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ABSTRACT 

 

Understanding the Biology of Clover Root Curculio and Improving  

Their Management Using Biofumigation in Alfalfa 

 

by 

 

Steven J. Price, Master of Science 

Utah State University, 2017 

 

Major Professor: Dr. Ricardo A. Ramirez 

Department: Biology 

Clover root curculio (CRC) is an emergent regional pest of alfalfa whose larvae 

damages the root system. Unfortunately, there are limited management options available 

for CRC suppression. Much of the biological knowledge of CRC comes from research 

conducted in the eastern U.S., making management strategy development problematic in 

the West where local information on larval activity and overwintering life stages is 

lacking. One option for soil-dwelling pest control is the soil incorporation of 

biofumigants, including brassicaceous plants, which release toxic volatile compounds 

that have suppressive effects on insect pests. The role of biofumigation in alfalfa pest 

suppression or the compatibility in the alfalfa production system has received little 

attention. The goals of this research were to determine 1) phenology, population sizes, 

and root damage severity of CRC occurring in the Intermountain region and 2) the direct 
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and indirect suppressive effects of biofumigant cover crop incorporations on CRC and its 

agronomic compatibility in rotation with alfalfa. First, I observed that larval activity 

occurred from mid-spring to mid-summer and local larval densities were generally lower 

than eastern densities. Adults began emerging from the soil in mid-summer having two 

subsequent population peaks. In the fall, adults had peak oviposition that continued 

through early winter. Low adult activity in the spring and equal egg counts from fall 

through spring indicated that CRC most likely overwinter in the egg stage. CRC damage 

to taproots was cumulative, increasing as stands age, with most damage occurring in the 

first few years of stand life. While the incorporation of biofumigant crops appeared to be 

compatible with alfalfa and did not affect yield, in field trials, no effects of biofumigation 

were seen in adult oviposition, populations, or feeding damage. In one greenhouse trial, 

biofumigants significantly suppressed adult feeding rates more than non-biofumigant oat 

treatment but the effect was not consistent. Biofumigant incorporation timing, for field 

trials in particular, may have contributed to the lack of CRC suppression. Overall, my 

research provides a better understanding of CRC phenology and activity in northern Utah 

and will assist in improving the timing of management approaches in alfalfa.  
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PUBLIC ABSTRACT 

 

Understanding the Biology of Clover Root Curculio and Improving  

Their Management Using Biofumigation in Alfalfa 

Steven J. Price 

Clover root curculio (CRC) is a pest of alfalfa where larvae feed belowground 

damaging alfalfa roots. Regional knowledge of CRC activity and biology is limited 

making the development of pest management strategies difficult. One potential 

management technique for soil-dwelling pests is the use of biofumigant containing cover 

crops. Biofumigation can affect the survival and behavior of pest insects. However, 

biofumigant crops have not been evaluated against CRC or as a rotational crop 

compatible with alfalfa. The goals of this research were to determine 1) phenology, 

population sizes, and root damage severity of CRC occurring in the Intermountain region 

and 2) the direct and indirect suppressive effects of biofumigant cover crop 

incorporations on CRC and its agronomic compatibility in rotation with alfalfa. First, I 

observed that larval activity occurred from mid-spring to mid-summer and local larval 

densities were generally lower than those reported in the eastern U.S. Adult CRC began 

emerging from the soil in mid-summer having two population peaks. After the second fall 

peak of adults was when most eggs were deposited which continued through early winter. 

CRC damage to taproots was cumulative, increasing as stands age, with most damage 

occurring in the first few years of stand life and mostly occurring in the top 20 cm of 

roots. While the incorporation of biofumigant crops appeared to be compatible with 
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alfalfa and did not negatively affect yield, in field trials, biofumigation did not suppress 

CRC, disrupt egg laying, or decrease feeding damage. In one greenhouse trial, 

biofumigants significantly suppressed adult feeding rates more than non-biofumigant 

plants but the effect was not consistent. Biofumigant incorporation timing, for field trials 

in particular, may have contributed to the lack of CRC suppression. Overall, my research 

provides a better understanding of CRC phenology and activity in northern Utah and will 

assist in improving the timing of management approaches in alfalfa.  
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CHAPTER I 

LITERATURE REVIEW 

Clover Root Curculio 

Clover Root Curculio (CRC), Sitona hispidulus (Fab.) (Cuculionidae: 

Coleoptera), also referred to as S. hispidula in the past, is one of eleven species of Sitona 

in North America (Bright 1994) and is a pest of alfalfa and clovers (Medicago sativa L. 

and Trifolium spp.). Native to temperate Europe and Asia, it was first reported in North 

America in 1875 from Long Branch, New Jersey (Hamilton 1894; Wildermuth 1910). 

CRC was found throughout the Mid-Atlantic states by the early 1880s, the Midwest in 

the early 1900s (Marshall and Wilbur 1934), Pullman, Washington by 1909 (Wildermuth 

1910), and Salt Lake City, Utah by 1910. CRC had been detected widely throughout the 

eastern U.S. and parts of the West by 1915 (Webster 1915).  It is ubiquitous trans-

continentally from the Atlantic to Pacific coasts and from central Alaska and British 

Columbia to eastern Mexico, although it is less common at these extreme latitudes 

(Bright 1994, Bright and Bouchard 2008).  

During early investigations, adult CRC in clover swards were occasionally 

considered an important pest when populations were high. Subterranean larval damage 

was usually misattributed to other pests or simply overlooked (Wildermuth, 1910). It was 

not until 1914 when the enigmatic root damage noticed in alfalfa stands, which was 

previously referred to as “pitting of the tap-root”,  that had “puzzled agronomists” was 

linked to CRC did it begin to receive much attention (Stewart et al. 1908, Webster 1915a, 
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Webster 1915b). The historical shift from forage cropping systems involving short-term 

clover swards to increasingly large acreage alfalfa stands, where they persist for multiple 

years, may have increased the severity and range of CRC (Wildermuth 1910). Later, 

other severe alfalfa pests such as alfalfa weevil (Hypera postica Gyllenhal) and potato 

leafhopper (Empoasca fabae (Harris)) drew the major research efforts of forage 

entomologists. CRC was primarily regarded as a pest of red clover where insecticide use 

was not as prevalent at the time as it was in alfalfa (Leath and Hower 1993). It has been 

hypothesized that the introduction of a successful biocontrol agent complex to the eastern 

U.S. to control alfalfa weevil in the mid to late 1970’s, reduced broad-spectrum pesticide 

use and subsequent non-target control of CRC which coincided with premature alfalfa 

stand degradation (Hower et al. 1995). Leath and Hower (1993) also hypothesized that 

the increase of alfalfa fusarium wilt that occurred in the 1970’s was due to increased 

CRC damage. Gotlieb et al. (1987) believed that the reduction of alfalfa stand life from 

six to three years that occurred in the mid-1970’s in southern Vermont was a result of 

cold hardiness reduction caused by CRC and fusarium root rot. 

Description 

Adult 

Adults range from 3–5 mm in length and 1.26-2 mm in width (Wildermuth 1910) 

being almost 2.5 times longer than wide (Bright 1994). Compared with many North 

American Sitona, the eyes are weakly convex (Bright 1994). The black cuticle is covered 

with a dense vestiture of dark grey, brown, and tan flat round scales making a stripe and 
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checkerboard pattern on the elytra. Long, white, semi-recumbent, hair-like setae 

occurring on the elytra are diagnostic of CRC and do not occur in other North American 

Sitona (Bright 1994). Females are typically larger than males which can be distinguished 

by the distal abdominal segment (pygidium) overlapping the hypopleurites being dorsally 

exposed beyond the apex of the elytra with the last sternite being straight (Leibee et al. 

1980a). In contrast, the ventral edge of the last sternite is rounded in females (Bright 

1994). Wing length and associated thoracic musculature is polymorphic in some 

European populations (Jackson 1928, 1933) but adults are fully winged and capable of 

flight in North America (Jackson 1928, Prescott and Newton 1963). 

Egg 

The eggs are ellipsoid, approximately 0.36 mm × 0.29 mm and initially 

yellowish-white when laid, later becoming shiny black within a few days if fertilized 

(Bigger 1920, Jackson 1922, Jackson 1928). They have a slightly granular, shiny cast 

stemming from the micro-sculpturing of the chorion (Wildermuth 1910, Marvaldi 1999). 

On rare occasion, misshapen fusiform eggs are laid towards the end of the ovipositional 

period (Markkula and Roivainen 1961). As in most Sitona, eggs are laid singly and at 

random (Emden, 1952) being laid loosely without cementation on the soil surface, 

concentrated around the crown of the host plant (Elvin and Yeargan 1985).  

Larva 

Larvae have five instars (Leibee et al. 1980, Tan and Hower 1991). First instars 

are 0.68 mm × 0.18 mm (length × width), off-white, semi-translucent, with a 0.16 mm × 
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0.19 mm light brown head capsule. Last instars measure up to 5 mm × 1.3 mm, 

yellowish-white, with a brownish or ochre head (Wildermuth 1910). The shape of the 

head capsule and mandibular anatomy of CRC larvae have been used as diagnostic 

characteristics to separate it from larval Sitona cylindricollis Fåhraeus (Herron 1953, 

Manglitz et al. 1963). Whether these characters could be reliably used to differentiate it 

from other U.S. Sitona spp. is unknown. Larvae have three thoracic segments, ten 

abdominal segments with a small terminal segment, transverse wrinkles, long dorsal 

setae, and are legless (Jackson 1920). 

Pupa 

The pupa is exarate and cream colored. The head is concealed beneath the 

prothorax in dorsal view and has hooked, capitate bristles. The first eight abdominal 

segments each bare a row of bristled “pap like” protuberances along the posterior portion 

of the tergite extending laterally. The ninth abdominal segment possesses a pair of 

posterolaterad tooth-like projections armed with auxiliary spicules (Jackson 1920). Pupae 

can be sexed by close examination of the seventh sternite. In females, it is greatly 

rounded and projects below the eighth sternite in lateral view. In males, the seventh 

sternite is slightly rounded meeting the eighth on a comparable plane with an even suture. 

In ventral view, the seventh sternite is posteriorly more rounded in females and more 

truncated in males (Jackson 1920). Days before eclosion, the eyes and ends of 

appendages begin darkening to brown (Bigger 1930, Jackson 1920). 
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Life History  

In North America, CRC is univoltine (Webster 1915) and typically overwinters as 

both eggs and adults (Bigger 1930, Phillips and Ditman 1962). Eggs may develop enough 

in fall to hatch late in the season in Kentucky (Leibee et al. 1980a). In Pennsylvania, 

52.3% of eggs hatched during an unseasonably warm fall (Quinn and Hower 1985). 

While overwintering larvae have been reported in some areas, it is unknown to what 

extent larvae survive and contribute to spring populations (Folsom 1909, Rautapää and 

Markkula 1966, Morrison et al. 1974). Overwintering larvae would represent an earlier 

brooded cohort later resuming activity with spring hatched larvae (Quinn and Hower 

1985). In North America, a complete second generation has not been observed.  

Hatched larvae move quickly belowground where they feed on the root system 

until pupation. Specializing on legumes, first instar larvae burrow into a root nodule and 

begin feeding, remaining concealed, by emptying the contents and either leaving behind 

the hollowed out epidermis or consuming it entirely (Bigger 1930, Marshall and Wilbur 

1934, Manglitz et al. 1963). The presumed obligatory nature of nodule feeding by some 

Sitona spp. larvae, has been long debated (Danthanarayana 1967, Byers and Kendall 

1982, Aeschlimann 1986, Quinn and Hower 1986b, Wolfson 1987, Gerard 2001, Hackell 

and Gerard 2004). Regardless, first instar larvae are associated with nodules (Quinn and 

Hower 1986b). The inner contents of the nodules are high in amino acids 

(Danthanarayana 1967) and nodule feeding appears to be beneficial for growth (Tan and 

Hower 1991). Studies suggest that larvae prefer feeding on effectively inoculated, 

metabolically active nodules and that CRC may use olfactory cues to locate these feeding 
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sites (Wolfson 1987, Hackell and Gerard 2004). Second instar larvae continue to feed on 

nodules or small fibrous roots (Tan and Hower 1991). Moderately sized larvae can be 

found feeding on small rootlets and can completely sever them (Bigger 1930, Marshall 

and Wilbur 1934). Late instars are found feeding within long groove-like lesions on main 

taproots and within the crown (Wildermuth 1910, Marshall and Wilbur 1934, Lau and 

Filmer 1959, Manglitz et al. 1963). Most feeding on Ladino white clover occurs in the 

uppermost 5.08 cm to 7.6 cm of roots with feeding extending down to 12.7 cm to 15.26 

cm with damage occurring deeper into the cortex, sometimes reaching the vascular 

system, in the uppermost sections (Kilpatrick and Dunn 1958, Powell and Campbell 

1983a). Feeding on alfalfa roots can occur up to 71.12 cm deep in the soil although 

feeding is concentrated in the top 25 cm of the root system and crown. As alfalfa stands 

age, the soil depth of root damage changes marginally but the severity of the 

accumulative damage occurring at shallow soil depth increases within just a few years 

(Dickason et al. 1968, Pesho 1975). Fifth instar larvae stop feeding and create a pupal cell 

near the soil surface where they remain for a week to multiple weeks before emerging as 

adults in the summer (Bigger 1930, Marshall and Wilbur 1934).  

New generation CRC adults often overlap with the previously overwintering 

generation in the summer but can be distinguished from older adults by their flexible 

exoskeleton, higher number of dorsal scales, less worn appearance, and semi-sclerotized, 

undeveloped reproductive systems (Markkula and Roivainen 1961, Powell and Campbell 

1984). Adults are primarily found on the ground during this time either because they are 

taking advantage of the cool and humid microclimatic conditions under the plant canopy 
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or because of the die-off of overwintered adults and emergence of the new generation. It 

is thought that the new generation is active on foliage during midsummer to early fall and 

feed before aestivation. The aestivation period, or oversummering period, is a time of 

diapause when adults feed minimally and remain inactive concealing themselves in 

crevasses in the soil, under rocks, or buried down into the plant crowns (Phillips and 

Ditman 1962). During extreme summer temperatures, other Sitona have been noted to be 

active during cooler night temperatures (Calkins and Manglitz 1968); a similar trend of 

nocturnal activity in CRC was briefly noted by Kerr and Stuckey (1956). The emergent 

adults have been observed to migrate out of the field by crawling into adjoining pastures, 

field edges, or sheltered wood-edges of fields where populations aggregate and aestivate 

(Underhill et al. 1955, Pausch et al. 1979, Roberts et al. 1982). Aestivation for this 

species may be obligatory rather than facultative since reproductively active adults in 

Finland that have already overwintered still undergo a period of inactivity the following 

summer resuming activity in the fall (Markkula and Roivainen 1961, Rautapää and 

Markkula 1966). The activity of adults is primarily initiated by cooler temperature cues 

and slightly influenced by the seasonal reduction in photoperiod (Leibee et al. 1980a). 

Returning adults slowly immigrate back into the field by crawling over the course of a 

few months and begin feeding and maturing (Pausch et al. 1980). Males may become 

abundant in the field sooner than females (Phillips and Ditman 1962) and may be less 

likely to leave the field for aestivation (Powell and Campbell 1984). After energy 

reserves are restored, light flights occur on warm fall days preceding reproduction and are 

directed out of the fields and may be important in large scale dispersal over 

heterogeneous landscapes to colonize new fields while fields adjoining one another may 
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receive founders from the general crawling population (Prescott and Newton 1963, 

Leibee et al. 1981, Culik and Weaver 1994). CRC spring flights after overwintering, 

while mentioned by Herron (1953), were not confirmed by Prescott and Newton (1963) 

and may not occur due to the degeneration of flight muscles over the winter (Jackson 

1933).  

After fall migration, post-aestivatory adults feed, mate, and oviposit diurnally on 

foliage, which continues throughout the adult lifespan during times of activity into spring 

(Jackson 1926, Phillips and Ditman 1962, Rautapää and Markkula 1966, Powell and 

Campbell 1984). Since eggs are laid in fall and early winter and again after successful 

overwintering in spring, the relative contribution of fall laid versus spring laid eggs to 

spring larval populations deserves additional research effort to fully understand CRC 

populations and timing of life stages, which directly affects management. For example, in 

central Illinois (Bigger 1930), Kentucky (Ng et al. 1977), and Finland (Rautapää and 

Markkula 1966), oviposition in fall may not be as important as spring oviposition when 

the majority (about 75%) of eggs are laid. Fall oviposition is also known to occur in 

Kansas (Marshall and Wilbur), New Jersey (Lau and Filmer 1959), New York (Kalb et 

al. 1994), Oregon (Dickason et al. 1958), Utah (Davis et al. 1976), Virginia (Underhill et 

al 1955) and North Carolina (Powell and Campbell 1984), the extent of which is 

unknown, and is suspected in Ohio (Herron 1953) and Maryland (Phillips and Ditman 

1962). In Pennsylvania, fall oviposition can contribute between 50 to 100% of the egg 

load found in spring depending on the overwintering mortality of adults (Quinn and 

Hower 1985). Likewise, the majority of eggs in Delaware come from the fall 



9 

 

 

ovipositional period (Dysart 1990). Adult overwintering mortality can vary widely 

between years and have a large effect on overall populations (Roberts et al. 1979, Quinn 

and Hower 1985). In New York, areas with reduced snow cover were thought to have 

higher overwintering adult mortality, and thus reduced spring oviposition, limiting 

populations and subsequent damage (Kalb et al. 1994). Eggs retain over 91% viability 

over the winter in Pennsylvania, hatching in the spring (Quinn and Hower 1985) but 

general viability of Sitona eggs can be impacted by environmental conditions such as 

drought (Johnson et al. 2010). 

In preparation for overwintering, adults feed less and increase their cold hardiness 

which improves winter survivability and ability to feed and oviposit at lower 

temperatures (Markkula and Roivainen 1961, Rautapää and Markkula 1972). The 

physiological processes by which this happens are not understood for CRC (Phillips and 

Ditman 1962). Adults overwinter in quiescence and are able to resume activity if 

temperatures rise sufficiently during warm weather (Rautapää and Markkula 1972). 

Warming temperatures in early spring stimulate overwintered adult CRC to start 

feeding and to oviposit. Bigger (1930) noticed adults being most active in late March 

when temperatures were around 10-21 °C. The increase in crawling activity in spring is 

mostly contained within a field but a few individuals may disperse to neighboring fields 

at this time (Leibee et al. 1981, Culik and Weaver 1994). 
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Hosts and Soil Preferences 

Members of the Sitonini are oligophagous on Fabaceae, primarily on 

Papilionoidae, with the vast majority of Sitona feeding on the “inverted repeat-lacking 

clade” of legumes which includes Trifolieae, Cicereae, Hedysareae, and Galegeae (Castro 

et al. 2007). CRC may have a wider range of host tolerance than some other Sitona 

(Murray and Clements 1994). In general, Trifolium spp. are preferred hosts over 

Medicago and other legumes, although preference can be variable between the host 

species being tested and may be influenced by growth stage (Thompson and Willis 1971, 

Barratt and Byers 1992). Females fed Trifolium alexandrinum L. may oviposit more eggs 

than those fed alfalfa, although both are suitable hosts (Melamed-Madjar 1966). The most 

historically important clovers in North America, the red (Trifolium pretense L.), white 

(Trifolium repens L.), and alsike clover (Trifolium hybridum L.) are all suitable hosts and 

are fed on readily by adults and larvae in choice tests (Thompson and Willis 1971, Barratt 

and Byers 1992). Trifolium dubium Sibth. is also heavily fed on by adults when restricted 

to it but it is less preferred than white clover (Murray and Clements 1994). In early 

spring, CRC can make up half of the Sitona spp. larval population in sweet clover 

(Melilotus spp.) where they may overwinter as adults immigrating to other clover fields 

in spring (Herron 1953). Late instar larvae that feed within the sweet clover root system 

are more associated with root lesion damage versus feeding primarily on nodules as S. 

cylindricollis does (Manglitz et al. 1963). CRC is a minor pest of soybean particularly 

when adjacent to alfalfa or clover (Kogan and Kuhlman 1982). Lespedeza striata 

(Thunb.) (Phillips and Ditman 1962) and black medic (Medicago lupulina L.) (Murray 
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and Clements 1994) have been noted to be hosts for adult CRC. Bigflower vetch (Vicia 

grandiflora var. kitaibeliana W. Koch) may also be a suitable host (Byers and Kendall 

1982). Trefoils (Lotus spp.) and crownvetch (Coronilla varia L.) are not preferred hosts 

and are fed on very little by both adults and larvae and support little larval growth or 

survival (Thompson and Willis 1967, Thompson and Willis 1971, Byers and Kendall 

1982, Barratt and Byers 1992). Pulse crops also do not seem to be suitable hosts for CRC 

(Melamed-Madjar 1966). Some early researchers speculated that grasses are hosts for 

Sitona larvae, including CRC, but the larvae have not been demonstrated to feed on 

pasture or small grain grasses and can distinguish them from host legume roots from a 

considerable distance (Hatch and Murray 1994, Murray and Clements 1998, Johnson et 

al. 2004). 

CRC larval survival can be affected by soil texture and moisture levels because of 

their weak burrowing ability as first instars which may also affect their access to root 

nodules (Tan and Hower 1991). Cracks that occur during dehydration shrinkage of 

slightly moist, high clay soils improve movement and survival of first instar larvae after 

hatching, while loamy sand soils limit movement and survival especially when dry or 

saturated. First instar movement is also high in course sand due to larger pore spaces but 

also declines with increasing moisture content (Pacchioli and Hower 2004). In a silt loam 

soil, saturated soil moisture levels reduced larval establishment to 0.9%, while 

moderately dry to moderately moist (19-27%) conditions had an average 7% larval 

establishment (Godfrey and Yeargan 1985). Excessive soil moisture reducing larval 

populations has been observed in the field during a wet spring with twice the average 
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amount of precipitation (Godfrey and Yeargan 1987). Although the association is 

inconsistent (Quinn and Hower 1986b), first and second instar larvae are more positively 

associated with field soil moisture content than larger larvae (Quinn and Hower 1986a).  

Heterogeneous damage to forages at the landscape level may be influenced by changes in 

soil properties (Pacchioli and Hower 2004) particularly if those properties affect nodule 

availability (Quinn and Hower 1986b). Whether soil moisture directly affects larval 

survival or is mediated through other variables (e.g. changes in entomopathogen 

communities or nodule accessibility) is not known (Quinn and Hower 1986b).  

Damage 

Direct Damage 

Adult feeding forms semicircular notches on leaf edges or symmetrical or paired 

holes centered on the midrib when feeding on unexpanded leaflets (Folsom 1909, Bigger 

1930). The field damage from adult feeding is typically negligible; however, foliar 

feeding on seedlings that reduces stand establishment (i.e, seedling densities) can be 

detrimental (Jewett 1934). Larvae can reduce stand establishment by severing seedling 

roots. Godfrey et al. (1986) found within the first month of seeding a 32-48.8% reduction 

in seedling densities from CRC which reduced establishing alfalfa plot yields by 19% one 

month afterwards.  

Root system damage to established stands may reach economic significance, 

although the difficulty in assessing damage is much higher after stand establishment. The 

potential for unseen nodule and fine root damage by first instars and small larvae is high 
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due to the spring synchrony between peak nodule and fine root production and activity of 

small larvae (Quinn and Hower 1986b, Pietola and Smucker 1995). Sitona spp. have been 

found to damage 25% of sweet clover root nodules (Manglitz et al. 1963) and can reduce 

alfalfa average dry nodule biomass by 61% (Dintenfass and Brown 1988a). Nodule 

removal can temporarily interrupt nitrogen fixation putting plants under nitrogen stress 

once nitrogen accumulations in taproots or stolons are depleted; by reducing 

photosynthetic efficiency before compensatory nodulation responses can occur (Quinn 

and Hall 1992, Murray et al. 2002).  

Larval feeding on the lateral and fibrous roots, although difficult to assess, can 

result in heavy damage where larvae completely sever or girdle roots interrupting water 

or nutrient movement or killing root apices (Jewett 1934, Tan and Hower 1991). Whether 

roots receive scarring or severing type of damage is related to the proportional size of the 

larvae to the root (Tan and Hower 1991). Aboveground exposure of the root system due 

to freezing and thawing action working inadequately anchored roots out of the soil is 

referred to as winter heaving and can occur in poorly drained, finely textured, heavy soils 

leading to plant mortality due to freezing, desiccation, or harvest injury (Russell et al. 

1978). While the role of CRC taproot feeding in promoting alfalfa winter heaving has 

been questioned (Perfect 1987), severing of lateral roots by larvae is thought to increase 

winter heaving issues (Underhill et al. 1955).  

The characteristic taproot damage from larger larvae occurs rapidly with 

individual fourth and fifth instars removing 5.68 mg to 1.90 mg of alfalfa taproot mass 

per day, respectively (Dintenfass and Brown 1986). Feeding injury is accumulative, 
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increases as stands age, and is typically not noticed until the second year of damage 

(Dickason et al. 1968, Pesho 1975, Cranshaw 1985, Godfrey and Yeargan 1987). In an 

accession trial where alfalfa germplasms were screened for CRC resistance, 

approximately 45% of alfalfa taproots had an average of over 21.3% (0.05 to 51.84% 

range) surface area damaged after two years which the author considered as significant 

loss (Pesho 1975). Similarly, alfalfa has been seen to accumulate 17% of taproot surface 

area damage by CRC within two years (Quinn and Hower 1986a) which increases to 

87.34% by the third year of damage (Hower et al. 1995). Clovers may be less tolerant to 

CRC and accumulate damage more rapidly than alfalfa because of the shallower rooting 

system that cannot root beyond larval feeding depth (Dickason et al. 1968). For example, 

red clover feeding lesions from the first to second year of damage can increase more than 

tenfold (Lau and Filmer 1959). 

The observed impacts of larval CRC root system damage on forage yields have 

been inconsistent. Studies have seen no significant yield impacts (Dickason et al 1969), 

rare increases (Godfrey and Yeargan 1987), and direct yield reductions from larvae 

stunting growth, delaying regrowth, and reducing crown densities.  In an experimental 

cage study, second year alfalfa plots with a history of damage had between 10-18.6% 

(avg 15.43%) yield reductions (Jewett 1934). Hower et al. (1995) saw a 31.5% average 

(23.2-38.9% range) reduction in alfalfa stem height across four harvests after three years 

of damage. Moreover, total yield was reduced by 11.25% resulting in an overall 2,633 

kg/ha (2,349 lb/ac) annual yield reduction. Stunting from CRC damage reduced average 

alfalfa yields in two trial years by 8.4% with residual losses occurring in additional 
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cuttings three months after larvae had pupated, although CRC presence increased height 

and yields for one harvest (Godfrey and Yeargan 1987). In multiple harvest production 

systems, the delayed regrowth after alfalfa harvest, or “green-up”, in response to Sitona 

feeding can appear superficially similar to drought stress and is thought to be due to 

reduced photosynthetic capacity and nutrient reserves (Goldson et al. 1985, Goldson et al. 

1987, Goldson et al. 1988). Dormancy induction maybe related to a reduction in total 

nonstructural carbohydrates (TNC) which are stored within the taproots and later 

remobilized in the spring or during postharvest regrowth. Taproot larval damage was 

negatively correlated to TNC reserves and recovered one month after larvae pupated 

(Dintenfass and Brown 1988b). CRC feeding significantly reduced average alfalfa crown 

densities 17.9-31.8%, 36.05-36.58%, and 4.25% in the first, second, and third year of 

damage, respectively (Godfrey and Yeargan 1989) and 15.85-17.11% in one to two years 

of damage (Dintenfass and Brown 1988b). Immediate yield reductions due to decreases 

in crown densities have been inconsistently associated with CRC; however, early 

reductions in crown densities are persistent through the life of the stand therefore 

reducing the long-term economic viability of fields (Dintenfass and Brown 1988b). 

Godfrey and Yeargan (1989) predicted an 11.4-15.25% reduction in stand life attributable 

to CRC. CRC may also be a pest during seed production by reducing seed yields (Leach 

et al. 1961). 

Indirect Injury 

Physical damage from larval feeding can indirectly damage plants by 

predisposing them to a suite of diseases caused by complexes of pathogens such as crown 
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rots, root rots, and wilts (Graham and Newton 1959, 1960, Graham et al. 1960, Newton et 

al. 1960, Kilpatrick and Dunn 1961, Leach et al. 1963, Thompson and Willis 1967, 

Dickason et al. 1968, Hill et al. 1969, Hill et al. 1971). While CRC feeding damage is not 

necessarily imperative for root pathogen infection (Dunn et al. 1964), evidence indicates 

that the larval mechanical injury creates an infection site.  Here, pathogens like Fusarium 

oxysporum medicaginis or Corynebacterium insidiosum can systemically colonize the 

vascular system causing wilt symptoms or, in the case of deep feeding lesions leading to 

inner cortex colonization by Fusarium oxysporum or Fusarium solani, cortical rots 

(Leath and Hower 1981, Leath and Hower 1993, Kalb et al. 1994). It is possible that 

larvae may not only open wounds for secondary infections but may also vector 

pathogens, as many fungi pathogenic to host plants have been isolated from CRC larval 

head capsules (Kilpatrick 1961, Leath and Hower 1993). Combined larval CRC damage 

and phytopathogens can work synergistically in reducing yields, plant densities, or 

rapidly decreasing stand life (Leach et al. 1963, James et al. 1980, Godfrey and Yeargan 

1989). For example, CRC and root rot fungi in alfalfa have a synergistic effect reducing 

second cutting yields by 20.8% where each pest alone only reduced yields by about 8% 

(Godfrey and Yeargan 1987). CRC injury and Fusarium may cause stand decline by 

reducing the cold hardiness of plants leading to increased winterkill (Gotlieb et al. 1987). 

Secondary invaders, such as saprophytes, are also associated with CRC feeding lesions 

and once decay within the crown has begun, colonization by arthropod and other 

microorganism successional communities begins which furthers the decay process and 

attracts other pests like the clover root borer (Hylastinus obscurus Marsham) (Leath and 

Byers 1973, Wheeler 1973, Leath and Hower 1993, Kalb et al. 1994). 
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Although the pattern is not always clear, CRC larval damage can decrease forage 

competitiveness against weeds and can increase weed invasion into stands (James et al. 

1980, Godfrey and Yeargan 1985, 1987, Hower et al. 1995). Weeds do not seem to have 

an effect on CRC populations nor do CRC directly affect weed growth (Godfrey and 

Yeargan 1985, Barney and Pass 1987). However, CRC larval feeding can increase the 

rate of nitrogen transfer from clover to grasses benefitting non-host plant growth (Murray 

and Hatch 1994). From a forage production context, this may be undesirable although it 

may indicate that CRC populations may be an important component in nutrient cycling in 

pastures (Murray and Hatch 1994). 

Clover Root Curculio Management 

Monitoring 

A combination of approaches have been described to monitor CRC because of the 

cryptic nature of the larvae and eggs in the soil and the mobile adults that live on the soil 

surface and in the plant canopy. Egg population sizes can be monitored by taking soil 

samples next to plant crowns and wet sieving using a gentle spray of water through a 

standard sieve set. After washing, remaining soil can be separated from eggs and organic 

particulates through floatation and filtration using a high solute solution of MgCl or NaCl 

(Aeschlimann 1975, Ng et al. 1977, Quinn and Hower 1985c). Such methods have high 

recovery accuracy and do not effect egg viability but are time intensive requiring large 

numbers of samples for accurate density estimation due to the aggregated distribution of 

eggs (Quinn and Hower 1985a). Monitoring for larvae and pupae can be done by using a 

similar process (Lau and Filmer 1959, Leibee et al. 1980b, Quinn and Hower 1986a). 
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Recovery of first instar larvae can be difficult since they are concealed within root 

nodules (Leibee et al. 1980b). Later instar Sitona larvae and pupae can be monitored by 

breaking up soil core samples by hand and using a Berlese-Tullgren funnel to recover 

active larvae as they move down the funnel into a collection container (Aeschlimann 

1979). Unfortunately, the time constraints and logistic challenges that arise with these 

monitoring methods impede their usefulness to many growers. 

Multiple adult sampling methods developed allow adults to be collected in a 

variety of situations. Pitfall traps are useful to monitor adults during times of the year 

when they are ground active, such as during fall crawling migration, and are useful for 

monitoring movement direction when placed in a series or when directional barriers are 

used (Pausch et al. 1979, Leibee et al. 1981, Culik and Weaver 1994). Fall adult flight 

activity can be monitored with sticky traps on posts or with motorized rotational aerial 

nets (Prescott and Newton 1963). Adult emergence after pupation or aestivation can be 

monitored using emergence trap cages (Roberts et al. 1979, Leibee et al. 1981, Roberts et 

al. 1982). For research purposes, a suction sampling device (collection vacuum or 

motorized aspirator) can be used to collect samples from the soil surface or foliage which 

can be actively sorted on a heated metal pan to encourage movement or used with a 

Berlese-Tullgren funnel to passively extract adults (James et al. 1980, Roberts et al. 1982, 

Goldson 1983, Goldson and French 1983). Most of these methods require high 

contributions of time or specialized equipment and are unlikely to be adopted by growers. 

Most growers are familiar with sweep nets, being the gold standard sampling method in 

forage pest monitoring, and can be used to sample adults when they are active in the 
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canopy but have limited usefulness when adults are primarily located at the soil surface 

such as during summer diapause or right after emergence (Thompson and Willis 1967). 

One future possibility for advancing monitoring techniques would be using 

pheromone baited traps. Pea leaf weevil (Sitona lineatus L.) males produce an 

aggregation pheromone during spring pulse crop colonization that attracts both sexes of 

conspecifics (Blight and Wadhams 1987, Nielsen and Jensen 1993, Quinn et al. 1999). 

Male CRC may reenter fields in fall sooner than females but the presence of a 

homologous aggregation pheromone that could be used in IPM monitoring or control is 

unknown (Phillips and Ditman 1962). 

Host Plant Resistance 

Research into resistant lines of alfalfa and clovers to CRC and other chewing 

insects in general have been limited and often inconclusive. ‘Chesapeake’ red clover may 

have higher field persistence than ‘Kenland’ red clover (Phillips and Ditman 1962). 

Byers and Kendall (1982) did not observe reductions in larval growth or survival in four 

commercial clover cultivars or twelve alfalfa cultivars versus a check. This included 

‘Lahontan’ which was previously shown as the only commercial cultivar of six tested to 

show resistance to larval feeding by Pedersen et al. (1975). Pesho (1975) saw variable 

taproot larval feeding damage in an alfalfa field trial with 32 of 59 entries tested having 

mean percent damage from introduced CRC below the overall 21.9% average that might 

be considered tolerant. In another trial, a few imported accessions and half sibling crosses 

were seen to have reduced root injury in both the field and lab, which could be a source 

of germplasm (Byers et al. 1996). Within 96 Ladino clover genotypes tested in the 
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greenhouse and field, four entries had consistently reduced larval survival and size and 

two tolerant entries had superior growth despite supporting high larval numbers (Powell 

et al. 1983). In 75% of test years, adult feeding in choice-tests did not show a significant 

correlation to larval feeding damage, which may indicate different mechanisms of 

resistance occurring between life stages (Byers et al. 1996). For Ladino clover roots, 

increased cellulosic and hemicellulosic fiber density may be one mechanism that 

increases resistance to larval feeding (Powell and Campbell 1983). Transgenic resistant 

traits have been evaluated little for CRC; alfalfa nodules colonized by recombinant 

Rhizobium meliloti Dang. expressing insecticidal crystal proteins from the addition of 

cryIII endotoxin genes isolated from Bacillus thuringiensis tenebrionis Berliner had a 

26% reduction in larval CRC damage (Bezdicek et al. 1994).  

Chemical Control 

Chemical control of CRC has long been fraught with difficulties due to year-

round population presence and cryptic larval habits. In the past, CRC management 

primarily relied on heavy applications of chlorinated hydrocarbons (e.g. DDT, 

cyclodienes, and hexachlorocyclohexanes), carbamates, and organophosphates with long 

lasting residual activity producing highly variable results. Before seeding alfalfa, fall 

incorporation of organochlorine cyclodienes, such as aldrin, dieldrin, heptachlor, or 

chlordane, presumably decreased CRC root damage by killing adults before oviposition 

leading to larval damage suppression the following season (Underhill et al. 1955). 

Applications of cyclodienes only provided effective control for one year, until dieldrin, 

which has longer residual activity, was used which had the potential to reduce root injury 
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for three years; effective long term control in forage and seed production often required 

additional applications (Turner 1957, Dickason et al. 1958, Leach et al. 1961). 

Effectiveness of CRC control by spring applications of chlorinated hydrocarbons ranged 

from negligible to highly effective depending on timing of application, life stages present, 

and field age (Underhill et al. 1955, Kerr and Stuckey 1956, Hansen and Dorsey 1957, 

Turner 1957, Forsythe and Gyrisco 1962, Dunn et al. 1964, Waters 1964). Carbamates, 

such as carbofuran that have systemic activity, produced inconsistent results for similar 

reasons and were best used in late summer against pre-ovipositional adults to reduce 

larval populations the following year especially when coupled with spring treatments of 

diazinon, a soil active organophosphate (Neal and Ratcliffe 1975, Godfrey and Yeargan 

1987). When annual treatments of carbamates are applied for long-term insect control, 

the effectiveness of the applications is diminished by the enhanced soil bacterial 

metabolism which rapidly degrades the pesticide (James et al. 1980, Pedigo and Rice 

2009). Even when these antiquated broad-spectrum chemical controls were successfully 

deployed in reducing larval populations and root damage, seed or forage yields, plant 

populations, and stand longevity were often not improved (Phillips and Ditman 1963, 

Dunn et al. 1964, Dickason et al. 1968, Neal and Ratcliffe 1975, James at al. 1980, 

Dintenfass and Brown 1988a). Similarly, foliar applications of other carbamate and 

organophosphate pesticides with presumed systemic root translocation were ineffective in 

controlling Sitona in alfalfa (Barratt 1985).  

After the revocation of carbofuran tolerances in 2009 (EPA 2016) current control 

options have been limited to short residual insecticides targeting the adults. However, the 
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prophylactic deduction of adults appears to be ineffective so far to suppress subsequent 

larval numbers and is not currently recommended (Wenninger and Shewmaker 2014, 

Reitz 2016). For example, even at 10-day spray intervals covering a five-month period in 

fall and spring, methyl parathion provided poor control and was not cost effective (Kalb 

et al. 1994). Such extensive, field-wide treatments in spring to control adult CRC would 

likely have unintended consequences such as reducing the important biocontrol agents of 

alfalfa weevil, a primary alfalfa pest, also present at this time. Future techniques 

involving band spraying autumn post-aestivation adults during field reentry may be a 

more feasible approach (Pausch et al. 1980). As for larval management with insecticides, 

there are currently no soil active insecticides registered for management.  

Cultural Control 

The cultural controls suggested for CRC in the past included burning over forage 

stubble in winter or disking and harrowing after first harvest to reduce adult numbers; 

such tactics would be a challenge to use in modern production systems (Wildermuth 

1910, Webster 1915b). In consecutive alfalfa rotations, larvae may survive spring 

plowing by feeding on root debris left in the field, or in no-till operations from plants left 

in the soil resulting in heavy damage to new vulnerable plants (Godfrey et al. 1986, 

Barney and Pass 1987). One of the few control options available for contemporary 

producers is rotation to a non-leguminous, non-host crop to temporarily disrupt CRC 

populations before rotating back to alfalfa or clovers. Spring planting forages may be 

preferable over summer or fall planting since well-established plants appear to tolerate 

more damage from fall migrating adults (Leibee et al. 1981). Byers et al. (1996) did not 
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see significant differences in larval root damage between alfalfa planted in the spring or 

summer. However, the roots of spring planted alfalfa are larger, and given that larval 

feeding on thicker roots may limit feeding superficially to the cortex (Powell and 

Campbell 1983). Planting in spring may also reduce the effects of larval feeding and is 

the current recommendation (Wenninger and Shewmaker 2014). In established stands, 

proper fertilization may help in mediating damage since robust healthy plants may better 

withstand root damage and recover from stress quicker (Wilson and Barber 1954). 

Nitrogen applications have been shown to reduce larval establishment and CRC 

populations by inhibiting plant nodulation which is beneficial for larval growth (Wolfson 

1987) but is unlikely to be an economically viable long-term solution for CRC control 

(Wenninger and Shewmaker 2014, McNeill et al. 2016). 

Biofumigation 

Current phase-out of soil active, broad-spectrum insecticides and synthetic soil 

fumigants (i.e. carbofuran and methyl bromide) by the Environmental Protection Agency 

has left growers of a wide variety of crops without chemical control options for soil-

dwelling pests. Biofumigation has received increased interest in organic systems and has 

been used as a component of integrated pest management programs in some other 

cropping systems (McGuire 2003). The practice of using cover crops or plant biomass 

containing volatiles that deter or are toxic to pests, and subsequently incorporating them 

into the soil as green manures or soil amendments for agronomic benefit has been coined 

“biofumigation” (Brown and Morra 1997, Rosa et al. 1997, Kirkegaard and Sarwar 1998, 

Sarwar and Kirkegaard 1998, Sarwar et al. 1998, Fahey et al. 2001, Matthiessen and 
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Kirkegaard 2006). Many plants contain metabolic compounds that counteract herbivory 

including plants in the order Capparales, specifically the Brassicaceae (Cruciferae) (Kjaer 

1976, Rosa et al. 1997). Primarily, the biocidal properties of these crops come from a 

suite of volatile compounds released into the soil during the hydrolytic degradation of 

glucosinolates, a group of about 120 described compounds belonging to 10 different 

chemical classes (Fahey et al. 2001). The suite of these chemicals contained within plant 

tissues can differ in composition and concentration by plant species, tissue type, 

developmental stage, genetics, and physical/biotic environment of the cover crop (Kjaer 

1976, Sang et al. 1984, Mojtahedi et al. 1993, Fahey et al. 2001, Buskov et al. 2002, 

Morra and Kirkegaard 2002, Matthiessen and Kirkegaard 2006, Velasco et al. 2008). 

Biofumigation is one approach to managing soil dwelling insects. Isothiocyanates, a 

common product of glucosinolate hydrolysis, are reported to have insecticidal properties. 

Eggs of the black vine weevil (Otiorhynchus sulcatus Fab.) exhibit mortality positively 

correlated with exposure to isothiocyanates with increased molecular weights and greater 

lipophilicity (non-polarity) (Borek et al. 1998). A 1.93% and 8.69% soil incorporation 

rate of active ground ‘Dwarf Essex’ rapeseed meal kills 50% and 90% of black vine 

weevil larvae, respectively, from released isothiocyanates (Borek et al. 1997). After 

pressing oil from the seeds, high surface incorporation rates of meal in potted plants can 

reduce larval survival up to 70%; however, such high incorporation rates were not 

considered economically viable and were moderately phytotoxic to the strawberry host 

plants (Elberson et al. 1997). First instar whitefringed weevil (Naupactus leucoloma 

(Boheman)) larvae exposed to the vapors of high glucosinolates containing Indian 

mustard (Brassica juncea (L.) Czern.) seed meal and plant tissues had higher mortality 
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than larvae exposed to canola seed meal or aerial portions of fodder rape (Brassica napus 

(L.) which have been bred for low glucosinolate levels (Matthiessen and Shackleton 

2000). Beyond direct mortality, biofumigants can have indirect suppressive effects on 

pests that could be used as part of an integrated pest management program. For example, 

for insects with limited larval mobility, such as CRC, ovipositional site selection by 

females can have large fitness consequences and females are expected to show high site 

selectivity (Johnson et al. 2006). Biofumigation using Ethiopian mustard (Brassica 

carinata A. Braun) seed meal can reduce oviposition in Colorado potato beetles 

(Leptinotarsa decemlineata Say) by 50% (Henderson et al. 2009). It is currently unknown 

if any direct or indirect effects of biofumigation, such as direst mortality or changes in 

reproductive behavior, are suppressive against CRC and could be used successfully as 

part of a forage production system. 

Biocontrol 

Multiple species of entomopathogenic fungi are known to infect larvae and adult 

CRC populations and are especially common in laboratory settings (Kilpatrick 1961, 

Crow et al. 1968, Wildermuth 1910, Aeschlimann 1980). However, the role filled by 

these fungi in regulating CRC populations is not well understood. Beauveria bassiana 

(Balsamo) Vuillemin and Beauveria globulifera (Spegazzini) Picard field infection rates 

of adults can reach high levels and is thought to be important in CRC population 

regulation (Turner 1957, Kilpatrick 1961, Crow et al. 1968). Others have argued that B. 

bassiana may most likely be acting as a secondary pathogen or saprophyte and may be a 

low-level mortality factor in adult populations (Quinn and Hower 1985a). 
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Entomopathogenic nematodes (EPN), such as Diplogaster sp., have also been recovered 

from larval CRC (Marshall and Wilbur 1934). EPNs have been used in the long-term 

successful control of other belowground weevil pests of alfalfa, where there are also no 

current chemical control options available, which has led others to investigate their 

potential use in CRC control (Shields et al. 2009). In the laboratory, Heterohabditis 

bacteriophora Poinar, Steinernema feltiae Filipjev, and Steinernema bibionis Steiner 

infect and reproduce in early and late instars, pupa, and even adult CRC. Later instars 

exhibit quick mortality from EPNs with S. feltiae and H. bacteriophora being particularly 

effective (Jaworska and Wiech 1988, Wiech and Jaworska 1990). The Oswego strain of 

H. bacteriophora may be especially useful when targeted towards second to fifth instars 

and pupae; late instars in particular support high nematode infectivity and reproduction 

(Loya and Hower 2003). When applied in the field, this strain reaches stable populations 

quickly, persists for multiple years, and can reduce adult emergence and larval root 

damage (Loya and Hower 2002).  

Little research has been done on generalist predator effects on CRC populations. 

With few management techniques available, conservation biological control may become 

a crucial component in IPM programs designed for CRC control. Ground beetles 

(Coleoptera: Carabidae) are abundant during the CRC ovipositional period with multiple 

species able to feed on CRC eggs. Pterosticus lucoblandus Say, Agonum (Olisares) 

cupripenne Say and, especially, Amara (Amara) aenea DeGeer have been reported to be 

important egg predators in Pennsylvania where egg predation rates may reach 28% 

(Quinn and Hower 1987). Likewise, Cyclotrachelus (Evarthrus) sodalist (LeConte), 



27 

 

 

Pterostichus (Abacidus) permundus (Say), Harpalus (Pseudoophonus) pennsylvanicus 

DeGeer (Carabidae) and Gryllus pennsylvanicus  Burmeister (Orthoptera: Gryllidae) may 

be significant field edge predators in autumn preying on CRC adults during aestivation 

and subsequent field migration (Barney et al. 1979, Barney and Armbrust 1980). Birds 

may also be significant predators of adult CRC. Nine species of birds have been found to 

prey on adult CRC with chimney swifts (Chaetura pelagica L.) and song sparrows 

(Melospiza melodia Wilson) heavily consuming them with 15 adult CRC found in one 

individual (Wildermuth 1910). CRC adults may be an important food item for European 

starlings (Sturnus vulgaris L.) later in the year making up 9.3% of the diet in August 

alone (Lindsey 1939). 

The mymarid CRC egg parasitoid Anaphes diana (Girault) (=Patasson lameerei 

Debaucheis) (Schauff 1984), was first introduced from France in 1977 into the United 

States in Newark, Delaware and subsequently released around Delaware, Illinois, 

Kentucky, and Idaho to control CRC and other Sitona (Dysart 1990). Within a few days 

of emerging, the short-lived females oviposit single eggs into CRC host eggs, preferring 

black eggs in which the chorion has not completely hardened (Leibee et al. 1979, 

Yeargan and Shuck 1981). Parasitoids likely find their host by olfactory cues from 

volatiles released from damaged plants or adult CRC frass (Bloem and Yeargan 1982b). 

The introductions ultimately failed for unknown reasons but, since the parasitoid is 

tolerant of a wide range of temperatures, thermal extremes were not considered to be the 

main culprit for reduced establishment and success (Bloem and Yeargan 1982a, Dysart 

1990). 
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Three braconid parasitoid wasps, Pygostolus falcatus (Nees), Perilitus rutilus 

(Nees), Microctonus aethipoides Loan and one tachinid fly, Campogaster exigua 

(Meigen), that parasitize both Sitona spp. and Hypera spp. weevil adults were introduced 

from Europe into North America for investigation in Manitoba, Canada (Loan 1961) and 

North Dakota, United States (Munro and Post 1948, Berry and Parker 1950). While 

releases targeted sweet clover weevil, S. cylindricollis, they were known to naturally 

parasitize CRC and other Sitona in their native ranges and in controlled environments 

(Berry and Parker 1950, Loan and Holdaway 1961a, Loan and Holdaway 1961b). A 

population with unknown origin of P. falcatus from Prince Edward Island, Canada, 

exhibited modest levels of CRC parasitism but is unlikely to be a dependable biocontrol 

agent due to poor host synchronization (Loan and Thompson 1972, Milbrath and Weiss 

1998). Overall, these introductions failed to establish in North American Sitona spp. 

(Loan 1961, Loan 1965).  

Surveys to recover introduced or native parasitoids of adult Sitona in Missouri 

(Crow et al. 1968), Northern California, and Oregon (Phillips et al. 2000) have also 

resulted in limited success. CRC has proven to be an unsuitable host for the native 

parasitoid Microctonus sitonae Mason which regularly infects adult Sitona scissifrons 

Say (Loan 1960,  Loan 1963). One native tachinid, Hyalomyodes triangulifer Loew 

(=triangularis), has been found parasitizing CRC but is unlikely to be useful in 

management being a generalist beetle parasitoid (Loan 1963).  
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Conclusion 

Much remains to be learned about the biology of clover root curculio. The 

majority of the previous research on CRC biology and phenology was carried out in the 

eastern U.S. quite some time ago. Our understanding of the lifecycle timing and pest 

status of CRC in the western U.S. up to this point has been insufficient. In addition, our 

knowledge of CRC damage and management, which certainly has never been very 

complete, also comes from the eastern U.S. based on research that may not still have the 

relevance it once did. Since the time of past active investigation into CRC as a forage 

pest, forage production systems have adapted along with modern advances in technology 

changing dramatically. Cost effective production of high yielding, top quality forages is 

greater than it has ever been because of these changes. Unfortunately, our knowledge of 

CRC has not advanced at the same pace leaving producers with limited management 

options capable of fitting into modern production systems when needed. Because 

management decisions must be timed to target pests when control is most effective, the 

scarcity of phenological and biological information for CRC in the West has been an 

impediment to basic research regarding this pest in the Intermountain West specifically. 

The future development of management tools will require an updated understanding of 

regional CRC phenology. As previously described, the options available to producers for 

CRC control are limited. Finding replacements for antiquated pesticide chemistries 

requires researchers to look to novel pest control methodologies. Only through the 

experimental application of alternative approaches, such as biofumigation, paired with 

up-to-date phenological information, will regional management options for CRC control 
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be able to be developed that are both complimentary and effective in contemporary 

forage production. 

Research Objectives 

CRC has become a regional pest of increased interest with limited management 

options available to producers. Pest management strategies that are effective and 

compatible with production must be designed around the biology of the pest in question. 

The lack of understanding of CRC biology and phenology in the western U.S. has been 

an obstacle to researchers as they have begun developing modern management 

approaches. One management tactic used for soil-dwelling pests in other cropping 

systems is biofumigation although it has yet to be investigated in the management of 

CRC and has received little attention in alfalfa production. An effective integrated pest 

management program must not only reduce pests as warranted but also be compatible 

with the agronomic system as a whole in order to provide sustainable benefit to growers. 

The overall goal of this research was to increase the regional understanding of CRC 

biology and evaluate the use of biofumigation as a management tactic. Specifically, field 

surveys, field, and greenhouse experiments were conducted to determine: 

1.  The regional timing of CRC life stages including the damaging larval stage 

and overwintering stages and to quantify the current extent of CRC damage 

occurring in our area (Chapter II, formatted for Journal of Economic 

Entomology).  
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2. The direct and indirect suppressive effects of biofumigation on CRC and better 

understand the compatibility of using biofumigant cover crops in rotation with 

alfalfa (Chapter III, formatted for Journal of Economic Entomology). 
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CHAPTER II 

CLOVER ROOT CURCULIO PHENOLOGY AND DAMAGE 

Abstract 

Clover root curculio (CRC), Sitona hispidulus (Fab.), a root-feeding pest of 

clovers (Trifolium spp.) and alfalfa (Medicago sativa L.), has the ability to reduce forage 

yield and stand life, and increase crop exposure to plant pathogens. Historically, CRC 

remained a minor pest because of the effectiveness of soil active pesticides and has 

mostly been researched in the eastern U.S. However, coincident with the federal ban on 

carbofuran, CRC has become a notable pest, yet the understanding of CRC biology and 

phenology in the western U.S. has previously been too inadequate to begin strategizing 

management approaches. The objectives of this study were 1) to determine the timing of 

CRC life stages including the damaging larval stage and overwintering stages during the 

production season, and 2) quantify the current extent of CRC damage occurring in our 

area. We conducted a field survey in northern Utah during the 2015-2016 field seasons 

by sampling nine different fields. We used insect suction samples to collect adult CRC 

aboveground, and soil core samples to collect larval and pupal stages belowground. In 

addition, we recorded the root damage of CRC larvae. We found that in contrast to some 

areas in the eastern U.S. the overwintering stages in our area were primarily in the egg 

stage since the majority of eggs were laid in fall and adult survival through winter was 

low. Newly established fields accumulated damage faster than in older fields which can 

reduce the life span of stands. This suggests that successful management of CRC early in 
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the life of the stand may provide a long-term benefit. Given our new understanding of 

CRC phenology in northern Utah, we can begin to better time and develop management 

toward susceptible life stages. 

Introduction 

Clover root curculio (CRC), Sitona hispidulus (Fab.), is an economically 

damaging weevil pest of clovers (Trifolium spp.) and alfalfa (Medicago sativa L.) that 

can reduce yields, decrease stand life, and increase phytopathogen infection such as 

fusarium rots and wilts from feeding on plant roots (Dickason et al. 1968, Godfrey and 

Yeargan 1987, Hower et al. 1995). The majority of what is known about CRC biology, 

damage, management, and phenology is based on research from the eastern U.S. during 

an era when heavy applications of soil active, highly toxic, broad-spectrum insecticides 

with high environmental persistence were common measures for alfalfa pest management 

(Underhill et al. 1955, Dickason et al. 1958, Phillips and Ditman 1962, Neal and Ratcliffe 

1975, Godfrey and Yeargan 1987, Dintenfass and Brown 1988b). The regulatory phase-

out of these pesticide chemistries over the past few decades, including the 2009 

carbofuran revocation (EPA 2016), has left producers with limited management options 

and only a partial regional knowledge of CRC biology in western North America. The 

development of management techniques that are compatible with contemporary western 

forage production requires a better understanding of CRC biology, phenology, and 

damage in the region.  
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The damaging life-stage of CRC comes from larval feeding below ground. Root 

damage often goes unnoticed by growers and aboveground symptoms may be 

misattributed to other causes, including plant pathogens or nutrient deficiencies (Tietz 

2012). Although CRC has been in northern Utah since at least 1910, the enigmatic 

damage to roots was not connected to the larval stage initially (Webster 1915). Since 

then, little CRC research has been done in Utah alfalfa or in the West in general 

(Dickason et al. 1958, Waters 1964, Davis et al. 1976). Based on observation from the 

eastern U.S., our current understanding is that CRC overwinters as eggs and adults, CRC 

larvae may prefer silty-clay loams over loamy sand soils, and adults are active and have 

peaks in the spring and fall undergoing a summer aestivation (Leibee et al. 1981, Hower 

et al. 1994, Pacchioli and Hower 2004, Wenninger and Shewmaker 2014). Current CRC 

pest status and prevalence in the western U.S. is largely unknown. 

In order to develop appropriate management strategies targeting CRC, an 

understanding of CRC phenology during the season is imperative to determine when 

susceptible life stages are occurring to better time management strategies. Over the 

course of two field seasons (2015-2016), production alfalfa hay fields in Cache County, 

Utah were sampled to 1) determine the timing of CRC life stages including the damaging 

larval stage and overwintering stages during the year, and 2) quantify the current extent 

of CRC damage occurring in our area.   
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Materials & Methods 

Phenology 

Alfalfa production fields distributed across Cache Valley, Utah were surveyed for 

two field seasons (2015-2016). In 2015 and 2016, four and seven fields, respectively, 

were visited from April to December (specifically May 31 to September 23 in 2015 and 

April 2 to December 3 in 2016; Table 2-1). Field age ranged from two to eight-year old 

production fields. The average field size was 17.53 hectares. Fields varied in irrigation 

method, soil type, pest management, and harvest schedule (Table 2-1). Only one field 

applied insecticide (chlorpyrifos and dimethoate, both organophosphates) targeting pea 

aphid (Acrythospihon pisum Harris). CRC adults were collected using suction sampling 

and eggs, larvae, and pupae were collected from soil samples. The sampling area at each 

site was a 115 × 243 meter (ca. 2.8 hectares) area plot divided into four, 57 × 121 meter 

quadrats with a 6 meter buffer along the edge to minimize sampling edge effect.   

CRC adults were sampled using an insect suction sampling device made from a 

leaf blower/vacuum (Echo ES-250) outfitted with a fine mesh organdy collection bag 

(Rincon-Vitova Insectories #DVAC401) secured around the 12 cm diameter opening of 

the suction tube. Sampling captured individuals in the plant canopy during times of 

activity as well as on the soil surface when CRC was not active during summer 

aestivation. One suction subsample was taken in each quadrat totaling four subsamples 

per field each collection period. A suction subsample consisted of placing the vacuum at 

full throttle over an alfalfa crown and contacting the soil surface for a one-second interval 
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in one motion. This was repeated every one meter in a linear 30 meter transect in 

succession 30 times to produce one suction subsample. Samples were stored on ice in a 

cooler, transported back to the lab, and refrigerated until processed. Adults were sampled 

from June 30 to September 24, 2015 (total 5 sample dates) and from April 9 to December 

3, 2016 (total 10 sample dates) and were counted. 

Larvae were sampled by taking soil cores 11 cm in diameter and ca. 28 cm long 

centered around alfalfa crowns. In 2015, four larval soil cores were collected each 

sampling period from each quadrat totaling 16 cores per field. In 2016, soil core samples 

were reduced to two samples per quadrat totaling eight cores per field each visit. Soil 

cores contained plants with intact taproots as well as surrounding soil. They were 

refrigerated to slow down larval development and activity until they could be processed. 

Larval soil cores were processed using modified methods of Lau and Filmer  (1959) and 

Leibee et al. (1980b). Cores were soaked in water for ten minutes in an 11.4-liter plastic 

tub and broken apart with gentle agitation and a water spray. As the tub filled with water, 

the supernatant containing small soil particulates, organic matter, soil mesofauna, and 

floating CRC larvae was decanted off the top through a U.S. standard sieve set (#5, #10, 

#35, #60). The process was repeated until cores were completely disaggregated and 

contents could be thoroughly agitated and suspended to recover all larvae. Alfalfa roots 

were removed, cleaned, and stored frozen for future damage assessment (see “Damage 

assessment” below). CRC larvae and pupae were counted and head widths of CRC larvae 

were measured using an ocular micrometer to determine larval size throughout the season 

as in Leibee et al. (1980b). In order to have a size standard for first instars, five eggs were 
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taken from each egg soil-core and placed in a 3.5 cm petri dish lined with Whatman® 

filter paper moistened with distilled water. To prevent desiccation or newly emerged 

larval escape, Parafilm M® was used to cap dishes before the lids were added. Dishes 

were kept in a Percival I-30BLL incubator (21 °C, 100% RH, 24 hour dark period) and 

checked every 2-3 days to count hatched eggs, and remove eclosed larvae and chorion 

remains, to avoid potential cannibalism. In 2015, larval cores were collected from June 1 

to July 30, 2015 (totaling 5 sample dates), and from May 15 to August 2, 2016 (totaling 6 

sample dates). Additionally, in order to check for any larval stages that might become 

present in the fall, eight soil cores were collected per field on October 26 and December 

3, 2016 from the two fields which had the highest CRC populations during the season 

(Caine Dairy 6 and Richmond 6; Table 2-1).  

Eggs were sampled similarly to the larval cores; four and two egg soil-cores were 

collected in 2015 and 2016 per field quadrat, respectively. To sample for eggs which are 

oviposited on the soil surface and aggregated around alfalfa crowns (Ng et al. 1977), soil 

samples were taken using a 7.62 × 7.62 cm collecting template positioned so that at least 

two sides were in contact with alfalfa crowns. The soil within the square sampling 

template was removed at a depth of 2.5 cm, bagged, and transported in an ice chest. 

Samples were frozen for storage in 2015; however, in order to assess egg viability in 

2016, samples were refrigerated to stop egg development and retain viability (Quinn and 

Hower 1985). The methods of Ng et al. (1977) and Aeschlimann (1975) were used with 

slight modification to process egg samples because of their high recovery rates and egg 

viability retention.  Eggs were separated from soil as described for larvae. It was 
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determined that a #60 sieve was sufficient in collecting ca. 97% of whole eggs and was 

the finest sieve used. Eggs were then counted using a stereomicroscope (Leica S6D). 

Damage Assessment 

To assess larval root damage, roots were washed from larval soil cores as they 

were being processed and frozen for later evaluation. Roots were initially scored for 

crown and taproot larval CRC feeding damage on a 0-5 number scale: 0- damage absent, 

1- damage present but minimal, 2- light damage, 3- moderate damage, 4- moderate-high 

damage, 5- extensive/severe damage. Pictures were taken of roots for comparison. To 

quantify lateral root pruning damage in 2016, a semi-cylindrical counting template made 

from a 15 ml centrifuge tube by longitudinally bisecting it and drilling 10 mm diameter 

holes at 25, 50, and 75 mm from the top of the tube. Once the template was placed at the 

junction of the taproot and crown, all lateral roots and rootlets arising from within each of 

the three 78.54 mm2 area holes, being associated with the different soil depths, were 

counted. In order to better quantify the percentage of taproot damage and its occurrence 

at differing soil depths, a modified method similar to Pesho (1975) was used. Crowns, 

lateral roots, and rootlets were removed from the taproot. A longitudinal incision was 

made deep enough into the root to cut through the vascular tissue so that the epidermal 

tissue, outer cortex and cambial layer could be peeled away from the inner cortex. When 

multiple codominant roots were present, each was sliced and peeled intact. The excised 

outer root layers were flattened and overlain with a transparency film sheet with a printed 

5 mm grid. The root outline was traced onto the film using permanent marker and all 

identifiable larval feeding lesions were transcribed on the film. The sheet was then 
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scanned (Canon CanoScan LiDE 60). Scans were quantified using ImageJ (ImageJ 1.49f; 

http://rsbweb.nih.gov/ij/) where each root was divided into 25 mm sections and the area 

of taproot scarring and the total taproot area was recorded for each section so that percent 

damage could be calculated per section as well as for the entire root. 

Analysis 

Correlative data analysis of CRC life stages consisted of a Pearson correlation test 

using the PROC CORR procedure (SAS Studio 3.5). Correlations were also made to 

determine if counts of root damage lesions were correlated to percent taproot damage. 

The procedure was also used to analyze the relationship between the damage variables 

measured after larvae had pupated (i.e. end of season visual damage estimates and 

computer imaging estimates) and larval densities in 2015. Additional correlations were 

completed for 2016 data to compare the pre and post larval period change in damage 

metrics between roots collected while larval densities were low (May 15, 2016) and after 

pupation had occurred (August 1, 2016).  

Pearson correlations were used to determine whether field age had an overall 

relationship to taproot damage or peak larval numbers. The effect of field age on the 

amount of accumulated taproot damage was assessed further by comparing the average 

amount of the 2015 and 2016 post larval period taproot damage in fields in their first (N = 

3), second (N = 2), third (N = 2), and fourth or more (N = 3) years of damage by using the 

PROC GLM procedure and Tukey’s HSD posthoc means comparison. Planned contrasts 

were used to further assess differences in taproot damage and larval numbers occurring in 
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stands of different age classes. The PROC REG procedure was used for a single 

regression to compare field age and larval populations. For fields that were sampled both 

years (Creech and Larson; Table 2-1), both sets of annual data were included in the 

analysis for the appropriate age category during the sampling year. 

Results 

Phenology 

In 2015, CRC adults were captured in samples from June 30 to September 24 in 

high abundances (>10 adults/sample) suggesting that CRC adult activity also occurs both 

before and after this period of time (Fig. 2-1a). As a result, sampling in 2016 was 

expanded to April 9 to December 3, 2016 to capture complete activity. Spring 

populations were low both years until July when adult populations began to increase from 

0.74 adults per sample to >10 adults per sample from early August through November 

(Fig. 2-1b). In 2015 and 2016, there were two distinct peaks of adult abundance occurring 

in mid-July and late-August in 2015 and early August and early October in 2016.  

In 2015, from the first collection period on June 1 to the second collection period 

on June 18, larval numbers dropped from 6.91 to 5.38 larvae per sample indicating that 

peak larval numbers were occurring or had already occurred before early June (Fig. 2-

1a). Larval sampling was started earlier in 2016 and on April 9 larval numbers were very 

low at 1.08 larvae per sample. By May 30, 2016 larval numbers reached their peak (6.42 

larvae per sample) and began to decline reaching very low numbers by August 1, 2016 

(Fig. 2-1b). In order to better understand growth over the larval period, head widths were 
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measured as an estimate of larval size. In 2015, larval size changed little from June 1 to 

July 29 indicating that when samples were collected larvae were primarily in their final 

fifth larval stage (Fig. 2-2a). In 2016, larvae recovered in early April were generally 

small in size (Fig. 2-2b). Although there were a few larger sized larvae present, 58.82% 

of larvae recovered (N = 54) had head widths matching the first instars hatched in the 

incubator that were used as a size standard. Average larval head width continued to 

increase until plateauing June 13 indicating that most larvae where fifth instars at this 

time. Pupal densities peaked between June 28 and July 1 both years (Fig. 2-1). 

In 2015, egg densities were fairly low (< two eggs per sample) from June 16 

through August 24. The highest egg densities observed in 2015 were from September 23 

samples which contained an average of 2.91 eggs per sample (Fig. 2-1a). Again, 

sampling in 2016 was expanded to better understand oviposition throughout the year. 

When egg cores were collected April 9, 2016, egg densities (6.75 per sample) were 

higher than when sampling was stopped in late September 2015 (2.91 per sample). By 

May 15, egg numbers were low (0.9 eggs per sample) and continued to decline to 0.15 

eggs per sample on August 2. In fall, egg numbers began to increase from 4.18 eggs per 

sample on September 30 to 13.09 eggs per sample on December 3 when sampling was 

stopped (Fig. 2-1b).  

To better understand the population dynamics seen among average CRC life 

stages within fields, correlative analyses using 2016 data were completed. The peak 

densities of eggs recovered in December were not significantly correlated to either peak 

of adult numbers occurring in August (r = -0.239; P = 0.606) or October (r = 0.519; P = 
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0.232). No significant correlation was observed between peak June larval densities and 

the peak of new generation adults occurring in late July to early August (r = 0.248; P = 

0.591). Peak larvae numbers were also not correlated significantly to the October peak of 

adults (r = 0.386; P = 0.393). 

Damage Assessment 

There was a significant, positive correlation (N = 741; r = 0.468; P < 0.001) 

between the number of larval feeding lesions and the percentage area of taproot damage 

calculated for individual roots. Counting lesions could be an efficient way to quantify 

taproot damage as it can be achieved at a much faster rate. June 2015 and 2016 peak 

larval densities were not significantly correlated to visual taproot damage ratings (N = 11; 

r = 0.033; P = 0.923), crown damage ratings (r = 0.107; P = 0.753), area of taproot 

damage (r = -0.261; P = 0.438), or percent taproot damage (r = -0.191; P = 0.574) from 

roots collected in July 29, 2015 and August 1, 2016. The roots from these collection 

periods were chosen for analysis to represent the end of season damage levels because 

larvae had pupated at this time. The correlation between overall end of season amount of 

taproot damage and percent of taproot damage was not significantly correlated (r = 0.501; 

P = 0.116). 

Because taproot damage is accumulative (Dickason et al. 1968) and old damage is 

difficult to distinguish from new damage, the change between damage metrics within 

fields for roots collected before (May 15) and after (August 1) the 2016 larval period 

were compared with peak larval densities. Significant positive correlations existed 
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between larval densities and average difference between pre to post larval period visual 

crown damage rating (N = 7; r = 0.867; P = 0.012), taproot damage rating (r = 0.928; P = 

0.002), average amount of taproot damage (r = 0.913; P = 0.051), and average percent 

taproot damage (r = 0.782; P = 0.038) meaning that higher larval densities increased the 

severity of root damage more than lower densities.  These results may explain why larval 

populations were not correlated with end of season damage measurements overall which 

could have been attributed to the masking effect of old and new damage being indistinct. 

The correlation between field age and reduction in rootlets over the season was positive 

(r = 0.740; P = 0.057). A significant negative correlation was found between average 

peak larval populations and the pre to post-larval period difference in the total number of 

rootlets counted per root (r = -0.907; P = 0.005). This pattern was driven by only two of 

the fields, which were in their second year of production and had the highest numbers of 

larvae (F = 4.58; df = 1; P = 0.076), having a lower number of rootlets after the larval 

period than before it accounting for a 31.92% reduction in rootlet density.  

Stand age was significantly and positively correlated to area of taproot damage 

collected at the end of the 2015 and 2016 larval period (N = 11; r = 0.657; P = 0.028) but 

not percentage of taproot damage (r = 0.359; P = 0.279). The average amounts of 

accumulated taproot damage for fields in their first, second, third, or fourth or more year 

of damage, which corresponds to the second, third, fourth, or at least fifth year of 

production, were statistically unequal (F = 6.87; df = 2, 8; P = 0.017). Posthoc means 

comparisons and planned contrasts of the average total amount of damage indicated that 

the mean damage from first damage year fields was significantly less than fields in their 
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second to fourth or more year of damage (F = 16.32; df = 1; P = 0.005; Fig. 6). Stands in 

their second year of damage also had statistically less damage than fields with three or 

more years of damage (F = 4.31; df = 1; P = 0.077). Stands in their third year of damage 

did not have significantly different amounts of damage than fields at least in their fourth 

year of damage (F= 0.11; df = 1; P = 0.747). However, the average percentages of 

damage between field age classes were not statistically different overall (F = 2.03; df = 2, 

8; P = 0.198). The correlation found between 2015 and 2016 field ages and peak larval 

numbers was not significant (r = -0.405; P = 0.217). A regression (R2 = 0.082, F = 0.80; 

df = 1, 9; P = .0395) did not exhibit a significant relationship between field age and peak 

larval densities. 

Discussion 

Most of what is known about the general biology, timing of life stages, and levels 

of damage associated with CRC in North America comes from research in the eastern 

U.S. (Phillips and Ditman 1962, Roberts et al. 1979, Leibee et al. 1981, Powell and 

Campbell 1984, Godfrey and Yeargan 1985, Quinn and Hower 1985). Our current 

understanding, broadly speaking, is that CRC eggs hatch in the spring, larvae pupate 

midsummer, and the new generation of adults go on to overwinter resuming activity and 

depositing eggs in the spring thus completing one generation per year. In a general sense, 

this is similar to our regional observations with the exception of a few important 

differences. Dissimilarities found in ovipositional timing, occurring mostly in fall in our 

area, and timing of peak adult densities, which are locally quite low in spring, 

demonstrate key regional differences in life stages present during the sensitive time of 
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overwintering, which has been considered to play a large role in CRC population 

dynamics (Kalb et al. 1994). Larvae are reported to occur as early as April in New Jersey 

(Lau and Filmer 1959). A few larvae, which were primarily first instars, were present in 

three fields checked in early April 2016 along with a soil egg load that continued to 

decline afterward suggesting that the larval period was just beginning at this time (Fig. 2-

1b, Fig 2-2b.). The slightly larger, more abundant larvae occurring in mid-May coupled 

with low whole egg densities suggests that peak egg hatching occurred between April to 

early May 2016 beginning the larval period which continued until mid-July peaking in 

June. Overall, the average peak larval densities found in our study (27.71 per m2 in 2015;  

67.66 per m2 in 2016) were generally reported from eastern North America. Some of the 

highest average reported densities (converted for comparison) have been reported from 

by Godfrey and Yeargan (1987) in Kentucky (1232.44 per m2) and by Thompson and 

Willis (1967) from the Maritime Provinces, Canada (548.34 and 731.81 per m2). Our 

densities were higher than reported by Lau and Filmer (1959) in New Jersey (5.02 per 

m2). 

CRC has been suggested to be multivoltine in warmer areas although this has not 

been supported (Webster 1915, Bigger 1930, Powell and Campbell 1984). To confirm 

CRCs univoltine lifecycle in Cache Valley, two fields were checked for fall and winter 

second generation larvae since oviposition occurred before this time. A small number of 

newly hatched ca. first instars were found in late fall to early winter (Fig. 2-1b, 2-2b). 

Similar small numbers of Sitona hatching in the fall, presumed to be CRC, were recorded 

in the Maritime Provinces of Canada (Thompson and Willis 1967) but was not seen in 
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North Carolina where the growing season is longer making the a second generation more 

likely (Powell and Campbell 1984). While overwintering larvae have been recognized, it 

is unknown what level of survivorship a partial second generation of larvae would have 

or if they would contribute substantially to spring larval populations. In 2016, during 

early April sampling, very few large larvae were recovered (4 of 35 recovered) during 

this time with the other larvae being within the first couple stadia of growth (Fig. 2-2b). 

The large larvae were tentatively identified as CRC based on mandibular anatomy 

(Manglitz et al. 1963) and two were able to be reared to adulthood to confirm their 

identity as CRC. It did not appear that overwintering larvae, if they continue to grow over 

winter, significantly contributed to 2016 spring populations. 

In both 2015 and 2016, peak densities of pupae were observed around the very 

end of June and the first of July. While this occurs a month or two later than in North 

Carolina (Powell and Campbell 1984), the general occurrence of pupation in mid to late 

June and early July is similar to the time established for many other areas of the United 

States (Bigger 1930, Marshall and Wilbur 1934, Lau and Filmer 1959, Thompson and 

Willis 1967, Leibee et al. 1981). Thus it appears that the larval period spans April to late 

June and early July in Cache Valley with peak larval densities occurring at the end of 

May and early June when taproots are damaged from fourth and fifth instar feeding (Fig. 

2-1, 2-2). 

Adult capture rates peaked twice in fall with the first peak occurring two weeks 

earlier in 2015 than in 2016 and the second peak occurring a month earlier in 2015 than 

in 2016. A distinct seasonal reduction in recovered adults was observed both years 
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occurring a month earlier in 2015 than 2016. A similar seasonal reduction of adults 

recovered from the soil surface was seen in eastern Canada (Thompson and Willis 1967). 

It may be that this reduction was due to reproductively immature adults emigrating from 

fields to bordering habitat or seeking shelter in secluded areas at the soil surface, 

precluding sampling collection, for summer aestivation at this time (Phillips and Ditman 

1962, Roberts et al. 1979, Culik and Weaver 1994). The overall lack of oviposition at this 

time for 2015 and 2016 may further support this hypothesis as oviposition occurs after 

summer aestivation once the reproductive system develops (Rautapää and Markkula 

1966, Powell and Campbell 1984). Since post-aestivatory activity is initiated by seasonal 

temperature reduction instead of photoperiod (Leibee et al. 1980a), annual timing 

differences in activity and oviposition are expected. Further monitoring and collection 

during this crucial transition in life history would provide valuable insight into the 

reproductive timing of CRC, which may have implications for population control (Pausch 

et al. 1980).  

Although more collection information in spring would be useful in our area, for 

2015 and 2016, adult survival overwinter appeared to be low. In some areas, such as New 

Jersey (Lau and Filmer 1959) and Maryland (Phillips and Ditman 1962), adult 

populations in spring may be high with mortality rates increasing heavily in mid to late 

May (Bigger 1930, Jewett 1934). CRC oviposition in many eastern locales is known to 

occur in spring and, depending on the overwintering capacity of adults, may contribute 

the majority of individuals to spring larval populations (Bigger 1930, Phillips and Ditman 

1962, Ng et al. 1977). In other areas, adult populations may be highly reduced over 
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winter and contribute little to new generation CRC spring populations (Thompson and 

Willis 1967, Kalb et al. 1994). In these situations, oviposition in fall may contribute the 

majority of the spring egg loads (Roberts et al. 1979, Quinn and Hower 1985, Dysart 

1990, Kalb et al. 1994). Fall oviposition has been noted to occur in Utah, although the 

degree to which had remained unknown (Davis et al. 1976). Egg densities in 2016 were 

highest in early December during the last sample period. It appears that during our 

research heavily ovipositing adults in fall influenced Cache Valley populations the most 

since relatively few adults were present in spring (Fig. 2-3). If this was the case, then low 

counts of CRC adults during spring scouting would not be indicative of the true scale of 

CRC populations present in the field which produce root damaging larvae some time 

later. Since only two fields could be visited both years, additional expansion of sampling 

to more fields through the fall to spring transition would enable more thorough 

quantitative analyses than was possible in this research. Additional collection information 

is also needed to see if the overwintering dynamics we have hypothesized are the typical 

annual patterns given that the climactic conditions faced by organisms during inter-

seasonal transitions in our area are extreme and highly variable both during the season 

and between years. More information on the correlation between stages is also needed 

from a population monitoring and predictive standpoint. Using 2016 data, we did not see 

significant correlations between either peak of adults within fields or peak egg densities 

found in December which would presumably overwinter and hatch in the spring. It is not 

known how those eggs loads were correlated to larval densities the following year, but it 

would already seem that using adult populations, which although are easily sampled and 
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can be collected by growers with little training, to predict damaging larval densities 

would not be met with success. 

The significant correlation between the number of CRC larval feeding lesions and 

percentage of taproot area damaged by larvae was similar to the results of Pesho (1975) 

who found that the number of feeding lesions had a positive linear relationship with 

percentage of surface area damaged close to a 1 to 1 ratio. Since calculating the amount 

of taproot damage from scanned images as described here was time consuming, taking 

approximately two to three hours total per soil core to process and generate data, 

researchers with limited resources needing to more efficiently quantify damage may 

consider counting lesions instead. Manually measuring the length and width of scars and 

approximating area by multiplication has also been used to quantify damage and could be 

less time intensive but was not tested here (Hower et al. 1995). 

The differences in correlations between overall end of season damage metrics and 

peak larval densities, being non-significant, when compared with the change in damage 

measurements occurring during the larval period, was interesting but was perhaps an 

unsurprising result. Where alfalfa stands have been under larval feeding pressure 

accumulating damage for multiple years (Dickason et al. 1968), the addition of damage 

from earlier generations of CRC to estimates of root damage present at the time was 

confounding. Because of this effect, comparing a single generation of larval densities to 

end of season damage in a field that has had multiple years of additive damage was 

misleading. A better understanding of damage accumulation rate is necessary in linking 

larval populations to root damage and, with the ultimate goal of understanding the 
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economic effects of CRC, responses in yield. When larval populations and damage were 

investigated further by comparing the increase in damage metrics from before and after 

the larval period, significant positive correlations were seen.  

 Another noteworthy observation was the pattern in rootlet reduction during the 

larval period. The fields that were seen to have reductions in rootlet density were in their 

first damage year and hosted the highest larval densities. In older fields, rootlet density 

was low overall having only 53.81% of the density two year old fields had. Whether this 

was due to accumulative larval pruning damage over time was unknown but loss of fine, 

subsurface roots could especially have an impact on water absorption (Houston 1955). 

Drought conditions further aggravate yield reductions by CRC which may mean that 

producers in drought prone areas may need to consider the pest status of CRC in their 

region (Godfrey and Yeargan 1985). Alternatively, if lateral rootlet densities decline in 

stands over time as part of an overall shift in root morphology, the same pattern may be 

seen where young stands with high lateral root counts could potentially support higher 

larval CRC populations due to increased food resources available to small larvae 

reducing intraspecific competition and density dependent mortality (Goldson and French 

1983, Quinn and Hower 1986a). 

A significant positive relationship between stand age and area of damage was 

observed. Based on the fields sampled, fields accumulated damage rather quickly. Stands 

at the end of their first year of damage already had 61.35% of the damage level seen the 

following year. Damage only would increase from fields in the second year of damage 

25.82% compared to the damage averaged across all fields in their third or more year of 
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damage. There was a minimal 4.97% increase in damage between third year of damage 

fields to fourth of more year of damage fields. The 53.05% increase observed between 

first and third year of damage stands is lower than the 87.34% increase reported by 

Hower et al. (1995) but still may be considered a significant result. Initial reductions in 

plant densities caused by pest feeding in second year fields can still be tracked through 

additional seasons (Godfrey and Yeargan 1989). While growth compensation by plants in 

fields with reduced crown densities can recover from potential reductions in yield 

(Dintenfass and Brown 1988b), it is currently unknown how larval populations damaging 

second year stands in our region are contributing to premature stand declines. Future 

research into the effects of controlling CRC yield reductions during this stage of stand 

development and how control responses are carried over the life of the stand could 

provide insight on not only damage, but how CRC control methods applied during this 

time to delay the accumulation of damage could be used economically. If timed correctly, 

it could mean that even expensive control options like entomopathogenic nematodes 

which kill CRC larvae (Jaworska and Wiech 1988, Loya and Hower 2002) could be 

optimized for economic control. 

Conclusion 

In the past, highly mobile and residually persistent pesticides, which have since 

been phased-out, were used to combat alfalfa weevil larvae may have offered non-target 

soil-borne pest suppression (Leath and Hower 1993, Hower et al. 1995). Carbofuran 

specifically, which has systemic plant action, may have inhibited CRC populations (Neal 

and Ratcliffe 1975, DiSanzo 1981). Modern insecticide chemistries for alfalfa weevil 
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control are applied before mid-May in Cache Valley when CRC populations are in the 

larval stage below ground presumably being unaffected by contemporary pesticide 

applications. Current chemical control options only exist for adult populations and not 

larvae (Reitz, 2016). Spraying for adults in an effort to control larval numbers has not 

been recommended (Wenninger and Shewmaker, 2014). Alternative approaches will 

need to be considered to control CRC such as breeding for resistance (Powell et al. 1983, 

Byers et al. 1996). Other novel control measures such as the use of entomopathogenic 

nematodes (Loya and Hower 2002, 2003) or using biofumigation to suppress larvae may 

be a useful component of a pest management program. Applicative control measures 

need to be timed when pests are most susceptible to control to effectively reduce 

economic damage as part of an integrated pest management program. The newfound 

knowledge of CRC phenology in northern Utah provides an improved framework to 

advance the future development of management strategies targeting susceptible life 

stages in our region.  
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Figure 2-1 Seasonal distribution of CRC life stages found in Cache Valley, Utah in (a) 

2015 and (b) 2016. Values are means ±1 SE. 

a                                                                                                                 

b 
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Figure 2-2 Larval size across the field season in (a) 2015 and (b) 2016. Box divisions are 

means with upper and lower quartiles. 

a                                                                                                  

b                                                                                                 
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Figure 2-3 Potential overwintering stages of CRC present in the spring and fall. Adult 

numbers are shown in black bars and eggs are shown in grey bars. Values are means ±1 

SE.  
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Figure 2-4 Progression of taproot damage through the soil profile across all field sites. 

Values are means ±1 SE. 
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Figure 2-5 Accumulation taproot damage occuring in different field age classes (N = 10). 

Tukey’s HSD groupings of taproot damage with different letters are significantly 

different (P < 0.05). Values are means ±1 SE. 
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CHAPTER III 

BIOFUMIGATION EFFECTS ON CLOVER ROOT CURCULIO 

Abstract 

Clover root curculio (CRC), Sitona hispidulus (Fab.), is a root-feeding pest of 

clovers (Trifolium spp.) and alfalfa (Medicago sativa L.), which can reduce crop yield, 

stand life, and increase crop exposure to plant pathogens. Following the federal ban of 

carbofuran and other synthetic soil fumigants, soil-dwelling pests in alfalfa have received 

increasing attention due to the difficulty in managing them in established stands and 

having few management options. Biofumigation is an alternative to synthetic soil 

fumigants where biofumigant plants are grown, then chopped and incorporated into soil 

where toxic plant chemicals volatilize suppressing soil pests. Biofumigant cover crops, 

such as Brassica and Sinapis spp., provide one possible management option that 

suppresses soil-borne pests in other cropping systems but has received little attention in 

alfalfa production. The objectives of this study were 1) to determine the direct and 

indirect suppressive effects of biofumigation on CRC, and 2) to determine the agronomic 

benefits of using biofumigant cover crops in rotation with alfalfa. We conducted a 

repeated field experiment in northern Utah along with supplementary greenhouse 

experiments in 2015 and 2016. We quantified the effects of biofumigation on adult 

feeding, area avoidance, oviposition suppression, subsequent larval damage, and stand 

establishment. We found that the soil incorporation of cover crops can reduce CRC larval 

damage and that biofumigant soil incorporation can suppress CRC adult feeding 

behavior. Overall, the response of CRC to biofumigants was variable. We did not see any 
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direct benefits or disadvantages of biofumigant cover crops on alfalfa production but 

future integration of mustards to achieve integrated pest management goals as part of an 

agronomically feasible alfalfa rotation requires additional research and optimization. 

Introduction 

The recent phase-out of soil active, broad-spectrum insecticides and synthetic soil 

fumigants (e.g. carbofuran and methyl bromide) by federal agencies has left growers of a 

wide variety of crops without chemical control options for soil-dwelling pests. 

Biofumigation is the practice of incorporating plant biomass with fumigant properties, 

such as cover crops grown as a green manure or applying seed meals, into the soil for 

pest suppression (Brown and Morra 1997, Rosa et al. 1997, Kirkegaard and Sarwar 1998, 

Sarwar and Kirkegaard 1998, Sarwar et al. 1998, Fahey et al. 2001, Matthiessen and 

Kirkegaard 2006). Primarily, the biocidal properties of these biofumigant crops come 

from a suite of volatile compounds released into the soil during the hydrolytic 

degradation of glucosinolates which are commonly found in brassicaceous plants (Kjaer 

1976, Sang et al. 1984, Mojtahedi et al. 1993, Fahey et al. 2001, Buskov et al. 2002, 

Morra and Kirkegaard 2002, Turk and Tawaha 2003, Matthiessen and Kirkegaard 2006, 

Velasco et al. 2008). Isothiocyanates, a common product of glucosinolate hydrolysis, are 

reported to have insecticidal properties. For example, vapors from Indian mustard 

(Brassica juncea L.) plant tissues and seed meal resulting from glucosinolate degradation 

negatively affected whitefringed weevil (Naupactua leucoloma (Boheman)) larval 

survival (Matthiessen and Shackleton 2000). Eggs of the black vine weevil (Otiorhynchus 

sulcatus Fab.) exhibited increasing mortality correlated with exposure to isothiocyanates 
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with increased molecular weights and greater lipophilicity (non-polarity) (Borek et al. 

1998). A 1.93% and 8.69% soil incorporation rate of active ground ‘Dwarf Essex’ 

rapeseed meal killed 50% and 90% of black vine weevil larvae, respectively, from 

released isothiocyanates (Borek et al. 1997). Furthermore, biofumigation using Ethiopian 

mustard (Brassica carinata A. Braun) seed meal reduced oviposition in Colorado potato 

beetles (Leptinotarsa decemlineata Say) by 50% (Henderson et al. 2009). Together, this 

suggests that biofumigation can directly affect soil pest survival and indirectly affect their 

reproductive behavior and can be a key component of soil pest management.  

Clover root curculio (CRC), Sitona hispidulus (Fab.), damages legume forage 

crops throughout the U.S. (Jewett 1934, Marshall and Wilbur 1934, Phillips and Ditman 

1962, Dickason et al. 1968, James et al. 1980) and can reduce yields by 8.4% to 18.6% 

(Godfrey and Yeargan 1987, Hower et al. 1995), reduce forage quality (Godfrey and 

Yeargan 1987, Godfrey et al. 1987, Hower et al. 1995), and accelerate stand decline 

(Dintenfass and Brown 1988b, Godfrey and Yeargan 1989). In particular, the larval 

stages are the damaging life stage where first instars feed within root nodules and later 

instars feed on lateral roots and the taproot (Bigger 1930, Marshall and Wilbur 1934, Tan 

and Hower 1991). Currently, there are no soil active insecticides registered for use 

against CRC larval stages, leaving growers with non-host crop rotation to a non-legume 

crop as one of the only fully accepted management options available (Wenninger and 

Shewmaker 2014). The life cycle of CRC is closely associated with the soil during the 

egg, larval, and pupal stages making biofumigation ideally suited for management of 

CRC.  
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Biofumigation has broad-spectrum activity and is known to alter the non-target 

microbial ecology of the rhizosphere (Mazzola et al. 2007, Cohen et al. 2005, Bressan et 

al. 2009, Omirou et al. 2011). Legumes rely on symbiotic nitrogen fixing rhizobia 

bacteria inhabiting root nodules that mediate plant nutrition and defenses which can 

subsequently affect pest herbivore preference and performance (Dean et al. 2009, 

Katayama et al. 2010, Dean et al. 2014). Biofumigant crops can also have phytotoxic 

effects that can inhibit weed seed germination as well as subsequent crop germination if 

seeded into green manure amended soil too soon after incorporation (Campbell 1959, 

Vera et al. 1987, Haramoto and Gallandt 2004). Therefore, it is important to keep in mind 

the possible negative interactions between the biofumigant and desired crop when 

developing a sound rotational system. Alternatively, there is also the possibility of 

biofumigant containing green manure incorporation enhancing the desired crop not only 

by suppressing pests but also providing agronomic benefits such as improving soil 

condition (Głąb and Kulig 2008) or scavenging nutrients making them available for the 

next crop  (Justes et al. 1999). 

It is currently unknown what direct effects, such as changes in mortality, or 

indirect effects, such as changes in feeding or ovipositional behavior, biofumigation has 

against CRC and whether it could be used successfully as part of a forage production 

system. The compatibility of biofumigation in the alfalfa (Medicago sativa L.) cropping 

system is also not well known. Although the ability of alfalfa to fix nitrogen may not be 

affected by cover crop amendment (Waddington 1978, Waddington and Bowren 1978), 

cover crop incorporation can have negative agronomic effects on legumes especially after 
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Brassica spp. incorporation (Vera et al. 1987). The objectives of this study were 1) to 

determine the direct and indirect suppressive effects of biofumigation on CRC, and 2) to 

determine agronomic benefits of using biofumigant cover crops in rotation with alfalfa. 

Materials & Methods 

Field Experiment 1: Effect of Biofumigation on Resident CRC Activity and Alfalfa 

Yield 

 

A field trial comparing two varieties of mustard biofumigant crops (‘Andante’ 

yellow mustard and ‘Caliente 199’ an oriental mustard blend) with low and high levels of 

glucosinolates, respectively, to two control treatments (fallow and ‘Monida’ oats) was 

arranged to evaluate subsequent alfalfa production, CRC activity, and oviposition in each 

treatment. The study was conducted in 2015 (trial 1) and 2016 (trial 2) at the Greenville 

Utah Agricultural Experimental Station in Logan, Utah. In 2016, an additional mustard 

treatment of ‘Centennial’ brown mustard was added for evaluation. 

Experimental units were 4.27 m × 9.14 m plots set in a completely randomized 

block design. Each treatment was replicated five times in trial 1 (N = 20) and trial 2 (N = 

25). The study area was treated in spring with glyphosate (Roundup WeatherMAX®) to 

remove the previous alfalfa crop and weeds, then tilled by disk. The final seedbed was 

prepared with a cultipacker. Plots were seeded ca. 6 mm into the soil on June 6, 2015 

(trial 1) and on May 31, 2016 (trial 2) with an experimental plot cone seeder at an 8.9 cm 

inter-row spacing and a rate of 19.2 kg per ha for mustards and 26.8 kg per ha for oats. 

Oats (‘Monida’) were used as a biomass control as they are not known to have 

biofumigant properties to control for any confounding effects that the general 
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incorporation of organic biomass may have had in the mustard treatments. Plots were 

supplied with overhead irrigation ad libitum. In both trials, an application of lamda-

cyhalothrin was made to all plots to suppress an outbreak of cereal leaf beetle (Oulema 

melanopus L.) in the oat treatment (trial 1) and an outbreak of flea beetle (Phyllotreta 

cruficerae Goeze) in mustard treatments (trial 2). Approximately one month after seeding 

(July 7, 2015, trial 1; June 29, 2016, trial 2), mustards and oats were chopped using a flail 

head or deck mower and tilled into the soil within each respective plot by using a rotary 

tiller. Weeds in the fallow treatment plots were removed before tilling the soil. To 

calculate biomass being incorporated into plots, two subsample clippings per plot (230 

cm2, trial 1; 0.1 m2, trial 2) were removed to calculate wet and dry weight using a drying 

oven at 35 °C over four days. The plots were cultipacked to seal volatiles within the soil 

and received irrigation to saturate the soil profile to increase glucosinolate hydrolysis 

(Morra and Kirkegaard 2002). Approximately three weeks after biofumigant 

incorporation, plots were again cultipacked to prepare the soil for planting, and seeded 

with ‘Ranger’ alfalfa (commercially pretreated with rhizobia inoculant) ca. 6.4 mm into 

the soil at a rate of 11.5 kg per ha. Plots were supplied with overhead irrigation ad libitum 

until the end of the growing season. 

Effect of Biofumigation Treatment on Resident CRC 

To assess the effects of mustard treatments on resident adult CRC during fall 

colonization, the recently seeded alfalfa was sampled by using an insect suction sampling 

device made from a leaf blower/vacuum (Echo ES-250) outfitted with a fine mesh 

organdy collection bag (Rincon-Vitova Insectories #DVAC401) around the 12 cm 
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diameter opening of the suction tube attachment. One suction sample was taken from a 

transect down the middle of each plot by placing the vacuum at full throttle over the 

alfalfa, contacting the soil surface for a one second interval and, in one motion, raised, 

moved down the transect, and reapplied to the soil surface over the next alfalfa plant. 

This was repeated 30 times per plot per sample. Samples were taken back to the lab and 

the number of adult CRC was counted. 

To evaluate resident adult CRC feeding activity in trial 1, two clippings of alfalfa 

were taken per plot from within a 10 cm diameter ring. All of the alfalfa stems were 

clipped at the soil surface, bagged, and frozen for later processing where the number of 

characteristic, semicircular feeding notches made by CRC adults were counted (Bigger 

1930, Jewett 1934). The total number of separate leaf notches per stem and the 

percentage of leaflets with notches per sample were recorded. 

To evaluate mustard treatment effects on resident CRC oviposition, two 58.06 

cm2 egg soil core subsamples were taken from the center of each plot 2.54 cm below the 

soil surface near the crown of an alfalfa plant, bagged, then stored in the refrigerator. A 

modified method of Ng et al. (1977) and Aeschlimann (1975) was used to process egg 

samples by disaggregating the soil in a 11.4 liter plastic tub of water then washing it 

through a U.S. standard sieve set (#35, #60) with a gentle water spray. Eggs were then 

counted with the aid of a stereomicroscope (Leica S6D).  

The following field season on July 8, 2016, which was the first year of larval 

damage, the taproot damage accumulated over the larval period in trial 1 was quantified 
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by taking two soil cores 11 cm in diameter and ca. 28 cm long from the middle of the 

plots. Soil cores were soaked in water, broken apart with gentle agitation and a water 

spray, and the supernatant containing small soil particulates, organic matter, and soil 

mesofauna was decanted off the top through a U.S. standard sieve set (#5, #10, #35, and 

#60). The process was repeated until cores were completely disaggregated so that soil-

dwelling CRC life stages (larvae, pupae, and un-emerged adults) could be counted.  

Alfalfa roots were cleaned and a longitudinal incision was made deep enough into 

the root to cut through the vascular tissue so that the epidermal tissue, outer cortex and 

cambial layers could be peeled away from the inner cortex. The excised outer root layers 

were flattened and overlain with a transparency film sheet with a printed 5 mm grid. The 

root outline was traced onto the film using permanent marker and all identifiable larval 

feeding lesions were transcribed on the film. The sheet was then scanned (Canon 

CanoScan LiDE 60) and larval damage was quantified using ImageJ (ImageJ 1.49f; 

http://rsbweb.nih.gov/ij/) by calculating the area and percent damage of the taproot.  

Effect of Biofumigation Treatment on Yield 

In trial 1, one month after seeding, the number of seedlings in three 58.06 cm2 

areas per plot were counted to evaluate germination. The first week of October for both 

trials, two sample clippings (232 cm2, trial 1; 0.1m2, trial 2) were taken from each plot 

which were dried after the alfalfa was separated from weeds and weighed. For trial 2, two 

0.1 m2 stem counts per plot were also made to provide an additional metric to evaluate 

stand establishment. For trial 1, spring (May 12, 2016) stem counts and dry biomass 
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yields for weeds and alfalfa were taken as previously described to evaluate any effects the 

cover crops may have had on winterkill or spring green-up. 

Field Experiment 2: Effect of Biofumigation Treatment on CRC Adult Feeding and 

Survival in Cages 

 

To evaluate the effect of biofumigation treatments on CRC, an additional 

experiment was conducted to quantify changes in adult CRC feeding. The experiment 

was conducted at the Greenville Research Station using the plots and plot setup described 

in the 2016 Field Experiment (trial 2). Two trials were conducted within one week of 

each other (August 16 and 22, 2016). 

 Experimental units were foam clip cages (36.5 × 25.4 × 9.5 mm, enclosed with 

mesh no-thrips screen, Bioquip) attached to an alfalfa plant within each plot. Two plants 

per plot were chosen at the center of each plot (N = 50). One plant received a clip cage 

fastened by staples on the most apical fully expanded trifoliolate leaf. The other plant 

received a clip cage on the most basal trifoliolate leaf. Cages were supported by being 

taped to an adjacent marking flag so that plants would not bow with the cage weight. The 

field was irrigated before adding adult CRC to cages to avoid overhead irrigation 

affecting the experiment. 

 Field collected CRC adults were previously kept in a 9-dram vial at 22.5° C, 

starved for one week, and provided water with a moistened cotton roll (Patterson 

Brand™). A single adult was added to each field cage and left to feed for 48 hours. Cages 

containing the leaflets and CRC adults were collected and brought back to the lab to 
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determine beetle survivorship and feeding damage. To calculate CRC feeding damage, 

leaflets were flattened between two sheets of transparency film and scanned. ImageJ was 

used to calculate the area of leaf consumed by each beetle.  

Greenhouse Experiment: Effect of Biofumigation on CRC Feeding Behavior and 

Oviposition  

To better understand biofumigant effects on adult CRC mortality, feeding, and 

oviposition, a greenhouse study was conducted. Similar to the field experiment, three 

mustard varieties (‘Centennial’ brown, ‘Andante’ yellow, and ‘Caliente 199’ 

biofumigation blend) were compared with oats (‘Monida’) and a fallow control. Each of 

the four crop amendments and the “fallow” control without any amendment were 

replicated nine times (N=45) across two trials. Each amendment treatment was sown into 

potting mix (Sun Gro® #3 Professional Growing Mix) and ca. 10 ml of 15-9-12 granular 

fertilizer (Osmocote® Plus Premium) in 6.65 liter pots (HC Companies™). Treatment 

plants were grown for three weeks and then the entire plants (roots and shoots) were 

washed to remove potting soil debris, and cut into ca. 0.5 cm sections and put into a 

plastic tub.  Based on the cover crop green weight averages seen in the field experiment 1 

(trial 2), 4.52 grams of cut plant material was weighed to match field incorporation rate 

for 7.62 cm square pots (Landmark™), the experimental unit. Soil was collected from 

Greenville, in an area growing corn to ensure there was not a population of CRC in the 

soil, and sifted through a #35 mesh sieve to remove rocks and to verify no CRC life 

stages were present. Plant material was thoroughly mixed with 250 ml of soil and added 

to each respective treatment pot. Three replicate pots of each treatment were arranged in 

a completely randomized block design. To avoid any possible cross contamination of 
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biofumigant effect through draining water, a 5 cm layer of pea gravel was added to each 

tray containing pots. Four ‘Ranger’ alfalfa seeds were added to each pot, and thoroughly 

watered to initiate germination and growth. Each pot was fixed with a 14 cm long × 7 cm 

diameter transparency film sheet cylinder cage to contain alfalfa plants and CRC. After 

four weeks of alfalfa growth, one starved adult CRC male-female pair was added to each 

cage and secured with tulle mesh netting. 

CRC were exposed to alfalfa plants for 48 hours then removed. Because of the 

small leaf area available for feeding, trials were conducted for short time otherwise 

damage would have been so severe feeding responses would not be able to be compared. 

After beetles were removed, mortality was assessed, alfalfa seedlings were scanned, and 

the area of damage was estimated using ImageJ. If a leaflet was entirely consumed and 

damage could not be estimated, the average area measured for undamaged leaves within 

that trial for that leaflet position (i.e. unifoliolate, first trifoliolate, second trifoliolate, etc.) 

was used. The amended soil from each pot was processed using the same methods as 

previously described to determine the number of eggs deposited. 

Analysis  

For field experiment 1, measurements taken of the fumigant crop biomass yield; 

subsequent alfalfa yields; CRC adult and egg populations; and CRC adult and larval 

feeding damage were analyzed using the PROC GLM procedure (SAS Studio 3.5) 

followed by Tukey’s HSD posthoc means comparisons when appropriate. For Pearson’s 

correlative analyses of CRC densities and damage, the PROC CORR procedure was used.  
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PROC GLM was used to analyze adult survival, trial effects, and feeding rates 

from field experiment 2; for feeding rate, only measures from cages with surviving adults 

were included in the analysis. The estimated area of leaf consumed by adults was fit with 

a square root transformation to the meet assumption of normality. 

 PROC GLM was used for the greenhouse experiment to analyze mortality, 

oviposition, and feeding rate. Because of unequal seedling germination (one to four 

plants per pot), the total amount of damage occurring on all leaves was used for analysis. 

When live adults were not recovered from the cage, oviposition and feeding data were 

not included in the analysis. Ovipositional and mortality data were transformed using a 

square root transformation.  

Results 

Field Experiment 1: Effect of Biofumigation on Resident CRC Activity and Yield 

 

Effect of Biofumigation Treatment on Resident CRC 

The number of resident adult CRC collected during fall colonization of plots in 

their seeding year was not affected by biofumigant treatment in either trial 1 (F = 0.03; df 

= 3, 16; P = 0.992) or trial 2 (F = 0.61; df = 4, 20; P = 0.658). Likewise, average number 

of eggs recovered from soil cores was not significantly different among treatments in trial 

1 (F = 0.95; df = 3, 16; P = 0.442) or 2 (F = 0.44; df = 4, 20; P = 0.777). The average 

number of CRC captured per plot was 4.64 (± 0.55 SE) for adults and 1.36 (± 0.17 SE) 

for eggs which appeared low for local populations during this time (S. Price, personal 

observation). Additionally, there was no significant difference in the average number of 
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distinct leaf notches occurring per stem (F = 0.97; df = 3, 16; P = 0.431) or the average 

number of damaged leaflets present per stem (F = 1.47; df = 3, 16; P = 0.260) among 

biofumigant treatments in trial 1.  

When soil cores were collected to evaluate the suppressive effects of 

biofumigants on resident larval populations and root damage for trial 1 the year after 

seeding, pupation was already underway and larval populations had started to decline 

evidenced by larvae making up 72.58% of recovered CRC life stages. Recovered life 

stage densities between treatments were not significant for larvae (F = 0.66; df = 3, 16; P 

= 0.588), pupae (F = 0.17; df = 3, 16; P = 0.915), or adults (F = 0.08; df = 3, 16; P = 

0.970) (Fig. 3-1). When CRC life stages that had recently been feeding on taproots 

(larvae and pupae) were combined into “soil stages” for analysis, no significant 

differences were found among treatments (F = 0.33; df = 3, 16; P = 0.804). Adults were 

not included in the soil stage analysis; only 29.63% of them were still teneral leaving the 

majority of individuals having already emerged and being without a reliable origin within 

the plot. If soil amendment had affected belowground CRC life stage populations since 

hatching, the pattern was no longer evident.  

The average percent of larval damage occurring on taproots was not significant 

among all treatments (F = 2.04; df = 3, 16; P = 0.149) (Fig. 3-2). However, planned 

contrasts showed a significant difference in larval damage between treatments when both 

mustard varieties were compared with the oat treatment (F = 3.62; df = 1; P = 0.075) with 

oat treatment plots having 22.51% less damage than mustard plots. Larval and soil stage 

densities were not significantly different among treatments for this comparison (F = 0.13; 
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df = 1; P = 0.72; F = 0.00; df = 1; P = 0.988, respectively). When the larval damage 

across all treatments with crop incorporations were compared with the fallow treatment, 

differences were not significant (F = 0.00, df = 1; P = 0.98). To better understand the 

indirect effects of fumigants on larval feeding rates per individual, correlations between 

soil stage densities and percent taproot damage were made. Surprisingly, there was no 

significant correlation between soil stage densities and percent taproot damage across all 

treatments (N = 20; r = 0.308; P = 0.187) even though no confounding factor existed 

stemming from past annual larval damage. Within treatments, no significant correlation 

between soil stage densities and taproot damage existed in ‘Andante’ mustard (N = 5; r = 

-0.107; P = 0.864), oat (N = 5; r = 0.571; P = 0.315), or fallow (N = 5; r = 0.357; P = 

0.555) treatments but there was a significant positive correlation between the soil stages 

and taproot damage in the ‘Caliente 199’ treatment (N = 5; r = 0.894; P = 0.041). 

Effect of Biofumigation Treatment on Yield 

The yields of the different cover crops before incorporation were not significantly 

different in green biomass (F = 0.76; df = 2, 12; P = 0.491) or dry biomass (F = 3.20; df = 

2, 12; P = 0.077) in trial 1 (Fig. 3-1a). In trial 2, yields were significantly different across 

all cover crops in green biomass (F = 4.92; df = 16, 19; P = 0.013) but were not 

significantly different in dry biomass (F = 1.75; df = 16, 19; P = 0.198) (Fig. 3-1b). 

Planned contrasts revealed that oat biomass was significantly less than the average 

mustard green biomass (F = 7.03; df = 1; P = 0.017) and dry biomass (F = 5.12; df = 1; P 

= 0.038). As biomass incorporation differences between treatments would have been 

logistically problematic to control for, no attempt was made to equalize them in the field. 
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Early counts did not show any significant differences in seedling density (F = 0.25; df = 

3, 16; P = 0.863) implying that biofumigants incorporated did not have a phytotoxic 

effect on the germination of alfalfa seeds. There was not a significant difference in alfalfa 

yield (F = 0.27; df = 3, 16; P = 0.846) or weed yield (F = 0.45; df = 3, 16; P = 0.724) 

between biofumigant treatments in trial 1 (Fig. 3-4a) indicating that the cover crop 

treatment, whether or not it contained biofumigant action from glucosinolates, did not 

have any positive or negative effect on stand establishment. The following spring, the 

possible effects of biofumigation on alfalfa winterkill was evaluated by stem counts 

which were not significantly different between treatments (F = 0.77; df = 3, 16; P = 

0.53). Spring green-up measurements were not significantly different between treatments 

in dry alfalfa (F= 1.02; df = 3, 16; P = 0.411) or weed yields (F = 1.15; df = 3, 16; P = 

0.359). Biofumigation did not appear to affect wintering health of the alfalfa. Weeds 

averaged 2% of dry yield at this time. The expectation of observing mustards affecting 

alfalfa or weed growth specifically because of biofumigant action over the effect of 

adding additional organic matter may have been higher in trial 2 since oat green biomass 

incorporation rate was only 58.90% of the average mustard green biomass rate. However, 

biofumigant treatments did not significantly affect alfalfa stem counts (F = 0.20; df = 4, 

20; P = 0.937), yields (F = 0.31; df = 4, 20; P = 0.867), or weed yields (F = 2.66; df = 4, 

20; P = 0.063) in trial 2 indicating no positive or negative agronomic effects of the cover 

crop on alfalfa stand establishment (Fig. 3-34b). 
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Field Experiment 2: Effect of Biofumigation Treatment on CRC Adult Feeding and 

Survival in Field Cages 

 

The overall direct effect of biofumigant treatments on CRC mortality was not significant 

(F = 1.35; df = 4, 95; P = 0.246) with only 3% of individuals dying over the course of the 

two trials (N = 100). There was a significant difference in the overall amount of leaf area 

removed by CRC adult feeding between the two trials (F = 55.80; df = 1, 95; P < 0.0001) 

with the damage occurring in trial 2 averaging 28.68% of the damage observed in trial 1 

(Fig. 3-5). There also was a significant effect of cage location on feeding rates (F = 7.57; 

df = 1, 95; P = 0.007) with beetles caged on bottom leaves removing 49.66% less of the 

area removed by individuals restricted to leaves at the top of the plants (Fig. 3-6). There 

also was a significant interaction between trials and cage location (F = 35.60; df = 3, 93; 

P < 0.0001; Fig. 3-7). The interactions between treatment and trial (F = 1.30; df = 4; P = 

0.275) and treatment and cage location (F = 0.36; df = 4; P = 0.839) were not significant. 

Given this, the significant differences among overall feeding rates modeled with 

biofumigant treatments, cage location, and time main effects (F = 6.58; df = 19, 77; P < 

0.0001; Fig. 3-8) are driven by differences stemming from time and location. The effect 

of biofumigation treatments across trials and cage location was not significant (F = 0.52, 

df = 4; P = 0.722). 

Greenhouse Experiment: Effect of Biofumigation on CRC Mortality, Oviposition, 

and Feeding Behavior  

Adult mortality within cages was 22.58% for trial 1 and 28.57% for trial 2 but the 

difference was not significant (F = 0.97; df = 1, 57; P = 0.33). Mortality data for the two 

trials were analyzed together; treatment did not have a significant direct effect on 



93 

 

 

mortality (F = 1.08; df = 4, 54; P = 0.376). Overall ovipositional rates between the two 

greenhouse trials were not significantly different (F = 2.34; df = 1, 61; P = 0.131) so 

were pooled for analysis. No significant differences were seen in ovipositional rates in 

pots (N = 63) receiving different soil amendment treatments (F = 0.58; df = 1, 58; P = 

0.681). Since amount of damage occurring was significantly different between the two 

trials (F = 8.57; df = 1, 50; P = 0.005) with the overall damage in trial 2 being 65.29% of 

trial 1 damage, the two trials were analyzed separately. For trial 1, soil amendment did 

not have a significant effect on damage (F = 0.75; df = 4, 23; P = 0.566) (Fig. 3-9a). 

Contrasts of the three mustard varieties and non-biofumigant treatment (F = 0.94, df = 1; 

P = 0.341), three mustard varieties and oats (F = 2.20, df = 1; P = 0.152), and all 

amendments and fallow (F = 0.27; df = 1; P = 0.608) did not show a significant 

difference in damage. For trial 2, there was a significant difference in damage between 

treatments overall (F = 5.37; df = 4, 19; P = 0.005) (Fig. 3-9b).  Contrasts between 

mustards across all three varieties and the average of non-biofumigant treatments (F = 

13.44; df = 1; P = 0.002) and the three mustard varieties and oats (F = 20.16, df = 1; P = 

0.0003) showed significant differences with plants grown in mustard amended soil 

receiving lower amounts of damage than controls. Contrasts of the average damage 

across the three mustards and fallow (F = 1.31; df = 1; P = 0.265) and all amendments 

and fallow (F = 0.02; df = 1; P = 0.876) did not show significant differences. 

Discussion 

 Traditional pest management practices that were once widely used in alfalfa 

production, such as the use of carbofuran, are no longer an available option in 
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belowground pest management. Alternative methods of control that are both cost 

effective and efficient are needed. Biofumigants have the potential to suppress soil-borne 

insect pests both directly and indirectly by either inducing mortality or affecting normal 

activity like feeding or oviposition. The effect of biofumigation on CRC and the potential 

role of biofumigant containing crops as part of an alfalfa production rotation have 

received little attention. In field experiment 1, we did not see any effect of biofumigant 

soil amendment on resident adult CRC fall colonization into plots or in their feeding or 

oviposition activity. Overall, both adult and egg populations were lower than locally 

expected. Egg samples were collected once in early October, but it is unknown if egg 

populations may have continued to increase afterward since adults continue to oviposit 

after this time in our area (S. Price, personal observation). The plot size may have not 

been large enough to fully observe biofumigant effects on adult behavior. Phillips and 

Ditman (1962) state that small plots are not suitable for insecticide testing against CRC 

adults and although our plots were ca. 88% larger than those reported in their study, they 

may still not have been large enough to account for the high level of adult mobility 

observed in fall (Culik and Weaver 1994).  

 The following year after biofumigant incorporation and stand establishment, no 

effects of soil amendments were observed on larval or soil-dwelling stage densities. We 

also did not find that larval or soil-dwelling stages densities were correlated to taproot 

damage measured. When samples were taken in early July, pupation had begun but larval 

populations were still in the soil and may have continued feeding at this time. Although it 

has been speculated that large, fifth instars may feed on other root resources moving 
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away from taproot feeding before pupation (Quinn and Hower 1986a), it has long been 

assumed that overall larval densities are correlated to taproot damage (Lau and Filmer 

1959). It may be that enough small larvae, which feed on smaller lateral roots, were 

present at this time so that the full severity of taproot damage inflicted by the larval 

generation was not captured making full assessment of soil amendments difficult. The 

percentage of taproot damage observed in the plots was 8.08% which falls between the 

6.09% damage for fall seeded alfalfa and 14.09% damage for spring seeded alfalfa in 

their first year of larval damage seen in Kentucky (Dintenfass and Brown 1988b). This 

level of damage is lower than the 17% (Quinn and Hower 1986b) and 21.3% (Pesho 

1975) area of taproot damage noted in fields in their second year of damage when it is 

most often noticed (Dickason et al. 1968, Cranshaw 1985).  

The result of oat plots receiving significantly less larval damage only having 

77.49% of the taproot damage observed in plots receiving mustard incorporation was 

unexpected. A significant difference in larval numbers was not seen, although there may 

have been a trend for higher larval numbers, making the mechanism of damage 

suppression obscure. It is unknown if oats have directly biocidal properties against CRC 

but it does not seem likely. Since the addition of organic biomass, even without 

biofumigant properties, to the soil can change edaphic microbial communities that are 

antagonistic to fungi and nematodes (Cohen et al. 2005, Oka 2010), soil amendment with 

oats may be a possible disruptor of soil-dwelling biocontrol agents with effects similar to 

biofumigants which suppress entomopathogenic nematodes (Henderson et al. 2009, 

Ramirez et al. 2009). It is also possible that that oat incorporation benefited alfalfa plant 
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health making plants more resistant to root damage or improving their ability to 

compensate for the larval damage occurring. Whatever the mechanism, this result may 

deserve further attention due to oats, and other small grains, being common in crop 

rotations where alfalfa and CRC co-occur. 

In field experiment one, no differences were seen in alfalfa establishment or 

alfalfa and weed yields between incorporation treatments indicating biofumigation per se 

did not offer any agronomic benefit nor impairment in either trial. Sequential rotations of 

alfalfa are not recommended and often result in poor stand establishment due to the 

autoallelopathic toxicity of medicarpin retained in the soil from the previous stand. The 

time interval required to alleviate this effect can be affected by numerous factors such as 

soil type, irrigation quantity, and previous stand density (Mueller et al. 2007). The effects 

of rotating a short-lived biofumigant crop between alfalfa stands on autotoxicity has not 

been investigated as is known so far. The average stem counts of 19.9 (trial 1) and 55.16 

(trial 2) per 0.1 m2 are low compared with standard stem density recommendations for 

profitable alfalfa production (Canevari and Putnam 2007). It is not known to what extent 

autotoxicity may have reduced stand establishment throughout the field trials; but, if the 

effects were present, they did not seem to be altered by biofumigation. Alfalfa roots from 

the previous stand were an issue when establishing the cover crops. The need to drag 

harrow the field so that the small seeded mustards could be planted shallow was 

problematic when roots bound in the harrow making seedbed preparation difficult. The 

amount of time needed to produce a heavy crop of mustards precluded alfalfa 

establishment until hot and dry field conditions prevailed which also made alfalfa 
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establishment challenging. In areas where biofumigation using green manures has been 

used as a component in controlling soil-borne pests such as nematodes, brassicaceous 

cover crops are often established in fall. Mustard establishment at this time might be a 

more viable option as autotoxic compounds and roots from the previous alfalfa stand 

would have a longer time to degrade in the soil. The possibility also exists that a fall 

seeded mustard green manure rotation could be better integrated into alfalfa production to 

control soil-borne pests if grown later after a rotational crop, such as winter wheat is 

harvested in summer, further reducing potential allelopathic effects of the previous alfalfa 

stand. 

In the field experiment 2, feeding rate responses to biofumigation treatments were 

affected by cage placement (top versus bottom of the plant) and time (occurring within 

two trial times). It is unknown what variables present influenced the result of feeding on 

the top leaves being higher than on the bottom leaves and damage during the first trial 

being higher than during the second trial. Daily environmental patterns between dates or 

microclimatic variables between cage locations could have influenced feeding behavior. 

For other Sitona, host leaf maturity influences concentrations of both feeding stimulants 

and deterrents which affects adult diet preference (Akeson et al. 1969). The influence of 

leaf maturity on CRC feeding preference has not been studied but could also have 

influenced our results. Future experimental studies restricting CRC adults feeding to 

leaves of different maturity, location on plants, or on dates with differing weather 

variables could provide valuable insight into adult CRC dietary preferences, vertical use 



98 

 

 

of habitat, or behavioral responses to climatic conditions which could further be used in 

developing control strategies. 

 In the greenhouse trial, soil incorporation treatments did not affect adult CRC 

survival or oviposition. Adult feeding responses between trials and treatments were 

inconsistent. In trial 1, no significant effect of treatments, whether or not they have 

biofumigant properties, were observed. However, results from trial 2 were interesting in 

that, when averaged across mustard treatments, feeding was suppressed by 34.80% and 

50.62% when compared with non-biofumigant treatments (oats and fallow) and oat 

incorporation respectively. This supports the hypothesis that biofumigant incorporation is 

expected to have additional suppressive effects against CRC over a non-biofumigant 

containing amendment. In comparison, the result of the fallow treatment not being 

significantly different from mustards overall does not indicate that biofumigants had any 

effect on feeding.  The reason for inconsistent results between trials and between control 

treatments remains unknown. However, it appears that continued study on biofumigants 

against CRC may be reasonable especially in quantifying the long-term impacts on 

adults. Oviposition, mortality, and feeding was measured after only 48 hours of feeding 

due to small plant size which might not fully measure feeding deterrence after hunger had 

been satiated or account for the potential effects of biofumigant amendment grown alfalfa 

consumption by the beetles. 

 Most studies investigating biofumigation suppressive effects on insect pests have 

utilized defatted mustard or rapeseed meal often being incorporated into the soil at high 

rates (Brown et al. 1991, Elberson et al. 1996, Borek et al. 1997, Elberson et al. 1997). 
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The rates needed may not be economically viable (Elberson et al. 1996, Borek et al. 

1997) especially if there are not regional seed meal processing facilities available where 

oil seed varieties with high biofumigant potential are being pressed. The economic 

viability of seed meal incorporation becomes even more important in field crops such as 

alfalfa where incorporations would need to be made across large areas. As a seed meal 

alternative, plant tissues may be an economically viable source of biofumigant biomass 

which deserve more research attention. Interestingly, whole plant Brassica incorporation 

for biofumigation can affect potato yields even if soil-dwelling insect pests are not 

suppressed (Laznik et al. 2014). Because the effects of whole plant incorporation are 

more variable than the use of defatted seed meals in controlling insect pests, research on 

whole plant incorporation requires more effort to truly understand insecticidal effects 

(Furlan et al. 2010). Mustard varieties used (Mojtahedi et al. 1991, Mojtahedi et al. 1993) 

and timing of cropping (Kirkegaard and Sarwar 1998) can all affect biofumigation 

potential of mustard green manures leaving many sources of variation to be optimized for 

pest control (Matthiessen and Kirkegaard 2006). 

Conclusion 

With no current chemical controls available against the soil-associated pests 

occurring in multiple cropping systems, biofumigation may be a viable management 

option in some cropping systems. Biofumigant soil incorporations can negatively affect 

soil-dwelling pests, including insects, by acting directly on mortality or indirectly by 

altering pest behaviors such as oviposition. However, biofumigant green manures and 

other organic soil amendments can also have complex non-target effects that are difficult 
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to predict, which may either benefit desired crops or negatively affect them due to the 

phytotoxic properties of biofumigants. Because of non-target effects, incorporation of 

biomass with potential biofumigation action, such as mustard cover crop green manures, 

as a component of pest management requires that crop rotations as part of the cropping 

system be evaluated for compatibility. Alfalfa and other legumes that rely on nitrogen 

fixing rhizobia bacteria may be particularly sensitive to incompatibilities of biofumigant 

cover crops. In field trials, we did not see any effect of whole plant soil amendments on 

resident CRC adult colonization, oviposition, or feeding activity or on resident CRC 

larval numbers during the first year of alfalfa damage. A statistically significant reduction 

in CRC larval damage was seen in plots receiving the non-biofumigant containing 

biomass incorporation of oats. Soil amendment did not have a direct effect on alfalfa 

establishments or yields in either trial year, however general alfalfa establishment in both 

trial years was low. In caged adult field trials, the main effect of biofumigation on caged 

adult feeding rate was confounded by unknown variables being affected by placement of 

cages and trial. Adult feeding responses to soil amendments in the greenhouse were 

variable. Significant effects of feeding in one trial indicated that mustard green manure 

incorporations have the ability to suppress adult CRC feeding. Future research aimed 

towards mustard biofumigation in controlling soil-borne alfalfa pests may be able to be 

optimized by changing the varieties used or timing of biofumigant crop rotations. 
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Figures 

 

 

 

Figure 3-1 Effect of different biofumigation treatments on recovered belowground CRC 

life stage densities in field experiment 1, trial 1 (N = 20). Larvae numbers are shown in 

black bars, pupae are shown in light grey bars, and adults are shown in dark grey bars. 

Values are means ±1 SE. 
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Figure 3-2 Effect of different biofumigation treatments on percent of taproot larval 

damage in field experiment 1, trial 1 (N = 5). Tukey’s HSD groupings of taproot damage 

with different letters are significantly different (P < 0.05). Values are means ±1 SE. 
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Figure 3-3 Biomass measurements of cover crops before soil incorporation in (a) 2015 

(N = 20) and (b) 2016 (N = 25). Tukey’s HSD groupings of green yields with different 

letters within trial are significantly different (P < 0.05). Green weights are shown in black 

bars and dry weights are shown in grey bars. Values are means ±1 SE. 
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Figure 3-4 Yield response of alfalfa and weeds to biofumigation in (a) 2015 (N = 20) and 

(b) 2016 (N = 25). Alfalfa yields shown in black bars and weed yields are shown in grey 

bars. Values are means ±1 SE. 
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Figure 3-5 Leaf area of adult CRC damage in field experiment 2 between trials. Damage 

in trail 1 is shown in the dark grey bar and trail 2 in the light grey bar. Values are means 

±1 SE. 
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Figure 3-6 Leaf area of adult CRC damage in field experiment 2 between cage location. 

Damage in cages placed on the top of plants is shown in the solid grey bar and the bottom 

of plants in the striped grey bar. Values are means ±1 SE. 
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Figure 3-7 Leaf area of adult CRC damage in field experiment 2 between trial and cage 

location. Damage in cages placed on the top of plants in trial 1 and trial 2 are shown in 

the solid dark grey and light grey bars, respectively. Damage in cages placed at the 

bottom of plants in trial 1 and trial 2 are shown in the striped dark grey and light grey 

bars, respectively. Values are means ±1 SE. 
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Figure 3-8 Leaf area of adult CRC damage in field experiment 2 between trial, cage 

location, and biofumigation treatments. Damage in cages placed on the top of plants in 

trial 1 and trial 2 are shown in the solid dark grey and light grey bars, respectively. 

Damage in cages placed at the bottom of plants in trial 1 and trial 2 are shown in the 

striped dark grey and light grey bars, respectively. Values are means ±1 SE. 
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Figure 3-9 Leaf area of adult CRC damage between biofumigation treatments in 

greenhouse experiment (a) trial 1 and (b) trial 2. Tukey’s HSD groupings of feeding 

damage with different letters within trial are significantly different (P < 0.05). Values are 

means ±1 SE. 
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CHAPTER IV 

GENERAL SUMMARY AND CONCLUSION 

Summary 

 In order for integrated pest management strategies to be successful, management 

techniques need to comprehensively integrate both the biological knowledge of the pest 

and the agronomic knowledge of the crop in question. Clover root curculio (CRC) 

biology and pest status was poorly understood in the West. Our current knowledge 

primarily comes from the eastern U.S. and from research conducted many decades ago. 

The major knowledge gaps in our understanding of CRC in the Intermountain West have 

been an impediment to the advancement of basic research on this insect and the 

development of modern control strategies. Without a working knowledge of CRC 

phenology in our region, even predicting when sampling should occur for belowground 

life stages of CRC or when damage needs to be assessed within fields has been inaccurate 

and mostly speculative up to this point.  

In my first study, I investigated the timing of CRC life stages, including the 

damaging larval stage and overwintering stages, during the season and quantified the 

current extent of CRC damage occurring in our area. I found that eggs start hatching in 

April to early May and larvae were found in the soil until late June to early July with 

peak larval densities occurring at the end of May to early June. For Cache Valley, this is 

about the time of the first alfalfa harvest. I also found that after pupation, adult densities 

reached two peaks that varied by about one month with the first occurring in mid-July 
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and early August and the second occurring in late-August and early October based on the 

year. 

In my second study, I evaluated the direct and indirect suppressive effects of 

biofumigation on CRC and the agronomic benefits of using biofumigant cover crops in 

rotation with alfalfa. I found that incorporating biofumigants preceding alfalfa planting 

did not affect fall CRC adult colonization of newly established alfalfa, soil egg loads, or 

adult feeding. Furthermore, populations of resident larvae damaging roots the following 

year were also not affected by biofumigant amendments. Incorporation of biofumigants 

within an alfalfa system appeared to be compatible as alfalfa yield was not affected by 

amendments. In focused greenhouse trials, biofumigants were seen to have a suppressive 

effect on adult feeding compared with the non-biofumigant controls. However, this effect 

was inconsistent across trials. Some of the differences seen in field trials versus the 

greenhouse suggests that timing of when fumigants are incorporated may be important to 

investigate.  

Conclusion 

My research focused on CRC, a pest whose recent increase has gained interest 

from growers and researchers alike due to a need for more management options. The lack 

of basic regional knowledge concerning CRC phenology and damage has been a major 

obstacle to researchers attempting to understand the pest status of CRC in the 

Intermountain West and develop comprehensive management strategies utilizing modern 

control methods that are compatible with current alfalfa production systems. The research 



118 

 

 

presented here represents the first phenology developed for CRC in the western U.S. The 

differences in overwintering stages and timing of oviposition as compared with the 

eastern U.S. will need to be taken into account as regional research in CRC control 

progresses. From my work, we can determine the timing of susceptible life stages and 

begin to develop programs for monitoring specific life stages and alternative management 

strategies. One of the first attempts to evaluate an alternative to soil-active insecticides 

against CRC in alfalfa was the novel application of biofumigant cover crop amendments. 

Although direct effects on CRC were not seen, the indirect effects of mustards 

suppressing adult feeding, indicate that, although inconsistently, cover crops can affect 

CRC. Many variables can affect the biofumigant properties of mustard cover crops and 

how they can be added into crop rotations; if changes in management to better account 

for these variables are made to optimize biofumigation impacts, it may become a more 

attractive option for CRC suppression and as pest management tool for alfalfa in general. 

In any case, our newfound knowledge of CRC phenology and biology in the region will 

assist in developing an integrated pest management approach that can improve alfalfa 

production. 
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