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ABSTRACT

Impact of Climate Variability on the Frequency and Severity of Ecological Disturbances

in Great Basin Bristlecone Pine Sky Island Ecosystems

by

Curtis A. Gray, Doctor of Philosophy
Utah State University, 2017

Major Professor: Dr. Michael Jenkins
Department: Wildland Resources

Great Basin bristlecone pine (GBBP) (Pinus longaeva Bailey) is one of the
longest-lived organisms on Earth, and is one of the most highly fragmented high
elevation conifer species. Throughout the Great Basin of the Intermountain West, GBBP
are being impacted by changing disturbance regimes, invasive species, and climate
change. To better understand the effects of climate variability and ecological disturbances
in GBBP systems, three studies were designed and implemented. The first characterized
the distribution of forest fuel in stands of GBBP and predicted how fuels may change
under future climate scenarios. Using the Forest Inventory Analysis (FIA) plot variables
of tree species, height, diameter at breast height (DBH), canopy base height (CBH),
coarse (CWD) and fine (FWD) woody debris across elevational gradients, this study
examined the effects of changes to fuel loading on predicted changes in fire behavior and
severity. All classes of FWD decreased with elevation, and only 1000-hr fuels remained

constant across elevational transects. This, combined with lower CBH and foliar moisture



iv
and increasing temperatures due to climate change, suggested increased fire potential at
the GBBP treeline. The second study examined the role of volatile organic compounds
(VOCs) and tree chemistry and their response to the environment. VOCs and within
needle chemistry were collected and analyzed along elevational gradients near the
northern and southern limits of GBBP. Random Forest analysis distinguished elevation
using VOCs, with 83% accuracy, and identified the compounds most important for
classification. Ordination revealed that temperature, heat load index, and relative
humidity were each significantly correlated with VOCs. Within-needle chemistry
provided less predictive value in classifying elevation (68% accuracy) and was correlated
only with heat load index. These findings suggest that GBBP VOCs are highly sensitive
to the environment. The final study explored the role of VOCs in host selection of
mountain pine beetle (MPB). Mountain pine beetles oriented toward VOCs from host
limber pine (Pinus flexilis James) and away from VOCs of non-host GBBP using a Y-
tube olfactometer. When presented with VOCs of both trees, females overwhelmingly
chose limber pine over GBBP. While there were only a few notable differences in VOCs
collected from co-occurring GBBP and limber pine, 3-carene and D-limonene were
produced in greater amounts by limber pine. There was no evidence that 3-carene is
important for beetles when selecting trees, however, addition of D-limonene to GBBP
VOCs disrupted the ability of beetles to distinguish between tree species. Climate change
will impact how forests are managed and this research could provide insight into the
mechanisms underlying the incredible longevity of this iconic tree species.

(160 Pages)



PUBLIC ABSTRACT

Impact of Climate Variability on the Frequency and Severity of Ecological Disturbances
in Great Basin Bristlecone Pine Sky Island Ecosystems

Curtis A. Gray

Many high elevation conifer species, including high elevation five needle pines,
are declining throughout western North America. Warming temperatures, mountain pine
beetle, white pine blister rust and alteration of naturally occurring fire regimes represent
an interactive set of circumstances leading to greater risk. The loss of these treeline pines
can detrimentally impact biodiversity and valuable ecosystem services including wildlife
habitat, watershed and soil protection, aesthetics and recreation. Great Basin bristlecone
pine ecosystems are naturally highly fragmented because of their elevational
requirements. However, they may become even more fragmented due to combined
impacts of warming temperature, insects and diseases listed above. This study increased
the knowledge of Great Basin bristlecone pine ecology by examining response to climate
change with respect to fire, fuels and tree chemistry. The first study examined alteration
of the fire regime and showed that fuels in Great Basin bristlecone pine decreased with
elevation. Yet, canopy fuels that are more susceptible to fire, suggested fire potential may
increase at higher elevations with warming air temperatures, which could threaten the
oldest individuals of this iconic species. Examination of tree chemistry to environmental
gradients (like elevation and temperature) demonstrated a clear response to climate
induced environmental stress. This has the potential to alter flammability and the

effectiveness of tree defenses to mountain pine beetle. Lastly, this research determined
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that volatile organic compounds emitted from Great Basin bristlecone pine foliage
influence host selection for mountain pine beetle. All three of these studies will aid in
developing unique forest management practices to increase forest resilience of treeline
species and could provide insight into the mechanisms underlying the incredible

longevity of Great Basin bristlecone pine.
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CHAPTER 1
INTRODUCTION

Many high elevation conifer species, including all high elevation five needle
pines, are declining throughout western North America (Gibson et al., 2008). Warming
temperatures, mountain pine beetle, white pine blister rust and alteration of naturally
occurring fire regimes (Gibson et al., 2008) interact and lead to decline. High elevation
pine forests provide important ecosystem services (Schoettle, 2004), including stabilizing
soil, improving snow retention, pioneering regeneration of alpine sites after fire,
providing habitat for wildlife, and facilitating growth of other tree species (Baumeister
and Callaway, 2006). Great Basin bristlecone pine (GBBP) (Pinus longaeva Bailey) is
one of the longest-lived, non-clonal organisms on Earth, and is one of the most highly
fragmented high elevation conifer species (IUCN, 2003). This species has a wide
geographic distribution, but limited elevation range (between approximately 2100 and
3500m), and occurs in fragmented groves throughout the Great Basin. The highest
elevation stands often occur in climax forests that form ecological “sky islands”.
Depending upon elevation zone, the pine also grows as a minor to major seral in mixed
conifer forests.

Sky islands are mountains that are isolated by surrounding lowlands of a
dramatically different ecosystem, which, in combination with altitudinal zonation, has
significant implications for natural habitats. Endemism, vertical migration, and relict
populations are some of the phenomena unique to sky islands (MacArthur and Wilson,
1967). While sky island theory is an offshoot of island biogeography, developed to

explain species richness of actual islands (Brown, 1978), sky island theory has since been
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extended to mountains, lakes, fragmented forest, and even natural habitats surrounded by
human-altered landscapes and now reference any ecosystem isolated by unlike
ecosystems. This is the case in the high isolated peaks of the Great Basin, in which
fragmented, isolated populations of GBBP may develop unique evolutionary traits.
GBBP occurring in sky islands are abundant on the landscape where present, but rare in
total distribution, and face risks from demographic variability, fragmentation, loss of
fitness, and loss of evolutionary responsiveness as the population becomes rarer
(Courchamp et al., 2008). Although GBBP ecosystems are naturally highly fragmented
because of their elevation requirements, they may become even more so due to combined
threats of warming temperatures, introduced species, insects and diseases.

Climate change is predicted to significantly alter the frequency and severity of
disturbances, such as fire, that shape forest ecosystems (Logan and Bentz, 1999).
Climate change impacts may be especially acute in sky islands of the Great Basin as
warming temperatures drive montane and alpine ecosystems upslope, resulting in
overstory tree mortality at the lower margins of distribution. Minor seral stands are much
more susceptible to changing climate regimes and increased ecological disturbances such
as fire because they occur at lower elevations and in proximity to higher fire frequency
vegetation communities (Westerling et al., 2006).

Little previous research has been done on describing the distribution of GBBP
pine forests, fuel complexes, foliar terpene chemistry or the effect of the disturbance

regime on GBBP regeneration. The objectives of this research are to:



1. Develop a distribution model of GBBP forests in Great Basin sky islands,

2. Characterize the distribution of forest fuel under individual trees and in stands
of GBBP and predict how fuels may change under likely future climate
scenarios,

3. Describe the volatile terpene foliar chemistry of GBBP and evaluate changes
in terpene chemistry across environmental gradients and under various climate
change scenarios and,

4. Use volatile terpene foliar chemistry to better understand host selection of
mountain pine beetle (MPB), elucidating how GBBP escapes attack by MPB
and provide insight into mechanisms underlying the longevity of this tree
species

The work proposed here will examine the current distribution of GBBP, potential

alteration of fire regime and regeneration dynamics from climate warming, terpenes as a
possible defense mechanism against MPB, flammability, an indicator of stress, and
project how combined these factors will affect pine distribution and resiliency into the
future. By increasing our understanding of both basic and applied forest dynamics,
managers in the Intermountain West will be better equipped to implement sound forest

management practices to increase forest resilience with future climate uncertainty.

REFERENCES

Baumeister, D., Callaway, R.M., 2006. Facilitation of Pinus flexilis during succession: a
hierarchy of mechanisms benefits other plant species. Ecology 87, 1816-1830.

Brown, J.H., 1978. The theory of insular biogeography and the distribution of boreal
birds and mammals. Great Basin Nat. Mem. 2, 209-277.



Courchamp, F., Berec, L., Gascoigne, J., 2008. Allee Effects in Ecology and
Conservation. Oxford University Press, Oxford.

Gibson K., Skov, K., Kegley, S., Jorgensen, C., Smith, S., Witcosky. J., 2008. Mountain
pine beetle impacts in high-elevation five-needle pines: current trends and
challenges. USDA Forest Service, Forest Health Protection Report R1-01-08-020.

International Union for Conservation of Nature and Natural Resources. 2003. IUCN red
list of threatened species, [Online]. Available: http://www.redlist.org [2004,
August 20]. [48717] Jenkins, M.J. 2011. Fuel and fire behavior in high-elevation
five-needle pines affected by mountain pine beetle. In Keane, R.E. (ed.), Proc.
The future of high-elevation five-needle white pines in western North America,
Gen. Tech. Rep. RMRS-P-63, USDA Forest Service. Rocky Mountain Research
Station, Missoula, MT. 376 p.

Logan, J. Bentz, B., 1999. Model analysis of mountain pine beetle (Cleoptera:Scolytidae)
seasonality. Environ. Entomol. 28, 925-934.

MacArthur, R.H., Wilson, E.O., 1967. The Theory of Island Biogeography. Princeton,
N.J., Princeton University Press.

Schoettle, A.W., 2004. Ecological roles of five-needle pines in Colorado: potential
consequences of their loss. Pp. 124-135 in R.A. Sniezko, S. Samman, S.E.
Schlarbaum, and H.B. Kriebel (eds.), Proceedings of the Conference on Breeding
and Genetic Resources of Five-Needle Pines: Growth, Adaptability and Pest
Resistance, 23-27 July 2001, Medford, OR.

Westerling A.L., Hidalgo H.G., Cayan D.R., Swetnam T.W., 2006. Warming and earlier
spring increase western US forest wildfire activity. Science 313, 940-943.



CHAPTER 2
USING MULTIVARIATE METHODS TO PREDICT THE DISTRIBUTION OF

GREAT BASIN BRISTLECONE PINE FORESTS

Abstract

Accurate maps are necessary to make informed decisions on ecology species and
habitat. This is especially true with a fragmented species such as Great Basin bristlecone
pine (GBBP), which occurs on ‘islands’ of high elevation in the Basin and Range peaks
of California, Nevada, and Utah. Due to the inaccessibility of many of the sites that this
species occurs, information on their location and abundance is incomplete, and thus is
needed. Understanding the distribution of this species is required to evaluate their
potential response to disturbances such as fire and climate change. | modeled the
distribution of GBBP using widely available topographic and spectral variables
calculated from a geographic information system (GIS). | tested several multivariate
statistical models to produce a GIS layer (map) that provides a foundation to examine

large scale changes to GBBP in later chapters.

1. Introduction

High elevation, five needle pines are rapidly declining throughout western North
America due to warming temperatures, mountain pine beetle (Dendroctonus ponderosae
Hopkins), white pine blister rust, introduction of non-native species, and alteration of the
natural fire regime (Gibson et al., 2008). One five needle pine of special concern is the
Great Basin bristlecone pine (Pinus longaeva Bailey). An icon of western forests, Great

Basin bristlecone pines (GBBP) are the oldest non-clonal organism known, and their



rings are often used in dendrochronology studies as records of historical climate. GBBP
are medium-sized trees, reaching an average of 5 to 15 m tall, and are found on the high
mountain peaks of the southwestern United States (Moore et al., 2008). The highest
elevation stands often occur in climax forests that form ecological “sky islands” which
result in a highly fragmented distribution in which small populations exist as islands
surrounded by dramatically different ecosystems, such as cropland, pasture, pavement,
deserts, or even barren land. Depending upon elevation zone, the pine also grows as a
minor to major seral in mixed conifer forests (Gray and Jenkins, 2017).

Sky islands are a concept from island biogeography, which examines the factors
that affect the species diversity of isolated communities. Fluctuations in climate,
precipitation or disturbance regime, which could be corrected for in large populations,
can be catastrophic in small, isolated populations. Endemism, vertical migration, and
relict populations are some of the phenomena unique to sky islands (Wilson and
MacArthur, 1967). Thus fragmentation of habitat is an important cause of species
extinction (Rosenzweig, 1995) Fragmentation metrics such as patch size, edge-to-edge
distance, habitat configuration, or amount of edge are useful in assessing genetic risk to
the over species population (Hargis et al., 1998).

A primary goal of my research is to improve understanding of future changes on
GBBP distribution and resiliency as described in my research objectives in Chapter 1. A
spatially-explicit distribution landscape model representing GBBP distribution across
elevational and geographic gradients was developed to address the research question:
What is the current spatial distribution of GBBP? Several mapping efforts have included

GBBP, however all have fallen short in providing accurate locations of GBBP groves
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(Little and Viereck, 1971; Lowry et al., 2007; Rollins, 2009). For example, USFS species

distribution maps show locations of GBBP, however the accuracy is poor and stands are
often depicted in valley bottoms or as simplified large ellipses (Little and Viereck, 1971).
The southwest GAP land cover layer (Lowry et al., 2007) and LANDFIRE (Rollins,
2009) have modeled the distribution of western vegetation types, but GBBP is lumped
with limber pine (Pinus flexilis James), which is much more widely distributed than
GBBP. This species distribution model will be the foundation to examine large-scale

changes to GBBP in later chapters.

2. Methods

2.1. Study Area

The study area for this project is the Great Basin mountains in North America,
which includes parts of California, Nevada, Utah, and Arizona (Fig. 1). The Great Basin
is the largest area of contiguous endorheic watersheds, or closed drainage basins, in
North America. It is noted for both arid conditions and basin and range topography
(Edwards, 1976). Although mostly within the North American Desert ecoregion, portions
of the Great Basin extend into the forested mountain and Mediterranean California
ecoregions. The semi-arid areas of the forested mountain ecoregion include the White
Mountains and Inyo Mountains. (NPS, 2010). Takhtajan (1986) defined the Great Basin
Floristic Province to extend well beyond the boundaries of the hydrographically defined
Great Basin to include the Snake River Plain, the Colorado Plateau, the Uinta Basin, and
parts of Arizona north of the Mogollon Rim. Additional stands of GBBP were sampled

and modeled in the Southern Great Basin (southern polygon Fig. 1), and the Colorado



Plateau. Climate varies throughout the Great Basin by elevation and latitude. Higher
elevations tend to be cooler and receive more precipitation. The western areas of the
basin tend to be drier than the eastern areas because of the rain shadow of the Sierra
Nevada Mountains. Most of the basin experiences a semi-arid or arid climate with warm

summers and cold winters (NPS, 2010).
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Fig. 1. The Great Basin Floristic Provence (northern purple polygon) and GBBP data
points. The black dots are the absent points (all from FIA), and the orange X’s are the
present points. The southern purple polygon (Mojave Desert) contains two stands of
GBBP outside of the Great Basin Floristic Provence and GBBP. Additional stands were
modeled to the east on the Colorado Plateau.



2.2. Field Data

The data used to calibrate the model (termed the training dataset) is a compilation
of field-visited sites (Gray, unpublished data 2012), herbarium records (Global
Biodiversity Information Facility - www.gbif.org); and Forest Inventory and Analysis
data — FIA - https://www.fia.fs.fed.us) which portray GBBP presence/absence. All
sampled areas are groves of GBBP (Fig. 1). Many of the points collected during the
summer of 2012 are located in Great Basin National Park, the Mt. Moriah Wilderness,
and portions of the Humboldt-Toiyabe National Forest, which lie approximately 290
miles (470 km) north of Las Vegas and are made up of a combination of federally
protected (US Forest Service and National Park Service) wilderness areas. Absence
points were all obtained from the FIA Program, which is a national program that gathers
annual inventory data on a 4.8 km grid across forested areas. All forested FIA points
within the study area boundary that were above 2000 m in elevation, but that did not
contain GBBP, were utilized as absent locations. The resulting final dataset, all with X/Y
spatial coordinates, contains 496 GBBP presence locations, and 3399 locations in which

GBBP was absent.

2.3. Independent Variables

I selected 12 independent variables to represent abiotic (topographic and climate)
factors and describe the ecological niche of GBBP. The variables are elevation, slope,
aspect, blue, green, red and infra-red radiation, NDVI, brightness, greenness, wetness,
and texture. The terrain variables were derived from USGS 10 meter digital elevation

models and the spectral variables were derived from Landsat images (30 m spatial
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resolution) collected in summer 2012. All spectral variables were resampled to 10 m to

match the topographic variables.

2.4. Spectral Variables

The predictive model used several spectral variables, all derived from a mosaic of
2012 Landsat 5 TM images. Band 1, the blue band, 0.45-0.52 um, distinguishes soil from
vegetation and deciduous from coniferous vegetation. Band 2, green, 0.52-0.60 pum,
emphasizes peak vegetation, which is useful for assessing plant vigor. Band 3, red, 0.63-
0.69 um, identifies vegetation. Band 4, near infrared (NIR), 0.77-0.90 um, emphasizes
biomass content. Additionally, texture of Band 3 was calculated. Texture is the frequency
of tonal change on the photographic image. Texture, a product of shape, size, pattern,
shadow, and tone, is produced by aggregating unit features that may be too small to be
discerned individually on an image. Interpretation can often distinguish between features
with similar reflectance based on texture (Lillesand and Kiefer, 1979). As an example,
smooth green grass has a smooth texture, while tree crowns have a course texture. One
would expect bristlecone pine to have a course texture, due to the sparse nature of the
stands, combined with high soil reflectance in the background. Thus, texture is helpful for
identifying GBBP on Landsat images.

A special principal components transformation (Table 1), called the Tasseled Cap
transformation, was applied to 6 Landsat TM spectral bands, creating three more
variables — brightness, greenness and wetness. This transformation is a special case of
principal components analysis, which transforms the image data to a new coordinate

system with a new set of orthogonal axes. The primary axis, brightness, is statistically
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derived and is calculated as the weighted sum of reflectance of all spectral bands.
Orthogonal to the first component, the second component, greenness, shows variations in
the vigor of green vegetation. Wetness is orthogonal to the first two components and
represents soil moisture and water (Kauth and Thomas, 1976). The Tasseled Cap
transformation provides an analytical way to detect and compare changes in vegetation,
soil, and man-made features over short- and long-term time periods.

Table 1

Coefficients for the tassel cap functions for Landsat TM bands 1-5 and 7 (Crist and
Cicone, 1984)

TM Band 1 2 3 4 5 7
Brightness 0.3037 0.2793 0.4743 0.5585 0.5082 0.1863
Greenness 0.2848 -0.2435 -0.5436 0.7243 0.084 -0.1800

Wetness 0.1509 0.1973 0.3279 0.3406 -0.7112 -0.4572

The Normalized Difference Vegetation Index (NDVI) assesses post-disturbance
vegetation recovery between a disturbance event and field sampling. It was calculated for
each image. NDVI, an indicator of live green vegetation, is sensitive to
photosynthetically active biomass (Tucker, 1979) and is correlated with leaf area index

(Asrar et al., 1984).

2.5. Topographic Variables

Topographic variables used in the predictive model were: elevation (meters above
sea level), slope - gradient as a steepness measure of the maximum rate of elevation
change, indicated as a percentage of angle (Burrough et al., 2015), and aspect as an
indication of which way the slope is facing defined as the compass direction of the

gradient (Burrough et al., 2015). Other topographic variables like curvature (whether a
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surface is concave or convex), were examined in preliminary models but were not found

to be important in predicting GBBP in the final model.

3. Statistical Analyses

3.1. Statistical Classification

The general goal of classification statistical models is to identify good predictors
(variable X) for describing if a species of interest occupies a particular ecological niche,
which is the response variable (Y) of any sample of the same distribution. To describe the
fundamental or potential niche of a species, we want to know the abiotic and biotic
factors that limit the species, for example, the thermal, moisture and light regimes that
determine species range limits at larger spatial scales or the nutrient requirement of the
soils. We must assume that species distributions are in equilibrium with the climate
(Lenihan, 1993). To describe these factors we use environmental surrogates such as
terrain variables. Elevation can substitute for temperature and precipitation, slope and
aspect can be a surrogate for radiation regime and moisture availability, and landform,
hillslope position, and catchment position for soil moisture, erosion, and deposition
(Franklin,1995).

Linear discriminant analysis (LDA), generalized linear models (GLMs),
generalized additive models (GAMS), classification and regression trees (CART), and
random forests (RF) are all statistical methods that classify, or separate, observations into
two or more classes of objects or events. The goal of LDA is to classify observations into
a priori or known groups. In the instance of species distribution modeling (SDM), these

classes are the binary response of the species of interest being present or absent. A LDA
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of the training data is implemented to form a set of linear functions (equations) or
estimated coefficients that express the degree of support for each class. The assigned
class for each y (in our case presence or absence) is the class that receives the highest
support after evaluation of all functions (Lattin et al., 2003). While LDA strength is its
simplicity of interpretation and acceptance, LDA is most useful when population
distributions are known. The Coefficients of the Linear Discriminant Function is similar
to regression and has the form: Ck = Cko + CkiX1 + ... + CkmXm ; Ck is the classification
score for the ki group. For each observation, we compute the classification score with the
coefficients according to the equation and assign the observation to the group with the
highest score. The coefficients are helpful in deciding which variables have more weight
in classification, the higher coefficient means the variable is a better classifier for that
group. Ecological data often violate the assumptions of the linear model discussed above.
Generalized linear models (GLM) are extensions of linear models that can cope with non-
normal distributions of the response variable using a link function (Agresti, 1996). Some
strengths of GLM are the flexibility to transform predictor variables that follow a
curvilinear response (e.g., species count data), and ability to handle categorical predictor
variables (e.g., dolomite soil, land cover) which is done by coding them as dummy
variables. GLM are well suited to examine simple relationships between an individual
environmental variable and species data, however the number of candidate predictor
variables is frequently large in ecology and this makes a thoughtful approach to model
selection particularly important. GLM must follow the assumptions of logistic regression,

which are conditional probabilities are a logistic function of the predictor variables, no
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important variables are omitted, no extraneous variables are included, and observations
are independent.

Generalized additive models (GAM) are a flexible and automated approach to
identifying and describing non-linear relationships. GAM make another generalization to
GLM to incorporate nonlinear forms of predictors and relate them to the response
variable. In GAM, the observed values Y are assumed to be of some exponential family
distribution, and p is still related to the model predictors via a link function. Like GLM,
GAM assume that Y are independent and have a specified distribution (for example
normal, binomial or Poisson distributions). The key difference is that coefficients of the
GLM are replaced by some smoothing function of at least some (possibly all) covariates
(Wood, 2017). Gaining understanding of a species ecological niche is difficult with GAM
because they cannot calculate species response parameters such as optimum habitat and
tolerance thresholds. Another limitation of GAM, either for exploration or prediction, is
that they are additive, and it is difficult to introduce interaction terms. If interaction terms
are necessary it might be better to use decision trees (discussed below) which are
particularly good for identifying interactions among predictor variables (Franklin, 2010).

Classification and Regression Trees (CART) are collectively known as tree-based
methods, when used with a categorical response. CART uses recursive partitioning, in
which the decision tree model is to partition the data into subgroups where the response
variables have similar values or are members of the same class. Each of the terminal
nodes of the tree represents a cell of the partition, and includes a simple model which
applies in that cell only (Breiman et al., 1984). If you continue to partition the data until

every observation is classified, your result is large trees than tend to overclassify the data.
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To avoid this, partitioning is usually stopped when the resulting split does not achieve
some defined level of increased homogeneity (or explained deviance), or when the
resulting subsets would have less than some minimum number of members. Tree-based
methods characterize interactions between variables extremely well (Breiman et al.,
1984), characterizing threshold effects of predictor variables in an often simpler way than
linear or smoothing responses. However, while CART is good at handling large datasets,
trees require large samples to detect patterns.

Computationally intensive methods have been developed that address some of the
shortcomings of CART. These methods are known as ensemble models because they
involve estimating a large number of tree models based on subsets of the data and then
averaging the results. RF is an ensemble model that builds a large number of trees and
averages the prediction (Breiman, 2001). In order to avoid developing a tree model that is
not over fit to data, a method known as “bagging” is used by repeatedly sampling the data
with replacement and developing trees for each dataset using some stopping rule. The
“out-of-bag” (test) sample, the set of observations held back, is used to estimate model
error and variable selection or importance. (Breiman, 2001). For each decision tree there
is a misclassification error rate calculated from the out-of-bag sample. The difference
between this error rate and the error rate calculated by randomly assigning the values of a
predictor variable, and then passing the test data down the tree to get new predictions, is a
measure of the importance of that predictor (Cutler et al., 2007). Partial dependence plots
of these splits determine the most important variables (Cutler et al., 2007). The tendency
to over-fit the data is overcome by averaging the predictions from a large (500 — 2000)

number of models based on subsets of the data. RF have higher prediction accuracy than
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ordinary decision trees (Cutler et al., 2007). The statistical classifiers that were fit to the
training data set were Linear Discriminant Analysis, Classification Trees, Random
Forest, and two other ensemble model, Support Vector Machines, and Gradient Boosting

Machines.

4. Results

| tested five multivariate models to classify and predict presence/absence of
GBBP. The RF model provided the best fit (Table 2). It classified the training sites
correctly 98.2% of the time and was chosen to select the most important variables to
predict the presence of GBBP. Visual inspection of the resulting map showed this model
better predicted GBBP groves in sites that were field verified than the previous mapping
efforts mentioned above (Little and Viereck, 1971; Lowry et al., 2007; Rollins, 2009).
More field validation is necessary to further develop this model for use in management
decisions. While the classification tree (Table 2) performed slightly worse than RF, it is
interesting to look at the interpretation. The first node split on elevation (elevations <
3009) with all observations < 3009 meters classified as absent of GBBP. The second
node (NDVI < 97.5) classified GBBP present only in samples with an NDVI value
greater than 97.5. This is plausible, as GBBP is limited to specific elevation ranges.
NDVI (along with NIR) is useful to distinguish between barren alpine areas and forested

stands.
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Table 2
Accuracy measurements for predictions of presence of GBBP in the Great Basin Floristic
Region. (N = 3895)

Classification Tree, Data=BCP,
crossvalidation accuracies

Random Forest (all variables), Data=BCP,
out-of-bag accuracies

Random Forest (9 variables), Data=BCP,
out-of-bag accuracies

Predicted Predicted Predicted
Absent |Present Absent Present Absent Present
Actual Class 0l 1| Total |class.error Actual Class 0l 1| Total |ces.ermor Actual Class 0| 1] Total
Absent,0| 3369 30| 3399| 0.00883 Absent,0| 3353 45 3309 0.01353 Absent,D| 3337 62 3399
Present,1 39 457 436| 0.07863 Present,1 48 447 4596| 0.09879 Present,1 74 422 456
Total 3408 487 3895 Total 3402 433 3895 Total 3411 484 3895
PCC= 98.23 % includes: PCC = 97.59 % PCC= 96.51 %
Specificity = 99.12 % Northing Specificity = 98.65 % Spe cificity = 98.18 %
Sensitivity = 9214 % Easting Senskivity = 9032 % Senskvity = 8508 %
k= 0.9z Praoximity k= 0.891 k= 0.841
AUC= 0.995 AUC= 0.994 AUC= 0958
Support Vector Machines, Data=BCP, Gradient Boosting Machines, Data=BCP, Linear Discriminant Analysis, Data=BCP,
resubstitution accuracies resubstitution accuracies resubstitution accuracies
Predicted Predicted Predicted
Absent |Present Absent Present Absent Present
Actual Class 0| 1| Total Actual Cless 0| 1|  Total Actual Class 0) 1|  Total
Abzent,0| 3356 43| 3389 Absent,0 3331 8 3309 Ahsent,0| 3252 147 3309
Present,1 52 444 436 Present,1 B4 432 456 Present,1 43 453 456
Total 3408 487 3895 Total 3395 500 3895 Total 3295 500 3895
BPCC= 97.56 % PCC= 96.61 % PCC= 9512 %
Specificity = 98.76 % Specificity = &6 % Spe cificity = 9568 %
Se nsitivity = 89.31 % Senskivity = 871 % Senstivity = 9133 %
k= 0.704 k= 0.848 k= 0798
AUC = 0.922 AUC= 0.983 AUC = 0.8
Random Forest, Data=BCP, Classification Tree, Data=BCP,
out-of-bag accuracies resubstitution accuracies
Predicted Predicted
Absent |Present Absent Present
Actual Class 0| 1| Total |class.error Actual Class 0| 1| Total
Absent,0| 3357 42| 3359| 0.01236 Absent,0 3353 a5 3389
Present,1 51 445 496| 0.10282 Present,1 a0 436 496
Tatal 3408 487| 3895 Total 3413 432 3885
PCC= 97.61 % PCC= 97.28 %
Specificity = 98.76 % Specificity = 98.65 %
Se nsitivity = 89.72 % Senskivity = 879 %
k= 0.892 k= 0.876
AUC= 0.994 AUC= 0.967

PCC denotes the percentage correctly classified, sensitivity is the percentage of presences
correctly classified, specificity is the percentage of absences correctly classified, k —
kappa a measure of agreement between predicted presences and absences with actual
presences and absences corrected for agreement that might be due to chance alone, and
AUC is the area under the receiver operating characteristic curve. Resubstitution is based
on the training set as an estimate of generalization error. Out-of-bag accuracies are based
on 10-fold cross-validation in which a random sample is chosen with replacement from
the data. Some observations end up in the sample more than once, while others are not
included (“out of bag”).

The RF was then used to select important variables to predict the presence of

GBBP using the GIS dataset. However, cross-validated percent correct and sensitivities

for the five methods are all relatively high and similar. Since the RF percent classified
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correct (PCC) was 98.2%, if a different model did not achieve at least this with
resubstitution accuracies, it was not used to calculate the cross-validated accuracies. To
invoke parsimony, which is to select the model with the fewest assumptions, RF was used
to examine the most important variables. Elevation is the most important variable for
classification (Table 3), which is expected, as GBBP is only found at high elevations
above 2500 meters.

Table 3

Variable importance metric for predictor variables from random forests (RF)
classifications used for predicting presence of GBBP.

Mean Decrease Accuracy Mean Decrease Gini
elevation 69.3 362.5
texture 28.4 45.7
slope 27.2 32.1
NDVI 25.8 38.9
greenness 25.1 24.4
wetness 25.0 35.0
IR 24.6 46.1
aspect 22.8 23.5
brightness 21.6 28.6
blue 19.5 245
red 19.0 18.1
green 16.9 17.8

Note: Mean decrease in accuracy (MDA) is the normalized difference of the classification
accuracy for the out-of-bag data when the data for that variable is included as observed.
Higher values of mean decrease in accuracy indicate variables that are more important to
the classification.

In addition to examining the most important predictor variables, partial
dependence plots (Fig. 2) characterize relationships between individual predictor

variables and predicted probabilities of GBBP presence using RF. These plots visualize

the relationship of small numbers of variables in statistical classifiers, such as
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classification and regression tools, including RF, GBM, and SVM (Hastie et al., 2002).

Similar variables were used for RF as for the classification tree, which lends credibility to

the results. Also, higher texture values are associated with GBBP stands (Fig. 2).
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Fig. 2. Partial dependence plots for selected predictor variables (6 most important from
MDA) for random forest (RF) predictions of the presences of GBBP. Partial dependence
is the dependence of the probability of presence on one predictor variable.



20

We expect this since GBBP occurs in very sparse stands, often with high contrast to the
underlying soil. Higher values of NDVI and IR also are associated with presence of
GBBP (Fig. 2). Again, this is logical as it separates forested stands from barren rock.

The data was refit with RF using only the 9 most important independent variables.
This changed the overall accuracy of the model from 98.2% correct to 97.6% classified
correct (Table 2). This is still exceptionally high accuracy. The final model predicted the
presence of GBBP across the entire Great Basin (Fig. 3) using the previously collected
GIS terrain and spectral variables. The resulting layer has a much higher spatial
resolution (10 meters) than previous mapping projects. Areas on the map represent
potential occurrences of GBBP and not actual mapped locations, however this is the best
representation of GBBP to date.

The correlation matrix (Fig. 4) shows that several of the variables, especially the
spectral variables, have a high correlation coefficient (over 0.9). However, we should

expect some of the variables to be redundant.

4.1. Species Fragmentation

As mentioned earlier, fragmentation can lead to species extinction and
fragmentation metrics are useful in assessing risk to the population. From the predicted
GBBP GIS map, | have grouped GBBP in 34 groves across three geographic regions,
which I have termed the White Mountains, the Great Basin, and the Colorado Plateau
stands. The resulting GIS layer contained many isolated pixels that predicted the presence
of GBBP. Cells from the GIS were converted to polygons and any occurrence that was

not at least three adjacent pixels (300 m?) was removed from the layer. While there is the



Fig. 3. Species distribution map of Great Basin bristlecone pine (Pinus longaeva) from
Random Forest model (RF) predicted into the Great Basin Floristic Province, part of the
Mojave Desert (south) and in the Henry Mountains (east) where a known stand occurs.
Purple polygon line weights were increased for visualization, resulting in areas on map
appearing greater than on the ground
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Fig. 4. Correlation matrix of topographic and spectral variables from Great Basin
bristlecone present plots. Correlation coefficient (r-value) in upper right quadrants.
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Fig. 5. Stand area of Great Basin bristlecone pine. Forest stands have been aggregated
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occurrences of GBBP and not actual mapped locations.

potential for GBBP to occur at these sites, management plans lend themselves to larger

F

Henry Mountains

areas. All polygons on each mountain range were tallied together to calculate the distance

to the next nearest GBBP stand. The minimum distance between populations ranged from

17.8 kmto 72.6 km (mean = 35.0 km, SD = 14.6 km). While there are several well

known stands of GBBP that extend over more than 1000 hectares including the Ruby

Mountains, Schell Creek Range, Great Basin National Park, and the famous groves in the

White Mountains of California (Fig. 5), most stands are less than 400 hectares and occur

on isolated peaks and pockets of the Colorado Plateau.
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5. Conclusions

Although all models tested here classified GBBP with high accuracy as measured
by cross-validation and RF out of bag accuracies, RF predicted the occurrence of GBBP
with the highest accuracy. Upon visual inspection of the GBBP distribution map, the
GBBP model better predicts known locations of GBBP groves than previous distribution
maps; however, it is necessary to further validate the accuracy of the model in the field
before it is used for critical management decisions. Future work includes examining
whether increased spatial resolution of the data used in the model gives a more accurate
identification of GBBP stands, or if it is merely a more visually pleasing depiction. To
make informed management decisions on a fragmented species such as GBBP, accurate
mapping and inventories are necessary. Considering the high accuracy of the RF model, |
believe this to be the best map of GBBP to date and this species distribution model will

be the foundation to examine large scale changes to GBBP in later chapters.
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CHAPTER 3

CLIMATE WARMING ALTERS FUELS ACROSS ELEVATIONAL GRADIENTS IN

GREAT BASIN BRISTLECONE PINE-DOMINATED SKY ISLAND FORESTS!

Abstract

Little is known about fuel characteristics and dynamics in GBBP communities,
and current monitoring programs inadequately quantify the surface and canopy fuels of
this system. Using the Forest Inventory Analysis (FIA) plot variables of tree species,
height, diameter at breast height (DBH), canopy base height (CBH), coarse (CWD) and
fine (FWD) woody debris counts, and canopy fuels measurements, this paper examines
the effects of climate-induced changes to fuel loading, fire hazard and risk on predicted
changes in fire behavior and severity. Field transects were installed using FIA protocols
along environmental gradients. Plots were located every 22 chains or ~440 meters along
random transects on Mt. Washington in the Great Basin National Park (GBNP) and in the
nearby Mt. Moriah Wilderness, NV. Additional plots were installed at Notch Peak (UT),
Cave Mountain (NV), and Wheeler Peak (GBNP, NV). Linear regression showed that all
classes of FWD decreased with elevation, and only 1000-hr fuels remained constant
across elevational transects. This, combined with lower CBH and foliar moisture and
increasing temperatures due to climate change, increases fire potential at the Great Basin
bristlecone pine treeline, threatening the oldest individuals of this iconic species. New
information about discontinuous fuels will aid in management of high elevation alpine
treeline forests.

'Suggested Citation: Gray, C.A. and Jenkins, M.J., 2017. Climate warming alters fuels across
elevational gradients in Great Basin bristlecone pine-dominated sky island forests. Forest
Ecology and Management, 392, pp.125-136.
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1. Introduction

High elevation five needle pines are declining throughout western North America
from climate warming, mountain pine beetle (Dendroctonus ponderosae Hopkins), white
pine blister rust (Cronartium ribicola), and the alteration of naturally occurring fire
regimes (Gibson et al., 2008). Climate change effects are especially acute in sky islands,
the isolated mountains surrounded by valleys of the Great Basin, as warming
temperatures alter tree community distribution and contribute to increased surface fuels.
Changing air temperature and precipitation may interact with fire regimes to shorten
times to ignition and lower temperatures at ignition from lower moisture content (Gill et
al., 1978) of lower elevation populations. Great Basin bristlecone pine (Pinus longaeva
Bailey) is a high elevation, five needle pine, located near treeline and grows in isolated
sky islands of California, Nevada, and Utah. Great Basin bristlecone pine (GBBP) are
mainly adapted to survive low-severity surface fires (Zavarin and Snajberk, 1973),
however fire-scarred GBBP are found at lower elevations with fire tolerant ponderosa
pine (Lanner, 1999). Climate induced changes to the fire regime will alter surface and
canopy fuel loading, species composition, fire hazard and risk, and fire behavior and
severity on GBBP forests (Schoennagel et al., 2004). Additionally, the amount,
arrangement, and continuity of GBBP fuels vary with elevation, community species
composition, and time. Fuel loadings are strongly influenced by fire history and site
characteristics providing a proxy for temperature change; however, these gradients have

yet to be quantified.
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1.1. Climate change and fire in treeline communities

GBBP are among the oldest organisms on earth. Their distribution is limited to
the highest elevations (2700-3700m) in mountain ranges of the Great Basin of the
western United States. Because populations are isolated, effects of a warming climate are
projected to be particularly acute (Bower et al., 2011). Increasing temperatures are
expected to result in pine mortality and introduction of invasive weeds and lower
elevation conifers, consequently changing surface fuels composition (Flannigan et al.,
2000; Gibson et al., 2008). Historically, fire was thought to be infrequent in GBBP
communities at high-elevation sites because stands are open and productivity is low.
When fires did occur at high elevations, they were usually small, low-severity surface
fires (Bailey, 1970; Bradley et al., 1992). Moisture and climate have more influence on
treeline stand dynamics than fire (Lanner, 1988, 1985). Early studies suggested that low
tree density and sparse litter in the sub-alpine GBBP forests near treeline did not contain
enough fuels to carry fire (Bradley et al., 1992; Lamarche, 1967; Lanner, 1988). At lower
elevation sites, the role of historical fire regimes in dictating past stand characteristics and
current distribution is not fully known, yet it is likely GBBP experienced a variable fire
regime across gradients of site productivity and fuels connectivity. Fuels can be sufficient
to carry fire in denser, low-elevation sites where GBBP occurs in mixed forests with
limber pine (Pinus fexilis James) and/or Engelmann spruce (Picea engelmannii Parry)
(Bidartondo et al., 2001). GBBP have a low resistance to fire, due to thin bark and low
branches and retain their 2.5-3.5 cm needles up to 25-30 years (Bailey, 1970), increasing
needle accumulation in crowns and on the surface under GBBP when compared to lower

elevation pine species (Jenkins, 2011).
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Limited studies of the closely related Rocky Mountain (RM) bristlecone pine
(Pinus aristata Engelm.) and limber pine communities have found fire scars indicative of
frequent, low intensity surface fires in sites that border grassy openings (Coop and
Schoettle, 2011). Stand-replacing fire could be the primary disturbance regime for RM
bristlecone pine, with a fire return interval of approximately 300 years (Baker, 1992).
Evidence suggests that fire severity for RM bristlecone forest types varied through time
and space (mixed-severity fire regime) as climate changed at centennial to millennial
time scales (Coop and Schoettle, 2011). Additionally, frequent fire presumably played an
important role in restricting RM bristlecone pine at lower elevations in pre-settlement
times (Coop and Schoettle, 2011). Physical limitations on forest structure, such as age
and density, affect the accumulation of surface fuels and crown fuels. For example, a
study from boreal forests in Finland indicates a site's disturbance history is the
determining factor for fuels quantity and decay class distribution (Aakala, 2010). While
Baker (1992) found that stand-replacing fires in RM bristlecone pine initiated
regeneration, little is known of post-fire succession in mixed-conifer forests containing
GBBP. It is important to understand the fire history of GBBP/limber pine/Engelmann
spruce and other montane forests in the Great Basin to develop appropriate adaptation
strategies for managing these systems with a warming climate.

Most wildfire and fuel models were designed for vegetation types that burn
frequently, are characterized by continuous surface fuels, or are of interest to fire
management (Rothermel 1972). Thus, discontinuous fuel associated with GBBP are not
represented by traditional fuel models, and might be more similar to heterogeneous

systems like pifion juniper woodlands. Extensive characterization of pifion juniper
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woodlands have examined the sparse surface fuels and discontinuous tree canopies that
curtail fire spread under low wind conditions (Floyd et al., 2008; Huffman et al., 2009;
Miller et al., 2000; Romme et al., 2009). One physics-based fire model was applied to
pifion juniper woodlands and results suggest sparse fuels in heterogeneous forests
propagate fire because dead needles on the ground provide surface fuels, and allow
increased winds through the canopy and sub-canopy (Linn et al., 2013). A fire behavior
study in arid vegetation communities in Australia developed models to predict the
sustainability of fire spread, fire type (surface or crown), rate of spread and flame height
in a discontinuous fuel type (Cruz et al., 2013). They found that sustainability of fire
spread was a function of litter fuel moisture with wind speed having a secondary but still
significant effect. The continuity of fine fuels was also significant. Initiation of crown fire
was primarily determined by wind speed. Cruz et al. (2013) presented the need to find
threshold conditions for sustained fire propagation based on wind speed and fine fuel
moisture content. While fire spread models could be helpful for assessing fuel changes in

GBBP, validation data are unavailable, and therefore are outside the scope of this study.

1.2. Environmental gradients

Environmental gradients relate factors such as elevation, temperature, water
availability, light, and soil nutrients, or their closely correlated surrogates. Forest
composition usually changes along environmental gradients in predictable ways (Peet,
2000). For example, elevation is often a surrogate variable which approximates changes
in temperature and moisture (Peet, 2000). At lower elevations, moisture and temperature

may allow for a forest to reach full crown closure, although a mid-elevation site might
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not reach full crown closure. At upper alpine treeline (the edge of the habitat at which
trees are capable of growing, found at high elevations and in frigid environments) tree
density and decomposition is typically limited by a short growing season. However, high
severity disturbances are rare (low frequency and high intensity) allowing for large tree

size diversity (Miller, 1997).

1.3. Fuels composition across environmental gradients

Understanding how fuels structure and composition varies across environmental
gradients in Great Basin sky islands is necessary to predict how fire frequency and
intensity may change at high elevations with a warming climate. Studies that have
modeled severity and length of forest fire season employing general circulation models
(GCMs) have estimated that seasonal severity ratings may increase by 10-50% over most
of North America, (Flannigan et al., 2000) suggesting that fire is an predominate agent of
change and has the potential to overshadow direct effects of climate change on species
distribution and migration. Our best tool at estimating the potential fire intensity of
vegetation communities, or the amount of energy released during a fire, is fine and coarse
woody debris surveys (Brown, 1974), yet fuels vary greatly depending on topography,
meteorological influences, fuel type and characteristics of previous disturbance. Warming
temperatures, lower humidity, and lower fuel moisture increase the potential for high
severity fires (Abatzoglou and Williams, 2016; Littell et al., 2016). Research is needed
that will help managers plan for transitions to new conditions and habitats, manage

migrations along expected climatic gradients, prepare for higher-elevation insect and
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disease outbreaks, and anticipate forest mortality events and altered fire regimes (Millar
et al., 2007).

The objective of this paper is to quantify spatially discontinuous fuel structure
across changing environmental gradients in GBBP stands. This information is useful to
understand how climate change affects the fire regime and GBBP health and abundance.
We assume that elevation is a surrogate for warming air temperatures. To understand how
global climate change will alter wildland fuels, we quantified differences in GBBP fuels
and how fuels differ across elevation gradients. We compare the relationship between
forest structure and environmental gradients to predict changes in surface and canopy
fuels of GBBP communities with increasing temperatures. A comprehensive stand
assessment and fuel survey of this iconic species provides a foundation upon which
management decisions and dialogue can be based. Consequently, this research is valuable
for forest and fire planning and management, as well as prioritization and design of

restoration efforts and climate change adaptation strategies.

2. Study Site

The geographic extent of sampling was limited to sky islands of the Great Basin
of Nevada and western Utah. Sample sites were at Washington Peak, NV (38.90°, -
114.31°, 3,475 m), Wheeler Peak, NV (39.00°, -114.30°, 3,415 m), and Mt. Moriah, NV
(39.29°, -114.20°, 3,300 m). Additional individual plots were installed at Cave Mountain,
NV (39.16°, -114.61°, 3,230 m), and Notch Peak, UT (39.14°, -113.40°, 2,800 m).

The Great Basin of California, Nevada, and Utah has an arid climate characterized

by Basin and Range topography, with numerous high mountain peaks and low
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intermountain valleys. Upper treeline is approximately 3,300 m and lower treeline is
approximately 2,100 m (Thompson and Mead, 1982). Mountains and basins create steep
environmental gradients, which greatly influence the composition and structure of
vegetative communities (Peet, 2000). As mentioned, fires are infrequent in high elevation
GBBP forest due to sparse fuels (Fig. 1C). Yet this is not the case at the lower treeline of
GBBP communities, which are dominated with shrubs and other forest species (Fig. 1A).

The mid elevation sites are typical of mixed conifer forests (Fig. 1B).




35

Fig. 6. Fuels complexes of Great Basin bristlecone pine (GBBP) communities. (A) Lower
elevation communities have higher fuels from denser vegetation and shrubs. (B) Mid
elevations have less fuels than lower elevations, but retain considerable 1 hr, 10 hr, and
100 hr fuels. (C) Fuels in the highest elevations near treeline are mostly litter and duff
under individual trees.
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3. Methods

3.1. FIA data and sampling

Data were from a combination of US Forest Service Forest Inventory and
Analysis (FIA) program plots (O’Connell et al., 2015) that contained GBBP and
additional study sites that were selected using expertise from local US Forest Service and
National Park Service personnel. The FIA variables collected at each plot were tree
species, height, diameter at breast height (DBH), canopy base height (CBH - the vertical
distance between the surface fuels and live canopy fuels), seedling and sampling counts,
and surface fuels measurements. All 34 plots that contained GBBP in the FIA database
from Utah, Nevada and California were examined for forest structure and fuel loading.
The FIA program uses a three phase sampling design covering all public and private land
in the United States (Bechtold and Patterson, 2005; O’Connell et al., 2015). In Phase 1,
remote sensing and aerial photography classify forested lands, percent tree cover, and
forest use (Bechtold and Patterson, 2005). In Phase 2, four 7.3 m fixed-radius subplots
spaced 36.6 m apart in a triangular arrangement with subplot 1 in the center and subplots
2, 3, and 4 at azimuths of 0°, 120°, and 240° , respectively, from the center of subplot 1
measure tree species, size, and density (O’Connell et al., 2015) (Fig. S1-B). Phase 3
measurements assess forest health such as tree crown, soil, and lichen conditions, and
down woody material (Bechtold and Patterson, 2005; Woodall and Monleon, 2010) and
are not yet available in much of the U.S.

Due to the relatively small sample of FIA plots with GBBP, 76 additional plots

using FIA Phase 2 protocols were installed along elevational gradients to assess changes
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in GBBP communities (total plots = 110). From the lowest elevation plot (2827 m),
subsequent plot centers were located by pacing approximately 400 m up the fall line
(mean distance between plots from GIS = 418 m) (Fig. S1-A). If no trees were located at
the 400 m interval, this point was skipped. Survey plots are fixed radius plots, which
were modified FIA plots (Fig. S1-B), each containing four subplots. Every plot contained
at least one GBBP. Other species included limber pine (Pinus flexilis James), Engelmann
spruce (Picea engelmannii Parry), subalpine fir (Abies lasiocarpa var. latifolia Nutt.),
Douglas-fir (Pseudotsuga menziesii var. glauca Beissn), aspen (Populus tremuloides
Michx.), pifion pine (Pinus edulis Engelm.), juniper (Juniperus spp.), mountain

mahogany (Cercocarpus ledifolius), and ponderosa pine (Pinus ponderosa Douglas).

3.2. Fuels sampling

We quantified fuel loading, specifically the dry weight biomass of fuel per unit
area (kg m) of four major surface fuel components: litter (freshly fallen non-woody
material which includes leaves and cones), duff (partially decomposed biomass whose
origins cannot be determined), fine woody debris (FWD; 0-7.6 cm diameter), and coarse
woody debris (CWD, >7.6 cm diameter; commonly referred to as logs or 1000 hr fuels).
Estimates of CWD biomass are often used for large-scale fire/fuel and carbon monitoring
efforts while FWD comprise a substantial portion of fuel loadings and, to a large extent,
determine fire behavior (Burgan and Rothermel, 1984). Down woody material, which
includes twigs, branches, stems, and tree boles in and above the litter was sampled using
Brown’s method (also called the line-intersect or planar-intersect method) (Brown, 1974).

This transect method is used by FIA and Fire Ecology Assessment Tool/Fire Effects
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Monitoring and Inventory System (FEAT/FIREMON) Integrated (FFI) programs (Lutes

et al., 2009). Brown’s method samples both fine and coarse woody material by diameter
class by counting and measuring the size of all woody pieces in the vertical sampling

plane. The diameter classes correspond to the 1 hr (<1cm), 10 hr (1-2.5cm), 100 hr (2.5-
7.6cm), and 1,000 hr (>7.6cm) fuel classes used in the U.S. National Fire Danger Rating
System (Deeming et al., 1977). Tallies of 1 hr and 10 hr fuels were made along the distal
1.83 m of the fuels transects, while 100 hr fuels were made on 3.05 m, and 1000 hr fuels
were made on 7.32 m of the transect (Fig. S1-B). Volume and weight were calculated by

applying estimates of the woody material’s specific gravity following Brown (1982).

3.3. Tree-specific fuels sampling

Jenkins (2011) described the distribution of surface and aerial fuels under
whitebark pine (Pinus albicaulis Engelm.) forests which are similar to other alpine
treeline five-needle pine forests. He defined the pine fuel zone as fuels lying within the
drip line of a tree and the non-pine fuel matrix as the area between adjacent trees. While
installing our fuels transects, we observed similar surface and aerial fuel distribution in
GBBP communities as whitebark pine forests (Fig. 6C). In high elevation GBBP stands,
we expect that fuel influence on surface fire behavior will be a function of the
distribution of pine fuel zone and non-pine fuel matrix. The pine fuel zone will increase
as stand density increases and may compose 100% of the surface fuel matrix in very
dense stands (Jenkins, 2011). To quantify this unique patchy and discontinuous fuel
complex, we measured litter and duff of 105 trees in the four cardinal directions (NSEW)

under three trees from each plot (Fig. 7). From the plot center, the closest GBBP tree
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within the northern third (300°-60°), south-eastern third (60°-180°), and south-western
third (180°-300°) were selected for sampling. In each cardinal direction away from the

sample tree bole, litter and duff depth were measured at 60 cm intervals until the end of

the tree crown (Fig. 7).

Plot Center

;& Tree
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Fig. 7. Sample design for individual tree surface fuels. From the plot center (inset) the
closest GBBP tree within the northern third (300°-60°), south-eastern third (60°-180°),
and south-western third (180°-300°) of plots were selected for sampling. Litter and duff
were measured in the four cardinal directions (NSEW) under the three trees. In each
cardinal transect, litter and duff depth were measured at 60cm intervals until the end of

the tree crown was reached.
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3.4. Fuels cover and continuity

While there is a large shrub component (up to 90%) in some of the lowest
elevation occurrences of GBBP (Fig. 1A), shrubs are rare or absent in most stands. Fuels
cover is important because it describes the size of the fuel gaps that limit fire propagation.
We assessed the relative amounts of fuels continuity by utilizing Landsat satellite images.
The August 24, 2012 Landsat-7 Enhanced Thematic Mapper (ETM+) image was chosen
because it was the cloud-free image closest to the dates of field sampling. The spectral
indices Normalized Difference Vegetation Index (NDVI), Brightness, and Greenness
estimate fuels cover and continuity. NDVI is a graphical indicator to assess whether a
pixel contains live green vegetation. It is based on the ratio of the red and near-infrared
(NIR) spectral values, computed as NDVI = (NIR-RED) / (NIR+RED) (Xavier and
Vettorazzi, 2004). Brightness is an estimate of bright or dark soil values, and greenness is
a measure of green vegetation. Brightness and Greenness are the first two components of
a tasselled cap transformation (Huang et al., 2002), a method for enhancing spectral
information content of Landsat TM data. Landsat pixels represent a uniform 30 by 30 m
spectral sample, a larger spatial extent than our field plots, which gives a broader
overview of fuels continuity. We intersected field plots with the calculated indices of the
Landsat pixel. When our field plots were at the margins of pixels, we averaged the values

for all pixels that intersected a plot.

3.5. Canopy fuels
Canopy fuels are the main fuel layer supporting crown fire spread (Cruz et al.,

2003). Canopy base height (CBH) is the vertical distance between the surface fuels and
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live canopy fuels. CBH influences the likelihood of crown fire initiation and the
interaction between combustion of surface and canopy fuels (Cruz et al., 2003). We
collected CBH at 16 plots and used this and other forest structure variables such as DBH
and tree height, to calculate several variables to assess the canopy structure and crown
fire potential of GBBP stands. Canopy length (CL), the average length of the canopy fuel
stratum, was calculated by subtracting CBH from tree height and averaging it over the
stand. Canopy fuel load (CFL) in kg m was estimated using the allometric foliage
weight equations from Brown (1978). As mentioned in Cruz et al. (2003), no published
allometric equations were found for GBBP, so whitebark pine was used as a surrogate
based on similarity in the tree crown structure. Canopy bulk density (CBD) in kg m3, is a
measure of how closely canopy fuels are packed. It reflects the likelihood that fire can
move through the forest and was calculated as CFL/CL (Cruz et al., 2003). Stand density
(trees ha*) was calculated using FIA tree expansion factors (US Department of
Agriculture, 2007) as an estimate for inter-crown distance (ICD). ICD is the distance
from one tree crown to an adjacent tree crown and is less in high-elevation five-needle
pine stands compared to stands of other pine species with similar basal areas (Jenkins,

2011).

3.6. Foliar moisture content

To assess live foliar moisture content (FMC), needles were randomly selected
from four GBBP trees at three different elevations (low = 2640 m, mid = 2910 m, high =
3160 m) during the first week of July, August, and September, 2012 (n = 36).

Approximately 20 g of live needles from each sample were weighed to the nearest 0.01 g
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and then oven-dried at 105° C for 48 hours and reweighed to obtain a dry weight
(Matthews, 2010). Samples were kept frozen until processed. FMC was computed as the

percentage of the oven-dry weight to dry foliage weight.

3.7. Data analysis and statistics

Forest floor CWD and FWD transect counts were converted to weight of fuel per
unit area (kg m) following Brown (1982). Litter and duff weight per unit area (kg m-2)
was estimated from depth measurements by using the equation developed for foxtail pine
(Pinus balfouriana Grev. et Balf.), a close relative to GBBP (van Wagtendonk et al.,
1998). Regression coefficients via generalized linear models (GLM) were developed
relating forest floor mass to elevation. To characterize surface fuels dissimilarity along
environmental gradients, a non-metric multi-dimensional scaling (NMDS) ordination
based on a matrix of Euclidean dissimilarities was calculated on FWD, CWD, litter and
duff amounts. NMDS collapses information from multiple dimensions to fewer
dimensions, so that data can be visualized and interpreted (McCune et al., 2002) (Fig. S3
in supplemental information). Stand densities in trees hectare™ were calculated for each
plot using the tree expansion factors (coefficient used to scale each tree on a plot to a per-
area basis) in the FIA user manual (O’Connell et al., 2015). Regression coefficients were
also calculated for stand density (trees ha*) and height to live crown for the same
elevational gradients. Post hoc mean comparisons using Tukey-Kramer tests were used
when a significant difference among elevation class was identified in canopy fuels. A
generalized linear model (GLM) with a negative binomial link was fit to the litter and

duff measurements made in the four cardinal directions under the sampled individual
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trees. We used the negative binomial distribution because data with many zero values
cause over-dispersion, or greater variability than would be expected. GLMs are
mathematical extensions of linear models that do not force data into unnatural scales, and
thereby allow for non-linearity and non-constant variance structures in the data (Hastie
and Tibshirani, 1990). The negative binomial distribution generates realistic
heterogeneity representative of spatial clustering of individuals and other small-scale
processes (Bolker, 2008). All statistics were completed using R statistical software (R

Devolopment Core Team, 2015).

4. Results
4.1. FWD and CWD fuels loading

The mean weight of fuel per unit area (kg m2) for low (2700-3000m), mid
(3000-3300m), and high (3300-3500m) elevation classes are reported in Table 4. As
elevation increases, FWD and CWD decrease, limiting the surface fuels available to carry
a fire. Separate regression coefficients were calculated for each FWD and CWD class
(Table 5, Fig. 8) by elevation. All slope coefficients were significant (p < 0.001) except
for the largest class (1000-hr fuels). All FWD classes, litter, and duff are highly
correlated. CWD is not strongly correlated to any other classes (Fig. S2). NMDS
ordination of the fuels classes is characterized by high linear fit (R? = 0.99) and a low
stress value (0.058) indicating a good representation of all variables in two dimensions.
The ordination was highly correlated with elevation and slope indicating that all

measurements of fuels (except CWD) change with elevation (Fig. S3).
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elevation in Great Basin bristlecone pine communities. Regression coefficients for all
fuel sizes except 1000-hr fuels were significant (p < 0.001) including litter and duff.

Shaded areas are the 95% confidence intervals.



Table 4

Mean weight of fuel per unit area (kg m) and standard error (kg m) for fine woody

45

debris (FWD), coarse woody debris (CWD), and litter and duff fuel at low, mid and high
elevations. (Litter and duff depth measured in mm in parenthesis).

Elevation lhr 10hr 100hr 1000hr Laten LI
(mm) (mm)
Mean 0.85 18.6
Low 0.12 0.21 0.49 3.94 (9.6) (7.4)
SE 0.11 4.2
0.02 0.03 0.08 0.96 (1.2) (1.6)
Mean 0.62 12.0
Mid 0.04 0.10 0.32 3.79 (7.2) (4.8)
SE 0.07 1.7
0.01 0.02 0.06 0.90 (0.7) (0.7)
Mean 0.43 7.2
High 0.03 0.08 0.15 2.77 (4.8) (2.9)
SE 0.08 1.9
0.01 0.02 0.04 0.79 (0.9 (0.7)
Mean 0.61 12.1
Al 0.06 0.12 0.31 3.50 (6.9) (4.8)
SE 0.01 0.01 0.04 0.53 0.05 1.4
(0.6) (0.6)
Table 5

Regression coefficients of fuel per unit area (kg m2) weight for FWD, CWD, litter and
duff fuel classes by elevation. N.S. = not significant.

Fuel class  Slope Intercept p-value Sig-level R?
1-hr -0.0002 0.696 <0.001 Fkx 0.301
10-hr -0.0003 1.116 <0.001 faladed 0.182
100-hr -0.0007 2.671 <0.001 falaied 0.016
1000-hr N.S. N.S. N.S. N.S.

litter -0.0010 3.75 <0.001 faleie 0.161
duff -0.0010 3.71 <0.001 ool 0.170

4.2. Stand density, fuels cover, and community composition

GBBP stand density (trees ha) also significantly decreased with elevation (Fig.

9). Stand density is an important contributor to the continuity of surface and aerial fuels

(Cruz et al., 2003). Only 13% of variability is explained by the regression model (R? =

0.133), likely due to only examining stands that have at least one GBBP in the plot. If



46

nearby forest stands at mid elevations (2600-3000 m) were included, there would likely
be higher stand densities. Stand density index (SDI) (Reineke, 1933; Shaw, 2000),
describes density that is sensitive to the diameter of the trees, and was calculated for all
trees and for each plot. The SDI was not significant, however SDI is best used as a
summary variable in even aged stands (Shaw, 2000). SDI is less applicable to long lived
GBBP communities, in which very old trees may have a relatively large DBH with little
live crown compared to more typical timber producing conifer species. The number of
species that make up forest communities also decreases with elevation, from up to 8
dominate tree species at lower elevations to mostly GBBP, limber pine and Engelmann
spruce at upper alpine treeline. At lower and mid elevations, GBBP makes up only a
minor component (7-14%) of the mixed forest community, growing with other lower
elevation tree species including white and subalpine fir, pifion/juniper species, ponderosa

pine and Douglas-fir (Fig. 9).
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Fig. 9. Stand density (trees hectare™®) versus elevation. Points are density at each
individual plot with actual elevation, bar-graph is species density parsed into 100 m bins.
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More important than fuel loads are the size of the fuel gaps that limit fire
propagation. The results from the Landsat indices of vegetation cover reiterate the
findings from CWD and FWD sampling. As elevation increases, NDVI and Greenness
decrease, indicating less vegetation and fuels available to carry a surface fire. Conversely,
as elevation increases, Brightness (a measure of exposed soil) also increases, indicating

larger gaps between trees, or less continuous fuel cover (Fig. 10).
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elevation in Great Basin bristlecone pine communities. Regression coefficients were all
significant (p < 0.001). Shaded areas are the 95% confidence intervals.
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4.3. Canopy fuels

Canopy base height declined significantly with elevation (p < 0.001, R? = 0.74)
(Fig. 11). As elevation increased, the branches of GBBP were closer to the ground, which
could facilitate fire into the crown of the trees. All crown fuels metrics vary by elevation
(Table 6). Tree height, CBH and crown length (CL) decreased with increasing elevation,
while available crown fuel load (CFL) and crown bulk density (CBD) increase with

elevation (Table 6).

R*=0.256
¥ =-0.001799X + 6.64
p=0.001

2.01

Crown base height (m)

0.0

ZEIIDD EDIDD 31IDD 32IDE| 33IDE| 34IDD
Elevation (m)
Fig. 11. Great Basin bristlecone pine crown base height (CBH) (the distance from the
ground to the first tree branches) versus elevation. Shaded areas are the 95% confidence
intervals.
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Table 6

Great Basin bristlecone pine canopy fuels: tree height (Ht), canopy base height (CBH),
diameter at breast height (DBH), Canopy length (CL), Canopy fuel load (CFL), and
Canopy bulk density (CBD) average for low, mid and high elevations classes. Different
lower case letters (a, b, c) indicate significant differences between elevation classes (o =
0.05).

DBH
Elevation Ht(m) CBH(m) (cm) CL(m) CFL (kgm?) CBD (kgm?®)
Low 12.9% 0.9% 37.3° 12.0% 0.36° 0.03?
Mid 12.0° 0.9° 54.3 11.0° 1.12° 0.09°
High 7.5° 0.6° 74.6° 6.9° 1.84° 0.22°

Foliar moisture content (FMC) at the three elevations sampled also significantly
decreased at the upper elevation site (ANOVA with p < 0.001) while the mid and low
sites were not significantly different (Fig. 12). FMC varied significantly by month.
September had the highest FMC and July the lowest (Fig. 12) with values likely

influenced by monsoonal precipitation events.
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Fig. 12 Live foliar moisture content (FMC) collected from Great Basin bristlecone pines
at low, mid, and high elevations.
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4.4. Individual tree fuel loading

Measurements of litter and duff in the four cardinal directions (NSEW) directly
beneath GBBP trees showed higher litter and duff fuel loads near the bole of the tree
(Fig. 7, Fig. S4, and Fig. 13. Fitted curve of regression model of combined litter and duff
around the bole of a tree. Fitted curves in each cardinal direction correspond to logistic
regressions with a negative binomial link.). A negative binomial model was fit to the
combined litter and duff for each cardinal direction (Fig. S4). The fitted curve for each
cardinal direction was draped on a surface (mm of litter and duff) around the tree to
visualize fuel loads underneath an individual tree (Fig. 13). While there might not be
sufficient fuels between individual trees to carry a surface fire, nearly each individual tree

had a pocket of litter and duff directly beneath it.
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Litter/Duff depth (mm)

Fig. 13. Fitted curve of regression model of combined litter and duff around the bole of a

tree. Fitted curves in each cardinal direction correspond to logistic regressions with a
negative binomial link. (Vertical exaggeration = 300x)

6. Discussion

The sky islands of the Great Basin are predicted to experience a 2-4 °C increase in

March-April mean temperature, a 60-100% decrease in mean April snow water
equivalent (SWE), yet possibly experience a 10-20% increase in October-April
precipitation by the end of the 21st century (Scalzitti et al., 2016). While there is

uncertainty in how climate change will affect mountain regions of the Great Basin,
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extensive research has modelled probable affects. Salzer et al. (2014) used tree ring
chronologies to show that GBBP have a positive growth-response to increasing
temperature at elevations 60—80 vertical meters below treeline in the White Mountains of
California. Chronologies from 80 m and farther below treeline are sensitive to
precipitation change (similar to lower elevation chronologies) and do not correlate
strongly with temperature (Salzer et al., 2014). Using dynamical downscaling and
applying a mean monthly perturbation to boundary conditions to simulate future climate,
the role of temperature and precipitation in spring snowpack variability has been modeled
throughout the western U.S. (Scalzitti et al. 2016, IAP-Climate Change Assessment).
Assuming that GBBP treeline communities are temperature limited, it is reasonable to
expect the stands to more closely approximate the conditions that are currently at the mid
and low elevations (historically 2-4 °C warmer on average). Our research indicates that if
climate warming changes fuel conditions, then the frequency of fire in GBBP systems at
low and mid elevations could increase where stands are typically denser and surface fuel
is greatest. While rare, wild fires such as The Carpenter 1 fire in southern Nevada (July,
2013; 36.25, -115.69) and the Phillips Fire in Great Basin National Park, (September,
2000; 38.90, -114.31) that started in lower elevation fuel types and moved through the
crowns of GBBPs with the aid of extreme fire weather, could become more likely. The
accumulation of fuels in lower elevation vegetation communities have proven to amplify
the effects of fire in the high elevation/low fire return interval systems.

Warmer temperatures will likely increase the number of days in each fire season
that FWD will be at its driest. FWD are fast drying fuels, which greatly affect ignition

and spread of surface fires; CWD responds to changes in moisture and temperatures over
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months and affect the latency of wildfires more than the rate of spread. FWD (1 hr, 10 hr,
and 100 hr fuels) for all fuel sizes decreased with elevation in GBBP transects (Fig. 8),
although this pattern did not hold for CWD (1000 hr fuels). Litter depth in GBBP sites
ranged from 12 mm at the lower elevation sites to 5 mm at treeline sites while duff depth
ranged from 10 mm to 3 mm, respectively. While the trend of decreasing surface fuels
with elevation is consistent across most fuels types, there is considerable variation across
the sample sites (R? values ranged from 0.15 to 0.30). Disparities could be from the
influence of other species, such as Engelmann spruce and limber pine, that contribute to
stand structure, composition, and fuels. When surface fuels are contiguous, flames easily
advance across the landscape, conversely, surface fires do not spread with discontinuous
fuels, such as those in this study’s high elevation sites. This confirms previous
observations that fires in low-density stands near treeline were likely rare and small, due
to the scarcity and discontinuity of fuels (Bailey, 1970). Litter and duff depths found in
other Great Basin fuels plots ranged from mean depths of 20 mm and 6 mm, respectively,
at the Clover Mountains dominated by ponderosa pine, to 12 and 3 mm, respectively, at
Mount Irish dominated by pifion juniper (Cheek et al., 2012). Yet we measured litter fuel
depths closer to 35 to 50 mm, which consider the high amounts of litter fuels that are
directly beneath individual trees (Fig. S4 and Fig. 13). Litter fuel depths decrease to
values closer to the FIA measurements at about 3 meters from any individual tree.
Combined with patches of shrubs and prostrate spruce thickets, fire susceptibility may be
higher than indicated by FIA measurements since FIA plot centers are usually not located
directly beneath trees. If fire starts in low elevations and extreme fire weather exists, the

unique patchy fuels found at mid and high elevations could make upper elevations more



56

susceptible to fire. This is not apparent from standard fuel models developed for lower
elevation fuel types.

Drier fuels at all elevations increases fire hazard. Additionally, for GBBP, CFL
and CBD increase at higher elevations (Table 6), resulting in denser crown fuels within
individual trees. Crown fires likely are dependent upon weather, especially atmospheric
stability and wind speed. Crown fire prediction models use canopy bulk density (CBD) as
the index of canopy fuel characteristics to determine whether fire will initiate and spread
either vertically or horizontally through a forest canopy. CBH is another important factor
in predicting crown fires (Scott, 2006). CBH is less than 50 cm at the highest elevations
of GBBP (Fig. 11. Great Basin bristlecone pine crown base height (CBH) (the distance
from the ground to the first tree branches) versus elevation.), and live FMC (Fig. 12)
decreased from 80-87% at low elevations to 71-78% at the highest elevations. This
suggests that while the likelihood of a surface fire decreases with elevation, the potential
for crown fire and spotting is still present. Thus, the greatest fire threat to GBBP growing
near treeline is from fires ignited in the mixed conifer forests below and progressing as
crown fires into pure GBBP stands during which threshold wind conditions and fuel
moistures are exceeded. More research is needed to identify wind speed and fuel moisture
threshold conditions that would sustain fire propagation.

In other Great Basin forest types, CBD at Mount Irish (37.64, -115.40) ranged
from 0.04 to 0.18 kg m™ in juniper types, to 0.02 to 0.23 kg m™ at the Clover Mountains
(37.40, -114.33) (Cheek et al., 2012), indicating higher severity potential crown fire
behavior at low elevations. Crown fires normally occur because of steep topography, high

wind speeds (Wolf, 2003), and canopy bulk density (CBD) of 0.05 kg m™ or more (van
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Wagtendonk, 2006). While the samples of GBBP at the low elevations had relatively low

CBD (0.03 to 0.09 kg m™, Table 6), these trees are co-located with other tree species
(pifion, juniper, and ponderosa pine) so that CBD and ICD sometimes support crown fire
and high surface fuel loads. The composition and structure of the adjacent forests at the
lower elevation margins of GBBP varied greatly and often have a large shrub component.
A thorough inventory of these lower margins is necessary to predict the hazard to GBBP.
GBBP pines at the highest elevations had a mean CBD of 0.22 kg m™ in the areas with
the lowest CBH, while the ICD at these elevations becomes too large to carry a crown
fire. While CBH and FMC decrease in GBBP at higher elevations (Fig. 11 and Fig. 12),
the decreased stand density (Fig. 9),which likely reduces ICD (Jenkins, 2011), reduces
the probability of a moving crown fire. The higher CBD values at high elevations may
not be representative however, because many of these ancient trees become krumholtz
(twisted and deformed) with only a portion of the tree remaining alive, which means that
the allometric equation derived for whitebark pine may not be applicable to these trees.
Fires that spread beyond individual trees are dependent on increasing fuel types and
amounts from climate warming and introduction of lower elevation species.

For decades, fire suppression has contributed to forest stand-level effects such as:
increases in woody fuel loading, canopy cover, vertical fuel distribution, canopy stratum,
and fuel continuity, which in turn leads to increased fire intensity, severity, and size as
fuels increase and become more connected. Interestingly however, fire suppression,
which produced unnatural fuel accumulations in most locations in the American West,
was not applied to high elevation pine forests where GBBP are located (Schoennagel et

al., 2004). Regardless, quantifying GBBP fuels is important for forest management.
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Large, severe fires have sizable economic implications when considering the costs of fire
suppression, loss of valuable timber, poor air quality, soil erosion, as well as impacts on
downstream water quality. Although stand replacing fires are rare, the more precise data
and analysis presented here identifies areas that are the most susceptible to fire.
Management of GBBP stands might be novel or unprecedented, but fuels management
could have large impacts on preventing stand replacing fire in these highly prized
communities. How GBBP communities regenerate is also of great interest. Post-fire
establishment may be favored in certain mixed conifer ecotones, lower-elevation
limestone soils, and other sites that are marginally productive for other conifer species
but relatively good for GBBPs.

Considering the recent ecological impacts of mountain pine beetle epidemics and
blister rust in whitebark and limber pines, a major component of treeline in the northern
Rocky Mountains, more attention to insect and disease epidemics in GBBP communities
is needed. Recently, tree chemistry research showed that bark beetles are not attracted to
GBBP (Gray et al., 2015). Tomback and Resler (2007) examined the cascading
ecological effects of losing treeline whitebark pine and expected changes in landscape
vegetation patterns in the context of climate change. They speculate that exotic pathogens
could potentially confound predictions of treeline responses to global warming in many
geographic regions and other communities (Tomback and Resler, 2007). Resistance of
GBBP to blister rust is unknown, yet laboratory experiments suggest GBBP lack genetic

resistance (Kinloch Jr and Dupper, 2002). More research is needed on these topics.
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7. Management Implications

Overall, our knowledge of GBBP ecosystems is poorly understood. For example,
GBBP longevity still remains a mystery, but improved understanding may be beneficial
for creating appropriate adaptation strategies to manage this species with a changing
climate. Historically, GBBP pine stands experienced low to high severity fires, and fuels
structures changed considerably across elevational gradients. In low elevation, mixed
species stands, fuels are often heavy and in close proximity to anthropogenic ignition
sources. Yet at high elevations, GBBP typically grow on limestone outcroppings that
provide little or no surface fuels to propagate a wildfire. In other words, stands are non-
uniform so it is difficult to make blanket fire response predictions. In the absence of fire,
stands are likely to exhibit gradual infilling by other local conifer, shade-tolerant tree
species or invasive weed species with climate warming. Tree species that occur at the
high-elevations and xeric margins provide ecological services that likely cannot be
replaced. Climate change may manifest as warming temperatures with more days of
extreme fire weather and reduced snowpack. Management in response to these threats to
GBBP must balance a range of concerns and may include both the application and
prevention of fire. How should fuels distribution be spread across the landscape? Should
there be diversity at the stand level or in a mosaic of different patches and age
distributions? How will we manage this with respect to climate change? Finally, how
might management tools, including fire (or the lack thereof), be best used to encourage
such conditions? Applied research is needed to gain insight into these questions. More

research and improved fire models for patchy fuels are needed to predict and identify
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appropriate fire management to protect valuable stands, promote regeneration, and

diversify age classes.
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Supplemental Figures
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Supplemental Fig. S1. (A) Gradient transect of additional FIA protocol plots on Mt.
Washington, NV. (B) FIA plot layout for stands structure and fuels sampling. Distance
between sub-plot 1 and sub-plots 2, 3, & 4: 36.6 m at angles (degrees) 150, 210, and 270
respectively. Adapted from USFS Forest Inventory and Analysis field guide (2007).
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Supplemental Fig. S2. Correlation Matrix of coarse and fine woody debris (CWD and
FWD), litter and duff. Fuel class along diagonal with histograms. Pearson's correlation
coefficient (p value), correlation coefficient (r value) in upper right quadrants. Scatter
plots with curve fitted using Lowess smoothing in lower left quadrant.
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Ordination by Elevation
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Supplemental Fig. S3. Non-linear Multidimensional Scaling (NMDS) plot of surface
fuels components (fine woody debris (FWD, coarse woody debris (CWD), and litter and
duff) in Great Basin bristlecone pine (Pinus longaeva Bailey) stands. Black vectors are
environmental gradients that are significantly correlated (o = 0.05) to the fuels ordination.
Points are plots along sampling transect, colors indicate elevation class, and points closer
to each other are more similar in fuels characteristics.
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Supplemental Fig. S4. Combined litter and duff depth (mm) from each cardinal transect
sampled at 60cm intervals from the bole of the tree. Fitted curves correspond to logistic
regressions with a negative binomial link. Gray lines around the curves are the 95%
confidence interval.
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CHAPTER 4

GREAT BASIN BRISTLECONE PINE VOLATILES AS A CLIMATE CHANGE

SIGNAL ACROSS ENVIRONMENTAL GRADIENTS

Abstract

Alpine treeline species, like Great Basin bristlecone pine (GBBP) (Pinus
longaeva Bailey), have received attention for their potential as indicators of climate
change. Most studies have focused on climate-induced changes to treeline position, but
climate effects on the physiology and stress of treeline plants remain poorly understood.
Volatile organic compounds (VOCSs) could provide insights into plant responses to
climate change since the blends of VOCs released by plants exhibit variation in response
to the environment, and can convey information about the status of the emitting plant. We
collected and analyzed GBBP VOCs and within needle chemistry along elevational
gradients (lower treeline, upper treeline, and midway in between) near the northern and
southern geographic limits of GBBP. Random Forest analysis distinguished elevation
classes using VOCs with 83% accuracy and identified the compounds most important for
classification. Ordination revealed that temperature, heat load index, and relative
humidity were each significantly correlated with VOCs. Within-needle chemistry
provided less predictive value in classifying elevation class (68% accuracy) and was
correlated only with heat load index. These findings suggest that GBBP VVOCs are highly
sensitive to the environment and could be used to assess and predict tree status and
responses to environmental change. The potential effects of climate- and elevation-

induced changes in GBBP chemistry on abiotic and biotic interactions are discussed.
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Introduction

Treeline species that live in harsh, high-elevation environments are particularly
susceptible to climate change and can serve as early signals of change (Korner 1998,
2012). This is thought to be because trees growing near treeline are at or near their
survival limits and so should be highly sensitive to environmental change and respond
earlier than the rest of the forest (Smith et al. 2009, Kérner 2012). Components of climate
change such as temperature, elevated concentrations of COz, and altered precipitation can
each affect alpine treelines, with warming being the best studied (Grace et al. 2002,
Smith et al. 2009, Kérner 2012). For example, warming temperatures can alter alpine
treelines by increasing tree mortality, promoting invasive plant establishment, changing
forest fuels, plant community structure, and altering snowfall and melt patterns
(Flannigan et al. 2000, Gibson et al. 2008, Balch et al. 2013). Warming temperatures can
also increase risk of mortality to treeline species by stimulating abiotic and biotic
disturbances such as mountain pine beetles (Dendroctonus ponderosae Hopkins), white
pine blister rust (Tomback and Resler 2007), and altering natural fire regimes (Gibson et
al. 2008, Gray and Jenkins 2017). To date, most studies that have examined climate
effects on alpine treelines have focused on the advance or retreat of treeline position
(Gehrig-Fasel et al. 2007, Paulsen and Korner 2014, Schibalski et al. 2014, Millar et al.
2015, Bruening et al. 2017). Climate effects on the physiology of treeline plants have
received much less attention and remains largely unknown, despite the fact that
understanding the impacts of environmental change on plant physiology could help

predict how treelines will change.
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Great Basin bristlecone pine (Pinus longaeva Bailey) (GBBP) is an alpine
treeline, five-needle pine that has served as an important indicator of climate change
(Korner 1998, Rochefort et al. 1994, Salzer et al. 2014, 2009). GBBPs are the oldest trees
on earth, with some individuals exceeding 5,000 years old. This longevity has allowed
GBBP to play an important role in climate change research due to their extremely long
tree-ring chronologies (Cook et al. 1995, Cook and Peters 1997) with recent studies
finding increased tree-ring growth at the highest elevations (Salzer et al. 2014, 2009).
GBBP distribution is confined to the highest mountains (2700-3700m) of the Great Basin
in the western United States, where global climate models predict a mean 2-4 °C increase
in annual temperatures within the next several decades (Scalzitti et al. 2016, IAP-Climate
Change Assessment) accompanied by a likely decrease in precipitation (Cook et al.
2010). The physiological responses of GBBP to warming temperatures and decreases in
precipitation are largely unknown. Moreover, such warming could add stress by
increasing wildfire activity (Westerling et al. 2006) in these habitats with historically
sparse fuel conditions, in part by increasing fine woody surface fuels (Gray and Jenkins
2017).

Volatile organic compounds (VOCs) could be useful for detecting and measuring
plant physiological responses to environmental change because the quantity and
composition of VOCs emitted by a plant can be affected by the environment (Pefiuelas
and Staudt 2010, Dudareva et al. 2006, Jaeger et al. 2016). Plant VOCs have many
known ecological roles, such as attracting pollinators (Burkle and Runyon 2016) and
plant defense against herbivores, pathogens, and parasitic plants (De Moraes et al. 2001,

Gray et al. 2015, Huang et al. 2012, Runyon et al. 2006). VOCs emitted by GBBP also
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play important roles in defense, for example by repelling host-searching mountain pine
beetles (Gray et al. 2015). Plant VOCs can also protect against certain abiotic stresses,
including high temperatures and oxidative damage (Holopainen and Gershenzon 2010).
In general, both biotic and abiotic stress increases VOC emissions from plants
(Holopainen and Gershenzon 2010), and trees are known to emit VOCSs in response to
herbivory and changes in heat, light, precipitation, and season (Helmig et al. 2007,
Trowbridge et al. 2014). Moreover, elevated temperatures typically increase VOC
emissions (Tingey et al. 1980), and elevated CO2 can increase emission of volatile
terpenoids (Himanen et al. 2009, Yuan et al. 2009, O’Neill et al. 2010), which may
become more common, especially at high elevation treeline (Pefiuelas and Llusia 2003).
This study quantifies GBBP tree chemistry across elevational gradients near the
southern and northern extent of GBBP’s distribution as an approximation for future
climate conditions. Elevation gradients are valuable surrogates for inferring broader
climate change effects by providing variation in abiotic factors (Beier et al. 2012,
Hodkinson 2005, Kdrner 2007). Moreover, because the elevation gradients at each
latitude used in this study occurred over short distances (< 2.5 km), this minimized the
confounding effects of biogeographical differences such as the community of plants,
herbivores, and pathogens that are present (Hodkinson 2005). We address the following
research questions in this paper:
- How does GBBP chemistry change with elevation, and is this correlated with air
temperature, relative humidity (RH), and heat load index and thus to climate change?
- Do VOCs emitted from GBBP increase at lower elevations as a proxy for climate

warming?
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- Can we apply understanding of GBBP response to elevational gradients to interpret

potential susceptibility to threats like fire or mountain pine beetles?

Materials and Methods

Study Sites

The Great Basin of western United States has an arid climate and basin and range
topography, with numerous high mountain peaks (sky islands) separated by low
intermountain valleys. In the Great Basin, upper treeline occurs at approximately 3,300 m
and lower treeline at approximately 2,100 m (Thompson and Mead 1982), although this
varies with latitude. Mountains and basins create steep environmental gradients, which
greatly influence the composition and structure of vegetative communities (Peet 2000).
For this study, we exploited these environmental gradients by sampling GBBP trees in
two sky islands in Nevada near the northern and southern extremes of GBBP’s
geographic range. Sample transects were installed at Cave Mountain, NV (39.167, -
114.616) and the Spring Mountains National Recreation Area, NV (36.293, -115.686)
(Figure 14A). Three discrete elevation classes, “low” “mid” and “high”, were sampled at
each site. The low elevation plots were established at the lower extent of GBBP (3005 m
at Cave Mtn, 2640 m at Spring Mtns), high elevation plots at upper treeline (3230 m at
Cave Mtn, 3160 m at Spring Mtns), and mid elevation plots halfway between the two
(3060 m at Cave Mtn, 2910 m at Spring Mtns) (Figure 14B). For each elevation class, all
trees sampled were within £10 m elevation. Other tree species occurring at the plots (not
all species ocurred at all plots) included limber pine (Pinus flexilis James), Engelmann

spruce (Picea engelmannii Parry), subalpine fir (Abies lasiocarpa var. latifolia Nutt.),
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aspen (Populus tremuloides Michx.), pifion pine (Pinus edulis Engelm.), juniper
(Juniperus spp.), mountain mahogany (Cercocarpus ledifolius), ponderosa pine (Pinus

ponderosa Douglas), and white fir (Abies concolor).
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Figure 14. Location of Great Basin bristlecone pine study sites in Nevada (A) and
elevational gradients for both study sites (B) that were established using lower extant of
GBBP (Low), upper treeline (High), and halfway between the two (Mid).

At each site and elevation, four GBBP trees of similar size were haphazardly
selected that showed no obvious signs of stress (e.g . herbivory, pathogen attack). Mean
height of sampled trees was 13.5 + 0.8 m, and mean diameter at breast height (dbh) was
74.5 + 7.8 cm (n = 24). Trees were sampled once each month from July to September in
2013, at each site, it took field crews two days to sample trees from the three elevations.
VOCs were sampled three times daily (1000, 1200, and 1400) in the first week of July,
August, and September (total of 18 sample periods per month), needles for within-needle
terpene concentrations were collected from each tree at the end of the day (1400). The
July samples from the Spring Mtns were omitted from analysis because sampling were

affected by the nearby Carpenter 1 fire (July, 2013, 36.25, -115.69, ~4 km away) (total
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VOC collections: Cave Mtn = 108, Spring Mtns = 72). Other environmental variables
measured at time of sampling were temperature (°C), relative humidity (RH in %), and
topographic heat load index (Heatl). Heat load index (Heatl), or the potential direct
radiation at a site, is not symmetrical, as a slope with afternoon sun will be warmer than
an equivalent slope with morning sun. Heat load index was calculated using the equation:
Heatl = 1-cos(0 — 45) / 2 , where 0 = aspect in degrees east of north, as an approximation
of heat, rescaling aspect to a scale of zero to one, zero being the coolest slope, and one
being having to most direct radiation (McCune and Keon 2002). The only environmental
variables measured for within needle compounds were heat load index and elevation, as
needles were collected once at the end of a sampling day.
Collection and analysis of VOCs and within-needle chemistry

Volatile emissions were collected by enclosing 50 cm of the apical end of one
randomly selected branch with clear Teflon bags (50 cm wide x 75 cm deep, American
Durafilm Co., Holliston, MA, USA). The apical branches were approximately 1.5 m
above the forest floor, following the methods of Page, Jenkins, and Runyon (2012) and
Gray et al. (2015). The same branch on each tree was marked with flagging and was used
for all VOC sampling periods. Air was pulled from a side port (0.5 I min) of the Teflon
bags through volatile traps containing 30 mg of the porous polymer adsorbent HayeSep-
Q (Restek, Bellefonte, PA, USA) using portable volatile collection systems comprising
automated vacuum pumps (Volatile Assay Systems, Rensselaer, NY, USA). VOCs were
collected for 30 min and Teflon bags were removed between sample times. VOCs were

eluted from traps with 200 ul of dichloromethane, and 1,000 ng of n-nonyl acetate was
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added as the internal standard. After the last sampling period in September, the branches
sampled for VOCs were clipped and needles removed and weighed.

To measure within-needle chemistry, approximately 20 g of needles from
randomly selected branches (1 to 2 m above the forest floor) on the same trees were
removed at the end each sampling date and stored on ice in a cooler (for 2-3 days) and
then in a freezer at -80° C until processed. Terpenoids were extracted from GBBP foliage
following methods of Ormeno et al. (2009) and Page et al. (2014). For each sample,
needles were thoroughly mixed and 2 g randomly selected and ground into a fine powder
in liquid nitrogen using a mortar and pestle. Approximately 0.1 g of powdered needles
were transferred into 2-ml FastPrep tubes (MP Biomedicals, Solon, OH), and 1.5 ml of
cyclohexane was added and sonicated at room temperature for 20 min. Vials were then
centrifuged at 13,000 g for 1 min and 200 ml of cyclohexane (top layer) was transferred
to a gas chromatograph vial and 1000 ng of n-nonyl acetate was added as the internal
standard.

VOC and needle samples were analyzed using an Agilent 7890A gas
chromatograph (GC) coupled with a 5975C mass spectrometer (MS) and separated on an
HP-1 ms (30 m x 0.25 mm inside diameter, 0.25 pm film thickness) column, helium was
used as the carrier gas. The GC oven was maintained at 35° C for 3 min and then
increased by 5° C min~t to 200° C, then 25° C min~tto 250° C. Quantifications were
made relative to the internal standard using ChemStation software (Agilent Technologies,
Wilmington, DE, USA). Identification of compounds were made using the NIST 08 Mass
Spectral Search Program (National Institute of Standards and Technology, Gaithersburg,

MD, USA) and confirmed by comparing retention times and mass spectra with
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commercial standards, when possible. Remaining unidentified compounds were labeled
as unidentified monoterpenoids (MT), unidentified sesquiterpenoids (ST), unidentified
benzenoids (B), or unidentified green leaf volatiles (GLVs). VOC emission rates were
corrected for needle weight (ng/hour/gram) as were within-needle chemical

concentrations which are reported on a fresh needle weight basis (pg/gram).

Statistical analyses
Analysis of variance (ANOVA)

Statistical analyses for VOCs and within-needle compounds were performed
using the non-parametric Kruskal-Wallis one-way analysis of variance (ANOVA)
(Kruskal and Wallis 1952) to identify compounds with significant (P < 0.05) differences
among elevations, and to test whether samples originate from the same distribution. To
identify which elevation classes had significant differences in compounds, pairwise
differences between all sampling periods were square root or log-transformed to
normalize data and stabilize variance, and assessed with a Tukey’s HSD means test
(Sokal and Rohlf 1995) and calculated using the Stats package in the R v.3.3.1 statistical

software (R Development Core Team 2016).

NMDS ordination

To characterize VOC dissimilarity along environmental gradients, a non-metric
multidimensional scaling (NMDS) ordination based on a matrix of Euclidean
dissimilarities (Dixon 2003, Kenkel and Orloci 1986) was calculated on the rank order

proportion of VOCs. Ordination is the ordering of sample units along an axis, multiple
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axes, or a gradient (McCune et al. 2002), and is most often used in ecology for gradient
analysis and is used to select the most important factors, separate patterns, and reveal
unforeseen patterns and processes (McCune et al. 2002). The goal of NMDS is to
collapse information from multiple dimensions into just a few, so that they can be
visualized and interpreted. The iterative NMDS procedure defines position of variables in
multidimensional space, constructs an initial configuration in 2-dimensions, regresses
distances in the initial configuration against the observed distances, determines the stress,
or the disagreement between 2-D configuration and predicted values from the regression,
and if stress is high, repositions the points in 2 dimensions in the direction of decreasing
stress. The scatter of points representing samples in NMDS ordination space is iteratively
allowed to evolve until it resembles the observed dissimilarity matrix as closely as
possible. This method is non-metric because stress, the measure of closeness of fit, is
based on the ranking of dissimilarity values rather than actual values of dissimilarity. The
NMDS was based on a similarity matrix using the Bray—Curtis index (Clarke 1993)
running with 600 iterations to permit the NMDS algorithm to develop an ordination with
minimal stress. NMDS ordinations were completed using the VEGAN package (Dixon
2003) in R v.3.3.1 statistical software (R Development Core Team 2016). The ordination
space was then visualized by overlaying environmental variables with the ordination to
specifically address how the compounds respond to spatial variation in the natural

environment.

Random Forest

We used the Random Forest classification algorithm (Breiman 2001) to

investigate whether VOCs hold value for classifying elevation (low, mid, and high).
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Random Forest is a machine-learning algorithm that assigns samples to predefined
groups and combines a consensus of multiple classification trees in numerous iterations
and estimates the importance of each compound (Breiman 2001). Constructing multiple
classification trees using hundreds of bootstrapped training sets and averaging the
resulting predictions significantly reduces the variance and increases prediction accuracy
compared with a single tree. Additionally, when the number of variables is very high (in
this case 42 compounds), applying only a randomly selected subset of variables for each
model is computationally efficient. This statistical method has been applied in other
ecological studies to classify VOC samples to reduce noise and correctly identify volatile
signatures of plants (Jaeger et al. 2016, Ranganathan and Borges 2010). Two Random
Forest trials were carried out to classify elevation based on VOCs and within needle
chemistry. These analyses used randomForest package v4.6-12 (Liaw and Wiener 2002)
in R v.3.3.1 statistical software (R Development Core Team 2016) utilizing the optional
measure of importance of predictor variables, and proximity, a measure of the internal
structure of the data used to detect outliers, with number of trees set at 1000, and all other
parameters were set as the defaults. Random Forest returns a confusion matrix that
summarizes the accuracy of the classification as well as the variable importance. The
importance of each VOC for classification was ranked using mean decrease in accuracy
(MDA) which measures the accuracy in which the compound can be used to partition the
data variables. The variables predicted to be important in the model help us to understand
what variables are driving the differences in chemical signatures at different elevations.
Random Forest has two measures of variable importance. The first is based on mean

squared error (MSE) and relates to the prediction accuracy of the out-of-bag portion of
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the data. The difference between the two MSEs are then averaged over all trees. The
second measure describes variable importance based on the Gini impurity index, which is
based on overfitted models (Breiman 2001).

Finally, regression coefficients of several ratios of compounds of interest were
calculated using generalized linear models (GLM) relating the compound ratios to
temperature gradients. Regression coefficients of flammable within needle compounds
were calculated for elevational sites and heat load index. All statistics were completed

using R v.3.3.1 statistical software (R Development Core Team 2016).

Results

GBBP VOCs

Gas chromatography—mass spectrometry (GC-MS) analysis identified 42 volatile
compounds emitted by GBBP trees (Table 7). The majority of compounds were
monoterpenoids (29 compounds, ca. 99% of total VOC emissions) followed by
sesquiterpenoids (10 compounds) and benzenoids (3 compounds) (Table 7). These 42
compounds were emitted by all trees across all sample dates and elevations. However,
volatile emissions varied quantitatively between study sites and across elevations for total
VOCs and for some individual compounds (Table 7). VOCs increased with decreasing
elevation for several compounds (highlighted in bold in Table 7) and this trend was
common among the sesquiterpenoids. Amounts emitted for every sesquiterpenoid
compound decreased with increasing elevation for at least one of the sites. Bornyl acetate

was the only monoterpene to exhibit this inverse elevational trend at both study sites,
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while three unidentified sesquiterpenoids (ST1, ST2, and ST4) showed this same

elevational trend at both sites.

Within-Needle Terpenoid Concentrations

In total, 78 compounds were identified using GC-MS, the majority of which were
monoterpenoids (46 compounds, ca. 91% of total terpene concentrations) and
sesquiterpenoids (27 compounds, ca. 7.5% of total terpene concentrations). Overall,
within-needle concentrations varied more by site than by elevation. Mean total within-
needle terpene concentrations averaged across all sample periods were not significantly
different among elevation classes, but the concentrations were significantly greater (P <
0.05) at the Spring Mtns site in the south than the northern Cave Mtn site. Total within-
needle terpene concentrations had high variability among elevation classes and study
sites. As with emitted VOCs, some within-needle terpene compounds showed trends
along elevational gradients with concentrations increasing with decreasing elevation
(Table 8). Bornyl acetate again exhibited decreases in concentrations with increase in
elevation at both sites, along with two unidentified monoterpenes (MT8 and MT). Two
unidentified sesquiterpenes (ST2 and ST3) were correlated with elevational gradients at
both sites, however, these compounds decreased with increasing elevation at the Spring

Mtns site, and increased with elevation at Cave Mtn site.



Table 7. Volatile organic compounds (VOCs) emitted (ng/hour/gram) with standard error (SE) by foliage of Great Basin bristlecone
pines at Spring Mountains and Cave Mountain, NV for low, middle and high elevations. VOC amounts are averaged across all sample
periods (monthly for July-September 2013, VOCs collected daily at 1000, 1200, 1400 hr). Different lower case letters (a, b) indicate
significant differences for a compound among elevation classes at a site (o = 0.05). Compound amounts that are inversely related to
elevation are highlighted in bold. Named compounds were identified by comparing retention time and mass spectra with authentic
standard. MT = unidentified monoterpenoid; ST = unidentified sesquiterpenoid; B = unidentified benzenoid.

Spring Mountains (n = 72) Cave Mountain (n = 108)

Elevation Elevation

Low Middle High Low Middle High
1 Temp(°C) (16.6 + 0.4) (13.1+0.3) (11.9+0.4) (19.3 + 0.6) (16.2 +0.8) (15.0 +0.9)
Compound Mean SE Mean  SE Mean  SE Mean SE Mean SE Mean SE
Monoterpenes
tricyclene 3.438 0434 a 8197 0822 b 2514 0327 @ 3122 0503 - 2554 0.328 3.448 0.211
MT 1 1.393 0201 @ 3176 0499 b 0807 0117 a 1869 0.253 ab 1211 0.180 b 1985 0.183 a
MT 2 4.689 1011 ab 13873 4859 a 2693 0342 b 6047 0987 @ 3.013 0421 b 4216 0.567 ab
a-pinene 364540 54.797 - 51040 56.321- 305.039 85.847 -  289.494 45248- 193565 26.56 - 2091703 27.068 -
camphene 10270 1416 @ 22052 1.886 b 7475 1135 a 9646 1813 -  7.191 1.105 - 8.990 0720 -
B-pinene 32.035 5504 @ 68.046 5613 b 20251 4349 @ 57077 19.645- 29.816 4712 - 37.948 3.180 -
B-myrcene 6.319 1242 @ 7472 0790 a 2895 0455 b 8066 1367 @ 4733 0814 b 5820 0542 ab
3-carene 0.216 003 @ 0590 0109 b 0135 0017 @ 0546 0.083 -  0.353 0.061 - 0411 0.052 -
p-cymene 0.999 0174 a 3442 0501 b 0705 0103 a 1964 0382 @ 1.036 0238 b 1118 0.115 ab
B-phellandrene 28.988 4907 @ 58668 8052 b 19245 2678 @ 53058 8506 - 35999 6.418 -  40.028 3326 -
limonene 4.245 0698 @ 6711 0665 b 2482 0441 @ 5082 0.723 -  3.428 0529 - 4.440 0422 -
E-B-ocimene 0.301 0059 a 0525 0097 b 0174 0033 a 0445 0104 @ 0.257 0.058 ab 0.154 0022 b
y-terpinene 0.433 0118 a 0505 0068 @ 0131 0018 b 0883 0230 a 0214 0.068 b 0191 0028 b
terpinolene 1.829 0285 @ 3946 0561 b 1211 0238 a 2658 0565 @ 1.300 0296 b 1609 0.186 ab
linalool 0.097 0042 - 0138 0042 - 0026 0012 - 0461 0125 @ 0.094 0.053 b 0.036 0.008 b
MT 3 0.210 0046 @ 0413 0062 b 0139 0035 a 0300 0.080 - 0.233 0.067 -  0.246 0.053 -
MT 4 0.376 0070 @ 1.010 0175 b 0216 0037 @ 0958 0.246 -  0.563 0.125 - 0.626 0118 -
camphor 0.388 0083 ab 0517 0092 2 0164 0033 b 0155 0.023 - 0.185 0.024 - 0218 0.024 -
MT 5 0.245 0054 a 0468 0078 b 0095 0021 a 0419 0.077 -  0.240 0.064 -  0.274 0.050
geranyl acetate 0.129 0024 a 1300 0209 b 0271 0.070 a 0.144 0.019 - 0.112 0.015 -  0.113 0.012 -
bornyl acetate 1.219 023 a 1123 0151 @ 0421 0105 b 2135 0857 - 1.078 0.362 - 0.597 0112 -
o-phellandrene 0.249 003 @ 0580 0047 b 0178 0019 @ 0827 0.198 @ 0.290 0.069 b 0310 0.020 b
o-terpinene 0.121 0024 a 0259 0038 b 0055 0010 a 0301 0.094 -  0.095 0.027 - 0.083 0.009 -

8



Table 7 continued.

MT 6 0.171
MT 7 0.302
MT 8 1.894
verbenone 0.157
MT 9 0.023
MT 10 0.743

Sesquiterpenes
E-p-farnesene 0.317
a-farnesene 0.311
caryophyllene oxide  0.024
Table 7 continued

ST1 1.947
ST2 0.050
ST3 0.054
ST4 0.116
ST5 0.049
ST6 0.013
ST7 0.046

Benzenoid compounds

methyl salicylate 0.198
B1 0.620
B2 0.474

Total volatiles

470.24

0.074
0.110
0.886
0.029
0.005
0.299

0.056
0.060
0.004

0.361
0.012
0.017
0.026
0.013
0.004
0.016

0.041
0.175
0.066

73.738
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0.058
0.217
0.106
0.258
0.044
0.177

1.279
0.702
0.026

1.636
0.037
0.044
0.073
0.129
0.017
0.024

0.265
0.502
2.715

721.7

0.012
0.043
0.026
0.057
0.012
0.039

0.311
0.188
0.003

0.309
0.006
0.018
0.023
0.018
0.003
0.005

0.028
0.082
0.401

83.320

ab
ab

0.016 0.006
0.046 0.014
0.062 0.025
0.103 0.027
0.018 0.005
0.086 0.025
0.279 0.056
0.229 0.065
0.017 0.006
1.082 0.273
0.018 0.004
0.019 0.011
0.051 0.015
0.026 0.006
0.008 0.002
0.212 0.182
0.139 0.026
0.322 0.093
0.627 0.152
379.68 97.43

' T T T

0.053 0.015
0.184 0.038
0.086 0.030
0.151 0.039
0.044 0.011
0.277 0.092
0.854 0.131
1.860 0.408
0.083 0.018
1.721 0.444
0.093 0.019
0.029 0.007
0.109 0.031
0.080 0.015
0.046 0.014
0.365 0.135
0.475 0.065
1.899 0.474
0.389 0.052
45445 84.16

0.035
0.090
0.024
0.136
0.040
0.081

0.512
0.630
0.028

1.555
0.064
0.037
0.095
0.060
0.022
0.026

0.403
1.928
0.322

293.64

0.007
0.020
0.004
0.034
0.011
0.019

0.108
0.140
0.007

0.727
0.023
0.014
0.049
0.023
0.006
0.007

0.111
0.734
0.040

44.6

0.046
0.101
0.075
0.150
0.047
0.110

0.461
0.262
0.016

1.359
0.057
0.029
0.076
0.053
0.015
0.026

0.380
0.792
0.351

408.97

0.010
0.018
0.023
0.030
0.013
0.023

0.083
0.060
0.003

0.290
0.011
0.006
0.021
0.010
0.004
0.006

0.061
0.124
0.029

37.85
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Table 8. Within-needle terpenoid concentrations (pg/g) with standard error (SE) of Great Basin bristlecone pines at Spring Mountains
and Cave Mountain, NV for low, middle and high elevations, averaged across sample periods (monthly for July-September 2013).
Different lower case letters (a, b) indicate significant differences for a compound among elevation classes at a site (o = 0.05).
Compound amounts that are inversely related to elevation are highlighted in bold. MT = unidentified monoterpenoid; ST =
unidentified sesquiterpenoid; GLV = green leaf volatiles.

Spring Mountains (n = 18) Cave Mountain (n = 27)
Elevation Elevation
Low Middle High Low Middle High

Compound Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE
Monoterpenes

tricyclene! 44,71 6.77 - 60.98 9.11 - 55.74 1283 - 49.79 5.24 - 46.69 839 - 54.61 423 -
MT1 0.51 031 - 0.94 049 - 0.10 0.02 - 0.21 0.03 - 027 0.05 - 0.29 0.07 -
MT 2 0.38 0.28 a 0.20 012 a 0.03 001 b 0.05 0.01 - 0.04 0.01 - 0.08 0.02 -
a-pinene! 1266.6  185.99 - 1475.1 13354 - 13951 24941 - 21995 19455 - 2150.2 2074 - 28198 32275 -
camphene! 118.73 1853 - 15886 26.39 - 137.62 3329 - 12004 1548 - 10632 2185 - 12337 11.08 -
S-pinenet 373.28 61.03 - 388.18 46.21 - 68142 13495 - 796.36 12191 - 670.82 8474 - 743.90 8531 -
B-myrcenet 108.77 18.68 - 106.49 1488 - 12313 2036 - 225.05 30.28 - 183.04 24.15 - 232.60 44,08 -
3-Carene! 2.90 0.46 - 2.57 0.48 - 351 0.60 - 6.98 1.15 - 6.00 077 - 6.49 1.01 -
p-cymene! 2.89 0.37 - 4.53 0.93 - 291 055 - 4.25 0.33 - 329 031 - 4.87 0.74 -
p-phellandrene! 844.18  136.45 - 766.29 165.75 - 993.48 155.04 - 1365.1 146.32 - 14853 127.0 - 14703 11548 -
limonene! 37.65 532 - 39.96 6.13 - 45.54 720 - 61.14 6.81 - 6295 7.84 - 66.49 6.09 -
(E)-p-ocimene! 0.94 0.63 - 0.73 0.36 - 0.27 0.05 - 0.49 0.06 - 0.41 0.05 - 0.51 0.07 -
y-terpinene! 2.65 0.38 - 3.99 0.59 - 3.13 049 - 6.73 0.81 ab 365 053 a 8.24 178 b
a-terpineol* 7.91 247 a 1.04 0.66 b 0.31 021 b 1.50 0.88 - 019 0.06 - 1.01 039 -
linalyl acetate? 1.29 0.32 - 0.75 0.21 - 1.73 0.63 - 24.34 9.02 a 096 016 b 4.80 200 b
MT 3 0.35 031 - 0.39 0.21 - 0.07 0.03 - 0.09 0.02 - 019 010 - 0.92 081 -
MT 4 0.19 0.08 - 0.42 0.19 - 0.05 0.02 - 0.08 0.02 - 0.09 0.02 - 0.10 0.03 -
camphor* 0.23 0.15 - 0.26 0.17 - 0.04 0.02 - 0.27 0.17 - 0.08 0.02 - 0.13 0.06 -
MT5 0.22 0.06 - 0.42 0.10 - 0.19 0.05 - 0.38 0.08 - 026 0.06 - 0.41 0.08 -
borneol* 2.27 0.66 - 3.16 133 - 2.64 0.77 - 3.80 091 - 4,71 158 - 5.07 1.09 -
bornyl acetate! 194.42 4653 - 19314 57.03 - 116.06 2747 - 21476 4840 - 170.89 57.16 - 129.68 2140 -
a-phellandrene! 9.00 1.63 - 8.12 172 - 10.89 173 - 25.40 4,68 - 21.00 318 - 21.65 396 -
a-terpinene! 0.90 0.10 - 131 0.16 - 1.12 0.16 - 2.45 0.37 ab 143 022 a 2.82 050 b
a-thujenet 12.23 1.10 - 19.39 6.51 - 15.99 405 - 31.24 493 - 18.75 4.01 - 42.46 10.87 -

8

sabinene! 15.61 4.24 - 22.77 3.86 - 26.82 402 - 35.31 8.41 - 28.46 4.60 - 37.99 6.29 -



Table 8 continued.

MT 8 0.88
verbenone? 3.04
MT 9 4.32
MT 10 0.53
cis-verbenol* 12.32
terpinyl acetate? 132.36
L-pinocarveol? 3.64
(2)-B-ocimene? 0.62
MT 11 2.81
MT 12 0.41
MT 13 1.46
MT 14 0.60
MT 15 0.21
MT 16 1.22
MT 18 2.03
MT 19 1.23
MT 20 0.93
MT 21 0.46
MT 22 3.02
MT 23 0.52
MT 24 11.28

Sesquiterpenes

(E)-p-farnesene* 5.02
longifolene? 27.68
p-caryophyllenet 147.72
a-humulene! 21.45
a-bisabolol? 351
caryophyllene oxide 11.99
ST 14 0.92
ST2 1.81
ST3 121
ST4 0.89
ST5S 0.79
ST6 1.53
ST7 0.14
ST8 5.31
ST9 2.83
ST 10 7.03

0.39 a
1.93 -
391 -
0.25 -
9.25 -
38.08 -
246 -
0.32 -
217 -
0.28 -
0.25 -
0.28 -
0.14 -
0.29 a
0.76 -
1.04 -
0.46 a
0.10 -
0.65 -
0.38 -
343 -

0.60 a
11.97 -
35.78 ab
5.39 ab
1.06 -
218 -
0.32 -
0.43 ab
0.41 -
0.31 -
0.19 a
0.26 -
0.07 -
1.63 -
0.48 -
1.93 -

0.69
7.37
2.96
1.01
17.22
49.57
6.44
0.50
3.48
0.97
1.78
1.10
0.34
4.70
1.76
1.40
1.51
0.55
4.84
0.49
10.25

12.90
20.74
157.99
23.41
3.60
14.82
1.40
2.38
1.16
0.57
221
2.84
0.43
12.51
441
16.84

0.30
4.92
1.52
0.49
10.26
25.50
3.75
0.22
2.08
0.56
0.32
0.40
0.19
1.19
0.25
0.80
0.54
0.12
1.36
0.23
3.37

2.05
4.84
25.56
4.05
1.59
4.39
0.35
0.59
0.34
0.16
0.29

0.50 -

0.10
3.07
1.43
1.85

0.35
0.55
0.13
0.09
0.46
45.12
0.20
0.22
0.10
0.04
2.40
0.26
0.04
0.52
1.57
0.06
0.22
0.29
4.39
0.14
14.07

10.30
14.24
62.48
8.19
4.12
6.50
0.54
0.68
0.77
0.44
1.66
2.32
0.32
9.64
1.38
14.99

0.09
0.17
0.03
0.02
0.12
24.52
0.07
0.03
0.03
0.01
0.44
0.05
0.02
0.18
0.43
0.01
0.03
0.07
0.80
0.04
3.85

2.25
2.84
19.31
2.60
1.55
1.93
0.13
0.19
0.15
0.10
0.61
0.78
0.11
1.69
0.29
5.08

b 0.68
- 0.74
- 4.12
- 0.20
- 1.29
- 76.74
- 0.40
- 0.42
- 0.35
- 0.06
- 3.47
- 0.37
- 0.01
a 2.40
- 241
- 0.08
b 0.43
- 0.52
- 7.37
- 0.25
- 31.80

b 14.43
- 3.74
b 100.26
b 13.76
- 2.70
- 9.89
- 0.44
b 2.27
- 0.55
- 0.12
ab 3.98
- 5.72
- 0.70
- 17.35
- 2.05
- 33.04

0.07
0.15
1.53
0.05
0.27
30.61
0.16
0.08
0.10
0.02
0.42
0.21
0.00
0.38
0.57
0.04
0.06
0.05
1.88
0.08
8.21

1.39
0.82
19.51
3.14
1.67
1.01
0.08
0.41
0.06
0.06
0.66
0.87
0.16
2.31
0.39
4.74

0.64
1.04
0.76
0.25
1.93
19.56
0.18
0.28
0.51
0.10
3.39
0.08
0.04
1.33
1.78
0.06
0.57
0.48
5.68
0.25
19.58

13.55
8.85
169.11
23.59
3.57
12.39
0.51
2.75
0.70
0.32
2.30
3.24
0.29
18.37
2.80
22.77

0.10
0.22
0.22
0.12
0.49
2.57
0.11
0.07
0.15
0.02
0.34
0.07
0.02
0.34
0.34
0.03
0.11
0.03
1.24
0.09
2.89

2.56
2.95
26.05
3.99
1.95
171
0.11
0.57
0.09
0.11
0.52
0.70
0.14
4.04
0.42
3.03

0.58
1.29
0.53
0.22
2.50
61.25
0.38
0.33
0.56
0.19
4.10
0.24
0.02
1.75
2.58
0.08
0.52
0.39
9.06
0.27
20.62

15.55
89.07
194.09
28.63
7.73
15.93
2.88
2.11
3.45
2.65
3.36
441
0.77
11.08
3.23
32.60

0.06
0.38
0.16
0.08
0.77
22.38
0.24
0.07
0.17
0.05
0.57
0.15
0.01
0.32
0.44
0.04
0.10
0.03
2.09
0.07
3.41

3.30
30.11
37.36

6.10

2.93

3.83

0.93

0.42

1.19

0.84

0.76

1.04

0.25

2.61

0.52

5.27

o
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Table 8 continued.

ST 11 10.46 5.05 - 51.07 12.60 - 4179 2021 - 12313 24.26 - 51.98 21.48 - 90.10 30.75
ST 12 3.16 137 a 16.93 539 b 8.91 3.85 ab 8.62 254 - 550 277 - 14.83 5.98
ST 13 2.49 0.82 a 9.56 188 b 7.88 267 ab 16.59 3.27 - 10.50 3.48 - 12.40 3.81
ST 14 1.73 0.96 - 1.56 0.96 - 0.50 0.26 - 3.18 159 - 1.58 1.15 - 2.44 2.37
ST 15 0.90 0.24 - 0.55 0.31 - 0.22 0.09 - 0.59 0.18 a 006 0.05 b 0.25 0.16
ST 16 1.06 0.36 - 2.75 0.69 - 1.59 0.87 - 3.00 1.03 - 156 042 - 2.49 0.97
ST 17 0.90 0.34 a 2.65 055 b 1.09 0.30 ab 1.84 0.66 - 1.08 048 - 3.12 1.28
ST 18 0.13 0.07 - 3.95 2.89 - 0.16 0.08 - 0.94 0.58 - 023 017 - 0.49 0.39
ST 19 0.68 0.29 - 6.76 485 - 0.23 0.16 - 0.63 0.35 - 0.00 0.00 - 0.27 0.18
ST 20 0.77 0.28 - 57.32 43.01 - 1.48 029 - 6.94 232 - 2.27 0.81 - 3.36 1.00
ST 21 0.01 0.01 a 1.63 111 b 0.05 005 a 0.45 0.15 - 0.70 0.18 - 0.15 0.05
Benzenoid

benzenoid 1 24.73 3.71 - 25.01 2.73 - 27.71 517 - 39.16 6.60 a 77.17 891 b 68.09 6.91
GLVs

GLV1 0.38 0.11 - 0.28 0.08 - 0.43 0.08 - 0.84 0.21 - 0.76 012 - 0.66 0.18
3-hexenal® 28.93 8.02 - 19.64 470 - 26.61 491 - 40.81 8.15 - 34.46 470 - 26.34 6.48
(E)-2-hexenal* 2.91 0.72 - 2.28 0.83 - 4.47 1.04 - 10.01 3.21 - 10.30 1.92 - 9.83 3.03
(2)-3-hexenol* 2.69 0.52 - 1.43 0.44 - 1.57 042 - 2.05 0.48 - 4.35 0.77 - 3.28 0.95
Total 3554.4 64552 - 3860.4 669.65 - 3952.3 765.02 - 5779.2 73861 - 55121 660.2 - 6541.7 833.67

*1dentity verified by comparing retention time and mass spectrum with authentic standard
21dentified using NIST 08 Mass Spectral Search Program
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Ordination of VOCs and within-needle compounds

We used NMDS ordination to visualize elevational effects on VOCs composition
(Figure 15). NMDS ordination of the VOC data had high linear fit (R? = 0.99) and a low
stress value (0.057). A stress of ca. 0.05 provides an excellent representation in reduced
dimensions, while a stress of ca. 0.1 provides a good representation (Clarke 1993). The
distances between points in Figure 15 are proportional to the dissimilarity between the
blends of VOCs for each tree. While there is high variability among elevations, the first
axis of the ordination plot (NMDS1) was highly correlated with temperature [positive]
and humidity [negative], whereas the vertical axis (NMDS2) was highly correlated with
heat load index [positive]. Note that a-pinene, S-pinene, and camphene, the three most
abundant VOCs, and limonene and 3-carene (compounds known to be important for tree
defense (Gray et al. 2015, Raffa and Smalley 1995) are all clustered along the
temperature gradient vector (Figure 15). Mean temperatures for Spring Mountains at low,
mid, and high were 16.6, 13.1, and 11.9 °C respectively.

The NMDS ordination of the within-needle compounds (Figure 16) also had a
high linear fit (R?> = 0.90) and a medium stress value (0.162), indicating a good
representation of the data (Clarke 1993). Sesquiterpenoids clustered in the lower values
of both NMDS1 and NMDS2 and along the heat load index vector (Figure 16). The
NMDS ordination plot shows a pattern with within-needle chemistry of trees from the
highest elevation class distributed along the diagonal of the two NMDS axes (gray
triangles in Figure 16), with the mid elevations points clustered centrally, and the lowest

elevation trees exhibit more dispersion/variability (Figure 16). NMDS2 was positively
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correlated with heat load index and elevation was not significant in the within-needle
ordination.

The compound ratio at all sites of a-pinene/limonene declined significantly as
temperature increased (P < 0.001, R? = 0.414) (Figure 17). And the compound ratio of a-
pinene/3-carene declined significantly with temperature increases (P < 0.001, R? = 0.135)
(Figure 17). The compound ratio of a-pinene/s-myrcene declined significantly as

temperature increased (P < 0.001, R? = 0.163) (Figure 17)

Random Forest Classification of Elevation using VOCs

Random Forest classification correctly assigned high, mid and low elevation sites
in 82.7% of samples (Table 9). When holding back 10% of the sample to validate model
classification, the accuracy averaged 83.3% (10 trials), slightly better than the initial out-
of-box (OOB) accuracy. Multidimensional scaling (MDS) of the Random Forest model
using the 42 VOCs showed strong clustering by elevations class (Figure S1). The most
important compounds for differentiating elevation classes were (E)-f-ocimene, a-
farnesene, B2, MT 8, geranyl acetate, tricyclene, ST 7, linalool, bornyl acetate, y-
terpinene, and caryophyllene (Table 10) which was partly supported by the Kruskal-

Wallis-tests (Table 7).
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Figure 15. Non-linear Multidimensional Scaling (NMDS) ordination plot of the first and
second dimensions for the volatile organic compounds (VOCs) emitted (ng per hour per
gram; n = 132) by Great Basin bristlecone pine. Green vectors are environmental
gradients that are significantly correlated (a. = 0.05) to the VOC ordination. The elevation

(m) vector is plotted in light blue and is not significant. Points are tree samples at each

time period; colors and shape indicate elevation class. Centroids compounds are overlain

in red.
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Figure 16. Non-linear Multidimensional Scaling (NMDS) plot of the first and second
dimensions for within-needle terpenoid concentrations (ng per g; n = 60) of Great Basin
bristlecone pines growing at low, middle and high elevations. Green vectors are
environmental gradients that are significantly correlated (a = 0.05) to the terpenoid
ordination. The elevation vector (which is not significant) is plotted in light blue. Points
are tree samples from each date; colors and shape indicate elevation class.
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myrcene versus temperature (°C) along Great Basin bristlecone pine transects. Regression
coefficients for both ratios are significant (p < 0.001).
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Figure 18. NMDS ordination plots overlaid with a smoothed contours of the
environmental variables: A) humidity, B) temperature, and C) elevation.
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Random Forest Classification of Elevation using VOCs

Random Forest classification correctly assigned high, mid and low elevation sites
in 82.7% of samples (Table 9). When holding back 10% of the sample to validate model
classification, the accuracy averaged 83.3% (10 trials), slightly better than the initial out-
of-box (OOB) accuracy. Multidimensional scaling (MDS) of the Random Forest model
using the 42 VOCs showed strong clustering by elevations class (Figure S1). The most
important compounds for differentiating elevation classes were (E)-f-ocimene, a-
farnesene, B2, MT 8, geranyl acetate, tricyclene, ST 7, linalool, bornyl acetate, y-
terpinene, and caryophyllene (Table 10) which was partly supported by the Kruskal-
Wallis-tests (Table 7).

Random Forest classification OOB accuracy for within-needle terpene
concentrations was not nearly as good (68% correctly classified), with 30% of the high
elevation sites misclassified, 25% of the middle, and 40% of the low sites misclassified.
Linalyl acetate, ST21, B1, MT21, sabinene, cis-verbenol, and a-terpineol were the most

important variables in classifying elevation using within-needle chemistry.

Discussion

Results show that tree foliage chemical compound measurements change with
elevation. More research is needed to understand effects of abiotic stress, and tree
susceptibility to insect attack defense and flammability. Yet the factors that control VOC
emissions are complex and have long been a research challenge (Pefiuelas and Llusia

2003). VOCs also have multiple functions for biotic and abiotic stresses, and emission



Table 9. Random Forest model confusion matrix (n=60 for each class)

Predicted class
Observed class High Middle Low Class error
High 48 4 8 0.200
Middle 7 47 5 0.203
Low 4 3 53 0.117

Table 10. Importance ranking of volatile compounds in classifying GBBP based on
elevation (high, mid, low) based on mean decreasing accuracy (MDA) using Random
Forest.

Importance Rank Compound Mean Decrease Accuracy
1 (E)-B-ocimene 19.15
2 a-farnesene 17.33
3 MT 8 17.28
4 B2 16.22
5 ST7 16.19
6 linalool 15.33
7 tricyclene 15.20
8 caryophyllene oxide 15.17
9 geranyl acetate 14.44
10 bornyl acetate 13.61
11 y-terpinene 13.47
12 S-phellandrene 11.79
13 camphene 11.77
14 a-terpinene 11.47
15 MT 7 11.30
16 o-phellandrene 11.15
17 Bl 10.95
18 camphor 10.76
19 p-cymene 10.42
20 [S-pinene 10.38
21 3-carene 9.98

MT = unidentified monoterpene, B = unidentified benzenoid, ST = unidentified sesquiterpene.
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rates vary greatly in response to basic abiotic factors such as light or temperature. In this
section, we discuss our major findings and the importance of those findings for science
and management of bristlecone pines across environmental gradients.

How does GBBP chemistry change with elevation, and is this correlated with air
temperature, RH, and heat load index, and thus to climate change?

Previous studies have shown that abiotic stress increases VOC emissions (Tingey
et al. 1980, Loreto et al. 1996, Sharkey and Yeh 2001, Duhl 2008, Holopainen and
Gershenzon 2010), results from our study correlating VOCs to elevation are more
nuanced. Our findings showed that air temperature, heat load index, and relative humidity
correlated well with emitted VOCs in the NMDS analysis, however, variability of
individual VOCs was high and emissions did not always correspond to elevation (Table
7). For example, S-pinene emissions were highest at the mid elevation site for Spring
Mtn, but lowest at the mid elevation site for Cave Mtn. About a quarter of the time, trees
growing at the lowest elevations emitted the most total VOCs or trees at the highest
elevations emitted the least VOCs suggesting that temperature stress increases VOC
emissions (Table 7). The amounts and blends of VOCs emitted by GBBP are correlated
with some environmental gradients, while others were not measured (e.g. COz,
precipitation, UV, ozone), suggesting that VOC relationships to environmental gradients
are complex. The within-needle terpenoid NMDS is correlated with heat load index but
not with elevation, suggesting that microsite (e.g. aspect, openness, etc.) variables play an
important role in a trees chemical response and factors other than elevation are affecting

within needle chemistry.
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To further examine elevational effects on VOC composition, we overlaid NMDS
with contours of environmental variables (Figure 18). The NMDS axis dissimilarities are
more pronounced along the NMDS1 axis and the environmental variables may have
driven the VOC amounts. The dissimilarity of compounds along the NMDSL1 is
perpendicular to the contours of the environmental variables humidity (Figure 16A) and
temperature (Figure 18B). If this were not the case, the ordination pattern would either be
in a compact cloud, or parallel to the contours. While elevation was not significant and
did not drive the ordination like humidity and temperature, there is a clear similarity of
points along the elevation contours (Figure 18C). The elevation gradients used in this
study were relatively small, only 225 and 520 m difference between low and high sites at
Cave Mtn and Spring Mtn, respectively. The typical range of GBBP throughout Nevada
is 900 m (2400m-3300m) (Lanner 1983), yet at Cave Mtn, we detected a distinct signal in
GBBP over only 225 m. This suggests VOCs are highly sensitive to relatively small

elevation changes and to the concomitant environmental changes.

Do VOCs emitted from GBBP increase at lower elevations as a proxy for climate
warming?

While there is uncertainty in how climate change will affect mountain regions of
the Great Basin, extensive research has modeled probable effects. GBBP have often been
used to analyze climate change effects on conifers and reconstruct climate histories. For
example, recent unprecedented tree-ring growth in bristlecone pine at the highest
elevations and possible causes were presented by Salzer et al. (2009). GBBP

chronologies from near treeline show increase in precipitation sensitive tree rings (similar
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to lower elevation GBBP chronologies), yet tree rings do not always correlate well with
temperature (Salzer et al. 2014). Dynamical downscaling of Global Climate Models
(GCMs) simulate future climate change effects in the Great Basin, and suggest a 2-4° C
increase in March-April mean temperatures, 60-100% decrease in mean April snow water
equivalent (SWE), yet possibly a 10-20% increase in October-April precipitation by the
end of the 21 century (Scalzitti et al. 2016). Assuming that GBBP treeline communities
are temperature limited, it is reasonable to expect higher stands to more closely
approximate the climate conditions that are currently at the mid and low elevations
(predicted 2-4° C warmer on average). The GBBP living at lower treeline might
experience higher mortality rates due to drought stress, competition pressure, and
increased likelihood of fire (Gray and Jenkins 2017).

We developed and present an additional method to analyze future climate change
effects on GBBP, rather than relying only on tree rings/dendrochronology to understand
historical climate changes. NMDS ordination showed that the environmental gradients of
temperature, RH, and heat load index all are statistically correlated with the emissions of
the 42 identified VOCs (Figure 15 and Figure 16). Our Random Forest classification
model was highly accurate at predicting elevation classes from VOCs, demonstrating a
distinct chemical signature of trees growing at different elevations. One abiotic factor that
changed predictably with elevation was temperature. Temperatures generally were
predictable by time of day and elevation. Temperatures were coolest at 10:00, and
warmed throughout the day during our sampling. This was not the case in only five of the
45 sample times, when temperatures cooled throughout the day. Temperature patterns

along elevation gradients were even more predictable, with only three cases (of 45) in
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which a higher elevation site was warmer than a lower elevation site at the same
corresponding sample period (and never by more than 1 °C.) The lowest sites were
always considerably warmer, with an average 3.7 °C temperature differences between
low to mid elevation sites, and an average 1.4 °C difference between mid to high
elevation sites at the same time of day. The consistently warmer lower elevation
temperatures may lead to more thermal strees and could explain the exceptionally high
Random Forest prediction accuracy (only 12% misclassified) at the low elevation sites
(Table 9). These exceptional accuracies are promising for accepting VOC emissions at
different elevations as a proxy for climate warming.

Because of the high requirement of photosynthetic carbon for terpene synthesis
(Loreto et al. 1996), terpenes can be relatively expensive for a tree to synthesize and store
(Lewinsohn et al. 1991, Niinemets 2004, Pefiuelas and Staudt 2010), and increased
terpene production at lower elevations, which approximates climate change induced heat
stress, could reduce tree productivity. Examples of abiotic stresses include extreme
temperatures, drought, and wildfires, all of which are factors to GBBP. Abiotic stress is
an integral part of climate change which has a wide range of uncertain impacts on plants
and trees. A stress event (e.g. extremely hot days) could deplete monoterpenes stored
within needles and exhaust reserves (Kravitz et al. 2016). Kravitz et al. (2016) suggest
that temperature stress before VOC sampling may affect which terpenes are available,
which in turn may provide a potential “early warning” of stress to the ecosystem. There
was a period of high temperatures preceding the July sample period and lower
temperatures preceding September (Figure 19). These preceding weather events could

affect the VOC emissions and available within needle terpenes, and might explain the
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temperatures at our two sites (approximately the northern and southern extents of GBBP

distribution) are highly correlated with each other (Figure 19). The southern Spring Mtn

site was about 5 °C warmer than the Cave Mtn site. There is a need to assess tree

chemical responses to these environmental changes, and the connection between

organism-level stress responses and broader atmosphere-scale studies. These responses

are an instrumental gap between atmospheric chemistry and ecosystem studies (Kravitz et

al. 2016).
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Can we apply understanding of GBBP response to elevational gradients to interpret
potential susceptibility to threats like fire or mountain pine beetles?

Ratios of a-pinene to other VOCs are important to individual tree defense (Huber
et al. 2000, Pureswaran et al. 2004), and previous studies have shown that limonene
affected mountain pine beetle attraction (Gray et al. 2015). Monoterpenes are essential
co-attractants for mountain pine beetle aggregation pheromones. Yet pine monoterpenes
are also toxic physiologically to bark beetles at high vapor concentrations and are an
important component of pine defense to insects and fungus (Seybold et al. 2006). In this
paper, we demonstrate a significant decrease in ratios of a-pinene/limonene, a-pinene/3-
carene, and a-pinene/s-myrcene with increasing temperature (Figure 17). We found 13
compounds (and 3 unidentified monoterpenes) that significantly increase with
temperature (alpha = 0.05, 11 compounds alpha < 0.001) (Table S1). Of these, several
have been shown to interact with mountain pine beetle. f-pinene, S-myrcene, 3-carene, p-
cymene, S-phellandrene, limonene, (E)-f-ocimene, and a-terpinene all induce an antenna
response in mountain pine beetle (Huber et al. 2000, Pureswaran et al. 2004). f-myrcene,
3-carene, and S-phellandrene increase flight response to aggregation pheromones (Miller
and Borden 2000). And many studies have shown S-myrcene to be an attractant to
mountain pine beetle (Pitman 1971, Billings et al. 1976, Borden et al. 1983, Conn et al.
1983, Miller and Lindgren 2000, Pureswaran and Borden 2005). The decrease in ratios of
a-pinene/limonene and a-pinene/3-carene could make GBBP more closely resemble
limber pine as temperatures increase, and mountain pine beetle (which is not strongly
attracted to GBBP) could start investigating GBBP as a potential host. The compound

ratios from limber pine in Gray et al. (2015) are a-pinene/3-carene = 292 + 82, and a-



100

pinene/limonene = 21 + 5, these values are found only at the warmest temperatures for
GBBP (Figure 17).

Changes in tree chemistry can have important implications for wildfire and
foliage flammability. Page et al. (2012) found the individual terpene compounds within
foliage that affect flammability parameters (time to ignition, temperature at ignition, and
maximum rate of mass loss) are a-pinene, p-pinene, f-myrcene , (E)-f-ocimene, p-
cymene, camphene, and tricyclene (along with unknown terpenes). In our regression
analysis, the within needle volatile terpene emission rates of a-pinene, S-pinene and S-
myrcene were significant with elevation or heat load index (Table S2), suggesting that at
lower and warmer sites these compounds contribute to increased potential flammability.
The increase of these three flammable terpenes at the lowest elevations and sites with the
highest heat load index suggests that along the margins of the lower tree lines, time to
ignition, temperature at ignition, and maximum rate of mass loss could create forests that

are more prone to mortality in the event of fire.

Conclusions

Plants have control over the compounds and amount of VOCs emitted (Widhalm
et al. 2015). The production of monoterpenes might offer relief from temperature stress to
plants (Pefiuelas and Llusia 2003). Thermotolerance has been observed in monoterpene
emissions from a Mediterranean oak species (Quercus ilex) (Loreto et al. 1998).
Monoterpenes and isoprenes protect plant tissues and membranes from oxidative damage
produced under high temperatures (Zeidler et al. 1997). It is likely that oxidative and
thermal stresses are relieved in the presence of volatile terpenes (Loreto and Schnitzler

2010). When we examined two of the most important variables for prediction in the
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Random Forest model ((E)-f-ocimene and a-farnesene) (Table 10), the emissions of
these compounds at the highest elevation sites was 30% to 50% that of the low sites, this
suggest that low elevation trees might be experiencing oxidative stress. Finally, methyl
salicylate is thought to provide defense from oxidative and thermal stresses (Loreto and
Schnitzler 2010). Again, we observed much lower emissions of methyl salicylate at the
highest elevations from both sites (Table 7), suggesting lower elevations trees are
experiencing stress. This could offer GBBP protection from higher heat stress at the
lower sites. Because individual trees have control over which compounds and how much
VVOCs are emitted, oxidative and thermal stress could explain why VOCs were more
predictive than within-needle terpenes due to VOCs being more sensitive and changing
more rapidly in response to the environment than within-needle chemistry.

Terpenes might also play a role in tree longevity in addition to adaptation to
abiotic stress and benefits as defenses. For example, terpenes and resins might provide
resistance to wood decay (LaMarche 1969, Mourant et al. 2007, Brutovska et al. 2013)
leader to great longevity. Also, energy partitioning between defensive investments and
growth in woody plants contribute to longevity, suggesting that increasing a tree's life-
span should require increased energy invested in protective measures such as thick bark
and defensive chemicals (Loehle 1988). Increased investment in such defenses, however,
would slow down growth rate, thereby raising the mortality rate for juveniles in
competition for height growth. This is the case with GBBP, which primarily grow on dry,
nutrient-poor soils, and conditions favorable to seed germination and growth are

infrequent (Lanner 1983).
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In conclusion, we found that GBBP VVOCs differed with elevation, and were
correlated with air temperature, RH, and heat load index, while within-needle did not
correlate as well. These changes along environmental gradients may be a response to
biotic or abiotic stress. This research improves understanding of VOC emissions as a
physiological tree response to environmental gradients and helps inform land managers
about forests threatened by native and non-native pests and pathogens, increased threat of
fire, and changing distribution patterns from climate change. We also improve methods to

reliably assess and predict tree resiliency with climate change.
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Table S1. Parameter estimates and goodness of fit statistics for linear regression models
of compounds vs temperature, and linear regression models of ratios of a-
pinene/compound.

Compound ~ Temperature

(a-pinene/compound) ~ Temperature

Compound Coefficient Intercept P value R? Coefficient  Intercept P value R?

limonene 0.23 0.72 0.000 *** 0.09 -5.65 166.57 0.000 *** 042
MT 4 0.07 -0.41 0.000 *** 0.12 -111.62 2649.15 0.000 *** 0.31
terpinolene 0.09 0.62 0.018 = 0.03 -11.89 381.81 0.000 *** 0.3
MT 3 0.02 -0.06 0.000 *** 0.07 -256.91 6281.57 0.000 ***  0.29
y-terpinene 0.05 -0.38 0.000 *** 0.09 -198.67 4897.61 0.000 ***  0.28
MT5 0.02 -0.08 0.000 *** 0.09 -360.01 7985.99 0.000 ***  0.27
bornyl acetate 0.14 -1.1 0.001 ** 0.06 -58.83 1546.22 0.000 *** 0.24
a-terpinene 0.02 -0.12 0.000 *** 0.07 -607.82 14568.31 0.000 ***  0.23
MT9 0 -0.03 0.000 *** 0.13 -3959.83 88980.05 0.000 ***  0.20
ST2 0.01 -0.06 0.000 *** 0.19 0.01 -0.06 0.000 ***  0.19
S-myrcene 0.29 1.27 0.001 ** 0.06 -3.51 115.34 0.000 *** 0.17
3-carene 0.03 -0.15 0.000 *** 0.16 -111.89 2960.85 0.000 *** 014
B1 0.14 -1.24 0.000 *** 0.12 0.14 -1.24 0.000 ***  0.12
MT 10 0.02 -0.1 0.048 = 0.02 -832.38 19956.78 0.000 *** 0.1
p-cymene 0.06 0.56 0.040 * 0.02 -24.34 695.91 0.000 *** 0.1
methyl salicylate 0.03 -0.1 0.000 *** 0.09 0.03 -0.1 0.000 ***  0.09
p-pinene 2.29 5.92 0.018 = 0.03 -0.37 14.4 0.000 ***  0.09
ST4 0.01 -0.02 0.006 ** 0.04 -1742.24 42189.33 0.000 ***  0.08
ST6 0 -0.02 0.000 *** 0.07 0 -0.02 0.000 ***  0.07
B-phellandrene 1.72 12.34 0.003 ** 0.05 -0.75 22.58 0.001 ** 0.06
MT 7 0.01 -0.07 0.001 ** 0.06 -4175.78 83363.2 0.001 ** 0.06
ST5 0 0 0.002 ** 0.05 0 0 0.002 ** 0.05
(E)-B-ocimene 0.01 0.08 0.037 = 0.02 -142.25 4303.09 0.004 ** 0.05
verbenone 0.01 0.01 0.006 ** 0.04 0.01 0.01 0.006 ** 0.04
ST7 0.02 -0.18 0.022 = 0.03 0.02 -0.18 0.022 = 0.03
MT 6 0.01 -0.03 0.022 * 0.03 0.01 -0.03 0.022 * 0.03

Significance codes: p <0.001 = *** p <0.01 - **, 0.05 - *.

MT = unidentified monoterpene, B = unidentified benzenoid, ST = unidentified

sesquiterpene.



109

Table S2. Regression of flammable within needle compounds -- Parameter estimates
and goodness of fit statistics for linear regression models of within needle terpenoid
concentrations (pug/g) vs temperature and within needle compounds vs Heat load index

Elevation ~ compound

Heat load index ~ compound

Compound Coefficien  Intercep P R? Coefficien Intercept P value R?
t t value t
a-pinene 1.67 -2992 0.006 ** 0.12 2214 1455 0.0003 *** 0.21
p-pinene 0.47 -71.5 004 = 0.07 NS NS NS
[-myrcene NS NS NS 214 -4.6 0.003 ** 0.14
(E)-p-ocimene NS NS NS NS NS NS
p-cymene NS NS NS NS NS NS
camphene NS NS NS NS NS NS
tricyclene NS NS NS NS NS NS

Significance codes: p <0.001 =*** p<0.01-** 0.05-*



110

*
. .o
% - A
- °
*
. 0.
°
.
%
g B . L] [
°
.
.
s, et ot ¢ ’
. 0, ° * * *
o...o.o..o.. . e hd .
= . ... % - * . e . . .
e * . ..$.. L ] ¢ hd
L c * * . L » .
o v ¢ . . .,
¢ ’ .Q e o . o’ o« o .
.. * ..
e ¢ . P * ¢
o™ . ¢ . * o * 0
CI:l . ™ L ]
* High ° 9
* Low L
¢ Middle re . . ¢ o0
°
.
I I I I
04 -0.2 0.0 0.2 04

Figure S5. The metric multi-dimensional scaling representation for the proximity matrix
of the Random Forest model classifying environment of GBBP volatiles at high, mid and
low elevations. The proximity matrix measures among the input (based on the frequency
that pairs of data points are in the same terminal nodes), how far apart (relatively) clusters
are from one another.
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Figure S6. Non-linear Multidimensional Scaling (NMDS) plot of the first and second
dimensions for within-needle terpene concentrations (ng per g; n = 60) of Great Basin
bristlecone pines. Points are tree samples from each date; colors and shape indicate

month. Black ellipsoids are centered on month.
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CHAPTER 5
MOUNTAIN PINE BEETLES USE VOLATILE CUES TO LOCATE HOST LIMBER

PINE AND AVOID NON-HOST GREAT BASIN BRISTLECONE PINE?

Abstract

The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an
important disturbance agent of western North American forests and recent outbreaks have
affected tens of millions of hectares of trees. Most western North American pines (Pinus
spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful
of pine species are not suitable hosts and are rarely attacked. How pioneering females
locate host trees is not well understood, with prevailing theory involving random landings
and/or visual cues. Here we show that female mountain pine beetles orient toward
volatile organic compounds (VOCs) from host limber pine (Pinus flexilis James) and
away from VOCs of non-host Great Basin bristlecone pine (Pinus longaeva Bailey) in a
Y-tube olfactometer. When presented with VOCs of both trees, females overwhelmingly
choose limber pine over Great Basin bristlecone pine. Analysis of VOCs collected from
co-occurring limber and Great Basin bristlecone pine trees revealed only a few
quantitative differences. Noticeable differences included the monoterpenes 3-carene and
D-limonene which were produced in greater amounts by host limber pine. We found no
evidence that 3-carene is important for beetles when selecting trees, it was not attractive
alone and its addition to Great Basin bristlecone pine VOCs did not alter female

Suggested Citation: Gray CA, Runyon JB, Jenkins MJ, Giunta AD (2015) Mountain Pine Beetles
Use Volatile Cues to Locate Host Limber Pine and Avoid Non-Host Great Basin Bristlecone
Pine. PLoS ONE 10(9): e0135752. d0i:10.1371/journal.pone.0135752
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selection. However, addition of D-limonene to Great Basin bristlecone pine VOCs
disrupted the ability of beetles to distinguish between tree species. When presented
alone, D-limonene did not affect behavior, suggesting that the response is mediated by
multiple compounds. A better understanding of host selection by mountain pine beetles
could improve strategies for managing this important forest insect. Moreover,
elucidating how Great Basin bristlecone pine escapes attack by mountain pine beetles
could provide insight into mechanisms underlying the incredible longevity of this tree

species.

Introduction

The mountain pine beetle (MPB; Coleoptera: Curculionidae; Dendroctonus
ponderosae Hopkins) is one of the most ecologically and socioeconomically important
forest insects in North America. Outbreaks of this native insect during the early 21st
century have been extensive, with over 3.5 million hectares of tree mortality in 2009
alone (Man, 2010). Such outbreaks can have important consequences for wildlife (Saab
et al., 2014), forest carbon dynamics (Hansen, 2014), nutrient cycling (Griffin et al.,
2011), wildfires (Jenkins et al., 2014), and have contributed to the rapid decline of some
high elevation tree species (Gibson et al., 2008; Logan et al., 2010).

MPBs kill trees by attacking en masse using a complex system of volatile
semiochemicals involving multiple beetle-produced aggregation and anti-aggregation
pheromones and host-produced kairomones (Progar et al., 2014). Once in contact with a
suitable host, pioneering females initiate mass attacks by oxidizing the host-produced

monoterpene a-pinene to produce the aggregation pheromone verbenol (Progar et al.,
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2014). Males arrive and produce exo-brevicomin which attracts more beetles. Host-
produced monoterpenes including a-pinene (Pitman et al., 1968), myrcene, and
terpinolene (Borden et al., 2008) synergize the aggregation pheromones. In the latter
stages of a mass attack, increased production of the anti-aggregation pheromone
verbenone (via oxidation of verbenol) terminates host colonization (Hunt et al., 1989).
Despite having a good understanding of the sophisticated chemical ecology underlying
mass attacks, less is known about the cues used by pioneering females to locate trees
(Safranyik and Carroll, 2007). The prevailing theory is that during the pre-aggregation
phase females locate host trees using visual cues or through random landings (Progar et
al., 2014; Safranyik and Carroll, 2007). Studies have reported MPB attraction to dark
silhouettes and large, tree-shaped cylinders (Billings et al., 1976; Shepherd, 1966)
suggesting a role for visual cues. Other studies have indicated that pioneering females
intercept hosts at random which explains MPB’s preference for large diameter trees due
to their larger surface area (Burnell, 1977; Hynum and Berryman, 1980). Conversely,
there is evidence for the use of long distance sensing using volatile organic compounds
(VOCs) by MPBs (Borden et al., 1986; Raffa et al., 1993; Wood, 1982). Plant VOCs
emitted by trees are known to be used in host location by other bark beetle species
(Rudinsky, 1966), suggesting they might be similarly used in host location by MPBs.
In this study, we investigated whether pioneering female MPBs use VOCs to
choose between the host limber pine (Pinus flexilis James) and the non-host Great Basin
bristlecone pine (Pinus longaeva Bailey). Limber pine is a favored and highly-
productive host of MPBs (Langor, 1989) and limber pine forests have experienced

dramatic MPB mortality since the 1990s (Man, 2010). In contrast, Great Basin
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bristlecone pine has not been shown to be an acceptable host for MPB (Gibson et al.,
2008) and concrete records of successful MPB attack are lacking. These two species
often occur together as the only tree species growing at or near alpine treeline in the
Great Basin and Intermountain West of the USA (the “P. flexilis/P. longaeva Series”
(Youngblood and Mauk, 1985)). These high elevation pine forests provide important
ecosystem services (Schoettle, 2004), including stabilizing soil, improving snow
retention, pioneering regeneration of alpine sites after fire, habitat for wildlife, and
facilitating growth of other tree species (Baumeister and Callaway, 2006). This study
was spurred by our observations at several sites in Nevada where these species co-occur
that many limber pines were killed by MPB whereas neighboring bristlecone pines were

unattacked (Fig. 20).
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Fig. 20. Photographs of limber pine (Pinus flexilis) and Great Basin bristlecone pine
(Pinus longaeva) forests (a) on Cave Mountain in east-central Nevada, and (b) in the
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Spring Mountains in southern Nevada. These tree species co-occur in nearly equal
abundance on and near the top of Cave Mountain (), the dead trees (gray trees) are
mountain pine beetle-killed limber pine. In the Spring Mountains (b), these tree species
co-occur below dashed line, note many dead limber pine trees (gray trees), but a nearly
pure stand of un-attacked bristlecone pine occurs above the dashed line.

The objectives of this work were to 1) collect and analyze VOCs of co-occurring
limber and bristlecone pines as potential foraging cues for the MPB, and 2) assess the
behavioral responses of female MPBs to limber and bristlecone pine VOCs in a Y-tube
olfactometer. We also explored the role of candidate individual volatile compounds in
the behavioral response of MPBs. We hypothesized that VOCs differ between tree

species and serve as a readily available cue that foraging MPBs can use in host finding.

Materials and Methods

Source and handling of insects and plants

Adult mountain pine beetles were obtained from two locations infested with MPB
(separated by about 90 km) by felling two mature lodgepole pines (Pinus contorta
Dougl.) infested with MPB larvae from the Bear River Range of Northern Utah
(41.9705°, -111.5406°, elevation 2200 m) and from the Caribou-Targhee National Forest
in Southern Idaho (42.7772°, -111.2735°, elevation 2040 m). Sections from the bole of
the trees (~60 cm long) were transported to the US Forest Service’s Rocky Mountain
Research Station laboratory in Logan, UT and ends sealed with paraffin wax to reduce
desiccation. The sections were placed in Percival incubator cabinets (12 hours of light
per 24-hour cycle) at room temperature (ca. 21° C) to facilitate larval development to the
adult stage (approximately 70 to 80 days). Emerging adults were collected daily and

placed in petri dishes with moistened filter paper and stored in a refrigerator at
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approximately 3° C until use. Gender was determined using characters on the seventh
abdominal tergite (Lyon, 1958). Virgin females aged 5-15 days were randomly selected
for Y-tube trials.

Foliage of limber pine and Great Basin bristlecone pine used in bioassays was
collected from Notch Peak, UT (39.1486°, -113.4060°, elevation 2788 m) and Wheeler
Peak, NV (38.9991°, -114.2990°, elevation 3181 m) by cutting branches approximately
50 cm in length from a randomly selected bristlecone pine and limber pine from each site,
and refrigerating them in sealed plastic bags at approximately 3° C until use. VOCs from
these samples were collected and analyzed at time of use as described below. The USDA
Forest Service, Humboldt-Toiyabe and Caribou-Targhee National Forests, and the Utah

Division of Forestry, Fire, and State Lands granted permission for use of all field sites.

Collection and analysis of VOCs

VOCs were collected from co-occurring limber pine and bristlecone pine trees of
similar size in the Spring Mountains near Las Vegas, Nevada (June 2013; 36.2935°, -
115.6861°, elevation 2910 m) and on Cave Mountain near Ely, Nevada (August 2013;
39.1623°, -114.6109, elevation 3220 m). Trees of similar size were selected for sampling
and VOCs were collected from lower branches (< 3 m above ground) which correspond
to the heights at which dispersing MPBs fly [9]. The mean height of limber pine trees
sampled was 12.1 £ 0.7 m and mean diameter at breast height (dbh) was 102 + 11.6 cm.
The mean height of bristlecone pine trees sampled was 12.9 £ 0.61 m and mean dbh was
85+ 7.9 cm). Field collection of VOC emissions followed procedures described in Page

et al. (Page et al., 2014, 2012). Approximately 70 cm of the apical portion of each branch
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on each tree was enclosed in a clear Teflon bag (50 cm wide x 75 cm deep; American
Durafilm Co., Holliston, MA) and air was pulled (0.5 L/min) through VOC traps that
contained 30 mg of the absorbent material HayeSep-Q (Restek, Bellefonte, Pennsylvania)
using an automated portable VOC collection system (Volatile Assay Systems,
Rensselaer, NY). VOCs were collected for 30 minutes after which the foliage from the
enclosed portion of the branch was weighed to obtain a fresh weight.

VVOCs were eluted from traps using 200 pl of dichloromethane and 1,000 ng of n-
nonyl-acetate added as an internal standard. Samples were analyzed using an Agilent
7890A gas chromatograph (GC) coupled with a 5975C mass spectrometer and separated
ona HP-1ms (30 m x 0.25 i.d, 0.25 pum film thickness) column; helium was used as the
carrier gas. The GC oven was maintained at 35°C for 3 minutes and then increased by
5°C per minute to 125°C, then 25°C per minute to 250°C. Quantifications were made
relative to internal standards using ChemStation software (Agilent Technologies,
Wilmington, DE), and identifications of compounds confirmed by comparing retention
times and mass spectra to commercial standards. Measurements of VOC emissions (ng
per hour per gram) were on a fresh weight basis.

Statistical analyses for VOCs were performed using the non-parametric Kruskal-
Wallis one-way analysis of variance (Kruskal and Wallis, 1952) using R statistical
software (R Devolopment Core Team, 2012) to identify compounds with significant (P <

0.05) differences, and to test whether samples originate from the same distribution.
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Y-tube olfactometer trials

We used a Y-tube olfactometer to investigate the response of adult female MPBs
to airborne cues, following the methodology of others (e.g., (Daisy et al., 2002), (Piesik
et al., 2008), (Liu et al., 2011)). Y-tube olfactometers have been widely used to examine
the role of volatile cues in host location by flying arthropods, including bark beetles (Liu
etal., 2011). The Y-tube system (Sigma Scientific LLC, Micanopy, FL, USA) consisted
of a 2-port Clean Air Delivery System (CADS-2P), inline odor source chambers (custom
made), and a glass Y-tube (YT-2425). The CADS-2P provided flow-controlled, purified
air via 0.64 cm outer diameter (OD) Teflon tubing to the odor source chambers (one
chamber upwind of each Y-tube arm) and then the Y-tube. The glass odor source
chambers were 19 cm long with 5.5 cm inner diameter (ID); the upstream end was sealed
with a removable 5.5 cm OD Teflon o-ring endcap with 0.64 cm OD tubing connector,
and the downstream end tapered to accept 0.64 cm OD Teflon tubing. The glass Y-tube
had a 2.4 cm ID with 24/25 inner ground-glass joints on all ends, a 16 cm lower arm, and
10 cm upper arms that branch at an inner angle of approximately 75°. A specimen
adapter (SA-2425), attached via ground-glass joint to the bottom of the Y-tube was used
to introduce beetles to the airstream.

Trials were conducted in a greenhouse at temperatures between 20-27° C.
Mountain pine beetles are positively phototactic (Shepherd, 1966), so to assure balanced
lighting we placed the Y-tube in an open-top box that was lined with black felt (55 tall x
55 wide x 90 cm long). A greenhouse light (400W metal halide, Sylvania Inc.,
Manchester, NH, USA) was centered 1 m above and just beyond the apex of the Y-tube.

To facilitate beetle walking, we placed a 16 cm long, 2 mm diameter metal wire in the
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bottom of the Y-tube, extending from the introduction point to the junction of the *Y”.
The odor sources, 20 g of plant material (10 — 15 cm branches with attached needles)
and/or rubber septa treated with VOCs, were placed in odor source chambers and an
individual insect introduced via specimen adapter at the bottom of the Y-tube. Airflow
was set at 0.5 L/min for all trials. Trials ended when the insect moved past the midpoint
of the bifurcation in the Y-tube and 5 cm into one of the arms of the “Y” or after 10
minutes if the insect did not respond (“no responses”). Individual beetles were only used
once. The odor source chambers were alternated every five trials. For each odor source,
trials were run until at least 25 choices were made (i.e. excluding no responses).

We used rubber septa treated with synthetic VOCs to test how individual
compounds affect beetle behavior following methods outlined by Runyon et al. (Runyon
et al., 2006). We chose to examine 3-carene and D-limonene because the relative
amounts of these compounds differed greatly between bristlecone and limber pine, and
they were commercially available in nearly pure form. Red rubber septa (6.6 mm O.D.,
Sigma Aldrich, St. Louis, MO, USA) were treated with 1 g of either 3-carene (Product
No: 21986, >98.5% sum of enantiomers, Sigma Aldrich) or D-limonene (Product No:
62118, >99% sum of enantiomers, Sigma Aldrich) in n-hexane (Macron Chemicals,
Center Valley, PA, USA); 500 pl of 200 ng/ul hexane solution added to each septum.
Control septa were treated with 500 pl of n-hexane only. Treated and control septa were
left in a fume hood at room temperature and release rates checked each day as described
above. Release rates of both compounds responded similarly: amounts released
mimicked that of limber pine foliage used in Y-tube trials on day 4 after treatment for D-

limonene (approximately 80 ng per hr) and day 5 after treatment for 3-carene
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(approximately 50 ng per hr) after treatment. We collected and analyzed a small number
of foliage samples with the commercial compound added to verify that the target
compound was present and in greater abundance.

Statistical analyses for Y-tube trials were performed using chi-square tests with
the Yate’s continuity correction for small sample sizes (Sokal and Rohlf, 1981): for each
trial we subtracted 0.5 from observed values greater than the expected and added 0.5 to

observed values less than the expected.

Results

Great Basin bristlecone pine and limber pine VOCs

The VOCs emitted by Great Basin bristlecone pine and limber pine at Cave
Mountain were similar. Both species emitted the same 28 VOCs (Fig. 21, Fig. 22 and
Table 11) and differed in amounts produced for only ten of these compounds (P < 0.05;
Table 1). Moreover, the total amount of VOCs released per gram of foliage did not differ
between species (Table 11). Monoterpenes dominated the VOC composition of both tree
species with a-pinene being the most abundant followed by -pinene, 3-phellandrene, D-
limonene, and B-myrcene (Fig. 21, Fig. 22 and Table 11). A notable difference was the
monoterpene 3-carene which was produced by limber (1.4 £ 0.72 ng per hour per gram)
but nearly absent from bristlecone VOCs (0.02 £ 0.003 ng per hour per gram). The ratios
of compounds also varied between species, for example the ratio of B-phellandrene to D-
limonene was approximately 1:1 in limber but 7:1 in bristlecone (Fig. 22, Table 11). The
amounts and identity of VOCs reported here for Cave Mountain are very similar for co-

occurring bristlecone and limber pine trees at a second site in the Spring Mountains near
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Fig. 21. Total volatiles emitted (ng per hour per gram, n = 15) by limber pine (Pinus
flexilis) and Great Basin bristlecone pine (Pinus longaeva) at Cave Mountain, Nevada.
These tree species co-occur in nearly equal abundance at this site and many limber pines
have been killed by mountain pine beetles whereas bristlecone pines have not been
attacked. Note different scale for a-pinene.
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flexilis) and Great Basin bristlecone pine (Pinus longaeva) at Cave Mountain, Nevada.
Compounds in the legend are listed from most abundant (top) to least abundant (bottom)
emitted by Great Basin Bristlecone pine.
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Table 11. Volatiles emitted (ng per hour per gram; n = 15) by co-occurring Great Basin
bristlecone pine (Pinus longaeva) and limber pine (Pinus flexilis) at Cave Mountain,
Nevada. Significant differences are highlighted in bold. MT = unidentified
monoterpene, B = unidentified benzenoid, ST = unidentified sesquiterpene.

Great Basin .
bristlecone Limber
Compound Mean SE Mean SE P-value
tricyclene 0.41 0.029 0.25 0.027 0.001
MT 1 0.42 0.181 0.32 0.062 0.290
a-pinene 61.25 6.473 37.95 6.533 0.011
camphene 1.09 0.029 1.08 0.028 0.349
MT 2 1.79 0.357 1.77 0.386 0.604
B-pinene 6.85 0.784 10.62  2.316 0.481
B-myrcene 1.26 0.221 6.12 1.357 <0.001
3-carene 0.02 0.003 1.40 0.721 <0.001
p-cymene 0.29 0.034 0.42 0.072 0.254
B-phellandrene 8.22 1.254 3.47 1.373 0.001
D-limonene 1.22 0.245 544 1.716 0.120
e-p-ocimene 0.04 0.009 0.05 0.028 0.188
y-terpinene 0.09 0.031 0.07 0.016 0.573
terpinolene 0.56 0.170 0.37 0.083 0.533
linalool 0.03 0.017 0.04 0.037 0.318
MT 3 0.03 0.007 0.06 0.019 0.382
MT 4 0.10 0.025 0.65 0.225 0.001
camphor 0.11 0.014 0.03 0.005 <0.001
MT 5 0.03 0.005 0.07 0.029 0.208
methyl salicylate 1.02 0.459 0.06 0.015 <0.001
Bl 0.46 0.137 0.06 0.016 <0.001
B2 0.28 0.067 0.23 0.047 0.633
MT 6 0.07 0.014 0.08 0.018 0.983
bornyl acetate 0.28 0.037 0.11 0.021 <0.001
ST1 0.26 0.060 0.29 0.080 0.647
e-p-farnesene 0.60 0.165 1.37 0.570 0.254
a-farnesene 0.29 0.091 0.35 0.111 0.480
caryophyllene 0.03 0.009 0.02 0.009 0.509

Total volatiles 87.11 7.891 72.76  12.400 0.110
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Las Vegas, Nevada (data not shown). We verified that VOCs from foliage used in Y-tube
trials were similar to that of intact trees: clipped foliage emitted the same major
compounds in approximately the same proportions, only in greater amounts per gram

(perhaps due to clipping the branches off trees) (Fig. S7).

Behavioral responses of female MPBs to VOCs

Adult female MPBs overwhelmingly chose the Y-tube arm with limber pine
VOCs over the arm with clean air (22 limber vs. 3 air, 5 no responses; Fig. 23A). In
contrast, MPB females avoided bristlecone VOCs in favor of clean air (6 bristlecone vs.
19 air, 14 no responses; Fig. 23B). When presented with VOCs from both limber and
bristlecone, female MPBs overwhelmingly chose limber VOCs (21 limber vs. 4
bristlecone, 9 no responses; Fig. 23C). We tested a role for 3-carene and D-limonene in
the behavioral response by presenting the synthetic VOCs on rubber septa in the Y-tube.
3-carene had no effect on beetle behavior when presented alone (13 3-carene vs. 12 air, 7
no responses; Fig. 23D) or when added to bristlecone pine VOCs (21 limber vs. 4
bristlecone + 3-carene, 7 no responses; Fig. 23E). Similarly, D-limonene alone did not
affect MPB behavior (11 D-limonene vs. 14 air, 11 no responses; Fig. 23F). However,
addition of D-limonene to bristlecone VOCs negated MPBs strong preference for limber
VOCs (11 limber vs. 14 bristlecone + D-limonene, 9 no responses; Fig. 23G) and blocked
the ability of MPBs to avoid bristlecone VOCs (15 bristlecone + D-limonene, 10 air, 9 no

responses; Fig. 23H).
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A) limber foliage Chi-Square: 12.96
P=0.0003
air N=30 NR=5
B) bristlecone foliage Chi-Square: 5.76
P=0.0164
air | N=39 NR =14
c) limber foliage | Chi-Square: 10.24
P=0.0014
bristlecone foliage N=34 NR=9
D) 3-carene ‘ Chi-Square: 0,0
FP=1.00
air ‘ N=34 NR=9
E) bristlecone + 3-carene Chi-Square: 10,24
P=0.0014
limber foliage N=32 NR=7
A D-limonene Chi-Square: 0.16
P=0.6892
air | N=36 NR=11
G) bristlecone + D-limonene | Chi-Square: 0.16
P =0.6832
limber | N=33 NR=8
H) bristlecone + D-limonene ‘ Chi-Square: 0.64
P=0.4237
air ‘ N=34 NR=9
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Fig. 23. Behavioral responses of walking female mountain pine beetles (Dendroctonus
ponderosae) to different odor sources in a Y-tube olfactometer. We used chi-square
statistical tests for comparison between the numbers for each choice. NR = no response
after 10 minutes. Significant results shown in bold. N = total number of trials (including
No responses).

Discussion

There is some debate about how pioneering female MPBs locate hosts with the
dominant hypothesis being a combination of random landings and visual cues followed
by direct assessment of host suitability after landing (Progar et al., 2014; Safranyik et al.,
2004). The explanation that pioneering females locate trees randomly (Hynum and
Berryman, 1980; Vité and Gara, 1962), and/or using sight (Shepherd, 1966) gained

support in part because it elegantly explains why large trees are disproportionately
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attacked — because they present beetles with the largest landing and visual targets.
However, there is evidence in the literature that dispersing female MPBs use VOCs when
foraging for hosts. Female MPBs were attracted to cages containing host material but not
empty cages in the absence of normal visual cues (Moeck and Simmons, 1991) and
antennae of female MPBs are capable of perceiving and responding to host tree VOCs
(D. S. Pureswaran et al., 2004a). Moreover, other bark beetle species are known to use
VOC:s to locate hosts, including other Dendroctonus species (Rudinsky, 1966; Sokal and
Rohlf, 1981). Here, the results from our study show that female MPBs are strongly
attracted to VOCs emitted from limber pine, a preferred host, and are repelled by VOCs
emitted from Great Basin bristlecone pine, a non-host. Moreover, female MPBs can
distinguish limber and bristlecone pine trees using VOCs and preferentially move toward
the former. These findings provide strong evidence that female MPBs use VOCs as cues
to locate and select among potential hosts.

The VOCs of limber and bristlecone pine are very similar (Fig. 21), so how do
MPBs distinguish between them? We chose two candidate VOCs that differed between
species and examined whether they are involved in host choice: the monoterpenes 3-
carene and D-limonene. 3-carene alone or addition of 3-carene to bristlecone VOCs to
mimic the amount in limber VOCs had no effect on beetle behavior (Fig. 23D-E).
However, similar addition of D-limonene to bristlecone VOCs blocked MPB’s ability to
distinguish between trees species (Fig. 23G). Interestingly, D-limonene alone was not
attractive to MPBs (Fig. 23F) suggesting that it is likely the combination or ratio of
compounds that provides species-specific information to MPBs. The relative proportion

of volatile components in a VOC blend is known to be used in host recognition by some
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insect herbivores (Bruce and Pickett, 2011), and experimentally enhancing levels of
certain volatile components has been shown to interfere with host location of other
herbivore species (Visser and Avé, 1978). In fact, VOCs of many conifer species lack
species-specific compounds, suggesting that bark beetles in general might detect
differences in the ratios of different compounds to discriminate among tree species (D. S.
Pureswaran et al., 2004b). Recent research suggests that Dendroctonus valens LeConte,
a species related to MPB, use small variations in ratios of VOCs to gauge and select large
diameter trees over small diameter trees (Liu et al., 2011). This provides a plausible
mechanism by which beetles could measure and choose large host trees using VOCs
alone, however, we expect that VOCs and visual cues both contribute to host location and
selection by MPBs, as suggested by others (Campbell and Borden, 2009, 2006).

The tree species examined in this study, Great Basin bristlecone pine and limber
pine, are climax species that often co-occur as the only trees at or near alpine treeline
across much of the Great Basin of North America (Youngblood and Mauk, 1985). Such
high elevation ecosystems are of great ecological importance, but are rapidly declining
across western North America due to unprecedented outbreaks of MPBs, climate change,
and the non-native white pine blister rust (Gibson et al., 2008; Tomback and Achuff,
2010). Great Basin bristlecone pine is of particular interest because it is one of the
longest-lived organisms on Earth, reaching ages approaching 5,000 years, and one of the
most highly fragmented high elevation conifer species (Ruiz-Olmo, J., Loy, A.,
Cianfrani, C., Yoxon, P., Yoxon, G., Silva, P. K. de, Roos, A., 2003). A better
understanding of how MPBs locate and select hosts in high elevation systems will help us

predict impacts and could allow development of tactics to manage MPBs in these
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important, at-risk communities. Moreover, the discovery that MPBs avoid bristlecone
VOC:s helps shed light on the great longevity of bristlecone pines. It is likely that
bristlecone pines possess additional defense mechanisms to MPBs (e.g. phloem defensive
chemistry) and that the VOCs provide long-distance cues about host quality to beetles.

In conclusion, we show that female MPBs use VOCs in the initial location and
selection between limber and bristlecone pines and that D-limonene plays a role in
concert with other unidentified compounds. Such a role for VOCs in host location by
MPBs is not surprising given VOCs represent a readily-available cue for foraging beetles,
and that MPBs utilize a sophisticated VOC communication system to coordinate mass
attacks once hosts are located (Safranyik and Carroll, 2007). These findings beg more
questions. We examined foliar VOCs since they should represent the largest odor source,
but what about VOCs emitted from boles (the portion of a tree attacked by beetles), do
they differ from foliar VOCs and are they used by MPBs? Which compounds and ratio
of compounds are used by MPBs to find limber pines and avoid bristlecone pines? Are
there common similarities and differences between VVOCs of hosts and non-hosts that
MPBs could use as general rules when searching for hosts? How do VOCs change with
host condition and does this affect beetle’s choices? Finally, VOCs underlying mass
attacks have been successfully used to manage MPBs (Progar et al., 2014) and the results
presented here suggest that VOCs used in host location have been overlooked but might

similarly be exploited for management of MPBs.
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CHAPTER 6

CONCLUSION

This dissertation explored the unique fuels composition and chemical response of
Earth’s oldest living tree species, the Great Basin bristlecone pine. | examined the
chemical response of volatile organic compounds (VOCs) emitted from Great Basin
bristlecone pine foliage and within foliage compounds in response to elevational
gradients, and how tree VOCs cue mountain pine beetle host selection. This research is
multidisciplinary and incorporates landscape ecology, disturbance ecology, resiliency,
and disturbance response to evaluate the health and status of Great Basin bristlecone pine,
a unique species with a limited distribution and a specialized niche. To understanding a
long-lived species response to climate change, it is critical to understand how this slow-
growing species may be influenced by the multiple of climatic fluctuations faced during
their lifetimes. Some populations may be more vulnerable to climatic changes by virtue
of their longevity, while others such as Great Basin bristlecone pine may use longevity as
a buffer against climatic variability and a constant source of new seed. Researching this
fragmented species is challenging because inventorying small patches is difficult and
small changes in one stand can have large effects on the total population.

Below, | summarize three general findings emerging from this research. The
greatest fire threat to Great Basin bristlecone pine growing near treeline is from fires
ignited in the mixed conifer forests and shurblands below and progressing as crown fires
into pure stands of Great Basin bristlecone pine during extreme wind conditions and
exceptionally dry fuel moistures. However, current monitoring programs inadequately

quantify the surface and canopy fuels of this system. The first finding (Chapter 2)
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addresses the likely changes and amplification of ecological disturbances due to
anthropogenic climate warming. | focus on the disturbance of wildland fire and alteration
of fuels. Linear regression showed that all classes of fine woody debris (FWD) had an
inverse relationship with elevation, yet course woody debris (CWD) remained constant
across elevational transects (Gray and Jenkins, 2017). Fuel sampling in the pine fuel zone
(the area directly beneath the tree crown) (Jenkins, 2011), helps describe the
discontinuous fuels found at alpine treeline in Great Basin bristlecone pines. Accounting
for these poorly studied fuels, lower crown base height (CBH) and foliar moisture,
combined with warming temperatures due to climate change, and suggests an increase in
fire potential at the Great Basin bristlecone pine treeline, threatening the oldest
individuals of this iconic species. However, the likelihood of surface fire decreases with
elevation, the potential for crown fire and spotting still exist. More research is needed to
identify the wind speed and fuel moisture thresholds that could sustain crown fire
propagation. New information about discontinuous fuels will aid in management of high
elevation alpine treeline forests.

The second finding (Chapter 3) of this research addresses the physiological
response of Great Basin bristlecone pine to climate warming-induced changes to
environmental factors. The physiological response of VOC emissions and within-needle
terpenoid concentrations provide a promising indicator of an individual trees response to
environmental conditions. The blend of VOCs emitted from Great Basin bristlecone
foliage proved to be an excellent predictor (82% accuracy) for the elevation of the tree.
Additionally, air temperature, heat load index (potential direct radiation at a site), and

relative humidity correlated well with emitted VOCs. The changes in the amounts of
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individual compounds (e.g E-B-ocimene, a-terpinene, B-phellandrene) could provide
insight into a tree’s response to environmental stress. Several of the identified emitted
compounds have been shown to interact with mountain pine beetle, provide relief from
oxidative and thermal stresses, and to increase foliage flammability (Page et al., 2012).
These changes, along environmental gradients (increased VOC at different elevations),
occur in response to biotic or abiotic stressors. This improved understanding of Great
Basin bristlecone pine response to elevational gradients (as a proxy for climate warming),
aids in discovering potential susceptibility to threats like fire or mountain pine beetles.
This research improves understanding of VOC emissions as a physiological tree response
to environmental factors and helps inform land managers about forests threatened by
native and non-native pests and pathogens, increased threat of fire, and changing
distribution patterns from climate change.

The final chapter (Chapter 4), describes differences of emitted VOCs and how
mountain pine beetle (a native pest to many Pinus species in North America) use these
compounds to identify suitable tree hosts. The comparison of VOCs emitted from Great
Basin bristlecone pine versus limber pine revealed several differences in compounds. The
most dramatic difference were in 3-carene (70 times more abundant in limber pine), -
myrcene (4.8 times more abundant in limber pine), and D-limonene (4.6 times more
abundant in limber pine)(Gray et al., 2015). My research showed that female mountain
pine beetle use VOCs in the initial selection between limber pine, a preferred host, and
are repelled by VOCs emitted from Great Basin bristlecone pine, a non-host. D-limonene,
combined with other unidentified compounds, plays a role. A better understanding of

how mountain pine beetles locate and select hosts in high elevation systems will help us
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predict impacts of beetle attacks and could help develop tools to manage mountain pine

beetle in these important communities.

Contributions and Broader Impacts

This dissertation improves understanding of the resiliency and response of Great
Basin bristlecone pine to disturbance. In addition to biodiversity’s role as mitigation
against changing environments and disturbances, there is increasing evidence that the
collective role of rare species may be important for ecosystem services (Tscharntke et al.,
2005). The contribution of each rare species is usually small, but all species together may
be of quantitative importance (Tscharntke et al., 2005). My research and findings are
useful for land managers to prioritize strategies to insure the health of Great Basin
bristlecone pine, as well as to manage other rare, yet charismatic, species. Another
contribution of this work is that | have researched a wide extent of Great Basin
bristlecone pine populations. The majority of other Great Basin bristlecone pine research
has been completed at only three sites: the Ancient Bristlecone Pine Forest in California,
Wheeler Peak in Great Basin National Park, and the Spring Mountains National
Recreation Area. While Great Basin bristlecone pine is a very long lived species and
individuals are quite resilient to climate variability, the species as a whole is often
overlooked by land managers, who focus instead on protecting high profile, ancient trees
located in national parks and near visitor centers, or who focus on more common timber
producing species. The fragmentation and isolation of distinct populations of Great Basin
bristlecone pine affect gene flow, which potentially reduces resiliency to large landscape

disturbances. It also makes coordinated management difficult. To adequately manage this
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species into the future, we must examine Great Basin bristlecone pine’s intrinsic rareness
on the landscape, how warming temperatures and invasive species might change
disturbance regimes and frequency, and focus on management strategies that provide for
future groves. Complex interactions between climate and disturbance regimes influence
current and future forest communities, however it is challenging to develop management

strategies which maintain resistance and resilience in forest communities.
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