
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2017

A Pattern Language for Designing Application-Level A Pattern Language for Designing Application-Level

Communication Protocols and the Improvement of Computer Communication Protocols and the Improvement of Computer

Science Education through Cloud Computing Science Education through Cloud Computing

Jorge Edison Lascano
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Lascano, Jorge Edison, "A Pattern Language for Designing Application-Level Communication Protocols
and the Improvement of Computer Science Education through Cloud Computing" (2017). All Graduate
Theses and Dissertations. 6547.
https://digitalcommons.usu.edu/etd/6547

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F6547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F6547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/6547?utm_source=digitalcommons.usu.edu%2Fetd%2F6547&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

A PATTERN LANGUAGE FOR DESIGNING APPLICATION-LEVEL

COMMUNICATION PROTOCOLS AND THE IMPROVEMENT

OF COMPUTER SCIENCE EDUCATION

THROUGH CLOUD COMPUTING

by

Jorge Edison Lascano

A dissertation submitted in partial fulfillment
of the requirements for the degree

 of

DOCTOR OF PHILOSOPHY

in

Computer Science

Approved:

______________________ ____________________
Stephen W. Clyde, Ph.D. Curtis Dyreson, Ph.D.
Major Professor Committee Member

______________________ ____________________
Haitao Wang, Ph.D. Young-Woo Kwon, Ph.D.
Committee Member Committee Member

______________________ ____________________
Luis Gordillo, Ph.D. Mark R. McLellan, Ph.D.
Committee Member Vice President for Research and
 Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2017

	
	
	

ii
	

Copyright © Jorge Edison Lascano 2017

All Rights Reserved

	
	
	

iii
	

ABSTRACT

A Pattern Language for Designing Application-Level Communication Protocols and the

Improvement of Computer Science Education through Cloud Computing

by

Jorge Edison Lascano, Doctor of Philosophy

Utah State University, 2017

Major Professor: Stephen W. Clyde, Ph.D.
Department: Computer Science

Networking protocols have been developed throughout time following layered

architectures such as the Open Systems Interconnection model and the Internet model.

These protocols are grouped in the Internet protocol suite. Most developers do not deal

with low-level protocols, instead they design application-level protocols on top of the

low-level protocol. Although each application-level protocol is different, there is

commonality among them and developers can apply lessons learned from one protocol to

the design of new ones. Design patterns can help by gathering and sharing proven and

reusable solution to common, reoccurring design problems. The Application-level

Communication Protocols Design Patterns language captures this knowledge about

application-level protocol design, so developers can create better, more fitting protocols

base on these common and well proven solutions.

Another aspect of contemporary development technics is the need of distribution

of software artifacts. Most of the development companies have started using Cloud

	
	
	

iv
	
Computing services to overcome this need; either public or private clouds are widely

used. Future developers need to manage this technology infrastructure, software, and

platform as services.

These two aspects, communication protocols design and cloud computing

represent an opportunity to contribute to the software development community and to the

software engineering education curriculum. The Application-level Communication

Protocols Design Patterns language aims to help solve communication software design.

The use of cloud computing in programming assignments targets on a positive influence

on improving the Analysis to Reuse skills of students of computer science careers.

(181 pages)

	 	

	
	
	

v
		

PUBLIC ABSTRACT

A Pattern Language for Designing Application-Level Communication Protocols and the

Improvement of Computer Science Education through Cloud Computing

Jorge Edison Lascano

Enterprises that develop software use current technology because of its proven

advantages and to accelerate and improve the software development process.

Nevertheless, it is difficult to be up-to-date for most professionals in the area. Although

students from higher academic institutions need to learn these new tools, and their main

purpose is to learn how learn; colleges still need to prepare students for modern enterprise

requirements, so they teach new technologies to improve students’ skills. Ubiquitous

computing is software and services available everywhere, for example in mobile devices,

in different locations, in different networks. This computing requires good

communication protocols so the software systems can interconnect properly among them

to share data and for distribution purposes.

Developers design communication protocols in repetitive times and learn how to

deal with different non-functional communication requirements such as reliability,

security or synchronicity. This knowledge is typically collected and presented in design

pattern languages, they allow professionals to communicate ideas, problems and solutions

for communication software implementation. The application-level Communication

Design Pattern language aims to gather this knowledge and make it available to computer

science novices and experts.

Most modern software applications need to be available in the network.

	
	
	

vi
	
Developers use cloud computing resources such as virtual infrastructure, software and

platforms. These services are available anywhere (anyware). Cloud computing is

gradually becoming part of current Computer Science curriculums. Ultimately, we show

that using cloud computing resources in programming assignments helps students

improve their analysis to reuse skills.

	
	
	

vii
	

ACKNOWLEDGMENTS

I would like to thank my advisor, Stephen Clyde, for his invaluable support. His

academic and professional knowledge has been greatly appreciated and noted from the

start to the end of my journey as a researcher at Utah State University. He has also been

super supportive in non-academic issues; he is a great person.

I would especially like to thank my committee members for their support and

assistance throughout the entire process. I give special thanks to the CS staff Vicki, Cora,

Genie, who helped on the data gathering for my research and every other requirement.

I would like to thank my Logan and USU friends and my entire family for their

encouragement, moral support, and patience as I worked my way to the graduation. I

could not have done it without all of you, especially without the help of my brave wife

Catherine, my lovely mother Isabel, my dear brother René, my encouraging sister-in-law

Grace, my loved nephew Matias, and my life-inspiring and reasons to go forward every

day -my children, Melody, Daniel, and Jorge.

Last but not the least, to USA and Ecuador’s people, to every one of my students

and friends who supported me in many ways.

Jorge Edison Lascano

	
	
	

viii
	

CONTENTS

 Page

ABSTRACT ... iii

PUBLIC ABSTRACT .. v

ACKNOWLEDGMENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER
	

1. INTRODUCTION .. 1
1.1 Design Patterns for Communication Protocols ... 2
1.2 Cloud Computing in Software Engineering Education 6

2. A PATTERN LANGUAGE FOR APPLICATION-LEVEL

COMMUNICATION PROTOCOLS ... 11
2.1 Abstract ... 11
2.2 Introduction ... 11
2.3 Protocols and Protocol Suites ... 15
2.4 Design Patterns and Pattern Languages .. 16
2.5 Qualities of Communication Protocols ... 17
2.6 Template for Communication-protocol Patterns .. 23
2.7 CommDP .. 25
2.8 Summary and Future Work ... 33

	
3. COMMDP: A PATTERN LANGUAGE FOR DESIGNING

APPLICATION-LEVEL COMMUNICATION PROTOCOLS
QUALITIES AND APPLICABILITY ... 35

3.1 Abstract ... 35
3.2 Introduction ... 35
3.3 Background ... 37
3.4 The CommDP Quality Model ... 42
3.5 CommDP Template .. 50
3.6 CommDP Patterns ... 53
3.7 Summary and Future Work ... 92

	
4. USING CLOUD SERVICES TO IMPROVE SOFTWARE

ENGINEERING EDUCATION FOR DISTRIBUTED
APPLICATION DEVELOPMENT ... 95

	
	
	

ix
	

4.1 Abstract ... 95
4.2 Introduction ... 95
4.3 Programming Assignments for a Distributed Application
Development Course ... 101
4.4 Instructor Observations ... 105
4.5 Post-class Survey .. 108
4.6 Related Work .. 114
4.7 Conclusions and Future Work .. 115

	
5. IMPROVING COMPUTER SCIENCE EDUCATION THROUGH

CLOUD COMPUTING: AN OBSERVATIONAL STUDY 117
5.1 Abstract ... 117
5.2 Introduction ... 117
5.3 Background ... 120
5.4 Related Work .. 122
5.5 Design of the Observational Study ... 123
5.6 Data Analysis and Interpretation .. 129
5.7 Conclusions and Future Directions ... 132
5.8 Acknowledgement .. 135

	
6. CONCLUSIONS .. 136

	
REFERENCES ... 136
	
APPENDICES .. 152

Appendix A: Pattern Language for Application-level Communication
Protocols [10]. ... 153
Appendix B: Using Cloud Services To Improve Software Engineering
Education for Distributed Application Development [24] .. 154
Appendix C: IRB Approval. ... 155
Appendix D: Survey for CS6200/CS7930 to Measure the Perception of

Increased/Decreased Knowledge and Skills on a Course Using CC for the
assignments ... 157
Appendix E: Survey to Measure Perception of Increased/Decreased
Knowledge/Skills for Fall 2015 Semester, Same is Applied on Spring 2016
and Fall 2016 Semesters. .. 160
Appendix F: Copyright Page from ICSEA Proceedings by IARIA…………….… 167

CURRICULUM VITAE ... 168

	
	
	

x
		

LIST OF TABLES

Table Page

1 Scientific Articles .. 10	

2 CommDP Patterns .. 27	

3 Ranking Scale for Reliability Attributes .. 45	

4 Ranking Scale for Synchronicity Attributes .. 47	

5 Ranking Scale for Longevity Attributes .. 48	

6 Ranking Scale for Adaptability Attributes ... 49	

7 CommDP Categories and Patterns ... 54	

8 Analysis of Reliability for CommDP’s Patterns .. 89	

9 Analysis of Synchronicity of CommDP’s Patterns .. 89	

10 Analysis of Adaptability for Scalability of CommDP’s Patterns 90	

11 Analysis of Longevity of CommDP’s Patterns .. 90	

12 Application Examples to Select the Appropriate Pattern 91	

13 Knowledge Survey Questions. ... 112	

14 Skills Survey Questions. .. 113	

15 Weights for Question 6: Perceptions of Level of Students' Knowledge 128	

16 Weights for Question 5: Perceptions of Level of Students’ A2R Skills 129	

17 ANOVA P-values for A2R Skills Variations .. 130	

	
	
	

xi
	

LIST OF FIGURES

Figure Page

1 5-Layer Model for IP-based Communications. ... 15

2 Request-Reply Message Sequence. ... 27

3 Request-Reply-Acknowledge Message Sequence. .. 28

4 Intermediate State Message Sequence. .. 29

5 Second Channel Message Sequence. ... 30

6 Front End Message Sequence. ... 31

7 Proxy Message Sequence ... 31

8 Reliable Multicast Message Sequence. .. 32

9 Layer Model for IP protocols. .. 38

10 ACP Quality Model. .. 44

11 Request-Reply Pattern Structure. ... 55

12 Request-Reply-Acknowledge Pattern Structure. ... 60

13 Idempotent Retry Pattern Structure. .. 65

14 Intermediate State Pattern Structure. ... 66

15 Second Channel Pattern Structure. .. 71

16 Front End Pattern Structure. .. 75

17 Proxy Pattern Structure. ... 80

18 Reliable Multicast Pattern Structure. ... 84

19 Publish-Subscribe Pattern Structure. ... 88

	
	
	

xii
	

20 Programs Built as Part of Assignments 1 & 2, Plus an Illustration
of Sample Processes. ... 103

21 Partial View of the Survey ... 109

22 Before and After Knowledge Levels. .. 110

23 Before and After Skills Levels. .. 110

24 Perception of Acquired Knowledge: Differences Between the

After and the Before. ... 111

25 Goal Question Metric Applied to PEO-1 ... 126

26 Snippet of Question 5 from the Fall-2015 Semester Survey 126

27 Word Count Analysis for Question 8 Using Voyant-tools 132	

CHAPTER 1

INTRODUCTION

Pattern Languages and Cloud Computing are methods and practices widely used

in the different stages of the software development cycle. They have become important

for Computer Science professionals in all areas. This represents an opportunity for

academic institutions that want to improve their curriculum to prepare the students

according to the enterprise needs. The proposed research is a multi-paper dissertation that

describes the establishing a pattern language for designing Application-level

Communication Protocols (ACPs) for Distributed Systems. It also deals with improving

the Computer Science (CS) curricula by including Cloud Computing (CC) in

programming assignments.

Since the introduction of software design patterns in the book, “Design Patterns:

Elements of Reusable Object Oriented Software” [1], researchers have defined many

pattern languages to help developers in addressing common software-engineering

problems in areas, such as programming [1], security [2] [3], enterprise applications [4],

big data [5], reliable messaging [6], management processes [7], user interfaces [8]. To

avoid repeating mistakes and to improve the quality of their software, developers need to

understand and use these diverse design patterns. Yet, there is no pattern language

currently in the area of ACP design. This is a deficiency that the proposed research hopes

to fill. See Chapters 2 and 3.

Another aspect that is becoming important for computer science professionals is

Cloud Computing. In general, CC offers remote on-demand computing resources, such as

	
	
	

2
	
infrastructure, software, and platform services. In industry, most developers are already

deploying their applications to some kind of cloud. According to RightScale [9], 95% of

1060 surveyed technical professionals are using some kind of cloud, which implies that

the majority of the software being deployed these days involves CC and network

communications. Therefore, there is a tremendous need for CS professionals with CC

skills. Sections 3 and 4 discuss more details about CC and the possibility of integrating it

into CS courses. Part of this proposed research aims to study the impact of such changes

in a CS curriculum.

1.1. Design Patterns for Communication Protocols

Most contemporary software applications rely on network communications and,

therefore, their developers need to design and implement ACPs. Even though, there are

many standard low-level communication protocols available, developers have to design

ACPs for every new software system [10]. There are proven practices that could help

developers in designing ACPs. That knowledge has not been properly documented and is

not easily accessible. This is exactly what design patterns do for developers, prior to this

research, there was no pattern language for ACP design [10].

In a paper titled, “A Pattern Language for Application-level Communication

Protocols” [10], I presented an initial set of patterns for a new pattern language, called

CommDP. This pattern is specifically oriented towards the design of ACPs. The paper

was published in ICSEA 2016 conference [11] and received the best paper award.

Consequently, I was invited to write a following paper for their journal. Currently,

CommDP consists of nine ACPs design patterns: Request-Reply -RR, Request-Reply-

	
	
	

3
	
Acknowledge -RRA, Idempotent Retry -IPR, Intermediate State Message -ISM, Second

Channel -2Ch, Front End -FE, Proxy -PXY, Reliable Multicast -RMC, and Publish-

Subscribe –P-S. They are briefly described in chapter 2, stating the problem they intend

to solve, their solution, a sequence of message interchanges, their main characteristics

needs (qualities), and their behavior. Nevertheless, to completely define a Pattern

Language so it can be reusable, concrete examples and a template, that help unify the

information for every pattern are important [1], also we need a guideline to use the

appropriate pattern according to our needs. Thus, I propose the following template

elements for defining CommDP [10]: Name and overview, intent, description: (problem,

context, solution), consequences, known uses, aliases and related work, examples of

application, and references.

In general, the desirable characteristics of network communications are security,

fault tolerance, maintainability, openness, extensibility, scalability, and dynamic quality

of service [12]. In [10], I present four metrics for ACP design patterns that can help

developers decide whether a particular pattern meets their needs and helps them achieve

the communication qualities that they desire. These metrics are reliability, synchronicity,

longevity, and adaptability for scalable distribution. I ranked each design pattern using

for each metric on a scale of 1 to 3, with 3 being the highest. For example, the Proxy

Pattern has reliability=1, synchronicity=1, longevity=1, and adaptability=3. If a developer

were building a system that required good adaptability for scalable distribution, but is not

too much concerned about reliability, synchronicity, or longevity, this pattern would be a

good choice. This kind of choices are made at professional level, hence its use in an

	
	
	

4
	
academic environment will help improve students’ skills and knowledge in a realistic

environment, this was the case during the Fall-2016 semester, where the instructor of

CS5200 used the aforesaid pattern language to teach ACP design and their qualities.

Design patterns and pattern languages are not invents, instead they are collections

of proven solutions that have been used widely by different software specialists.

Hereafter, a pattern language can be established by an assembly of

experts/professionals/academicians in related areas. For this purpose, I have created the

CommDP1 wiki page. Using this tool, this assembly will be able to collaborate to

complete the definition of existing patterns, also they could propose to add new patterns.

In the second paper, about CommDP, see Chapter 2, I define every pattern in its entirety

according to a pattern template. Also, I introduce a guideline to use the respective design

pattern according to the stakeholders’ needs and the main characteristics of the ACPs.

1.1.1. Literature Review on Pattern Languages for Communication Software

In the last two decades, authors have published pattern languages that deal with

Communication Subsystems. Rising [13] presents a compendium of communication

software design-pattern articles of different authors expressing their experience on

building telecommunications and distributed applications. Li and Chou [14] find patterns

in a series of CSTA (Computer Supported Telecommunications Applications) services

that are useful to recognize those services and therefore to transform them into RESTful

web services. After defining these patterns, the CSTA services are converted into

RESTful services by using the CRUD operations from the REST architectural style.

																																								 																					
1 http://commdp.serv.usu.edu/

	
	
	

5
	
Daigneau [15] proposes a set of recurrent solutions for the development of SOAP and

RESTful web services. These patterns are grouped in six categories, one of them deals

with Client-Service interaction (communication) design patterns. Fehling et al. describe a

set of Cloud Computing Patterns [16] focusing on the use of cloud resources towards

designing, building and managing cloud applications. They extract common behavior and

components of cloud products dividing the patterns in four groups: Cloud Offering

Patterns, Cloud Application Architecture Patterns, Cloud Application Management

Patterns; and Composite Cloud Application Patterns.

One of the most complete works in the area of communication software is by D.

Schmidt and others [17], they present a classification of Distributed Real-time and

Embedded Systems patterns as a result of two decades of working towards the

development of ACE (Adaptive Communication Environment) ORB framework [18]

[19]. In [20], they introduce four groups of patterns: Concurrency, Event, Initialization,

and Synchronization; plus a set of miscellaneous patterns. This Pattern language is

refined later in the book series “Pattern-Oriented Software Architecture” (POSA), Vol.1

[21], vol. 2 [22], vol. 3 [23], and vol. 4 [17]. In the later, they propose a single set of 114

patterns connected to other 150 design patterns from different authors. The patterns are

classified in 13 different problem areas: From Mud to Structure, Distribution

Infrastructure, Event Demultiplexing and Dispatching, Interface Partitioning, Component

Partitioning, Application Control, Concurrency, Synchronization, Object Interaction,

Adaptation and Extension, Modal Behavior, Resource Management, and Database

Access.

	
	
	

6
	

At application level, nevertheless, the work is scattered and the articles are not

focused on global solutions for Communication Protocols. There is no author that groups

or creates a set of patterns that deal specifically with ACPs.

1.2. Cloud Computing in Software Engineering Education

CC is widely used by industry to improve productivity, scalability, extensibility,

and accessibility. Furthermore, the number of organizations adopting CC is increasing

daily [9]. This trend presents an opportunity and challenge for higher education to a)

incorporate CC technology into curricula so students can be better prepared and b)

leverage this technology as means of helping students improve other skills and

knowledge required of computer science professionals. These other skills, called

Analysis-to-Reuse (A2R) skills, include: analysis, design, tool evaluation, testing,

deployment, and reuse [24]. Based on current trends, I believe that CS departments need

to integrate CC into programming assignments to help student become familiar with this

technology before graduation. I also believe that using CC for programming assignments

will improve students’ A2R skills. However, whether using CC actually accomplishes

these hoped-for objectives is an open question. To answer this question, we need to find

initial evidence of CC impact on students’ skills. This is one of the primary goals of the

proposed research.

To answer this question, the proposed research present an experience of using CC

in a distributed systems course, see Chapter 3. Following I have conducted a longitudinal

observational study over three semesters to analyze if students who are exposed to CC

feel that their A2R skills improved more than students not exposed to CC. This study

	
	
	

7
	
examines whether integrating CC into programming assignments helps the USU CS

Department meet its Program Educational Objective 1 (PEO-1), which states “the USU

Computer Science program will prepare its graduates to be successful and contributing

professionals by being able to apply the principles of computer science and adapt

emerging technologies to analyze and solve real world problems” [25].

The proposed study calls for a systematic integration of CC into a limited number

of courses and their programming assignments. Measures are gathered using a Qualtrics2

survey instrument that collect self-assessment perceptions from students about their CC

and A2R skills, see Appendix E. The same survey has been distributed three times after

Fall-2015, Spring-2016, and Fall-2016 semesters. My goal is to measure the variances n

the students’ perceptions of their A2R skills and knowledge.

The research questions for the study are as follows: 1) what are students’

perceptions about how their own skills and knowledge level change over the course of a

semester and 2) how does the integration of CC into programming assignments affect

those perceptions. With those questions in mind, I propose my hypotheses: Students who

have assignments that require CC have greater perceived increases in their skills and

knowledge levels in the A2R areas than students that are not exposed to the used of CC.

The study spans the Fall-2015, Spring-2016, and Fall-2016 semesters. I believe

that this time is enough to measure change in the students’ perceptions. In Spring-2016

and Fall-2016, the instructors integrated CC into one or more assignments in the

following courses: CS5700 (Sp16), CS5700 (F16), CS3450 (F16), and CS5600 (F16).

																																								 																					
2 http://qualtrics.usu.edu/

	
	
	

8
	
The data from the surveys is analyzed for trends in a) the students' self-assessments, b)

perceptions about improvements in their skills and knowledge, and c) differences in those

perceptions between two groups of students: those that had CC integrated into their

course assignments (group A) and those who did not (group B), see chapter 4.

During a preliminary study conducted in 2015, the instructor of CS6200/CS7930

used Amazon Web Services3 (AWS) for distributed application programming

assignments, some students used AWS, and other students did not use CC services. This

experience led to the paper titled, “Using Cloud Services to Improve Software

Engineering Education for Distributed Application Development” [10]. Nevertheless, the

sample size was too small to formulate solid conclusions, nevertheless this preliminary

study was sufficient to provide guidance on how to setup the proposed observational

study. Because this is social study that involve human being, I requested approval for this

study to the USU Institutional Review Board –IRB. The proposed study was approved on

March 18,206 (See appendix C). The analysis of this study is described in Chapter 4.

Currently, this paper has been submitted to the Software Engineering Education and

Training Conference [26].

1.2.1. Literature Review on Cloud Computing and Software Engineering Education

The use of virtual resources for computer science courses is not a new concept in

the academia [27], most of such use has been with public clouds in courses for

networking [28], systems administration [27], distributed applications [29], data

processing- MapReduce [30]. Gonzalez et al., at Rochester Institute of Technology used

																																								 																					
3	https://aws.amazon.com/	

	
	
	

9
	
Amazon EC2 in their Principles of Systems Administration course and leveraged career

opportunities for their students [27]. Zhu used cloud resources in the Network

Programming course at Metropolitan State University of Denver, the students agreed that

using CC resources had a positive impact on their learning experience [28], he states that

the same effect will be true for other courses, nevertheless, there is no follow up on this

hypothesis. Rabkin et al. [30] used cloud computing for MapReduce measurements at

University of California, Berkeley.

Additional to the use of public cloud resources, some universities are using their

own virtual environments/clouds to cover engineering educational goals [28] [31]. For

example, Syracuse University, has developed SEED, a local virtual machine lab [32];

North Carolina State University, a Virtual Computing Lab [33]; Stony Brook University,

V-NetLab [34]; Arizona State University, V-lab [35]. Courses that have been taught

using these clouds are: Computer and network security principles, computer networks,

distributed systems, grid computing, database administration, cyber security.

Nevertheless, programming-oriented classes have not taken advantage of this resource as

an educational means. Also, a broader study about the use of CC for improving software

engineering education is missing.

The studies presented in this dissertation can contributed to the Computer Science

body of knowledge and the Computer Science Curricula defined by IEE and ACM [36],

they can also serve as steps forward to improve the quality of the CS program by

including CC or other technology topics in a systematic way without affecting negatively

in the students learning experience.

	
	
	

10
	

This dissertation is a combination of four papers. Two of these have already been

published in international peer-reviewed conference proceedings: ICSEA 2015 [37] and

ICSEA 2016 [11] (Appendix A and Appendix B). The latter paper received the “Best

Paper” award at the ICSEA 2016 conference and I was invited to write a follow-on

journal paper. The paper (Chapter 3) is being submitted to the International Journal on

Advances in Software. The former paper led to an observational study presented in

Chapter 5, this paper is being submitted to the CSSE&T conference [26]. Table 1 lists the

four papers and their status.

Table 1. Scientific Articles

Title / Topic Event name Status
Using Cloud Services To Improve Software Engineering
Education for Distributed Application Development

ICSEA 2015 [37]
(Conference)

Published

A Pattern Language for Application-level Communication
Protocols,

ICSEA 2016 [11]
(Conference)

Published

CommDP: A Pattern Language for Designing Application-
level Communication Protocols. Qualities and Applicability

Iaria journals [38]
(Journal)

To be
submitted

Improving Computer Science Education Through Cloud
Computing: An Observational study

CSEE&T [39]
(Conference)

Submitted

	
	
	

11
	

CHAPTER 2

A PATTERN LANGUAGE FOR APPLICATION-LEVEL COMMUNICATION

PROTOCOLS4

2.1. Abstract

Distributed applications depend on application-layer communication protocols to

exchange data among processes and coordinate distributed operations, independent of

underlying communication subsystems and lower level protocols. Since such protocols

are application-specific, developers often must invent or re-invent solutions to

reoccurring problems involving sending and receiving messages to meet specific

functionality, efficiency, distribution, reliability, and security requirements. This paper

introduces a pattern language, called CommDP, consisting of nine design patterns that

can help developers understand existing reusable solutions and how those solutions might

apply to their situations. Consistent with other pattern languages, the CommDP patterns

are described in terms of the problems they address, their contexts, and solutions. The

problems and consequences of the solutions are evaluated against four desirable qualities:

reliability, synchronicity, longevity, and adaptability for scalable distribution.

2.2. Introduction

At the application level, a distributed system is two or more processes sharing

resources and working together via network communications to accomplish a common

goal [40][41]. Such systems are ubiquitous in today’s Internet-connected world and are

																																								 																					
4 Jorge Edison Lascano, Stephen W. Clyde

	
	
	

12
	
found in virtually every application domain, such as personal productivity tools, social

media, entertainment, research, and business. Even single-user software systems that

appear to be non-distributed may in fact communicate with other processes in the

background to download updates, track usage statistics, or capture error logs, and are

therefore actually distributed systems.

In general, the developers of a distributed system try to increase its overall

throughput, reliability, and scalability by hosting data and/or operations on multiple

machines, while minimizing network traffic, congestion, and turn-around times. Exactly

how they do this depends heavily on the nature and requirements of the application. In

some cases, developers may choose to distribute instances of one type of resource, e.g.,

image files in a peer-to-peer shared photo library. In other situations, developers may

group resources such that all instances of a single type are on one server. Still in other

cases, developers can take hybrid approaches, distributing certain types of resources

among peers and hosting other types on dedicated servers. A closely related design issue

deals with the granularity of the distributed resources, i.e., data and operations. From a

data perspective, the possible choices range from whole databases to individual records

or even individual fields within records. From an operations perspective, the choices

range from entire subsystems to atomic operations. With today’s programming

languages, many developers follow the object-oriented paradigm, encapsulating

operations with data and making choices for granularity that range from entire sets of

objects to object fragments [42].

Besides deciding on the granularity and distribution of resources (data, operations,

	
	
	

13
	
or objects), developers often have to consider requirements for security, fault tolerance,

maintainability, openness, extensibility, scalability, and dynamic quality of service [2].

The degree to which an application possesses these desirable characteristics is primarily a

consequence of architectural design choices, which, in turn, place new requirements on

inter-process communications.

The problem is not that existing application-level communications protocols are

poorly designed and implemented; rather, the problem is that application developer has to

re-invent or re-design them for every new application.

In this paper, we will refer to an exchange among two or more processes for a

particular purpose as a conversation. A single conversation may be short and simple, like

querying a stock’s price, or it could be long and complex, like the streaming of a video.

The rules that govern a particular type of conversation are a communication protocol and

a collection of protocols is called a protocol suite [43][44].

Application-layer communication protocols (ACPs) are often defined on top of

other protocols. For example, the Hypertext Transfer Protocol (HTTP), which is an ACP,

is defined on top of the Transmission Control Protocol (TCP) [40]. Many higher level

ACPs, like webservice-based ACPs, are in turn defined on top of HTTP [40]. Section II

provides additional background on protocols and protocol suites, as well as a brief

discussion on layered communication subsystems.

Because requirements for ACPs can come from an application’s (a) functional

requirements, (b) architectural design, and (c) use of lower layer protocols, coming up

with effective designs can be challenging. Fortunately, the problems that developers are

	
	
	

14
	
likely to encounter are not uncommon and have known solutions. The key is to capture

this knowledge in a way that developers can easily find it and adapt it to a new

application. This is precisely what design patterns can do [1].

Unfortunately, design patterns for communication protocols at application layer

have yet not been gathered, correlated, and formally organized into a cohesive and

thorough collection. To this end, this paper introduces a system of design patterns, i.e., a

pattern language, for ACPs, called CommDP. The patterns in CommDP come from a

variety of sources and are by themselves not new ideas, as is the case for all newly

documented design patterns [45]. Section III provides more background information on

design patterns and pattern languages, as well as information about related work.

Since designing ACPs is different from designing executable software, it is

necessary to discuss desirable qualities for protocols. Section IV introduces four, namely

reliability, synchronicity, longevity, and adaptability for scalable distribution. Section V

presents a design pattern template that incorporates these characteristics into the definition

of communication problems and the consequences of pattern solutions.

Section VI-A introduces three communication idioms that act as conceptual

building blocks for all the ACP patterns in CommDP. We then provide an overview of

the ACP patterns in Section VI-B. Additional details for the CommDP patterns are

available on-line, at [http://commdp.serv.usu.edu/].

Patterns are rarely used in isolation; instead, developers typically weave multiple

pattern instantiations together to create complete solutions [17]. A system of patterns, i.e.,

a pattern language, not only includes a collection of patterns, but relationships among

	
	
	

15
	
them that help developers know how they might be effectively combined [46]. Section

VI-C provides a digest of these relationships for CommDP. Finally, in Section VII, we

summarize the value of CommDP and outline our future research direction.

2.3. Protocols and Protocol Suites

Software and electrical engineers model, design, and implement inter-process

communications in layers. Figure 1 shows a simple 5-layer model commonly favored by

those who work with IP-based protocols [40][47]. There are several other common

models, such as the 7-layer OSI model [48]. A conversation between Process 1 and

Process 2 can be discussed at any layer and, for each layer, it must adhere to agree upon

protocol(s) for that layer. For example, if Process 1 were a web browser, Process 2 were a

web server, and the conversation a simple web-page request, then the application-layer

protocol would be HTTP, the Transport-layer protocol would be TCP, and the Network-

layer protocol would be IP.

Besides providing a convenient way for discussing protocols, layered models

establish a basis for creating substitutable software communication subsystems. Since we

are addressing ACPs in this paper, we do not deal directly with design and

Figure 1. 5-Layer Model for IP-based Communications.

	
	
	

16
	
implementation of these software components. Nevertheless, we assume that appropriate

communication subsystems exist at the transport layer for streaming of unstructured data

and transmitting datagrams (semi-structured data). Section V relies on this reasonable

assumption to define four communication idioms.

At the application layer, a protocol governs why, when, and how processes interact

with each other to accomplish a common goal. Specifically, an ACP should define the

following:

1. the processes involved in the interaction in terms of the roles they play during a

conversation;

2. the possible sequences of messages for valid conversations;

3. the structure of the messages;

4. the meaning of the messages; and,

5. relevant behaviors of the participating processes.

Because processes in a distributed system typically have to communicate with

each other for many different tasks, e.g., authentication, resource sharing, and

coordination, it is common for a distributed system to require multiple ACPs, i.e., an

ACP suite.

2.4. Design Patterns and Pattern Languages

Christopher Alexander et al. defined a pattern as a reusable solution to a

reoccurring problem [46]. Kent Beck and Ward Cunningham started to apply the concept

of pattern languages to software engineering in 1987 [49], and the idea was later

popularized by Eric Gamma et al. with their landmark language of 23 patterns [1]. Since

	
	
	

17
	
then, pattern languages have been documented for many areas of software engineering,

including architectural design [21][50], user-interface design [51], event handling [52]

[53] [54], and concurrency [55] [56]. There are even patterns specifically for distributed

computing [17], distributed objects [57] [58] [59], communication software [13][60],

RESTful and SOAP web services [15], cloud computing [16], and distributed real-time

and embedded systems [20]. However, to date, no pattern language has been published

specifically for ACPs.

There are two hoped-for benefits of pattern languages that are important to ACP

design. First, they create a vocabulary that enables developers to discuss complex ideas in

a few words [59]. Second, they allow developers of all experience levels to benefit from

expert reusable solutions [61].

2.5. Qualities of Communication Protocols

Like software, ACP suites, as whole, should possess certain desirable qualities

that contribute to the overall success of a system. Some of these desirable qualities come

directly from the software arena. For example, cohesion is the degree to which the

elements of a software component align with a single purpose [62]. Cohesion and its

definition can apply almost directly to ACPs, but this is a subject for future research (see

Section VII). Another desirable software quality directly applicable to ACPs is

modularization. Modularization is the degree to which a system is divided up into

independent components [63]. When a system has good modularization, developers do

not have to look very far beyond a component to understand it or reason about it. We

believe the same to be true for ACPs, but the details of modularization applied to ACPs

	
	
	

18
	
are also a subject for another paper (see Section VII).

Although we believe cohesion and modularization are important qualities for

ACPs, they do not directly help in describing reoccurring communication problems nor

are they good discriminators for reusable solutions, because all pattern solutions should,

by definition, have good cohesion and modularization. So, we turn our attention to four

other qualities with discriminating definitions for ACPs, namely: reliability,

synchronicity, longevity, and adaptability for scalable distribution.

2.5.1. Reliability

For an ACP, reliability is the degree to which a process that sends a message as

part of a conversation obtains an assurance that the intended recipient(s) received it,

entirety and uncorrupted, and reacted as prescribed in the ACP. At the application level,

reliability is typically achieved by the recipients returning messages that provide the

sender with confirmation that the message was received and/or processed. When such

return messages fail to arrive in a timely fashion, reliable ACPs will require the sender to

retransmit the original message.

In Section VI, where we present an overview of the ACP patterns in CommDP,

we rank each of the patterns in terms of reliability using the following 3-point rubric:

Rank/Criteria

3 The problem (P) addressed by the pattern is primarily concerned with reliability

and the solution (S) can make the following guarantees under normal and extreme

conditions:

a. The sender can distinguish between successful and failed conversations.

	
	
	

19
	

b. The receiver can distinguish between successful and failed conversations.

c. In successful conversations, any process X that sends a message M to process

Y, gives a timely assurance to X (in some subsequent message) that Y received

M.

d. In successful conversations, for any process X that sends a message M to process

Y, if M is supposed to trigger a non-trivial behavior in Y, then X receives a

timely assurance that Y successfully handled M.

2 P is concerned with reliability and S can guarantee at least (a) and (c) from above

in normal situations.

1 P is not concerned with reliability and S does not limit reliability.

Clearly, there are other conceivable problem/solution criteria for reliability not

listed above, such as a reoccurring problem where reliability is a major concern and a

solution that does not address it. However, we do not include such meaningless

classifications because they would not help classify patterns with expert, reusable

solutions.

2.5.2. Synchronicity

In the most general sense, synchronization deals with the coordinated execution of

actions in a distributed system and what the state information is necessary for that

coordination. This broad definition encompasses, but is not limited to, the common view

among programmers that synchronous communications occur when the sender of a

message stops and waits for a response from the message receiver [64]. However, this is

not the only way to achieve synchronization. Some other common mechanisms are

	
	
	

20
	
logical clocks [65][66], vector clocks [67][68], vector timestamps [69], optimistic

concurrency controls [70], and timing signals.

To evaluate the synchronization requirements for ACPs, we consider: (a) what are

the actions that need to be coordinated, (b) where will those actions be executed, and (c)

what kind of state information is needed to achieve the desired coordination. A

distributed system may perform many different tasks comprised of numerous operations,

but rarely all of them have to be fully coordinated. In fact, the more independent the

individual operations are, the more a system can maximize concurrency and increase

throughput. From a coordination perspective, where the operations take place is actually

more important than what the operations do. For example, if all of the actions occur in

just one process, then that process may not need to know anything about the state of the

other process. Once developers know what operations have to be coordinated and where

they will execute, they can consider what local or global state information the

coordination logic will need.

To rank synchronicity for ACP patterns, we will use the following definitions:

• C is a conversation involving a closed set of processes, 𝐶. 𝑃 = 𝑝&, … , 𝑝) ,

and a set of messages, 𝐶.𝑀 = 𝑚&,… ,𝑚) , such that 𝑠𝑒𝑛𝑑𝑒𝑟 𝑚1 ∈ 𝐶. 𝑃	 ∧

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠 𝑚1 ⊆ 𝐶. 𝑃 for 1 ≤ 𝑖 ≤ 𝑛 where 𝑠𝑒𝑛𝑑𝑒𝑟 𝑚1 is the process that

sent message 𝑚1 and 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠 𝑚1 is the set of processes that received 𝑚1.

• A is a set of operations, {𝑎&, … , 𝑎)} that run on 𝐶. 𝑃 and whose execution

requires coordination, e.g., ordering, simultaneous execution, etc.

• h(a) is the host process for operation, 𝑎, where 𝑎 ∈ 𝐴 and ℎ 𝑎 ∈ 𝐶. 𝑃

	
	
	

21
	

• s(a) is the state information that h(a) needs to coordinate A’s execution with the

rest of the operations in A.

• H(A) is the set of host processes for all operations in A

Below is an informal 3-point rubric for ranking synchronicity for CommDP

patterns using these definitions. We believe that a more rigorous ranking system would

have value beyond the categorization of ACP patterns, and its full definition is beyond

the scope and purpose of this paper.

Rank/Criteria

3 The problem (P) addressed by the pattern deals with situations where H(A) > 1

and the solution (S) can guarantee that for all a ∈ A, h(a) receives s(a) via

messages, mG ∈ C.M, in time to do the prescribed coordination.

2 P deals with situations where H(A) = 	1 and S can guarantee that for all a ∈ A,

h(a) receives s(a) via messages, mG ∈ C.M, in time to do the prescribed

coordination.

1 P is not concerned with synchronicity, e.g., A = 0, and S does not limit

synchronicity.

2.5.3. Longevity

Longevity is the degree to which an ACP can support long-running conversations

caused by long-running operations. The primary problem for conversation with long-

running operations is that there could be huge span of times when processes are uncertain

of each other’s states. Consider a simple request/reply conversation where some process

A sends a request to B, but B takes a long time to execute the requested operation and

	
	
	

22
	
sends back a reply. While waiting for the reply, process A does not know if B received

the request, has failed, or is just taking a long time. ACPs that support long-running

operations include mechanisms for exchanging state information independent of results.

We rank the longevity for ACP patterns according to the following 3-point rubric:

Rank/Criteria

3 The problem (P) addressed by the pattern is primarily concerned with long-running

conversations and the solution (S) can guarantee the following in successful

conversations:

a. Participants made aware of each other’s states in periodically.

b. Each participant in the conversation can detect when other participants are no

longer available or accessible.

2 P is concerned with long-running conversations and S provides for (a).

1 P is not concerned with long-running conversations and S does not limit longevity.

2.5.4. Adaptability for Scalable Distribution

ACPs can support scalability by providing location transparency and/or

replication transparency [69], and by allowing resources (data, operations, or objects) to

be distributed across multiple hosts. To understand location and replication transparency,

consider a website with a large number of resources. It can support scalability by placing

the various resources on an expandable collection of backend servers and use a front-end

server to distribute requests from browsers. If the browser does not need to know where a

resource is actually located, then the system supports location transparency. Similarly, as

traffic increases, the system could replicate resources across multiple backend servers. If

	
	
	

23
	
the client does not have to know that replicas exist, then the system supports replication

transparency. Both location and replication transparency simplify scalability.

Another technique for supporting scalability is allowing complex resources to be

broken up into smaller resources and distributed across multiple servers. One approach

for doing this is to untangle cross-cutting concerns, like security or logging, from

complex operations and host these pieces of functionality on proxies [71][69].

Here is a simple rubric for the adaptability for scalable distribution.

Rank/Criteria

3 The problem (P) addressed by the pattern is primarily concerned about scalability

or the distribution of action or resources and the solution (S) can provide two or

more of following:

a. Location transparency for shared resources distributed across multiple hosts

b. Load balancing with shared resources replicated across multiple hosts

c. Untangling of cross-cutting concerns into separate actions

2 P is concerned with scalability or distribution of resources and S provides at least

one (a), (b), or (c).

1 P is not concerned with scalability or distribution and S does not limit them.

2.6. Template for Communication-protocol Patterns

To document the patterns in CommDP, we have developed a template, loosely

based on the way Gamma, Helm, Johnson and Vlissides documented their patterns [61],

referred to here as the GoF template. The main goal is to keep the documentation as

simple as possible, while still capturing the details of the pattern. Following are the

	
	
	

24
	
elements of CommDP pattern template.

2.6.1. Name

As with the GoF template, the name uniquely identifies the pattern. Since the

name will become part of the vocabulary for the pattern language, it is important that it

captures the essence of the pattern, distinguishes it from other patterns, and is as concise

as possible.

2.6.2. Intent

The intent is an abstract for the pattern. It summarizes the problem, the context,

and the solutions, particularly in terms of reliability, synchronicity, longevity, and

adaptability for scalable distributes.

2.6.3. Description

The description consists of three subsections that explain the problem, context,

and solution. The problem subsection relates closely to the Motivation part in the GoF

template, in that it explains the nature of the reoccurring communication-protocol design

problem. This subsection should highlight the problem’s need for reliable

communications, synchronization, long-running conversations, or scalable distribution.

The context subsection is like the Applicability in the GoF template, capturing

information when the pattern may or may not be applicable and assumptions about

distributed systems in which the communications will take place. The solution is

analogous to the Structure in the GoF template. It focuses on the describing protocol

design ideas and how they can be adapted.

	
	
	

25
	
2.6.4. Consequences

As with the GoF template, the consequences are important part of CommDP

pattern definitions because developers will use them to determine if the pattern is a good

fit for a particular situation. The consequences of CommDP patterns are described in

terms of the qualities discussed in Section 4. The rankings provide a general

classification, and pros explain the consequences in more detail.

2.6.5. Known Uses

Like the GoF template, this part references known instances of the pattern in

production systems.

2.6.6. Aliases and Related Work

The section combines two elements of the GoF template by the similar names.

2.6.7. References

This section contains a bibliography for the citations made elsewhere in the

pattern definition.

2.7. CommDP

A design pattern is composed of a set of patterns and idioms that are used together

to solve a design engineering problem.

2.7.1. ACP Idioms

Before launching into a description of CommDP’s patterns, it is important to first

introduce three fundamental building blocks for all ACPs: point-to-point send, multicast,

and broadcast. These are idioms instead of patterns because their usage depends on the

	
	
	

26
	
lower layer communication protocols and because, by themselves, they do not address the

qualities discussed in Section 4.

A point-to-point send is the transmission of a single message from one process to

another, such as a message sent over a TCP connection or via a UDP datagram. An

underlying communication subsystem may provide some reliability relative to the

transmission but, at the application-level, a single message does not allow the sender to

know if the receiver processed the message or anything about the receiver’s state, nor

does it help with longevity or adaptability for scalable distribution.

A multicast send is the transmission of a single message to a set of receiving

processes [72]. It can be implemented at virtually any layer in communication hierarchy,

including the physical layer. Mechanisms for identifying the group of receiving processes

vary from sender determined to receiver subscriptions. By themselves, multicast are

idioms for ACPs. The same is true for broadcasts, which also transmit messages to

multiple receivers [72].

2.7.2. ACP Patterns

Table 2 lists the nine patterns currently in CommDP, along with their rankings

from their consequences relative to the characteristics discussed in Section 4

(R=Reliability, S=Synchronicity, L=Longevity, and A=Adaptability for Scalable

Distribution). Their full definitions are available on [http://commdp.serv.usu.edu].

The Request-Reply pattern is undoubtedly the most common. It addresses the

problem where a process, A, needs to access or use shared resources in another process,

B, with a reasonable degree of reliability and synchronicity. The solution consists of A

	
	
	

27
	
sending B a message (i.e., a request) and B sending back a message (i.e., a reply) after

processing the request, as you can see in Figure 2. For A, this simple mechanism provides

a modest level of reliability and synchronization, because the reply proves that B received

the request and can provide relevant information about B’s state. Furthermore, if A does

not receive a reply within a specific amount of time (i.e., a timeout), it can resend the

request. It can continue to timeout and retry until it eventually receives a reply or it

exceeds some maximum number of retries. This “timeout/retry” behavior is the essence

of the request-reply pattern.

The Request-Reply-Acknowledge pattern extends this solution with a third

message (an acknowledgement) that A sends to B after receiving the reply, and gives B a

Table 2. CommDP Patterns

Name Consequences
R S L A

Request-Reply 2 2 1 1
Request-Reply-Acknowledge 3 3 1 1
Idempotent Retry 3 1 1 1
Intermediate State Messages 3 3 3 1
Second Channel 1 3 3 1
Front End 1 1 1 3
Proxy 1 1 1 3
Reliable Multicast 3 3 1 2
Publish-Subscribe 2 1 1 3

	

	
	

Figure 2. Request-Reply Message Sequence.

	
	
	

28
	
timeout/retry behavior with respect to its sending of the reply and waiting for an

acknowledgement, see Figure 3. This pattern is useful in situations were significant

processing may occur on A after receiving the reply or when it is problematic for B to

reprocess duplicated requests caused by A’s timeout/retry behavior. With this pattern,

instead of reprocessing a duplicate request, B can simply cache its replies and resends

them to A when necessary. The acknowledgement tells B that A has received the reply

and, thus, can remove it from its cache. This pattern offers more reliability and

synchronization than request-reply, but at the cost of an additional message.

The Idempotent Retry pattern [73] captures a different solution to the problem of

processing duplicate requests. Like Request-Reply, its solution consists of A sending a

request to B with a timeout/retry behavior and B sending a reply back to A. But, unlike

Request-Reply, the semantics of the protocol dedicate the processing of the request must

be idempotent. This pattern applies to situations where the requested processing is

relatively light, i.e., less expensive than caching replies.

	

	

Figure 3. Request-Reply-Acknowledge Message Sequence.

	
	
	

29
	

The next pattern, Intermediate State Message, is also similar to Request-Reply,

but addresses the problem of long-running conversations due to request actions taking

substantial amounts of time to complete. To solve this problem, it has B send A one or

more intermediate messages that reflect its current state. For example, B may send a

message immediately after receiving the request to let A know that it got the request,

another message when the processing is 10%, another at 20% complete, and so on. Each

intermediate message provides state information about B, which improves

synchronization in the presence of time-consuming actions, see Figure 4.

The Second Channel pattern is also for situations involving long-running

conversations, but ones dominated by significant amounts of data transfers instead of

time-consuming actions. Because the large data transfers can delay intermediate state

messages, this pattern’s solution suggests opening a second communication channel

	
	
Figure 4. Intermediate State Message Sequence.

	
	
	

30
	
between A and B that is dedicated to data transfer, leaving the original communication

channel available for intermediate state or control messages, as it is shown in Figure 5.

The File Transfer Protocol (FTP) and its variations are classical examples of this

pattern[47][72].

The Front End pattern addresses the problems of making the location of shared

resource transparent to the client, allowing the number of resources to change

dynamically. It has a resource client send requests to a front-end process that

automatically redistributes them to appropriate resource managers, B processes. After

processing the request, a resource manager replies back to the client directly, for a

graphic description of this pattern, you can see Figure 6. The front-end process can use a

variety of criteria to decide how to redistribute requests, including request type, resource

	

Figure 5. Second Channel Message Sequence.

	
	
	

31
	
type or identity, and resource manager load. By itself, this pattern’s primary focus is on

the distribution and scalability of resources.

Like the Front End, the Proxy pattern, presented in Figure 7, introduces a process

between a resource client and a resource manager. However, the intermediate process,

called a proxy, serves other functional purposes besides re-distribution of the requests, for

example it may provide authentication, access control, audit logging, and data

transformation functionality. Also, the resource manager returns replies through the

proxy to client, completely isolating the client from the resource manager.

	

Figure 6. Front End Message Sequence.

	

	

Figure 7. Proxy Message Sequence

	
	
	

32
	

The Reliable Multicast pattern builds on the multicast idiom to provide reliability

and synchronization among a group of processes. Its solution is a protocol that starts with

a process A sending a request message to a group of process, B={b1, .., bn}. Each process

bi sends a reply back to A when it receives the request and is ready to process it. After A

receives reply from all B processes, then A will multicast a go-ahead message back out to

all B message indicating that they can proceed with the processing of the request, shown

in Figure 8. In this way, the execution of the request is synchronized among all of the B

processes. If A fails to receive a reply from every B process, it can resend the request to

some or all of them until it gets a reply from all of them or terminates the conversation as

failed. This pattern focuses on providing strong reliability and synchronization, but can

also help with scalable distribution of resources.

Finally, the Publish-Subscribe [17] pattern is a powerful mechanism for

decoupling message senders (publisher) from message receivers (subscribers). With this

pattern, an intermediate process acts as a store-and-forward buffer for message

transmission with the capabilities for managing subscribers and delivering individual

	

	
Figure 8. Reliable Multicast Message Sequence.

	

	
	
	

33
	
message to multiple subscribers.

2.7.3. CommDP: Pattern Relationships and Composition

Patterns are rarely used in isolation; instead, developers combine their solutions to

solve complex problems. Virtually any of the CommDP patterns could be combined with

any other pattern, but the more useful combinations are ones that have complimentary

characteristics, like Request-Reply with Second Data Channel or Request-Reply

Acknowledge with Front End.

To ensure that the CommDP pattern set was as minimal as possible, we did not

include in any pattern in CommDP that was simply an aggregation of two or more

patterns. For example, there is a common type of distributed system that deals with

information flow and processing. In such systems, a process A might send a request to B

through a series of intermediate proxy-like processes that transform or augment data in

request on its way to B. At each intermediate step, a reply is sent back to A, informing it

of the message’s process. Eventually, when the transformed message arrives at B and

processes it, then B sends a final reply message back to A. This particular solution offers

good reliability, synchronization, longevity, and adaptability to scalable distribution, but

it is actually just a composition of the Proxy pattern (applied perhaps multiple times) and

the Intermediate State Message pattern.

2.8. Summary and Future Work

CommDP pulls together reusable solutions to reoccurring design problems with

ACPs, filling a much needed gap in the knowledge base for developers of distributed

systems. We have characterized the nature of the problems that the CommDP patterns

	
	
	

34
	
address and the consequences of their solution in terms of four desirable qualities,

namely: reliability, synchronicity, longevity, and adaptability for scalable distribution.

These qualities are both instructive and discriminating, in that they can help a developer

understand the solutions and choose the most appropriate solution for a given situation.

However, more work needs to be done to formalize these qualities and to solidify their

sufficiently and completeness relative communication-protocol design. So this is one of

our research group’s immediate goals.

We also hope to investigate other qualities, like cohesion and modularization that

might be valuable for protocol design even if they are not good discriminators for design

patterns. Being able to reason about assess, and teach these qualities more formally will

help developers create better distributed systems.

Finally, over time, we hope the expand the patterns in CommDP, without adding

any that are just compositions of existing patterns, to encompasses a boarder range of

reusable solutions for ACPs.

	
	
	

35
	

CHAPTER 3

COMMDP: A PATTERN LANGUAGE FOR DESIGNING APPLICATION-

LEVEL COMMUNICATION PROTOCOLS QUALITIES AND APPLICABILITY5

3.1. Abstract

This work is an extension to the paper “A Pattern Language for Application-level

Communication Protocols” [1], where we introduced the Application level

Communication Protocols Design Pattern Language (CommDP). The present article

aims to define a complete description of the patterns, show examples of their

applications, and analyze their pertinence with the communication protocols’ qualities,

namely, reliability, synchronicity, longevity, and adaptability for distribution, i.e., to

analyze non-functional requirements of communication protocols and propose an early

quality model for Application-level Communication protocols.

3.2. Introduction

With the current expectations for “connected” applications, many software

developers today are concerned with designing reliable, secure, efficient, and scalable

application-level communication protocols (ACPs). In general, a communication protocol

is a set of rules that governs a particular type of conversation among communicating

entities. ACPs are high-level communication protocols for application-layer components

and are typically built on top of transport, session, presentation, or even other application

protocols [1] [2]. For example, many web-based applications have ACPs that are built on

																																								 																					
5 Jorge Edison Lascano, Stephen W. Clyde

	
	
	

36
	
top of the Hypertext Transfer Protocol (HTTP), which itself is an ACP, and HTTP is

built on top of the Transmission Control Protocol (TCP), which is a transport protocol

[3]. A collection of related protocols, like all those used by a single distributed

application, form a communication protocol suite [4][5]. It is common for an

application’s protocol suite to have dozens of ACPs, each with its own specific purpose

and conversation-governing rules. Section 3.3 provides some additional background on

these and other foundational concepts, such as quality models.

This paper aims to capture existing design expertise for ACPs in design patterns,

which collectively form a pattern language [6], using a consistent and appropriate

pattern-documentation template. Specifically, this article updates and extends the initial

work in this area, presented in a paper at ICSEA 2016, titled “A Pattern Language for

Application-level Communication Protocols” [1]. We have also setup a wiki, available

on-line6, for collaborative work on its ongoing extension and evolution.

To help developers understand the consequence of using any CommDP design

pattern, this paper describes four communication-protocol qualities: reliability,

synchronicity, longevity, and adaptability for scalable distribution, and then evaluates

each pattern respective to its potential impact on these qualities. This can help developers

make informed choices about which pattern(s) to use in any given situation. Section 3.4

explains the four communication qualities and introduces a quality model for classifying

CommDP patterns relative to these qualities.

To realize the potential benefit of a pattern language, it is important to document

																																								 																					
6 http://commdp.serv.usu.edu/

	
	
	

37
	
the essential concepts of each pattern, the consequences of using the pattern, examples,

and other relevant information using a consistent documentation template. Section 3.5

explains CommDP’s documentation template and why it is necessary and appropriate for

ACPs. Section 3.6 contains the definitions for the eleven patterns currently in CommDP

and introduces several patterns currently being considered for inclusion in CommDP.

Finally, Section 3.7 provides as summary and ideas for future work.

3.3. Background

3.3.1. Communication Protocols

Software engineers model, design, and implement inter-process communications

in layers. Figure 9 shows a simple 5-layer model commonly favored by those who work

with IP-based protocols [3][7]. Another common model is the 7-layer OSI model [8]. As

illustrated in Figure 9, a conversation between Process 1 and Process 2 can be discussed

at any layer. The components at each layer must adhere to agree upon protocol(s) for

conversations to take place. For example, if Process 1 were a web browser and Process 2

were a web server and they wanted to have a conversation involving the request and

delivery of a web-page, the application-layer component would need to agree on a

protocol for that purpose. The Hyper-Text Transfer Protocol (HTTP) is an ACP

specifically designed for this purpose. It is built on top of a transport-layer protocol,

called Transport-Communications Protocol (TCP), which “streams” the request for a

webpage to Process 2 and the desired webpage is sent back to Process 1 in a reliable way.

TCP is in turn built on top of the network-layer protocol called Internet Protocol (IP),

which packetizes the stream and routes through the network.

	
	
	

38
	

Besides providing a convenient way for discussing protocols, layered models

establish a blueprint for creating software communication subsystems. Since we are

addressing ACPs in this paper, we do not deal directly with design and implementation of

these software components.

At the application layer, a protocol governs why, when, and how processes

interact with each other to accomplish a common goal. Like all communication protocols,

they must prescribe message syntax, semantic, synchronization, and error recovery [4].

Specifically, an ACP should define the following: the processes involved in the

interaction in terms of the roles they play during a conversation, the possible sequences

of messages for valid conversations, the structure of the messages, the meaning of the

messages, and relevant behaviors of the participating processes. Although ACPs can be

implemented in any type of application that needs to attain some type of conversation,

they are commonly used to develop distributed applications.

Because requirements for ACPs can come from an application’s (a) functional

requirements, (b) architectural design, and (c) use of lower layer protocols, coming up

	

Figure 9. Layer Model for IP protocols.

	
	
	

39
	
with application-specific ACPs designs that are reliable, secure, efficient, and scalable

can be challenging. Fortunately, the problems that developers are likely to encounter are

not uncommon and have known solutions. The key is to capture existing expertise in a

way that developers can easily find it and adapt it to a new application. This is precisely

what design pattern languages [6], like CommDP, aim to do.

3.3.2. Patterns and Pattern Languages

Christopher Alexander et al. defined a pattern as a reusable solution to a

reoccurring problem [9]. Kent Beck and Ward Cunningham started to apply the concept

of pattern languages to software engineering in 1987 [10], and the idea was later

popularized by Eric Gamma et al. with their landmark language of 23 patterns [6]. Since

then, pattern languages have been documented for many areas of software engineering,

including architectural design [11][12], user-interface design [13], event handling

[14][15][16], and concurrency [17]-[18]. There are even patterns specifically for

distributed computing [19], distributed objects [20][21][22], communication software

[23][24], RESTful and SOAP web services [25], cloud computing [26], and distributed

real-time and embedded systems [27]. However, to date, no pattern language has been

published specifically for ACPs.

There are two hoped-for benefits of pattern languages, in general. First, a pattern

language can create a vocabulary that enables developers to discuss complex ideas in a

few words [22]. This is particularly useful in ACP design because of the variations in

terminology that already exists. For example, request-response [28], request reply [29],

and request acknowledge [25] can be used to express a two-way or a one-way

	
	
	

40
	
communication indistinctly. Second, a pattern language allows developers of all

experience levels to benefit from expert reusable solutions [30] and to apply those ideas

to improve the quality of their systems in predictable and measurable ways.

3.3.3. Quality and Quality Models

ISO 25010 [39] is a hierarchical structure that describes the quality of a software

products based on desired qualities, sub-qualities, and attributes. Software engineers use

formal or informal metrics to measure an attribute to assess the degree to which a

software system possesses that attribute. Then, they aggregate their assessments of the

individual attributes to conclude the presence (or lack) of sub-qualities and ultimately, the

desired qualities.

Similarly, the quality of communication protocols could be determined through

quality, sub-qualities, attributes, but these would be necessary different from software

systems since communication protocols not self-contained computational mechanisms,

but guidelines for how multiple entity interaction.

Several authors have dealt with quality issues related for protocols, including:

formal methods in communication protocol design [31], techniques and principles that

lead to good protocol designs [32] [34], best practices for implementing protocols [33],

and performance issues [48] [49] [50]. However, none of them discuss or present a model

to assess ACP qualities.

G. Coulouris et al., wrote “It is of high interest to be able to estimate, or even

measure the quality of a system under construction” [35]. In fact, in any engineering

field, it is generally believed that you can not improve what you do not measure.

	
	
	

41
	
Software quality metrics are used to identify strengthen or weakness in a software system

and can therefore become a basis for improvement. Developers should not only aim to

achieve the required functionality of products, but do so in a way that it possesses

desirable qualities like reliability, security, efficiency, scalability, maintainability,

reusability, extensibility, portability, and testability [36]. For example, measuring

Coupling and Cohesion (C&C) can help decrease the possibility of a fault or a defect

appearance and maintenance if applied early in the development process [35]. Also

complexity quality metrics are used to reduce defects [37].

Quality models are composed by desirable characteristics, .i.e., “qualities”, that

relate to “static properties of software and dynamic properties of the computer systems”

[36, p. 25] They provide a set of quality characteristics that helps verify if the intended

requirements of a software product are met. ISO/IEC 25010 [39, p. 25010], a standard

software quality model, proposes the following set of qualities for system evaluation:

functionality, maintainability, usability, reliability, security, and performance efficiency.

However, these qualities pertain to software that produces executable code and not to

protocols that govern conversations being executing entities. Section 3.4 introduces a

quality model specifically for ACP and ACP patterns.

3.3.4. Design Patterns

Distributed applications depend on application-layer communication protocols to

exchange data among processes and coordinate distributed operations, independent of

underlying communication subsystems and lower level protocols. Since such protocols

are application-specific, developers often must invent or re-invent solutions to

	
	
	

42
	
reoccurring problems involving sending and receiving messages to meet specific

functionality, efficiency, distribution, reliability, and security requirements. Here is where

a pattern language is important for ACP design [1]. First, it creates a vocabulary that

enables developers to discuss complex ideas in a few words [22]. Second, they allow

developers of all experience levels to benefit from expert reusable solutions [30].

3.4. The CommDP Quality Model

 As with software systems at large, when designing ACPs, designers try to meet

certain general and application-specific objectives. The general objectives include

minimizing communication overhead, minimizing response times, and maximizing

throughput. Regardless of the application, these are viable objectives for any ACP. Of

course, how much effort or expense developers put forward to satisfy them will still

depend on the available time and budget. The application-specific objectives fail into four

broad categories: reliability, synchronicity, longevity, and adaptability for scalable

distribution. In other words, depending on application requirements, designers may need

to create ACPs that can tolerate certain kinds of failures, e.g. lost messages; ensure that

processes can achieve a degree of synchronization for certain operations; accommodate

long-running operations; or allow for scalability with respect to users or resources. From

this point on, we will reference these four application-specific objectives as the RSLA

qualities.

To help ACP designers reuse design expertise embedded in existing ACPs, we

propose a quality model, called the CommDP Quality Model, that possesses the following

features:

	
	
	

43
	

1. Enabling the assessment of an ACP’s pattern towards the RSLA qualities

2. Allowing for the ranking of requirements relative to RSLA qualities

3. Enabling the assessment of the degree an ACP supports the RSLA

qualities

Feature #1 means that ACP patterns can be classified according to how they help

with the RSLA qualities. Feature #2 means that designers can characterize the problem

they are working on. Therefore, with the quality model, designers should be able to find

patterns or combinations of patterns that will contribute to a meaningful solution for their

specific application. Feature #3 means that quality model should allow designers to verify

their completed ACP for support of the RSLA qualities, to the desired degrees. Figure 10

provides an overview of CommDP Quality Model. Specifically, it shows how each RSLA

quality is sub-divided into one or more attributes. Sections 3.4.1-3.4.4 describe the RSLA

qualities in more detail, as well as rubrics for ranking the attributes on a three-point scale

(0-2), where a 0 (zero) means that an ACP or design pattern is not concerned with that

attribute, while a 1 or 2 means that either contributes to or fully achieves the attribute.

Very rarely would an ACP possess all the attributes and none of these attributes is

essential for every ACPs. Therefore, choosing an appropriate pattern or combination of

patterns for the ACP is matter of matching the need for specific attributes, stemming

from application requirements, with levels of the attributes supported by the patterns.

3.4.1. Reliability

For an ACP, reliability is the degree to which a process can send a message to one

or more intended recipient(s) and know that those recipient(s) received it, in its entirety

	
	
	

44
	
and uncorrupted, and that they reacted as expected. An ACP typically achieves reliability

by having the recipient(s) return another message to the sender, confirming that the

original message was received and processed.

If the sender fails to receive the confirmation message in a timely fashion, a

reliable ACP will typically require the sender to retransmit the original message or some

other message then reverts the conversation to a previous state. To accomplish this, an

ACP must include specifications for how a sender can detect and discriminate

communication failures, and either retransmit previous messages or alternative messages

as needed. It also requires an ACP to specify how receiving processes should handle

	

Figure 10. ACP Quality Model.

	
	
	

45
	
duplicate messages. Therefore, we decompose reliability into four independent attributes:

detection of failures, discrimination of failure types, failure handling, and

accommodating duplicate messages. Table 3 shows a rubric for ranking requirements,

patterns, and ACPs for each of these attributes. Section 3.6.11 shows assessments of

these attributes for each of the CommDP patterns.

3.4.2. Synchronicity

In the most general sense, synchronization deals with the coordinated execution of

actions in a distributed system and what the state information is necessary for that

Table 3. Ranking Scale for Reliability Attributes

Ranking
scale Reliability attribute/ranking description

Detection of failures
0 No conversation participant (process) needs to detect a failure
1 One of the conversation participants can
2 Multiple conversation participants can

Discrimination of Failure Types
0 There is no need to discriminate between different types of failures

1 Participant(s) can discriminate between action, process, or transmission failures
2 Participant(s) can discriminate between action, process, or transmission failures

Failure Handling
0 The protocol does not deal with the reverting a conversation to a previous state and

resending of messages
1 Allows at least one process to back up to the last state and resending one message
2 Allows processes to back up to any of a set of previous states and resending messages

accordingly
Handling Duplicate Messages

0 Does not deal with duplicate messages
1 The protocol requires at least one process to detect duplicate messages and handle them

appropriately, but does not deal with efficiency issues
2 The protocol allows for duplicate messages, but tries to minimize their occurrence and

decrease negative consequences of duplicate messages
	

	
	
	

46
	
coordination. This broad definition encompasses, but is not limited to, the common view

among programmers that synchronous communications occur when the sender of a

message stops and waits for a response from the message receiver [40]. However, this is

not the only way to achieve synchronization. Some other common mechanisms are

logical clocks [41][42], vector clocks [43][44], vector timestamps [45], optimistic

concurrency controls [46], and timing signals.

To evaluate the synchronization requirements for ACPs, we consider: (a) what are

the actions that need to be coordinated, (b) where will those actions be executed, (c) what

kind of state information is needed to achieve the desired coordination, and (d) the

pertinence or not of the order of the delivered messages. A distributed system may

perform many different tasks comprised of numerous operations, but rarely all of them

have to be fully coordinated. In fact, the more independent the individual operations are,

the more a system can maximize concurrency and increase throughput. From a

coordination perspective, where the operations take place is actually more important than

what the operations do. For example, if all of the actions occur in just one process, then

that process may not need to know anything about the state of the other process. Once

developers know what operations have to be coordinated and where they will execute,

they can consider what local or global state information the coordination logic will need.

Ultimately, the two dimensions of synchronicity are coordination, and ordering of

	
	
	

47
	
messages. Table 4 shows the rubric to evaluation these two attributes.

3.4.3. Longevity

Longevity is the degree to which an ACP can support long-running conversations

caused by long-running operations. The primary problem for conversation with long-

running operations is that there could be huge span of times when processes are uncertain

of each other’s states. Consider a simple request/reply conversation where some process

A sends a request to B, but B takes a long time to execute the requested operation and

sends back a reply. While waiting for the reply, process A does not know if B received

the request, has failed, or is just taking a long time. ACPs that support long-running

operations include mechanisms for exchanging state information independent of results.

Longevity main and only attribute is its support for long-running operations, see Table 5

Table 4. Ranking Scale for Synchronicity Attributes

Ranking
scale Synchronicity attribute/ranking description

Coordination
0 No coordination is needed among the participants
1 One process can know something about the state of another process;

the protocol supports actions on one process and guarantees that
message(s) which need to arrive before those actions take place do so.

2 Multiple processes can know something about the state of other
processes; the protocol supports actions being performed on multiple
processes and guarantees that messages which need to arrive before
those actions take place do so.

Ordering of messages
0 Messages ordering is not a concern
1 The protocol allows local ordering of message processing
2 The protocol allows global ordering of message processing

	

	
	
	

48
	
for its ranking scale. CommDP’s patterns are analyzed in function of long running

operations in section 3.6.11.

3.4.4. Adaptability for Scalable Distribution

ACPs can support scalability by providing location transparency and/or

replication transparency [45], and by allowing resources (data, operations, or objects) to

be distributed across multiple hosts. To understand location and replication transparency,

consider a website with a large number of resources. It can support scalability by placing

the various resources on an expandable collection of backend servers and use a front-end

server to distribute requests from browsers. If the browser does not need to know where a

resource is actually located, then the system supports location transparency. Similarly, as

traffic increases, the system could replicate resources across multiple backend servers. If

the client does not have to know that replicas exist, then the system supports replication

transparency. Both location and replication transparency simplify scalability.

Another technique for supporting scalability is allowing complex resources to be

broken up into smaller resources and distributed across multiple servers. One approach

Table 5. Ranking Scale for Longevity Attributes

Ranking
scale Longevity Attribute/Description

Support for long running operations
0 Long running conversation are not a concern
1 One participant is aware of the another’s state throughout a long

running operation
2 All Participants are aware of each other’s states throughout a long

running operation
	

	
	
	

49
	
for doing this is to untangle cross-cutting concerns, like security or logging, from

complex operations and host these pieces of functionality on proxies [47][45]. An ACP is

said to be fully scalable if it provides attributes such as location transparency, load

awareness and load balancing, Table 6 shows the ranking scale for these three attributes.

While Table 10 presents their analysis in respect to the CommDP patterns.

This quality model helps developers select the most appropriate pattern to apply

in their implementation of the needed communication protocols. The understanding of

	
Table 6. Ranking Scale for Adaptability Attributes

Ranking
scale Adaptability Attribute/Ranking Description

Location transparency
0 Location transparency is not a concern
1 Resource users do not have to know the network addresses of the

resource managers hosting the desired resources.
2 Resources user do not have to know which resource manager is

hosting the desired resources
Load awareness

0 The protocol does not include mechanisms for communicating
current load information

1 The protocol requires one or more process to estimate load
information of other processes

2 The protocol allows one or more processes to obtain timely load
information for other processes

Load balancing and scalability
0 Scalability and load balancing is not a concern
1 The protocol supports load balancing across existing process (known

potential participants)
2 The protocol supports the dynamic addition / removal of resources

and conversation participants
	

	
	
	

50
	
CommDP patterns is documented using a pattern template defined in the following

section.

3.5. CommDP Template

In [1] CommDP, which is a pattern language that collects the necessary

knowledge to solve reoccurring problems of ACPS’ design. These patterns are

documented consistent with other pattern languages, the CommDP patterns are described

using a template in terms of the problems they address, their contexts, and solutions. This

template is loosely based on the way Gamma, Helm, Johnson and Vlissides documented

their patterns [30], referred to here as the GoF template. The main goal is to keep the

documentation as simple as possible, while still capturing the details of every pattern.

Whereas, the name, intent and description should be sufficient to give the reader a high-

level understanding of the pattern. Following are the descriptions of the CommDP pattern

template’s elements.

3.5.1. Name and Overview

As with the GoF template, the name uniquely identifies the pattern. Since the

name will become part of the vocabulary for the pattern language, it is important that it

captures the essence of the pattern, distinguishes it from other patterns, also it should be

descriptive, concise and precise. Additional to the name, this section introduces a brief

description of the pattern’s context in terms of the participants and the messages involved

in the conversation.

	
	
	

51
	
3.5.2. Intent

The intent is an abstract for the pattern. It summarizes the problem, the context,

and the solutions, particularly in terms of reliability, synchronicity, longevity, and

adaptability for scalable distributes.

3.5.3. Description

The description should explain the problem, context, and solution of the pattern.

The problem explanation is closely to the Motivation part in the GoF template, in that it

explains the nature of the reoccurring communication-protocol design problem. It should

highlight the problem’s need for reliable communications, synchronization, long-running

conversations, or scalable distribution.

The context part of the description is like the Applicability section in the GoF

template, capturing information about when the pattern may be applicable and

assumptions about the distributed systems in which it may be used.

The solution is analogous to the Structure component in the GoF template. It

focuses on the describing protocol design ideas and how they can be adapted. UML

Sequence diagrams are a useful tool for example message sequences prescribed by the

solution. Like more the solution captures in general design patterns, a CommDP solution

is just a partial design; it only specifies certain aspects of a protocol definition that

address the reoccurring problem in the specified context. A solution may leave significant

parts of the protocol design unspecified.

3.5.4. Consequences

As with the GoF template, the consequences are important part of CommDP

	
	
	

52
	
pattern definitions because developers will use them to determine if the pattern is a good

fit for a particular situation. The consequences of CommDP patterns are described in

terms of the characteristics discussed in section 3.4. The proposed model provides a

general classification, and explains the consequences of the pattern in more detail.

3.5.5. Known Uses

Like the GoF template, this part references known instances of the pattern in

production systems, i.e. protocols or systems that implement the specific pattern.

3.5.6. Aliases and Related Work

This section lists aliases that exist for the pattern. It combines two elements of

different pattern languages by similar names or intents, they may or may not pre-exist.

This section also contains relevant books, pattern languages, or articles where the pattern

has been used to solve specific reoccurring problems by different authors.

3.5.7. Examples of Applications

This section shows actual examples of how the pattern is being or can be applied

or adapted. It describes the example, its fitness according to the proposed model and a

scenario describing the messages and their sequences.

Different authors have defined pattern languages related to distributed or client-

server applications, namely, design patterns for communication service design patterns

service[51], pattern oriented software architecture [19], patterns of enterprise application

architecture [52]. Nevertheless, none of them deal with the design of communication

protocols at any level of the layer model (section 3.3.1).

	
	
	

53
	
3.6. CommDP Patterns

CommDP can help developers understand existing reusable solutions and how

those solutions might apply to their situations. Before launching into a description of

CommDP’s patterns, it is important to first introduce three fundamental building blocks

for all ACPs: point-to-point send, multicast, and broadcast. These are Idioms instead of

patterns because their usage depends on the lower layer communication protocols and

because, by themselves, they do not address the qualities discussed in 3.4.

A point-to-point send is the transmission of a single message from one process to

another, such as a message sent over a TCP connection or via a UDP datagram. An

underlying communication subsystem may provide some reliability relative to the

transmission but, at the application-level, a single message does not allow the sender to

know if the receiver processed the message or anything about the receiver’s state, nor

does it help with longevity or adaptability for scalable distribution.

A multicast send is the transmission of a single message to a set of receiving

processes [2]. It can be implemented at virtually any layer in communication hierarchy,

including the physical layer. Mechanisms for identifying the group of receiving processes

vary from sender determined to receiver subscriptions. By themselves, multicast are

idioms for ACPs. The same is true for broadcasts, which also transmit messages to

multiple receivers [2].

The patterns currently in CommDP are grouped into three categories. 2

participant, this means that there are only two processes involved in the communication.

The second category is 3+participant, similar to the previous category, its classification

	
	
	

54
	
terminology expresses the number of processes involved in the conversation. A third

category introduces two new patterns to CommDP. This category is called Composition.

See Table 7 for a complete list of the patterns currently in CommDP.

The following paragraphs contain descriptions of seven out of the eleven patterns

following the language template defined in section 3.5. Every pattern may be composed

of other patterns, except, the RR pattern, which becomes part of every peer-to-peer

communication, see Figure 11. All other patterns are modeled after this pattern. The

reused elements that are lent from other patterns are represented in black in every

message sequence representation. The new elements that correspond to the new pattern

that is being studied are highlighted on light blue. For example, in Figure 12, the RRA

pattern is designed over the RR pattern, the new element is the acknowledge message.

Table 7. CommDP Categories and Patterns

Category Pattern Acronym
2 participant Request-Reply RR

Request-Reply
Acknowledge

RRA

Idempotent Retry IPR
Intermediate State
Message

ISM

Second Channel 2Ch
Front End F-E
Proxy PXY

3+ participant Reliable Multicast RMC
Publish-Subscribe P-S

Composition Sequential Composition SC
Nested Composition NC

	

	
	
	

55
	

Patterns can be used together to solve some requirements that are not covered by a

single pattern. We propose two composite patterns that will help solving this problem.

They are Sequential Composite (SC) and Nested Composite (NC). These two patterns are

not documented using the template pattern, instead they simply give advice on how two

or more patterns can be used together to solve a communication problem. SC intends to

use two or more patterns sequentially, i.e. after the final action of pattern A, a second

pattern will be implemented in a sequential fashion way, pattern A passes the control of

the conversation to pattern B, and this pattern will finish the conversation. A nested

composition, on the other side, can include a second pattern in the middle of the

conversation between process A and process B, i.e. pattern A gives control to pattern B,

then later it takes the control again and finish the conversation, in fact, most patterns ae

composed by RR.

IPR and P-S patterns are not covered here, they can be found on their respective

authors’ publications: Service Design Patterns by Daigneau [51] and Pattern-Oriented

Software Architecture Volume 4 by Buschmann et. al. [19]. For their comprehension

	
Figure 11. Request-Reply Pattern Structure.

	
	
	

56
	
related to the language we present brief descriptions of them. As other patterns may

appear afterwards, they will be defined on the CommDP wiki [53]

[http://commdp.serv.usu.edu], and in future work.

3.6.1. Request-reply Pattern

Name and Overview:

The Request Reply (RR) pattern is perhaps the most pervasive protocol design

pattern; instances or applications of this pattern can be seen in the vast majority of

modern communication protocols, including protocols in layers below the application

level. It simply involves one process sending a message (a request) to another one and

waiting for a reply from that process.

Intent:

RR addresses the problem where a process, A, needs to access or use shared

resources in another process, B, with a reasonable degree of reliability and synchronicity.

The solution consists of A sending B a message (i.e. a request) and B sending back a

message (i.e. a reply) after processing the request. For A, this simple mechanism provides

a modest level of reliability and synchronization, because the reply proves that B received

the request and can provide relevant information about B’s state. Furthermore, if A does

not receive a reply within a specific amount of time (i.e., a timeout), it can resend the

request. It can continue to timeout and retry until it eventually receives a reply or it

exceeds some maximum number of retries. This “timeout/retry” behavior is the essence

of the RR pattern, see Figure 11.

	
	
	

57
	
Description:

a) Problem: One process A (client) needs to access a shared resource or service

provided by another process B (a resource manager), with a modest degree of

reliability.

b) Context: There is no guarantee of “at most once” semantics needed for the execution

of the requested service.

c) Solution: The client initiates the conversation by sending a request to resource

manager, which receives the request, processes it, and sends by a reply. The client

waits for the reply for a certain amount of time, know as the timeout. If it arrives, the

conversation finishes successfully. If not, the initiator tries sending the request again.

The initiator will eventually give up after a certain number of retries, know as the

retry max. This basic behavior is referred to as timeout/retry. A possible variation is

that a Request is sent and a Reply is not expected. The following are elements of a

design pattern solution:

• Participants:

o Initiator

o Responder.

In a client-server architecture and in many distributed systems, in general, the

client is a conversation initiator and the resource manager is a responder

• Messages:

o Request

o Reply

	
	
	

58
	

• Scenario:

o Initiator -> |Request| -> Responder

o (Responder processes the Request)

o Responder -> |Reply| -> Initiator

• Semantic behavior:

o After the Initiator sends the Request, it waits for the Reply, up to x time

units (the timeout)

o If the reply does arrive with timeout, the Initiator response the Request

o Attempts are repeated up to y times (the retry max)

Consequences:

Because a message is sent from A to B and a reply is sent back (when B is

operating as expected and messages are delivered successfully), the pattern can provide a

modest amount of reliability and synchronicity. RR's simplicity allows instances of it to

be aggregated into more complex protocols. Also because of its simplicity, it can be

easily combined with other patterns.

Known uses:

RR is typically found in: Connectionless communications such as basic HTTP

implementations, one way communications, non-reliable communications, asynchronous

calls, basic patterns to be reused in other communication patterns, and RPC

implementations.

	
	
	

59
	
Aliases and Related Work:

This pattern can also be found classified under the following names: Request-

Response [29], Request-Reply [29], Single-Request-Response [54].

Examples of Application:

Instances of RR pattern occur frequently in ACP's, including in many standard

TCP-based ACP's like Echo [55] [56], SNMP's Agent-Manager communication [57] and

HTTP 1.0 [58]. In some cases, a single instance of the RR pattern comprises the entirety

for the ACP, as with the Echo protocol. In other cases, many instances of RR are

integrated into ACPs as in SNMP. Also they are combined with other types of

communications. Following are scenarios for two ACPs that use RR, namely Echo and

HTTP1.0:

a) Echo protocol scenario1: As a Useful debugging and measurement tool: "An echo

service simply sends back to the originating source any data it receives." [56]

b) Echo protocol scenario2: An UDP Based Echo Service "Another echo service is

defined as a datagram based application on UDP. A server listens for UDP datagrams

on UDP port 7. When a datagram is received, the data from it, is sent back in an

answering datagram."[56].

c) HTTP1.0 Scenario: A client establishes a connection with a server to send a request,

the client sends the request containing a method, (either GET, HEAD, or POST), the

URI, protocol version, client information, and an optional body content. The server

responds with a message containing: protocol version, error (or success) code, server

information, and perhaps body content [58].

	
	
	

60
	
3.6.2. Request-Reply-Acknowledge Pattern

Name and Overview:

The Request-Reply-Acknowledge (RRA) pattern, see Figure 12, is a protocol

design pattern specially concerned with implementations of "at most once" semantic [59],

where the server stores (caches) its reply data in case of a duplicate request, to save

processing time for a faster response. Eventually after receiving the acknowledgment, the

server disposes of the temporal data, and terminates the conversation. A as much as B are

well informed about each other state. At most once semantics, assures that the server

executes the request at most once, even when A sends duplicated requests [60]. RRA

pattern is usually combined with idempotent retry to allow the "at-least-one" semantics

[61] additional to the at-most-once semantic.

Intent:

The RRA pattern extends RR solution with a third message (an

acknowledgement) that A sends to B after receiving the reply, and gives B a timeout/retry

	

Figure 12. Request-Reply-Acknowledge Pattern Structure.

	
	
	

61
	
behavior with respect to the sending of the reply and waiting for an acknowledgement.

This pattern is useful in situations where significant processing may occur on A after

receiving the reply or when it is problematic for B to reprocess duplicated requests caused

by A’s timeout/retry behavior. With this pattern, instead of reprocessing duplicate

requests, B simply caches its replies and resends them to A when necessary. The

acknowledgement tells B that A has received the reply and, thus, removes it from its

cache. This pattern offers more reliability and synchronization than RR, but at the cost of

an additional message.

Description:

a) Problem: A client needs to access a shared resource (e.g., a service) provided by

resource manager, with a high degree of reliability.

b) Context: “at most once” semantics needed for the execution of the requested service,

i.e. the responder saves the previous requests, in case of duplicate requests, it replies

back without need of processing. The server saves all requests. Once the server

receives the acknowledgement, it safely discards that information [59].

c) Solution: The client initiates the conversation by sending a request to the resource

manager, it receives the request, processes it, and sends by a reply. The client has a

timeout/retry behavior while waiting for the reply. When it gets the reply, it sends

back an acknowledgement (message has been received) to the Responder. The

Responder has timeout/retry behavior while waiting for the acknowledgement.

Additionally, the server may cache its reply processed data.

• Participants:

	
	
	

62
	

o Initiator

o Responder.

• Messages:

o Request

o Reply

o Acknowledge (Ack)

• Scenario:

o Initiator -> |Request| -> Responder

o (Responder processes the Request)

o (responder caches the Reply)

o Responder -> |Reply| -> Initiator

o Initiator -> |Ack| -> Responder

• Semantic behavior:

o The Initiator has a timeout/retry behavior on the Reply.

o The Responder may save the Request to save processing time in case of a

duplicate request

o When the Initiator receives a Reply, it sends back an Ack and considers

the conversation successfully completed.

o The Responder has a timeout/retry behavior on the Ack.

o When it receives the Ack, it considers the conversation successfully

completed and removes the previous request from its cache memory.

	
	
	

63
	
Consequences:

One message is sent from A to B with a high level of reliability and synchronicity

allowing "at most once semantics" implementations, i.e. B knows that its Reply was

received and can remove its temporal (cached) processed reply from its memory.

Known uses:

RRA is typically found in: Reliable communications, secure communications,

connection-oriented communications such as the establishment of an HTTPS

communication, communications that may need re-transmissions, one way and two way

communications, synchronous calls, designing Remote Procedure Calls (RPC)

applications, basic pattern to be reused in other communication patterns that need a good

level of reliability, stateless servers.

Aliases and Related Work:

Aliases

This pattern can be implemented as Request-Reply with Piggy-Backed

Acknowledgements.

Related Work

• Modeling and Formal Verification of Communication Protocols for Remote

Procedure Call [62].

• Modeling and Verification of Some Communication Protocols [63].

• Request-Reply-Acknowledge Protocols (section 20.6) [59].

• The Constrained Application Protocol -CoAP (RFC7252 [64]) for improving

	
	
	

64
	

REST through TCP performance [65].

Examples of Application:

Instances of RRA occur when the server needs to know that its request was

properly received by the client. One typical example is the RPC protocol over UDP [61],

where the RCP application must implement its own acknowledgement protocol, which is

usually the reply from the client to the server saying that the request was properly

received. This is used specifically to implement the "at most once and exactly once

semantics", so when the resource manager receives its acknowledge, it discards its

cached information. A variation of this protocol can be found on Network File

Sharing write() operations [61], where an acknowledge can be included in the reply

message, to tell the client that the data was received and processed.

a) RCP over UDP Scenario: The client sends a request to the server, in the reply,

the server can attach the ACK request, then the client sends another ack. A

timeout period of 0.5 to 1.0 seconds could be useful in these cases [61].

3.6.3. Idempotent Retry Pattern

The Idempotent Retry pattern (IPR) [51] captures a different solution to the

problem of processing duplicate requests. Like RR, its solution consists of A sending a

request to B with a timeout/retry behavior and B sending a reply back to A. But, unlike

RR, the semantics of the protocol dedicate the processing of the request must be

idempotent. This pattern applies to situations where the requested processing is relatively

light, i.e., less expensive than caching replies. This pattern is completely covered by

Robert Daigneau [51] in his book Service Design patterns. An example of this pattern

	
	
	

65
	
applied is WS-Reliable Messaging, a protocol that defines a standard XML- based

vocabulary, this protocol provides message delivery assurances with the capability of try

sending messages in case of failed attempts. See Figure 13.

3.6.4. Intermediate State Message Pattern

Name and Overview:

The Intermediate State Message (ISM) pattern is perhaps the most used pattern

for long-running processing requests. Instances of this pattern are found in big data

processing, online backup systems, cloud-based storage services. It involves one process

sending a request that needs a long-processing time, to another process, and waiting for

partial replies (state1, state2, ..., staten) telling something about the state of its request, see

Figure 14. The initiator process waits for the final reply from the responder to finish the

conversation.

Intent:

ISM, is similar to RR, but addresses the problem of long-running conversations

	

Figure 13. Idempotent Retry Pattern Structure.

	
	
	

66
	
due to request actions taking substantial amounts of time to complete.

Description:

a) Problem: A client needs to access a shared service provided by a resource manager

(process B), but the execution of that service is long-running and the client would like

to know when key milestones in the processing are reached. And at the end of the

communication B sends the final message to A.

b) Context: The processing of the request is long-running with intermediate milestones.

"At most once" semantic [59] is needed.

c) Solution: After A sends a request to B, it has B send A one or more intermediate

messages that reflect its current state. For example, B may send a message

immediately after receiving the request to let A know that it got the request, another

message when the processing is 10%, another at 20% complete, and so on. Each

	

Figure 14. Intermediate State Pattern Structure.

	
	
	

67
	

intermediate message provides state information about B, which improves

synchronization in the presence of time-consuming actions. The last reply will

inform A that the process has been completed, and the communication can be

terminated. B disposes its temporal storage data.

In a variation of ISM, if some data needs to be sent back to A a piggy-backed

acknowledge [64] variation implementation could be useful. Additional to the state reply,

the message could carry back some extra information.

• Participants:

o Initiator

o Responder.

• Messages:

o Request

o State1

o State2

o ...

o Staten

o Reply

• Scenario:

o Initiator -> |Request| -> Responder

o (Responder starts some processing)

o Responder -> |State1| -> Initiator

o (Responder do more processing)

	
	
	

68
	

o Responder -> |State2| -> Initiator

o (Responder do more processing)

o …

o Responder -> |Staten| -> Initiator

o (Responder do more processing)

o Responder -> |Reply| -> Initiator

• Semantic behavior:

o The Initiator and Responder have similar behavior to the corresponding

processes in the RR pattern, except that the initiator needs to receive the

state of the processing request and waits (locked by the responder) until it

receives the reply. A timeout/retry behavior is implemented based on the

n-states and the reply messages.

Consequences:

One message is sent from A to B requesting long processing in B with a high

level of Reliability and keeping both processes fully synchronized. The request is

processed by B and it kept informed A about its processing request at all time.

Known uses:

Typical uses are for: Remote File Managers, remote backups, long transaction

processes, and remote file transfers in some cases. The latter is more directly related to

the Second Chanel pattern (2Ch) though.

	
	
	

69
	
Aliases and Related Work:

Related Work

• Long-running transactions [66]

• REST and long-running jobs [67]. Although this is an asynchronous

implementation, it is related to long-running processing needs.

• Protocols For Long Running Business Transactions [68].

Although the next three implementations are directly related to multiple

responders, they also deal with long-running processing requests.

• Participation Protocol Framework [69]

• WS Coordination Framework, which supports long-running transactions [70].

• Collaboration Protocol Agreement [71]

Examples of Application:

Implementations of this type of behavior are file transfer protocol applications

such as FTP (RFC959) [72] or wget [73]. Also Remote Backup Services [74] such as

those provided by cloud computing storage and database services. Actually, the ftp

protocol is more a complete implementation of a 2Ch pattern, but its implementation of

the data connection relies on the ISM pattern. Besides this, anything on a website with a

progress bar, which may rely on web sockets is a clear implementation of the ISM

pattern.

a) FTP Data Connection Scenario: Pre-connection actions

• The user Data Transfer Process (DTP) sends file data to the DTP server or vice-

versa.

	
	
	

70
	

• The data is sent until EOF is received.

3.6.5. Second Channel Pattern

Name and Overview:

The Second Channel pattern (2Ch) is found in applications where there is need of

extensive data interchange and the messages can not be used as a carrier for control

messages, see Figure 15, i.e. piggy backed acknowledge is not allowed. Instances of this

pattern can be found in long running conversations such as the file transfer protocol,

where two different ports are used. One for data transfer and one for controlling the

transference. Instances of 2Ch can be found in Real Time Communications (RTC) in the

browser, for example applications that use the WebRTC [75] framework, where a peer-

to-peer communication is open, and a signaling method is used for control messages and

to coordinate the communication. Typical implementations are text, audio and video

chatting [76]. The File Transfer Protocol (FTP) and its variations are classical examples

of this pattern.

Intent:

The 2Ch pattern is for situations involving long-running conversations, but ones

dominated by significant amounts of data transfers instead of time-consuming actions.

Because large data transfers can delay intermediate state messages, this pattern’s solution

suggests opening a second communication channel between A and B that is dedicated to

data transfer, leaving the original communication channel available for intermediate state

or control messages.

	
	
	

71
	

Description:

a) Problem: One process wants to exchange data with another process, and at the same

time, it needs to control the conversation.

b) Context: The amount of data is large or the data exchange needs to occur over a long

time.

c) Solution: The two processes coordinate on the creation of a second, dedicated

communication channel for the exchange of sending messages, leaving the first

channel open for controlling the conversation.

A possible variation of this pattern would be the case of a third party process

handling the control messages.

• Participants:

	

	
	

Figure 15. Second Channel Pattern Structure.

	
	
	

72
	

o Initiator

o Responder.

• Messages:

o Request

o Chy info

o State1

o State2

o ...

o Staten

o Data message1

o Data message2

o ...

o Data messagen

• Scenario:

o Initiator -> |Request| -> Responder

o (Responder opens 2nd communication channel)

o Responder -> |Chy info| -> Initiator

o (Initiator connects to 2nd communication channel (Chy))

o ASYNCHRONOUSLY:

o {

o chx while(messages)

§ Initiator <-> |State1| <-> Responder

	
	
	

73
	

§ Initiator <-> |State2| <-> Responder

§ ...

§ Initiator <-> |Staten| <-> Responder

o chy while(messages)

§ Initiator -> |Data messages| -> Responder

§ Responder -> |Data messages| -> Initiator

o }

• Semantic behavior:

o The Init Reply (Chy info) should contain information necessary for the

Initiator to connect to the second communication channel.

o The Responder’s End Point for the 2nd communication channel must be

accessible to the Initiator.

o The individual subsequent replies (Data message interchange) on the

1st communication channel can follow any appropriate communication

pattern.

o The 2nd channel can be bi-directional or uni-directional

o The data on the 2nd channel can be structured or unstructured

o Conversation control operations should occur on the 1st channel

o Conversation is over when, after a timeout, there is no more messages

Consequences:

A conversation between A and B, i.e. a synchronized long running message

interchange between A or B.

	
	
	

74
	
Known uses:

2Ch is found in: Long conversations, extensive exchange of messages, real time

communications, audio chat, text chat, video chat.

Aliases and Related Work:

Related Work

• Message Channel pattern, as part of Interface partitioning section in

Pattern-Oriented Software Architecture Volume 4, (POSA 4), chapter

10 [19]

• WebRTC Framework [75]

Examples of Application:

2Ch pattern occurs in applications such as file transfer protocols, as is the case of

ftp [77], which uses a separate control and data connections for communication between

the client and the server. A complete description of FTP can be found at RFC959 [77].

Other applications can be peer to peer text, audio and video chat applications, for

example, implementations using the WebRTC framework [75].

a) FTP Scenario:

• The User-protocol interpreter initiates the control connection,

• Ftp commands containing the action, data port, transfer mode, representation type,

and structure are generated and transmitted to the server via the control

connection.

• Standard replies are sent from Server Protocol interpreter back and forward.

	
	
	

75
	

• The user Data Transfer Process (DTP) listens on the specified port,

• And the server DTP initiates the data connection and data transfer according to

the provided commands.

3.6.6. Front End Pattern

Name and Overview:

The Front End pattern (F-E) is concerned with decoupling the initiator from the

responder. In this sense, the Front End process offers an interface to the initiator, but, it

allows B to reply back directly to A, see Figure 16. The localization of the Resource

Manager is handled by the Front-End process to provide alternative implementations in

case of extreme load or failures of the resource managers.

Intent:

 F-E addresses the problems of making the location of shared resource transparent

to the client, allowing the number of resources to change dynamically. It has a resource

client send requests to a front-end process that automatically redistributes them to

	

Figure 16. Front End Pattern Structure.

	
	
	

76
	
appropriate resource managers, B processes. After processing the request, a resource

manager replies back to the client directly. The front-end process can use a variety of

criteria to decide how to redistribute requests, including request type, resource type or

identity, and resource manager load. By itself, this pattern’s primary focus is on the

distribution and scalability of resources.

Description:

a) Problem: A client needs to access a shared resource or service replicated across one

or more resource managers, with a modest degree of reliability.

b) Context: There is no need to guarantee “at most once” semantics for the execution of

the requested service. The system needs to be scalable or handle spikes in load.

c) Solution: The solution is similar to RR, except the request is directed to a front-end

process, which then delegates it to one of the resource managers. The resource

manager responds back to the requesting process directly.

• Participants:

o Initiator

o Front End

o Responder.

The client is a conversation initiator and the resource manager is a responder,

the Front End is an extra layer of resource manager that forwards the client

request and the requestor’s end point to the actual resource manager, so the

Responder can reply back directly to the Initiator.

• Messages:

	
	
	

77
	

o Request

o Reply

o Initiator End Point

• Scenario:

o Initiator -> |Request| -> Front End

o Front End -> |Request and Initiator End Point| -> Responder

o (Responder processes the Request)

o Responder -> |Reply| -> Initiator

• Semantic behavior:

o The Initiator and Responder have the same behavior as in the RR pattern

o The Front-end forwards the Request with the End Point of the Initiator to

the Responder

o The Responder replies directly to the Initiator

o The End Point has to be accessible to the Responder, so the Front End and

Responder should be on the same network

o The Front-end does not need to track the conversation

Consequences:

One message is sent from A to B with a certain level of reliability and

synchronicity through a third process (Front End) that handles A's request. B sends back

a reply message to A hiding B’s details. This pattern provides a high level of scalability.

Known uses:

F-E pattern is found usually in: Load balancers and authorization services such as

	
	
	

78
	
a simple login.

Aliases and Related Work:

Aliases

the requestor [78]

Related Work:

The authenticator pattern [79], Media Type Negotiation [80] [51]; requestor

pattern, as part of the Distribution Infrastructure section in Pattern-Oriented Software

Architecture Volume 4, (POSA 4), chapter 10 [19].

Examples of Application:

Occurrences of this pattern can be found in implementations of load balancers as

is the case of NGINX. NGINX is an open-source light weight web server or proxy server.

It loads balance requests across multiple application instances for optimizing resource

utilization, maximizing throughput, reducing latency and ensuring fault-tolerant

configurations [81] [82].

NGNIX contains configurations for multiple application instances. The

configurations for these application instances can be static or can be created on the fly. It

can use a variety of load balancing methods such as round-robin, ip-hash, least-connected

server, generic hash, or server with lowest average latency. NGNIX as a front-end can

support many other rich features besides just load balancing, such as re-routing the

requests according to their supported sessions, authorization(s), health monitoring of the

running servers, and identifying malicious requests.

	
	
	

79
	
a) NGINX Scenario:

• Any web-based client request first goes to the NGNIX load balancer

• Based on the request header “Host”, NGINX decides which of the listed server(s)

will process the request

• In case of multiple hosts, it can apply one of the load-balancing methods

described above.

• If NGINX could not find any better information, it will re-route the default server

• Once a relevant server processes the request, this server sends back the reply to

the client and does not re-route to NGINX first.

3.6.7. Proxy Pattern

Name and Overview:

The Proxy pattern (PXY) is perhaps the most used to decouple a conversation

between a client and its resource manager(s), see Figure 17. Similar to F-E, this pattern

offers location transparency and authentication, data format conversions and protocols

compatibility. Instances of this pattern can be seen in multi-platform architecture

applications such as CORBA [83], especially in its Object Request Broker ORB

implementations, in SOAP-REST-SOAP API conversion services, in web services that

provide different data formats such as: XML, JSon, Plain text, SQL.

	
	
	

80
	

Intent:

Like F-E, PXY introduces a process between a resource client and a resource

manager. However, the intermediate process, called a proxy, serves other functional

purposes besides re-distribution of the requests, for example it may provide

authentication, access control, audit logging, and data transformation functionality. Also,

the resource manager returns replies through the proxy to client, completely isolating the

client from the resource manager.

Description:

a) Problem: A client needs to access a shared resource or service provided by one or

more resource managers, but the resource managers are not directly accessible to

clients.

b) Context: No “at most once” semantics needed. The resource manager needs to be

protected against direct access or attacks. The system needs to be scalable or handle

spikes in load.

	

Figure 17. Proxy Pattern Structure.

	
	
	

81
	
c) Solution: The solution is similar to the RR with a Front-end pattern, except that the

Front-end is replaced with a proxy process and replies are returned through a proxy

instead of directly to the initiator.

• Participants:

o Initiator

o Proxy

o Responder

The client is a conversation initiator and the resource manager is a responder,

the Proxy is an extra layer that forwards the client request to the resource

manager and also forwards the reply from the server to the client.

• Messages:

o Request

o Reply

• Scenario:

o Initiator -> |Request| -> Proxy

o (Proxy processes |Request|)

o Proxy -> |Request| -> Responder

o (Responder processes |Request|)

o Responder -> |Reply| -> Proxy

o (Proxy processes |Reply|)

o Proxy -> |Reply| -> Initiator

• Semantic behavior:

	
	
	

82
	

o The Initiator and Responder have the same behavior as in the RR pattern

o The Proxy forwards messages from the Initiator like a Front-end, but no

End point is needed.

o The Proxy has to keep track of each conversation in progress so it can

forward a Reply to the correct Initiator and in the correct conversation

context, i.e. Proxy must handle Initiator and Responder's end points.

Consequences:

One message is sent from A to B with a certain level of reliability and

synchronicity through a third process (proxy) that handles A's request. B replies back to

the proxy and this sends the reply to A. This pattern provides a high level of scalability,

also it protects process B from attacks, by hiding its location, i.e. location transparency.

Known uses:

Login services, security, object brokers, middleware design, and resources

protection. In general, applications that need access or location transparency.

Aliases and Related Work:

Aliases

Client Proxy [19]

Related Work

Service controller [28] [51], message translator [19], client request handler pattern

as part of the distribution infrastructure section in Pattern-Oriented Software Architecture

Volume 4’s chapter 10 [19], client proxy pattern as part of distribution infrastructure

	
	
	

83
	
section in POSA 4’s chapter 10, proxy pattern as part of interface partitioning section in

POSA 4’s chapter 10, broker pattern as part of interface partitioning section in POSA 4’s

chapter 10.

Examples of Application:

HTTP Proxy, DNS (cached responses and reply back), VPN are some protocols

implemented using the PXY pattern.

3.6.8. Reliable Multicast Pattern

Name and Overview:

The Reliable Multicast pattern (RMC) is widely used in multicast or broadcast

communication systems, where the request of processing is delegated to n Resource

managers (RM), where n>1, and the execution needs to be synchronized in the n RMs. It

may need a simultaneous processing of the request in every responder. Instances of this

pattern can be found in bank transactions, parallel computing, etc.

Intent:

 The RMC pattern, Figure 18, builds on the multicast idiom to provide reliability

and synchronization among a group of processes. Its solution is a protocol that starts with

a process A sending a request message to a group of process, B = { b1, .., bn }. Each

process bi sends a reply back to A when it receives the request and is ready to process it.

After A receives reply from all B processes, then A will multicast a go-ahead message

back out to all B, this message indicates that they can proceed with the processing of the

request. In this way, the execution of the request is synchronized among all of

	
	
	

84
	
the B processes. If A fails to receive a reply from every B process, it can resend the

request to some or all of them until it gets a reply from all of them or terminates the

conversation as failed. This pattern focuses on providing strong reliability and

synchronization, but can also help with scalable distribution of resources.

Description:

a) Problem: A client needs to access resources provided by one or more resource

managers. And the resource managers have to process the request all at-once, in a

transaction fashion-way.

b) Context: There is need of synchronized execution of a set of requests sent by only one

initiator and several responders.

c) Solution: The client initiates the conversation by sending n requests to n resource

managers, which receive the request, but do not process it immediately. Every

	

	

Figure 18. Reliable Multicast Pattern Structure.

	
	
	

85
	

resource manager sends back an acknowledgement telling the initiator that they

received the request and are ready to process it. The Initiator will send a "go-ahead"

message to every RM after it has received the n acknowledge messages. RMs process

all the requests.

One variation of RMC would be its combination with RRA after processing the

request in every RM.

• Participants:

o Initiator

o Responder1.

o Responder2.

o …

o Respondern.

The client is a conversation initiator and there is a set of resource managers

that behaves as responders, every responder is responsible for sending an Ack,

and the client controls the execution of the requests in the responders.

• Messages:

o Request

o Ack1

o Ack2

o …

o Ackn

o Go ahead

	
	
	

86
	

• Scenario:

o (A gets a list of Responders)

o Initiator -> |Request| -> {Responder1, Responder2, ..., Respondern}

o Responder1 -> |Ack1| -> Initiator

o Responder2 -> |Ack2| -> Initiator

o ...

o Respondern -> |Ackn| -> Initiator

o Initiator -> |go ahead| -> {Responder1, Responder2, ..., Respondern}

o Synchronously

§ (Responder1 processes |Request|)

§ (Responder2 processes |Request|)

§ ...

§ (Respondern processes |Request|)

• Semantic behavior:

o After the Initiator sends the Request to n-Responders, it waits for the

acknowledgement of every Responder, up to x time units (the timeout).

o Responders wait for "go ahead" message from Initiator before start

processing the Request.

o The Initiator has a timeout/retry behavior on the Acks.

o When it receives the n-Acks, it sends the "go ahead" signal to the n-

Responders

o Initiator considers the conversation successfully completed

	
	
	

87
	
Consequences:

A sends a request to multiple responders, this request is processed in all the

responders synchronously with a good level of reliability.

Known uses:

RMC pattern can be found in many broadcasting and multicasting applications

such as: Multicast communication, conference groups, news feeds, message distribution,

wireless communications, digital-TV for content protection / paying users, ads, software

updates, software deployment.

Aliases and Related Work:

Multicast protocol [84]

Examples of Application:

A well-known application of this pattern is JGroup, JGroup communication uses

the term group and member. A member is a node, i.e. a process residing on one or

different hosts, and a group is a cluster, which can have one or more nodes belonging to it

[85, p. 2]. The main component of JGroup is the channel, it is simple and primitive and

provides asynchronous message sending and reception, similar to UDP. It is connected to

a protocol stack. Whenever the application sends a message, the channel passes it on to

the protocol stack, which ultimately gets pushed on the network. Similarly, the protocol

stack receives the message and ultimately pushes it on to the channel [86].

a) JGroup scenario: In this reliable group communication, processes can join a group,

send messages to all members or single members and receive messages from

	
	
	

88
	

members in the group. A group is identified by its name. When a process joins a non-

existing group, the group will be created automatically. The system keeps track of the

members in every group and notifies group members when a new member joins, or an

existing member leaves or crashes.

3.6.9. Publish-Subscribe Pattern

Finally, the Publish-Subscribe [19] pattern (P-S) is a powerful mechanism for

decoupling message senders (publisher) from message receivers (subscribers) see Figure

19. With this pattern, an intermediate process acts as a store-and-forward buffer for

message transmission with the capabilities for managing subscribers and delivering

individual message to multiple subscribers. We refer to this pattern as explained in [19].

3.6.11. Quality Analysis of CommDP Patterns

Developers can select the appropriate pattern according to the application needs

and its consequences based on the RSLA qualities. Following are the analyses of each

	

Figure 19. Publish-Subscribe Pattern Structure.

	
	
	

89
	
RSLA quality based on their attributes. This arbitrary scale was explained in section 3.4.

Table 8. Analysis of Reliability for CommDP’s Patterns

Category Pattern

Reliability attributes

Failure
Detection

Failure
Discrimination

Failure
Handling

Handling of
Duplicate
Messages

2 participant

RR 1 1 1 1
RRA 2 1 1 1
IPR 2
ISM 1 1
2Ch
F-E
PXY 1 1 1

3+ participant
RMC 2 1 1 1
P-S 1

Composition
SC
NC

	

Table 9. Analysis of Synchronicity of CommDP’s Patterns

Category Pattern

Synchronicity attributes

Coordination
Message
Ordering

2 participant

RR 1
RRA 2
IPR
ISM 2
2Ch
F-E
PXY

3+ participant
RMC 2
P-S

Composition
SC
NC

	

	
	
	

90
	

Finally, when we need to select a specific pattern for a protocol, we can, first,

determine a binary selection, where the protocol is analyzed based on the 4 RSLA

Table 10. Analysis of Adaptability for Scalability of CommDP’s Patterns

Category Pattern

Adaptability for Scalability

Location
Transparency

Load
Awareness

Load
Balance /

Scalability

2 participant

RR
RRA
IPR
ISM
2Ch
F-E 2 1 2
PXY 2 2 2

3+ participant
RMC 1
P-S 2

Composition
SC

Determined by
subpart
patterns

Determined
by subpart

patterns

Determined
by subpart

patterns

NC

Determined by
subpart
patterns

Determined
by subpart

patterns 2
	

Table 11. Analysis of Longevity of CommDP’s Patterns

Category Pattern
Longevity attributes

Long Running Operations

2 participant

RR
RRA
IPR
ISM 1
2Ch 2
F-E
PXY

3+ participant RMC
P-S

Composition SC
NC

	

	
	
	

91
	
qualities, see Table 12. Then we match this requirement with the sub-qualities, and we

get one or more choices of patterns. If we get more than one optional patterns to get the

best option, we analyze which is the pattern that possesses the highest ranking values.

For example if we need to implement a protocol for file transfer, that supports

reliability and longevity, and is not concerned with Synchronicity and Adaptability,

possible options, according to the reliability sub-qualities, would be RR, RRA, ISM,

PXY, and RMC, see Table 8. We also need that the protocol supports Longevity, hence

according to Table 11, there are two possible patterns, ISM and 2Ch. Evaluating both of

the RSLA qualities, it is clear that the chosen pattern is ISM. Same analysis can be done

for the other protocols shown in Table 12.

3.6.10. Pattern Composition

Patterns are rarely used in isolation; instead, developers combine their solutions to

solve complex problems. Virtually any of the CommDP patterns could be combined with

any other pattern, but the more useful combinations are ones that have complimentary

characteristics, like Request-Reply with Second Data Channel or Request-Reply

Table 12. Application Examples to Select the Appropriate Pattern

Domain R S L A Advised Pattern (s)
Files Transfer X X Intermediate State
Chatting X X X Second Channel + Front End
Medical X X X Reliable Multicast + Second Channel
Transportation X X X X Intermediate State Message + proxy
Security (log on, log off) X X Publish-Subscribe
news X X Reliable Multicast NS/OR Publish-Subscribe
Mail/messages X X Intermediate State Message
	

	
	
	

92
	
Acknowledge with Front End.

To ensure that the CommDP pattern set was as minimal as possible, we did not

include in any pattern in CommDP that was simply an aggregation of two or more patterns.

For example, there is a common type of distributed system that deals with information flow

and processing. In such systems, a process A might send a request to B through a series of

intermediate proxy-like processes that transform or augment data in request on its way to

B. At each intermediate step, a reply is sent back to A, informing it of the message’s

process. Eventually, when the transformed message arrives at B and processes it, then B

sends a final reply message back to A. This particular solution offers good reliability,

synchronization, longevity, and adaptability to scalable distribution, but it is actually just a

composition of PXY (applied perhaps multiple times) and ISM.

3.7. Summary and Future Work

CommDP quality model definition led us to conclude that we need to add patterns

to cover the attributes that the current patterns in CommDP are not able to implement.

For example, go-back-n and selective reject patterns would implement more reliable

protocols. Message-numbers and hold-back queue patterns would implement more

reliable and synchronized conversations. Load information and Timing information

patterns would help on improving long running conversations and reliability.

Other qualities as much as other patterns can be added by collaboration with other

professionals to improve the wiki, hence CommDP pattern language, its template, its

qualities, and its applicability can be extended to cover more fields on the communication

protocols design.

	
	
	

93
	

To our knowledge, no one has formally identified similar desirable qualities for

communication software protocols, this set of attributes intends to initiate a discussion on

the need of a specific quality model that deals with communication software, and also a

validation of this model is needed in a future research.

Since every networking application needs some level or synchronicity, every

pattern provides some synchronicity, i.e. the sender process blocks after sending its

request. And it will increase its needs accordingly, for example if the two processes

depend on each other execution for further processing, both processes can be mutually

locked each other.

CommDP pulls together reusable solutions to reoccurring design problems with

ACPs, filling a much needed gap in the knowledge base for developers of distributed

systems. We have characterized the nature of the problems that the CommDP patterns

address and the consequences of their solution in terms of four desirable qualities:

reliability, synchronicity, longevity, and adaptability for scalable distribution. These

qualities are both instructive and discriminating, in that they can help a developer

understand the solutions and choose the most appropriate solution for a given situation

(problem + context). However, more work needs to be done to formalize these qualities

and to solidify the sufficiency and completeness relative to communication-protocol

design.

We intend in future research to use CommDP to improve the learning process in

students taking courses related to distributed systems. Studying its usefulness in designing

and developing applications and its effectiveness in the learning and thinking of students

	
	
	

94
	
could be valuable for the education and enterprise communities.

	
	
	

95
	

CHAPTER 4

USING CLOUD SERVICES TO IMPROVE SOFTWARE ENGINEERING

EDUCATION FOR DISTRIBUTED APPLICATION DEVELOPMENT7

4.1. Abstract

Software-engineering education should help students improve other development

skills besides design and coding. These skills, referred to here as A2R (Analysis to

Reuse), include analysis, technology evaluation, prototyping, testing, and reuse. The need

for improved A2R skills is particularly pronounced in advanced areas like distributed

application development. Hands-on programming assignments can be an important

means for improving A2R skills, but only if they focus on the right details. This paper

presents a case study of programming assignments offered in a graduate-level class on

distributed application development, where the assignments required the students to use

cloud services and programming tools that were heretofore unfamiliar to the students.

Direct observation by the instructor and a post-class survey provided evidence that the

assignments did in fact help students improve their A2R skills. The post-class survey also

yielded some interesting insights about the potential impact of well-designed

programming assignments, which in term led to ideas for future research.

4.2. Introduction

Imagine yourself at a worktable with four or five of your peers. In the center of

the table is a pile of seemingly random objects, including two dozen sheets of paper,

																																								 																					
7 Jorge Edison Lascano, Stephen W. Clyde

	
	
	

96
	
paper clips, a small roll of tape, pins, and several small wooden sticks. A quick glance

around the room reveals a dozen other groups just like yours with similar piles in front of

them. An individual, who is introduced as your customer, stands at the front of the room

and says that you have 30 minutes to build a “great” tower. What do you do first? How

do you put all that you know about paper, clips, tape, wooden sticks, etc. into practice to

satisfy the customer’s request for a tower and do so within 30 minutes?

Such is the typical scene on the first day of class in the undergraduate

introductory course on software engineering at Utah State University (USU). In general,

all the students have a good working knowledge of objects at their disposal and even

some inkling on how they may combine several of them to create new more structural

useful objects. Most groups succeed in creating something that stands on its own and

roughly resembles a tower within 30 minutes. However, at the end of that time, the

customer surprises the students by giving them a few more objects, e.g., more paper and

tape, and asks them to take 15 more minutes to make their towers taller or stronger. Many

groups fail to do so in the limited allotted time. In fact, about half of them end up

destroying their original towers in the attempt.

Afterwards the instructors and students discuss the experience in terms of what

worked well for the group, particular difficulties that hindered progress, how the group

organized itself, and how they decided on an overall approach. The discussion usually

leads to some very interesting comparisons with common aspects of software

engineering, such as group work, tool evaluation, prototyping, design patterns, testing,

extensibility, reuse, and more. Over the years, one of the authors, who is a long-time

	
	
	

97
	
instructor for this introductory software engineering course, has observed the following:

1. Virtually no student or group ever asks the customer what a “great” tower means.

Most assume that they already know and proceed to build without each

researching the requirements.

2. Virtually no student or group ever looks around to see what other groups have

done or are doing, evaluates the ideas they see, and then tries to adapt or improve

on them.

3. Only a small percentage of the groups try prototyping an idea to explore its

characteristics.

4. Only rarely does a group test the properties (e.g., stability or strength) of a

component or the whole tower and then try to make modifications to improve

those properties.

5. Only a few groups try to establish patterns or “best practices” either in their

building processes or the components they create, and then reuse those ideas.

Each of these observations represents a potential engineering pitfall or negative

practice that can lead to inefficiency or failure. Software-engineering education needs to

help students avoid these and other related pitfalls by connecting theory with best

practices in the context of real non-trivial problems [124]. Doing so goes well beyond

teaching the “How To’s” of a specific technology, like a programming environment.

Instead, it requires educators and students alike to address the “How To’s” of the overall

development process, including:

1. How do we know when we understand the customer’s problem sufficiently?

	
	
	

98
	

2. How can we benefit from existing technology or from what others have tried in

the past?

3. How can we prototype part of a problem or alternative solutions to answer

critical questions?

4. How can we test what we build?

5. How can we find good solutions to reoccurring problems and reuse that

knowledge?

More concisely, software-engineering education needs to help students make

analysis, technology evaluation, prototyping, testing, and reuse an effective and integral

part of their development activities [124]. Here, we’ll refer to these as Analysis to Reuse

(A2R) skills.

The need for better A2R skills is prevalent in every software-engineering domain,

but is pronounced in the development of distributed applications. Distributed-application

development, or distributed-system development at large, has all of the challenges of

traditional software development, plus the complexities introduced by inter-process

communications, concurrency, the potential of partial failure, and replication that exist

for performance improvements or fault tolerance [69].

Now let us roll our classroom scene forward several years to a graduate software-

engineering class that focuses on distributed applications. Students entering in this class

have solid foundations in software-engineering fundamentals, programming languages,

inter-process communications using sockets, and many other areas of computer science.

Yet, they still need to strengthen their A2R skills, especially in the context of distributed

	
	
	

99
	
applications, and the best way to do that is through hands-on experience [35]. So, from an

education perspective, the challenge is to provide realistic and engaging assignments that

will strengthen the A2R skills and are doable within the allotted time.

Because distributed applications are relatively complex [125] by their very nature,

there are two negative tendencies for program assignments in this area: a) abstracting

away too many interesting aspects of the problem and b) getting bogged down with

unnecessary application-domain details.

The first tendency is very common in advanced CS courses, because simpler

assignments are more manageable, teachable, and easier to fit within a given allotted

time. Advanced courses usually have to operate within same time constraints as

introductory courses. Even though, they are more complex, it is essential that advanced

assignments include reasonable limits on the expected time and effort [125]. Simplicity in

their design is a necessity and by itself is not a problem. Focusing on the wrong details

and abstracting away all interesting parts of the problem, however, is a serious real

pitfall. For example, scalability is a real and very common aspect of most distributed

applications [69]. Even though removing scalability requirements would simplify an

assignment, it would rob the students of a valuable opportunity to improve A2R skills in

a relevant area.

The second tendency is to allow an assignment to get bogged down in

application-domain details, shifting focus away from the learning objectives.

Assignments in advanced courses, like distributed-application development, work best if

they are grounded in a meaningful real-world domain. However, most distributed

	
	
	

100
	
applications and their domains are relatively complex. If not careful, an instructor could

easily use all available time explaining the sample application domain, instead about the

core course topics. Keeping assignments focused on a small set of functional

requirements that require minimal application-domain knowledge, is essential to making

sure that they are doable within time limits and achieve the learning objectives.

This paper describes a case study of programming assignments conducted in an

advanced software-engineering class on distributed-application development, where all of

the assignments required students to use cloud resources for their execution environment.

The hoped-for result was that the assignments provided students significant opportunities

to improve their A2R skills, while introducing them to new concepts and development

tools. Section 2 describes the course’s programming assignments in terms of their

learning objectives, the application domains that act as backdrops, and their requirements.

Section 2 also explains the tools and technologies introduced for each assignment.

Section 3 summarizes the instructor’s observations made throughout the semester and

assignment design learnings. To evaluate the effectiveness of the assignments, we

conducted a post-class survey. Section 4 describes this survey and presents the resulting

raw data. Since the class was a second-year graduate class, the enrollment was small. So,

we cannot make many generalizations from the survey data. Nevertheless, they do lead us

to some interesting insights. We share those insights in Section 4.B. Section 5 explores

related work in software-engineering education using cloud resources and hands-on

learning. Finally, Section 6 provides conclusions, along with ideas for future research that

could further advance software-engineering education relative to A2R skill development.

	
	
	

101
	
4.3. Programming Assignments for a Distributed Application Development Course

CS 6200 at USU is a second-year graduate course in software engineering that

focuses on the development of distributed applications. Its prerequisite, CS 5200,

provides students with a strong foundation in inter-process communication, protocols,

concurrency, and communication subsystems. CS 5200 is also a programming intensive

course, which means that students who successfully complete it have confidence in their

ability to implement non-trivial software systems. The overall learning objectives for CS

6200 are as follows:

• Master theoretical elements of distributed computing, including: models of

computation and state, logical time, vector timestamps, concurrency

controls, and deadlock;

• Become familiar with the provisioning and use of virtual computational

and storage resources in a cloud environment;

• Become familiar with cloud-based tools for processing large amounts of

data efficiently; and

• Become familiar with distributed transactions and resource replication.

• For the Spring-2015 semester, the homework was broken down into five

assignments, each lasting two to three weeks.

4.3.1. Assignments 1 & 2 – Disease Tracking System

For the first two assignments, the student implemented a set of processes that

worked together to form a disease tracking and outbreak monitoring system. They had to

deploy multiple processes on EC2 instances within Amazon Web Services (AWS) cloud.

	
	
	

102
	
The first type of processes were simulations of Electronic Medical Records Systems

(EMR’s) that randomly generated notifications of diagnoses for infectious diseases, like

influenza. The EMR’s sent these disease notifications to Health District Systems

(HDS’s), which collated diagnoses and then sent periodic disease counts to Disease

Outbreak Analyzers (DOA’s). Each DOA monitored outbreaks for a single type of

disease. See Figure 20. Programs Built as Part of Assignments 1 & 2, Plus an Illustration

of Sample Processes. The specific learning objectives for these two assignments

included:

• Review inter-process communications;

• Become familiar with vector timestamps and how they behave in a distributed

system under varied conditions;

• Become familiar with setting up and using computational resources in a cloud, e.g.,

AWS; and

• Become familiar with setting up a simple name service.

The students were asked to learn and use Node.js as the primary programming

framework [27] [126]. Because Node.js was new to all the students, some class time was

dedicated to teaching Node.js, but only enough to get them started. Their unfamiliarity with

Node.js was also the reason this first system was split into two assignments. They built and

tested approximately half of the functionality in the first assignment and the remainder in

the second.

To deploy their systems to EC2 instances on AWS, the students had to learn about

security on AWS, create security keys, and setup their own user accounts using Amazon’s

	
	
	

103
	
Identity and Access Management (IAM). They also had to setup and learn the AWS’s

command-line language interface (AWSCLI), so they could automate the deployment and

launching of their systems.

4.3.2. Assignment 3 – Twitter Feed Analysis

In this assignment, the students explored how to process big data using

MapReduce on AWS and how to configure cloud resources using AWS’s Cloud

Formation tools. Specifically, they were to capture tweets through Twitter’s API and then

analyze them for positive or negative sentiment relative to some key phrase, like “health

care”. The learning objectives for this assignment were as follows:

• Become familiar with setting up and using MapReduce with a cloud-based

distributed file system;

• Become familiar with tools for provisioning collections of resources that are

needed for a distributed system; and

	

Figure 20. Programs Built as Part of Assignments 1 & 2,
Plus an Illustration of Sample Processes.	

	
	
	

104
	

• Explore the types of problems that are well suited for a MapReduce solution

To complete this assignment, students setup and learned how to use AWS’s S3,

MapReduce, and Cloud Formation services. Some also used this assignment to learn

about a Node.js module for working directly with AWS; while others strengthened their

knowledge of AWSCLI.

4.3.3. Assignment 4 – Distributed Election

In this assignment, the students implemented a distributed system consisting of

dozens of processes that shared access to common data files, which were collectively

treated as one large shared resource, like a database. One of the processes played the role

of Resource Manager (RM) and accessed the common data files in response to requests

from the other processes. If RM died, then the other processes had to detect that failure

and elect one of the remaining processes to be the new RM seamlessly. The learning

objectives for this assignment were:

• Master at least one distributed election algorithm;

• Master the concept of resource managers for controlling access to share resources;

and

• Become more familiar with tools for provisioning collections of resources in a

cloud.

To complete this assignment, we allowed students to use any of the tools they had

learned thus far, but they had to deploy their systems to multiple EC2 instances and

demonstrate that the system would elect a new RM if the current one was stopped. They

had to show that the system has as a whole, lost no work.

	
	
	

105
	
4.3.4. Assignment 5 – Distributed Transactions

In this assignment, the students had to build a simple transaction management

system with locking capabilities. Like Assignment 4, this system had to support multiple

concurrent worker processes, but went a step further in requiring multiple shared

resources and multiple concurrent RM’s. Each RM had to keep track of a single resource

and support lock, read, write, and unlock operations on that resource. The system also

had to include a transaction manager that supported starting, committing, and aborting of

transactions. Assignment 5’s learning objectives included:

• Become familiar with locking; and

• Become familiar with transaction management in a distributed system.

Like Assignment 4, the students could use any of the tools that they learned to this

point in completing Assignment 5.

4.4. Instructor Observations

Seven students took CS 6200 in the Spring-2015 semester: 5 who were registered

for credit and 2 who audited the class. It is impossible to recap all that took place during

the semester, but we summarize a few observations prior to presenting the post-class

survey to help set the stage for the survey and our conclusions.

First, we observed that all of seven students started the class with roughly

equivalent software-engineering backgrounds and programming skills, even though they

were not all seeking the same degree nor did they have the same programs of study. None

of the students had used Node.js before and only one had any exposure to cloud

computing, and that was only a light exposure.

	
	
	

106
	

Second, we observed that requiring students to setup and managing their own

cloud resources not only helped them with core concepts and development skills, but it

also allowed them to improve their A2R skills relative to figuring out what the most

important requirements were, tool evaluation, and testing. For example, in the first two

assignments, the students had to deploy their system to EC2 instances. For most of the

students, this was the first time deploying something that they built to an execution

environment different from their development environment, along an execution

environment consisting of multiple virtual machines. It opened their eyes to new

challenges, such as firewall issues, file permissions, and missing dependencies. Time was

made available in every class period for them to talk about the challenges that they were

facing and get ideas from other students or the instructor about how to address those

challenges. Similar discussion also took place on an online forum. By the end of

Assignment 2, the classroom and online discussions showed that the students had stepped

up their efforts to understand the assignment requirements, evaluate the tools available to

them, and test their work.

Even though the purposes of Assignments 4 and 5 were considerably different

from the first three, they possessed some of the same challenges, like resource name

resolution and deployment into a cloud environment. It was encouraging to see that the

students solved these problems by adapting techniques used in the earlier assignments

and improving upon them – evidence of them practicing A2R skills.

We were happy to see that the students learned some unexpected, but very

relevant lessons. For example, one student stored his access keys in a text file and

	
	
	

107
	
committed that file to a public Git repository. It was not long before someone hacked his

AWS account. Amazon and the student caught the problem relatively quickly and

simultaneously, but not before the hacker had used over $600 of resources. He ended up

taking extra time learning more about security from unauthorized use. Thankful, Amazon

worked with him to recover the expenses, so he did not have to pay for the lost out of

pocket. Still, it proved to be a valuable learning experience that he will not forget.

With respect to the selected cloud AWS, we observed that it provided a mature

and full-featured set of services for the students to learn from. In some areas, AWS’s

learning curve was steeper than necessary, but with supplementary examples and good

discussions, it was manageable. From an education perspective, a good thing about AWS

is that it has features in three main categories: Infrastructure as a Service (IaaS), Software

as a Service (SaaS), and Platform as a Service (PaaS) [69].

One negative experience with AWS occurred during Assignment 3, which

depended on an Amazon-provided template for setting up a MapReduce cluster. That

template was changed by its authors in the middle of assignment, causing several of the

students not to complete all of the requirements. To avoid this problem in the future, the

instructors will make private copies of public or external resources, so changes to them

will not affect assignments in progress.

A. Assignment Design Learning

When instructors design assignments oriented to networking or distributed

applications, they need to consider distribution concepts, but at the same time bear in

mind the limitations for the students’ capabilities and hardware environment. Before

	
	
	

108
	
cloud resources became available, this typically consisted of one computer [127] or small

number of computers on a local area network (LAN) in a school lab. Assignments that

work well on one computer or a LAN may not allow the students to gain appreciation for

more realistic networking challenges, performance issues, and reliability problems [31].

With cloud resources, assignments can now be designed having a broad range of

resources in mind, while still considering good software-engineering practices for

analysis, technology evaluation, testing, deployment and even reuse.

4.5. Post-class Survey

To assess the value of the programming assignments for CS 6200, we designed a

post-class survey and conducted that survey with two populations: students registered in

CS 6200 for credit and students who just audited the class. Those registered for credit had

to complete all of the assignments to receive a grade; those just auditing the class did not.

In fact, it is important to note that none of the second group completed any assignment.

4.5.1. Survey Design

We organized the survey into two parts. The first part asked students to rate their

knowledge and skills in areas related to the course and the assignments, as they were

before the class started, using a 1-to-5 scale. The second part asked them to do the same

relative to the end of class.

Table 13 and Table 14 list the concepts (knowledge areas) and skills respectively

covered in both parts of the survey. The survey used a Matrix Table format, with the

concepts and skills as rows and possible ratings as columns. See Figure 21 for partial

view of the survey instrument for Part 1.

	
	
	

109
	

The difference between each individual’s answers to corresponding questions

from two parts provides a glimpse of that person’s perceived change in knowledge or

skill levels as a consequence of the course.

We could have administered a pre-class survey similar to the first part, but

considerable differences in each student’s personal rating scheme would likely have

evolved over the semester, making it difficult to assess perceived change. We could have

also administered pre and post exams to measure their proficiency objectively, but there

was no common knowledge basis for a pre exam. So, the study would have degenerated

into the interpretation of just post exam results.

4.5.2. Survey Results

All seven students completed both parts of the survey. Figures 22 and 23 show

averages of the students’ raw estimates of their knowledge and skill levels for before and

after class. The blue lines represent the levels before and the red lines after. The (a)

graphs are for the first population, namely the students who registered for credit and the

(b) graphs are for the auditing students. Figure 24 shows the average net change in the

levels, broken down by the two populations.

	

Figure 21. Partial View of the Survey

	
	
	

110
	

	

Figure 22. Before and After Knowledge Levels.

	

Figure 23. Before and After Skills Levels.

	
	
	

111
	

One interesting result that is worth pointing out immediately, is that the first

group of students, in general, rated their before-classes level lower than the second

population. We believe that this can be contributed to the common adage, “You do not

know what you do not know”. The first group of students did the assignments and soon

discovered how much they really did not know, whereas the second group did not come

to the same realization. For example, the auditors’ perception about their AWS and

Node.js skills was that they knew those technologies relatively well before starting the

class; meanwhile the first group of students came to realize that their skills were almost

nil.

	

Figure 24. Perception of Acquired Knowledge: Differences Between the After and the
Before.

	
	
	

112
	

Table 13. Knowledge Survey Questions.

No Knowledge/Concept Acronym
Q1.1 Inter-process communications patterns, like Request-

Reply, Request-Reply Acknowledge, and Reliable
Multicasts

IPC

Q1.2 Partial ordering of events in a distributed system, as
represented by mechanism like Vector Timestamps

VTS

Q1.3 Message serialization/deserialization S/D
Q1.4 Intra-process concurrency IntraPC
Q1.5 Computation resources in a cloud-computing environment,

such as AWS
AWS

Q1.6 Namespaces, name services, and name resolution NS
Q1.7 Deployment, execution and testing techniques in a

distributed environment
Deploy

Q1.8 Deployment, execution and testing techniques in the cloud. Testing
Q1.9 Distributed election algorithms DEA
Q1.10 Resource managers RM
Q1.11 Fault tolerance in a distributed environment. FT
Q1.12 Tools for provisioning collection of resources needed for a

distributed system.
Tools

Q1.13 Cloud Computing resources CCR
Q1.14 Infrastructure as a Service (IaaS) IaaS
Q1.15 Platform as a Service (PaaS) PaaS
Q1.16 Inter-process concurrency InterPC

	

	
	
	

113
	

Table 14.Skills Survey Questions.

No Skill Acronym
Q2.1 AWS Users and key pairs (Identity and Access

management -IAM)
AWS-IAM

Q2.2 AWS Virtual PC Instances (EC2) AWS-EC2
Q2.3 AWS Storage (S3, EBS) AWS-S3,EBS
Q2.4 AWS-CLI (Command Line Interface) AWS-CLI
Q2.5 AWS SDK (Software Development Kit) AWS-SDK
Q2.6 Managing instances in AWS: creating/launching,

starting, stopping, terminating
EC2-Instances

Q2.7 AWS Billing AWS-Billing
Q2.8 Using Node.js to Develop Distributed Systems Node.js_DS
Q2.9 Using Node.js to deploy and run Distributed

Systems in the cloud
Node.js_Cloud

Q2.10 Designing and developing TCP/UDP/Web
Services-based systems with Node.js

Node.js_C/S

Q2.11 Writing scripts to Deploy/execute applications in
distributed environments

DS_Scripts

Q2.12 Designing and Developing Resource Managers RM_DD
Q2.13 Designing and Developing Distributed Election

Algorithms
DEA_DD

Next, notice that the estimated pre-class knowledge levels are higher than the

estimated pre-class skill levels. In general, the students felt they had a conceptual

understanding of the course concepts, including AWS, which only one student had

exposure to before class. From this, we can see that students (and perhaps all people) tend

to believe that they are able to generalize conceptual knowledge into new areas that they

have not seen before.

Figure 22 shows evidence that the first group of students truly improved their

skills. Their net change for every skill was higher than the net change for the second

group. Interestingly, the same is not true in the knowledge area. At first glance, this might

	
	
	

114
	
seem odd, but considering the timing and relative nature of the self-made estimates, there

is a possible explanation. Specifically, the students who did not do the assignments

naturally felt that their biggest growth was in increase of conceptual knowledge.

4.6. Related Work

Other higher-education institutions are using cloud computing resources in

courses that focus on distributed applications or network programming. Clearly, these

platforms allow the students to use realistic testing and production environments.

Moreover, there are large research universities that have implemented private clouds on

their campuses and use them in the classroom. For example, Syracuse University

provides a local virtual machine lab used to form virtual networks for security projects

[32]. North Carolina State University supplies computing resources over the Internet with

their Virtual Computing Lab [33], Arizona State University developed V-lab for

Networking Courses [35], and Okanagan College and King’s university College talk

about using a cloud for educational collaboration [29]. Nevertheless, these private

solutions are often not economically viable for many universities [28], and therefore they

can only consider public cloud solutions.

Programming assignments that use public or private clouds can add value to the

learning experience and increase students’ skills directly related to possible professional

careers [125] in network programming [28], distributed systems [29], systems

administration [125], security [125] [32], data processing [30], among others.

Furthermore, a major benefit is that students do not need to simulate network

communications over a localhost interface [28]; instead, they can use multiple virtual

	
	
	

115
	
machines and real network communications to better understanding the distributed

system components, their roles, and the related concepts.

Using a public cloud for hands-on activities offers benefits such as scalability,

flexibility, security, cost-efficiency and accessibility [28], which all are key

characteristics of distributed systems [69]. Public clouds also add an interesting and

valuable dimension to the execution and debugging of distributed applications [30],

without needing huge budgets for private-cloud or physical-machines infrastructure. Most

of the public cloud providers, e.g., Amazon, Google, Microsoft, IBM, offer grants for

academic institutions that want to use their resources for educational purposes. For

example, at the time of this study, Amazon offered grants up to $100 per students [128].

Other benefits to public clouds include ready access to different operating-system

platforms, communication protocols, development tools, open-source code, public

forums, and more.

4.7. Conclusions and Future Work

For this small case study, we conclude that programming assignments with

requirements to use cloud resources were successful in helping the CS 6200 students to

improve their A2R skills, as well as their core distributed-application development skills.

Both the instructor’s observations and the post-class survey provide anecdotal evidence

of their improvement.

We also found some evidence that students are willing and even excited to learn

new tools and skills, especially if they can see how it lets them put theory into practice.

Even though the assignments were based on carefully crafted and sanitized requirements,

	
	
	

116
	
they were realistic enough for the students to experience real problems and see how

theoretical concepts, like vector timestamps and distributed election, could be used to

solve those real problems.

Some important design criteria for assignments included: a) hiding unnecessary

details, like all the other capabilities of an EMR beside the generation of disease

notifications, b) focusing on requirements that put theory into practice, like the election

of an RM in Assignment 4, c) including non-trivial non-functional requirements, like

scalability, and d) wherever possible allow students to reuse components or knowledge

acquired in previous assignments.

The survey data also opened some doors to possible future research. Specifically,

we would like to conduct a broader experiment across multiple software-engineering

classes of various kinds and at different levels, to explore specific ways that the design of

assignments can improve A2R skills in general. From that, we hope to publish more

concrete guidelines for programming-assignment design for software-engineering classes

at all levels.

	
	
	

117
	

CHAPTER 5

IMPROVING COMPUTER SCIENCE EDUCATION THROUGH CLOUD

COMPUTING: AN OBSERVATIONAL STUDY8

5.1. Abstract

In an earlier study, we observed that students in a small graduate class who used

Cloud Computing (CC) for their programming assignments improved their analysis-to-

reuse (A2R) skills more than students who did not use CC. That preliminary result

motivated us to see if the use of CC in programming assignments would yield similar

results for a broader range of classes and students. To this end, this paper reports on an

observational study on the students of the Computer Science Department of Utah State

University that spanned from August 2015 to December 2016 and included over 221

students, with data collected at three different times. An ANOVA statistical analysis of

the study data revealed a significant difference in the perceptions about acquired A2R

skills in favor of students that used CC.

5.2. Introduction

Cloud Computing (CC) is changing the way IT users consume computing

resources. CC introduces new elements for execution and development environments,

these resources are consumed and shared on demand among software systems

stakeholders. Currently, higher education institutions are including CC in their curricula

to improve their students’ skills [24], and careers have been created around this

																																								 																					
8 Jorge Edison Lascano, Stephen W. Clyde

	
	
	

118
	
technology [129] [130] [131] [132] [133] that many organizations have adopted or are

moving towards its adoption [134]. CC is currently used in different areas such as

infrastructure provisioning, test and development, file storage, disaster recovery, and

backups [135]. Most of the industry already requires professionals to have a foundation in

the CC body of knowledge, adopted in 2008 by IEEE [136]. This trend represents both an

opportunity and a challenge for higher education. Specifically, higher education needs to

(a) incorporate CC technology into curricula so students can be better prepared, (b)

understand its impact in higher education [137], and (c) leverage CC technology as

means of helping students improve other skills and knowledge required for Computer

Science (CS) professionals.

Although there exist a wide range of literature in this aspect [27] [31] [32] [35]

[138] [33] [29] [139] [140] [141] [142] [143] that cover the use of CC for different

courses and the inclusion of CC as a solution for higher-education infrastructure, none of

them use CC throughout the full software development process nor do they do not

analyze the impact of CC on improving students’ A2R skills using CC resources for

programing assignments.

CS departments need to improve their students’ A2R skills to keep pace with

industry demands. Also, they want to comply with accreditation criteria. In the United

States of America, the Computing Accreditation Commission of ABET (Accreditation

Board for Engineering and Technology, Inc.) [144] is responsible of accrediting the CS

programs. ABET establishes general criteria that apply to all programs, and program

criteria that apply to a specific program. These general criteria cover program educational

	
	
	

119
	
objectives (PEO), student outcomes, continuous improvement, curriculum, faculty,

facilities, and institutional support. The CS Department of Utah State University has

defined the following as one of its PEOs:

PEO-1: “The USU Computer Science program will prepare its graduates to be

successful and contributing professionals by being able to apply the principles of

computer science and adapt emerging technologies to analyze and solve real world

problems” [25].

A preliminary study conducted in 2015 [24], where the instructor of CS6200 from

Utah State University used Amazon Web Services for advanced distributed systems

programming assignments, showed that CC helps students improve A2R skills. The

results of this preliminary study motivated us to plan a new study, encompassing as much

of the CS Department as possible, to see if the conclusions would hold for a broader

group and different classes. Section 2 provides necessary background information for this

observational study and Section 3 summarize a brief literature review on the use of CC in

educational institutions.

This observational study aims to find statistically significant differences in the

perceptions of students with respect to their A2R skills between those who used CC in

their assignments (group A) and who did not (group B). To this end, it focused on two

questions: (1) what are students’ perceptions about how their own skills and knowledge

change over the course of a semester and (2) how does the integration of CC into

programming assignments affect those perceptions? Section 4 describes the study’s

design and the survey instrument used in the study to gather data about student

	
	
	

120
	
perceptions relative to these two questions. Section 5 provides details about the results of

the quantitative analysis. Finally, section 6 presents our conclusions and future research.

5.3. Background

5.3.1. Cloud Computing Services

CC, which “provides shared computer processing resources and data” [145], is a

technology trend that is taking off, especially since CC providers now offer services that

help organizations overcome their security and compliance concerns [146]. CC is widely

becoming an integral piece in the software development process and an important

component in complete software solutions. Even IEEE has considered the importance of

CC in professional and academic environments and founded in 2011 a global initiative,

IEEE Cloud Computing, to promote CC and its related technologies [147]. This initiative

comprises standards, publications, education, careers and conferences.

CC providers offer their services under different models [145], three are the

standard models as defined by the National Institute of Standards and Technology

(NIST): Infrastructure as a Services (IaaS), Platform as a Service (PaaS), and Software as

a Service (SaaS). IaaS is used for deployment and execution of computer systems, IaaS

can greatly simplify an organization’s IT management and support on-demand

scalability, high availability, fault tolerance, and disaster recovery [148]. PaaS provides

developers with full out-of-the-box development environments, PaaS solutions typically

include virtual machines, operating systems, programming tools, and databases [149]. A

third category of CC services is SaaS, solutions in this category are target as end users

and cover a wide range of application software. The SaaS users do not need to purchase

	
	
	

121
	
or install application software locally. Instead, they use existing applications in the cloud.

CC services provided by AWS [150] include: virtual instances - EC2 (IaaS), code

repositories - CodeCommit (SaaS), code test and deployment –CodePipeline (SaaS),

Databases -RDS and DMS (PaaS), scalable storage -S3 (IaaS), big data processing –

EMR (PaaS), and web scalability - AWS Elastic Beanstalk (IaaS). Providers such as

Google, IBM, Microsoft, and others offer similar CC solutions.

Since cloud services are widely used by enterprises, cloud providers offer their

services to educational institutions at no cost or at very low cost, so the new professionals

can learn, and test their services. Examples of these programs include Amazon Education

[151], Google for Education [152], GitHub Education [153], IBM Cloud Education

[154], and Azure in Education [155]. Most of them provide biannual grants to students or

instructors.

5.3.2. Observational Studies

Experiments are used to search for cause and effect relationships [156].

Researchers design experiments to predict what can happen by varying some values and

observing changes. Variables are used to affect and to quantify these changes and may be

any factor, trait or condition. Two important types of variables are independent and

dependent variables. The former are changeable or controlled by the scientists. The latter

represent the outcome in function of the independent variables [157]. An observational

study [158] draws inferences from a sample to a population where the researcher does not

have full control over the independent variables [159]. Some reasons for using an

observational study instead of a controlled experiment include: the need to respect human

	
	
	

122
	
rights and logistical issues. Also, sometimes it is simply impossible to control the

independent variables sufficiently.

As mentioned before, certain independent variables will be outside the control of

the researcher, but they can be observed and recorded. Cause and effect are difficult to

establish in observational study, nevertheless, they can allow researchers to formulate

some associations and lay the foundation for future studies that can be carried on in

control settings [160]. According to Shull et al. [161], after initial feasibility studies,

researchers can use observational studies to collect data that will help explain the

considered phenomenon and “formulate hypotheses to be tested in subsequent

experiments” [162]. “A well designed observational study, resembles, as closely as

possible, a simple randomized experiment” [158]. The main difference is the

randomization of an experiment, where participants are selected by chance, so bias can be

reduced.

5.4. Related Work

The use of virtual resources for CS courses is not a new concept in the academia

[27]. Studies report that the use of CC in the class has proofed to be worthwhile, by

allowing students to improve their professional skills and to obtain a better understanding

of realistic execution environments and issues in areas such as security [31] [27],

networking/network programming [32] [35], system and network administration [27]

[138], distributed systems [33], and data processing [29] [30]. Other researchers have

investigated the relationship between CC and higher education, including CC adoption

and its influence [139] [140], students perception of CC effective use [141], CC impact

	
	
	

123
	
[142], and relevance of CC [143].

Gonzalez et al. for example, at Rochester Institute of Technology used Amazon

EC2 in their Principles of Systems Administration course to leverage career opportunities

for their students [27]. Zhu used cloud resources in the Network Programming course at

Metropolitan State University of Denver, where students agreed that using CC resources

had a positive impact on their learning experience [28], Zhu claims that the same effect

will be true for other courses, unfortunately, there is no other studies published to date.

Rabkin et al. [30] used CC for MapReduce measurements at University of California,

Berkeley, concluding that it is a need for students to experience running and debugging

distributed applications in a realistic infrastructure. None of them have used CC as a

resource for programming assignments.

5.5. Design of the Observational Study

In [24], we described our findings on the use of Cloud resources for programming

assignments. Students that used CC for their assignments improved their A2R skills in a

level higher than those ones that did not use CC. This group of students corresponds to

the CS6200 course taught during Spring-2015, where participants developed advanced

distributed applications, some of them used IaaS and PaaS, others did not use it. After

this experience, we aimed to extend our work to other programming courses, by

including CC as a resource for students’ assignments during Spring-2016 and Fall-2016

semesters. With the hoped-for a bigger improvement on A2R skills for these students

than for the Fall-2015 students, who did not use CC resources.

We defined three main variables for our experiment, the use of CC (the treatment)

	
	
	

124
	
as the independent variable, and the variations in A2R skills and knowledge levels

(covariates) as the dependent variables. Nonetheless, it was not possible to prepare a

properly randomized selection of students who will or will not use CC in assignments at

the CS department. So, the independent variable is outside our direct control.

Alternatively, we requested the instructors of CS3450, CS5110, CS5200, CS5600,

CS5680, CS5700, CS5800, CS5890, CS6110, CS6600, and CS7910 courses to use CC in

their assignments. During the Spring-2016 semester, the instructor of CS5200 agreed to

use CC, and during the Fall-2016 semester, the instructors for CS3450, CS5600, CS5700,

and CS6600 agreed to the request. Students in all other classes would continue not to use

CC in their programming assignments.

 The most of the CC services that ended being used were IaaS, such as AWS EC2

virtual servers and Amazon S3 storage. Services classes did used some simple SaaS

services, like Bitbucket and GitHub, for Git repositories. Requiring instructors to use CC

was not possible and following up with the students who used CC was challenging. So,

we let the instructors use CC on their discretion and made sure the survey instrument

would collect sufficient information to determine whether they used CC in their

programming assignments, as well as their perceptions about their levels of skill and

knowledge.

Furthermore, we designed the surveyed instrument overall curriculum objectives

in mind, like PEO-1 and the following student outcomes from ABET’s guidelines [163]:

(b) An ability to analyze a problem, and identify and define the computing

requirements appropriate to its solution

	
	
	

125
	

(c) An ability to design, implement, and evaluate a computer-based system, process,

component, or program to meet desired needs

(i) An ability to use current techniques, skills, and tools necessary for computing

practice.

(k) An ability to apply design and development principles in the construction of

software systems of varying complexity.

To organize the survey questions, we first decomposed PEO-1 into three sub-

objectives: Analyze and solve real world problems, adapt emerging technologies, and

apply principles of CS (see Figure 25). The first two sub-objectives deal with A2R skills

level, while the third deals with general knowledge. Next, we aligned the sub-objectives

with the student outcomes and then decomposed the outcomes into eight areas: Problem

Analysis, Requirements Identification and Definition, Systems Analysis, Systems Design,

Current Practices, Other Software Engineering Skills, Tools, and Principles. The

questions were designed with these eight areas in mind, following the Goal Question

Metric paradigm [164].

The first four questions of the survey though, are not meant to measure any level

of knowledge or skills, they are intended to capture the characteristics of the participant

and their classes, i.e., student number, age, past classes, and current classes.

Question 5 captures the students’ perception of A2R skills level, while Q6

measures the students’ perception of knowledge. Each of the questions contain a number

of sub-questions or topics and asked the participants to rank their perceptions of their

own skills and knowledge on a scale from 1 to 5, relative to both the beginning and at the

	
	
	

126
	
end of every period, for each one. Each topic has a N/A option for students who do not

recognize the topic or feel that it does not. See Figure 26 for a snippet of Question 5 that

shows just two topics.

Question 7 is about design principles and assignments characteristics. Questions 8

and 9 of the survey were open so the students can express themselves about how they

	

Figure 25. Goal Question Metric Applied to PEO-1

Figure 26. Snippet of Question 5 from the Fall-2015 Semester
Survey

	
	
	

127
	
think that their skills can be improved and about what methods or tools would help them

to adapt to emerging technologies.

The study design originally called for a survey to be conducted using this

instrument at the end of every semester throughout the study period. However, because of

semester breaks, it became necessary to administer the surveys at the beginning of the

following semester.

While planning the study we applied for and obtained the necessary Institutional

Review Board (IRB) approvals, and then started collecting data from the students of the

CS department of Utah State University at the end of three contiguous semesters: Fall-

2015, Spring-2016, and Fall-2016 semesters. The study intended to reach about 650

students of the CS department, i.e. students that took CS classes in any of the Fall-2015,

Spring-2016 and Fall-2016 semesters. From those students, a total of 221 responded to

the different surveys, this allowed us to have some answers in the different semesters for

the same students. For the Fall-2015 semester, there were 153 respondents to the survey,

for Spring-2016, 181 and for Fall-2016, 117. Before we started processing the data, we

needed to clean it. Incomplete surveys were dropped. Meaningless survey data such as

answers with the same level of perception for all questions were eliminated. Surveys with

duplicated students’ id numbers for the same semester were also removed.

Significant tests computed the probability for our hypothesis, H1: Students who

had assignments that required the use of CC have a greater perceived increase in her/his

skills and knowledge levels in the following A2R areas: tool evaluation, development

environment setup, runtime environment configuration, analysis, design, application of

	
	
	

128
	
"best practices", testing, deployment, and reuse.

These questions/metrics (Table 16, Table 15) capture students’ A2R skills level in

a scale from 1 to 5 at the beginning and end of a semester, the difference ∆A2R =

A2RAfter – A2RBefore represents students’ capacity variation on their skills in the course of

a semester. To have a total measurement of A2R skills composed by the 23 sections of

question 5, we gave arbitrary weights to every section based on their importance to the

outcome they are dealing with, i.e. to the ABET PEO-1 decomposition, and to industry

requirements.

The main purpose of this observational study is to analyze the impact of using CC

in programming assignments for improving PEO-1. For this reason, we compared

statistically ∆A2R’s of students that use CC (group A), and students that do not use CC

Table 15. Weights for Question 6: Perceptions of Level of Students' Knowledge

Knowledge Question Weight

a Understanding of how to match the needs of an application to an appropriate develop
environment and runtime platform 0.8

b Understanding of at least one development stack (a collection of reusable components or
libraries) 0.7

c Understanding of development environment setup 0.6

d Understanding of principles of software testing 0.8

e Understanding of network communications 0.4

f Understanding of the principle of reliability as it applies to software systems 0.7

g Understanding of security principles and practices for software systems 0.7

h Understanding of what affect runtime performance and how to detect inefficiencies and correct
them 0.5

i Understanding of the principle of Coupling 0.5

j Understanding of the principle of Cohesion 0.5

k Understanding of software reuse 0.8

l Understanding "abstraction" with respect to the design and implementation of software system. 0.6

m Understanding "encapsulation" with respect to the design and implementation of software
systems 0.6

n Understanding "modularization" with respect to the design and implementation of a software
system

0.6

	

	
	
	

129
	
(group B), ∆A2RA vs ∆A2RB. Finally, we define our null hypothesis, H0, that states: The

use of Cloud Computing resources for programming assignments does not have any

effect on the increment of A2R skills on students.

5.6. Data Analysis and Interpretation

The data collected throughout the three semesters span was compared from

different perspectives and for different groups of students. For every comparison, an

analysis of variance (ANOVA) was performed using ANOVA for a single factor, t-test or

Table 16. Weights for Question 5: Perceptions of Level of Students’ A2R Skills

A2R Question Weight

a Ability to analyze real world software needs or requirements 0.6

b Ability to evaluate methods, tools, techniques, libraries, or components for re-use 0.1

c Ability to reuse methods, designs, or software from previous assignments 0.8

d Ability to design a software system to meet complex real-world requirements 0.8

e Ability to implement a software system according to a design 0.8

f Ability to implement software that can run in a runtime environment different from your own computer or one
in a school lab 0.4

g How to configure a runtime environment into which you can deploy a software system that you built 0.6

h Ability to deploy a system to a runtime environment different from your own computer or one in a school lab 0.3

i Ability to learn and use virtual or cloud-based resources for creating software solutions 0.6

j Ability to thoroughly test software systems using executable test cases 0.8

k Ability to think critically and develop alternative solutions to a problem 0.6

l Ability to think creatively about software solutions 0.8

m Ability to understand, evaluate and use emerging technologies 0.4

n Ability to learn and use existing software services available on the Internet 0.4

o Ability to follow industry-wide "best practices" when use your chosen development environment 0.5

p Ability to follow "best practices" in testing 0.8

q Ability to follow "best practices" in deploying software to runtime environments 0.4

r Ability to apply green practices 0.1

s Ability to evaluate a variety of operating systems and frameworks as possible runtime environments 0.1

t Ability to apply collaborative methods, tools, techniques to develop software 0.6

u Ability to design a software system that will provide for a good user experience 0.6

v The ability to create maintainable software 0.6

w Ability to understand real-world problems related to the course material 0.8

	

	
	
	

130
	
z-test. We gathered a total of 451 responses from the three surveys, 280 were answered in

their entirety, and 264 were considered valid, 95 for Fall-2015, 102 for Spring-2016, and

67 for Fall-2016. From the 264 students, only 37 would have taken courses that include

the use of CC in their programming assignments, leaving a total of 227 students that did

not have exposure to CC. There are 16 surveyed students that took either CS5200 or

CS5700 when CC was not used in their assignments during Fall-2015; and there are 12

students that took CS5200 or CS5700 when CC was introduced as a resource for

programming assignments during Spring-2016 and Fall-2016. Table 17 summarizes the

values statistically obtained, namely: Averages, p-values, and Differences.

We run a qualitative analysis by gathering data about the level of perception of

every student and assigning an arbitrary weight to every question. We relied on the

analysis of variance to proof the nonvalidity of our Null Hypothesis, H0.

Table 17. ANOVA P-values for A2R Skills Variations

Comparison Groups Count Average P-value Diff.

YES/NO
statistically
significant
difference

∆CCA vs ∆CCB
Q5i GA diff
Q5i GB diff 37 1.1622 0.0215 0.4573 YES
Q5 S16 Before 227 0.7048

(A2RA vs A2RB)End
Q5 GA End 37 3.3366 0.2477

0.1692
 NO

Q5 GB End 227 3.1674

(A2RA vs A2RB)Beginning
Q5 GA Beg
Q5 GB Beg

37 2.3523 0.5424
 -0.0967 NO 227 2.4491

∆A2RA vs ∆A2RB Q5 GA diff 37 0.9842 0.0141 0.2621 YES Q5 GB diff 227 0.7220

∆A2RA-5200/5700 vs ∆A2RB-5200/5700
Diff A2R
NoCC 16 0.6775 0.0096 0.4265 YES
Diff A2R CC 12 1.1041

Same Students F15 – S16 Q5 F15 After 30 3.2056 0.0005
 -0.6927 YES Q5 S16 Before 30 2.3843

Same Students S-16 – F16 Q5 S16 After 16 3.1882 0.0633 -0.8213 NO Q5	GB	diff	 227	 0.7220	

	
	
	

131
	

For this case study, we concluded that students that use CC resources for their

programming assignments improved the A2R skills in a higher level than students that

did not use it, obtaining an improvement on PEO-1. This inference is supported by

calculating the probability for H0. We analyzed the differences between group A and

group B (∆A2RA vs ∆A2RB). We got a p-value = 0.014; as p-value < 0.05, H0 is rejected in

favor of H1.

Students of CS5200 and CS5700 courses were special groups that in previous

semesters (Si-1) did not use CC in their assignments and in following semesters (Si) use

CC resources. Their perceptions show similar results than the comparison between

groups A and B. with a well noted tendency to a higher increase, 0.426, for group

A5200/5700, versus 0.262 for group B5200/5700. In this analysis H0 was strongly rejected in

favor of H1 with a p-value=0.00959 < 0.05, that is a positive influence of using CC

improve students’ A2R skills. These results corroborate the rejection of H0, nevertheless

a different environment setup may be needed for future experiments where a group of

students use CC and other group in the same class do not.

Besides the quantitative analysis, there is the possibility for a qualitative analysis

based on Questions 8 and 9. We found out after a brief text analysis of Question 8 that

Real, Software, Design, World are the most used words, see Figure 27. After this word

count analysis run using the Voyant tools [165], a sentiment analysis may be the next step

to infer some conclusions in respect to positive or negative sentiments relative to PEO-1.

A sentiment analysis is not part of this research.

	
	
	

132
	

5.7. Conclusions and Future Directions

In this paper, we presented the results of a one-and-half year observational study

about the use of CC in programming assignments for a group of CS students, concluding

that the use of CC has a positive impact. Specifically, our findings confirmed our

hypothesis that students exposed to CC in their assignments have a bigger increase in

their perception of acquired A2R skills than students who did not use any CC in their

assignments. Therefore, there is a likelihood that the use of CC in programming

assignments for CS students has a positive influence in increasing students’ A2R skills.

We tested for significance using the Analysis of Variance Algorithm (ANOVA

[166]) with a probability (p-value) cutoff of 0.05. In most cases, we obtained a p-value <

0.05 meaning that there is statistically significant difference [167] [168] between the

group that used CC and the group that did not use CC. Hence, we rejected H0 in favor of

the alternate hypothesis, H1, i.e., students who were exposed to CC (∆A2RA) noticed a

bigger increase in their perceptions of acquired A2R skills than students that were not

exposed to CC (∆A2RB).

This study’s findings open doors for future experiments. An interesting

hypotheses for follow-on experiments would be “the use of CC can help improve

communication skills for team projects assignments.” An experiment would consider

Figure 27. Word Count Analysis for Question 8 Using Voyant-tools

	
	
	

133
	
students in a software-engineering course complete assignments in groups instead of

individually. Some course sections would use CC and others would not. A more complex

experiment would involve the continuation of projects in a course sequence, e.g., one

course could model a system and subsequent courses would then implement that model.

A couple of sections would use CC services, such as virtual servers and code repositories,

other sections would use nonCC development tools and share code by copying files from

computer to computer.

Also future experiments could look at even broader populations and group

randomization techniques. For example, group selection would be better if we could split

students within a single class into A and B groups. Unfortunately, that may interfere in

the learning process or create a lot of extra work for the instructors. For example, we may

need to plan ahead recovery courses for students that show a lower increase on their skills

through the experiment.

The survey used in this study contained a couple open questions, namely

Questions 8 and 9. A future research project could use sentiment analysis [169] to

analyze the qualitative data that were collected for these open questions. This could

provide some insights for how the students feel about their skills and their knowledge. An

informal analysis of these data shows that the most used words are “software”, “real” and

“world”. From here, the sentiment analysis would try to determine whether these ideas

are connected to positive, negative and neutral attitudes.

Uncertainty of the advantages of CC in education still exists, even though

enterprises of all kinds are currently using CC to build and deploying software. One

	
	
	

134
	
disadvantage, is that for novice developers, like students, CC services are just one more

complexity that they must learn and it could easily become a stumbling block. Any

integration of CC in a CS curriculum must be well thought out and aim to eliminate or

minimize these obstacles.

Since this research was an observational study and we could not control the group

selection, we ended up with widely different group sizes: 37 in group A and 227 in group

B. Ideally, the size of each group should be the same. Nevertheless, ANOVA allows for

uneven group sizes. Other comparison sets were found among the students of contiguous

semesters for the same subject. For example, CS5200 and CS5700’s students that did not

use CC during the semester Si, i.e., 16 from group B, versus the same courses’ students

that used CC during the semester Si+1, i.e., 12 from group A. However, this comparison

introduction would add extra variables, such as variations in commitment in faculty

members and motivation for students to be part of this study.

 The adoption of CC for programming assignments in the research population of

USU was not widely accepted, instead instructors were inclined to reject its use, a future

study could analyze the causes and propose a better approach such as the Technology

Acceptance Model (TAM) which focuses in the perceived usefulness and perceived ease-

of-use of new technologies.

We performed a statistical analysis of Students’ perceptions of A2R skills and

knowledge levels at the end of Fall-2015 versus the beginning of Spring-2016. Same

analysis was performed at the end of Fall-2016 versus the beginning of Fall-2016.

Although we thought that their perception should not be statistically significantly

	
	
	

135
	
different at the end of semester Si than at the beginning of semester Si+1, the results, Table

17, showed that they are statistically different. Future studies may help determine better

methods to help students retain their knowledge and skills between semesters’ breaks.

 5.8. Acknowledgement

We thank Seyed Mansourbeigi for assistance with the statistical analysis.

	
	
	

136
	

CHAPTER 6

CONCLUSIONS

Gathering the knowledge to define design patterns only con be achieved by

professionals that have worked in the field for a long time. This work must be extended

by including other professionals, they can endorse the current set of patterns and they

could contribute with their own solutions. For this reason we have created and published

a wiki especially for contributions on the development and improvement of CommDP.

The next step in this respect is to add more common solutions to CommDP, hence

increasing its range and usability. Additionally, as the language is defined and its

qualities are studied based on current protocols such as HTTP or FTP, we need to find

applicability for patterns. It can be reached from the academia, where students can learn

the proven solutions and implement their own protocols. Also it must be proven by the

developer community. As future work, we should implement existing communication

software using CommDP and measure these implementations’ qualities.

The use of CC in programing assignments has proofed to be valuable in

increasing A2R skills of CS students that used CC than students that did not use it.

Statistical results based on ANOVA allowed to conclude that there is a statistical

difference on the perceptions for students that used CC in their programming

assignments. Nevertheless, the results may be biased by a few external factors such as the

different methods, the different content and the improvement in the methodology that the

instructors could have used in following semesters.

To improve the previous study, and following the next phase after an observation,

	
	
	

137
	
future work could include a wider sample, i.e. students from different CS related careers

in different higher education institutions. Also, there is the need of controlling the

independent variables such as the random selection of the population. Finally, instead of

studying contiguous semester students, as is the case in chapter 5, the universe should be

selected from the same group of students to avoid biased influences such as the difference

in methodology or content by instructors in different semesters. A better environment

would be a set of students of the same course, half using CC and half not using it.

Unfortunately, there are some factors that can impede this study to be carried on properly.

Students and instructors may not be willing to participate in the experiment, and some of

them may be more affected than others. Careful attention should be taken, especially in

negative effects over the group that would not use CC.

The two topics covered in this dissertation, CommDP and the use of CC for

improving computer science education are intended to be part of a series of publications.

The introduction of CommDP [84], presented in chapter 2, has been published in ICSEA

2016 [11], see Appendix A. This paper was awarded as one of the best papers of the

conference, consequently we got an invitation to submit an extended article on the IARIA

journals [38]. This extended work is being submitted before August 2017 for its

publication. On the other hand, the use of CC to improve computer science education has

evolved in two papers, the first one [24], covered in chapter 4, has been published in

ICSEA 2015 [37], see Appendix B. Its follow up, the results of one-and-a-half year

observational study has been submitted to a more appropriate conference, CSEE&T

2017, the 30th Conference on Software Engineering Education and Training.

	
	
	

138
	

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch, Design Patterns:
Elements of Reusable Object-Oriented Software, 1 edition. Addison-Wesley
Professional, 1994.

[2] M. A. Sheta, M. Zaki, K. A. E. S. E. Hadad, and H. A. M, “Anti-spyware Security
Design Patterns,” in 2016 Sixth International Conference on Instrumentation
Measurement, Computer, Communication and Control (IMCCC), 2016, pp. 465–
470.

[3] O. Ur-Rehman and N. Zivic, “Secure Design Patterns for Security in Smart
Metering Systems,” in 2015 IEEE European Modelling Symposium (EMS), 2015,
pp. 278–283.

[4] M. Fowler, Patterns of Enterprise Application Architecture, 1 edition. Boston:
Addison-Wesley Professional, 2002.

[5] A. G. Leal and M. Boldt, “A big data analytics design patterns to select customers
for electricity theft inspection,” in 2016 IEEE PES Transmission Distribution
Conference and Exposition-Latin America (PES T D-LA), 2016, pp. 1–6.

[6] N. Ivaki, N. Laranjeiro, and F. Araujo, “Towards designing reliable messaging
patterns,” in 2016 IEEE 15th International Symposium on Network Computing and
Applications (NCA), 2016, pp. 204–207.

[7] V. Malcher, “Design Patterns in Management Systems,” in 2016 International
Conference on Intelligent Networking and Collaborative Systems (INCoS), 2016,
pp. 36–39.

[8] T. Wetchakorn and N. Prompoon, “Method for mobile user interface design
patterns creation for iOS platform,” in 2015 12th International Joint Conference
on Computer Science and Software Engineering (JCSSE), 2015, pp. 150–155.

[9] “RightScale 2016 State of the Cloud Report.” [Online]. Available:
https://www.rightscale.com/lp/state-of-the-cloud. [Accessed: 07-Dec-2016].

[10] J. Lascano and S. Clyde, “A Pattern Language for Application-level
Communication Protocols,” presented at the ICSEA 2016, The Eleventh
International Conference on Software Engineering Advances, 2016, pp. 22–30.

[11] “ICSEA 2016.” [Online]. Available:
https://www.iaria.org/conferences2016/ICSEA16.html. [Accessed: 09-Dec-2016].

[12] “Distributed computing,” Wikipedia. 11-Jan-2017.

	
	
	

139
	
[13] L. Rising, Design Patterns in Communications Software, 1 edition. Cambridge ;

New York: Cambridge University Press, 2001.

[14] L. Li and W. Chou, “Design Patterns for RESTful Communication Web Services,”
in 2010 IEEE International Conference on Web Services (ICWS), 2010, pp. 512–
519.

[15] R. Daigneau, Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services, 1 edition. Upper Saddle River, NJ:
Addison-Wesley Professional, 2011.

[16] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications. Springer Science & Business Media, 2014.

[17] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Software
Architecture Volume 4: A Pattern Language for Distributed Computing, Volume 4
edition. Wiley, 2007.

[18] “An Architectural Overview of the ACE Framework A Case study of Successful
Cross-platform Systems Software Reuse.” [Online]. Available:
https://www.researchgate.net/publication/250496073_An_Architectural_Overview
_of_the_ACE_Framework_A_Casestudy_of_Successful_Cross-
platform_Systems_Software_Reuse. [Accessed: 10-Mar-2016].

[19] D. C. Schmidt, “ACE+TAO Overview,” Douglas C. Schmidt. [Online]. Available:
http://www.dre.vanderbilt.edu/~schmidt/TAO-overview.html. [Accessed: 10-Mar-
2016].

[20] “Patterns for Distributed Real-time and Embedded Systems.” [Online]. Available:
https://www.dre.vanderbilt.edu/~schmidt/patterns-ace.html. [Accessed: 04-Mar-
2016].

[21] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-
Oriented Software Architecture Volume 1: A System of Patterns, Volume 1 edition.
Chichester ; New York: Wiley, 1996.

[22] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software
Architecture Volume 2: Patterns for Concurrent and Networked Objects, Volume
2 edition. Chichester England ; New York: Wiley, 2000.

[23] M. Kircher and P. Jain, Pattern-Oriented Software Architecture Volume 3:
Patterns for Resource Management, Volume 3 edition. Chichester England; New
York: Wiley, 2004.

	
	
	

140
	
[24] J. E. Lascano and S. W. Clyde, “Using Cloud Services To Improve Software

Engineering Education for Distributed Application Development,” presented at the
ICSEA 2015, The Tenth International Conference on Software Engineering
Advances, 2015, pp. 438–444.

[25] “Program Educational Objectives.” [Online]. Available:
https://cs.usu.edu/assessment/objectives. [Accessed: 21-Dec-2016].

[26] “The 30th IEEE Conference on Software Engineering, Education, and Training.”
[Online]. Available: http://www.cseet2017.com/index.html. [Accessed: 24-May-
2017].

[27] C. Gonzalez, C. Border, and T. Oh, “Teaching in Amazon EC2,” in Proceedings of
the 14th Annual ACM SIGITE Conference on Information Technology Education,
New York, NY, USA, 2013, pp. 149–150.

[28] W. Zhu, “Hands-On Network Programming Projects in the Cloud,” in Proceedings
of the 46th ACM Technical Symposium on Computer Science Education, New
York, NY, USA, 2015, pp. 326–331.

[29] Y. Khmelevsky and V. Voytenko, “Cloud Computing Infrastructure Prototype for
University Education and Research,” in Proceedings of the 15th Western Canadian
Conference on Computing Education, New York, NY, USA, 2010, p. 8:1–8:5.

[30] A. Rabkin, C. Reiss, R. Katz, and D. Patterson, “Using clouds for MapReduce
measurement assignments,” ACM Trans. Comput. Educ., vol. 13, no. 1, pp. 1–18,
Jan. 2013.

[31] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson, “Seattle: A
Platform for Educational Cloud Computing,” in Proceedings of the 40th ACM
Technical Symposium on Computer Science Education, New York, NY, USA,
2009, pp. 111–115.

[32] W. Du and R. Wang, “SEED: A Suite of Instructional Laboratories for Computer
Security Education,” J Educ Resour Comput, vol. 8, no. 1, p. 3:1–3:24, Mar. 2008.

[33] H. E. Schaffer, S. F. Averitt, M. I. Hoit, A. Peeler, E. D. Sills, and M. A. Vouk,
“NCSU’s Virtual Computing Lab: A Cloud Computing Solution,” Computer, vol.
42, no. 7, pp. 94–97, Jul. 2009.

[34] W. Sun, V. Katta, K. Krishna, and R. Sekar, “V-NetLab: An Approach for
Realizing Logically Isolated Networks for Security Experiments,” in Proceedings
of the Conference on Cyber Security Experimentation and Test, Berkeley, CA,
USA, 2008, p. 5:1–5:6.

	
	
	

141
	
[35] L. Xu, D. Huang, and W.-T. Tsai, “V-lab: A Cloud-based Virtual Laboratory

Platform for Hands-on Networking Courses,” in Proceedings of the 17th ACM
Annual Conference on Innovation and Technology in Computer Science
Education, New York, NY, USA, 2012, pp. 256–261.

[36] ACM Computing Curricula Task Force, Ed., Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
ACM, Inc, 2013.

[37] “ICSEA 2015.” [Online]. Available:
https://www.iaria.org/conferences2015/ICSEA15.html. [Accessed: 09-Dec-2016].

[38] “IARIA Journals.” [Online]. Available: http://www.iariajournals.org/. [Accessed:
09-Dec-2016].

[39] “The 30th IEEE Conference on Software Engineering, Education, and Training.”
[Online]. Available: http://www.cseet2017.com/documents.html. [Accessed: 09-
Dec-2016].

[40] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems:
Concepts and Design, 5 edition. Boston: Pearson, 2011.

[41] “Distributed computing,” Wikipedia, the free encyclopedia. 27-Feb-2016.

[42] S. W. Clyde, “Object mitosis: a systematic approach to splitting objects across
subsystems,” in , Proceedings of the Third International Workshop on Object
Orientation in Operating Systems, 1993, 1993, pp. 182–185.

[43] “Communications protocol,” Wikipedia, the free encyclopedia. 10-Apr-2016.

[44] “protocol | computer science,” Encyclopedia Britannica. [Online]. Available:
http://www.britannica.com/technology/protocol-computer-science. [Accessed: 20-
Apr-2016].

[45] J. O. Coplien and N. B. Harrison, Organizational Patterns of Agile Software
Development. Upper Saddle River, NJ: Prentice Hall, 2004.

[46] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S.
Angel, A Pattern Language: Towns, Buildings, Construction. New York: Oxford
University Press, 1977.

[47] C. White, Data Communications and Computer Networks: A Business User’s
Approach, 7 edition. Boston, MA: Cengage Learning, 2012.

	
	
	

142
	
[48] “ISO/IEC 10026-1:1992 - Information technology -- Open Systems

Interconnection -- Distributed Transaction Processing -- Part 1: OSI TP Model.”
[Online]. Available:
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnu
mber=17979. [Accessed: 20-Apr-2016].

[49] K. Beck and W. Cunningham, “Using Pattern Languages for Object-Oriented
Programs,” in OOPSLA-87, Orlando, Florida, 1987.

[50] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software
Architecture Volume 2: Patterns for Concurrent and Networked Objects, Volume
2 edition. Chichester England ; New York: Wiley, 2000.

[51] J. Tidwell, Designing Interfaces, 2 edition. Sebastopol, CA: O’Reilly Media, 2011.

[52] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for Concurrent Event
Demultiplexing and Dispatching,” in Pattern languages of program design, New
York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1995, pp. 529–545.

[53] I. Pyarali, T. Harrison, and D. Schmidt, “Asynchronous Completion Token: an
Object Behavioral Pattern for Efficient Asynchronous Event Handling,” in 3rd
Annual Conference on The Pattern Languages of Programs, Monticello, Illinois,
1997, pp. 1–7.

[54] I. Pyarali, T. Harrison, D. C. Schmidt, and T. D. Jordan, Proactor - An Object
Behavioral Pattern for Demultiplexing and Dispatching Handlers for
Asynchronous Events. 1997.

[55] M. K. Douglas C. Schmidt, “Leader/Followers - A Design Pattern for Efficient
Multi-threaded Event Demultiplexing and Dispatching,” in 7th Pattern Languages
of Programs Conference, Allerton Park, Illinois, 2000.

[56] D. C. Schmidt and T. Harrison, “Double-checked locking,” in Pattern languages
of program design, vol. 3, 1997, pp. 363–375.

[57] L. Rising, Design Patterns in Communications Software, 1 edition. Cambridge ;
New York: Cambridge University Press, 2001.

[58] P. Jain and D. C. Schmidt, “Service Configurator: A Pattern for Dynamic
Configuration of Services,” in Proceedings of the 3rd Conference on USENIX
Conference on Object-Oriented Technologies (COOTS) - Volume 3, Berkeley, CA,
USA, 1997, pp. 16–16.

[59] R. C. Martin, D. Riehle, and F. Buschmann, Pattern Languages of Program
Design 3, 1 edition. Reading, Mass: Addison-Wesley Professional, 1997.

	
	
	

143
	
[60] D. C. Schmidt, “Using design patterns to develop reusable object-oriented

communication software,” Commun. ACM, vol. 38, no. 10, pp. 65–74, 1995.

[61] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch, Design Patterns:
Elements of Reusable Object-Oriented Software, 1 edition. Addison-Wesley
Professional, 1994.

[62] E. Yourdon and L. L. Constantine, Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design, 1st ed. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1979.

[63] “Modularity,” Wikipedia, the free encyclopedia. 11-Apr-2016.

[64] M. Burrows, “The Chubby Lock Service for Loosely-coupled Distributed
Systems,” in Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, Berkeley, CA, USA, 2006, pp. 335–350.

[65] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,”
Commun ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[66] M. Raynal, “About Logical Clocks for Distributed Systems,” SIGOPS Oper Syst
Rev, vol. 26, no. 1, pp. 41–48, Jan. 1992.

[67] F. Mattern, “Virtual time and global states of distributed systems,” in Parallel and
Distributed Algorithms, 1989, pp. 215–226.

[68] C. Fidge, “Logical Time in Distributed Computing Systems,” Computer, vol. 24,
no. 8, pp. 28–33, Aug. 1991.

[69] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems:
Concepts and Design, 5th. edition. Boston: Pearson, 2011.

[70] H. T. Kung and J. T. Robinson, “On Optimistic Methods for Concurrency
Control,” ACM Trans Database Syst, vol. 6, no. 2, pp. 213–226, Jun. 1981.

[71] M. Voelter, “Patterns for Handling Cross-cutting Concerns in Model-Driven
Software Development,” in ResearchGate, 2005.

[72] A. S. Tanenbaum and D. Wetherall, Computer networks, 5th ed. Boston: Pearson
Prentice Hall, 2011.

[73] R. Daigneau, Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services, 1 edition. Upper Saddle River, NJ:
Addison-Wesley Professional, 2011.

	
	
	

144
	
[74] S. N. Bhatti, “Why Quality?: ISO 9126 Software Quality Metrics (Functionality)

Support by UML Suite,” SIGSOFT Softw Eng Notes, vol. 30, no. 2, pp. 1–5, Mar.
2005.

[75] R. Rambo, P. B. Ph.D, and E. Branyan, “Establishment and Validation of Software
Metric Factors,” J. Parametr., vol. 5, no. 3, pp. 21–32, Sep. 1985.

[76] G. Bochmann and C. Sunshine, “Formal Methods in Communication Protocol
Design,” IEEE Trans. Commun., vol. 28, no. 4, pp. 624–631, Apr. 1980.

[77] R. Sharp, Principles of Protocol Design, 1st ed. Springer Publishing Company,
Incorporated, 2008.

[78] C. Dendorfer and R. Weber, Development and Implementation of a
Communication Protocol: An Exercise in FOCUS. Mathematisches Institut and
Institut für Informatik der technischen Universität München, 1992.

[79] J. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M.
Sighireanu, “CADP a protocol validation and verification toolbox,” in Computer
Aided Verification, 1996, pp. 437–440.

[80] M. Fowler, Patterns of Enterprise Application Architecture, 1 edition. Boston:
Addison-Wesley Professional, 2002.

[81] K. Lochmann and A. Goeb, “A unifying model for software quality,” in
Proceedings of the 8th international workshop on Software quality, 2011, pp. 3–
10.

[82] “ISO/IEC 25010:2011 - Systems and software engineering -- Systems and
software Quality Requirements and Evaluation (SQuaRE) -- System and software
quality models.” [Online]. Available: https://www.iso.org/standard/35733.html.
[Accessed: 01-May-2017].

[83] “ISO 25010.” [Online]. Available: http://iso25000.com/index.php/en/iso-25000-
standards/iso-25010?limit=3&limitstart=0. [Accessed: 28-Apr-2017].

[84] J. E. Lascano and S. Clyde, “A Pattern Language for Application-level
Communication Protocols,” presented at the ICSEA 2016, The Eleventh
International Conference on Software Engineering Advances, 2016, pp. 22–30.

[85] Y. Y. Nasrallah, I. Al-Anbagi, and H. T. Mouftah, “A quality of service model for
IEEE 802.11p communication protocol in a smart city,” in 2014 Global
Information Infrastructure and Networking Symposium (GIIS), 2014, pp. 1–3.

	
	
	

145
	
[86] W. Zhang, K. M. Hansen, J. Fernandes, J. Schuette, and F. M. Lardies, “QoS-

Aware Self-adaptation of Communication Protocols in a Pervasive Service
Middleware,” in Green Computing and Communications (GreenCom), 2010
IEEE/ACM Int’l Conference on Int’l Conference on Cyber, Physical and Social
Computing (CPSCom), 2010, pp. 17–26.

[87] A. Coccoli, A. Bondavalli, and F. D. Giandomenico, “Analysis and estimation of
the quality of service of group communication protocols,” in Fourth IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing.
ISORC 2001, 2001, pp. 209–216.

[88] J. E. Lascano and S. Clyde, “Communication-protocol Design Patterns (CommDP)
- COMMDP.” [Online]. Available:
http://commdp.serv.usu.edu/wiki/index.php/Communication-
protocol_Design_Patterns_(CommDP). [Accessed: 13-Jan-2017].

[89] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions, 1 edition. Boston: Addison-Wesley Professional,
2003.

[90] “Transport Message Exchange Pattern.” [Online]. Available:
https://www.w3.org/2000/xp/Group/1/10/11/2001-10-11-SRR-Transport_MEP.
[Accessed: 25-May-2017].

[91] “Echo (communications protocol),” Wikipedia. 19-Jun-2016.

[92] J. Postel, “Echo Protocol.” [Online]. Available: https://tools.ietf.org/html/rfc862.
[Accessed: 21-Feb-2017].

[93] “Simple Network Management Protocol,” Wikipedia. 18-Jan-2017.

[94] R. T. Fielding, T. Berners-Lee, and H. Frystyk, “Hypertext Transfer Protocol --
HTTP/1.0.” [Online]. Available: https://tools.ietf.org/search/rfc1945. [Accessed:
21-Feb-2017].

[95] K. A. Robbins and S. Robbins, UNIX Systems Programming: Communication,
Concurrency, and Threads. Prentice Hall Professional, 2003.

[96] “Semantics.” [Online]. Available:
http://www.cs.unc.edu/~dewan/242/s04/notes/ipc/node30.html. [Accessed: 07-
Mar-2017].

[97] “11 UDP Transport — An Introduction to Computer Networks, edition 1.9.0.”
[Online]. Available: http://intronetworks.cs.luc.edu/current/html/udp.html.
[Accessed: 21-Feb-2017].

	
	
	

146
	
[98] N. Halder, A. T. Islam, and J. B. Song, “Modeling and Formal Verification of

Communication Protocols for Remote Procedure Call,” IJCSNS, vol. 7, no. 7, p.
63, 2007.

[99] K. H. Talukder and K. Harada, “Modeling and verification of some
communication protocols,” in 2006 8th International Conference Advanced
Communication Technology, 2006, vol. 3, p. 6 pp.-2198.

[100] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol
(CoAP).” [Online]. Available: https://tools.ietf.org/html/rfc7252. [Accessed: 17-
Feb-2017].

[101] D. Gourley, B. Totty, M. Sayer, A. Aggarwal, and S. Reddy, HTTP: The Definitive
Guide: The Definitive Guide. O’Reilly Media, Inc., 2002.

[102] “Long-running transaction,” Wikipedia. 09-May-2016.

[103] “REST and long-running jobs.” [Online]. Available:
http://farazdagi.com/blog/2014/rest-long-running-jobs/. [Accessed: 09-Mar-2017].

[104] B. Kratz, “Protocols for long running business transactions,” Tech. Rep. 17 Infolab
Tech. Rep. Ser., 2004.

[105] N. Schuster, Coordinating Service Compositions : Model and Infrastructure for
Collaborative Creation of Electronic Documents. KIT Scientific Publishing, 2013.

[106] “Web Services Coordination (WS-Coordination) Version 1.1 OASIS Standard
incorporating Approved Errata.” [Online]. Available: https://docs.oasis-
open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os/wstx-wscoor-1.1-spec-errata-
os.html. [Accessed: 09-Mar-2017].

[107] K.-P. Mehdi, Consumer Behavior, Organizational Development, and Electronic
Commerce: Emerging Issues for Advancing Modern Socioeconomies: Emerging
Issues for Advancing Modern Socioeconomies. IGI Global, 2008.

[108] J. Postel and J. Reynolds, “File Transfer Protocol.” [Online]. Available:
https://tools.ietf.org/html/rfc959. [Accessed: 21-Feb-2017].

[109] “Wget,” Wikipedia. 05-Jun-2017.

[110] “Remote backup service,” Wikipedia. 23-Dec-2016.

[111] “WebRTC Home | WebRTC.” [Online]. Available: https://webrtc.org/. [Accessed:
09-Mar-2017].

	
	
	

147
	
[112] S. Yuzhuo and H. Kun, “Design and realization of chatting tool based on web,” in

2013 3rd International Conference on Consumer Electronics, Communications
and Networks, 2013, pp. 225–228.

[113] “File Transfer Protocol,” Wikipedia. 17-Feb-2017.

[114] Nandokakimoto, “Design Patterns for Distributed Systems,” Kakimoto Online, 15-
May-2008. .

[115] E. B. Fernandez, “The Authenticator Pattern,” 1999.

[116] “Service Design Patterns - Client-Service Interactions - Media Type Negotiation.”
[Online]. Available:
http://www.servicedesignpatterns.com/ClientServiceInteractions/MediaTypeNegot
iation. [Accessed: 11-Mar-2017].

[117] “NGINX Load Balancing - HTTP and TCP Load Balancer,” NGINX. [Online].
Available: https://www.nginx.com/resources/admin-guide/load-balancer/.
[Accessed: 20-Feb-2017].

[118] “How nginx processes a request.” [Online]. Available:
http://nginx.org/en/docs/http/request_processing.html. [Accessed: 20-Feb-2017].

[119] R. Orfali, D. Harkey, and J. Edwards, Instant CORBA. New York: Wiley, 1997.

[120] “Service Design Patterns - Request and Response Management - Service
Controller.” [Online]. Available:
http://www.servicedesignpatterns.com/RequestAndResponseManagement/Service
Controller. [Accessed: 11-Mar-2017].

[121] S. Paul, “Reliable Multicast Protocol (RMP),” in Multicasting on the Internet and
its Applications, Springer US, 1998, pp. 229–243.

[122] “Chapter 2. Architecture.” [Online]. Available:
https://docs.jboss.org/hibernate/search/4.1/reference/en-US/html/search-
architecture.html. [Accessed: 20-Feb-2017].

[123] “Reliable Multicasting with the JGroups Toolkit.” [Online]. Available:
http://www.jgroups.org/manual/html_single/. [Accessed: 20-Feb-2017].

[124] C. V. Ramamoorthy, “Computer Science and Engineering Education,” IEEE
Trans. Comput., vol. C-25, no. 12, pp. 1200–1206, Dec. 1976.

	
	
	

148
	
[125] “Wiley: Parallel and Distributed Computing: A Survey of Models, Paradigms and

Approaches - Claudia Leopold.” [Online]. Available:
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471358312.html.
[Accessed: 24-May-2017].

[126] D. Howard, Node.js for PHP Developers. .

[127] “Node.js.” [Online]. Available: https://nodejs.org/en/. [Accessed: 24-May-2017].

[128] “AWS Programs for Research and Education,” Amazon Web Services, Inc.
[Online]. Available: //aws.amazon.com/grants/. [Accessed: 24-May-2017].

[129] “Cloud Computing and Virtualization | Masters of Science in Software
Engineering | SJSU.” [Online]. Available: https://msse.sjsu.edu/cloud-computing-
and-virtualization. [Accessed: 23-May-2017].

[130] “Advanced Computer Science (Cloud Computing and Big Data) - MSc -
Canterbury,” The University of Kent. [Online]. Available:
/courses/postgraduate/1211/advanced-computer-science-cloud-computing-and-big-
data. [Accessed: 23-May-2017].

[131] “Cloud Computing MSc - Postgraduate - Newcastle University.” [Online].
Available: http://www.ncl.ac.uk/postgraduate/courses/degrees/cloud-computing-
msc/#profile. [Accessed: 23-May-2017].

[132] “MSc in Cloud Computing | NCI.” [Online]. Available:
https://www.ncirl.ie/Courses/Course-Details/course/MSc-in-Cloud-Computing-
MSCCLOUD5. [Accessed: 23-May-2017].

[133] “MSc Cloud Computing :: University of Essex.” [Online]. Available:
https://www.essex.ac.uk/courses/details.aspx?mastercourse=PG00484&subgroup=
1. [Accessed: 23-May-2017].

[134] N. Leavitt, “Is Cloud Computing Really Ready for Prime Time?,” Computer, vol.
42, no. 1, pp. 15–20, Jan. 2009.

[135] “Top 7 most common uses of cloud computing,” Cloud computing news, 06-Feb-
2014. [Online]. Available: https://www.ibm.com/blogs/cloud-
computing/2014/02/top-7-most-common-uses-of-cloud-computing/. [Accessed:
17-May-2017].

[136] L.-J. Zhang, “EIC editorial: Introduction to the body of knowledge areas of
services computing,” IEEE Trans. Serv. Comput., vol. 1, no. 2, pp. 62–74, 2008.

	
	
	

149
	
[137] H. P. Breivold and I. Crnkovic, “Cloud Computing education strategies,” in 2014

IEEE 27th Conference on Software Engineering Education and Training (CSEE
T), 2014, pp. 29–38.

[138] X. Wang, G. C. Hembroff, A. B. Cerier, and B. W. Perrault, “Introducing Cloud
Computing with a Senior Design Project in Undergraduate Education of Computer
System and Network Administration,” in Proceedings of the 2011 Conference on
Information Technology Education, New York, NY, USA, 2011, pp. 177–182.

[139] M. I. Tariq, S. Tayyaba, H. Rasheed, and M. W. Ashraf, “Factors influencing the
Cloud Computing adoption in Higher Education Institutions of Punjab, Pakistan,”
in 2017 International Conference on Communication, Computing and Digital
Systems (C-CODE), 2017, pp. 179–184.

[140] S. A. Mokhtar, A. Al-Sharafi, S. H. S. Ali, and A. Z. Al-Othmani, “Identifying the
determinants of cloud computing adoption in higher education institutions,” in
2016 International Conference on Information and Communication Technology
(ICICTM), 2016, pp. 115–119.

[141] S. Ashtari and A. Eydgahi, “Student Perceptions of Cloud Computing
Effectiveness in Higher Education,” in 2015 IEEE 18th International Conference
on Computational Science and Engineering, 2015, pp. 184–191.

[142] Á. Mitchell and L. Cunningham, “Impact of cloud computing in Ireland’s institutes
of higher education,” in eChallenges e-2014 Conference Proceedings, 2014, pp. 1–
11.

[143] I. D. M. Ortega and J. A. B. Ricaurte, “Cloud Computing, trend importance and
relevance for higher education,” in 2014 9th Computing Colombian Conference
(9CCC), 2014, pp. 90–95.

[144] “Criteria for Accrediting Engineering Programs, 2016 – 2017 | ABET.” .

[145] “Cloud computing,” Wikipedia. 16-May-2017.

[146] “10 Hot Technology Trends For 2016,” Network Computing, 15-Jan-2016.
[Online]. Available: http://www.networkcomputing.com/storage/10-hot-
technology-trends-2016/520323524. [Accessed: 16-May-2017].

[147] “Home - IEEE Cloud Computing.” [Online]. Available:
http://cloudcomputing.ieee.org/. [Accessed: 16-May-2017].

[148] M. C. Caraman, S. A. Moraru, S. Dan, and C. Grama, “Continuous Disaster
Tolerance in the IaaS clouds,” in 2012 13th International Conference on
Optimization of Electrical and Electronic Equipment (OPTIM), 2012, pp. 1226–
1232.

	
	
	

150
	
[149] “Computing platform,” Wikipedia. 12-May-2017.

[150] “Cloud Solutions - Amazon Web Services (AWS),” Amazon Web Services, Inc.
[Online]. Available: //aws.amazon.com/solutions/. [Accessed: 16-May-2017].

[151] “Amazon Education.” [Online]. Available:
https://www.amazon.com/gp/feature.html?docId=1000412651. [Accessed: 08-Jun-
2017].

[152] “Education Grants - Free Credits for University Computer Science Classes,”
Google Cloud Platform. [Online]. Available: https://cloud.google.com/edu/.
[Accessed: 16-May-2017].

[153] “GitHub Student Developer Pack,” GitHub Education. [Online]. Available:
https://education.github.com/pack. [Accessed: 16-May-2017].

[154] jyoshii270000RYPJ, “IBM Cloud Education Wiki : IBM Cloud Education
Resource Guide,” 20-Oct-2009. [Online]. Available:
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W
ebSphere%20Education%20Wiki/page/IBM%20Cloud%20Education%20Resourc
e%20Guide. [Accessed: 16-May-2017].

[155] “Microsoft Azure in Education.” [Online]. Available:
https://azure.microsoft.com/en-us/community/education/. [Accessed: 16-May-
2017].

[156] “Variables in Your Science Fair Project,” Science Buddies. [Online]. Available:
http://www.sciencebuddies.org/science-fair-projects/project_variables.shtml.
[Accessed: 08-May-2017].

[157] “Dependent and independent variables,” Wikipedia. 27-Apr-2017.

[158] P. R. Rosenbaum, Design of Observational Studies. New York, NY: Springer New
York, 2010.

[159] “Observational study,” Wikipedia. 02-Feb-2017.

[160] “Observational Studies.” [Online]. Available:
http://www.stat.wmich.edu/s160/book/node69.html. [Accessed: 04-May-2017].

[161] F. Shull, J. Carver, and G. H. Travassos, “An Empirical Methodology for
Introducing Software Processes,” in Proceedings of the 8th European Software
Engineering Conference Held Jointly with 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, New York, NY, USA, 2001,
pp. 288–296.

	
	
	

151
	
[162] “Observational Studies and Secondary Data Analyses To Assess Outcomes in

Complementary and Integrative Health Care,” NCCIH, 22-Jun-2012. [Online].
Available: https://nccih.nih.gov/research/blog/observational-secondary. [Accessed:
04-May-2017].

[163] A. Abou-Zeid and M. A. Taha, “Accreditation process for engineering programs in
Saudi Arabia: Challenges and lessons learned,” in Global Engineering Education
Conference (EDUCON), 2014 IEEE, 2014, pp. 1118–1125.

[164] V. R. B.-G. Caldiera and H. D. Rombach, “Goal question metric paradigm,”
Encycl. Softw. Eng., vol. 1, pp. 528–532, 1994.

[165] “Voyant Tools.” [Online]. Available: https://voyant-tools.org/. [Accessed: 23-
May-2017].

[166] “Analysis of variance,” Wikipedia. 07-May-2017.

[167] “Interpret the key results for One-Way ANOVA.” [Online]. Available:
http://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-
statistics/anova/how-to/one-way-anova/interpret-the-results/key-results/.
[Accessed: 19-May-2017].

[168] “What a p-Value Tells You about Statistical Data,” dummies. .

[169] “Sentiment analysis,” Wikipedia. 10-May-2017.

	

	
	
	

152
	

APPENDICES

	

	
	
	

153
	
Appendix A: Pattern Language for Application-level Communication Protocols [10].

	
	
	

154
	
Appendix B: Using Cloud Services To Improve Software Engineering Education for

Distributed Application Development [24]

	
	
	

155
	
Appendix C: IRB Approval.

	
	
	

156
	

	
	
	

157
	
Appendix D: Survey for CS6200/CS7930 to Measure the Perception of

Increased/Decreased Knowledge and Skills on a Course Using CC for the Assignments

Q1 For each CONCEPT listed below, rate your knowledge level on a scale of 1 to 5 as it was
BEFORE you took the CS6200/7930 -- 1=Low and 5=High.

• Inter-process communications patterns, like Request-Reply, Request-Reply
Acknowledge, and Reliable Multicasts

• Partial ordering of events in a distributed system, as represented by mechanism like
Vector Timestamps

• Message serialization/deserialization
• Intra-process concurrency
• Inter-process concurrency
• Computation resources in a cloud-computing environment, such as AWS
• Namespaces, name services, and name resolution
• Deployment, execution and testing techniques in a distributed environment
• Deployment, execution and testing techniques in the cloud.
• Distributed election algorithms
• Resource managers
• Fault tolerance in a distributed environment.
• Tools for provisioning collection of resources needed for a distributed system.
• Cloud Computing resources
• Infrastructure as a Service (IaaS)
• Platform as a Service (PaaS)

Q2 For each SKILL listed below, rate your knowledge level on a scale of 1 to 5 as it was
BEFORE you took the CS6200/7930 -- 1=Low and 5=High.

• AWS Users and key pairs (Identity and Access management -IAM)
• AWS Virtual PC Instances (EC2)
• AWS Storage (S3, EBS)
• AWS-CLI (Command Line Interface)
• AWS SDK (Software Development Kit)
• Managing instances in AWS: creating/launching, starting, stopping, terminating
• AWS Billing
• Using Node.js to Develop Distributed Systems
• Using Node.js to deploy and run Distributed Systems in the cloud
• Designing and developing TCP/UDP/Web Services-based systems with Node.js
• Writing scripts to Deploy/execute applications in distributed environments
• Designing and Developing Resource Managers
• Designing and Developing Distributed Election Algorithms

Q3 For each CONCEPT listed below, rate your knowledge level on a scale of 1 to 5 AFTER you
took the CS6200/7930 -- 1=Low and 5=High.

	
	
	

158
	

• Inter-process communications patterns, like Request-Reply, Request-Reply
Acknowledge, and Reliable Multicasts

• Partial ordering of events in a distributed system, as represented by mechanisms like
Vector Timestamps

• Message serialization/deserialization.
• Intra-process Concurrency
• Inter-process Concurrency
• Computation resources in a cloud-computing environment, such as AWS
• Namespaces, name services and name resolution
• Deployment, execution and testing techniques in a distributed environment
• Deployment, execution and testing techniques in the cloud.
• Distributed election algorithms
• Resource managers
• Fault tolerance in a distributed environment.
• Tools for provisioning collection of resources needed for a distributed system.
• Cloud Computing resources
• Infrastructure as a Service (IaaS)
• Platform as a Service (PaaS)

Q4 For each SKILL listed below, rate your knowledge level on a scale of 1 to 5 AFTER you took
the CS6200/7930 -- 1=Low and 5=High.

• AWS Users and key pairs (Identity and Access management -IAM)
• AWS Virtual PC Instances (EC2)
• AWS Storage (S3, EBS)
• AWS-CLI (Command Line Interface)
• AWS SDK (Software Development Kit)
• Managing instances in AWS: creating/launching, starting, stopping, terminating
• AWS Billing
• Using Node.js to Develop Distributed Systems
• Using Node.js to deploy and run Distributed Systems in the cloud
• Designing and developing TCP/UDP/Web Services-based systems with Node.js
• Writing scripts to Deploy/execute applications in distributed environments
• Designing and Developing Resource Managers
• Designing and Developing Distributed Election Algorithms

Q5 For each of the following activity, indicate if you are in favor of using AWS (or other some
cloud environment) for that activity.
q Testing the behavior of applications in a distributed environment (e.g., HW2)
q Understanding of distributed systems concepts such as serialization, concurrency, shared

resources, etc. (e.g., HW4)
q Programming in other courses. (If yes, what courses would you advise)

Q6 What general lessons learned in Software Engineering did you learn by using AWS?
Q7 What lessons in Distributed System (other than those address in above) did you learn by using

	
	
	

159
	
AWS?
Q8 What lessons in Testing and Debugging (other than those address in above) did you learn by
using AWS?
Q9 What lessons in Deployment (other than those address in above) did you learn by using
AWS?
Q10 What lessons in Fault Tolerance (other than those address in above) did you learn by using
WS?

	
	
	

160
	

Appendix E: Survey to Measure Perception of Increased/Decreased Knowledge/Skills for

Fall 2015 Semester, Same is Applied on Spring 2016 and Fall 2016 Semesters.

USU CS students skills FALL-2015
Q. a. SCROLL DOWN TO START THE SURVEY and GET ONE OF THE FOUR $25.00 GITF
CARDS
Introduction/ Purpose. You have been asked to take part of this survey because you were/are
enrolled in one or more CS courses that can be related to the use of Cloud Computing Resources
to improve software engineering education. There will be approximately 129 total participants in
this research.
Procedures. If you agree to be in this research activity, you will be asked to fill out a survey to
measure your perception of skills and knowledge acquired from computer science classes. This
survey will be distributed at the beginning of Spring 2016, Fall 2016, and Spring 2017 semesters.
Please participate at least once. Every survey will take approximately between 10 to 15 minutes.
Risks Participation in this research activity may involve some risks or discomforts. These include
a minimal risk of loss of confidentiality, we will take steps to reduce the risk. The information
obtained during this research activity is intended to contribute to generalizable knowledge and as
such it is intended for publication. Whether you decide to participate or not will not affect your
standing with the CS program.
Benefits. Your participation in this research is not expected to lead to any direct benefit to you.
Researchers hope that the result from this survey will help determine whether integrating the use
of cloud computing in course assignments can help the CS department meet Program Educational
Objectives as outlined by the department’s accrediting body. You may derive personal
satisfaction from supporting a student in acquiring important professional skills. Researchers will
learn about the analysis of skills and knowledge to measure the improvement of Software
Engineering Education methods that use Cloud Computing Resources.
Explanation & offer to answer questions. Jorge Edison Lascano has explained this research
activity to you and answered your questions. If you have other questions or research-related
problems, you may reach the student researcher, Jorge Edison Lascano at (435) 213-5529 or
edison_lascano@yahoo.com and the Principal Investigator Dr. Stephen W. Clyde at (435) 764-
1596 or stephen.clyde@usu.edu
Payment/Compensation. There is no compensation for your participation in this research activity.
There will be a drawing of four $25.00-gift-card among the survey respondents.
Voluntary nature of participation and right to withdraw without consequence. Participation in this
research activity is entirely voluntary. You may refuse to participate or withdraw at any time
without consequence. You may be withdrawn from this study without your consent by the
investigator if the information may be considered wrong, for example the course IDs provided by
the students.
Confidentiality Records from this research activity will be kept confidential, consistent with
federal and state regulations that apply to research. Only Jorge Edison Lascano and Stephen
Clyde will have access to the data which will be kept in a locked file cabinet or on an encrypted
USU computer account to maintain confidentiality. To protect your privacy, personal, identifiable
information, such as your A number, will be removed from study documents and replaced with a
study identifier. Identifying information will be stored separately from data and will be kept for
the duration of the study, approximately March 2016 to June 2017. All information will be

	
	
	

161
	
destroyed by June 2017.
IRB Approval. Statement The Institutional Review Board for the protection of human participants
at Utah State University has approved this research study. If you have any questions or concerns
about your rights or a research-related injury and would like to contact someone other than the
research team, you may contact the IRB Director at (435) 797-0567 or irb@usu.edu to obtain
information or to offer input.
Student Statement. “I certify that the research activity has been explained to the individual, by
me, and that the individual understands the nature and purpose, the possible risks and benefits
associated with taking part in this research study. Any questions that have been raised have been
answered.”
Researchers:
_______________________________ ______________________________
Stephen W. Clyde, PhD Jorge Edison Lascano
Principal Investigator Student Researcher
Telephone—435-764-1596 Telephone—435-213-5529
stephen.clyde@usu.edu edison_lascano@yahoo.com
Thank you for your participation.

Q. b. Click in the arrow below to start.
Q. c. Do you agree to participate in this survey
m Yes
m No
If No Is Selected, Then Skip To End of Survey

Q0 What is your Age?
m under 18 years old
m 18-65 years old
m 65 years or older
If under 18 years old Is Selected, Then Skip To End of Survey If 18-65 years old Is Not Selected,
Then Skip To End of Survey

Q1 Did you take any CS courses during Fall 2015 semester?
m Yes
m No
If No Is Selected, Then Skip To End of Survey

	
	
	

162
	

Q2 What is your A#?A01234567

Did you take any CS courses during Fall 2015 semester? Yes Is Selected

Q3 What CS course(s) did you take in Fall 2015. Enter the course numbers of those classes (up to
five).

CS
…

Q4 CS courses enrolled for Spring 2016. Enter the course numbers of those classes (up to five)
CS
…

	
	
	

163
	
Q5 For each SKILL listed below, assess your level of expertise on a scale of 1 to 5, as you
remember them being at the beginning and end of Fall 2015. 1=Low and 5=High, with n/a
meaning you have no experience with that skill.

 BEGINNING of the Fall 2015
semester

END of the Fall 2015
semester

 5 4 3 2 1 n/
a 5 4 3 2 1 n/

a
(a) Ability to analyze real world
software needs or requirements m m m m m m m m m m m m

(b) Ability to evaluate methods,
tools, techniques, libraries, or
components for re-use

m m m m m m m m m m m m

(c) Ability to reuse methods,
designs, or software from previous
assignments

m m m m m m m m m m m m

(d) Ability to design a software
system to meet complex real-world
requirements

m m m m m m m m m m m m

(e) Ability to implement a software
system according to a design m m m m m m m m m m m m

(f) Ability to implement software
that can run in a runtime
environment different from your
own computer or one in a school
lab

m m m m m m m m m m m m

(g) How to configure a runtime
environment into which you can
deploy a software system that you
built

m m m m m m m m m m m m

(h) Ability to deploy a system to a
runtime environment different from
your own computer or one in a
school lab

m m m m m m m m m m m m

(i) Ability to learn and use virtual
or cloud-based resources for
creating software solutions

m m m m m m m m m m m m

(j) Ability to thoroughly test
software systems using executable
test cases

m m m m m m m m m m m m

(k) Ability to think critically and
develop alternative solutions to a
problem

m m m m m m m m m m m m

	
	
	

164
	

(l) Ability to think creatively about
software solutions m m m m m m m m m m m m

(m) Ability to understand, evaluate
and use emerging technologies m m m m m m m m m m m m

(n) Ability to learn and use existing
software services available on the
Internet

m m m m m m m m m m m m

(o) Ability to follow industry-wide
"best practices" when use your
chosen development environment

m m m m m m m m m m m m

(p) Ability to follow "best
practices" in testing m m m m m m m m m m m m

(q) Ability to follow "best
practices" in deploying software to
runtime environments

m m m m m m m m m m m m

(r) Ability to apply green practices m m m m m m m m m m m m
(s) Ability to evaluate a variety of
operating systems and frameworks
as possible runtime environments

m m m m m m m m m m m m

(t) Ability to apply collaborative
methods, tools, techniques to
develop software

m m m m m m m m m m m m

(u) Ability to design a software
system that will provide for a good
user experience

m m m m m m m m m m m m

(v) The ability to create
maintainable software m m m m m m m m m m m m

(w) Ability to understand real-
world problems related to the
course material

m m m m m m m m m m m m

	
	
	

165
	

Q6 For each KNOWLEDGE listed below, assess your level of understanding on a scale of 1 to 5,
as you remember them being at the beginning and end of Fall 2015. 1=Low and 5=High, with n/a
meaning you have no understanding of that knowledge.

 BEGINNING of the
Fall 2015 semester

END of the Fall 2015
semester

 5 4 3 2 1 n/a 5 4 3 2 1 n/a
(a) Understanding of how to match the
needs of an application to an appropriate
develop environment and runtime platform

m m m m m m m m m m m m

(b) Understanding of at least one
development stack (a collection of
reusable components or libraries)

m m m m m m m m m m m m

(c) Understanding of development
environment setup m m m m m m m m m m m m

(d) Understanding of principles of
software testing m m m m m m m m m m m m

(e) Understanding of network
communications m m m m m m m m m m m m

(f) Understanding of the principle of
reliability as it applies to software systems m m m m m m m m m m m m

(g) Understanding of security principles
and practices for software systems m m m m m m m m m m m m

(h) Understanding of what affect runtime
performance and how to detect
inefficiencies and correct them

m m m m m m m m m m m m

 m m m m m m m m m m m m
(i) Understanding of the principle of
Coupling m m m m m m m m m m m m

(j) Understanding of the principle of
Cohesion m m m m m m m m m m m m

(k) Understanding of software reuse m m m m m m m m m m m m
(l) Understanding "abstraction" with
respect to the design and implementation
of software system.

m m m m m m m m m m m m

(m) Understanding "encapsulation" with
respect to the design and implementation
of software systems

m m m m m m m m m m m m

(n) Understanding "modularization" with
respect to the design and implementation
of a software system

m m m m m m m m m m m m

	
	
	

166
	

Q7 For each QUESTION listed below, express your level of agreement on a scale of 1 to 5
(5=Completely Agree and 1=Low agreement), as you remember it being at the end of the Fall
2015 semester

 1 2 3 4 5
(a) Assignments design comply with realistic execution environments
characteristics? m m m m m

(b) Student's possibility to apply course learnings in real-world examples m m m m m
(c) The design principles are important for CS courses? m m m m m

Q8. How do you think that your skills to design, implement and evaluate software systems can be
best improved?
Q9. What methods, tools, or techniques would you recommend to courses use for course
assignment that would help you adapt to emerging technologies?
Q10. We will use your A number for the drawing of four $25.00 Gift Cards. The A number you
have entered is A…. If this value is wrong, you can return to the first question to correct it. Do
you want to participate in the drawing?
m Yes A…
m No

	
	
	

167
	
Appendix F: Copyright Page from ICSEA Proceedings by IARIA

	
	
	

168
	

CURRICULUM VITAE

Jorge Edison Lascano

CAREER OBJECTIVE:

To obtain a position in the academia, especially in my country Ecuador, where

Higher Education requires high level researchers and instructors to contribute with the

future professionals learning in the Computer Science fields.

EDUCATION:

PhD in Computer Science, Utah State University, Logan, Utah. Grad GPA 4.0.

MS in Software Engineering, San Jose State University, San Jose, California. Certificate

in Higher Education Management, Universidad de Las Fuerzas Armadas -ESPE,

Sangolquí, Ecuador. BS in Informatics and Computer Systems Engineering, Escuela

Politécnica Nacional, Quito, Ecuador, Honors Curriculum, Graduate Cum Laude.

DEGREES AND HONORS:

Fulbright Docent Scholarship recipient, July 2007 - July 2009

PROFESSIONAL EXPERIENCE:

Technical Intern III, Yahoo INC!, 2008. Research Assistant, Utah State

University, 2012-2014. Technical Support, Smart Choice Communications, 2005-2007.

Developer, Ecuadorian Disabilities National Council, 2000-2001. Software Engineer,

Pichincha Sistemas, 1999. Lab Auxiliar, Escuela Politécnica Nacional, 1995-1998

TEACHING EXPERIENCE:

Associate Professor, Universidad de las Fuerzas Armadas ESPE, Ecuador, 2003-

2011

	
	
	

169
	

Faculty member, Escuela Politécnica Nacional, Ecuador, 1998-2007, 2009-2011

Faculty member, Universidad de las Américas, Ecuador, 2005-2007, 2009-2011

Faculty member, UNIANDES University, Ecuador, 2005-2006

Faculty member, Universidad Técnica de Ambato, Ecuador, 2001

Graduate Instructor, Utah State University, 2013

Graduate Teaching Assistant, Utah State University, 2014-2017

PUBLICATIONS:

1. J. E. Lascano and S. Clyde, “A Pattern Language for Application-level

Communication Protocols,” presented at the ICSEA 2016, The Eleventh International

Conference on Software Engineering Advances, 2016, pp. 22–30.

2. J. E. Lascano and S. W. Clyde, “Using Cloud Services To Improve Software

Engineering Education for Distributed Application Development,” presented at the

ICSEA 2015, The Tenth International Conference on Software Engineering

Advances, 2015, pp. 438–444.

3. Raza, J. E. Lascano, and S. Clyde, “Communication Aspects with CommJ: Initial

Experiment Show Promising Improvements in Reusability and Maintainability,”

presented at the ICSEA 2014, The Ninth International Conference on Software

Engineering Advances, 2014, pp. 48–54.

4. J. E. Lascano, “eXtreme Programming (XP) May Be Embedded Inside Scrum,” in

21st Annual Systems and Software Technology Conference (STSC) 2009:

Technology: Advancing Precision, 2009.

	A Pattern Language for Designing Application-Level Communication Protocols and the Improvement of Computer Science Education through Cloud Computing
	Recommended Citation

	Microsoft Word - CommDP&CC_Draft 16.docx

