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ABSTRACT 

A Pattern Language for Designing Application-Level Communication Protocols and the 

Improvement of Computer Science Education through Cloud Computing 

by 

Jorge Edison Lascano, Doctor of Philosophy 

Utah State University, 2017 

 

Major Professor: Stephen W. Clyde, Ph.D. 
Department: Computer Science 
 

Networking protocols have been developed throughout time following layered 

architectures such as the Open Systems Interconnection model and the Internet model. 

These protocols are grouped in the Internet protocol suite. Most developers do not deal 

with low-level protocols, instead they design application-level protocols on top of the 

low-level protocol.  Although each application-level protocol is different, there is 

commonality among them and developers can apply lessons learned from one protocol to 

the design of new ones. Design patterns can help by gathering and sharing proven and 

reusable solution to common, reoccurring design problems. The Application-level 

Communication Protocols Design Patterns language captures this knowledge about 

application-level protocol design, so developers can create better, more fitting protocols 

base on these common and well proven solutions. 

Another aspect of contemporary development technics is the need of distribution 

of software artifacts. Most of the development companies have started using Cloud 
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Computing services to overcome this need; either public or private clouds are widely 

used. Future developers need to manage this technology infrastructure, software, and 

platform as services. 

These two aspects, communication protocols design and cloud computing 

represent an opportunity to contribute to the software development community and to the 

software engineering education curriculum. The Application-level Communication 

Protocols Design Patterns language aims to help solve communication software design. 

The use of cloud computing in programming assignments targets on a positive influence 

on improving the Analysis to Reuse skills of students of computer science careers. 

(181 pages) 
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PUBLIC ABSTRACT 

A Pattern Language for Designing Application-Level Communication Protocols and the 

Improvement of Computer Science Education through Cloud Computing 

Jorge Edison Lascano 

Enterprises that develop software use current technology because of its proven 

advantages and to accelerate and improve the software development process. 

Nevertheless, it is difficult to be up-to-date for most professionals in the area. Although 

students from higher academic institutions need to learn these new tools, and their main 

purpose is to learn how learn; colleges still need to prepare students for modern enterprise 

requirements, so they teach new technologies to improve students’ skills. Ubiquitous 

computing is software and services available everywhere, for example in mobile devices, 

in different locations, in different networks. This computing requires good 

communication protocols so the software systems can interconnect properly among them 

to share data and for distribution purposes. 

Developers design communication protocols in repetitive times and learn how to 

deal with different non-functional communication requirements such as reliability, 

security or synchronicity. This knowledge is typically collected and presented in design 

pattern languages, they allow professionals to communicate ideas, problems and solutions 

for communication software implementation. The application-level Communication 

Design Pattern language aims to gather this knowledge and make it available to computer 

science novices and experts. 

Most modern software applications need to be available in the network. 
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Developers use cloud computing resources such as virtual infrastructure, software and 

platforms. These services are available anywhere (anyware). Cloud computing is 

gradually becoming part of current Computer Science curriculums. Ultimately, we show 

that using cloud computing resources in programming assignments helps students 

improve their analysis to reuse skills. 
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CHAPTER 1 

INTRODUCTION 

 

Pattern Languages and Cloud Computing are methods and practices widely used 

in the different stages of the software development cycle. They have become important 

for Computer Science professionals in all areas. This represents an opportunity for 

academic institutions that want to improve their curriculum to prepare the students 

according to the enterprise needs. The proposed research is a multi-paper dissertation that 

describes the establishing a pattern language for designing Application-level 

Communication Protocols (ACPs) for Distributed Systems. It also deals with improving 

the Computer Science (CS) curricula by including Cloud Computing (CC) in 

programming assignments. 

Since the introduction of software design patterns in the book, “Design Patterns: 

Elements of Reusable Object Oriented Software” [1], researchers have defined many 

pattern languages to help developers in addressing common software-engineering 

problems in areas, such as programming [1], security [2] [3], enterprise applications [4], 

big data [5], reliable messaging [6], management processes [7], user interfaces [8]. To 

avoid repeating mistakes and to improve the quality of their software, developers need to 

understand and use these diverse design patterns. Yet, there is no pattern language 

currently in the area of ACP design. This is a deficiency that the proposed research hopes 

to fill. See Chapters 2 and 3. 

Another aspect that is becoming important for computer science professionals is 

Cloud Computing. In general, CC offers remote on-demand computing resources, such as 
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infrastructure, software, and platform services. In industry, most developers are already 

deploying their applications to some kind of cloud. According to RightScale [9], 95% of 

1060 surveyed technical professionals are using some kind of cloud, which implies that 

the majority of the software being deployed these days involves CC and network 

communications. Therefore, there is a tremendous need for CS professionals with CC 

skills. Sections 3 and 4 discuss more details about CC and the possibility of integrating it 

into CS courses. Part of this proposed research aims to study the impact of such changes 

in a CS curriculum. 

1.1. Design Patterns for Communication Protocols 

Most contemporary software applications rely on network communications and, 

therefore, their developers need to design and implement ACPs. Even though, there are 

many standard low-level communication protocols available, developers have to design 

ACPs for every new software system [10]. There are proven practices that could help 

developers in designing ACPs. That knowledge has not been properly documented and is 

not easily accessible. This is exactly what design patterns do for developers, prior to this 

research, there was no pattern language for ACP design [10]. 

In a paper titled, “A Pattern Language for Application-level Communication 

Protocols” [10], I presented an initial set of patterns for a new pattern language, called 

CommDP. This pattern is specifically oriented towards the design of ACPs. The paper 

was published in ICSEA 2016 conference [11] and received the best paper award. 

Consequently, I was invited to write a following paper for their journal. Currently, 

CommDP consists of nine ACPs design patterns: Request-Reply -RR, Request-Reply-
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Acknowledge -RRA, Idempotent Retry -IPR, Intermediate State Message -ISM, Second 

Channel -2Ch, Front End -FE, Proxy -PXY, Reliable Multicast -RMC, and Publish-

Subscribe –P-S. They are briefly described in chapter 2, stating the problem they intend 

to solve, their solution, a sequence of message interchanges, their main characteristics 

needs (qualities), and their behavior. Nevertheless, to completely define a Pattern 

Language so it can be reusable, concrete examples and a template, that help unify the 

information for every pattern are important [1], also we need a guideline to use the 

appropriate pattern according to our needs. Thus, I propose the following template 

elements for defining CommDP [10]: Name and overview, intent, description: (problem, 

context, solution), consequences, known uses, aliases and related work, examples of 

application, and references. 

In general, the desirable characteristics of network communications are security, 

fault tolerance, maintainability, openness, extensibility, scalability, and dynamic quality 

of service [12]. In [10], I present four metrics for ACP design patterns that can help 

developers decide whether a particular pattern meets their needs and helps them achieve 

the communication qualities that they desire. These metrics are reliability, synchronicity, 

longevity, and adaptability for scalable distribution. I ranked each design pattern using 

for each metric on a scale of 1 to 3, with 3 being the highest. For example, the Proxy 

Pattern has reliability=1, synchronicity=1, longevity=1, and adaptability=3. If a developer 

were building a system that required good adaptability for scalable distribution, but is not 

too much concerned about reliability, synchronicity, or longevity, this pattern would be a 

good choice. This kind of choices are made at professional level, hence its use in an 
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academic environment will help improve students’ skills and knowledge in a realistic 

environment, this was the case during the Fall-2016 semester, where the instructor of 

CS5200 used the aforesaid pattern language to teach ACP design and their qualities. 

Design patterns and pattern languages are not invents, instead they are collections 

of proven solutions that have been used widely by different software specialists. 

Hereafter, a pattern language can be established by an assembly of 

experts/professionals/academicians in related areas. For this purpose, I have created the 

CommDP1 wiki page. Using this tool, this assembly will be able to collaborate to 

complete the definition of existing patterns, also they could propose to add new patterns. 

In the second paper, about CommDP, see Chapter 2, I define every pattern in its entirety 

according to a pattern template. Also, I introduce a guideline to use the respective design 

pattern according to the stakeholders’ needs and the main characteristics of the ACPs. 

1.1.1. Literature Review on Pattern Languages for Communication Software 

In the last two decades, authors have published pattern languages that deal with 

Communication Subsystems. Rising [13] presents a compendium of communication 

software design-pattern articles of different authors expressing their experience on 

building telecommunications and distributed applications. Li and Chou [14] find patterns 

in a series of CSTA (Computer Supported Telecommunications Applications) services 

that are useful to recognize those services and therefore to transform them into RESTful 

web services. After defining these patterns, the CSTA services are converted into 

RESTful services by using the CRUD operations from the REST architectural style. 

																																								 																					
1 http://commdp.serv.usu.edu/ 
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Daigneau [15] proposes a set of recurrent solutions for the development of SOAP and 

RESTful web services. These patterns are grouped in six categories, one of them deals 

with Client-Service interaction (communication) design patterns. Fehling et al. describe a 

set of Cloud Computing Patterns [16] focusing on the use of cloud resources towards 

designing, building and managing cloud applications. They extract common behavior and 

components of cloud products dividing the patterns in four groups: Cloud Offering 

Patterns, Cloud Application Architecture Patterns, Cloud Application Management 

Patterns; and Composite Cloud Application Patterns. 

One of the most complete works in the area of communication software is by D. 

Schmidt and others [17], they present a classification of Distributed Real-time and 

Embedded Systems patterns as a result of two decades of working towards the 

development of ACE (Adaptive Communication Environment) ORB framework [18] 

[19]. In [20], they introduce four groups of patterns: Concurrency, Event, Initialization, 

and Synchronization; plus a set of miscellaneous patterns. This Pattern language is 

refined later in the book series “Pattern-Oriented Software Architecture” (POSA), Vol.1 

[21], vol. 2 [22], vol. 3 [23], and vol. 4 [17]. In the later, they propose a single set of 114 

patterns connected to other 150 design patterns from different authors. The patterns are 

classified in 13 different problem areas: From Mud to Structure, Distribution 

Infrastructure, Event Demultiplexing and Dispatching, Interface Partitioning, Component 

Partitioning, Application Control, Concurrency, Synchronization, Object Interaction, 

Adaptation and Extension, Modal Behavior, Resource Management, and Database 

Access. 
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At application level, nevertheless, the work is scattered and the articles are not 

focused on global solutions for Communication Protocols. There is no author that groups 

or creates a set of patterns that deal specifically with ACPs. 

1.2. Cloud Computing in Software Engineering Education 

CC is widely used by industry to improve productivity, scalability, extensibility, 

and accessibility. Furthermore, the number of organizations adopting CC is increasing 

daily [9]. This trend presents an opportunity and challenge for higher education to a) 

incorporate CC technology into curricula so students can be better prepared and b) 

leverage this technology as means of helping students improve other skills and 

knowledge required of computer science professionals. These other skills, called 

Analysis-to-Reuse (A2R) skills, include: analysis, design, tool evaluation, testing, 

deployment, and reuse [24]. Based on current trends, I believe that CS departments need 

to integrate CC into programming assignments to help student become familiar with this 

technology before graduation. I also believe that using CC for programming assignments 

will improve students’ A2R skills. However, whether using CC actually accomplishes 

these hoped-for objectives is an open question. To answer this question, we need to find 

initial evidence of CC impact on students’ skills. This is one of the primary goals of the 

proposed research. 

To answer this question, the proposed research present an experience of using CC 

in a distributed systems course, see Chapter 3. Following I have conducted a longitudinal 

observational study over three semesters to analyze if students who are exposed to CC 

feel that their A2R skills improved more than students not exposed to CC. This study 
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examines whether integrating CC into programming assignments helps the USU CS 

Department meet its Program Educational Objective 1 (PEO-1), which states “the USU 

Computer Science program will prepare its graduates to be successful and contributing 

professionals by being able to apply the principles of computer science and adapt 

emerging technologies to analyze and solve real world problems” [25]. 

The proposed study calls for a systematic integration of CC into a limited number 

of courses and their programming assignments. Measures are gathered using a Qualtrics2 

survey instrument that collect self-assessment perceptions from students about their CC 

and A2R skills, see Appendix E. The same survey has been distributed three times after 

Fall-2015, Spring-2016, and Fall-2016 semesters. My goal is to measure the variances n 

the students’ perceptions of their A2R skills and knowledge.  

The research questions for the study are as follows: 1) what are students’ 

perceptions about how their own skills and knowledge level change over the course of a 

semester and 2) how does the integration of CC into programming assignments affect 

those perceptions. With those questions in mind, I propose my hypotheses: Students who 

have assignments that require CC have greater perceived increases in their skills and 

knowledge levels in the A2R areas than students that are not exposed to the used of CC. 

The study spans the Fall-2015, Spring-2016, and Fall-2016 semesters. I believe 

that this time is enough to measure change in the students’ perceptions. In Spring-2016 

and Fall-2016, the instructors integrated CC into one or more assignments in the 

following courses: CS5700 (Sp16), CS5700 (F16), CS3450 (F16), and CS5600 (F16). 

																																								 																					
2 http://qualtrics.usu.edu/ 
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The data from the surveys is analyzed for trends in a) the students' self-assessments, b) 

perceptions about improvements in their skills and knowledge, and c) differences in those 

perceptions between two groups of students: those that had CC integrated into their 

course assignments (group A) and those who did not (group B), see chapter 4. 

During a preliminary study conducted in 2015, the instructor of CS6200/CS7930 

used Amazon Web Services3 (AWS) for distributed application programming 

assignments, some students used AWS, and other students did not use CC services. This 

experience led to the paper titled, “Using Cloud Services to Improve Software 

Engineering Education for Distributed Application Development” [10]. Nevertheless, the 

sample size was too small to formulate solid conclusions, nevertheless this preliminary 

study was sufficient to provide guidance on how to setup the proposed observational 

study. Because this is social study that involve human being, I requested approval for this 

study to the USU Institutional Review Board –IRB. The proposed study was approved on 

March 18,206 (See appendix C). The analysis of this study is described in Chapter 4. 

Currently, this paper has been submitted to the Software Engineering Education and 

Training Conference [26]. 

1.2.1. Literature Review on Cloud Computing and Software Engineering Education 

The use of virtual resources for computer science courses is not a new concept in 

the academia [27], most of such use has been with public clouds in courses for 

networking [28], systems administration [27], distributed applications [29], data 

processing- MapReduce [30]. Gonzalez et al., at Rochester Institute of Technology used 

																																								 																					
3	https://aws.amazon.com/	
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Amazon EC2 in their Principles of Systems Administration course and leveraged career 

opportunities for their students [27]. Zhu used cloud resources in the Network 

Programming course at Metropolitan State University of Denver, the students agreed that 

using CC resources had a positive impact on their learning experience [28], he states that 

the same effect will be true for other courses, nevertheless, there is no follow up on this 

hypothesis. Rabkin et al. [30] used cloud computing for MapReduce measurements at 

University of California, Berkeley. 

Additional to the use of public cloud resources, some universities are using their 

own virtual environments/clouds to cover engineering educational goals [28] [31]. For 

example, Syracuse University, has developed SEED, a local virtual machine lab [32]; 

North Carolina State University, a Virtual Computing Lab [33]; Stony Brook University, 

V-NetLab [34]; Arizona State University, V-lab [35]. Courses that have been taught 

using these clouds are: Computer and network security principles, computer networks, 

distributed systems, grid computing, database administration, cyber security. 

Nevertheless, programming-oriented classes have not taken advantage of this resource as 

an educational means. Also, a broader study about the use of CC for improving software 

engineering education is missing. 

The studies presented in this dissertation can contributed to the Computer Science 

body of knowledge and the Computer Science Curricula defined by IEE and ACM [36], 

they can also serve as steps forward to improve the quality of the CS program by 

including CC or other technology topics in a systematic way without affecting negatively 

in the students learning experience.  
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This dissertation is a combination of four papers. Two of these have already been 

published in international peer-reviewed conference proceedings: ICSEA 2015 [37] and 

ICSEA 2016 [11] (Appendix A and Appendix B). The latter paper received the “Best 

Paper” award at the ICSEA 2016 conference and I was invited to write a follow-on 

journal paper. The paper (Chapter 3) is being submitted to the International Journal on 

Advances in Software. The former paper led to an observational study presented in 

Chapter 5, this paper is being submitted to the CSSE&T conference [26]. Table 1 lists the 

four papers and their status. 

 

Table 1. Scientific Articles 

Title / Topic Event name Status 
Using Cloud Services To Improve Software Engineering 
Education for Distributed Application Development 

ICSEA 2015 [37] 
(Conference) 

Published 

A Pattern Language for Application-level Communication 
Protocols, 

ICSEA 2016 [11] 
(Conference) 

Published 

CommDP: A Pattern Language for Designing Application-
level Communication Protocols. Qualities and Applicability 

Iaria journals  [38] 
(Journal) 

To be 
submitted 

Improving Computer Science Education Through Cloud 
Computing: An Observational study 

CSEE&T [39] 
(Conference) 

Submitted 
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CHAPTER 2 

A PATTERN LANGUAGE FOR APPLICATION-LEVEL COMMUNICATION 

PROTOCOLS4 

2.1. Abstract 

Distributed applications depend on application-layer communication protocols to 

exchange data among processes and coordinate distributed operations, independent of 

underlying communication subsystems and lower level protocols. Since such protocols 

are application-specific, developers often must invent or re-invent solutions to 

reoccurring problems involving sending and receiving messages to meet specific 

functionality, efficiency, distribution, reliability, and security requirements. This paper 

introduces a pattern language, called CommDP, consisting of nine design patterns that 

can help developers understand existing reusable solutions and how those solutions might 

apply to their situations. Consistent with other pattern languages, the CommDP patterns 

are described in terms of the problems they address, their contexts, and solutions. The 

problems and consequences of the solutions are evaluated against four desirable qualities: 

reliability, synchronicity, longevity, and adaptability for scalable distribution. 

2.2. Introduction 

At the application level, a distributed system is two or more processes sharing 

resources and working together via network communications to accomplish a common 

goal [40][41]. Such systems are ubiquitous in today’s Internet-connected world and are 
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found in virtually every application domain, such as personal productivity tools, social 

media, entertainment, research, and business. Even single-user software systems that 

appear to be non-distributed may in fact communicate with other processes in the 

background to download updates, track usage statistics, or capture error logs, and are 

therefore actually distributed systems. 

In general, the developers of a distributed system try to increase its overall 

throughput, reliability, and scalability by hosting data and/or operations on multiple 

machines, while minimizing network traffic, congestion, and turn-around times. Exactly 

how they do this depends heavily on the nature and requirements of the application. In 

some cases, developers may choose to distribute instances of one type of resource, e.g., 

image files in a peer-to-peer shared photo library. In other situations, developers may 

group resources such that all instances of a single type are on one server. Still in other 

cases, developers can take hybrid approaches, distributing certain types of resources 

among peers and hosting other types on dedicated servers. A closely related design issue 

deals with the granularity of the distributed resources, i.e., data and operations. From a 

data perspective, the possible choices range from whole databases to individual records 

or even individual fields within records. From an operations perspective, the choices 

range from entire subsystems to atomic operations. With today’s programming 

languages, many developers follow the object-oriented paradigm, encapsulating 

operations with data and making choices for granularity that range from entire sets of 

objects to object fragments [42]. 

Besides deciding on the granularity and distribution of resources (data, operations, 
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or objects), developers often have to consider requirements for security, fault tolerance, 

maintainability, openness, extensibility, scalability, and dynamic quality of service [2]. 

The degree to which an application possesses these desirable characteristics is primarily a 

consequence of architectural design choices, which, in turn, place new requirements on 

inter-process communications. 

The problem is not that existing application-level communications protocols are 

poorly designed and implemented; rather, the problem is that application developer has to 

re-invent or re-design them for every new application. 

In this paper, we will refer to an exchange among two or more processes for a 

particular purpose as a conversation. A single conversation may be short and simple, like 

querying a stock’s price, or it could be long and complex, like the streaming of a video. 

The rules that govern a particular type of conversation are a communication protocol and 

a collection of protocols is called a protocol suite [43][44]. 

Application-layer communication protocols (ACPs) are often defined on top of 

other protocols. For example, the Hypertext Transfer Protocol (HTTP), which is an ACP, 

is defined on top of the Transmission Control Protocol (TCP) [40]. Many higher level 

ACPs, like webservice-based ACPs, are in turn defined on top of HTTP [40]. Section II 

provides additional background on protocols and protocol suites, as well as a brief 

discussion on layered communication subsystems. 

Because requirements for ACPs can come from an application’s (a) functional 

requirements, (b) architectural design, and (c) use of lower layer protocols, coming up 

with effective designs can be challenging. Fortunately, the problems that developers are 
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likely to encounter are not uncommon and have known solutions. The key is to capture 

this knowledge in a way that developers can easily find it and adapt it to a new 

application. This is precisely what design patterns can do [1]. 

Unfortunately, design patterns for communication protocols at application layer 

have yet not been gathered, correlated, and formally organized into a cohesive and 

thorough collection. To this end, this paper introduces a system of design patterns, i.e., a 

pattern language, for ACPs, called CommDP. The patterns in CommDP come from a 

variety of sources and are by themselves not new ideas, as is the case for all newly 

documented design patterns [45]. Section III provides more background information on 

design patterns and pattern languages, as well as information about related work. 

Since designing ACPs is different from designing executable software, it is 

necessary to discuss desirable qualities for protocols. Section IV introduces four, namely 

reliability, synchronicity, longevity, and adaptability for scalable distribution. Section V 

presents a design pattern template that incorporates these characteristics into the definition 

of communication problems and the consequences of pattern solutions. 

Section VI-A introduces three communication idioms that act as conceptual 

building blocks for all the ACP patterns in CommDP. We then provide an overview of 

the ACP patterns in Section VI-B. Additional details for the CommDP patterns are 

available on-line, at [http://commdp.serv.usu.edu/]. 

Patterns are rarely used in isolation; instead, developers typically weave multiple 

pattern instantiations together to create complete solutions [17]. A system of patterns, i.e., 

a pattern language, not only includes a collection of patterns, but relationships among 
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them that help developers know how they might be effectively combined [46]. Section 

VI-C provides a digest of these relationships for CommDP. Finally, in Section VII, we 

summarize the value of CommDP and outline our future research direction. 

2.3. Protocols and Protocol Suites 

Software and electrical engineers model, design, and implement inter-process 

communications in layers. Figure 1 shows a simple 5-layer model commonly favored by 

those who work with IP-based protocols [40][47]. There are several other common 

models, such as the 7-layer OSI model [48]. A conversation between Process 1 and 

Process 2 can be discussed at any layer and, for each layer, it must adhere to agree upon 

protocol(s) for that layer. For example, if Process 1 were a web browser, Process 2 were a 

web server, and the conversation a simple web-page request, then the application-layer 

protocol would be HTTP, the Transport-layer protocol would be TCP, and the Network-

layer protocol would be IP. 

Besides providing a convenient way for discussing protocols, layered models 

establish a basis for creating substitutable software communication subsystems. Since we 

are addressing ACPs in this paper, we do not deal directly with design and 

Figure 1. 5-Layer Model for IP-based Communications. 
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implementation of these software components. Nevertheless, we assume that appropriate 

communication subsystems exist at the transport layer for streaming of unstructured data 

and transmitting datagrams (semi-structured data). Section V relies on this reasonable 

assumption to define four communication idioms. 

At the application layer, a protocol governs why, when, and how processes interact 

with each other to accomplish a common goal. Specifically, an ACP should define the 

following: 

1. the processes involved in the interaction in terms of the roles they play during a 

conversation; 

2. the possible sequences of messages for valid conversations; 

3. the structure of the messages; 

4. the meaning of the messages; and, 

5. relevant behaviors of the participating processes. 

Because processes in a distributed system typically have to communicate with 

each other for many different tasks, e.g., authentication, resource sharing, and 

coordination, it is common for a distributed system to require multiple ACPs, i.e., an 

ACP suite. 

2.4. Design Patterns and Pattern Languages 

Christopher Alexander et al. defined a pattern as a reusable solution to a 

reoccurring problem [46]. Kent Beck and Ward Cunningham started to apply the concept 

of pattern languages to software engineering in 1987 [49], and the idea was later 

popularized by Eric Gamma et al. with their landmark language of 23 patterns [1]. Since 
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then, pattern languages have been documented for many areas of software engineering, 

including architectural design [21][50], user-interface design [51], event handling [52] 

[53] [54], and concurrency [55] [56]. There are even patterns specifically for distributed 

computing [17], distributed objects [57] [58] [59], communication software [13][60], 

RESTful and SOAP web services [15], cloud computing [16], and distributed real-time 

and embedded systems [20]. However, to date, no pattern language has been published 

specifically for ACPs. 

There are two hoped-for benefits of pattern languages that are important to ACP 

design. First, they create a vocabulary that enables developers to discuss complex ideas in 

a few words [59]. Second, they allow developers of all experience levels to benefit from 

expert reusable solutions [61]. 

2.5. Qualities of Communication Protocols 

Like software, ACP suites, as whole, should possess certain desirable qualities 

that contribute to the overall success of a system. Some of these desirable qualities come 

directly from the software arena. For example, cohesion is the degree to which the 

elements of a software component align with a single purpose [62]. Cohesion and its 

definition can apply almost directly to ACPs, but this is a subject for future research (see 

Section VII). Another desirable software quality directly applicable to ACPs is 

modularization. Modularization is the degree to which a system is divided up into 

independent components [63]. When a system has good modularization, developers do 

not have to look very far beyond a component to understand it or reason about it. We 

believe the same to be true for ACPs, but the details of modularization applied to ACPs 
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are also a subject for another paper (see Section VII). 

Although we believe cohesion and modularization are important qualities for 

ACPs, they do not directly help in describing reoccurring communication problems nor 

are they good discriminators for reusable solutions, because all pattern solutions should, 

by definition, have good cohesion and modularization. So, we turn our attention to four 

other qualities with discriminating definitions for ACPs, namely: reliability, 

synchronicity, longevity, and adaptability for scalable distribution. 

2.5.1. Reliability 

For an ACP, reliability is the degree to which a process that sends a message as 

part of a conversation obtains an assurance that the intended recipient(s) received it, 

entirety and uncorrupted, and reacted as prescribed in the ACP. At the application level, 

reliability is typically achieved by the recipients returning messages that provide the 

sender with confirmation that the message was received and/or processed. When such 

return messages fail to arrive in a timely fashion, reliable ACPs will require the sender to 

retransmit the original message. 

In Section VI, where we present an overview of the ACP patterns in CommDP, 

we rank each of the patterns in terms of reliability using the following 3-point rubric: 

Rank/Criteria 

3 The problem (P) addressed by the pattern is primarily concerned with reliability 

and the solution (S) can make the following guarantees under normal and extreme 

conditions: 

a. The sender can distinguish between successful and failed conversations. 
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b. The receiver can distinguish between successful and failed conversations. 

c. In successful conversations, any process X that sends a message M to process 

Y, gives a timely assurance to X (in some subsequent message) that Y received 

M. 

d. In successful conversations, for any process X that sends a message M to process 

Y, if M is supposed to trigger a non-trivial behavior in Y, then X receives a 

timely assurance that Y successfully handled M. 

2 P is concerned with reliability and S can guarantee at least (a) and (c) from above 

in normal situations. 

1 P is not concerned with reliability and S does not limit reliability. 

Clearly, there are other conceivable problem/solution criteria for reliability not 

listed above, such as a reoccurring problem where reliability is a major concern and a 

solution that does not address it. However, we do not include such meaningless 

classifications because they would not help classify patterns with expert, reusable 

solutions. 

2.5.2. Synchronicity 

In the most general sense, synchronization deals with the coordinated execution of 

actions in a distributed system and what the state information is necessary for that 

coordination. This broad definition encompasses, but is not limited to, the common view 

among programmers that synchronous communications occur when the sender of a 

message stops and waits for a response from the message receiver [64]. However, this is 

not the only way to achieve synchronization. Some other common mechanisms are 
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logical clocks [65][66], vector clocks [67][68], vector timestamps [69], optimistic 

concurrency controls [70], and timing signals. 

To evaluate the synchronization requirements for ACPs, we consider: (a) what are 

the actions that need to be coordinated, (b) where will those actions be executed, and (c) 

what kind of state information is needed to achieve the desired coordination. A 

distributed system may perform many different tasks comprised of numerous operations, 

but rarely all of them have to be fully coordinated. In fact, the more independent the 

individual operations are, the more a system can maximize concurrency and increase 

throughput. From a coordination perspective, where the operations take place is actually 

more important than what the operations do. For example, if all of the actions occur in 

just one process, then that process may not need to know anything about the state of the 

other process. Once developers know what operations have to be coordinated and where 

they will execute, they can consider what local or global state information the 

coordination logic will need. 

To rank synchronicity for ACP patterns, we will use the following definitions: 

• C is a conversation involving a closed set of processes, 𝐶. 𝑃 = 𝑝&, … , 𝑝) , 

and a set of messages, 𝐶.𝑀 = 𝑚&,… ,𝑚) , such that 𝑠𝑒𝑛𝑑𝑒𝑟 𝑚1 ∈ 𝐶. 𝑃	 ∧

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠 𝑚1 ⊆ 𝐶. 𝑃 for 1 ≤ 𝑖 ≤ 𝑛 where 𝑠𝑒𝑛𝑑𝑒𝑟 𝑚1  is the process that 

sent message 𝑚1 and 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠 𝑚1  is the set of processes that received 𝑚1. 

• A is a set of operations, {𝑎&, … , 𝑎)} that run on 𝐶. 𝑃 and whose execution 

requires coordination, e.g., ordering, simultaneous execution, etc. 

• h(a) is the host process for operation, 𝑎, where 𝑎 ∈ 𝐴 and ℎ 𝑎 ∈ 𝐶. 𝑃 
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• s(a) is the state information that h(a) needs to coordinate A’s execution with the 

rest of the operations in A. 

• H(A) is the set of host processes for all operations in A 

Below is an informal 3-point rubric for ranking synchronicity for CommDP 

patterns using these definitions. We believe that a more rigorous ranking system would 

have value beyond the categorization of ACP patterns, and its full definition is beyond 

the scope and purpose of this paper. 

Rank/Criteria 

3 The problem (P) addressed by the pattern deals with situations where H(A) > 1 

and the solution (S) can guarantee that for all a ∈ A, h(a) receives s(a) via 

messages, mG ∈ C.M, in time to do the prescribed coordination. 

2 P deals with situations where H(A) = 	1 and S can guarantee that for all a ∈ A, 

h(a) receives s(a) via messages, mG ∈ C.M, in time to do the prescribed 

coordination. 

1 P is not concerned with synchronicity, e.g., A = 0, and S does not limit 

synchronicity. 

2.5.3. Longevity 

Longevity is the degree to which an ACP can support long-running conversations 

caused by long-running operations. The primary problem for conversation with long-

running operations is that there could be huge span of times when processes are uncertain 

of each other’s states. Consider a simple request/reply conversation where some process 

A sends a request to B, but B takes a long time to execute the requested operation and 
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sends back a reply. While waiting for the reply, process A does not know if B received 

the request, has failed, or is just taking a long time. ACPs that support long-running 

operations include mechanisms for exchanging state information independent of results. 

We rank the longevity for ACP patterns according to the following 3-point rubric: 

Rank/Criteria 

3 The problem (P) addressed by the pattern is primarily concerned with long-running 

conversations and the solution (S) can guarantee the following in successful 

conversations: 

a. Participants made aware of each other’s states in periodically. 

b. Each participant in the conversation can detect when other participants are no 

longer available or accessible. 

2 P is concerned with long-running conversations and S provides for (a). 

1 P is not concerned with long-running conversations and S does not limit longevity. 

2.5.4. Adaptability for Scalable Distribution 

ACPs can support scalability by providing location transparency and/or 

replication transparency [69], and by allowing resources (data, operations, or objects) to 

be distributed across multiple hosts. To understand location and replication transparency, 

consider a website with a large number of resources. It can support scalability by placing 

the various resources on an expandable collection of backend servers and use a front-end 

server to distribute requests from browsers. If the browser does not need to know where a 

resource is actually located, then the system supports location transparency. Similarly, as 

traffic increases, the system could replicate resources across multiple backend servers. If 
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the client does not have to know that replicas exist, then the system supports replication 

transparency. Both location and replication transparency simplify scalability. 

Another technique for supporting scalability is allowing complex resources to be 

broken up into smaller resources and distributed across multiple servers. One approach 

for doing this is to untangle cross-cutting concerns, like security or logging, from 

complex operations and host these pieces of functionality on proxies [71][69]. 

Here is a simple rubric for the adaptability for scalable distribution. 

Rank/Criteria 

3 The problem (P) addressed by the pattern is primarily concerned about scalability 

or the distribution of action or resources and the solution (S) can provide two or 

more of following:  

a. Location transparency for shared resources distributed across multiple hosts 

b. Load balancing with shared resources replicated across multiple hosts 

c. Untangling of cross-cutting concerns into separate actions 

2 P is concerned with scalability or distribution of resources and S provides at least 

one (a), (b), or (c). 

1 P is not concerned with scalability or distribution and S does not limit them. 

2.6. Template for Communication-protocol Patterns 

To document the patterns in CommDP, we have developed a template, loosely 

based on the way Gamma, Helm, Johnson and Vlissides documented their patterns [61], 

referred to here as the GoF template. The main goal is to keep the documentation as 

simple as possible, while still capturing the details of the pattern. Following are the 
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elements of CommDP pattern template. 

2.6.1. Name 

As with the GoF template, the name uniquely identifies the pattern. Since the 

name will become part of the vocabulary for the pattern language, it is important that it 

captures the essence of the pattern, distinguishes it from other patterns, and is as concise 

as possible. 

2.6.2. Intent 

The intent is an abstract for the pattern. It summarizes the problem, the context, 

and the solutions, particularly in terms of reliability, synchronicity, longevity, and 

adaptability for scalable distributes. 

2.6.3. Description 

The description consists of three subsections that explain the problem, context, 

and solution. The problem subsection relates closely to the Motivation part in the GoF 

template, in that it explains the nature of the reoccurring communication-protocol design 

problem. This subsection should highlight the problem’s need for reliable 

communications, synchronization, long-running conversations, or scalable distribution. 

The context subsection is like the Applicability in the GoF template, capturing 

information when the pattern may or may not be applicable and assumptions about 

distributed systems in which the communications will take place. The solution is 

analogous to the Structure in the GoF template. It focuses on the describing protocol 

design ideas and how they can be adapted. 



	
	
	

25 
	
2.6.4. Consequences 

As with the GoF template, the consequences are important part of CommDP 

pattern definitions because developers will use them to determine if the pattern is a good 

fit for a particular situation. The consequences of CommDP patterns are described in 

terms of the qualities discussed in Section 4. The rankings provide a general 

classification, and pros explain the consequences in more detail. 

2.6.5. Known Uses 

Like the GoF template, this part references known instances of the pattern in 

production systems. 

2.6.6. Aliases and Related Work 

The section combines two elements of the GoF template by the similar names. 

2.6.7. References 

This section contains a bibliography for the citations made elsewhere in the 

pattern definition. 

2.7. CommDP 

A design pattern is composed of a set of patterns and idioms that are used together 

to solve a design engineering problem. 

2.7.1. ACP Idioms 

Before launching into a description of CommDP’s patterns, it is important to first 

introduce three fundamental building blocks for all ACPs: point-to-point send, multicast, 

and broadcast. These are idioms instead of patterns because their usage depends on the 
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lower layer communication protocols and because, by themselves, they do not address the 

qualities discussed in Section 4. 

A point-to-point send is the transmission of a single message from one process to 

another, such as a message sent over a TCP connection or via a UDP datagram. An 

underlying communication subsystem may provide some reliability relative to the 

transmission but, at the application-level, a single message does not allow the sender to 

know if the receiver processed the message or anything about the receiver’s state, nor 

does it help with longevity or adaptability for scalable distribution. 

A multicast send is the transmission of a single message to a set of receiving 

processes [72]. It can be implemented at virtually any layer in communication hierarchy, 

including the physical layer. Mechanisms for identifying the group of receiving processes 

vary from sender determined to receiver subscriptions. By themselves, multicast are 

idioms for ACPs. The same is true for broadcasts, which also transmit messages to 

multiple receivers [72]. 

2.7.2. ACP Patterns 

Table 2 lists the nine patterns currently in CommDP, along with their rankings 

from their consequences relative to the characteristics discussed in Section 4 

(R=Reliability, S=Synchronicity, L=Longevity, and A=Adaptability for Scalable 

Distribution). Their full definitions are available on [http://commdp.serv.usu.edu]. 

The Request-Reply pattern is undoubtedly the most common. It addresses the 

problem where a process, A, needs to access or use shared resources in another process, 

B, with a reasonable degree of reliability and synchronicity. The solution consists of A 
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sending B a message (i.e., a request) and B sending back a message (i.e., a reply) after 

processing the request, as you can see in Figure 2. For A, this simple mechanism provides 

a modest level of reliability and synchronization, because the reply proves that B received 

the request and can provide relevant information about B’s state. Furthermore, if A does 

not receive a reply within a specific amount of time (i.e., a timeout), it can resend the 

request. It can continue to timeout and retry until it eventually receives a reply or it 

exceeds some maximum number of retries. This “timeout/retry” behavior is the essence 

of the request-reply pattern. 

 

The Request-Reply-Acknowledge pattern extends this solution with a third 

message (an acknowledgement) that A sends to B after receiving the reply, and gives B a 

Table 2. CommDP Patterns 

Name Consequences 
R S L A 

Request-Reply 2 2 1 1 
Request-Reply-Acknowledge 3 3 1 1 
Idempotent Retry 3 1 1 1 
Intermediate State Messages 3 3 3 1 
Second Channel 1 3 3 1 
Front End 1 1 1 3 
Proxy 1 1 1 3 
Reliable Multicast 3 3 1 2 
Publish-Subscribe 2 1 1 3 

 

	

	
	

Figure 2. Request-Reply Message Sequence. 
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timeout/retry behavior with respect to its sending of the reply and waiting for an 

acknowledgement, see Figure 3. This pattern is useful in situations were significant 

processing may occur on A after receiving the reply or when it is problematic for B to 

reprocess duplicated requests caused by A’s timeout/retry behavior. With this pattern, 

instead of reprocessing a duplicate request, B can simply cache its replies and resends 

them to A when necessary. The acknowledgement tells B that A has received the reply 

and, thus, can remove it from its cache. This pattern offers more reliability and 

synchronization than request-reply, but at the cost of an additional message. 

The Idempotent Retry pattern [73] captures a different solution to the problem of 

processing duplicate requests. Like Request-Reply, its solution consists of A sending a 

request to B with a timeout/retry behavior and B sending a reply back to A. But, unlike 

Request-Reply, the semantics of the protocol dedicate the processing of the request must 

be idempotent. This pattern applies to situations where the requested processing is 

relatively light, i.e., less expensive than caching replies. 

	

	
 

Figure 3. Request-Reply-Acknowledge Message Sequence. 
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The next pattern, Intermediate State Message, is also similar to Request-Reply, 

but addresses the problem of long-running conversations due to request actions taking 

substantial amounts of time to complete. To solve this problem, it has B send A one or 

more intermediate messages that reflect its current state. For example, B may send a 

message immediately after receiving the request to let A know that it got the request, 

another message when the processing is 10%, another at 20% complete, and so on. Each 

intermediate message provides state information about B, which improves 

synchronization in the presence of time-consuming actions, see Figure 4. 

The Second Channel pattern is also for situations involving long-running 

conversations, but ones dominated by significant amounts of data transfers instead of 

time-consuming actions. Because the large data transfers can delay intermediate state 

messages, this pattern’s solution suggests opening a second communication channel 

	
	
Figure 4. Intermediate State Message Sequence. 
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between A and B that is dedicated to data transfer, leaving the original communication 

channel available for intermediate state or control messages, as it is shown in Figure 5. 

The File Transfer Protocol (FTP) and its variations are classical examples of this 

pattern[47][72]. 

The Front End pattern addresses the problems of making the location of shared 

resource transparent to the client, allowing the number of resources to change 

dynamically. It has a resource client send requests to a front-end process that 

automatically redistributes them to appropriate resource managers, B processes. After 

processing the request, a resource manager replies back to the client directly, for a 

graphic description of this pattern, you can see Figure 6. The front-end process can use a 

variety of criteria to decide how to redistribute requests, including request type, resource 

	
 

Figure 5. Second Channel Message Sequence. 
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type or identity, and resource manager load. By itself, this pattern’s primary focus is on 

the distribution and scalability of resources. 

Like the Front End, the Proxy pattern, presented in Figure 7, introduces a process 

between a resource client and a resource manager. However, the intermediate process, 

called a proxy, serves other functional purposes besides re-distribution of the requests, for 

example it may provide authentication, access control, audit logging, and data 

transformation functionality. Also, the resource manager returns replies through the 

proxy to client, completely isolating the client from the resource manager. 

 

	
 

Figure 6. Front End Message Sequence. 

	

	
 

Figure 7. Proxy Message Sequence 
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The Reliable Multicast pattern builds on the multicast idiom to provide reliability 

and synchronization among a group of processes. Its solution is a protocol that starts with 

a process A sending a request message to a group of process, B={b1, .., bn}. Each process 

bi sends a reply back to A when it receives the request and is ready to process it. After A 

receives reply from all B processes, then A will multicast a go-ahead message back out to 

all B message indicating that they can proceed with the processing of the request, shown 

in Figure 8. In this way, the execution of the request is synchronized among all of the B 

processes. If A fails to receive a reply from every B process, it can resend the request to 

some or all of them until it gets a reply from all of them or terminates the conversation as 

failed. This pattern focuses on providing strong reliability and synchronization, but can 

also help with scalable distribution of resources. 

Finally, the Publish-Subscribe [17] pattern is a powerful mechanism for 

decoupling message senders (publisher) from message receivers (subscribers). With this 

pattern, an intermediate process acts as a store-and-forward buffer for message 

transmission with the capabilities for managing subscribers and delivering individual 

	

	
Figure 8. Reliable Multicast Message Sequence. 
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message to multiple subscribers. 

2.7.3. CommDP: Pattern Relationships and Composition 

Patterns are rarely used in isolation; instead, developers combine their solutions to 

solve complex problems. Virtually any of the CommDP patterns could be combined with 

any other pattern, but the more useful combinations are ones that have complimentary 

characteristics, like Request-Reply with Second Data Channel or Request-Reply 

Acknowledge with Front End. 

To ensure that the CommDP pattern set was as minimal as possible, we did not 

include in any pattern in CommDP that was simply an aggregation of two or more 

patterns. For example, there is a common type of distributed system that deals with 

information flow and processing. In such systems, a process A might send a request to B 

through a series of intermediate proxy-like processes that transform or augment data in 

request on its way to B. At each intermediate step, a reply is sent back to A, informing it 

of the message’s process. Eventually, when the transformed message arrives at B and 

processes it, then B sends a final reply message back to A. This particular solution offers 

good reliability, synchronization, longevity, and adaptability to scalable distribution, but 

it is actually just a composition of the Proxy pattern (applied perhaps multiple times) and 

the Intermediate State Message pattern. 

2.8. Summary and Future Work 

CommDP pulls together reusable solutions to reoccurring design problems with 

ACPs, filling a much needed gap in the knowledge base for developers of distributed 

systems. We have characterized the nature of the problems that the CommDP patterns 
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address and the consequences of their solution in terms of four desirable qualities, 

namely: reliability, synchronicity, longevity, and adaptability for scalable distribution. 

These qualities are both instructive and discriminating, in that they can help a developer 

understand the solutions and choose the most appropriate solution for a given situation. 

However, more work needs to be done to formalize these qualities and to solidify their 

sufficiently and completeness relative communication-protocol design. So this is one of 

our research group’s immediate goals. 

We also hope to investigate other qualities, like cohesion and modularization that 

might be valuable for protocol design even if they are not good discriminators for design 

patterns. Being able to reason about assess, and teach these qualities more formally will 

help developers create better distributed systems. 

Finally, over time, we hope the expand the patterns in CommDP, without adding 

any that are just compositions of existing patterns, to encompasses a boarder range of 

reusable solutions for ACPs. 
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CHAPTER 3 

COMMDP: A PATTERN LANGUAGE FOR DESIGNING APPLICATION-

LEVEL COMMUNICATION PROTOCOLS QUALITIES AND APPLICABILITY5 

3.1. Abstract 

This work is an extension to the paper “A Pattern Language for Application-level 

Communication Protocols” [1], where we introduced the Application level 

Communication Protocols Design Pattern Language (CommDP). The present article 

aims to define a complete description of the patterns, show examples of their 

applications, and analyze their pertinence with the communication protocols’ qualities, 

namely, reliability, synchronicity, longevity, and adaptability for distribution, i.e., to 

analyze non-functional requirements of communication protocols and propose an early 

quality model for Application-level Communication protocols. 

3.2. Introduction 

With the current expectations for “connected” applications, many software 

developers today are concerned with designing reliable, secure, efficient, and scalable 

application-level communication protocols (ACPs). In general, a communication protocol 

is a set of rules that governs a particular type of conversation among communicating 

entities. ACPs are high-level communication protocols for application-layer components 

and are typically built on top of transport, session, presentation, or even other application 

protocols [1] [2]. For example, many web-based applications have ACPs that are built on 

																																								 																					
5 Jorge Edison Lascano, Stephen W. Clyde 
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top of the Hypertext Transfer Protocol (HTTP), which itself is an ACP, and HTTP is 

built on top of the Transmission Control Protocol (TCP), which is a transport protocol 

[3]. A collection of related protocols, like all those used by a single distributed 

application, form a communication protocol suite [4][5]. It is common for an 

application’s protocol suite to have dozens of ACPs, each with its own specific purpose 

and conversation-governing rules. Section 3.3 provides some additional background on 

these and other foundational concepts, such as quality models. 

This paper aims to capture existing design expertise for ACPs in design patterns, 

which collectively form a pattern language [6], using a consistent and appropriate 

pattern-documentation template. Specifically, this article updates and extends the initial 

work in this area, presented in a paper at ICSEA 2016, titled “A Pattern Language for 

Application-level Communication Protocols” [1]. We have also setup a wiki, available 

on-line6, for collaborative work on its ongoing extension and evolution. 

To help developers understand the consequence of using any CommDP design 

pattern, this paper describes four communication-protocol qualities: reliability, 

synchronicity, longevity, and adaptability for scalable distribution, and then evaluates 

each pattern respective to its potential impact on these qualities. This can help developers 

make informed choices about which pattern(s) to use in any given situation. Section 3.4 

explains the four communication qualities and introduces a quality model for classifying 

CommDP patterns relative to these qualities. 

To realize the potential benefit of a pattern language, it is important to document 

																																								 																					
6 http://commdp.serv.usu.edu/ 
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the essential concepts of each pattern, the consequences of using the pattern, examples, 

and other relevant information using a consistent documentation template. Section 3.5 

explains CommDP’s documentation template and why it is necessary and appropriate for 

ACPs. Section 3.6 contains the definitions for the eleven patterns currently in CommDP 

and introduces several patterns currently being considered for inclusion in CommDP. 

Finally, Section 3.7 provides as summary and ideas for future work. 

3.3. Background 

3.3.1. Communication Protocols 

Software engineers model, design, and implement inter-process communications 

in layers. Figure 9 shows a simple 5-layer model commonly favored by those who work 

with IP-based protocols [3][7]. Another common model is the 7-layer OSI model [8]. As 

illustrated in Figure 9, a conversation between Process 1 and Process 2 can be discussed 

at any layer. The components at each layer must adhere to agree upon protocol(s) for 

conversations to take place. For example, if Process 1 were a web browser and Process 2 

were a web server and they wanted to have a conversation involving the request and 

delivery of a web-page, the application-layer component would need to agree on a 

protocol for that purpose. The Hyper-Text Transfer Protocol (HTTP) is an ACP 

specifically designed for this purpose. It is built on top of a transport-layer protocol, 

called Transport-Communications Protocol (TCP), which “streams” the request for a 

webpage to Process 2 and the desired webpage is sent back to Process 1 in a reliable way. 

TCP is in turn built on top of the network-layer protocol called Internet Protocol (IP), 

which packetizes the stream and routes through the network. 
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Besides providing a convenient way for discussing protocols, layered models 

establish a blueprint for creating software communication subsystems. Since we are 

addressing ACPs in this paper, we do not deal directly with design and implementation of 

these software components. 

 

At the application layer, a protocol governs why, when, and how processes 

interact with each other to accomplish a common goal. Like all communication protocols, 

they must prescribe message syntax, semantic, synchronization, and error recovery [4]. 

Specifically, an ACP should define the following: the processes involved in the 

interaction in terms of the roles they play during a conversation, the possible sequences 

of messages for valid conversations, the structure of the messages, the meaning of the 

messages, and relevant behaviors of the participating processes. Although ACPs can be 

implemented in any type of application that needs to attain some type of conversation, 

they are commonly used to develop distributed applications. 

Because requirements for ACPs can come from an application’s (a) functional 

requirements, (b) architectural design, and (c) use of lower layer protocols, coming up 

	

Figure 9. Layer Model for IP protocols. 
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with application-specific ACPs designs that are reliable, secure, efficient, and scalable 

can be challenging. Fortunately, the problems that developers are likely to encounter are 

not uncommon and have known solutions. The key is to capture existing expertise in a 

way that developers can easily find it and adapt it to a new application. This is precisely 

what design pattern languages [6], like CommDP, aim to do. 

3.3.2. Patterns and Pattern Languages 

Christopher Alexander et al. defined a pattern as a reusable solution to a 

reoccurring problem [9]. Kent Beck and Ward Cunningham started to apply the concept 

of pattern languages to software engineering in 1987 [10], and the idea was later 

popularized by Eric Gamma et al. with their landmark language of 23 patterns [6]. Since 

then, pattern languages have been documented for many areas of software engineering, 

including architectural design [11][12], user-interface design [13], event handling 

[14][15][16], and concurrency [17]-[18]. There are even patterns specifically for 

distributed computing [19], distributed objects [20][21][22], communication software 

[23][24], RESTful and SOAP web services [25], cloud computing [26], and distributed 

real-time and embedded systems [27]. However, to date, no pattern language has been 

published specifically for ACPs. 

There are two hoped-for benefits of pattern languages, in general. First, a pattern 

language can create a vocabulary that enables developers to discuss complex ideas in a 

few words [22]. This is particularly useful in ACP design because of the variations in 

terminology that already exists. For example, request-response [28], request reply [29], 

and request acknowledge [25] can be used to express a two-way or a one-way 
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communication indistinctly. Second, a pattern language allows developers of all 

experience levels to benefit from expert reusable solutions [30] and to apply those ideas 

to improve the quality of their systems in predictable and measurable ways. 

3.3.3. Quality and Quality Models 

ISO 25010 [39] is a hierarchical structure that describes the quality of a software 

products based on desired qualities, sub-qualities, and attributes. Software engineers use 

formal or informal metrics to measure an attribute to assess the degree to which a 

software system possesses that attribute. Then, they aggregate their assessments of the 

individual attributes to conclude the presence (or lack) of sub-qualities and ultimately, the 

desired qualities. 

Similarly, the quality of communication protocols could be determined through 

quality, sub-qualities, attributes, but these would be necessary different from software 

systems since communication protocols not self-contained computational mechanisms, 

but guidelines for how multiple entity interaction. 

Several authors have dealt with quality issues related for protocols, including: 

formal methods in communication protocol design [31], techniques and principles that 

lead to good protocol designs [32] [34], best practices for implementing protocols [33], 

and performance issues [48] [49] [50]. However, none of them discuss or present a model 

to assess ACP qualities. 

G. Coulouris et al., wrote “It is of high interest to be able to estimate, or even 

measure the quality of a system under construction” [35]. In fact, in any engineering 

field, it is generally believed that you can not improve what you do not measure. 
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Software quality metrics are used to identify strengthen or weakness in a software system 

and can therefore become a basis for improvement. Developers should not only aim to 

achieve the required functionality of products, but do so in a way that it possesses 

desirable qualities like reliability, security, efficiency, scalability, maintainability, 

reusability, extensibility, portability, and testability [36]. For example, measuring 

Coupling and Cohesion (C&C) can help decrease the possibility of a fault or a defect 

appearance and maintenance if applied early in the development process [35]. Also 

complexity quality metrics are used to reduce defects [37]. 

Quality models are composed by desirable characteristics, .i.e., “qualities”, that 

relate to “static properties of software and dynamic properties of the computer systems” 

[36, p. 25] They provide a set of quality characteristics that helps verify if the intended 

requirements of a software product are met. ISO/IEC 25010 [39, p. 25010], a standard 

software quality model, proposes the following set of qualities for system evaluation: 

functionality, maintainability, usability, reliability, security, and performance efficiency. 

However, these qualities pertain to software that produces executable code and not to 

protocols that govern conversations being executing entities. Section 3.4 introduces a 

quality model specifically for ACP and ACP patterns. 

3.3.4. Design Patterns 

Distributed applications depend on application-layer communication protocols to 

exchange data among processes and coordinate distributed operations, independent of 

underlying communication subsystems and lower level protocols. Since such protocols 

are application-specific, developers often must invent or re-invent solutions to 
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reoccurring problems involving sending and receiving messages to meet specific 

functionality, efficiency, distribution, reliability, and security requirements. Here is where 

a pattern language is important for ACP design [1]. First, it creates a vocabulary that 

enables developers to discuss complex ideas in a few words [22]. Second, they allow 

developers of all experience levels to benefit from expert reusable solutions [30]. 

3.4. The CommDP Quality Model 

 As with software systems at large, when designing ACPs, designers try to meet 

certain general and application-specific objectives. The general objectives include 

minimizing communication overhead, minimizing response times, and maximizing 

throughput. Regardless of the application, these are viable objectives for any ACP. Of 

course, how much effort or expense developers put forward to satisfy them will still 

depend on the available time and budget. The application-specific objectives fail into four 

broad categories: reliability, synchronicity, longevity, and adaptability for scalable 

distribution. In other words, depending on application requirements, designers may need 

to create ACPs that can tolerate certain kinds of failures, e.g. lost messages; ensure that 

processes can achieve a degree of synchronization for certain operations; accommodate 

long-running operations; or allow for scalability with respect to users or resources. From 

this point on, we will reference these four application-specific objectives as the RSLA 

qualities. 

To help ACP designers reuse design expertise embedded in existing ACPs, we 

propose a quality model, called the CommDP Quality Model, that possesses the following 

features: 
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1. Enabling the assessment of an ACP’s pattern towards the RSLA qualities 

2. Allowing for the ranking of requirements relative to RSLA qualities 

3. Enabling the assessment of the degree an ACP supports the RSLA 

qualities  

Feature #1 means that ACP patterns can be classified according to how they help 

with the RSLA qualities. Feature #2 means that designers can characterize the problem 

they are working on. Therefore, with the quality model, designers should be able to find 

patterns or combinations of patterns that will contribute to a meaningful solution for their 

specific application. Feature #3 means that quality model should allow designers to verify 

their completed ACP for support of the RSLA qualities, to the desired degrees. Figure 10 

provides an overview of CommDP Quality Model. Specifically, it shows how each RSLA 

quality is sub-divided into one or more attributes. Sections 3.4.1-3.4.4 describe the RSLA 

qualities in more detail, as well as rubrics for ranking the attributes on a three-point scale 

(0-2), where a 0 (zero) means that an ACP or design pattern is not concerned with that 

attribute, while a 1 or 2 means that either contributes to or fully achieves the attribute. 

Very rarely would an ACP possess all the attributes and none of these attributes is 

essential for every ACPs. Therefore, choosing an appropriate pattern or combination of 

patterns for the ACP is matter of matching the need for specific attributes, stemming 

from application requirements, with levels of the attributes supported by the patterns. 

3.4.1. Reliability 

For an ACP, reliability is the degree to which a process can send a message to one 

or more intended recipient(s) and know that those recipient(s) received it, in its entirety 
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and uncorrupted, and that they reacted as expected. An ACP typically achieves reliability 

by having the recipient(s) return another message to the sender, confirming that the 

original message was received and processed. 

If the sender fails to receive the confirmation message in a timely fashion, a 

reliable ACP will typically require the sender to retransmit the original message or some 

other message then reverts the conversation to a previous state. To accomplish this, an 

ACP must include specifications for how a sender can detect and discriminate 

communication failures, and either retransmit previous messages or alternative messages 

as needed. It also requires an ACP to specify how receiving processes should handle 

	

Figure 10. ACP Quality Model. 
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duplicate messages. Therefore, we decompose reliability into four independent attributes: 

detection of failures, discrimination of failure types, failure handling, and 

accommodating duplicate messages. Table 3 shows a rubric for ranking requirements, 

patterns, and ACPs for each of these attributes. Section 3.6.11 shows assessments of 

these attributes for each of the CommDP patterns. 

3.4.2. Synchronicity 

In the most general sense, synchronization deals with the coordinated execution of 

actions in a distributed system and what the state information is necessary for that 

Table 3. Ranking Scale for Reliability Attributes 

Ranking 
scale Reliability attribute/ranking description 

Detection of failures 
0 No conversation participant (process) needs to detect a failure 
1 One of the conversation participants can 
2 Multiple conversation participants can 

Discrimination of Failure Types 
0 There is no need to discriminate between different types of failures 

1 Participant(s) can discriminate between action, process, or transmission failures 
2 Participant(s) can discriminate between action, process, or transmission failures 

Failure Handling 
0 The protocol does not deal with the reverting a conversation to a previous state and 

resending of messages 
1 Allows at least one process to back up to the last state and resending one message 
2 Allows processes to back up to any of a set of previous states and resending messages 

accordingly 
Handling Duplicate Messages 

0 Does not deal with duplicate messages 
1 The protocol requires at least one process to detect duplicate messages and handle them 

appropriately, but does not deal with efficiency issues 
2 The protocol allows for duplicate messages, but tries to minimize their occurrence and 

decrease negative consequences of duplicate messages 
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coordination. This broad definition encompasses, but is not limited to, the common view 

among programmers that synchronous communications occur when the sender of a 

message stops and waits for a response from the message receiver [40]. However, this is 

not the only way to achieve synchronization. Some other common mechanisms are 

logical clocks [41][42], vector clocks [43][44], vector timestamps [45], optimistic 

concurrency controls [46], and timing signals. 

To evaluate the synchronization requirements for ACPs, we consider: (a) what are 

the actions that need to be coordinated, (b) where will those actions be executed, (c) what 

kind of state information is needed to achieve the desired coordination, and (d) the 

pertinence or not of the order of the delivered messages. A distributed system may 

perform many different tasks comprised of numerous operations, but rarely all of them 

have to be fully coordinated. In fact, the more independent the individual operations are, 

the more a system can maximize concurrency and increase throughput. From a 

coordination perspective, where the operations take place is actually more important than 

what the operations do. For example, if all of the actions occur in just one process, then 

that process may not need to know anything about the state of the other process. Once 

developers know what operations have to be coordinated and where they will execute, 

they can consider what local or global state information the coordination logic will need. 

Ultimately, the two dimensions of synchronicity are coordination, and ordering of 
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messages. Table 4 shows the rubric to evaluation these two attributes. 

3.4.3. Longevity 

Longevity is the degree to which an ACP can support long-running conversations 

caused by long-running operations. The primary problem for conversation with long-

running operations is that there could be huge span of times when processes are uncertain 

of each other’s states. Consider a simple request/reply conversation where some process 

A sends a request to B, but B takes a long time to execute the requested operation and 

sends back a reply. While waiting for the reply, process A does not know if B received 

the request, has failed, or is just taking a long time. ACPs that support long-running 

operations include mechanisms for exchanging state information independent of results. 

Longevity main and only attribute is its support for long-running operations, see Table 5 

Table 4. Ranking Scale for Synchronicity Attributes 

Ranking 
scale Synchronicity attribute/ranking description 

Coordination 
0 No coordination is needed among the participants 
1 One process can know something about the state of another process; 

the protocol supports actions on one process and guarantees that 
message(s) which need to arrive before those actions take place do so. 

2 Multiple processes can know something about the state of other 
processes; the protocol supports actions being performed on multiple 
processes and guarantees that messages which need to arrive before 
those actions take place do so. 

Ordering of messages 
0 Messages ordering is not a concern 
1 The protocol allows local ordering of message processing 
2 The protocol allows global ordering of message processing 
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for its ranking scale. CommDP’s patterns are analyzed in function of long running 

operations in section 3.6.11. 

3.4.4. Adaptability for Scalable Distribution 

ACPs can support scalability by providing location transparency and/or 

replication transparency [45], and by allowing resources (data, operations, or objects) to 

be distributed across multiple hosts. To understand location and replication transparency, 

consider a website with a large number of resources. It can support scalability by placing 

the various resources on an expandable collection of backend servers and use a front-end 

server to distribute requests from browsers. If the browser does not need to know where a 

resource is actually located, then the system supports location transparency. Similarly, as 

traffic increases, the system could replicate resources across multiple backend servers. If 

the client does not have to know that replicas exist, then the system supports replication 

transparency. Both location and replication transparency simplify scalability. 

Another technique for supporting scalability is allowing complex resources to be 

broken up into smaller resources and distributed across multiple servers. One approach 

Table 5. Ranking Scale for Longevity Attributes 

Ranking 
scale Longevity Attribute/Description 

Support for long running operations 
0 Long running conversation are not a concern 
1 One participant is aware of the another’s state throughout a long 

running operation 
2 All Participants are aware of each other’s states throughout a long 

running operation 
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for doing this is to untangle cross-cutting concerns, like security or logging, from 

complex operations and host these pieces of functionality on proxies [47][45]. An ACP is 

said to be fully scalable if it provides attributes such as location transparency, load 

awareness and load balancing, Table 6 shows the ranking scale for these three attributes. 

While Table 10 presents their analysis in respect to the CommDP patterns. 

 

This quality model helps developers select the most appropriate pattern to apply 

in their implementation of the needed communication protocols. The understanding of 

	
Table 6. Ranking Scale for Adaptability Attributes 

Ranking 
scale Adaptability Attribute/Ranking Description 

Location transparency 
0 Location transparency is not a concern 
1 Resource users do not have to know the network addresses of the 

resource managers hosting the desired resources. 
2 Resources user do not have to know which resource manager is 

hosting the desired resources 
Load awareness 

0 The protocol does not include mechanisms for communicating 
current load information 

1 The protocol requires one or more process to estimate load 
information of other processes 

2 The protocol allows one or more processes to obtain timely load 
information for other processes 

Load balancing and scalability 
0 Scalability and load balancing is not a concern 
1 The protocol supports load balancing across existing process (known 

potential participants) 
2 The protocol supports the dynamic addition / removal of resources 

and conversation participants 
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CommDP patterns is documented using a pattern template defined in the following 

section. 

3.5. CommDP Template 

In [1] CommDP, which is a pattern language that collects the necessary 

knowledge to solve reoccurring problems of ACPS’ design. These patterns are 

documented consistent with other pattern languages, the CommDP patterns are described 

using a template in terms of the problems they address, their contexts, and solutions. This 

template is loosely based on the way Gamma, Helm, Johnson and Vlissides documented 

their patterns [30], referred to here as the GoF template. The main goal is to keep the 

documentation as simple as possible, while still capturing the details of every pattern. 

Whereas, the name, intent and description should be sufficient to give the reader a high-

level understanding of the pattern. Following are the descriptions of the CommDP pattern 

template’s elements. 

3.5.1. Name and Overview 

As with the GoF template, the name uniquely identifies the pattern. Since the 

name will become part of the vocabulary for the pattern language, it is important that it 

captures the essence of the pattern, distinguishes it from other patterns, also it should be 

descriptive, concise and precise. Additional to the name, this section introduces a brief 

description of the pattern’s context in terms of the participants and the messages involved 

in the conversation. 
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3.5.2. Intent 

The intent is an abstract for the pattern. It summarizes the problem, the context, 

and the solutions, particularly in terms of reliability, synchronicity, longevity, and 

adaptability for scalable distributes. 

3.5.3. Description 

The description should explain the problem, context, and solution of the pattern. 

The problem explanation is closely to the Motivation part in the GoF template, in that it 

explains the nature of the reoccurring communication-protocol design problem. It should 

highlight the problem’s need for reliable communications, synchronization, long-running 

conversations, or scalable distribution. 

The context part of the description is like the Applicability section in the GoF 

template, capturing information about when the pattern may be applicable and 

assumptions about the distributed systems in which it may be used.  

The solution is analogous to the Structure component in the GoF template. It 

focuses on the describing protocol design ideas and how they can be adapted. UML 

Sequence diagrams are a useful tool for example message sequences prescribed by the 

solution. Like more the solution captures in general design patterns, a CommDP solution 

is just a partial design; it only specifies certain aspects of a protocol definition that 

address the reoccurring problem in the specified context. A solution may leave significant 

parts of the protocol design unspecified. 

3.5.4. Consequences 

As with the GoF template, the consequences are important part of CommDP 
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pattern definitions because developers will use them to determine if the pattern is a good 

fit for a particular situation. The consequences of CommDP patterns are described in 

terms of the characteristics discussed in section 3.4. The proposed model provides a 

general classification, and explains the consequences of the pattern in more detail. 

3.5.5. Known Uses 

Like the GoF template, this part references known instances of the pattern in 

production systems, i.e. protocols or systems that implement the specific pattern. 

3.5.6. Aliases and Related Work 

This section lists aliases that exist for the pattern. It combines two elements of 

different pattern languages by similar names or intents, they may or may not pre-exist. 

This section also contains relevant books, pattern languages, or articles where the pattern 

has been used to solve specific reoccurring problems by different authors. 

3.5.7. Examples of Applications 

This section shows actual examples of how the pattern is being or can be applied 

or adapted. It describes the example, its fitness according to the proposed model and a 

scenario describing the messages and their sequences. 

Different authors have defined pattern languages related to distributed or client-

server applications, namely, design patterns for communication service design patterns 

service[51], pattern oriented software architecture [19], patterns of enterprise application 

architecture [52]. Nevertheless, none of them deal with the design of communication 

protocols at any level of the layer model (section 3.3.1). 
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3.6. CommDP Patterns 

CommDP can help developers understand existing reusable solutions and how 

those solutions might apply to their situations. Before launching into a description of 

CommDP’s patterns, it is important to first introduce three fundamental building blocks 

for all ACPs: point-to-point send, multicast, and broadcast. These are Idioms instead of 

patterns because their usage depends on the lower layer communication protocols and 

because, by themselves, they do not address the qualities discussed in 3.4. 

A point-to-point send is the transmission of a single message from one process to 

another, such as a message sent over a TCP connection or via a UDP datagram. An 

underlying communication subsystem may provide some reliability relative to the 

transmission but, at the application-level, a single message does not allow the sender to 

know if the receiver processed the message or anything about the receiver’s state, nor 

does it help with longevity or adaptability for scalable distribution. 

A multicast send is the transmission of a single message to a set of receiving 

processes [2]. It can be implemented at virtually any layer in communication hierarchy, 

including the physical layer. Mechanisms for identifying the group of receiving processes 

vary from sender determined to receiver subscriptions. By themselves, multicast are 

idioms for ACPs. The same is true for broadcasts, which also transmit messages to 

multiple receivers [2]. 

The patterns currently in CommDP are grouped into three categories. 2 

participant, this means that there are only two processes involved in the communication. 

The second category is 3+participant, similar to the previous category, its classification 
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terminology expresses the number of processes involved in the conversation. A third 

category introduces two new patterns to CommDP. This category is called Composition. 

See Table 7 for a complete list of the patterns currently in CommDP. 

 

The following paragraphs contain descriptions of seven out of the eleven patterns 

following the language template defined in section 3.5. Every pattern may be composed 

of other patterns, except, the RR pattern, which becomes part of every peer-to-peer 

communication, see Figure 11. All other patterns are modeled after this pattern. The 

reused elements that are lent from other patterns are represented in black in every 

message sequence representation. The new elements that correspond to the new pattern 

that is being studied are highlighted on light blue. For example, in Figure 12, the RRA 

pattern is designed over the RR pattern, the new element is the acknowledge message. 

Table 7. CommDP Categories and Patterns 

Category Pattern Acronym 
2 participant Request-Reply RR 

Request-Reply 
Acknowledge 

RRA 

Idempotent Retry IPR 
Intermediate State 
Message 

ISM 

Second Channel 2Ch 
Front End F-E 
Proxy PXY 

3+ participant Reliable Multicast RMC 
Publish-Subscribe P-S 

Composition Sequential Composition SC 
Nested Composition NC 
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Patterns can be used together to solve some requirements that are not covered by a 

single pattern. We propose two composite patterns that will help solving this problem. 

They are Sequential Composite (SC) and Nested Composite (NC). These two patterns are 

not documented using the template pattern, instead they simply give advice on how two 

or more patterns can be used together to solve a communication problem. SC intends to 

use two or more patterns sequentially, i.e. after the final action of pattern A, a second 

pattern will be implemented in a sequential fashion way, pattern A passes the control of 

the conversation to pattern B, and this pattern will finish the conversation. A nested 

composition, on the other side, can include a second pattern in the middle of the 

conversation between process A and process B, i.e. pattern A gives control to pattern B, 

then later it takes the control again and finish the conversation, in fact, most patterns ae 

composed by RR. 

IPR and P-S patterns are not covered here, they can be found on their respective 

authors’ publications: Service Design Patterns by Daigneau [51] and Pattern-Oriented 

Software Architecture Volume 4 by Buschmann et. al. [19]. For their comprehension 

	
Figure 11. Request-Reply Pattern Structure. 
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related to the language we present brief descriptions of them. As other patterns may 

appear afterwards, they will be defined on the CommDP wiki [53] 

[http://commdp.serv.usu.edu], and in future work. 

3.6.1. Request-reply Pattern 

Name and Overview: 

The Request Reply (RR) pattern is perhaps the most pervasive protocol design 

pattern; instances or applications of this pattern can be seen in the vast majority of 

modern communication protocols, including protocols in layers below the application 

level. It simply involves one process sending a message (a request) to another one and 

waiting for a reply from that process. 

Intent: 

RR addresses the problem where a process, A, needs to access or use shared 

resources in another process, B, with a reasonable degree of reliability and synchronicity. 

The solution consists of A sending B a message (i.e. a request) and B sending back a 

message (i.e. a reply) after processing the request. For A, this simple mechanism provides 

a modest level of reliability and synchronization, because the reply proves that B received 

the request and can provide relevant information about B’s state. Furthermore, if A does 

not receive a reply within a specific amount of time (i.e., a timeout), it can resend the 

request. It can continue to timeout and retry until it eventually receives a reply or it 

exceeds some maximum number of retries. This “timeout/retry” behavior is the essence 

of the RR pattern, see Figure 11. 
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Description: 

a) Problem: One process A (client) needs to access a shared resource or service 

provided by another process B (a resource manager), with a modest degree of 

reliability. 

b) Context: There is no guarantee of “at most once” semantics needed for the execution 

of the requested service. 

c) Solution: The client initiates the conversation by sending a request to resource 

manager, which receives the request, processes it, and sends by a reply. The client 

waits for the reply for a certain amount of time, know as the timeout. If it arrives, the 

conversation finishes successfully. If not, the initiator tries sending the request again. 

The initiator will eventually give up after a certain number of retries, know as the 

retry max. This basic behavior is referred to as timeout/retry. A possible variation is 

that a Request is sent and a Reply is not expected. The following are elements of a 

design pattern solution: 

• Participants: 

o Initiator 

o Responder. 

In a client-server architecture and in many distributed systems, in general, the 

client is a conversation initiator and the resource manager is a responder 

• Messages: 

o Request 

o Reply  
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• Scenario: 

o Initiator -> |Request| -> Responder 

o (Responder processes the Request) 

o Responder -> |Reply| -> Initiator 

• Semantic behavior: 

o After the Initiator sends the Request, it waits for the Reply, up to x time 

units (the timeout) 

o If the reply does arrive with timeout, the Initiator response the Request 

o Attempts are repeated up to y times (the retry max) 

Consequences: 

Because a message is sent from A to B and a reply is sent back (when B is 

operating as expected and messages are delivered successfully), the pattern can provide a 

modest amount of reliability and synchronicity. RR's simplicity allows instances of it to 

be aggregated into more complex protocols. Also because of its simplicity, it can be 

easily combined with other patterns. 

Known uses: 

RR is typically found in: Connectionless communications such as basic HTTP 

implementations, one way communications, non-reliable communications, asynchronous 

calls, basic patterns to be reused in other communication patterns, and RPC 

implementations.  
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Aliases and Related Work: 

This pattern can also be found classified under the following names: Request-

Response [29], Request-Reply [29], Single-Request-Response [54]. 

Examples of Application: 

Instances of RR pattern occur frequently in ACP's, including in many standard 

TCP-based ACP's like Echo [55] [56], SNMP's Agent-Manager communication [57] and 

HTTP 1.0 [58]. In some cases, a single instance of the RR pattern comprises the entirety 

for the ACP, as with the Echo protocol. In other cases, many instances of RR are 

integrated into ACPs as in SNMP. Also they are combined with other types of 

communications. Following are scenarios for two ACPs that use RR, namely Echo and 

HTTP1.0: 

a) Echo protocol scenario1: As a Useful debugging and measurement tool: "An echo 

service simply sends back to the originating source any data it receives." [56] 

b) Echo protocol scenario2: An UDP Based Echo Service "Another echo service is 

defined as a datagram based application on UDP. A server listens for UDP datagrams 

on UDP port 7. When a datagram is received, the data from it, is sent back in an 

answering datagram."[56]. 

c) HTTP1.0 Scenario: A client establishes a connection with a server to send a request, 

the client sends the request containing a method, (either GET, HEAD, or POST), the 

URI, protocol version, client information, and an optional body content. The server 

responds with a message containing: protocol version, error (or success) code, server 

information, and perhaps body content [58]. 
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3.6.2. Request-Reply-Acknowledge Pattern 

Name and Overview: 

The Request-Reply-Acknowledge (RRA) pattern, see Figure 12, is a protocol 

design pattern specially concerned with implementations of "at most once" semantic [59], 

where the server stores (caches) its reply data in case of a duplicate request, to save 

processing time for a faster response. Eventually after receiving the acknowledgment, the 

server disposes of the temporal data, and terminates the conversation. A as much as B are 

well informed about each other state. At most once semantics, assures that the server 

executes the request at most once, even when A sends duplicated requests [60]. RRA 

pattern is usually combined with idempotent retry to allow the "at-least-one" semantics 

[61] additional to the at-most-once semantic. 

 

Intent: 

The RRA pattern extends RR solution with a third message (an 

acknowledgement) that A sends to B after receiving the reply, and gives B a timeout/retry 

	

Figure 12. Request-Reply-Acknowledge Pattern Structure. 



	
	
	

61 
	
behavior with respect to the sending of the reply and waiting for an acknowledgement. 

This pattern is useful in situations where significant processing may occur on A after 

receiving the reply or when it is problematic for B to reprocess duplicated requests caused 

by A’s timeout/retry behavior. With this pattern, instead of reprocessing duplicate 

requests, B simply caches its replies and resends them to A when necessary. The 

acknowledgement tells B that A has received the reply and, thus, removes it from its 

cache. This pattern offers more reliability and synchronization than RR, but at the cost of 

an additional message. 

Description: 

a) Problem: A client needs to access a shared resource (e.g., a service) provided by 

resource manager, with a high degree of reliability. 

b) Context: “at most once” semantics needed for the execution of the requested service, 

i.e. the responder saves the previous requests, in case of duplicate requests, it replies 

back without need of processing. The server saves all requests. Once the server 

receives the acknowledgement, it safely discards that information [59]. 

c) Solution: The client initiates the conversation by sending a request to the resource 

manager, it receives the request, processes it, and sends by a reply. The client has a 

timeout/retry behavior while waiting for the reply. When it gets the reply, it sends 

back an acknowledgement (message has been received) to the Responder. The 

Responder has timeout/retry behavior while waiting for the acknowledgement. 

Additionally, the server may cache its reply processed data. 

• Participants: 
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o Initiator 

o Responder. 

• Messages: 

o Request 

o Reply 

o Acknowledge (Ack)  

• Scenario: 

o Initiator -> |Request| -> Responder 

o (Responder processes the Request) 

o (responder caches the Reply) 

o Responder -> |Reply| -> Initiator 

o Initiator -> |Ack| -> Responder 

• Semantic behavior: 

o The Initiator has a timeout/retry behavior on the Reply. 

o The Responder may save the Request to save processing time in case of a 

duplicate request 

o When the Initiator receives a Reply, it sends back an Ack and considers 

the conversation successfully completed. 

o The Responder has a timeout/retry behavior on the Ack. 

o When it receives the Ack, it considers the conversation successfully 

completed and removes the previous request from its cache memory. 
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Consequences: 

One message is sent from A to B with a high level of reliability and synchronicity 

allowing "at most once semantics" implementations, i.e. B knows that its Reply was 

received and can remove its temporal (cached) processed reply from its memory. 

Known uses: 

RRA is typically found in: Reliable communications, secure communications, 

connection-oriented communications such as the establishment of an HTTPS 

communication, communications that may need re-transmissions, one way and two way 

communications, synchronous calls, designing Remote Procedure Calls (RPC) 

applications, basic pattern to be reused in other communication patterns that need a good 

level of reliability, stateless servers. 

Aliases and Related Work: 

Aliases 

This pattern can be implemented as Request-Reply with Piggy-Backed 

Acknowledgements. 

Related Work 

• Modeling and Formal Verification of Communication Protocols for Remote 

Procedure Call [62]. 

• Modeling and Verification of Some Communication Protocols [63]. 

• Request-Reply-Acknowledge Protocols (section 20.6) [59]. 

• The Constrained Application Protocol -CoAP (RFC7252 [64]) for improving 
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REST through TCP performance [65]. 

Examples of Application: 

Instances of RRA occur when the server needs to know that its request was 

properly received by the client. One typical example is the RPC protocol over UDP [61], 

where the RCP application must implement its own acknowledgement protocol, which is 

usually the reply from the client to the server saying that the request was properly 

received. This is used specifically to implement the "at most once and exactly once 

semantics", so when the resource manager receives its acknowledge, it discards its 

cached information. A variation of this protocol can be found on Network File 

Sharing write() operations [61], where an acknowledge can be included in the reply 

message, to tell the client that the data was received and processed. 

a) RCP over UDP Scenario: The client sends a request to the server, in the reply, 

the server can attach the ACK request, then the client sends another ack. A 

timeout period of 0.5 to 1.0 seconds could be useful in these cases [61]. 

3.6.3. Idempotent Retry Pattern 

The Idempotent Retry pattern (IPR) [51] captures a different solution to the 

problem of processing duplicate requests. Like RR, its solution consists of A sending a 

request to B with a timeout/retry behavior and B sending a reply back to A. But, unlike 

RR, the semantics of the protocol dedicate the processing of the request must be 

idempotent. This pattern applies to situations where the requested processing is relatively 

light, i.e., less expensive than caching replies. This pattern is completely covered by 

Robert Daigneau [51] in his book Service Design patterns. An example of this pattern 
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applied is WS-Reliable Messaging, a protocol that defines a standard XML- based 

vocabulary, this protocol provides message delivery assurances with the capability of try 

sending messages in case of failed attempts. See Figure 13. 

 

3.6.4. Intermediate State Message Pattern 

Name and Overview: 

The Intermediate State Message (ISM) pattern is perhaps the most used pattern 

for long-running processing requests. Instances of this pattern are found in big data 

processing, online backup systems, cloud-based storage services. It involves one process 

sending a request that needs a long-processing time, to another process, and waiting for 

partial replies (state1, state2, ..., staten) telling something about the state of its request, see 

Figure 14. The initiator process waits for the final reply from the responder to finish the 

conversation. 

Intent: 

ISM, is similar to RR, but addresses the problem of long-running conversations 

	

Figure 13. Idempotent Retry Pattern Structure. 
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due to request actions taking substantial amounts of time to complete. 

Description: 

a) Problem: A client needs to access a shared service provided by a resource manager 

(process B), but the execution of that service is long-running and the client would like 

to know when key milestones in the processing are reached. And at the end of the 

communication B sends the final message to A. 

b) Context: The processing of the request is long-running with intermediate milestones. 

"At most once" semantic [59] is needed. 

c) Solution: After A sends a request to B, it has B send A one or more intermediate 

messages that reflect its current state. For example, B may send a message 

immediately after receiving the request to let A know that it got the request, another 

message when the processing is 10%, another at 20% complete, and so on. Each 

 

	

Figure 14. Intermediate State Pattern Structure. 
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intermediate message provides state information about B, which improves 

synchronization in the presence of time-consuming actions. The last reply will 

inform A that the process has been completed, and the communication can be 

terminated. B disposes its temporal storage data. 

In a variation of ISM, if some data needs to be sent back to A a piggy-backed 

acknowledge [64] variation implementation could be useful. Additional to the state reply, 

the message could carry back some extra information. 

• Participants: 

o Initiator 

o Responder. 

• Messages: 

o Request 

o State1 

o State2  

o ... 

o Staten 

o Reply 

• Scenario: 

o Initiator -> |Request| -> Responder 

o (Responder starts some processing) 

o Responder -> |State1| -> Initiator 

o (Responder do more processing) 
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o Responder -> |State2| -> Initiator 

o (Responder do more processing) 

o … 

o Responder -> |Staten| -> Initiator 

o (Responder do more processing) 

o Responder -> |Reply| -> Initiator 

• Semantic behavior: 

o The Initiator and Responder have similar behavior to the corresponding 

processes in the RR pattern, except that the initiator needs to receive the 

state of the processing request and waits (locked by the responder) until it 

receives the reply. A timeout/retry behavior is implemented based on the 

n-states and the reply messages. 

Consequences: 

One message is sent from A to B requesting long processing in B with a high 

level of Reliability and keeping both processes fully synchronized. The request is 

processed by B and it kept informed A about its processing request at all time. 

Known uses: 

Typical uses are for: Remote File Managers, remote backups, long transaction 

processes, and remote file transfers in some cases. The latter is more directly related to 

the Second Chanel pattern (2Ch) though. 
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Aliases and Related Work: 

Related Work 

• Long-running transactions [66] 

• REST and long-running jobs [67]. Although this is an asynchronous 

implementation, it is related to long-running processing needs. 

• Protocols For Long Running Business Transactions [68]. 

Although the next three implementations are directly related to multiple 

responders, they also deal with long-running processing requests. 

• Participation Protocol Framework [69] 

• WS Coordination Framework, which supports long-running transactions [70]. 

• Collaboration Protocol Agreement [71] 

Examples of Application: 

Implementations of this type of behavior are file transfer protocol applications 

such as FTP (RFC959) [72] or wget [73]. Also Remote Backup Services [74] such as 

those provided by cloud computing storage and database services. Actually, the ftp 

protocol is more a complete implementation of a 2Ch pattern, but its implementation of 

the data connection relies on the ISM pattern. Besides this, anything on a website with a 

progress bar, which may rely on web sockets is a clear implementation of the ISM 

pattern. 

a) FTP Data Connection Scenario: Pre-connection actions 

• The user Data Transfer Process (DTP) sends file data to the DTP server or vice-

versa. 
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• The data is sent until EOF is received. 

3.6.5. Second Channel Pattern 

Name and Overview: 

The Second Channel pattern (2Ch) is found in applications where there is need of 

extensive data interchange and the messages can not be used as a carrier for control 

messages, see Figure 15, i.e. piggy backed acknowledge is not allowed. Instances of this 

pattern can be found in long running conversations such as the file transfer protocol, 

where two different ports are used. One for data transfer and one for controlling the 

transference. Instances of 2Ch can be found in Real Time Communications (RTC) in the 

browser, for example applications that use the WebRTC [75] framework, where a peer-

to-peer communication is open, and a signaling method is used for control messages and 

to coordinate the communication. Typical implementations are text, audio and video 

chatting [76]. The File Transfer Protocol (FTP) and its variations are classical examples 

of this pattern. 

Intent: 

The 2Ch pattern is for situations involving long-running conversations, but ones 

dominated by significant amounts of data transfers instead of time-consuming actions. 

Because large data transfers can delay intermediate state messages, this pattern’s solution 

suggests opening a second communication channel between A and B that is dedicated to 

data transfer, leaving the original communication channel available for intermediate state 

or control messages. 
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Description: 

a) Problem: One process wants to exchange data with another process, and at the same 

time, it needs to control the conversation. 

b) Context: The amount of data is large or the data exchange needs to occur over a long 

time. 

c) Solution: The two processes coordinate on the creation of a second, dedicated 

communication channel for the exchange of sending messages, leaving the first 

channel open for controlling the conversation. 

A possible variation of this pattern would be the case of a third party process 

handling the control messages. 

• Participants: 

	

	
	

Figure 15. Second Channel Pattern Structure. 
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o Initiator 

o Responder. 

• Messages: 

o Request 

o Chy info 

o State1 

o State2  

o ... 

o Staten 

o Data message1 

o Data message2  

o ... 

o Data messagen 

• Scenario: 

o Initiator -> |Request| -> Responder 

o (Responder opens 2nd communication channel) 

o Responder -> |Chy info| -> Initiator 

o (Initiator connects to 2nd communication channel (Chy)) 

o ASYNCHRONOUSLY: 

o { 

o chx while(messages) 

§ Initiator <-> |State1| <-> Responder 
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§ Initiator <-> |State2| <-> Responder 

§ ... 

§ Initiator <-> |Staten| <-> Responder 

o chy while(messages) 

§ Initiator -> |Data messages| -> Responder 

§ Responder -> |Data messages| -> Initiator 

o } 

• Semantic behavior: 

o The Init Reply (Chy info) should contain information necessary for the 

Initiator to connect to the second communication channel. 

o The Responder’s End Point for the 2nd communication channel must be 

accessible to the Initiator. 

o The individual subsequent replies (Data message interchange) on the 

1st communication channel can follow any appropriate communication 

pattern. 

o The 2nd channel can be bi-directional or uni-directional 

o The data on the 2nd channel can be structured or unstructured 

o Conversation control operations should occur on the 1st channel 

o Conversation is over when, after a timeout, there is no more messages 

Consequences: 

A conversation between A and B, i.e. a synchronized long running message 

interchange between A or B. 
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Known uses: 

2Ch is found in: Long conversations, extensive exchange of messages, real time 

communications, audio chat, text chat, video chat. 

Aliases and Related Work: 

Related Work 

• Message Channel pattern, as part of Interface partitioning section in 

Pattern-Oriented Software Architecture Volume 4, (POSA 4), chapter 

10 [19]  

• WebRTC Framework [75] 

Examples of Application: 

2Ch pattern occurs in applications such as file transfer protocols, as is the case of 

ftp [77], which uses a separate control and data connections for communication between 

the client and the server. A complete description of FTP can be found at RFC959 [77]. 

Other applications can be peer to peer text, audio and video chat applications, for 

example, implementations using the WebRTC framework [75]. 

a) FTP Scenario:  

• The User-protocol interpreter initiates the control connection, 

• Ftp commands containing the action, data port, transfer mode, representation type, 

and structure are generated and transmitted to the server via the control 

connection. 

• Standard replies are sent from Server Protocol interpreter back and forward. 
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• The user Data Transfer Process (DTP) listens on the specified port,  

• And the server DTP initiates the data connection and data transfer according to 

the provided commands. 

3.6.6. Front End Pattern 

Name and Overview: 

The Front End pattern (F-E) is concerned with decoupling the initiator from the 

responder. In this sense, the Front End process offers an interface to the initiator, but, it 

allows B to reply back directly to A, see Figure 16. The localization of the Resource 

Manager is handled by the Front-End process to provide alternative implementations in 

case of extreme load or failures of the resource managers. 

 

Intent: 

 F-E addresses the problems of making the location of shared resource transparent 

to the client, allowing the number of resources to change dynamically. It has a resource 

client send requests to a front-end process that automatically redistributes them to 

 

	

Figure 16. Front End Pattern Structure. 
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appropriate resource managers, B processes. After processing the request, a resource 

manager replies back to the client directly. The front-end process can use a variety of 

criteria to decide how to redistribute requests, including request type, resource type or 

identity, and resource manager load. By itself, this pattern’s primary focus is on the 

distribution and scalability of resources.  

Description: 

a) Problem: A client needs to access a shared resource or service replicated across one 

or more resource managers, with a modest degree of reliability. 

b) Context: There is no need to guarantee “at most once” semantics for the execution of 

the requested service. The system needs to be scalable or handle spikes in load. 

c) Solution: The solution is similar to RR, except the request is directed to a front-end 

process, which then delegates it to one of the resource managers. The resource 

manager responds back to the requesting process directly. 

• Participants: 

o Initiator 

o Front End 

o Responder. 

The client is a conversation initiator and the resource manager is a responder, 

the Front End is an extra layer of resource manager that forwards the client 

request and the requestor’s end point to the actual resource manager, so the 

Responder can reply back directly to the Initiator. 

• Messages: 
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o Request 

o Reply 

o Initiator End Point 

• Scenario: 

o Initiator -> |Request| -> Front End 

o Front End -> |Request and Initiator End Point| -> Responder 

o (Responder processes the Request) 

o Responder -> |Reply| -> Initiator 

• Semantic behavior: 

o The Initiator and Responder have the same behavior as in the RR pattern 

o The Front-end forwards the Request with the End Point of the Initiator to 

the Responder 

o The Responder replies directly to the Initiator 

o The End Point has to be accessible to the Responder, so the Front End and 

Responder should be on the same network 

o The Front-end does not need to track the conversation 

Consequences: 

One message is sent from A to B with a certain level of reliability and 

synchronicity through a third process (Front End) that handles A's request. B sends back 

a reply message to A hiding B’s details. This pattern provides a high level of scalability. 

Known uses: 

F-E pattern is found usually in: Load balancers and authorization services such as 
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a simple login.  

Aliases and Related Work: 

Aliases 

the requestor [78] 

Related Work: 

The authenticator pattern [79], Media Type Negotiation [80] [51]; requestor 

pattern, as part of the Distribution Infrastructure section in Pattern-Oriented Software 

Architecture Volume 4, (POSA 4), chapter 10 [19]. 

Examples of Application: 

Occurrences of this pattern can be found in implementations of load balancers as 

is the case of NGINX. NGINX is an open-source light weight web server or proxy server. 

It loads balance requests across multiple application instances for optimizing resource 

utilization, maximizing throughput, reducing latency and ensuring fault-tolerant 

configurations [81] [82]. 

NGNIX contains configurations for multiple application instances. The 

configurations for these application instances can be static or can be created on the fly. It 

can use a variety of load balancing methods such as round-robin, ip-hash, least-connected 

server, generic hash, or server with lowest average latency. NGNIX as a front-end can 

support many other rich features besides just load balancing, such as re-routing the 

requests according to their supported sessions, authorization(s), health monitoring of the 

running servers, and identifying malicious requests. 
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a) NGINX Scenario: 

• Any web-based client request first goes to the NGNIX load balancer 

• Based on the request header “Host”, NGINX decides which of the listed server(s) 

will process the request 

• In case of multiple hosts, it can apply one of the load-balancing methods 

described above. 

• If NGINX could not find any better information, it will re-route the default server 

• Once a relevant server processes the request, this server sends back the reply to 

the client and does not re-route to NGINX first. 

3.6.7. Proxy Pattern 

Name and Overview: 

The Proxy pattern (PXY) is perhaps the most used to decouple a conversation 

between a client and its resource manager(s), see Figure 17. Similar to F-E, this pattern 

offers location transparency and authentication, data format conversions and protocols 

compatibility. Instances of this pattern can be seen in multi-platform architecture 

applications such as CORBA [83], especially in its Object Request Broker ORB 

implementations, in SOAP-REST-SOAP API conversion services, in web services that 

provide different data formats such as: XML, JSon, Plain text, SQL. 
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Intent: 

Like F-E, PXY introduces a process between a resource client and a resource 

manager. However, the intermediate process, called a proxy, serves other functional 

purposes besides re-distribution of the requests, for example it may provide 

authentication, access control, audit logging, and data transformation functionality. Also, 

the resource manager returns replies through the proxy to client, completely isolating the 

client from the resource manager. 

Description: 

a) Problem: A client needs to access a shared resource or service provided by one or 

more resource managers, but the resource managers are not directly accessible to 

clients. 

b) Context: No “at most once” semantics needed. The resource manager needs to be 

protected against direct access or attacks. The system needs to be scalable or handle 

spikes in load. 

	

Figure 17. Proxy Pattern Structure. 
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c) Solution: The solution is similar to the RR with a Front-end pattern, except that the 

Front-end is replaced with a proxy process and replies are returned through a proxy 

instead of directly to the initiator. 

 
• Participants: 

o Initiator 

o Proxy 

o Responder 

The client is a conversation initiator and the resource manager is a responder, 

the Proxy is an extra layer that forwards the client request to the resource 

manager and also forwards the reply from the server to the client. 

• Messages: 

o Request 

o Reply  

• Scenario: 

o Initiator -> |Request| -> Proxy 

o (Proxy processes |Request|) 

o Proxy -> |Request| -> Responder 

o (Responder processes |Request|) 

o Responder -> |Reply| -> Proxy 

o (Proxy processes |Reply|) 

o Proxy -> |Reply| -> Initiator 

• Semantic behavior: 
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o The Initiator and Responder have the same behavior as in the RR pattern 

o The Proxy forwards messages from the Initiator like a Front-end, but no 

End point is needed. 

o The Proxy has to keep track of each conversation in progress so it can 

forward a Reply to the correct Initiator and in the correct conversation 

context, i.e. Proxy must handle Initiator and Responder's end points. 

Consequences: 

One message is sent from A to B with a certain level of reliability and 

synchronicity through a third process (proxy) that handles A's request. B replies back to 

the proxy and this sends the reply to A. This pattern provides a high level of scalability, 

also it protects process B from attacks, by hiding its location, i.e. location transparency. 

Known uses: 

Login services, security, object brokers, middleware design, and resources 

protection. In general, applications that need access or location transparency.  

Aliases and Related Work: 

Aliases 

Client Proxy [19]  

Related Work 

Service controller [28] [51], message translator [19], client request handler pattern 

as part of the distribution infrastructure section in Pattern-Oriented Software Architecture 

Volume 4’s chapter 10 [19], client proxy pattern as part of distribution infrastructure 
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section in POSA 4’s chapter 10, proxy pattern as part of interface partitioning section in 

POSA 4’s chapter 10, broker pattern as part of interface partitioning section in POSA 4’s 

chapter 10. 

Examples of Application: 

HTTP Proxy, DNS (cached responses and reply back), VPN are some protocols 

implemented using the PXY pattern. 

3.6.8. Reliable Multicast Pattern 

Name and Overview: 

The Reliable Multicast pattern (RMC) is widely used in multicast or broadcast 

communication systems, where the request of processing is delegated to n Resource 

managers (RM), where n>1, and the execution needs to be synchronized in the n RMs. It 

may need a simultaneous processing of the request in every responder. Instances of this 

pattern can be found in bank transactions, parallel computing, etc. 

Intent: 

 The RMC pattern, Figure 18, builds on the multicast idiom to provide reliability 

and synchronization among a group of processes. Its solution is a protocol that starts with 

a process A sending a request message to a group of process, B = { b1, .., bn }. Each 

process bi sends a reply back to A when it receives the request and is ready to process it. 

After A receives reply from all B processes, then A will multicast a go-ahead message 

back out to all B, this message indicates that they can proceed with the processing of the 

request. In this way, the execution of the request is synchronized among all of 
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the B processes. If A fails to receive a reply from every B process, it can resend the 

request to some or all of them until it gets a reply from all of them or terminates the 

conversation as failed. This pattern focuses on providing strong reliability and 

synchronization, but can also help with scalable distribution of resources. 

 

Description: 

a) Problem: A client needs to access resources provided by one or more resource 

managers. And the resource managers have to process the request all at-once, in a 

transaction fashion-way. 

b) Context: There is need of synchronized execution of a set of requests sent by only one 

initiator and several responders. 

c) Solution: The client initiates the conversation by sending n requests to n resource 

managers, which receive the request, but do not process it immediately. Every 

	

	

Figure 18. Reliable Multicast Pattern Structure. 
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resource manager sends back an acknowledgement telling the initiator that they 

received the request and are ready to process it. The Initiator will send a "go-ahead" 

message to every RM after it has received the n acknowledge messages. RMs process 

all the requests. 

One variation of RMC would be its combination with RRA after processing the 

request in every RM. 

• Participants: 

o Initiator 

o Responder1. 

o Responder2. 

o … 

o Respondern. 

The client is a conversation initiator and there is a set of resource managers 

that behaves as responders, every responder is responsible for sending an Ack, 

and the client controls the execution of the requests in the responders. 

• Messages: 

o Request 

o Ack1 

o Ack2 

o … 

o Ackn 

o Go ahead 
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• Scenario: 

o (A gets a list of Responders) 

o Initiator -> |Request| -> {Responder1, Responder2, ..., Respondern} 

o Responder1 -> |Ack1| -> Initiator 

o Responder2 -> |Ack2| -> Initiator 

o ... 

o Respondern -> |Ackn| -> Initiator 

o Initiator -> |go ahead| -> {Responder1, Responder2, ..., Respondern} 

o Synchronously  

§ (Responder1 processes |Request|) 

§ (Responder2 processes |Request|) 

§ ... 

§ (Respondern processes |Request|) 

• Semantic behavior: 

o After the Initiator sends the Request to n-Responders, it waits for the 

acknowledgement of every Responder, up to x time units (the timeout). 

o Responders wait for "go ahead" message from Initiator before start 

processing the Request. 

o The Initiator has a timeout/retry behavior on the Acks. 

o When it receives the n-Acks, it sends the "go ahead" signal to the n-

Responders 

o Initiator considers the conversation successfully completed 
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Consequences: 

A sends a request to multiple responders, this request is processed in all the 

responders synchronously with a good level of reliability. 

Known uses: 

RMC pattern can be found in many broadcasting and multicasting applications 

such as: Multicast communication, conference groups, news feeds, message distribution, 

wireless communications, digital-TV for content protection / paying users, ads, software 

updates, software deployment. 

Aliases and Related Work: 

Multicast protocol [84]  

Examples of Application: 

A well-known application of this pattern is JGroup, JGroup communication uses 

the term group and member. A member is a node, i.e. a process residing on one or 

different hosts, and a group is a cluster, which can have one or more nodes belonging to it 

[85, p. 2]. The main component of JGroup is the channel, it is simple and primitive and 

provides asynchronous message sending and reception, similar to UDP. It is connected to 

a protocol stack. Whenever the application sends a message, the channel passes it on to 

the protocol stack, which ultimately gets pushed on the network. Similarly, the protocol 

stack receives the message and ultimately pushes it on to the channel [86]. 

a) JGroup scenario: In this reliable group communication, processes can join a group, 

send messages to all members or single members and receive messages from 
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members in the group. A group is identified by its name. When a process joins a non-

existing group, the group will be created automatically. The system keeps track of the 

members in every group and notifies group members when a new member joins, or an 

existing member leaves or crashes. 

3.6.9. Publish-Subscribe Pattern 

Finally, the Publish-Subscribe [19] pattern (P-S) is a powerful mechanism for 

decoupling message senders (publisher) from message receivers (subscribers) see Figure 

19. With this pattern, an intermediate process acts as a store-and-forward buffer for 

message transmission with the capabilities for managing subscribers and delivering 

individual message to multiple subscribers. We refer to this pattern as explained in [19]. 

 

3.6.11. Quality Analysis of CommDP Patterns 

Developers can select the appropriate pattern according to the application needs 

and its consequences based on the RSLA qualities. Following are the analyses of each 

	

Figure 19. Publish-Subscribe Pattern Structure. 
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RSLA quality based on their attributes. This arbitrary scale was explained in section 3.4. 

Table 8. Analysis of Reliability for CommDP’s Patterns 

Category Pattern 

Reliability attributes 

Failure 
Detection 

Failure 
Discrimination 

Failure 
Handling 

Handling of 
Duplicate 
Messages 

2 participant 

RR 1 1 1 1 
RRA 2 1 1 1 
IPR    2 
ISM 1 1   
2Ch     
F-E     
PXY  1 1 1 

3+ participant 
RMC 2 1 1 1 
P-S    1 

Composition 
SC     
NC     

	

Table 9. Analysis of Synchronicity of CommDP’s Patterns 

Category Pattern 

Synchronicity attributes 

Coordination 
Message 
Ordering 

2 participant 

RR 1  
RRA 2  
IPR   
ISM 2  
2Ch   
F-E   
PXY   

3+ participant 
RMC 2  
P-S   

Composition 
SC   
NC   
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Finally, when we need to select a specific pattern for a protocol, we can, first, 

determine a binary selection, where the protocol is analyzed based on the 4 RSLA 

Table 10. Analysis of Adaptability for Scalability of CommDP’s Patterns 

Category Pattern 

Adaptability for Scalability 

Location 
Transparency 

Load 
Awareness 

Load 
Balance / 

Scalability 

2 participant 

RR    
RRA    
IPR    
ISM    
2Ch    
F-E 2 1 2 
PXY 2 2 2 

3+ participant 
RMC 1   
P-S 2   

Composition 
SC 

Determined by 
subpart 
patterns 

Determined 
by subpart 

patterns 

Determined 
by subpart 

patterns 

NC 

Determined by 
subpart 
patterns 

Determined 
by subpart 

patterns 2 
	

Table 11. Analysis of Longevity of CommDP’s Patterns 

Category Pattern 
Longevity attributes 

Long Running Operations 

2 participant 

RR  
RRA  
IPR  
ISM 1 
2Ch 2 
F-E  
PXY  

3+ participant RMC  
P-S  

Composition SC  
NC  
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qualities, see Table 12. Then we match this requirement with the sub-qualities, and we 

get one or more choices of patterns. If we get more than one optional patterns to get the 

best option, we analyze which is the pattern that possesses the highest ranking values. 

For example if we need to implement a protocol for file transfer, that supports 

reliability and longevity, and is not concerned with Synchronicity and Adaptability, 

possible options, according to the reliability sub-qualities, would be RR, RRA, ISM, 

PXY, and RMC, see Table 8. We also need that the protocol supports Longevity, hence 

according to Table 11, there are two possible patterns, ISM and 2Ch. Evaluating both of 

the RSLA qualities, it is clear that the chosen pattern is ISM. Same analysis can be done 

for the other protocols shown in Table 12. 

3.6.10. Pattern Composition 

Patterns are rarely used in isolation; instead, developers combine their solutions to 

solve complex problems. Virtually any of the CommDP patterns could be combined with 

any other pattern, but the more useful combinations are ones that have complimentary 

characteristics, like Request-Reply with Second Data Channel or Request-Reply 

Table 12. Application Examples to Select the Appropriate Pattern 

Domain R S L A Advised Pattern (s) 
Files Transfer X   X   Intermediate State 
Chatting   X X X Second Channel + Front End 
Medical X X    X Reliable Multicast + Second Channel 
Transportation  X X X X Intermediate State Message + proxy 
Security (log on, log off) X     X Publish-Subscribe 
news X     X Reliable Multicast NS/OR Publish-Subscribe 
Mail/messages X   X   Intermediate State Message 
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Acknowledge with Front End. 

To ensure that the CommDP pattern set was as minimal as possible, we did not 

include in any pattern in CommDP that was simply an aggregation of two or more patterns. 

For example, there is a common type of distributed system that deals with information flow 

and processing. In such systems, a process A might send a request to B through a series of 

intermediate proxy-like processes that transform or augment data in request on its way to 

B. At each intermediate step, a reply is sent back to A, informing it of the message’s 

process. Eventually, when the transformed message arrives at B and processes it, then B 

sends a final reply message back to A. This particular solution offers good reliability, 

synchronization, longevity, and adaptability to scalable distribution, but it is actually just a 

composition of PXY (applied perhaps multiple times) and ISM. 

3.7. Summary and Future Work 

CommDP quality model definition led us to conclude that we need to add patterns 

to cover the attributes that the current patterns in CommDP are not able to implement. 

For example, go-back-n and selective reject patterns would implement more reliable 

protocols. Message-numbers and hold-back queue patterns would implement more 

reliable and synchronized conversations. Load information and Timing information 

patterns would help on improving long running conversations and reliability. 

Other qualities as much as other patterns can be added by collaboration with other 

professionals to improve the wiki, hence CommDP pattern language, its template, its 

qualities, and its applicability can be extended to cover more fields on the communication 

protocols design. 
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To our knowledge, no one has formally identified similar desirable qualities for 

communication software protocols, this set of attributes intends to initiate a discussion on 

the need of a specific quality model that deals with communication software, and also a 

validation of this model is needed in a future research. 

Since every networking application needs some level or synchronicity, every 

pattern provides some synchronicity, i.e. the sender process blocks after sending its 

request. And it will increase its needs accordingly, for example if the two processes 

depend on each other execution for further processing, both processes can be mutually 

locked each other. 

CommDP pulls together reusable solutions to reoccurring design problems with 

ACPs, filling a much needed gap in the knowledge base for developers of distributed 

systems. We have characterized the nature of the problems that the CommDP patterns 

address and the consequences of their solution in terms of four desirable qualities: 

reliability, synchronicity, longevity, and adaptability for scalable distribution. These 

qualities are both instructive and discriminating, in that they can help a developer 

understand the solutions and choose the most appropriate solution for a given situation 

(problem + context). However, more work needs to be done to formalize these qualities 

and to solidify the sufficiency and completeness relative to communication-protocol 

design. 

We intend in future research to use CommDP to improve the learning process in 

students taking courses related to distributed systems. Studying its usefulness in designing 

and developing applications and its effectiveness in the learning and thinking of students 
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could be valuable for the education and enterprise communities. 
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CHAPTER 4 

USING CLOUD SERVICES TO IMPROVE SOFTWARE ENGINEERING 

EDUCATION FOR DISTRIBUTED APPLICATION DEVELOPMENT7 

4.1. Abstract 

Software-engineering education should help students improve other development 

skills besides design and coding. These skills, referred to here as A2R (Analysis to 

Reuse), include analysis, technology evaluation, prototyping, testing, and reuse. The need 

for improved A2R skills is particularly pronounced in advanced areas like distributed 

application development. Hands-on programming assignments can be an important 

means for improving A2R skills, but only if they focus on the right details. This paper 

presents a case study of programming assignments offered in a graduate-level class on 

distributed application development, where the assignments required the students to use 

cloud services and programming tools that were heretofore unfamiliar to the students. 

Direct observation by the instructor and a post-class survey provided evidence that the 

assignments did in fact help students improve their A2R skills. The post-class survey also 

yielded some interesting insights about the potential impact of well-designed 

programming assignments, which in term led to ideas for future research. 

4.2. Introduction 

Imagine yourself at a worktable with four or five of your peers. In the center of 

the table is a pile of seemingly random objects, including two dozen sheets of paper, 

																																								 																					
7 Jorge Edison Lascano, Stephen W. Clyde 
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paper clips, a small roll of tape, pins, and several small wooden sticks. A quick glance 

around the room reveals a dozen other groups just like yours with similar piles in front of 

them. An individual, who is introduced as your customer, stands at the front of the room 

and says that you have 30 minutes to build a “great” tower. What do you do first? How 

do you put all that you know about paper, clips, tape, wooden sticks, etc. into practice to 

satisfy the customer’s request for a tower and do so within 30 minutes? 

Such is the typical scene on the first day of class in the undergraduate 

introductory course on software engineering at Utah State University (USU). In general, 

all the students have a good working knowledge of objects at their disposal and even 

some inkling on how they may combine several of them to create new more structural 

useful objects. Most groups succeed in creating something that stands on its own and 

roughly resembles a tower within 30 minutes. However, at the end of that time, the 

customer surprises the students by giving them a few more objects, e.g., more paper and 

tape, and asks them to take 15 more minutes to make their towers taller or stronger. Many 

groups fail to do so in the limited allotted time. In fact, about half of them end up 

destroying their original towers in the attempt. 

Afterwards the instructors and students discuss the experience in terms of what 

worked well for the group, particular difficulties that hindered progress, how the group 

organized itself, and how they decided on an overall approach. The discussion usually 

leads to some very interesting comparisons with common aspects of software 

engineering, such as group work, tool evaluation, prototyping, design patterns, testing, 

extensibility, reuse, and more. Over the years, one of the authors, who is a long-time 
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instructor for this introductory software engineering course, has observed the following: 

1. Virtually no student or group ever asks the customer what a “great” tower means. 

Most assume that they already know and proceed to build without each 

researching the requirements. 

2. Virtually no student or group ever looks around to see what other groups have 

done or are doing, evaluates the ideas they see, and then tries to adapt or improve 

on them. 

3. Only a small percentage of the groups try prototyping an idea to explore its 

characteristics. 

4. Only rarely does a group test the properties (e.g., stability or strength) of a 

component or the whole tower and then try to make modifications to improve 

those properties. 

5. Only a few groups try to establish patterns or “best practices” either in their 

building processes or the components they create, and then reuse those ideas. 

Each of these observations represents a potential engineering pitfall or negative 

practice that can lead to inefficiency or failure. Software-engineering education needs to 

help students avoid these and other related pitfalls by connecting theory with best 

practices in the context of real non-trivial problems [124]. Doing so goes well beyond 

teaching the “How To’s” of a specific technology, like a programming environment. 

Instead, it requires educators and students alike to address the “How To’s” of the overall 

development process, including: 

1. How do we know when we understand the customer’s problem sufficiently? 
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2. How can we benefit from existing technology or from what others have tried in 

the past? 

3. How can we prototype part of a problem or alternative solutions to answer 

critical questions? 

4. How can we test what we build? 

5. How can we find good solutions to reoccurring problems and reuse that 

knowledge? 

More concisely, software-engineering education needs to help students make 

analysis, technology evaluation, prototyping, testing, and reuse an effective and integral 

part of their development activities [124]. Here, we’ll refer to these as Analysis to Reuse 

(A2R) skills. 

The need for better A2R skills is prevalent in every software-engineering domain, 

but is pronounced in the development of distributed applications. Distributed-application 

development, or distributed-system development at large, has all of the challenges of 

traditional software development, plus the complexities introduced by inter-process 

communications, concurrency, the potential of partial failure, and replication that exist 

for performance improvements or fault tolerance [69]. 

Now let us roll our classroom scene forward several years to a graduate software-

engineering class that focuses on distributed applications. Students entering in this class 

have solid foundations in software-engineering fundamentals, programming languages, 

inter-process communications using sockets, and many other areas of computer science. 

Yet, they still need to strengthen their A2R skills, especially in the context of distributed 
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applications, and the best way to do that is through hands-on experience [35]. So, from an 

education perspective, the challenge is to provide realistic and engaging assignments that 

will strengthen the A2R skills and are doable within the allotted time.  

Because distributed applications are relatively complex [125] by their very nature, 

there are two negative tendencies for program assignments in this area: a) abstracting 

away too many interesting aspects of the problem and b) getting bogged down with 

unnecessary application-domain details. 

The first tendency is very common in advanced CS courses, because simpler 

assignments are more manageable, teachable, and easier to fit within a given allotted 

time. Advanced courses usually have to operate within same time constraints as 

introductory courses. Even though, they are more complex, it is essential that advanced 

assignments include reasonable limits on the expected time and effort [125]. Simplicity in 

their design is a necessity and by itself is not a problem. Focusing on the wrong details 

and abstracting away all interesting parts of the problem, however, is a serious real 

pitfall. For example, scalability is a real and very common aspect of most distributed 

applications [69]. Even though removing scalability requirements would simplify an 

assignment, it would rob the students of a valuable opportunity to improve A2R skills in 

a relevant area. 

The second tendency is to allow an assignment to get bogged down in 

application-domain details, shifting focus away from the learning objectives. 

Assignments in advanced courses, like distributed-application development, work best if 

they are grounded in a meaningful real-world domain. However, most distributed 
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applications and their domains are relatively complex. If not careful, an instructor could 

easily use all available time explaining the sample application domain, instead about the 

core course topics. Keeping assignments focused on a small set of functional 

requirements that require minimal application-domain knowledge, is essential to making 

sure that they are doable within time limits and achieve the learning objectives. 

This paper describes a case study of programming assignments conducted in an 

advanced software-engineering class on distributed-application development, where all of 

the assignments required students to use cloud resources for their execution environment. 

The hoped-for result was that the assignments provided students significant opportunities 

to improve their A2R skills, while introducing them to new concepts and development 

tools. Section 2 describes the course’s programming assignments in terms of their 

learning objectives, the application domains that act as backdrops, and their requirements. 

Section 2 also explains the tools and technologies introduced for each assignment. 

Section 3 summarizes the instructor’s observations made throughout the semester and 

assignment design learnings. To evaluate the effectiveness of the assignments, we 

conducted a post-class survey. Section 4 describes this survey and presents the resulting 

raw data. Since the class was a second-year graduate class, the enrollment was small. So, 

we cannot make many generalizations from the survey data. Nevertheless, they do lead us 

to some interesting insights. We share those insights in Section 4.B. Section 5 explores 

related work in software-engineering education using cloud resources and hands-on 

learning. Finally, Section 6 provides conclusions, along with ideas for future research that 

could further advance software-engineering education relative to A2R skill development. 
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4.3. Programming Assignments for a Distributed Application Development Course 

CS 6200 at USU is a second-year graduate course in software engineering that 

focuses on the development of distributed applications. Its prerequisite, CS 5200, 

provides students with a strong foundation in inter-process communication, protocols, 

concurrency, and communication subsystems. CS 5200 is also a programming intensive 

course, which means that students who successfully complete it have confidence in their 

ability to implement non-trivial software systems. The overall learning objectives for CS 

6200 are as follows: 

• Master theoretical elements of distributed computing, including: models of 

computation and state, logical time, vector timestamps, concurrency 

controls, and deadlock; 

• Become familiar with the provisioning and use of virtual computational 

and storage resources in a cloud environment; 

• Become familiar with cloud-based tools for processing large amounts of 

data efficiently; and 

• Become familiar with distributed transactions and resource replication. 

• For the Spring-2015 semester, the homework was broken down into five 

assignments, each lasting two to three weeks. 

4.3.1. Assignments 1 & 2 – Disease Tracking System 

For the first two assignments, the student implemented a set of processes that 

worked together to form a disease tracking and outbreak monitoring system. They had to 

deploy multiple processes on EC2 instances within Amazon Web Services (AWS) cloud. 
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The first type of processes were simulations of Electronic Medical Records Systems 

(EMR’s) that randomly generated notifications of diagnoses for infectious diseases, like 

influenza. The EMR’s sent these disease notifications to Health District Systems 

(HDS’s), which collated diagnoses and then sent periodic disease counts to Disease 

Outbreak Analyzers (DOA’s). Each DOA monitored outbreaks for a single type of 

disease. See Figure 20. Programs Built as Part of Assignments 1 & 2, Plus an Illustration 

of Sample Processes. The specific learning objectives for these two assignments 

included: 

• Review inter-process communications; 

• Become familiar with vector timestamps and how they behave in a distributed 

system under varied conditions; 

• Become familiar with setting up and using computational resources in a cloud, e.g., 

AWS; and 

• Become familiar with setting up a simple name service. 

The students were asked to learn and use Node.js as the primary programming 

framework [27] [126]. Because Node.js was new to all the students, some class time was 

dedicated to teaching Node.js, but only enough to get them started. Their unfamiliarity with 

Node.js was also the reason this first system was split into two assignments. They built and 

tested approximately half of the functionality in the first assignment and the remainder in 

the second. 

To deploy their systems to EC2 instances on AWS, the students had to learn about 

security on AWS, create security keys, and setup their own user accounts using Amazon’s 
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Identity and Access Management (IAM). They also had to setup and learn the AWS’s 

command-line language interface (AWSCLI), so they could automate the deployment and 

launching of their systems. 

4.3.2. Assignment 3 – Twitter Feed Analysis 

In this assignment, the students explored how to process big data using 

MapReduce on AWS and how to configure cloud resources using AWS’s Cloud 

Formation tools. Specifically, they were to capture tweets through Twitter’s API and then 

analyze them for positive or negative sentiment relative to some key phrase, like “health 

care”. The learning objectives for this assignment were as follows:  

• Become familiar with setting up and using MapReduce with a cloud-based 

distributed file system; 

• Become familiar with tools for provisioning collections of resources that are 

needed for a distributed system; and 

	

Figure 20. Programs Built as Part of Assignments 1 & 2, 
Plus an Illustration of Sample Processes.	
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• Explore the types of problems that are well suited for a MapReduce solution 

To complete this assignment, students setup and learned how to use AWS’s S3, 

MapReduce, and Cloud Formation services. Some also used this assignment to learn 

about a Node.js module for working directly with AWS; while others strengthened their 

knowledge of AWSCLI. 

4.3.3. Assignment 4 – Distributed Election 

In this assignment, the students implemented a distributed system consisting of 

dozens of processes that shared access to common data files, which were collectively 

treated as one large shared resource, like a database. One of the processes played the role 

of Resource Manager (RM) and accessed the common data files in response to requests 

from the other processes. If RM died, then the other processes had to detect that failure 

and elect one of the remaining processes to be the new RM seamlessly. The learning 

objectives for this assignment were: 

• Master at least one distributed election algorithm; 

• Master the concept of resource managers for controlling access to share resources; 

and 

• Become more familiar with tools for provisioning collections of resources in a 

cloud. 

To complete this assignment, we allowed students to use any of the tools they had 

learned thus far, but they had to deploy their systems to multiple EC2 instances and 

demonstrate that the system would elect a new RM if the current one was stopped. They 

had to show that the system has as a whole, lost no work. 
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4.3.4. Assignment 5 – Distributed Transactions 

In this assignment, the students had to build a simple transaction management 

system with locking capabilities. Like Assignment 4, this system had to support multiple 

concurrent worker processes, but went a step further in requiring multiple shared 

resources and multiple concurrent RM’s. Each RM had to keep track of a single resource 

and support lock, read, write, and unlock operations on that resource. The system also 

had to include a transaction manager that supported starting, committing, and aborting of 

transactions. Assignment 5’s learning objectives included: 

• Become familiar with locking; and 

• Become familiar with transaction management in a distributed system. 

Like Assignment 4, the students could use any of the tools that they learned to this 

point in completing Assignment 5. 

4.4. Instructor Observations 

Seven students took CS 6200 in the Spring-2015 semester: 5 who were registered 

for credit and 2 who audited the class. It is impossible to recap all that took place during 

the semester, but we summarize a few observations prior to presenting the post-class 

survey to help set the stage for the survey and our conclusions. 

First, we observed that all of seven students started the class with roughly 

equivalent software-engineering backgrounds and programming skills, even though they 

were not all seeking the same degree nor did they have the same programs of study. None 

of the students had used Node.js before and only one had any exposure to cloud 

computing, and that was only a light exposure. 
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Second, we observed that requiring students to setup and managing their own 

cloud resources not only helped them with core concepts and development skills, but it 

also allowed them to improve their A2R skills relative to figuring out what the most 

important requirements were, tool evaluation, and testing. For example, in the first two 

assignments, the students had to deploy their system to EC2 instances. For most of the 

students, this was the first time deploying something that they built to an execution 

environment different from their development environment, along an execution 

environment consisting of multiple virtual machines. It opened their eyes to new 

challenges, such as firewall issues, file permissions, and missing dependencies. Time was 

made available in every class period for them to talk about the challenges that they were 

facing and get ideas from other students or the instructor about how to address those 

challenges. Similar discussion also took place on an online forum. By the end of 

Assignment 2, the classroom and online discussions showed that the students had stepped 

up their efforts to understand the assignment requirements, evaluate the tools available to 

them, and test their work. 

Even though the purposes of Assignments 4 and 5 were considerably different 

from the first three, they possessed some of the same challenges, like resource name 

resolution and deployment into a cloud environment. It was encouraging to see that the 

students solved these problems by adapting techniques used in the earlier assignments 

and improving upon them – evidence of them practicing A2R skills. 

We were happy to see that the students learned some unexpected, but very 

relevant lessons. For example, one student stored his access keys in a text file and 
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committed that file to a public Git repository. It was not long before someone hacked his 

AWS account. Amazon and the student caught the problem relatively quickly and 

simultaneously, but not before the hacker had used over $600 of resources. He ended up 

taking extra time learning more about security from unauthorized use. Thankful, Amazon 

worked with him to recover the expenses, so he did not have to pay for the lost out of 

pocket. Still, it proved to be a valuable learning experience that he will not forget. 

With respect to the selected cloud AWS, we observed that it provided a mature 

and full-featured set of services for the students to learn from. In some areas, AWS’s 

learning curve was steeper than necessary, but with supplementary examples and good 

discussions, it was manageable. From an education perspective, a good thing about AWS 

is that it has features in three main categories: Infrastructure as a Service (IaaS), Software 

as a Service (SaaS), and Platform as a Service (PaaS) [69]. 

One negative experience with AWS occurred during Assignment 3, which 

depended on an Amazon-provided template for setting up a MapReduce cluster. That 

template was changed by its authors in the middle of assignment, causing several of the 

students not to complete all of the requirements. To avoid this problem in the future, the 

instructors will make private copies of public or external resources, so changes to them 

will not affect assignments in progress. 

A. Assignment Design Learning 

When instructors design assignments oriented to networking or distributed 

applications, they need to consider distribution concepts, but at the same time bear in 

mind the limitations for the students’ capabilities and hardware environment. Before 
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cloud resources became available, this typically consisted of one computer [127] or small 

number of computers on a local area network (LAN) in a school lab. Assignments that 

work well on one computer or a LAN may not allow the students to gain appreciation for 

more realistic networking challenges, performance issues, and reliability problems [31]. 

With cloud resources, assignments can now be designed having a broad range of 

resources in mind, while still considering good software-engineering practices for 

analysis, technology evaluation, testing, deployment and even reuse. 

4.5. Post-class Survey 

To assess the value of the programming assignments for CS 6200, we designed a 

post-class survey and conducted that survey with two populations: students registered in 

CS 6200 for credit and students who just audited the class. Those registered for credit had 

to complete all of the assignments to receive a grade; those just auditing the class did not. 

In fact, it is important to note that none of the second group completed any assignment. 

4.5.1. Survey Design 

We organized the survey into two parts. The first part asked students to rate their 

knowledge and skills in areas related to the course and the assignments, as they were 

before the class started, using a 1-to-5 scale. The second part asked them to do the same 

relative to the end of class. 

Table 13 and Table 14 list the concepts (knowledge areas) and skills respectively 

covered in both parts of the survey. The survey used a Matrix Table format, with the 

concepts and skills as rows and possible ratings as columns. See Figure 21 for partial 

view of the survey instrument for Part 1. 
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The difference between each individual’s answers to corresponding questions 

from two parts provides a glimpse of that person’s perceived change in knowledge or 

skill levels as a consequence of the course. 

We could have administered a pre-class survey similar to the first part, but 

considerable differences in each student’s personal rating scheme would likely have 

evolved over the semester, making it difficult to assess perceived change. We could have 

also administered pre and post exams to measure their proficiency objectively, but there 

was no common knowledge basis for a pre exam. So, the study would have degenerated 

into the interpretation of just post exam results. 

4.5.2. Survey Results 

All seven students completed both parts of the survey. Figures 22 and 23 show 

averages of the students’ raw estimates of their knowledge and skill levels for before and 

after class. The blue lines represent the levels before and the red lines after. The (a) 

graphs are for the first population, namely the students who registered for credit and the 

(b) graphs are for the auditing students. Figure 24 shows the average net change in the 

levels, broken down by the two populations. 

	

Figure 21. Partial View of the Survey 
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Figure 22. Before and After Knowledge Levels. 

	

Figure 23. Before and After Skills Levels. 
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One interesting result that is worth pointing out immediately, is that the first 

group of students, in general, rated their before-classes level lower than the second 

population. We believe that this can be contributed to the common adage, “You do not 

know what you do not know”. The first group of students did the assignments and soon 

discovered how much they really did not know, whereas the second group did not come 

to the same realization. For example, the auditors’ perception about their AWS and 

Node.js skills was that they knew those technologies relatively well before starting the 

class; meanwhile the first group of students came to realize that their skills were almost 

nil. 

 

	

Figure 24. Perception of Acquired Knowledge: Differences Between the After and the 
Before. 
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Table 13. Knowledge Survey Questions. 

No Knowledge/Concept Acronym 
Q1.1 Inter-process communications patterns, like Request-

Reply, Request-Reply Acknowledge, and Reliable 
Multicasts 

IPC 

Q1.2 Partial ordering of events in a distributed system, as 
represented by mechanism like Vector Timestamps 

VTS 

Q1.3 Message serialization/deserialization S/D 
Q1.4 Intra-process concurrency IntraPC 
Q1.5 Computation resources in a cloud-computing environment, 

such as AWS 
AWS 

Q1.6 Namespaces, name services, and name resolution NS 
Q1.7 Deployment, execution and testing techniques in a 

distributed environment 
Deploy 

Q1.8 Deployment, execution and testing techniques in the cloud. Testing 
Q1.9 Distributed election algorithms DEA 
Q1.10 Resource managers RM 
Q1.11 Fault tolerance in a distributed environment. FT 
Q1.12 Tools for provisioning collection of resources needed for a 

distributed system. 
Tools 

Q1.13 Cloud Computing resources CCR 
Q1.14 Infrastructure as a Service (IaaS) IaaS 
Q1.15 Platform as a Service (PaaS) PaaS 
Q1.16 Inter-process concurrency InterPC 
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Table 14.Skills Survey Questions. 

No Skill Acronym 
Q2.1 AWS Users and key pairs (Identity and Access 

management -IAM) 
AWS-IAM 

Q2.2 AWS Virtual PC Instances (EC2) AWS-EC2 
Q2.3 AWS Storage (S3, EBS) AWS-S3,EBS 
Q2.4 AWS-CLI (Command Line Interface) AWS-CLI 
Q2.5 AWS SDK (Software Development Kit) AWS-SDK 
Q2.6 Managing instances in AWS: creating/launching, 

starting, stopping, terminating 
EC2-Instances 

Q2.7 AWS Billing AWS-Billing 
Q2.8 Using Node.js to Develop Distributed Systems Node.js_DS 
Q2.9 Using Node.js to deploy and run Distributed 

Systems in the cloud 
Node.js_Cloud 

Q2.10 Designing and developing TCP/UDP/Web 
Services-based systems with Node.js 

Node.js_C/S 

Q2.11 Writing scripts to Deploy/execute applications in 
distributed environments 

DS_Scripts 

Q2.12 Designing and Developing Resource Managers RM_DD 
Q2.13 Designing and Developing Distributed Election 

Algorithms 
DEA_DD 

 

Next, notice that the estimated pre-class knowledge levels are higher than the 

estimated pre-class skill levels. In general, the students felt they had a conceptual 

understanding of the course concepts, including AWS, which only one student had 

exposure to before class. From this, we can see that students (and perhaps all people) tend 

to believe that they are able to generalize conceptual knowledge into new areas that they 

have not seen before. 

Figure 22 shows evidence that the first group of students truly improved their 

skills. Their net change for every skill was higher than the net change for the second 

group. Interestingly, the same is not true in the knowledge area. At first glance, this might 
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seem odd, but considering the timing and relative nature of the self-made estimates, there 

is a possible explanation. Specifically, the students who did not do the assignments 

naturally felt that their biggest growth was in increase of conceptual knowledge. 

4.6. Related Work 

Other higher-education institutions are using cloud computing resources in 

courses that focus on distributed applications or network programming. Clearly, these 

platforms allow the students to use realistic testing and production environments. 

Moreover, there are large research universities that have implemented private clouds on 

their campuses and use them in the classroom. For example, Syracuse University 

provides a local virtual machine lab used to form virtual networks for security projects 

[32]. North Carolina State University supplies computing resources over the Internet with 

their Virtual Computing Lab [33], Arizona State University developed V-lab for 

Networking Courses [35], and Okanagan College and King’s university College talk 

about using a cloud for educational collaboration [29]. Nevertheless, these private 

solutions are often not economically viable for many universities [28], and therefore they 

can only consider public cloud solutions. 

Programming assignments that use public or private clouds can add value to the 

learning experience and increase students’ skills directly related to possible professional 

careers [125] in network programming  [28], distributed systems [29], systems 

administration [125], security  [125] [32], data processing [30], among others. 

Furthermore, a major benefit is that students do not need to simulate network 

communications over a localhost interface  [28]; instead, they can use multiple virtual 



	
	
	

115 
	
machines and real network communications to better understanding the distributed 

system components, their roles, and the related concepts. 

Using a public cloud for hands-on activities offers benefits such as scalability, 

flexibility, security, cost-efficiency and accessibility  [28], which all are key 

characteristics of distributed systems [69]. Public clouds also add an interesting and 

valuable dimension to the execution and debugging of distributed applications [30], 

without needing huge budgets for private-cloud or physical-machines infrastructure. Most 

of the public cloud providers, e.g., Amazon, Google, Microsoft, IBM, offer grants for 

academic institutions that want to use their resources for educational purposes. For 

example, at the time of this study, Amazon offered grants up to $100 per students [128]. 

Other benefits to public clouds include ready access to different operating-system 

platforms, communication protocols, development tools, open-source code, public 

forums, and more.  

4.7. Conclusions and Future Work 

For this small case study, we conclude that programming assignments with 

requirements to use cloud resources were successful in helping the CS 6200 students to 

improve their A2R skills, as well as their core distributed-application development skills. 

Both the instructor’s observations and the post-class survey provide anecdotal evidence 

of their improvement. 

We also found some evidence that students are willing and even excited to learn 

new tools and skills, especially if they can see how it lets them put theory into practice. 

Even though the assignments were based on carefully crafted and sanitized requirements, 
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they were realistic enough for the students to experience real problems and see how 

theoretical concepts, like vector timestamps and distributed election, could be used to 

solve those real problems. 

Some important design criteria for assignments included: a) hiding unnecessary 

details, like all the other capabilities of an EMR beside the generation of disease 

notifications, b) focusing on requirements that put theory into practice, like the election 

of an RM in Assignment 4, c) including non-trivial non-functional requirements, like 

scalability, and d) wherever possible allow students to reuse components or knowledge 

acquired in previous assignments. 

The survey data also opened some doors to possible future research. Specifically, 

we would like to conduct a broader experiment across multiple software-engineering 

classes of various kinds and at different levels, to explore specific ways that the design of 

assignments can improve A2R skills in general. From that, we hope to publish more 

concrete guidelines for programming-assignment design for software-engineering classes 

at all levels. 
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CHAPTER 5 

IMPROVING COMPUTER SCIENCE EDUCATION THROUGH CLOUD 

COMPUTING: AN OBSERVATIONAL STUDY8 

5.1. Abstract 

In an earlier study, we observed that students in a small graduate class who used 

Cloud Computing (CC) for their programming assignments improved their analysis-to-

reuse (A2R) skills more than students who did not use CC.  That preliminary result 

motivated us to see if the use of CC in programming assignments would yield similar 

results for a broader range of classes and students. To this end, this paper reports on an 

observational study on the students of the Computer Science Department of Utah State 

University that spanned from August 2015 to December 2016 and included over 221 

students, with data collected at three different times. An ANOVA statistical analysis of 

the study data revealed a significant difference in the perceptions about acquired A2R 

skills in favor of students that used CC. 

5.2. Introduction 

Cloud Computing (CC) is changing the way IT users consume computing 

resources. CC introduces new elements for execution and development environments, 

these resources are consumed and shared on demand among software systems 

stakeholders. Currently, higher education institutions are including CC in their curricula 

to improve their students’ skills [24], and careers have been created around this 

																																								 																					
8 Jorge Edison Lascano, Stephen W. Clyde 
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technology [129] [130] [131] [132] [133] that many organizations have adopted or are 

moving towards its adoption [134]. CC is currently used in different areas such as 

infrastructure provisioning, test and development, file storage, disaster recovery, and 

backups [135]. Most of the industry already requires professionals to have a foundation in 

the CC body of knowledge, adopted in 2008 by IEEE [136]. This trend represents both an 

opportunity and a challenge for higher education. Specifically, higher education needs to 

(a) incorporate CC technology into curricula so students can be better prepared, (b) 

understand its impact in higher education [137], and (c) leverage CC technology as 

means of helping students improve other skills and knowledge required for Computer 

Science (CS) professionals. 

Although there exist a wide range of literature in this aspect  [27] [31] [32] [35] 

[138] [33] [29] [139] [140] [141] [142] [143] that cover the use of CC for different 

courses and the inclusion of CC as a solution for higher-education infrastructure, none of 

them use CC throughout the full software development process nor do they do not 

analyze the impact of CC on improving students’ A2R skills using CC resources for 

programing assignments. 

CS departments need to improve their students’ A2R skills to keep pace with 

industry demands. Also, they want to comply with accreditation criteria. In the United 

States of America, the Computing Accreditation Commission of ABET (Accreditation 

Board for Engineering and Technology, Inc.) [144] is responsible of accrediting the CS 

programs. ABET establishes general criteria that apply to all programs, and program 

criteria that apply to a specific program. These general criteria cover program educational 
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objectives (PEO), student outcomes, continuous improvement, curriculum, faculty, 

facilities, and institutional support. The CS Department of Utah State University has 

defined the following as one of its PEOs: 

PEO-1: “The USU Computer Science program will prepare its graduates to be 

successful and contributing professionals by being able to apply the principles of 

computer science and adapt emerging technologies to analyze and solve real world 

problems” [25]. 

A preliminary study conducted in 2015 [24], where the instructor of CS6200 from 

Utah State University used Amazon Web Services for advanced distributed systems 

programming assignments, showed that CC helps students improve A2R skills.  The 

results of this preliminary study motivated us to plan a new study, encompassing as much 

of the CS Department as possible, to see if the conclusions would hold for a broader 

group and different classes. Section 2 provides necessary background information for this 

observational study and Section 3 summarize a brief literature review on the use of CC in 

educational institutions. 

This observational study aims to find statistically significant differences in the 

perceptions of students with respect to their A2R skills between those who used CC in 

their assignments (group A) and who did not (group B).  To this end, it focused on two 

questions: (1) what are students’ perceptions about how their own skills and knowledge 

change over the course of a semester and (2) how does the integration of CC into 

programming assignments affect those perceptions?  Section 4 describes the study’s 

design and the survey instrument used in the study to gather data about student 
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perceptions relative to these two questions. Section 5 provides details about the results of 

the quantitative analysis. Finally, section 6 presents our conclusions and future research. 

5.3. Background 

5.3.1. Cloud Computing Services 

CC, which “provides shared computer processing resources and data” [145], is a 

technology trend that is taking off, especially since CC providers now offer services that 

help organizations overcome their security and compliance concerns [146]. CC is widely 

becoming an integral piece in the software development process and an important 

component in complete software solutions. Even IEEE has considered the importance of 

CC in professional and academic environments and founded in 2011 a global initiative, 

IEEE Cloud Computing, to promote CC and its related technologies [147]. This initiative 

comprises standards, publications, education, careers and conferences. 

CC providers offer their services under different models [145], three are the 

standard models as defined by the National Institute of Standards and Technology 

(NIST): Infrastructure as a Services (IaaS), Platform as a Service (PaaS), and Software as 

a Service (SaaS). IaaS is used  for deployment and execution of computer systems, IaaS 

can greatly simplify an organization’s IT management and support on-demand 

scalability, high availability, fault tolerance, and disaster recovery [148]. PaaS provides 

developers with full out-of-the-box development environments, PaaS solutions typically 

include virtual machines, operating systems, programming tools, and databases [149]. A 

third category of CC services is SaaS, solutions in this category are target as end users 

and cover a wide range of application software. The SaaS users do not need to purchase 
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or install application software locally. Instead, they use existing applications in the cloud. 

CC services provided by AWS [150] include: virtual instances - EC2 (IaaS), code 

repositories - CodeCommit (SaaS), code test and deployment –CodePipeline (SaaS), 

Databases -RDS and DMS (PaaS), scalable storage -S3 (IaaS), big data processing – 

EMR (PaaS), and web scalability - AWS Elastic Beanstalk (IaaS). Providers such as 

Google, IBM, Microsoft, and others offer similar CC solutions. 

Since cloud services are widely used by enterprises, cloud providers offer their 

services to educational institutions at no cost or at very low cost, so the new professionals 

can learn, and test their services. Examples of these programs include Amazon Education 

[151], Google for Education [152], GitHub Education [153], IBM Cloud Education 

[154], and Azure in Education [155]. Most of them provide biannual grants to students or 

instructors. 

5.3.2. Observational Studies 

Experiments are used to search for cause and effect relationships [156]. 

Researchers design experiments to predict what can happen by varying some values and 

observing changes. Variables are used to affect and to quantify these changes and may be 

any factor, trait or condition. Two important types of variables are independent and 

dependent variables.  The former are changeable or controlled by the scientists. The latter 

represent the outcome in function of the independent variables [157]. An observational 

study [158] draws inferences from a sample to a population where the researcher does not 

have full control over the independent variables [159]. Some reasons for using an 

observational study instead of a controlled experiment include: the need to respect human 
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rights and logistical issues. Also, sometimes it is simply impossible to control the 

independent variables sufficiently. 

As mentioned before, certain independent variables will be outside the control of 

the researcher, but they can be observed and recorded. Cause and effect are difficult to 

establish in observational study, nevertheless, they can allow researchers to formulate 

some associations and lay the foundation for future studies that can be carried on in 

control settings [160]. According to Shull et al. [161], after initial feasibility studies, 

researchers can use observational studies to collect data that will help explain the 

considered phenomenon and “formulate hypotheses to be tested in subsequent 

experiments” [162]. “A well designed observational study, resembles, as closely as 

possible, a simple randomized experiment” [158]. The main difference is the 

randomization of an experiment, where participants are selected by chance, so bias can be 

reduced. 

5.4. Related Work 

The use of virtual resources for CS courses is not a new concept in the academia 

[27]. Studies report that the use of CC in the class has proofed to be worthwhile, by 

allowing students to improve their professional skills and to obtain a better understanding 

of realistic execution environments and issues in areas such as security [31] [27], 

networking/network programming [32] [35], system and network administration [27] 

[138], distributed systems [33], and data processing [29] [30]. Other researchers have 

investigated the relationship between CC and higher education, including CC adoption 

and its influence [139] [140], students perception of CC effective use [141], CC impact 
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[142], and relevance of CC [143]. 

Gonzalez et al. for example, at Rochester Institute of Technology used Amazon 

EC2 in their Principles of Systems Administration course to leverage career opportunities 

for their students [27]. Zhu used cloud resources in the Network Programming course at 

Metropolitan State University of Denver, where students agreed that using CC resources 

had a positive impact on their learning experience [28], Zhu claims that the same effect 

will be true for other courses, unfortunately, there is no other studies published to date. 

Rabkin et al. [30] used CC for MapReduce measurements at University of California, 

Berkeley, concluding that it is a need for students to experience running and debugging 

distributed applications in a realistic infrastructure. None of them have used CC as a 

resource for programming assignments. 

5.5. Design of the Observational Study 

In [24], we described our findings on the use of Cloud resources for programming 

assignments. Students that used CC for their assignments improved their A2R skills in a 

level higher than those ones that did not use CC. This group of students corresponds to 

the CS6200 course taught during Spring-2015, where participants developed advanced 

distributed applications, some of them used IaaS and PaaS, others did not use it. After 

this experience, we aimed to extend our work to other programming courses, by 

including CC as a resource for students’ assignments during Spring-2016 and Fall-2016 

semesters. With the hoped-for a bigger improvement on A2R skills for these students 

than for the Fall-2015 students, who did not use CC resources. 

We defined three main variables for our experiment, the use of CC (the treatment) 
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as the independent variable, and the variations in A2R skills and knowledge levels 

(covariates) as the dependent variables. Nonetheless, it was not possible to prepare a 

properly randomized selection of students who will or will not use CC in assignments at 

the CS department. So, the independent variable is outside our direct control.  

Alternatively, we requested the instructors of CS3450, CS5110, CS5200, CS5600, 

CS5680, CS5700, CS5800, CS5890, CS6110, CS6600, and CS7910 courses to use CC in 

their assignments. During the Spring-2016 semester, the instructor of CS5200 agreed to 

use CC, and during the Fall-2016 semester, the instructors for CS3450, CS5600, CS5700, 

and CS6600 agreed to the request. Students in all other classes would continue not to use 

CC in their programming assignments. 

 The most of the CC services that ended being used were IaaS, such as AWS EC2 

virtual servers and Amazon S3 storage.  Services classes did used some simple SaaS 

services, like Bitbucket and GitHub, for Git repositories.  Requiring instructors to use CC 

was not possible and following up with the students who used CC was challenging.  So, 

we let the instructors use CC on their discretion and made sure the survey instrument 

would collect sufficient information to determine whether they used CC in their 

programming assignments, as well as their perceptions about their levels of skill and 

knowledge. 

Furthermore, we designed the surveyed instrument overall curriculum objectives 

in mind, like PEO-1 and the following student outcomes from ABET’s guidelines [163]:  

(b) An ability to analyze a problem, and identify and define the computing 

requirements appropriate to its solution 
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(c) An ability to design, implement, and evaluate a computer-based system, process, 

component, or program to meet desired needs 

(i) An ability to use current techniques, skills, and tools necessary for computing 

practice. 

(k) An ability to apply design and development principles in the construction of 

software systems of varying complexity. 

To organize the survey questions, we first decomposed PEO-1 into three sub-

objectives: Analyze and solve real world problems, adapt emerging technologies, and 

apply principles of CS (see Figure 25). The first two sub-objectives deal with A2R skills 

level, while the third deals with general knowledge. Next, we aligned the sub-objectives 

with the student outcomes and then decomposed the outcomes into eight areas: Problem 

Analysis, Requirements Identification and Definition, Systems Analysis, Systems Design, 

Current Practices, Other Software Engineering Skills, Tools, and Principles. The 

questions were designed with these eight areas in mind, following the Goal Question 

Metric paradigm [164]. 

The first four questions of the survey though, are not meant to measure any level 

of knowledge or skills, they are intended to capture the characteristics of the participant 

and their classes, i.e., student number, age, past classes, and current classes. 

Question 5 captures the students’ perception of A2R skills level, while Q6 

measures the students’ perception of knowledge. Each of the questions contain a number 

of sub-questions or topics and asked the participants to rank their perceptions of their 

own skills and knowledge on a scale from 1 to 5, relative to both the beginning and at the 
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end of every period, for each one. Each topic has a N/A option for students who do not 

recognize the topic or feel that it does not.  See Figure 26 for a snippet of Question 5 that 

shows just two topics. 

 

Question 7 is about design principles and assignments characteristics. Questions 8 

and 9 of the survey were open so the students can express themselves about how they 

	

Figure 25. Goal Question Metric Applied to PEO-1 

 

Figure 26. Snippet of Question 5 from the Fall-2015 Semester 
Survey 
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think that their skills can be improved and about what methods or tools would help them 

to adapt to emerging technologies. 

The study design originally called for a survey to be conducted using this 

instrument at the end of every semester throughout the study period. However, because of 

semester breaks, it became necessary to administer the surveys at the beginning of the 

following semester. 

While planning the study we applied for and obtained the necessary Institutional 

Review Board (IRB) approvals, and then started collecting data from the students of the 

CS department of Utah State University at the end of three contiguous semesters: Fall-

2015, Spring-2016, and Fall-2016 semesters. The study intended to reach about 650 

students of the CS department, i.e. students that took CS classes in any of the Fall-2015, 

Spring-2016 and Fall-2016 semesters. From those students, a total of 221 responded to 

the different surveys, this allowed us to have some answers in the different semesters for 

the same students. For the Fall-2015 semester, there were 153 respondents to the survey, 

for Spring-2016, 181 and for Fall-2016, 117. Before we started processing the data, we 

needed to clean it. Incomplete surveys were dropped. Meaningless survey data such as 

answers with the same level of perception for all questions were eliminated. Surveys with 

duplicated students’ id numbers for the same semester were also removed. 

Significant tests computed the probability for our hypothesis, H1: Students who 

had assignments that required the use of CC have a greater perceived increase in her/his 

skills and knowledge levels in the following A2R areas: tool evaluation, development 

environment setup, runtime environment configuration, analysis, design, application of 
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"best practices", testing, deployment, and reuse. 

These questions/metrics (Table 16, Table 15) capture students’ A2R skills level in 

a scale from 1 to 5 at the beginning and end of a semester, the difference ∆A2R = 

A2RAfter – A2RBefore represents students’ capacity variation on their skills in the course of 

a semester. To have a total measurement of A2R skills composed by the 23 sections of 

question 5, we gave arbitrary weights to every section based on their importance to the 

outcome they are dealing with, i.e. to the ABET PEO-1 decomposition, and to industry 

requirements. 

The main purpose of this observational study is to analyze the impact of using CC 

in programming assignments for improving PEO-1. For this reason, we compared 

statistically ∆A2R’s of students that use CC (group A), and students that do not use CC 

Table 15. Weights for Question 6: Perceptions of Level of Students' Knowledge 

# Knowledge Question Weight 

a Understanding of how to match the needs of an application to an appropriate develop 
environment and runtime platform 0.8 

b Understanding of at least one development stack (a collection of reusable components or 
libraries) 0.7 

c Understanding of development environment setup 0.6 

d Understanding of principles of software testing 0.8 

e Understanding of network communications 0.4 

f Understanding of the principle of reliability as it applies to software systems 0.7 

g Understanding of security principles and practices for software systems 0.7 

h Understanding of what affect runtime performance and how to detect inefficiencies and correct 
them 0.5 

i Understanding of the principle of Coupling 0.5 

j Understanding of the principle of Cohesion 0.5 

k Understanding of software reuse 0.8 

l Understanding "abstraction" with respect to the design and implementation of software system. 0.6 

m Understanding "encapsulation" with respect to the design and implementation of software 
systems 0.6 

n Understanding "modularization" with respect to the design and implementation of a software 
system 

0.6 
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(group B), ∆A2RA vs ∆A2RB. Finally, we define our null hypothesis, H0, that states: The 

use of Cloud Computing resources for programming assignments does not have any 

effect on the increment of A2R skills on students. 

5.6. Data Analysis and Interpretation 

The data collected throughout the three semesters span was compared from 

different perspectives and for different groups of students. For every comparison, an 

analysis of variance (ANOVA) was performed using ANOVA for a single factor, t-test or 

Table 16. Weights for Question 5: Perceptions of Level of Students’ A2R Skills 

# A2R Question Weight 

a Ability to analyze real world software needs or requirements 0.6 

b Ability to evaluate methods, tools, techniques, libraries, or components for re-use 0.1 

c Ability to reuse methods, designs, or software from previous assignments 0.8 

d Ability to design a software system to meet complex real-world requirements 0.8 

e Ability to implement a software system according to a design 0.8 

f Ability to implement software that can run in a runtime environment different from your own computer or one 
in a school lab 0.4 

g How to configure a runtime environment into which you can deploy a software system that you built 0.6 

h Ability to deploy a system to a runtime environment different from your own computer or one in a school lab 0.3 

i Ability to learn and use virtual or cloud-based resources for creating software solutions 0.6 

j Ability to thoroughly test software systems using executable test cases 0.8 

k Ability to think critically and develop alternative solutions to a problem 0.6 

l Ability to think creatively about software solutions 0.8 

m Ability to understand, evaluate and use emerging technologies 0.4 

n Ability to learn and use existing software services available on the Internet 0.4 

o Ability to follow industry-wide "best practices" when use your chosen development environment 0.5 

p Ability to follow "best practices" in testing 0.8 

q Ability to follow "best practices" in deploying software to runtime environments 0.4 

r Ability to apply green practices 0.1 

s Ability to evaluate a variety of operating systems and frameworks as possible runtime environments 0.1 

t Ability to apply collaborative methods, tools, techniques to develop software 0.6 

u Ability to design a software system that will provide for a good user experience 0.6 

v The ability to create maintainable software 0.6 

w Ability to understand real-world problems related to the course material 0.8 
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z-test. We gathered a total of 451 responses from the three surveys, 280 were answered in 

their entirety, and 264 were considered valid, 95 for Fall-2015, 102 for Spring-2016, and 

67 for Fall-2016. From the 264 students, only 37 would have taken courses that include 

the use of CC in their programming assignments, leaving a total of 227 students that did 

not have exposure to CC. There are 16 surveyed students that took either CS5200 or 

CS5700 when CC was not used in their assignments during Fall-2015; and there are 12 

students that took CS5200 or CS5700 when CC was introduced as a resource for 

programming assignments during Spring-2016 and Fall-2016. Table 17 summarizes the 

values statistically obtained, namely: Averages, p-values, and Differences. 

We run a qualitative analysis by gathering data about the level of perception of 

every student and assigning an arbitrary weight to every question. We relied on the 

analysis of variance to proof the nonvalidity of our Null Hypothesis, H0. 

 

Table 17. ANOVA P-values for A2R Skills Variations 

Comparison Groups Count Average P-value Diff. 
 

YES/NO 
statistically 
significant 
difference 

∆CCA vs ∆CCB 
Q5i GA diff 
Q5i GB diff 37 1.1622 0.0215 0.4573 YES 
Q5 S16 Before 227 0.7048 

(A2RA vs A2RB)End 
Q5 GA End 37 3.3366 0.2477 

 
0.1692 
 NO 

Q5 GB End 227 3.1674 

(A2RA vs A2RB)Beginning 
Q5 GA Beg 
Q5 GB Beg 

37 2.3523 0.5424 
 -0.0967 NO 227 2.4491 

∆A2RA vs ∆A2RB Q5 GA diff 37 0.9842 0.0141 0.2621 YES Q5 GB diff 227 0.7220 

∆A2RA-5200/5700 vs ∆A2RB-5200/5700 
Diff A2R 
NoCC 16 0.6775 0.0096 0.4265 YES 
Diff A2R CC 12 1.1041 

Same Students F15 – S16 Q5 F15 After 30 3.2056 0.0005 
 -0.6927 YES Q5 S16 Before 30 2.3843 

Same Students S-16 – F16 Q5 S16 After 16 3.1882 0.0633 -0.8213 NO Q5	GB	diff	 227	 0.7220	
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For this case study, we concluded that students that use CC resources for their 

programming assignments improved the A2R skills in a higher level than students that 

did not use it, obtaining an improvement on PEO-1. This inference is supported by 

calculating the probability for H0. We analyzed the differences between group A and 

group B (∆A2RA vs ∆A2RB). We got a p-value = 0.014; as p-value < 0.05, H0 is rejected in 

favor of H1. 

Students of CS5200 and CS5700 courses were special groups that in previous 

semesters (Si-1) did not use CC in their assignments and in following semesters (Si) use 

CC resources. Their perceptions show similar results than the comparison between 

groups A and B. with a well noted tendency to a higher increase, 0.426, for group 

A5200/5700, versus 0.262 for group B5200/5700. In this analysis H0 was strongly rejected in 

favor of H1 with a p-value=0.00959 < 0.05, that is a positive influence of using CC 

improve students’ A2R skills. These results corroborate the rejection of H0, nevertheless 

a different environment setup may be needed for future experiments where a group of 

students use CC and other group in the same class do not. 

Besides the quantitative analysis, there is the possibility for a qualitative analysis 

based on Questions 8 and 9. We found out after a brief text analysis of Question 8 that 

Real, Software, Design, World are the most used words, see Figure 27. After this word 

count analysis run using the Voyant tools [165], a sentiment analysis may be the next step 

to infer some conclusions in respect to positive or negative sentiments relative to PEO-1. 

A sentiment analysis is not part of this research. 
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5.7. Conclusions and Future Directions 

In this paper, we presented the results of a one-and-half year observational study 

about the use of CC in programming assignments for a group of CS students, concluding 

that the use of CC has a positive impact. Specifically, our findings confirmed our 

hypothesis that students exposed to CC in their assignments have a bigger increase in 

their perception of acquired A2R skills than students who did not use any CC in their 

assignments. Therefore, there is a likelihood that the use of CC in programming 

assignments for CS students has a positive influence in increasing students’ A2R skills. 

We tested for significance using the Analysis of Variance Algorithm (ANOVA 

[166]) with a probability (p-value) cutoff of 0.05.  In most cases, we obtained a p-value < 

0.05 meaning that there is statistically significant difference [167] [168] between the 

group that used CC and the group that did not use CC.  Hence, we rejected H0 in favor of 

the alternate hypothesis, H1, i.e., students who were exposed to CC (∆A2RA) noticed a 

bigger increase in their perceptions of acquired A2R skills than students that were not 

exposed to CC (∆A2RB). 

This study’s findings open doors for future experiments. An interesting 

hypotheses for follow-on experiments would be “the use of CC can help improve 

communication skills for team projects assignments.” An experiment would consider 

 

Figure 27. Word Count Analysis for Question 8 Using Voyant-tools 
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students in a software-engineering course complete assignments in groups instead of 

individually. Some course sections would use CC and others would not.  A more complex 

experiment would involve the continuation of projects in a course sequence, e.g., one 

course could model a system and subsequent courses would then implement that model. 

A couple of sections would use CC services, such as virtual servers and code repositories, 

other sections would use nonCC development tools and share code by copying files from 

computer to computer. 

Also future experiments could look at even broader populations and group 

randomization techniques.  For example, group selection would be better if we could split 

students within a single class into A and B groups. Unfortunately, that may interfere in 

the learning process or create a lot of extra work for the instructors. For example, we may 

need to plan ahead recovery courses for students that show a lower increase on their skills 

through the experiment. 

The survey used in this study contained a couple open questions, namely 

Questions 8 and 9. A future research project could use sentiment analysis [169] to 

analyze the qualitative data that were collected for these open questions. This could 

provide some insights for how the students feel about their skills and their knowledge. An 

informal analysis of these data shows that the most used words are “software”, “real” and 

“world”. From here, the sentiment analysis would try to determine whether these ideas 

are connected to positive, negative and neutral attitudes. 

Uncertainty of the advantages of CC in education still exists, even though 

enterprises of all kinds are currently using CC to build and deploying software. One 
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disadvantage, is that for novice developers, like students, CC services are just one more 

complexity that they must learn and it could easily become a stumbling block.  Any 

integration of CC in a CS curriculum must be well thought out and aim to eliminate or 

minimize these obstacles. 

Since this research was an observational study and we could not control the group 

selection, we ended up with widely different group sizes: 37 in group A and 227 in group 

B.  Ideally, the size of each group should be the same.  Nevertheless, ANOVA allows for 

uneven group sizes. Other comparison sets were found among the students of contiguous 

semesters for the same subject.  For example, CS5200 and CS5700’s students that did not 

use CC during the semester Si, i.e., 16 from group B, versus the same courses’ students 

that used CC during the semester Si+1, i.e., 12 from group A. However, this comparison 

introduction would add extra variables, such as variations in commitment in faculty 

members and motivation for students to be part of this study. 

 The adoption of CC for programming assignments in the research population of 

USU was not widely accepted, instead instructors were inclined to reject its use, a future 

study could analyze the causes and propose a better approach such as the Technology 

Acceptance Model (TAM) which focuses in the perceived usefulness and perceived ease-

of-use of new technologies. 

We performed a statistical analysis of Students’ perceptions of A2R skills and 

knowledge levels at the end of Fall-2015 versus the beginning of Spring-2016. Same 

analysis was performed at the end of Fall-2016 versus the beginning of Fall-2016. 

Although we thought that their perception should not be statistically significantly 
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different at the end of semester Si than at the beginning of semester Si+1, the results, Table 

17, showed that they are statistically different. Future studies may help determine better 

methods to help students retain their knowledge and skills between semesters’ breaks. 
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CHAPTER 6 

CONCLUSIONS 

Gathering the knowledge to define design patterns only con be achieved by 

professionals that have worked in the field for a long time. This work must be extended 

by including other professionals, they can endorse the current set of patterns and they 

could contribute with their own solutions. For this reason we have created and published 

a wiki especially for contributions on the development and improvement of CommDP. 

The next step in this respect is to add more common solutions to CommDP, hence 

increasing its range and usability. Additionally, as the language is defined and its 

qualities are studied based on current protocols such as HTTP or FTP, we need to find 

applicability for patterns. It can be reached from the academia, where students can learn 

the proven solutions and implement their own protocols. Also it must be proven by the 

developer community. As future work, we should implement existing communication 

software using CommDP and measure these implementations’ qualities. 

The use of CC in programing assignments has proofed to be valuable in 

increasing A2R skills of CS students that used CC than students that did not use it. 

Statistical results based on ANOVA allowed to conclude that there is a statistical 

difference on the perceptions for students that used CC in their programming 

assignments. Nevertheless, the results may be biased by a few external factors such as the 

different methods, the different content and the improvement in the methodology that the 

instructors could have used in following semesters. 

To improve the previous study, and following the next phase after an observation, 
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future work could include a wider sample, i.e. students from different CS related careers 

in different higher education institutions. Also, there is the need of controlling the 

independent variables such as the random selection of the population. Finally, instead of 

studying contiguous semester students, as is the case in chapter 5, the universe should be 

selected from the same group of students to avoid biased influences such as the difference 

in methodology or content by instructors in different semesters. A better environment 

would be a set of students of the same course, half using CC and half not using it. 

Unfortunately, there are some factors that can impede this study to be carried on properly. 

Students and instructors may not be willing to participate in the experiment, and some of 

them may be more affected than others. Careful attention should be taken, especially in 

negative effects over the group that would not use CC. 

The two topics covered in this dissertation, CommDP and the use of CC for 

improving computer science education are intended to be part of a series of publications. 

The introduction of CommDP [84], presented in chapter 2, has been published in ICSEA 

2016 [11], see Appendix A. This paper was awarded as one of the best papers of the 

conference, consequently we got an invitation to submit an extended article on the IARIA 

journals [38]. This extended work is being submitted before August 2017 for its 

publication. On the other hand, the use of CC to improve computer science education has 

evolved in two papers, the first one [24], covered in chapter 4, has been published in 

ICSEA 2015 [37], see Appendix B. Its follow up, the results of one-and-a-half year 

observational study has been submitted to a more appropriate conference, CSEE&T 

2017, the 30th Conference on Software Engineering Education and Training. 
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Appendix D: Survey for CS6200/CS7930 to Measure the Perception of 

Increased/Decreased Knowledge and Skills on a Course Using CC for the Assignments 

Q1 For each CONCEPT listed below, rate your knowledge level on a scale of 1 to 5 as it was 
BEFORE you took the CS6200/7930 -- 1=Low and 5=High. 

• Inter-process communications patterns, like Request-Reply, Request-Reply 
Acknowledge, and Reliable Multicasts 

• Partial ordering of events in a distributed system, as represented by mechanism like 
Vector Timestamps 

• Message serialization/deserialization 
• Intra-process concurrency 
• Inter-process concurrency 
• Computation resources in a cloud-computing environment, such as AWS 
• Namespaces, name services, and name resolution 
• Deployment, execution and testing techniques in a distributed environment 
• Deployment, execution and testing techniques in the cloud. 
• Distributed election algorithms 
• Resource managers 
• Fault tolerance in a distributed environment. 
• Tools for provisioning collection of resources needed for a distributed system. 
• Cloud Computing resources 
• Infrastructure as a Service (IaaS) 
• Platform as a Service (PaaS) 

Q2 For each SKILL listed below, rate your knowledge level on a scale of 1 to 5 as it was 
BEFORE you took the CS6200/7930 -- 1=Low and 5=High. 

• AWS Users and key pairs (Identity and Access management -IAM) 
• AWS Virtual PC Instances (EC2) 
• AWS Storage (S3, EBS) 
• AWS-CLI (Command Line Interface) 
• AWS SDK (Software Development Kit) 
• Managing instances in AWS: creating/launching, starting, stopping, terminating 
• AWS Billing 
• Using Node.js to Develop Distributed Systems 
• Using Node.js to deploy and run Distributed Systems in the cloud 
• Designing and developing TCP/UDP/Web Services-based systems with Node.js 
• Writing scripts to Deploy/execute applications in distributed environments 
• Designing and Developing Resource Managers 
• Designing and Developing Distributed Election Algorithms 

Q3 For each CONCEPT listed below, rate your knowledge level on a scale of 1 to 5 AFTER you 
took the CS6200/7930 -- 1=Low and 5=High. 
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• Inter-process communications patterns, like Request-Reply, Request-Reply 
Acknowledge, and Reliable Multicasts 

• Partial ordering of events in a distributed system, as represented by mechanisms like 
Vector Timestamps 

• Message serialization/deserialization. 
• Intra-process Concurrency 
• Inter-process Concurrency 
• Computation resources in a cloud-computing environment, such as AWS 
• Namespaces, name services and name resolution 
• Deployment, execution and testing techniques in a distributed environment 
• Deployment, execution and testing techniques in the cloud. 
• Distributed election algorithms 
• Resource managers 
• Fault tolerance in a distributed environment. 
• Tools for provisioning collection of resources needed for a distributed system. 
• Cloud Computing resources 
• Infrastructure as a Service (IaaS) 
• Platform as a Service (PaaS) 

Q4 For each SKILL listed below, rate your knowledge level on a scale of 1 to 5 AFTER you took 
the CS6200/7930 -- 1=Low and 5=High. 

• AWS Users and key pairs (Identity and Access management -IAM) 
• AWS Virtual PC Instances (EC2) 
• AWS Storage (S3, EBS) 
• AWS-CLI (Command Line Interface) 
• AWS SDK (Software Development Kit) 
• Managing instances in AWS: creating/launching, starting, stopping, terminating 
• AWS Billing 
• Using Node.js to Develop Distributed Systems 
• Using Node.js to deploy and run Distributed Systems in the cloud 
• Designing and developing TCP/UDP/Web Services-based systems with Node.js 
• Writing scripts to Deploy/execute applications in distributed environments 
• Designing and Developing Resource Managers 
• Designing and Developing Distributed Election Algorithms 

Q5 For each of the following activity, indicate if you are in favor of using AWS (or other some 
cloud environment) for that activity. 
q Testing the behavior of applications in a distributed environment (e.g., HW2) 
q Understanding of distributed systems concepts such as serialization, concurrency, shared 

resources, etc. (e.g., HW4) 
q Programming in other courses. (If yes, what courses would you advise) 

____________________ 
Q6 What general lessons learned in Software Engineering did you learn by using AWS? 
Q7 What lessons in Distributed System (other than those address in above) did you learn by using 
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AWS? 
Q8 What lessons in Testing and Debugging (other than those address in above) did you learn by 
using AWS? 
Q9 What lessons in Deployment (other than those address in above) did you learn by using 
AWS? 
Q10 What lessons in Fault Tolerance (other than those address in above) did you learn by using 
WS? 
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Appendix E: Survey to Measure Perception of Increased/Decreased Knowledge/Skills for 

Fall 2015 Semester, Same is Applied on Spring 2016 and Fall 2016 Semesters. 

USU CS students skills FALL-2015 
Q. a. SCROLL DOWN TO START THE SURVEY and GET ONE OF THE FOUR $25.00 GITF 
CARDS 
Introduction/ Purpose. You have been asked to take part of this survey because you were/are 
enrolled in one or more CS courses that can be related to the use of Cloud Computing Resources 
to improve software engineering education. There will be approximately 129 total participants in 
this research. 
Procedures. If you agree to be in this research activity, you will be asked to fill out a survey to 
measure your perception of skills and knowledge acquired from computer science classes. This 
survey will be distributed at the beginning of Spring 2016, Fall 2016, and Spring 2017 semesters. 
Please participate at least once. Every survey will take approximately between 10 to 15 minutes. 
Risks Participation in this research activity may involve some risks or discomforts. These include 
a minimal risk of loss of confidentiality, we will take steps to reduce the risk. The information 
obtained during this research activity is intended to contribute to generalizable knowledge and as 
such it is intended for publication. Whether you decide to participate or not will not affect your 
standing with the CS program. 
Benefits. Your participation in this research is not expected to lead to any direct benefit to you. 
Researchers hope that the result from this survey will help determine whether integrating the use 
of cloud computing in course assignments can help the CS department meet Program Educational 
Objectives as outlined by the department’s accrediting body. You may derive personal 
satisfaction from supporting a student in acquiring important professional skills. Researchers will 
learn about the analysis of skills and knowledge to measure the improvement of Software 
Engineering Education methods that use Cloud Computing Resources. 
Explanation & offer to answer questions. Jorge Edison Lascano has explained this research 
activity to you and answered your questions. If you have other questions or research-related 
problems, you may reach the student researcher, Jorge Edison Lascano at (435) 213-5529 or 
edison_lascano@yahoo.com and the Principal Investigator Dr. Stephen W. Clyde at (435) 764-
1596 or stephen.clyde@usu.edu 
Payment/Compensation. There is no compensation for your participation in this research activity. 
There will be a drawing of four $25.00-gift-card among the survey respondents. 
Voluntary nature of participation and right to withdraw without consequence. Participation in this 
research activity is entirely voluntary. You may refuse to participate or withdraw at any time 
without consequence. You may be withdrawn from this study without your consent by the 
investigator if the information may be considered wrong, for example the course IDs provided by 
the students. 
Confidentiality Records from this research activity will be kept confidential, consistent with 
federal and state regulations that apply to research. Only Jorge Edison Lascano and Stephen 
Clyde will have access to the data which will be kept in a locked file cabinet or on an encrypted 
USU computer account to maintain confidentiality. To protect your privacy, personal, identifiable 
information, such as your A number, will be removed from study documents and replaced with a 
study identifier. Identifying information will be stored separately from data and will be kept for 
the duration of the study, approximately March 2016 to June 2017. All information will be 
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destroyed by June 2017. 
IRB Approval. Statement The Institutional Review Board for the protection of human participants 
at Utah State University has approved this research study. If you have any questions or concerns 
about your rights or a research-related injury and would like to contact someone other than the 
research team, you may contact the IRB Director at (435) 797-0567 or irb@usu.edu to obtain 
information or to offer input. 
Student Statement. “I certify that the research activity has been explained to the individual, by 
me, and that the individual understands the nature and purpose, the possible risks and benefits 
associated with taking part in this research study. Any questions that have been raised have been 
answered.” 
Researchers: 
_______________________________  ______________________________  
Stephen W. Clyde, PhD    Jorge Edison Lascano  
Principal Investigator    Student Researcher  
Telephone—435-764-1596   Telephone—435-213-5529  
stephen.clyde@usu.edu    edison_lascano@yahoo.com  
Thank you for your participation. 
 
Q. b. Click in the arrow below to start. 
Q. c. Do you agree to participate in this survey 
m Yes 
m No 
If No Is Selected, Then Skip To End of Survey 
 
Q0 What is your Age? 
m under 18 years old 
m 18-65 years old 
m 65 years or older 
If under 18 years old Is Selected, Then Skip To End of Survey If 18-65 years old Is Not Selected, 
Then Skip To End of Survey 
 
Q1 Did you take any CS courses during Fall 2015 semester? 
m Yes 
m No 
If No Is Selected, Then Skip To End of Survey 
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Q2 What is your A#?A01234567 

Did you take any CS courses during Fall 2015 semester? Yes Is Selected 
 
Q3 What CS course(s) did you take in Fall 2015. Enter the course numbers of those classes (up to 
five). 

CS 
… 

Q4 CS courses enrolled for Spring 2016. Enter the course numbers of those classes (up to five) 
CS 
… 
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Q5 For each SKILL listed below, assess your level of expertise on a scale of 1 to 5, as you 
remember them being at the beginning and end of Fall 2015. 1=Low and 5=High, with n/a 
meaning you have no experience with that skill. 

 BEGINNING of the Fall 2015 
semester 

END of the Fall 2015 
semester 

 5 4 3 2 1 n/
a 5 4 3 2 1 n/

a 
(a) Ability to analyze real world 
software needs or requirements m  m  m  m  m  m  m  m  m  m  m  m  

(b) Ability to evaluate methods, 
tools, techniques, libraries, or 
components for re-use 

m  m  m  m  m  m  m  m  m  m  m  m  

(c) Ability to reuse methods, 
designs, or software from previous 
assignments 

m  m  m  m  m  m  m  m  m  m  m  m  

(d) Ability to design a software 
system to meet complex real-world 
requirements 

m  m  m  m  m  m  m  m  m  m  m  m  

(e) Ability to implement a software 
system according to a design m  m  m  m  m  m  m  m  m  m  m  m  

(f) Ability to implement software 
that can run in a runtime 
environment different from your 
own computer or one in a school 
lab 

m  m  m  m  m  m  m  m  m  m  m  m  

(g) How to configure a runtime 
environment into which you can 
deploy a software system that you 
built 

m  m  m  m  m  m  m  m  m  m  m  m  

(h) Ability to deploy a system to a 
runtime environment different from 
your own computer or one in a 
school lab 

m  m  m  m  m  m  m  m  m  m  m  m  

(i) Ability to learn and use virtual 
or cloud-based resources for 
creating software solutions 

m  m  m  m  m  m  m  m  m  m  m  m  

(j) Ability to thoroughly test 
software systems using executable 
test cases 

m  m  m  m  m  m  m  m  m  m  m  m  

(k) Ability to think critically and 
develop alternative solutions to a 
problem 

m  m  m  m  m  m  m  m  m  m  m  m  
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(l) Ability to think creatively about 
software solutions m  m  m  m  m  m  m  m  m  m  m  m  

(m) Ability to understand, evaluate 
and use emerging technologies m  m  m  m  m  m  m  m  m  m  m  m  

(n) Ability to learn and use existing 
software services available on the 
Internet 

m  m  m  m  m  m  m  m  m  m  m  m  

(o) Ability to follow industry-wide 
"best practices" when use your 
chosen development environment 

m  m  m  m  m  m  m  m  m  m  m  m  

(p) Ability to follow "best 
practices" in testing m  m  m  m  m  m  m  m  m  m  m  m  

(q) Ability to follow "best 
practices" in deploying software to 
runtime environments 

m  m  m  m  m  m  m  m  m  m  m  m  

(r) Ability to apply green practices m  m  m  m  m  m  m  m  m  m  m  m  
(s) Ability to evaluate a variety of 
operating systems and frameworks 
as possible runtime environments 

m  m  m  m  m  m  m  m  m  m  m  m  

(t) Ability to apply collaborative 
methods, tools, techniques to 
develop software 

m  m  m  m  m  m  m  m  m  m  m  m  

(u) Ability to design a software 
system that will provide for a good 
user experience 

m  m  m  m  m  m  m  m  m  m  m  m  

(v) The ability to create 
maintainable software m  m  m  m  m  m  m  m  m  m  m  m  

(w) Ability to understand real-
world problems related to the 
course material 

m  m  m  m  m  m  m  m  m  m  m  m  
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Q6 For each KNOWLEDGE listed below, assess your level of understanding on a scale of 1 to 5, 
as you remember them being at the beginning and end of Fall 2015. 1=Low and 5=High, with n/a 
meaning you have no understanding of that knowledge. 

 BEGINNING of the 
Fall 2015 semester 

END of the Fall 2015 
semester 

 5 4 3 2 1 n/a 5 4 3 2 1 n/a 
(a) Understanding of how to match the 
needs of an application to an appropriate 
develop environment and runtime platform 

m  m  m  m  m  m  m  m  m  m  m  m  

(b) Understanding of at least one 
development stack (a collection of 
reusable components or libraries) 

m  m  m  m  m  m  m  m  m  m  m  m  

(c) Understanding of development 
environment setup m  m  m  m  m  m  m  m  m  m  m  m  

(d) Understanding of principles of 
software testing m  m  m  m  m  m  m  m  m  m  m  m  

(e) Understanding of network 
communications m  m  m  m  m  m  m  m  m  m  m  m  

(f) Understanding of the principle of 
reliability as it applies to software systems m  m  m  m  m  m  m  m  m  m  m  m  

(g) Understanding of security principles 
and practices for software systems m  m  m  m  m  m  m  m  m  m  m  m  

(h) Understanding of what affect runtime 
performance and how to detect 
inefficiencies and correct them 

m  m  m  m  m  m  m  m  m  m  m  m  

 m  m  m  m  m  m  m  m  m  m  m  m  
(i) Understanding of the principle of 
Coupling m  m  m  m  m  m  m  m  m  m  m  m  

(j) Understanding of the principle of 
Cohesion m  m  m  m  m  m  m  m  m  m  m  m  

(k) Understanding of software reuse m  m  m  m  m  m  m  m  m  m  m  m  
(l) Understanding "abstraction" with 
respect to the design and implementation 
of software system. 

m  m  m  m  m  m  m  m  m  m  m  m  

(m) Understanding "encapsulation" with 
respect to the design and implementation 
of software systems 

m  m  m  m  m  m  m  m  m  m  m  m  

(n) Understanding "modularization" with 
respect to the design and implementation 
of a software system 

m  m  m  m  m  m  m  m  m  m  m  m  
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Q7 For each QUESTION listed below, express your level of agreement on a scale of 1 to 5 
(5=Completely Agree and 1=Low agreement), as you remember it being at the end of the Fall 
2015 semester 

  
 1 2 3 4 5 
(a) Assignments design comply with realistic execution environments 
characteristics? m  m  m  m  m  

(b) Student's possibility to apply course learnings in real-world examples m  m  m  m  m  
(c) The design principles are important for CS courses? m  m  m  m  m  

 
Q8. How do you think that your skills to design, implement and evaluate software systems can be 
best improved? 
Q9. What methods, tools, or techniques would you recommend to courses use for course 
assignment that would help you adapt to emerging technologies? 
Q10. We will use your A number for the drawing of four $25.00 Gift Cards. The A number you 
have entered is A…. If this value is wrong, you can return to the first question to correct it. Do 
you want to participate in the drawing? 
m Yes A… 
m No 
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