fig. 5 Distributions of VEGF over the course of model runs. Rows are different patch sizes, columns are time points. All figures are colored using the
same scale and so may be compared directly

plate but do not easily allow printing the inverse pattern
of open circular spaces within a field of cells. Unfortu-
nately, this latter arrangement is a more realistic model
of the necrotic retinal lesions seen in AMD. The benefit
of a model is its ability to rapidly test cell configurations
that are difficult or impossible to explore experimentally.
We did this by modeling the inverse pattern of the pat-
tern studied by Vargis et al. [1]. This inverted pattern is
illustrated in Fig. 6a.
The predicted VEGF expression per cell in these

inverted patterns of cell-free circles of different sizes are
shown in Fig. 6b. The notable findings are that the dif-
ferences between patch sizes are virtually eliminated and
that the amount of VEGF expressed per cell is reduced to
roughly half of that seen in the standard pattern of cell-
filled circles. Both results are likely due to the larger cell-
filled area in the inverted configuration (20% cell-filled
area in each standard configuration and 80% cell-filled

area in each inverted configuration). This pattern reduces
edge effects, is predicted to result in higher local VEGF
levels. In turn, this is predicted to reduce VEGF expression
through negative feedback.

Discussion
The model was used to provide insights into molecular
events that are not accessible using current experimental
techniques. Here, the model predicted that VEGF would
be present at lower levels and be more evenly distributed
when cells were configured in many small patches than in
fewer large patches. These predicted VEGF distributions
are consistent with both the experimentally determined
and model-based results that VEGF expression per cell
is strongest in cells distributed in small patches. These
results are significant in understanding how different pat-
terns of retinal necrosis may affect neovascularization
in AMD.

Fig. 6 Prediction of VEGF produced by an inverted pattern of cell-containing and cell-free zones. a The inverse pattern illustrated for one cell-free
region of diameter 400 μm. b VEGF expression per cell in inverted cell configurations. In these cases, the numbers refer to the diameters of cell-free
circles arranged in the same pattern as in Fig. 1
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The model was applied to predict how a cellular con-
figuration that cannot be easily designed in the laboratory
will influence VEGF expression. In this configuration, a
regular grid of open circles without cells is embedded in a
surface with full cell coverage. This pattern represents an
inversion of the standard tissue-print model of AMD and
more closely resembles necrotic lesions within the retinal
epithelium. The model predicted that VEGF production is
nearly invariant with respect to the size of the open circles.
Importantly, this result demonstrates that without signif-
icant empty space bordering the fields of cells, negative
feedback predominates, leading to low, constant VEGF
production independent of the size of cell-free zones.
A next step will be to extend these studies to different

tissue configurations, including those that more closely
match the diseased retina in AMD, and to consideration
of additional parameters, such as oxidative stress [31] and
the effects of inflammatory cytokines [32], that are impor-
tant in the development and progression of AMD. Under-
standing how different patterns of necrosis can disrupt
VEGF signaling will be important for developing ratio-
nal therapies of neovascular AMD. Pairing cell culture
studies that use micropatterning and precise measures of
VEGF expression with model-based approaches offers a
promising route toward accomplishing this goal.

Conclusions
Cell culture provides a model for replicating disease states
associated with the deterioration of retinal tissue during
AMD, the stimuli leading to enhanced VEGF secretion
from RPE cells and the subsequent neovascularization of
the choroid are still not fully understood [22, 23], and
little is known about howVEGF production is regulated in
the eye [9].
This study presents a hybrid agent-based model to

support and extend cell culture models of AMD. The
modeling framework was validated using experimentally
gathered data on VEGF expression by RPE cells micropat-
terned in tissue culture dishes [1]. Simulated results were
in excellent agreement with the qualitative findings of
Vargis et al. [1] and overall were in good quantitative
agreement regarding the amount of VEGF expressed per
cell in different patterning configurations.

Abbreviations
AMD: Age-related macular degeneration; PDE: Partial differential equations;
RPE: Retinal pigment epithelial cells; VEGF: Vascular endothelial growth factor
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