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ABSTRACT 

Impact of Climate Variability on the Frequency and Severity of Ecological Disturbances 

in Great Basin Bristlecone Pine Sky Island Ecosystems 

 
by 

Curtis A. Gray, Doctor of Philosophy 

Utah State University, 2017 

 
Major Professor: Dr. Michael Jenkins 
Department: Wildland Resources 
 
 

Great Basin bristlecone pine (GBBP) (Pinus longaeva Bailey) is one of the 

longest-lived organisms on Earth, and is one of the most highly fragmented high 

elevation conifer species. Throughout the Great Basin of the Intermountain West, GBBP 

are being impacted by changing disturbance regimes, invasive species, and climate 

change. To better understand the effects of climate variability and ecological disturbances 

in GBBP systems, three studies were designed and implemented. The first characterized 

the distribution of forest fuel in stands of GBBP and predicted how fuels may change 

under future climate scenarios. Using the Forest Inventory Analysis (FIA) plot variables 

of tree species, height, diameter at breast height (DBH), canopy base height (CBH), 

coarse (CWD) and fine (FWD) woody debris across elevational gradients, this study 

examined the effects of changes to fuel loading on predicted changes in fire behavior and 

severity. All classes of FWD decreased with elevation, and only 1000-hr fuels remained 

constant across elevational transects. This, combined with lower CBH and foliar moisture 
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and increasing temperatures due to climate change, suggested increased fire potential at 

the GBBP treeline. The second study examined the role of volatile organic compounds 

(VOCs) and tree chemistry and their response to the environment. VOCs and within 

needle chemistry were collected and analyzed along elevational gradients near the 

northern and southern limits of GBBP. Random Forest analysis distinguished elevation 

using VOCs, with 83% accuracy, and identified the compounds most important for 

classification. Ordination revealed that temperature, heat load index, and relative 

humidity were each significantly correlated with VOCs. Within-needle chemistry 

provided less predictive value in classifying elevation (68% accuracy) and was correlated 

only with heat load index. These findings suggest that GBBP VOCs are highly sensitive 

to the environment. The final study explored the role of VOCs in host selection of 

mountain pine beetle (MPB). Mountain pine beetles oriented toward VOCs from host 

limber pine (Pinus flexilis James) and away from VOCs of non-host GBBP using a Y-

tube olfactometer. When presented with VOCs of both trees, females overwhelmingly 

chose limber pine over GBBP. While there were only a few notable differences in VOCs 

collected from co-occurring GBBP and limber pine, 3-carene and D-limonene were 

produced in greater amounts by limber pine. There was no evidence that 3-carene is 

important for beetles when selecting trees, however, addition of D-limonene to GBBP 

VOCs disrupted the ability of beetles to distinguish between tree species. Climate change 

will impact how forests are managed and this research could provide insight into the 

mechanisms underlying the incredible longevity of this iconic tree species. 

 (160 Pages) 
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PUBLIC ABSTRACT 

Impact of Climate Variability on the Frequency and Severity of Ecological Disturbances 

in Great Basin Bristlecone Pine Sky Island Ecosystems 

Curtis A. Gray 

Many high elevation conifer species, including high elevation five needle pines, 

are declining throughout western North America. Warming temperatures, mountain pine 

beetle, white pine blister rust and alteration of naturally occurring fire regimes represent 

an interactive set of circumstances leading to greater risk. The loss of these treeline pines 

can detrimentally impact biodiversity and valuable ecosystem services including wildlife 

habitat, watershed and soil protection, aesthetics and recreation. Great Basin bristlecone 

pine ecosystems are naturally highly fragmented because of their elevational 

requirements. However, they may become even more fragmented due to combined 

impacts of warming temperature, insects and diseases listed above. This study increased 

the knowledge of Great Basin bristlecone pine ecology by examining response to climate 

change with respect to fire, fuels and tree chemistry. The first study examined alteration 

of the fire regime and showed that fuels in Great Basin bristlecone pine decreased with 

elevation. Yet, canopy fuels that are more susceptible to fire, suggested fire potential may 

increase at higher elevations with warming air temperatures, which could threaten the 

oldest individuals of this iconic species. Examination of tree chemistry to environmental 

gradients (like elevation and temperature) demonstrated a clear response to climate 

induced environmental stress.  This has the potential to alter flammability and the 

effectiveness of tree defenses to mountain pine beetle. Lastly, this research determined 
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that volatile organic compounds emitted from Great Basin bristlecone pine foliage 

influence host selection for mountain pine beetle. All three of these studies will aid in 

developing unique forest management practices to increase forest resilience of treeline 

species and could provide insight into the mechanisms underlying the incredible 

longevity of Great Basin bristlecone pine. 
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CHAPTER 1 
INTRODUCTION 

Many high elevation conifer species, including all high elevation five needle 

pines, are declining throughout western North America (Gibson et al., 2008). Warming 

temperatures, mountain pine beetle, white pine blister rust and alteration of naturally 

occurring fire regimes (Gibson et al., 2008) interact and lead to decline. High elevation 

pine forests provide important ecosystem services (Schoettle, 2004), including stabilizing 

soil, improving snow retention, pioneering regeneration of alpine sites after fire, 

providing habitat for wildlife, and facilitating growth of other tree species (Baumeister 

and Callaway, 2006). Great Basin bristlecone pine (GBBP) (Pinus longaeva Bailey) is 

one of the longest-lived, non-clonal organisms on Earth, and is one of the most highly 

fragmented high elevation conifer species (IUCN, 2003). This species has a wide 

geographic distribution, but limited elevation range (between approximately 2100 and 

3500m), and occurs in fragmented groves throughout the Great Basin. The highest 

elevation stands often occur in climax forests that form ecological “sky islands”. 

Depending upon elevation zone, the pine also grows as a minor to major seral in mixed 

conifer forests. 

Sky islands are mountains that are isolated by surrounding lowlands of a 

dramatically different ecosystem, which, in combination with altitudinal zonation, has 

significant implications for natural habitats. Endemism, vertical migration, and relict 

populations are some of the phenomena unique to sky islands (MacArthur and Wilson, 

1967). While sky island theory is an offshoot of island biogeography, developed to 

explain species richness of actual islands (Brown, 1978), sky island theory has since been 
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extended to mountains, lakes, fragmented forest, and even natural habitats surrounded by 

human-altered landscapes and now reference any ecosystem isolated by unlike 

ecosystems. This is the case in the high isolated peaks of the Great Basin, in which 

fragmented, isolated populations of GBBP may develop unique evolutionary traits. 

GBBP occurring in sky islands are abundant on the landscape where present, but rare in 

total distribution, and face risks from demographic variability, fragmentation, loss of 

fitness, and loss of evolutionary responsiveness as the population becomes rarer 

(Courchamp et al., 2008). Although GBBP ecosystems are naturally highly fragmented 

because of their elevation requirements, they may become even more so due to combined 

threats of warming temperatures, introduced species, insects and diseases. 

Climate change is predicted to significantly alter the frequency and severity of 

disturbances, such as fire, that shape forest ecosystems (Logan and Bentz, 1999).  

Climate change impacts may be especially acute in sky islands of the Great Basin as 

warming temperatures drive montane and alpine ecosystems upslope, resulting in 

overstory tree mortality at the lower margins of distribution.  Minor seral stands are much 

more susceptible to changing climate regimes and increased ecological disturbances such 

as fire because they occur at lower elevations and in proximity to higher fire frequency 

vegetation communities (Westerling et al., 2006).   

Little previous research has been done on describing the distribution of GBBP 

pine forests, fuel complexes, foliar terpene chemistry or the effect of the disturbance 

regime on GBBP regeneration.  The objectives of this research are to: 
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1.  Develop a distribution model of GBBP forests in Great Basin sky islands, 

2.  Characterize the distribution of forest fuel under individual trees and in stands 

of GBBP and predict how fuels may change under likely future climate 

scenarios, 

3.  Describe the volatile terpene foliar chemistry of GBBP and evaluate changes 

in terpene chemistry across environmental gradients and under various climate 

change scenarios and,  

4.  Use volatile terpene foliar chemistry to better understand host selection of 

mountain pine beetle (MPB), elucidating how GBBP escapes attack by MPB 

and provide insight into mechanisms underlying the longevity of this tree 

species 

The work proposed here will examine the current distribution of GBBP, potential 

alteration of fire regime and regeneration dynamics from climate warming, terpenes as a 

possible defense mechanism against MPB, flammability, an indicator of stress, and 

project how combined these factors will affect pine distribution and resiliency into the 

future. By increasing our understanding of both basic and applied forest dynamics, 

managers in the Intermountain West will be better equipped to implement sound forest 

management practices to increase forest resilience with future climate uncertainty. 
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CHAPTER 2 

USING MULTIVARIATE METHODS TO PREDICT THE DISTRIBUTION OF 

GREAT BASIN BRISTLECONE PINE FORESTS 

 
Abstract 

Accurate maps are necessary to make informed decisions on ecology species and 

habitat. This is especially true with a fragmented species such as Great Basin bristlecone 

pine (GBBP), which occurs on ‘islands’ of high elevation in the Basin and Range peaks 

of California, Nevada, and Utah. Due to the inaccessibility of many of the sites that this 

species occurs, information on their location and abundance is incomplete, and thus is 

needed. Understanding the distribution of this species is required to evaluate their 

potential response to disturbances such as fire and climate change. I modeled the 

distribution of GBBP using widely available topographic and spectral variables 

calculated from a geographic information system (GIS). I tested several multivariate 

statistical models to produce a GIS layer (map) that provides a foundation to examine 

large scale changes to GBBP in later chapters. 

 
1. Introduction 

High elevation, five needle pines are rapidly declining throughout western North 

America due to warming temperatures, mountain pine beetle (Dendroctonus ponderosae 

Hopkins), white pine blister rust, introduction of non-native species, and alteration of the 

natural fire regime (Gibson et al., 2008). One five needle pine of special concern is the 

Great Basin bristlecone pine (Pinus longaeva Bailey). An icon of western forests, Great 

Basin bristlecone pines (GBBP) are the oldest non-clonal organism known, and their 
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rings are often used in dendrochronology studies as records of historical climate. GBBP 

are medium-sized trees, reaching an average of 5 to 15 m tall, and are found on the high 

mountain peaks of the southwestern United States (Moore et al., 2008). The highest 

elevation stands often occur in climax forests that form ecological “sky islands” which 

result in a highly fragmented distribution in which small populations exist as islands 

surrounded by dramatically different ecosystems, such as cropland, pasture, pavement, 

deserts, or even barren land. Depending upon elevation zone, the pine also grows as a 

minor to major seral in mixed conifer forests (Gray and Jenkins, 2017). 

Sky islands are a concept from island biogeography, which examines the factors 

that affect the species diversity of isolated communities. Fluctuations in climate, 

precipitation or disturbance regime, which could be corrected for in large populations, 

can be catastrophic in small, isolated populations. Endemism, vertical migration, and 

relict populations are some of the phenomena unique to sky islands (Wilson and 

MacArthur, 1967). Thus fragmentation of habitat is an important cause of species 

extinction (Rosenzweig, 1995) Fragmentation metrics such as patch size, edge-to-edge 

distance, habitat configuration, or amount of edge are useful in assessing genetic risk to 

the over species population (Hargis et al., 1998). 

A primary goal of my research is to improve understanding of future changes on 

GBBP distribution and resiliency as described in my research objectives in Chapter 1. A 

spatially-explicit distribution landscape model representing GBBP distribution across 

elevational and geographic gradients was developed to address the research question: 

What is the current spatial distribution of GBBP? Several mapping efforts have included 

GBBP, however all have fallen short in providing accurate locations of GBBP groves 
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(Little and Viereck, 1971; Lowry et al., 2007; Rollins, 2009). For example, USFS species 

distribution maps show locations of GBBP, however the accuracy is poor and stands are 

often depicted in valley bottoms or as simplified large ellipses (Little and Viereck, 1971). 

The southwest GAP land cover layer (Lowry et al., 2007) and LANDFIRE (Rollins, 

2009) have modeled the distribution of western vegetation types, but GBBP is lumped 

with limber pine (Pinus flexilis James), which is much more widely distributed than 

GBBP. This species distribution model will be the foundation to examine large-scale 

changes to GBBP in later chapters. 

 
2. Methods 

2.1. Study Area 

The study area for this project is the Great Basin mountains in North America, 

which includes parts of California, Nevada, Utah, and Arizona (Fig. 1). The Great Basin 

is the largest area of contiguous endorheic watersheds, or closed drainage basins, in 

North America. It is noted for both arid conditions and basin and range topography 

(Edwards, 1976). Although mostly within the North American Desert ecoregion, portions 

of the Great Basin extend into the forested mountain and Mediterranean California 

ecoregions. The semi-arid areas of the forested mountain ecoregion include the White 

Mountains and Inyo Mountains. (NPS, 2010). Takhtajan (1986) defined the Great Basin 

Floristic Province to extend well beyond the boundaries of the hydrographically defined 

Great Basin to include the Snake River Plain, the Colorado Plateau, the Uinta Basin, and 

parts of Arizona north of the Mogollon Rim. Additional stands of GBBP were sampled 

and modeled in the Southern Great Basin (southern polygon Fig. 1), and the Colorado 
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Plateau. Climate varies throughout the Great Basin by elevation and latitude. Higher 

elevations tend to be cooler and receive more precipitation. The western areas of the 

basin tend to be drier than the eastern areas because of the rain shadow of the Sierra 

Nevada Mountains. Most of the basin experiences a semi-arid or arid climate with warm 

summers and cold winters (NPS, 2010).  

 

 

Fig. 1.  The Great Basin Floristic Provence (northern purple polygon) and GBBP data 
points. The black dots are the absent points (all from FIA), and the orange X’s are the 
present points. The southern purple polygon (Mojave Desert) contains two stands of 
GBBP outside of the Great Basin Floristic Provence and GBBP. Additional stands were 
modeled to the east on the Colorado Plateau.  
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2.2. Field Data 

The data used to calibrate the model (termed the training dataset) is a compilation 

of field-visited sites (Gray, unpublished data 2012), herbarium records (Global 

Biodiversity Information Facility - www.gbif.org); and Forest Inventory and Analysis 

data – FIA - https://www.fia.fs.fed.us) which portray GBBP presence/absence. All 

sampled areas are groves of GBBP (Fig. 1). Many of the points collected during the 

summer of 2012 are located in Great Basin National Park, the Mt. Moriah Wilderness, 

and portions of the Humboldt-Toiyabe National Forest, which lie approximately 290 

miles (470 km) north of Las Vegas and are made up of a combination of federally 

protected (US Forest Service and National Park Service) wilderness areas. Absence 

points were all obtained from the FIA Program, which is a national program that gathers 

annual inventory data on a 4.8 km grid across forested areas. All forested FIA points 

within the study area boundary that were above 2000 m in elevation, but that did not 

contain GBBP, were utilized as absent locations. The resulting final dataset, all with X/Y 

spatial coordinates, contains 496 GBBP presence locations, and 3399 locations in which 

GBBP was absent. 

 
2.3. Independent Variables 

I selected 12 independent variables to represent abiotic (topographic and climate) 

factors and describe the ecological niche of GBBP. The variables are elevation, slope, 

aspect, blue, green, red and infra-red radiation, NDVI, brightness, greenness, wetness, 

and texture. The terrain variables were derived from USGS 10 meter digital elevation 

models and the spectral variables were derived from Landsat images (30 m spatial 
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resolution) collected in summer 2012. All spectral variables were resampled to 10 m to 

match the topographic variables. 

 
2.4. Spectral Variables 

The predictive model used several spectral variables, all derived from a mosaic of 

2012 Landsat 5 TM images. Band 1, the blue band, 0.45-0.52 μm, distinguishes soil from 

vegetation and deciduous from coniferous vegetation. Band 2, green, 0.52-0.60 μm, 

emphasizes peak vegetation, which is useful for assessing plant vigor. Band 3, red, 0.63-

0.69 μm, identifies vegetation. Band 4, near infrared (NIR), 0.77-0.90 μm, emphasizes 

biomass content. Additionally, texture of Band 3 was calculated. Texture is the frequency 

of tonal change on the photographic image. Texture, a product of shape, size, pattern, 

shadow, and tone, is produced by aggregating unit features that may be too small to be 

discerned individually on an image. Interpretation can often distinguish between features 

with similar reflectance based on texture (Lillesand and Kiefer, 1979). As an example, 

smooth green grass has a smooth texture, while tree crowns have a course texture. One 

would expect bristlecone pine to have a course texture, due to the sparse nature of the 

stands, combined with high soil reflectance in the background. Thus, texture is helpful for 

identifying GBBP on Landsat images. 

A special principal components transformation (Table 1), called the Tasseled Cap 

transformation, was applied to 6 Landsat TM spectral bands, creating three more 

variables – brightness, greenness and wetness. This transformation is a special case of 

principal components analysis, which transforms the image data to a new coordinate 

system with a new set of orthogonal axes. The primary axis, brightness, is statistically 
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derived and is calculated as the weighted sum of reflectance of all spectral bands. 

Orthogonal to the first component, the second component, greenness, shows variations in 

the vigor of green vegetation. Wetness is orthogonal to the first two components and 

represents soil moisture and water (Kauth and Thomas, 1976). The Tasseled Cap 

transformation provides an analytical way to detect and compare changes in vegetation, 

soil, and man-made features over short- and long-term time periods. 

 
Table 1  
Coefficients for the tassel cap functions for Landsat TM bands 1-5 and 7 (Crist and 
Cicone, 1984)  

TM Band 1 2 3 4 5 7 
Brightness 0.3037 0.2793 0.4743 0.5585 0.5082 0.1863 
Greenness 0.2848 -0.2435 -0.5436 0.7243 0.084 -0.1800 
Wetness 0.1509 0.1973 0.3279 0.3406 -0.7112 -0.4572 

 

The Normalized Difference Vegetation Index (NDVI) assesses post-disturbance 

vegetation recovery between a disturbance event and field sampling. It was calculated for 

each image. NDVI, an indicator of live green vegetation, is sensitive to 

photosynthetically active biomass (Tucker, 1979) and is correlated with leaf area index 

(Asrar et al., 1984). 

 
2.5. Topographic Variables 

Topographic variables used in the predictive model were: elevation (meters above 

sea level), slope - gradient as a steepness measure of the maximum rate of elevation 

change, indicated as a percentage of angle (Burrough et al., 2015), and aspect as an 

indication of which way the slope is facing defined as the compass direction of the 

gradient (Burrough et al., 2015). Other topographic variables like curvature (whether a 
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surface is concave or convex), were examined in preliminary models but were not found 

to be important in predicting GBBP in the final model.  

 
3. Statistical Analyses 

3.1. Statistical Classification 

The general goal of classification statistical models is to identify good predictors 

(variable X) for describing if a species of interest occupies a particular ecological niche, 

which is the response variable (Y) of any sample of the same distribution. To describe the 

fundamental or potential niche of a species, we want to know the abiotic and biotic 

factors that limit the species, for example, the thermal, moisture and light regimes that 

determine species range limits at larger spatial scales or the nutrient requirement of the 

soils. We must assume that species distributions are in equilibrium with the climate 

(Lenihan, 1993). To describe these factors we use environmental surrogates such as 

terrain variables. Elevation can substitute for temperature and precipitation, slope and 

aspect can be a surrogate for radiation regime and moisture availability, and landform, 

hillslope position, and catchment position for soil moisture, erosion, and deposition 

(Franklin,1995).  

Linear discriminant analysis (LDA), generalized linear models (GLMs), 

generalized additive models (GAMs), classification and regression trees (CART), and 

random forests (RF) are all statistical methods that classify, or separate, observations into 

two or more classes of objects or events. The goal of LDA is to classify observations into 

a priori or known groups. In the instance of species distribution modeling (SDM), these 

classes are the binary response of the species of interest being present or absent. A LDA 



13 
 

   

of the training data is implemented to form a set of linear functions (equations) or 

estimated coefficients that express the degree of support for each class. The assigned 

class for each y (in our case presence or absence) is the class that receives the highest 

support after evaluation of all functions (Lattin et al., 2003). While LDA strength is its 

simplicity of interpretation and acceptance, LDA is most useful when population 

distributions are known. The Coefficients of the Linear Discriminant Function is similar 

to regression and has the form: Ck = Ck0 + Ck1X1 + … + CkmXm ; Ck is the classification 

score for the kth group. For each observation, we compute the classification score with the 

coefficients according to the equation and assign the observation to the group with the 

highest score. The coefficients are helpful in deciding which variables have more weight 

in classification, the higher coefficient means the variable is a better classifier for that 

group. Ecological data often violate the assumptions of the linear model discussed above. 

Generalized linear models (GLM) are extensions of linear models that can cope with non-

normal distributions of the response variable using a link function (Agresti, 1996). Some 

strengths of GLM are the flexibility to transform predictor variables that follow a 

curvilinear response (e.g., species count data), and ability to handle categorical predictor 

variables (e.g., dolomite soil, land cover) which is done by coding them as dummy 

variables. GLM are well suited to examine simple relationships between an individual 

environmental variable and species data, however the number of candidate predictor 

variables is frequently large in ecology and this makes a thoughtful approach to model 

selection particularly important. GLM must follow the assumptions of logistic regression, 

which are conditional probabilities are a logistic function of the predictor variables, no 
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important variables are omitted, no extraneous variables are included, and observations 

are independent.  

Generalized additive models (GAM) are a flexible and automated approach to 

identifying and describing non-linear relationships. GAM make another generalization to 

GLM to incorporate nonlinear forms of predictors and relate them to the response 

variable. In GAM, the observed values Y are assumed to be of some exponential family 

distribution, and µ is still related to the model predictors via a link function. Like GLM, 

GAM assume that Y are independent and have a specified distribution (for example 

normal, binomial or Poisson distributions). The key difference is that coefficients of the 

GLM are replaced by some smoothing function of at least some (possibly all) covariates 

(Wood, 2017). Gaining understanding of a species ecological niche is difficult with GAM 

because they cannot calculate species response parameters such as optimum habitat and 

tolerance thresholds. Another limitation of GAM, either for exploration or prediction, is 

that they are additive, and it is difficult to introduce interaction terms. If interaction terms 

are necessary it might be better to use decision trees (discussed below) which are 

particularly good for identifying interactions among predictor variables (Franklin, 2010).  

Classification and Regression Trees (CART) are collectively known as tree-based 

methods, when used with a categorical response. CART uses recursive partitioning, in 

which the decision tree model is to partition the data into subgroups where the response 

variables have similar values or are members of the same class.  Each of the terminal 

nodes of the tree represents a cell of the partition, and includes a simple model which 

applies in that cell only (Breiman et al., 1984). If you continue to partition the data until 

every observation is classified, your result is large trees than tend to overclassify the data. 
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To avoid this, partitioning is usually stopped when the resulting split does not achieve 

some defined level of increased homogeneity (or explained deviance), or when the 

resulting subsets would have less than some minimum number of members. Tree-based 

methods characterize interactions between variables extremely well (Breiman et al., 

1984), characterizing threshold effects of predictor variables in an often simpler way than 

linear or smoothing responses. However, while CART is good at handling large datasets, 

trees require large samples to detect patterns. 

Computationally intensive methods have been developed that address some of the 

shortcomings of CART. These methods are known as ensemble models because they 

involve estimating a large number of tree models based on subsets of the data and then 

averaging the results. RF is an ensemble model that builds a large number of trees and 

averages the prediction (Breiman, 2001). In order to avoid developing a tree model that is 

not over fit to data, a method known as “bagging” is used by repeatedly sampling the data 

with replacement and developing trees for each dataset using some stopping rule. The 

“out-of-bag” (test) sample, the set of observations held back, is used to estimate model 

error and variable selection or importance. (Breiman, 2001). For each decision tree there 

is a misclassification error rate calculated from the out-of-bag sample. The difference 

between this error rate and the error rate calculated by randomly assigning the values of a 

predictor variable, and then passing the test data down the tree to get new predictions, is a 

measure of the importance of that predictor (Cutler et al., 2007). Partial dependence plots 

of these splits determine the most important variables (Cutler et al., 2007). The tendency 

to over-fit the data is overcome by averaging the predictions from a large (500 – 2000) 

number of models based on subsets of the data. RF have higher prediction accuracy than 
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ordinary decision trees (Cutler et al., 2007). The statistical classifiers that were fit to the 

training data set were Linear Discriminant Analysis, Classification Trees, Random 

Forest, and two other ensemble model, Support Vector Machines, and Gradient Boosting 

Machines. 

 
4. Results 

I tested five multivariate models to classify and predict presence/absence of 

GBBP. The RF model provided the best fit (Table 2). It classified the training sites 

correctly 98.2% of the time and was chosen to select the most important variables to 

predict the presence of GBBP. Visual inspection of the resulting map showed this model 

better predicted GBBP groves in sites that were field verified than the previous mapping 

efforts mentioned above (Little and Viereck, 1971; Lowry et al., 2007; Rollins, 2009). 

More field validation is necessary to further develop this model for use in management 

decisions. While the classification tree (Table 2) performed slightly worse than RF, it is 

interesting to look at the interpretation. The first node split on elevation (elevations < 

3009) with all observations < 3009 meters classified as absent of GBBP. The second 

node (NDVI < 97.5) classified GBBP present only in samples with an NDVI value 

greater than 97.5. This is plausible, as GBBP is limited to specific elevation ranges. 

NDVI (along with NIR) is useful to distinguish between barren alpine areas and forested 

stands.  
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Table 2  
Accuracy measurements for predictions of presence of GBBP in the Great Basin Floristic 
Region. (N =  3895 ) 

PCC denotes the percentage correctly classified, sensitivity is the percentage of presences 
correctly classified, specificity is the percentage of absences correctly classified, k – 
kappa a measure of agreement between predicted presences and absences with actual 
presences and absences corrected for agreement that might be due to chance alone, and 
AUC is the area under the receiver operating characteristic curve. Resubstitution is based 
on the training set as an estimate of generalization error. Out-of-bag accuracies are based 
on 10-fold cross-validation in which a random sample is chosen with replacement from 
the data. Some observations end up in the sample more than once, while others are not 
included (“out of bag”). 

 
The RF was then used to select important variables to predict the presence of 

GBBP using the GIS dataset. However, cross-validated percent correct and sensitivities 

for the five methods are all relatively high and similar. Since the RF percent classified 
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correct (PCC) was 98.2%, if a different model did not achieve at least this with 

resubstitution accuracies, it was not used to calculate the cross-validated accuracies. To 

invoke parsimony, which is to select the model with the fewest assumptions, RF was used 

to examine the most important variables. Elevation is the most important variable for 

classification (Table 3), which is expected, as GBBP is only found at high elevations 

above 2500 meters. 

 
Table 3  
Variable importance metric for predictor variables from random forests (RF) 
classifications used for predicting presence of GBBP. 

 
Mean Decrease Accuracy Mean Decrease Gini 

elevation 69.3 362.5 
texture 28.4 45.7 
slope 27.2 32.1 
NDVI 25.8 38.9 
greenness 25.1 24.4 
wetness 25.0 35.0 
IR 24.6 46.1 
aspect 22.8 23.5 
brightness 21.6 28.6 
blue 19.5 24.5 
red 19.0 18.1 
green 16.9 17.8 

Note: Mean decrease in accuracy (MDA) is the normalized difference of the classification 
accuracy for the out-of-bag data when the data for that variable is included as observed. 
Higher values of mean decrease in accuracy indicate variables that are more important to 
the classification. 
 

In addition to examining the most important predictor variables, partial 

dependence plots (Fig. 2) characterize relationships between individual predictor 

variables and predicted probabilities of GBBP presence using RF. These plots visualize 

the relationship of small numbers of variables in statistical classifiers, such as 
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classification and regression tools, including RF, GBM, and SVM (Hastie et al., 2002). 

Similar variables were used for RF as for the classification tree, which lends credibility to 

the results. Also, higher texture values are associated with GBBP stands (Fig. 2).  

 

Fig. 2.  Partial dependence plots for selected predictor variables (6 most important from 
MDA) for random forest (RF) predictions of the presences of GBBP. Partial dependence 
is the dependence of the probability of presence on one predictor variable. 
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We expect this since GBBP occurs in very sparse stands, often with high contrast to the 

underlying soil. Higher values of NDVI and IR also are associated with presence of 

GBBP (Fig. 2). Again, this is logical as it separates forested stands from barren rock.  

The data was refit with RF using only the 9 most important independent variables. 

This changed the overall accuracy of the model from 98.2% correct to 97.6% classified 

correct (Table 2). This is still exceptionally high accuracy. The final model predicted the 

presence of GBBP across the entire Great Basin (Fig. 3) using the previously collected 

GIS terrain and spectral variables. The resulting layer has a much higher spatial 

resolution (10 meters) than previous mapping projects. Areas on the map represent 

potential occurrences of GBBP and not actual mapped locations, however this is the best 

representation of GBBP to date. 

The correlation matrix (Fig. 4) shows that several of the variables, especially the 

spectral variables, have a high correlation coefficient (over 0.9). However, we should 

expect some of the variables to be redundant.  

 
4.1. Species Fragmentation 

As mentioned earlier, fragmentation can lead to species extinction and 

fragmentation metrics are useful in assessing risk to the population. From the predicted 

GBBP GIS map, I have grouped GBBP in 34 groves across three geographic regions, 

which I have termed the White Mountains, the Great Basin, and the Colorado Plateau 

stands. The resulting GIS layer contained many isolated pixels that predicted the presence 

of GBBP. Cells from the GIS were converted to polygons and any occurrence that was 

not at least three adjacent pixels (300 m2) was removed from the layer. While there is the 
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Fig. 3.  Species distribution map of Great Basin bristlecone pine (Pinus longaeva) from 
Random Forest model (RF) predicted into the Great Basin Floristic Province, part of the 
Mojave Desert (south) and in the Henry Mountains (east) where a known stand occurs. 
Purple polygon line weights were increased for visualization, resulting in areas on map 
appearing greater than on the ground  
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Fig. 4.  Correlation matrix of topographic and spectral variables from Great Basin 
bristlecone present plots. Correlation coefficient (r-value) in upper right quadrants. 
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Fig. 5.  Stand area of Great Basin bristlecone pine. Forest stands have been aggregated 
using GIS for 34 different ranges across the geographic regions (White Mountains = 
yellows, Great Basin = blues, Colorado Plateau = greens). Area represents potential 
occurrences of GBBP and not actual mapped locations. 

 

potential for GBBP to occur at these sites, management plans lend themselves to larger 

areas. All polygons on each mountain range were tallied together to calculate the distance 

to the next nearest GBBP stand. The minimum distance between populations ranged from 

17.8 km to 72.6 km (mean = 35.0 km, SD = 14.6 km). While there are several well 

known stands of GBBP that extend over more than 1000 hectares including the Ruby 

Mountains, Schell Creek Range, Great Basin National Park, and the famous groves in the 

White Mountains of California (Fig. 5), most stands are less than 400 hectares and occur 

on isolated peaks and pockets of the Colorado Plateau.  
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5. Conclusions 

Although all models tested here classified GBBP with high accuracy as measured 

by cross-validation and RF out of bag accuracies, RF predicted the occurrence of GBBP 

with the highest accuracy. Upon visual inspection of the GBBP distribution map, the 

GBBP model better predicts known locations of GBBP groves than previous distribution 

maps; however, it is necessary to further validate the accuracy of the model in the field 

before it is used for critical management decisions. Future work includes examining 

whether increased spatial resolution of the data used in the model gives a more accurate 

identification of GBBP stands, or if it is merely a more visually pleasing depiction. To 

make informed management decisions on a fragmented species such as GBBP, accurate 

mapping and inventories are necessary. Considering the high accuracy of the RF model, I 

believe this to be the best map of GBBP to date and this species distribution model will 

be the foundation to examine large scale changes to GBBP in later chapters. 
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CHAPTER 3 

CLIMATE WARMING ALTERS FUELS ACROSS ELEVATIONAL GRADIENTS IN 

GREAT BASIN BRISTLECONE PINE-DOMINATED SKY ISLAND FORESTS1 

 
Abstract 

Little is known about fuel characteristics and dynamics in GBBP communities, 

and current monitoring programs inadequately quantify the surface and canopy fuels of 

this system. Using the Forest Inventory Analysis (FIA) plot variables of tree species, 

height, diameter at breast height (DBH), canopy base height (CBH), coarse (CWD) and 

fine (FWD) woody debris counts, and canopy fuels measurements, this paper examines 

the effects of climate-induced changes to fuel loading, fire hazard and risk on predicted 

changes in fire behavior and severity. Field transects were installed using FIA protocols 

along environmental gradients. Plots were located every 22 chains or ~440 meters along 

random transects on Mt. Washington in the Great Basin National Park (GBNP) and in the 

nearby Mt. Moriah Wilderness, NV. Additional plots were installed at Notch Peak (UT), 

Cave Mountain (NV), and Wheeler Peak (GBNP, NV). Linear regression showed that all 

classes of FWD decreased with elevation, and only 1000-hr fuels remained constant 

across elevational transects. This, combined with lower CBH and foliar moisture and 

increasing temperatures due to climate change, increases fire potential at the Great Basin 

bristlecone pine treeline, threatening the oldest individuals of this iconic species. New 

information about discontinuous fuels will aid in management of high elevation alpine 

treeline forests. 

1Suggested Citation: Gray, C.A. and Jenkins, M.J., 2017. Climate warming alters fuels across 
elevational gradients in Great Basin bristlecone pine-dominated sky island forests. Forest 
Ecology and Management, 392, pp.125-136. 
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1. Introduction  

High elevation five needle pines are declining throughout western North America 

from climate warming, mountain pine beetle (Dendroctonus ponderosae Hopkins), white 

pine blister rust (Cronartium ribicola), and the alteration of naturally occurring fire 

regimes (Gibson et al., 2008). Climate change effects are especially acute in sky islands, 

the isolated mountains surrounded by valleys of the Great Basin, as warming 

temperatures alter tree community distribution and contribute to increased surface fuels. 

Changing air temperature and precipitation may interact with fire regimes to shorten 

times to ignition and lower temperatures at ignition from lower moisture content (Gill et 

al., 1978) of lower elevation populations. Great Basin bristlecone pine (Pinus longaeva 

Bailey) is a high elevation, five needle pine, located near treeline and grows in isolated 

sky islands of California, Nevada, and Utah. Great Basin bristlecone pine (GBBP) are 

mainly adapted to survive low-severity surface fires (Zavarin and Snajberk, 1973), 

however fire-scarred GBBP are found at lower elevations with fire tolerant ponderosa 

pine (Lanner, 1999). Climate induced changes to the fire regime will alter surface and 

canopy fuel loading, species composition, fire hazard and risk, and fire behavior and 

severity on GBBP forests (Schoennagel et al., 2004). Additionally, the amount, 

arrangement, and continuity of GBBP fuels vary with elevation, community species 

composition, and time. Fuel loadings are strongly influenced by fire history and site 

characteristics providing a proxy for temperature change; however, these gradients have 

yet to be quantified.  
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1.1. Climate change and fire in treeline communities 

GBBP are among the oldest organisms on earth. Their distribution is limited to 

the highest elevations (2700-3700m) in mountain ranges of the Great Basin of the 

western United States. Because populations are isolated, effects of a warming climate are 

projected to be particularly acute (Bower et al., 2011). Increasing temperatures are 

expected to result in pine mortality and introduction of invasive weeds and lower 

elevation conifers, consequently changing surface fuels composition (Flannigan et al., 

2000; Gibson et al., 2008). Historically, fire was thought to be infrequent in GBBP 

communities at high-elevation sites because stands are open and productivity is low. 

When fires did occur at high elevations, they were usually small, low-severity surface 

fires (Bailey, 1970; Bradley et al., 1992). Moisture and climate have more influence on 

treeline stand dynamics than fire (Lanner, 1988, 1985). Early studies suggested that low 

tree density and sparse litter in the sub-alpine GBBP forests near treeline did not contain 

enough fuels to carry fire (Bradley et al., 1992; Lamarche, 1967; Lanner, 1988). At lower 

elevation sites, the role of historical fire regimes in dictating past stand characteristics and 

current distribution is not fully known, yet it is likely GBBP experienced a variable fire 

regime across gradients of site productivity and fuels connectivity. Fuels can be sufficient 

to carry fire in denser, low-elevation sites where GBBP occurs in mixed forests with 

limber pine (Pinus fexilis James) and/or Engelmann spruce (Picea engelmannii Parry) 

(Bidartondo et al., 2001). GBBP have a low resistance to fire, due to thin bark and low 

branches and retain their 2.5-3.5 cm needles up to 25-30 years (Bailey, 1970), increasing 

needle accumulation in crowns and on the surface under GBBP when compared to lower 

elevation pine species (Jenkins, 2011). 
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Limited studies of the closely related Rocky Mountain (RM) bristlecone pine 

(Pinus aristata Engelm.) and limber pine communities have found fire scars indicative of 

frequent, low intensity surface fires in sites that border grassy openings (Coop and 

Schoettle, 2011). Stand-replacing fire could be the primary disturbance regime for RM 

bristlecone pine, with a fire return interval of approximately 300 years (Baker, 1992). 

Evidence suggests that fire severity for RM bristlecone forest types varied through time 

and space (mixed-severity fire regime) as climate changed at centennial to millennial 

time scales (Coop and Schoettle, 2011). Additionally, frequent fire presumably played an 

important role in restricting RM bristlecone pine at lower elevations in pre-settlement 

times (Coop and Schoettle, 2011). Physical limitations on forest structure, such as age 

and density, affect the accumulation of surface fuels and crown fuels. For example, a 

study from boreal forests in Finland indicates a site's disturbance history is the 

determining factor for fuels quantity and decay class distribution (Aakala, 2010). While 

Baker (1992) found that stand-replacing fires in RM bristlecone pine initiated 

regeneration, little is known of post-fire succession in mixed-conifer forests containing 

GBBP. It is important to understand the fire history of GBBP/limber pine/Engelmann 

spruce and other montane forests in the Great Basin to develop appropriate adaptation 

strategies for managing these systems with a warming climate. 

Most wildfire and fuel models were designed for vegetation types that burn 

frequently, are characterized by continuous surface fuels, or are of interest to fire 

management (Rothermel 1972). Thus, discontinuous fuel associated with GBBP are not 

represented by traditional fuel models, and might be more similar to heterogeneous 

systems like piñon juniper woodlands. Extensive characterization of piñon juniper 
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woodlands have examined the sparse surface fuels and discontinuous tree canopies that 

curtail fire spread under low wind conditions (Floyd et al., 2008; Huffman et al., 2009; 

Miller et al., 2000; Romme et al., 2009). One physics-based fire model was applied to 

piñon juniper woodlands and results suggest sparse fuels in heterogeneous forests 

propagate fire because dead needles on the ground provide surface fuels, and allow 

increased winds through the canopy and sub-canopy (Linn et al., 2013). A fire behavior 

study in arid vegetation communities in Australia developed models to predict the 

sustainability of fire spread, fire type (surface or crown), rate of spread and flame height 

in a discontinuous fuel type (Cruz et al., 2013). They found that sustainability of fire 

spread was a function of litter fuel moisture with wind speed having a secondary but still 

significant effect. The continuity of fine fuels was also significant. Initiation of crown fire 

was primarily determined by wind speed. Cruz et al. (2013) presented the need to find 

threshold conditions for sustained fire propagation based on wind speed and fine fuel 

moisture content. While fire spread models could be helpful for assessing fuel changes in 

GBBP, validation data are unavailable, and therefore are outside the scope of this study. 

 
1.2. Environmental gradients 

Environmental gradients relate factors such as elevation, temperature, water 

availability, light, and soil nutrients, or their closely correlated surrogates. Forest 

composition usually changes along environmental gradients in predictable ways (Peet, 

2000). For example, elevation is often a surrogate variable which approximates changes 

in temperature and moisture (Peet, 2000). At lower elevations, moisture and temperature 

may allow for a forest to reach full crown closure, although a mid-elevation site might 
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not reach full crown closure. At upper alpine treeline (the edge of the habitat at which 

trees are capable of growing, found at high elevations and in frigid environments) tree 

density and decomposition is typically limited by a short growing season. However, high 

severity disturbances are rare (low frequency and high intensity) allowing for large tree 

size diversity (Miller, 1997). 

 
1.3. Fuels composition across environmental gradients 

Understanding how fuels structure and composition varies across environmental 

gradients in Great Basin sky islands is necessary to predict how fire frequency and 

intensity may change at high elevations with a warming climate. Studies that have 

modeled severity and length of forest fire season employing general circulation models 

(GCMs) have estimated that seasonal severity ratings may increase by 10–50% over most 

of North America, (Flannigan et al., 2000) suggesting that fire is an predominate agent of 

change and has the potential to overshadow direct effects of climate change on species 

distribution and migration. Our best tool at estimating the potential fire intensity of 

vegetation communities, or the amount of energy released during a fire, is fine and coarse 

woody debris surveys (Brown, 1974), yet fuels vary greatly depending on topography, 

meteorological influences, fuel type and characteristics of previous disturbance. Warming 

temperatures, lower humidity, and lower fuel moisture increase the potential for high 

severity fires (Abatzoglou and Williams, 2016; Littell et al., 2016). Research is needed 

that will help managers plan for transitions to new conditions and habitats, manage 

migrations along expected climatic gradients, prepare for higher-elevation insect and 
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disease outbreaks, and anticipate forest mortality events and altered fire regimes (Millar 

et al., 2007). 

The objective of this paper is to quantify spatially discontinuous fuel structure 

across changing environmental gradients in GBBP stands. This information is useful to 

understand how climate change affects the fire regime and GBBP health and abundance. 

We assume that elevation is a surrogate for warming air temperatures. To understand how 

global climate change will alter wildland fuels, we quantified differences in GBBP fuels 

and how fuels differ across elevation gradients. We compare the relationship between 

forest structure and environmental gradients to predict changes in surface and canopy 

fuels of GBBP communities with increasing temperatures. A comprehensive stand 

assessment and fuel survey of this iconic species provides a foundation upon which 

management decisions and dialogue can be based. Consequently, this research is valuable 

for forest and fire planning and management, as well as prioritization and design of 

restoration efforts and climate change adaptation strategies. 

 
2. Study Site 

The geographic extent of sampling was limited to sky islands of the Great Basin 

of Nevada and western Utah. Sample sites were at Washington Peak, NV (38.90°, -

114.31°, 3,475 m), Wheeler Peak, NV (39.00°, -114.30°, 3,415 m), and Mt. Moriah, NV 

(39.29°, -114.20°, 3,300 m). Additional individual plots were installed at Cave Mountain, 

NV (39.16°, -114.61°, 3,230 m), and Notch Peak, UT (39.14°, -113.40°, 2,800 m). 

The Great Basin of California, Nevada, and Utah has an arid climate characterized 

by Basin and Range topography, with numerous high mountain peaks and low 
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intermountain valleys. Upper treeline is approximately 3,300 m and lower treeline is 

approximately 2,100 m (Thompson and Mead, 1982). Mountains and basins create steep 

environmental gradients, which greatly influence the composition and structure of 

vegetative communities (Peet, 2000). As mentioned, fires are infrequent in high elevation 

GBBP forest due to sparse fuels (Fig. 1C). Yet this is not the case at the lower treeline of 

GBBP communities, which are dominated with shrubs and other forest species (Fig. 1A). 

The mid elevation sites are typical of mixed conifer forests (Fig. 1B).  

 

 

A. 
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Fig. 6. Fuels complexes of Great Basin bristlecone pine (GBBP) communities. (A) Lower 
elevation communities have higher fuels from denser vegetation and shrubs. (B) Mid 
elevations have less fuels than lower elevations, but retain considerable 1 hr, 10 hr, and 
100 hr fuels. (C) Fuels in the highest elevations near treeline are mostly litter and duff 
under individual trees. 

B. 

C. 
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3. Methods 

 
3.1. FIA data and sampling 

Data were from a combination of US Forest Service Forest Inventory and 

Analysis (FIA) program plots (O’Connell et al., 2015) that contained GBBP and 

additional study sites that were selected using expertise from local US Forest Service and 

National Park Service personnel. The FIA variables collected at each plot were tree 

species, height, diameter at breast height (DBH), canopy base height (CBH - the vertical 

distance between the surface fuels and live canopy fuels), seedling and sampling counts, 

and surface fuels measurements. All 34 plots that contained GBBP in the FIA database 

from Utah, Nevada and California were examined for forest structure and fuel loading. 

The FIA program uses a three phase sampling design covering all public and private land 

in the United States (Bechtold and Patterson, 2005; O’Connell et al., 2015). In Phase 1, 

remote sensing and aerial photography classify forested lands, percent tree cover, and 

forest use (Bechtold and Patterson, 2005). In Phase 2, four 7.3 m fixed-radius subplots 

spaced 36.6 m apart in a triangular arrangement with subplot 1 in the center and subplots 

2, 3, and 4 at azimuths of 0°, 120°, and 240° , respectively, from the center of subplot 1 

measure tree species, size, and density (O’Connell et al., 2015) (Fig. S1-B). Phase 3 

measurements assess forest health such as tree crown, soil, and lichen conditions, and 

down woody material (Bechtold and Patterson, 2005; Woodall and Monleon, 2010) and 

are not yet available in much of the U.S. 

Due to the relatively small sample of FIA plots with GBBP, 76 additional plots 

using FIA Phase 2 protocols were installed along elevational gradients to assess changes 
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in GBBP communities (total plots = 110). From the lowest elevation plot (2827 m), 

subsequent plot centers were located by pacing approximately 400 m up the fall line 

(mean distance between plots from GIS = 418 m) (Fig. S1-A). If no trees were located at 

the 400 m interval, this point was skipped. Survey plots are fixed radius plots, which 

were modified FIA plots (Fig. S1-B), each containing four subplots. Every plot contained 

at least one GBBP. Other species included limber pine (Pinus flexilis James), Engelmann 

spruce (Picea engelmannii Parry), subalpine fir (Abies lasiocarpa var. latifolia Nutt.), 

Douglas-fir (Pseudotsuga menziesii var. glauca Beissn), aspen (Populus tremuloides 

Michx.), piñon pine (Pinus edulis Engelm.), juniper (Juniperus spp.), mountain 

mahogany (Cercocarpus ledifolius), and ponderosa pine (Pinus ponderosa Douglas).  

 
3.2. Fuels sampling 

We quantified fuel loading, specifically the dry weight biomass of fuel per unit 

area (kg m-2) of four major surface fuel components: litter (freshly fallen non-woody 

material which includes leaves and cones), duff (partially decomposed biomass whose 

origins cannot be determined), fine woody debris (FWD; 0–7.6 cm diameter), and coarse 

woody debris (CWD, >7.6 cm diameter; commonly referred to as logs or 1000 hr fuels). 

Estimates of CWD biomass are often used for large-scale fire/fuel and carbon monitoring 

efforts while FWD comprise a substantial portion of fuel loadings and, to a large extent, 

determine fire behavior (Burgan and Rothermel, 1984). Down woody material, which 

includes twigs, branches, stems, and tree boles in and above the litter was sampled using 

Brown’s method (also called the line-intersect or planar-intersect method) (Brown, 1974). 

This transect method is used by FIA and Fire Ecology Assessment Tool/Fire Effects 
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Monitoring and Inventory System (FEAT/FIREMON) Integrated (FFI) programs (Lutes 

et al., 2009). Brown’s method samples both fine and coarse woody material by diameter 

class by counting and measuring the size of all woody pieces in the vertical sampling 

plane. The diameter classes correspond to the 1 hr (<1cm), 10 hr (1-2.5cm), 100 hr (2.5-

7.6cm), and 1,000 hr (>7.6cm) fuel classes used in the U.S. National Fire Danger Rating 

System (Deeming et al., 1977). Tallies of 1 hr and 10 hr fuels were made along the distal 

1.83 m of the fuels transects, while 100 hr fuels were made on 3.05 m, and 1000 hr fuels 

were made on 7.32 m of the transect (Fig. S1-B). Volume and weight were calculated by 

applying estimates of the woody material’s specific gravity following Brown (1982).  

 
3.3. Tree-specific fuels sampling 

Jenkins (2011) described the distribution of surface and aerial fuels under 

whitebark pine (Pinus albicaulis Engelm.) forests which are similar to other alpine 

treeline five-needle pine forests. He defined the pine fuel zone as fuels lying within the 

drip line of a tree and the non-pine fuel matrix as the area between adjacent trees. While 

installing our fuels transects, we observed similar surface and aerial fuel distribution in 

GBBP communities as whitebark pine forests (Fig. 6C). In high elevation GBBP stands, 

we expect that fuel influence on surface fire behavior will be a function of the 

distribution of pine fuel zone and non-pine fuel matrix. The pine fuel zone will increase 

as stand density increases and may compose 100% of the surface fuel matrix in very 

dense stands (Jenkins, 2011). To quantify this unique patchy and discontinuous fuel 

complex, we measured litter and duff of 105 trees in the four cardinal directions (NSEW) 

under three trees from each plot (Fig. 7). From the plot center, the closest GBBP tree 
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within the northern third (300°-60°), south-eastern third (60°-180°), and south-western 

third (180°-300°) were selected for sampling. In each cardinal direction away from the 

sample tree bole, litter and duff depth were measured at 60 cm intervals until the end of 

the tree crown (Fig. 7).  

 

 
Fig. 7. Sample design for individual tree surface fuels. From the plot center (inset) the 
closest GBBP tree within the northern third (300°-60°), south-eastern third (60°-180°), 
and south-western third (180°-300°) of plots were selected for sampling. Litter and duff 
were measured in the four cardinal directions (NSEW) under the three trees. In each 
cardinal transect, litter and duff depth were measured at 60cm intervals until the end of 
the tree crown was reached.  
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3.4. Fuels cover and continuity 

While there is a large shrub component (up to 90%) in some of the lowest 

elevation occurrences of GBBP (Fig. 1A), shrubs are rare or absent in most stands. Fuels 

cover is important because it describes the size of the fuel gaps that limit fire propagation. 

We assessed the relative amounts of fuels continuity by utilizing Landsat satellite images. 

The August 24, 2012 Landsat-7 Enhanced Thematic Mapper (ETM+) image was chosen 

because it was the cloud-free image closest to the dates of field sampling. The spectral 

indices Normalized Difference Vegetation Index (NDVI), Brightness, and Greenness 

estimate fuels cover and continuity. NDVI is a graphical indicator to assess whether a 

pixel contains live green vegetation. It is based on the ratio of the red and near-infrared 

(NIR) spectral values, computed as NDVI = (NIR-RED) / (NIR+RED) (Xavier and 

Vettorazzi, 2004). Brightness is an estimate of bright or dark soil values, and greenness is 

a measure of green vegetation. Brightness and Greenness are the first two components of 

a tasselled cap transformation (Huang et al., 2002), a method for enhancing spectral 

information content of Landsat TM data. Landsat pixels represent a uniform 30 by 30 m 

spectral sample, a larger spatial extent than our field plots, which gives a broader 

overview of fuels continuity. We intersected field plots with the calculated indices of the 

Landsat pixel. When our field plots were at the margins of pixels, we averaged the values 

for all pixels that intersected a plot. 

 
3.5. Canopy fuels 

Canopy fuels are the main fuel layer supporting crown fire spread (Cruz et al., 

2003). Canopy base height (CBH) is the vertical distance between the surface fuels and 
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live canopy fuels. CBH influences the likelihood of crown fire initiation and the 

interaction between combustion of surface and canopy fuels (Cruz et al., 2003). We 

collected CBH at 16 plots and used this and other forest structure variables such as DBH 

and tree height, to calculate several variables to assess the canopy structure and crown 

fire potential of GBBP stands. Canopy length (CL), the average length of the canopy fuel 

stratum, was calculated by subtracting CBH from tree height and averaging it over the 

stand. Canopy fuel load (CFL) in kg m-2 was estimated using the allometric foliage 

weight equations from Brown (1978). As mentioned in Cruz et al. (2003), no published 

allometric equations were found for GBBP, so whitebark pine was used as a surrogate 

based on similarity in the tree crown structure. Canopy bulk density (CBD) in kg m-3, is a 

measure of how closely canopy fuels are packed. It reflects the likelihood that fire can 

move through the forest and was calculated as CFL/CL (Cruz et al., 2003). Stand density 

(trees ha-1) was calculated using FIA tree expansion factors (US Department of 

Agriculture, 2007) as an estimate for inter-crown distance (ICD). ICD is the distance 

from one tree crown to an adjacent tree crown and is less in high-elevation five-needle 

pine stands compared to stands of other pine species with similar basal areas (Jenkins, 

2011).  

 
3.6. Foliar moisture content 

To assess live foliar moisture content (FMC), needles were randomly selected 

from four GBBP trees at three different elevations (low = 2640 m, mid = 2910 m, high = 

3160 m) during the first week of July, August, and September, 2012 (n = 36). 

Approximately 20 g of live needles from each sample were weighed to the nearest 0.01 g 



42 
 

   

and then oven-dried at 105° C for 48 hours and reweighed to obtain a dry weight 

(Matthews, 2010). Samples were kept frozen until processed. FMC was computed as the 

percentage of the oven-dry weight to dry foliage weight. 

 
3.7. Data analysis and statistics  

Forest floor CWD and FWD transect counts were converted to weight of fuel per 

unit area (kg m-2) following Brown (1982). Litter and duff weight per unit area (kg m-2) 

was estimated from depth measurements by using the equation developed for foxtail pine 

(Pinus balfouriana Grev. et Balf.), a close relative to GBBP (van Wagtendonk et al., 

1998). Regression coefficients via generalized linear models (GLM) were developed 

relating forest floor mass to elevation. To characterize surface fuels dissimilarity along 

environmental gradients, a non-metric multi-dimensional scaling (NMDS) ordination 

based on a matrix of Euclidean dissimilarities was calculated on FWD, CWD, litter and 

duff amounts. NMDS collapses information from multiple dimensions to fewer 

dimensions, so that data can be visualized and interpreted (McCune et al., 2002) (Fig. S3 

in supplemental information). Stand densities in trees hectare-1 were calculated for each 

plot using the tree expansion factors (coefficient used to scale each tree on a plot to a per-

area basis) in the FIA user manual (O’Connell et al., 2015). Regression coefficients were 

also calculated for stand density (trees ha-1) and height to live crown for the same 

elevational gradients. Post hoc mean comparisons using Tukey-Kramer tests were used 

when a significant difference among elevation class was identified in canopy fuels. A 

generalized linear model (GLM) with a negative binomial link was fit to the litter and 

duff measurements made in the four cardinal directions under the sampled individual 
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trees. We used the negative binomial distribution because data with many zero values 

cause over-dispersion, or greater variability than would be expected. GLMs are 

mathematical extensions of linear models that do not force data into unnatural scales, and 

thereby allow for non-linearity and non-constant variance structures in the data (Hastie 

and Tibshirani, 1990). The negative binomial distribution generates realistic 

heterogeneity representative of spatial clustering of individuals and other small-scale 

processes (Bolker, 2008). All statistics were completed using R statistical software (R 

Devolopment Core Team, 2015).  

 
4. Results 

4.1. FWD and CWD fuels loading 

The mean weight of fuel per unit area (kg m-2) for low (2700–3000m), mid 

(3000–3300m), and high (3300–3500m) elevation classes are reported in Table 4. As 

elevation increases, FWD and CWD decrease, limiting the surface fuels available to carry 

a fire. Separate regression coefficients were calculated for each FWD and CWD class 

(Table 5, Fig. 8) by elevation. All slope coefficients were significant (p < 0.001) except 

for the largest class (1000-hr fuels). All FWD classes, litter, and duff are highly 

correlated. CWD is not strongly correlated to any other classes (Fig. S2). NMDS 

ordination of the fuels classes is characterized by high linear fit (R2 = 0.99) and a low 

stress value (0.058) indicating a good representation of all variables in two dimensions. 

The ordination was highly correlated with elevation and slope indicating that all 

measurements of fuels (except CWD) change with elevation (Fig. S3). 
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Fig. 8. Coarse and fine woody debris (CWD and FWD), litter and duff in kg m-2 versus 
elevation in Great Basin bristlecone pine communities. Regression coefficients for all 
fuel sizes except 1000-hr fuels were significant (p < 0.001) including litter and duff. 
Shaded areas are the 95% confidence intervals.  
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Table 4  
Mean weight of fuel per unit area (kg m-2) and standard error (kg m-2) for fine woody 
debris (FWD), coarse woody debris (CWD), and litter and duff fuel at low, mid and high 
elevations. (Litter and duff depth measured in mm in parenthesis). 

Elevation  1hr 10hr 100hr 1000hr Litter 
(mm) 

Duff 
(mm) 

Low 

Mean 
0.12 0.21 0.49 3.94 

0.85 
(9.6) 

18.6 
(7.4) 

SE 
0.02 0.03 0.08 0.96 

0.11 
(1.2) 

4.2 
(1.6) 

Mid 

Mean 
0.04 0.10 0.32 3.79 

0.62 
(7.1) 

12.0 
(4.8) 

SE 
0.01 0.02 0.06 0.90 

0.07 
(0.7) 

1.7 
(0.7) 

High 

Mean 
0.03 0.08 0.15 2.77 

0.43 
(4.8) 

7.2 
(2.9) 

SE 
0.01 0.02 0.04 0.79 

0.08 
(0.9)  

1.9 
(0.7) 

All 

Mean 0.06 0.12 0.31 3.50 0.61 
(6.9) 

12.1 
(4.8) 

SE 0.01 0.01 0.04 0.53 0.05 
(0.6) 

1.4 
(0.6) 

 
 
Table 5  
Regression coefficients of fuel per unit area (kg m-2) weight for FWD, CWD, litter and 
duff fuel classes by elevation. N.S. = not significant. 

Fuel class Slope Intercept p-value Sig-level R2 
1-hr -0.0002 0.696 <0.001 *** 0.301 
10-hr -0.0003 1.116 <0.001 *** 0.182 
100-hr -0.0007 2.671 <0.001 *** 0.016 
1000-hr N.S. N.S. N.S. N.S.  
litter -0.0010 3.75 <0.001 *** 0.161 
duff -0.0010 3.71 <0.001 *** 0.170 

 

4.2. Stand density, fuels cover, and community composition 

GBBP stand density (trees ha-1) also significantly decreased with elevation (Fig. 

9). Stand density is an important contributor to the continuity of surface and aerial fuels 

(Cruz et al., 2003). Only 13% of variability is explained by the regression model (R2 = 

0.133), likely due to only examining stands that have at least one GBBP in the plot. If 
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nearby forest stands at mid elevations (2600-3000 m) were included, there would likely 

be higher stand densities. Stand density index (SDI) (Reineke, 1933; Shaw, 2000), 

describes density that is sensitive to the diameter of the trees, and was calculated for all 

trees and for each plot. The SDI was not significant, however SDI is best used as a 

summary variable in even aged stands (Shaw, 2000). SDI is less applicable to long lived 

GBBP communities, in which very old trees may have a relatively large DBH with little 

live crown compared to more typical timber producing conifer species. The number of 

species that make up forest communities also decreases with elevation, from up to 8 

dominate tree species at lower elevations to mostly GBBP, limber pine and Engelmann 

spruce at upper alpine treeline. At lower and mid elevations, GBBP makes up only a 

minor component (7-14%) of the mixed forest community, growing with other lower 

elevation tree species including white and subalpine fir, piñon/juniper species, ponderosa 

pine and Douglas-fir (Fig. 9).  
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Fig. 9. Stand density (trees hectare-1) versus elevation. Points are density at each 
individual plot with actual elevation, bar-graph is species density parsed into 100 m bins. 
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More important than fuel loads are the size of the fuel gaps that limit fire 

propagation. The results from the Landsat indices of vegetation cover reiterate the 

findings from CWD and FWD sampling. As elevation increases, NDVI and Greenness 

decrease, indicating less vegetation and fuels available to carry a surface fire. Conversely, 

as elevation increases, Brightness (a measure of exposed soil) also increases, indicating 

larger gaps between trees, or less continuous fuel cover (Fig. 10). 
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Fig. 10. NDVI, Brightness, and Greenness (Landsat-7 ETM+, August 24, 2012) versus 
elevation in Great Basin bristlecone pine communities. Regression coefficients were all 
significant (p < 0.001). Shaded areas are the 95% confidence intervals. 
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4.3. Canopy fuels 

Canopy base height declined significantly with elevation (p < 0.001, R2 = 0.74) 

(Fig. 11). As elevation increased, the branches of GBBP were closer to the ground, which 

could facilitate fire into the crown of the trees. All crown fuels metrics vary by elevation 

(Table 6). Tree height, CBH and crown length (CL) decreased with increasing elevation, 

while available crown fuel load (CFL) and crown bulk density (CBD) increase with 

elevation (Table 6). 

 
Fig. 11. Great Basin bristlecone pine crown base height (CBH) (the distance from the 
ground to the first tree branches) versus elevation. Shaded areas are the 95% confidence 
intervals. 
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Table 6  
Great Basin bristlecone pine canopy fuels: tree height (Ht), canopy base height (CBH), 
diameter at breast height (DBH), Canopy length (CL), Canopy fuel load (CFL), and 
Canopy bulk density (CBD) average for low, mid and high elevations classes. Different 
lower case letters (a, b, c) indicate significant differences between elevation classes (α = 
0.05). 

Elevation Ht (m) CBH (m) 
DBH 
(cm) CL (m) CFL (kg m-2) CBD (kg m-3) 

Low 12.9a 0.9a 37.3a 12.0a 0.36a 0.03a 
Mid 12.0a 0.9a 54.3b 11.0a 1.12b 0.09a 
High 7.5b 0.6b 74.6c 6.9b 1.84b 0.22b 

 

Foliar moisture content (FMC) at the three elevations sampled also significantly 

decreased at the upper elevation site (ANOVA with p < 0.001) while the mid and low 

sites were not significantly different (Fig. 12). FMC varied significantly by month. 

September had the highest FMC and July the lowest (Fig. 12) with values likely 

influenced by monsoonal precipitation events.  

 
Fig. 12 Live foliar moisture content (FMC) collected from Great Basin bristlecone pines 
at low, mid, and high elevations. 
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4.4. Individual tree fuel loading 

Measurements of litter and duff in the four cardinal directions (NSEW) directly 

beneath GBBP trees showed higher litter and duff fuel loads near the bole of the tree 

(Fig. 7, Fig. S4, and Fig. 13. Fitted curve of regression model of combined litter and duff 

around the bole of a tree. Fitted curves in each cardinal direction correspond to logistic 

regressions with a negative binomial link.). A negative binomial model was fit to the 

combined litter and duff for each cardinal direction (Fig. S4). The fitted curve for each 

cardinal direction was draped on a surface (mm of litter and duff) around the tree to 

visualize fuel loads underneath an individual tree (Fig. 13). While there might not be 

sufficient fuels between individual trees to carry a surface fire, nearly each individual tree 

had a pocket of litter and duff directly beneath it. 
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Fig. 13. Fitted curve of regression model of combined litter and duff around the bole of a 
tree. Fitted curves in each cardinal direction correspond to logistic regressions with a 
negative binomial link. (Vertical exaggeration = 300x) 

 
6. Discussion  

The sky islands of the Great Basin are predicted to experience a 2-4 °C increase in 

March-April mean temperature, a 60-100% decrease in mean April snow water 

equivalent (SWE), yet possibly experience a 10-20% increase in October-April 

precipitation by the end of the 21st century (Scalzitti et al., 2016). While there is 

uncertainty in how climate change will affect mountain regions of the Great Basin, 
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extensive research has modelled probable affects. Salzer et al. (2014) used tree ring 

chronologies to show that GBBP have a positive growth-response to increasing 

temperature at elevations 60–80 vertical meters below treeline in the White Mountains of 

California. Chronologies from 80 m and farther below treeline are sensitive to 

precipitation change (similar to lower elevation chronologies) and do not correlate 

strongly with temperature (Salzer et al., 2014). Using dynamical downscaling and 

applying a mean monthly perturbation to boundary conditions to simulate future climate, 

the role of temperature and precipitation in spring snowpack variability has been modeled 

throughout the western U.S. (Scalzitti et al. 2016, IAP-Climate Change Assessment). 

Assuming that GBBP treeline communities are temperature limited, it is reasonable to 

expect the stands to more closely approximate the conditions that are currently at the mid 

and low elevations (historically 2-4 °C warmer on average). Our research indicates that if 

climate warming changes fuel conditions, then the frequency of fire in GBBP systems at 

low and mid elevations could increase where stands are typically denser and surface fuel 

is greatest. While rare, wild fires such as The Carpenter 1 fire in southern Nevada (July, 

2013; 36.25, -115.69) and the Phillips Fire in Great Basin National Park, (September, 

2000; 38.90, -114.31) that started in lower elevation fuel types and moved through the 

crowns of GBBPs with the aid of extreme fire weather, could become more likely. The 

accumulation of fuels in lower elevation vegetation communities have proven to amplify 

the effects of fire in the high elevation/low fire return interval systems. 

Warmer temperatures will likely increase the number of days in each fire season 

that FWD will be at its driest. FWD are fast drying fuels, which greatly affect ignition 

and spread of surface fires; CWD responds to changes in moisture and temperatures over 
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months and affect the latency of wildfires more than the rate of spread. FWD (1 hr, 10 hr, 

and 100 hr fuels) for all fuel sizes decreased with elevation in GBBP transects (Fig. 8), 

although this pattern did not hold for CWD (1000 hr fuels). Litter depth in GBBP sites 

ranged from 12 mm at the lower elevation sites to 5 mm at treeline sites while duff depth 

ranged from 10 mm to 3 mm, respectively. While the trend of decreasing surface fuels 

with elevation is consistent across most fuels types, there is considerable variation across 

the sample sites (R2 values ranged from 0.15 to 0.30). Disparities could be from the 

influence of other species, such as Engelmann spruce and limber pine, that contribute to 

stand structure, composition, and fuels. When surface fuels are contiguous, flames easily 

advance across the landscape, conversely, surface fires do not spread with discontinuous 

fuels, such as those in this study’s high elevation sites. This confirms previous 

observations that fires in low-density stands near treeline were likely rare and small, due 

to the scarcity and discontinuity of fuels (Bailey, 1970). Litter and duff depths found in 

other Great Basin fuels plots ranged from mean depths of 20 mm and 6 mm, respectively, 

at the Clover Mountains dominated by ponderosa pine, to 12 and 3 mm, respectively, at 

Mount Irish dominated by piñon juniper (Cheek et al., 2012). Yet we measured litter fuel 

depths closer to 35 to 50 mm, which consider the high amounts of litter fuels that are 

directly beneath individual trees (Fig. S4 and Fig. 13). Litter fuel depths decrease to 

values closer to the FIA measurements at about 3 meters from any individual tree. 

Combined with patches of shrubs and prostrate spruce thickets, fire susceptibility may be 

higher than indicated by FIA measurements since FIA plot centers are usually not located 

directly beneath trees.  If fire starts in low elevations and extreme fire weather exists, the 

unique patchy fuels found at mid and high elevations could make upper elevations more 
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susceptible to fire. This is not apparent from standard fuel models developed for lower 

elevation fuel types. 

Drier fuels at all elevations increases fire hazard. Additionally, for GBBP, CFL 

and CBD increase at higher elevations (Table 6), resulting in denser crown fuels within 

individual trees. Crown fires likely are dependent upon weather, especially atmospheric 

stability and wind speed. Crown fire prediction models use canopy bulk density (CBD) as 

the index of canopy fuel characteristics to determine whether fire will initiate and spread 

either vertically or horizontally through a forest canopy. CBH is another important factor 

in predicting crown fires (Scott, 2006). CBH is less than 50 cm at the highest elevations 

of GBBP (Fig. 11. Great Basin bristlecone pine crown base height (CBH) (the distance 

from the ground to the first tree branches) versus elevation.), and live FMC (Fig. 12) 

decreased from 80-87% at low elevations to 71-78% at the highest elevations. This 

suggests that while the likelihood of a surface fire decreases with elevation, the potential 

for crown fire and spotting is still present. Thus, the greatest fire threat to GBBP growing 

near treeline is from fires ignited in the mixed conifer forests below and progressing as 

crown fires into pure GBBP stands during which threshold wind conditions and fuel 

moistures are exceeded. More research is needed to identify wind speed and fuel moisture 

threshold conditions that would sustain fire propagation.  

In other Great Basin forest types, CBD at Mount Irish (37.64, -115.40) ranged 

from 0.04 to 0.18 kg m-3 in juniper types, to 0.02 to 0.23 kg m-3 at the Clover Mountains 

(37.40, -114.33) (Cheek et al., 2012), indicating higher severity potential crown fire 

behavior at low elevations. Crown fires normally occur because of steep topography, high 

wind speeds (Wolf, 2003), and canopy bulk density (CBD) of 0.05 kg m-3 or more (van 
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Wagtendonk, 2006). While the samples of GBBP at the low elevations had relatively low 

CBD (0.03 to 0.09 kg m-3, Table 6), these trees are co-located with other tree species 

(piñon, juniper, and ponderosa pine) so that CBD and ICD sometimes support crown fire 

and high surface fuel loads. The composition and structure of the adjacent forests at the 

lower elevation margins of GBBP varied greatly and often have a large shrub component. 

A thorough inventory of these lower margins is necessary to predict the hazard to GBBP. 

GBBP pines at the highest elevations had a mean CBD of 0.22 kg m-3 in the areas with 

the lowest CBH, while the ICD at these elevations becomes too large to carry a crown 

fire. While CBH and FMC decrease in GBBP at higher elevations (Fig. 11 and Fig. 12), 

the decreased stand density (Fig. 9),which likely reduces ICD (Jenkins, 2011), reduces 

the probability of a moving crown fire. The higher CBD values at high elevations may 

not be representative however, because many of these ancient trees become krumholtz 

(twisted and deformed) with only a portion of the tree remaining alive, which means that 

the allometric equation derived for whitebark pine may not be applicable to these trees. 

Fires that spread beyond individual trees are dependent on increasing fuel types and 

amounts from climate warming and introduction of lower elevation species.  

For decades, fire suppression has contributed to forest stand-level effects such as: 

increases in woody fuel loading, canopy cover, vertical fuel distribution, canopy stratum, 

and fuel continuity, which in turn leads to increased fire intensity, severity, and size as 

fuels increase and become more connected. Interestingly however, fire suppression, 

which produced unnatural fuel accumulations in most locations in the American West, 

was not applied to high elevation pine forests where GBBP are located (Schoennagel et 

al., 2004). Regardless, quantifying GBBP fuels is important for forest management. 
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Large, severe fires have sizable economic implications when considering the costs of fire 

suppression, loss of valuable timber, poor air quality, soil erosion, as well as impacts on 

downstream water quality. Although stand replacing fires are rare, the more precise data 

and analysis presented here identifies areas that are the most susceptible to fire. 

Management of GBBP stands might be novel or unprecedented, but fuels management 

could have large impacts on preventing stand replacing fire in these highly prized 

communities. How GBBP communities regenerate is also of great interest. Post-fire 

establishment may be favored in certain mixed conifer ecotones, lower-elevation 

limestone soils, and other sites that are marginally productive for other conifer species 

but relatively good for GBBPs. 

Considering the recent ecological impacts of mountain pine beetle epidemics and 

blister rust in whitebark and limber pines, a major component of treeline in the northern 

Rocky Mountains, more attention to insect and disease epidemics in GBBP communities 

is needed. Recently, tree chemistry research showed that bark beetles are not attracted to 

GBBP (Gray et al., 2015). Tomback and Resler (2007) examined the cascading 

ecological effects of losing treeline whitebark pine and expected changes in landscape 

vegetation patterns in the context of climate change. They speculate that exotic pathogens 

could potentially confound predictions of treeline responses to global warming in many 

geographic regions and other communities (Tomback and Resler, 2007). Resistance of 

GBBP to blister rust is unknown, yet laboratory experiments suggest GBBP lack genetic 

resistance (Kinloch Jr and Dupper, 2002).  More research is needed on these topics. 
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7. Management Implications 

Overall, our knowledge of GBBP ecosystems is poorly understood. For example, 

GBBP longevity still remains a mystery, but improved understanding may be beneficial 

for creating appropriate adaptation strategies to manage this species with a changing 

climate. Historically, GBBP pine stands experienced low to high severity fires, and fuels 

structures changed considerably across elevational gradients. In low elevation, mixed 

species stands, fuels are often heavy and in close proximity to anthropogenic ignition 

sources. Yet at high elevations, GBBP typically grow on limestone outcroppings that 

provide little or no surface fuels to propagate a wildfire. In other words, stands are non-

uniform so it is difficult to make blanket fire response predictions. In the absence of fire, 

stands are likely to exhibit gradual infilling by other local conifer, shade-tolerant tree 

species or invasive weed species with climate warming. Tree species that occur at the 

high-elevations and xeric margins provide ecological services that likely cannot be 

replaced. Climate change may manifest as warming temperatures with more days of 

extreme fire weather and reduced snowpack. Management in response to these threats to 

GBBP must balance a range of concerns and may include both the application and 

prevention of fire. How should fuels distribution be spread across the landscape? Should 

there be diversity at the stand level or in a mosaic of different patches and age 

distributions? How will we manage this with respect to climate change? Finally, how 

might management tools, including fire (or the lack thereof), be best used to encourage 

such conditions? Applied research is needed to gain insight into these questions. More 

research and improved fire models for patchy fuels are needed to predict and identify 
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appropriate fire management to protect valuable stands, promote regeneration, and 

diversify age classes.  
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Supplemental Figures 

 

 
Supplemental Fig. S1. (A) Gradient transect of additional FIA protocol plots on Mt. 
Washington, NV. (B) FIA plot layout for stands structure and fuels sampling. Distance 
between sub-plot 1 and sub-plots 2, 3, & 4: 36.6 m at angles (degrees) 150, 210, and 270 
respectively. Adapted from USFS Forest Inventory and Analysis field guide (2007). 
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Supplemental Fig. S2. Correlation Matrix of coarse and fine woody debris (CWD and 
FWD), litter and duff. Fuel class along diagonal with histograms. Pearson's correlation 
coefficient (p value), correlation coefficient (r value) in upper right quadrants. Scatter 
plots with curve fitted using Lowess smoothing in lower left quadrant. 
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Supplemental Fig. S3. Non-linear Multidimensional Scaling (NMDS) plot of surface 
fuels components (fine woody debris (FWD, coarse woody debris (CWD), and litter and 
duff) in Great Basin bristlecone pine (Pinus longaeva Bailey) stands.  Black vectors are 
environmental gradients that are significantly correlated (α = 0.05) to the fuels ordination. 
Points are plots along sampling transect, colors indicate elevation class, and points closer 
to each other are more similar in fuels characteristics. 
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Supplemental Fig. S4. Combined litter and duff depth (mm) from each cardinal transect 
sampled at 60cm intervals from the bole of the tree. Fitted curves correspond to logistic 
regressions with a negative binomial link. Gray lines around the curves are the 95% 
confidence interval. 

 
  



69 
 

   

CHAPTER 4 

GREAT BASIN BRISTLECONE PINE VOLATILES AS A CLIMATE CHANGE 

SIGNAL ACROSS ENVIRONMENTAL GRADIENTS 

 
Abstract 

Alpine treeline species, like Great Basin bristlecone pine (GBBP) (Pinus 

longaeva Bailey), have received attention for their potential as indicators of climate 

change. Most studies have focused on climate-induced changes to treeline position, but 

climate effects on the physiology and stress of treeline plants remain poorly understood. 

Volatile organic compounds (VOCs) could provide insights into plant responses to 

climate change since the blends of VOCs released by plants exhibit variation in response 

to the environment, and can convey information about the status of the emitting plant. We 

collected and analyzed GBBP VOCs and within needle chemistry along elevational 

gradients (lower treeline, upper treeline, and midway in between) near the northern and 

southern geographic limits of GBBP. Random Forest analysis distinguished elevation 

classes using VOCs with 83% accuracy and identified the compounds most important for 

classification. Ordination revealed that temperature, heat load index, and relative 

humidity were each significantly correlated with VOCs. Within-needle chemistry 

provided less predictive value in classifying elevation class (68% accuracy) and was 

correlated only with heat load index. These findings suggest that GBBP VOCs are highly 

sensitive to the environment and could be used to assess and predict tree status and 

responses to environmental change. The potential effects of climate- and elevation-

induced changes in GBBP chemistry on abiotic and biotic interactions are discussed. 
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Introduction 

Treeline species that live in harsh, high-elevation environments are particularly 

susceptible to climate change and can serve as early signals of change (Körner 1998, 

2012). This is thought to be because trees growing near treeline are at or near their 

survival limits and so should be highly sensitive to environmental change and respond 

earlier than the rest of the forest (Smith et al. 2009, Körner 2012). Components of climate 

change such as temperature, elevated concentrations of CO2, and altered precipitation can 

each affect alpine treelines, with warming being the best studied (Grace et al. 2002, 

Smith et al. 2009, Körner 2012). For example, warming temperatures can alter alpine 

treelines by increasing tree mortality, promoting invasive plant establishment, changing 

forest fuels, plant community structure, and altering snowfall and melt patterns 

(Flannigan et al. 2000, Gibson et al. 2008, Balch et al. 2013). Warming temperatures can 

also increase risk of mortality to treeline species by stimulating abiotic and biotic 

disturbances such as mountain pine beetles (Dendroctonus ponderosae Hopkins), white 

pine blister rust (Tomback and Resler 2007), and altering natural fire regimes (Gibson et 

al. 2008, Gray and Jenkins 2017). To date, most studies that have examined climate 

effects on alpine treelines have focused on the advance or retreat of treeline position 

(Gehrig-Fasel et al. 2007, Paulsen and Körner 2014, Schibalski et al. 2014, Millar et al. 

2015, Bruening et al. 2017). Climate effects on the physiology of treeline plants have 

received much less attention and remains largely unknown, despite the fact that 

understanding the impacts of environmental change on plant physiology could help 

predict how treelines will change. 
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Great Basin bristlecone pine (Pinus longaeva Bailey) (GBBP) is an alpine 

treeline, five-needle pine that has served as an important indicator of climate change 

(Körner 1998, Rochefort et al. 1994, Salzer et al. 2014, 2009). GBBPs are the oldest trees 

on earth, with some individuals exceeding 5,000 years old. This longevity has allowed 

GBBP to play an important role in climate change research due to their extremely long 

tree-ring chronologies (Cook et al. 1995, Cook and Peters 1997) with recent studies 

finding increased tree-ring growth at the highest elevations (Salzer et al. 2014, 2009). 

GBBP distribution is confined to the highest mountains (2700-3700m) of the Great Basin 

in the western United States, where global climate models predict a mean 2-4 ºC increase 

in annual temperatures within the next several decades (Scalzitti et al. 2016, IAP-Climate 

Change Assessment) accompanied by a likely decrease in precipitation (Cook et al. 

2010). The physiological responses of GBBP to warming temperatures and decreases in 

precipitation are largely unknown. Moreover, such warming could add stress by 

increasing wildfire activity (Westerling et al. 2006) in these habitats with historically 

sparse fuel conditions, in part by increasing fine woody surface fuels (Gray and Jenkins 

2017). 

Volatile organic compounds (VOCs) could be useful for detecting and measuring 

plant physiological responses to environmental change because the quantity and 

composition of VOCs emitted by a plant can be affected by the environment (Peñuelas 

and Staudt 2010, Dudareva et al. 2006, Jaeger et al. 2016). Plant VOCs have many 

known ecological roles, such as attracting pollinators (Burkle and Runyon 2016) and 

plant defense against herbivores, pathogens, and parasitic plants (De Moraes et al. 2001, 

Gray et al. 2015, Huang et al. 2012, Runyon et al. 2006). VOCs emitted by GBBP also 
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play important roles in defense, for example by repelling host-searching mountain pine 

beetles (Gray et al. 2015). Plant VOCs can also protect against certain abiotic stresses, 

including high temperatures and oxidative damage (Holopainen and Gershenzon 2010). 

In general, both biotic and abiotic stress increases VOC emissions from plants 

(Holopainen and Gershenzon 2010), and trees are known to emit VOCs in response to 

herbivory and changes in heat, light, precipitation, and season (Helmig et al. 2007, 

Trowbridge et al. 2014). Moreover, elevated temperatures typically increase VOC 

emissions (Tingey et al. 1980), and elevated CO2 can increase emission of volatile 

terpenoids (Himanen et al. 2009, Yuan et al. 2009, O’Neill et al. 2010), which may 

become more common, especially at high elevation treeline (Peñuelas and Llusià 2003). 

This study quantifies GBBP tree chemistry across elevational gradients near the 

southern and northern extent of GBBP’s distribution as an approximation for future 

climate conditions. Elevation gradients are valuable surrogates for inferring broader 

climate change effects by providing variation in abiotic factors (Beier et al. 2012, 

Hodkinson 2005, Körner 2007). Moreover, because the elevation gradients at each 

latitude used in this study occurred over short distances (< 2.5 km), this minimized the 

confounding effects of biogeographical differences such as the community of plants, 

herbivores, and pathogens that are present (Hodkinson 2005). We address the following 

research questions in this paper: 

- How does GBBP chemistry change with elevation, and is this correlated with air 

temperature, relative humidity (RH), and heat load index and thus to climate change?  

- Do VOCs emitted from GBBP increase at lower elevations as a proxy for climate 

warming? 
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- Can we apply understanding of GBBP response to elevational gradients to interpret 

potential susceptibility to threats like fire or mountain pine beetles?  

 
Materials and Methods 

Study Sites 

The Great Basin of western United States has an arid climate and basin and range 

topography, with numerous high mountain peaks (sky islands) separated by low 

intermountain valleys. In the Great Basin, upper treeline occurs at approximately 3,300 m 

and lower treeline at approximately 2,100 m (Thompson and Mead 1982), although this 

varies with latitude. Mountains and basins create steep environmental gradients, which 

greatly influence the composition and structure of vegetative communities (Peet 2000). 

For this study, we exploited these environmental gradients by sampling GBBP trees in 

two sky islands in Nevada near the northern and southern extremes of GBBP’s 

geographic range. Sample transects were installed at Cave Mountain, NV (39.167, -

114.616) and the Spring Mountains National Recreation Area, NV (36.293, -115.686) 

(Figure 14A). Three discrete elevation classes, “low” “mid” and “high”, were sampled at 

each site. The low elevation plots were established at the lower extent of GBBP (3005 m 

at Cave Mtn, 2640 m at Spring Mtns), high elevation plots at upper treeline (3230 m at 

Cave Mtn, 3160 m at Spring Mtns), and mid elevation plots halfway between the two 

(3060 m at Cave Mtn, 2910 m at Spring Mtns) (Figure 14B). For each elevation class, all 

trees sampled were within ±10 m elevation. Other tree species occurring at the plots (not 

all species ocurred at all plots) included limber pine (Pinus flexilis James), Engelmann 

spruce (Picea engelmannii Parry), subalpine fir (Abies lasiocarpa var. latifolia Nutt.), 
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aspen (Populus tremuloides Michx.), piñon pine (Pinus edulis Engelm.), juniper 

(Juniperus spp.), mountain mahogany (Cercocarpus ledifolius), ponderosa pine (Pinus 

ponderosa Douglas), and white fir (Abies concolor). 

 

 
 

Figure 14. Location of Great Basin bristlecone pine study sites in Nevada (A) and 
elevational gradients for both study sites (B) that were established using lower extant of 
GBBP (Low), upper treeline (High), and halfway between the two (Mid). 

 

At each site and elevation, four GBBP trees of similar size were haphazardly 

selected that showed no obvious signs of stress (e.g . herbivory, pathogen attack). Mean 

height of sampled trees was 13.5 + 0.8 m, and mean diameter at breast height (dbh) was 

74.5 + 7.8 cm (n = 24). Trees were sampled once each month from July to September in 

2013, at each site, it took field crews two days to sample trees from the three elevations. 

VOCs were sampled three times daily (1000, 1200, and 1400) in the first week of July, 

August, and September (total of 18 sample periods per month), needles for within-needle 

terpene concentrations were collected from each tree at the end of the day (1400). The 

July samples from the Spring Mtns were omitted from analysis because sampling were 

affected by the nearby Carpenter 1 fire (July, 2013, 36.25, -115.69, ~4 km away) (total 

B) A) 
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VOC collections: Cave Mtn = 108, Spring Mtns = 72). Other environmental variables 

measured at time of sampling were temperature (°C), relative humidity (RH in %), and 

topographic heat load index (HeatI). Heat load index (HeatI), or the potential direct 

radiation at a site, is not symmetrical, as a slope with afternoon sun will be warmer than 

an equivalent slope with morning sun. Heat load index was calculated using the equation: 

HeatI = 1-cos(θ – 45) / 2 , where θ = aspect in degrees east of north, as an approximation 

of heat, rescaling aspect to a scale of zero to one, zero being the coolest slope, and one 

being having to most direct radiation (McCune and Keon 2002). The only environmental 

variables measured for within needle compounds were heat load index and elevation, as 

needles were collected once at the end of a sampling day. 

Collection and analysis of VOCs and within-needle chemistry 

Volatile emissions were collected by enclosing 50 cm of the apical end of one 

randomly selected branch with clear Teflon bags (50 cm wide x 75 cm deep, American 

Durafilm Co., Holliston, MA, USA). The apical branches were approximately 1.5 m 

above the forest floor, following the methods of Page, Jenkins, and Runyon (2012) and 

Gray et al. (2015). The same branch on each tree was marked with flagging and was used 

for all VOC sampling periods. Air was pulled from a side port (0.5 l min-1) of the Teflon 

bags through volatile traps containing 30 mg of the porous polymer adsorbent HayeSep-

Q (Restek, Bellefonte, PA, USA) using portable volatile collection systems comprising 

automated vacuum pumps (Volatile Assay Systems, Rensselaer, NY, USA). VOCs were 

collected for 30 min and Teflon bags were removed between sample times. VOCs were 

eluted from traps with 200 µl of dichloromethane, and 1,000 ng of n-nonyl acetate was 
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added as the internal standard. After the last sampling period in September, the branches 

sampled for VOCs were clipped and needles removed and weighed. 

To measure within-needle chemistry, approximately 20 g of needles from 

randomly selected branches (1 to 2 m above the forest floor) on the same trees were 

removed at the end each sampling date and stored on ice in a cooler (for 2-3 days) and 

then in a freezer at -80° C until processed. Terpenoids were extracted from GBBP foliage 

following methods of Ormeno et al. (2009) and Page et al. (2014). For each sample, 

needles were thoroughly mixed and 2 g randomly selected and ground into a fine powder 

in liquid nitrogen using a mortar and pestle. Approximately 0.1 g of powdered needles 

were transferred into 2-ml FastPrep tubes (MP Biomedicals, Solon, OH), and 1.5 ml of 

cyclohexane was added and sonicated at room temperature for 20 min. Vials were then 

centrifuged at 13,000 g for 1 min and 200 ml of cyclohexane (top layer) was transferred 

to a gas chromatograph vial and 1000 ng of n-nonyl acetate was added as the internal 

standard. 

VOC and needle samples were analyzed using an Agilent 7890A gas 

chromatograph (GC) coupled with a 5975C mass spectrometer (MS) and separated on an 

HP-1 ms (30 m x 0.25 mm inside diameter, 0.25 µm film thickness) column, helium was 

used as the carrier gas. The GC oven was maintained at 35° C for 3 min and then 

increased by 5° C min–1 to 200° C, then 25° C min–1 to 250° C. Quantifications were 

made relative to the internal standard using ChemStation software (Agilent Technologies, 

Wilmington, DE, USA). Identification of compounds were made using the NIST 08 Mass 

Spectral Search Program (National Institute of Standards and Technology, Gaithersburg, 

MD, USA) and confirmed by comparing retention times and mass spectra with 
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commercial standards, when possible. Remaining unidentified compounds were labeled 

as unidentified monoterpenoids (MT), unidentified sesquiterpenoids (ST), unidentified 

benzenoids (B), or unidentified green leaf volatiles (GLVs). VOC emission rates were 

corrected for needle weight (ng/hour/gram) as were within-needle chemical 

concentrations which are reported on a fresh needle weight basis (μg/gram). 

 

Statistical analyses 

Analysis of variance (ANOVA) 

Statistical analyses for VOCs and within-needle compounds were performed 

using the non-parametric Kruskal-Wallis one-way analysis of variance (ANOVA) 

(Kruskal and Wallis 1952) to identify compounds with significant (P ≤ 0.05) differences 

among elevations, and to test whether samples originate from the same distribution. To 

identify which elevation classes had significant differences in compounds, pairwise 

differences between all sampling periods were square root or log-transformed to 

normalize data and stabilize variance, and assessed with a Tukey’s HSD means test 

(Sokal and Rohlf 1995) and calculated using the Stats package in the R v.3.3.1 statistical 

software (R Development Core Team 2016). 

 
NMDS ordination 

To characterize VOC dissimilarity along environmental gradients, a non-metric 

multidimensional scaling (NMDS) ordination based on a matrix of Euclidean 

dissimilarities (Dixon 2003, Kenkel and Orlóci 1986) was calculated on the rank order 

proportion of VOCs. Ordination is the ordering of sample units along an axis, multiple 
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axes, or a gradient (McCune et al. 2002), and is most often used in ecology for gradient 

analysis and is used to select the most important factors, separate patterns, and reveal 

unforeseen patterns and processes (McCune et al. 2002). The goal of NMDS is to 

collapse information from multiple dimensions into just a few, so that they can be 

visualized and interpreted. The iterative NMDS procedure defines position of variables in 

multidimensional space, constructs an initial configuration in 2-dimensions, regresses 

distances in the initial configuration against the observed distances, determines the stress, 

or the disagreement between 2-D configuration and predicted values from the regression, 

and if stress is high, repositions the points in 2 dimensions in the direction of decreasing 

stress. The scatter of points representing samples in NMDS ordination space is iteratively 

allowed to evolve until it resembles the observed dissimilarity matrix as closely as 

possible. This method is non-metric because stress, the measure of closeness of fit, is 

based on the ranking of dissimilarity values rather than actual values of dissimilarity. The 

NMDS was based on a similarity matrix using the Bray–Curtis index (Clarke 1993) 

running with 600 iterations to permit the NMDS algorithm to develop an ordination with 

minimal stress. NMDS ordinations were completed using the VEGAN package (Dixon 

2003) in R v.3.3.1 statistical software (R Development Core Team 2016). The ordination 

space was then visualized by overlaying environmental variables with the ordination to 

specifically address how the compounds respond to spatial variation in the natural 

environment. 

 
Random Forest 

We used the Random Forest classification algorithm (Breiman 2001) to 

investigate whether VOCs hold value for classifying elevation (low, mid, and high). 
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Random Forest is a machine-learning algorithm that assigns samples to predefined 

groups and combines a consensus of multiple classification trees in numerous iterations 

and estimates the importance of each compound (Breiman 2001). Constructing multiple 

classification trees using hundreds of bootstrapped training sets and averaging the 

resulting predictions significantly reduces the variance and increases prediction accuracy 

compared with a single tree. Additionally, when the number of variables is very high (in 

this case 42 compounds), applying only a randomly selected subset of variables for each 

model is computationally efficient. This statistical method has been applied in other 

ecological studies to classify VOC samples to reduce noise and correctly identify volatile 

signatures of plants (Jaeger et al. 2016, Ranganathan and Borges 2010). Two Random 

Forest trials were carried out to classify elevation based on VOCs and within needle 

chemistry. These analyses used randomForest package v4.6-12 (Liaw and Wiener 2002) 

in R v.3.3.1 statistical software (R Development Core Team 2016) utilizing the optional 

measure of importance of predictor variables, and proximity, a measure of the internal 

structure of the data used to detect outliers, with number of trees set at 1000, and all other 

parameters were set as the defaults. Random Forest returns a confusion matrix that 

summarizes the accuracy of the classification as well as the variable importance. The 

importance of each VOC for classification was ranked using mean decrease in accuracy 

(MDA) which measures the accuracy in which the compound can be used to partition the 

data variables. The variables predicted to be important in the model help us to understand 

what variables are driving the differences in chemical signatures at different elevations. 

Random Forest has two measures of variable importance. The first is based on mean 

squared error (MSE) and relates to the prediction accuracy of the out-of-bag portion of 
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the data. The difference between the two MSEs are then averaged over all trees. The 

second measure describes variable importance based on the Gini impurity index, which is 

based on overfitted models (Breiman 2001). 

Finally, regression coefficients of several ratios of compounds of interest were 

calculated using generalized linear models (GLM) relating the compound ratios to 

temperature gradients. Regression coefficients of flammable within needle compounds 

were calculated for elevational sites and heat load index. All statistics were completed 

using R v.3.3.1 statistical software (R Development Core Team 2016). 

 
Results 

GBBP VOCs 

Gas chromatography–mass spectrometry (GC-MS) analysis identified 42 volatile 

compounds emitted by GBBP trees (Table 7). The majority of compounds were 

monoterpenoids (29 compounds, ca. 99% of total VOC emissions) followed by 

sesquiterpenoids (10 compounds) and benzenoids (3 compounds) (Table 7). These 42 

compounds were emitted by all trees across all sample dates and elevations. However, 

volatile emissions varied quantitatively between study sites and across elevations for total 

VOCs and for some individual compounds (Table 7). VOCs increased with decreasing 

elevation for several compounds (highlighted in bold in Table 7) and this trend was 

common among the sesquiterpenoids. Amounts emitted for every sesquiterpenoid 

compound decreased with increasing elevation for at least one of the sites. Bornyl acetate 

was the only monoterpene to exhibit this inverse elevational trend at both study sites, 
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while three unidentified sesquiterpenoids (ST1, ST2, and ST4) showed this same 

elevational trend at both sites.  

 
Within-Needle Terpenoid Concentrations 

In total, 78 compounds were identified using GC-MS, the majority of which were 

monoterpenoids (46 compounds, ca. 91% of total terpene concentrations) and 

sesquiterpenoids (27 compounds, ca. 7.5% of total terpene concentrations). Overall, 

within-needle concentrations varied more by site than by elevation. Mean total within-

needle terpene concentrations averaged across all sample periods were not significantly 

different among elevation classes, but the concentrations were significantly greater (P < 

0.05) at the Spring Mtns site in the south than the northern Cave Mtn site. Total within-

needle terpene concentrations had high variability among elevation classes and study 

sites. As with emitted VOCs, some within-needle terpene compounds showed trends 

along elevational gradients with concentrations increasing with decreasing elevation 

(Table 8). Bornyl acetate again exhibited decreases in concentrations with increase in 

elevation at both sites, along with two unidentified monoterpenes (MT8 and MT). Two 

unidentified sesquiterpenes (ST2 and ST3) were correlated with elevational gradients at 

both sites, however, these compounds decreased with increasing elevation at the Spring 

Mtns site, and increased with elevation at Cave Mtn site. 
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Table 7. Volatile organic compounds (VOCs) emitted (ng/hour/gram) with standard error (SE) by foliage of Great Basin bristlecone 
pines at Spring Mountains and Cave Mountain, NV for low, middle and high elevations. VOC amounts are averaged across all sample 
periods (monthly for July-September 2013, VOCs collected daily at 1000, 1200, 1400 hr). Different lower case letters (a, b) indicate 
significant differences for a compound among elevation classes at a site (α = 0.05). Compound amounts that are inversely related to 
elevation are highlighted in bold. Named compounds were identified by comparing retention time and mass spectra with authentic 
standard. MT = unidentified monoterpenoid; ST = unidentified sesquiterpenoid; B = unidentified benzenoid. 

 
 Spring Mountains (n = 72) 

 
 

  
 

Cave Mountain (n = 108) 
 Elevation Elevation 
 Low 

  
 Middle 

 
  
  

High 
  

Low 
  

 Middle 
 

 High 
 

  
μ Temp(°C) (16.6 + 0.4) 

   
(13.1 + 0.3) 
  

(11.9 + 0.4) 
  

(19.3 + 0.6) (16.2 + 0.8) 
  

(15.0 + 0.9)   
Compound Mean SE   Mean SE   Mean SE   Mean SE   Mean SE   Mean SE   
Monoterpenes                  
tricyclene  3.438 0.434 a 8.197 0.822 b 2.514 0.327 a 3.122 0.503 - 2.554 0.328 

 
3.448 0.211 

 

MT 1  1.393 0.201 a 3.176 0.499 b 0.807 0.117 a 1.869 0.253 ab 1.211 0.180 b 1.985 0.183 a 
MT 2  4.689 1.011 ab 13.873 4.859 a 2.693 0.342 b 6.047 0.987 a 3.013 0.421 b 4.216 0.567 ab 
α-pinene 364.540 54.797 - 510.40

 
56.321 - 305.039 85.847 - 289.494 45.248 - 193.565 26.56

 
- 291.703 27.068 - 

camphene  10.270 1.416 a 22.052 1.886 b 7.475 1.135 a 9.646 1.813 - 7.191 1.105 - 8.990 0.720 - 
β-pinene 32.035 5.504 a 68.046 5.613 b 29.251 4.349 a 57.077 19.645 - 29.816 4.712 - 37.948 3.180 - 
β-myrcene 6.319 1.242 a 7.472 0.790 a 2.895 0.455 b 8.066 1.367 a 4.733 0.814 b 5.820 0.542 ab 
3-carene  0.216 0.030 a 0.590 0.109 b 0.135 0.017 a 0.546 0.083 - 0.353 0.061 - 0.411 0.052 - 
p-cymene  0.999 0.174 a 3.442 0.501 b 0.705 0.103 a 1.964 0.382 a 1.036 0.238 b 1.118 0.115 ab 
β-phellandrene 28.988 4.907 a 58.668 8.052 b 19.245 2.678 a 53.058 8.506 - 35.999 6.418 - 40.028 3.326 - 
limonene  4.245 0.698 a 6.711 0.665 b 2.482 0.441 a 5.082 0.723 - 3.428 0.529 - 4.440 0.422 - 
E-β-ocimene  0.301 0.059 a 0.525 0.097 b 0.174 0.033 a 0.445 0.104 a 0.257 0.058 ab 0.154 0.022 b 
γ-terpinene 0.433 0.118 a 0.505 0.068 a 0.131 0.018 b 0.883 0.230 a 0.214 0.068 b 0.191 0.028 b 
terpinolene  1.829 0.285 a 3.946 0.561 b 1.211 0.238 a 2.658 0.565 a 1.300 0.296 b 1.609 0.186 ab 
linalool  0.097 0.042 - 0.138 0.042 - 0.026 0.012 - 0.461 0.125 a 0.094 0.053 b 0.036 0.008 b 
MT 3  0.210 0.046 a 0.413 0.062 b 0.139 0.035 a 0.300 0.080 - 0.233 0.067 - 0.246 0.053 - 
MT 4  0.376 0.070 a 1.010 0.175 b 0.216 0.037 a 0.958 0.246 - 0.563 0.125 - 0.626 0.118 - 
camphor  0.388 0.083 ab 0.517 0.092 a 0.164 0.033 b 0.155 0.023 - 0.185 0.024 - 0.218 0.024 - 
MT 5  0.245 0.054 a 0.468 0.078 b 0.095 0.021 a 0.419 0.077 - 0.240 0.064 - 0.274 0.050 

 

geranyl acetate 0.129 0.024 a 1.300 0.209 b 0.271 0.070 a 0.144 0.019 - 0.112 0.015 - 0.113 0.012 - 
bornyl acetate  1.219 0.235 a 1.123 0.151 a 0.421 0.105 b 2.135 0.857 - 1.078 0.362 - 0.597 0.112 - 
α-phellandrene 0.249 0.030 a 0.580 0.047 b 0.178 0.019 a 0.827 0.198 a 0.290 0.069 b 0.310 0.020 b 
α-terpinene  0.121 0.024 a 0.259 0.038 b 0.055 0.010 a 0.301 0.094 - 0.095 0.027 

 
- 0.083 0.009 - 
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Table 7 continued. 

 

MT 6  0.171 0.074 a 0.058 0.012 ab 0.016 0.006 b 0.053 0.015 - 0.035 0.007 - 0.046 0.010 - 
MT 7  0.302 0.110 a 0.217 0.043 ab 0.046 0.014 b 0.184 0.038 a 0.090 0.020 b 0.101 0.018 ab 
MT 8  1.894 0.886 a 0.106 0.026 b 0.062 0.025 b 0.086 0.030 - 0.024 0.004 - 0.075 0.023 - 
verbenone  0.157 0.029 - 0.258 0.057 - 0.103 0.027 - 0.151 0.039 - 0.136 0.034 - 0.150 0.030 - 
MT 9  0.023 0.005 - 0.044 0.012 - 0.018 0.005 - 0.044 0.011 - 0.040 0.011 - 0.047 0.013 - 
MT 10  0.743 0.299 a 0.177 0.039 a 0.086 0.025 b 0.277 0.092 - 0.081 0.019 - 0.110 0.023 - 

   
 

  
 

  
 

  
 

  
 

  
 

Sesquiterpenes  
 

  
 

  
 

  
 

  
 

  
 

E-β-farnesene  0.317 0.056 - 1.279 0.311 - 0.279 0.056 - 0.854 0.131 a 0.512 0.108 ab 0.461 0.083 b 
α-farnesene  0.311 0.060 - 0.702 0.188 - 0.229 0.065 - 1.860 0.408 a 0.630 0.140 b 0.262 0.060 b 
caryophyllene oxide 0.024 0.004 - 0.026 0.003 - 0.017 0.006 - 0.083 0.018 a 0.028 0.007 b 0.016 0.003 b 

Table 7 continued            
                   
ST 1  1.947 0.361 - 1.636 0.309 - 1.082 0.273 - 1.721 0.444 - 1.555 0.727 - 1.359 0.290 - 
ST 2  0.050 0.012 a 0.037 0.006 ab 0.018 0.004 b 0.093 0.019 - 0.064 0.023 - 0.057 0.011 - 
ST 3  0.054 0.017 - 0.044 0.018 - 0.019 0.011 - 0.029 0.007 - 0.037 0.014 - 0.029 0.006 - 
ST 4  0.116 0.026 - 0.073 0.023 - 0.051 0.015 - 0.109 0.031 - 0.095 0.049 - 0.076 0.021 - 
ST 5  0.049 0.013 a 0.129 0.018 b 0.026 0.006 a 0.080 0.015 - 0.060 0.023 - 0.053 0.010 - 
ST 6  0.013 0.004 - 0.017 0.003 - 0.008 0.002 - 0.046 0.014 - 0.022 0.006 - 0.015 0.004 - 
ST 7  0.046 0.016 - 0.024 0.005 - 0.212 0.182 - 0.365 0.135 a 0.026 0.007 b 0.026 0.006 b 

   
 

  
 

  
 

  
 

  
 

  
 

Benzenoid compounds  
 

  
 

  
 

  
 

  
 

  
 

methyl salicylate  0.198 0.041 ab 0.265 0.028 a 0.139 0.026 b 0.475 0.065 - 0.403 0.111 - 0.380 0.061 - 
B1  0.620 0.175 - 0.502 0.082 - 0.322 0.093 - 1.899 0.474 - 1.928 0.734 - 0.792 0.124 - 
B2 0.474 0.066 a  2.715 0.401 b 0.627 0.152 a 0.389 0.052 - 0.322 0.040 - 0.351 0.029 - 

   
 

  
 

  
 

  
 

  
 

  
 

Total volatiles 470.24
 

73.738   721.7
 

83.320   379.68
 

97.43
 

  454.45
 

84.16
 

  293.64
 

44.6
 

  408.97
 

37.85
 

- 
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Table 8. Within-needle terpenoid concentrations (μg/g) with standard error (SE) of Great Basin bristlecone pines at Spring Mountains 
and Cave Mountain, NV for low, middle and high elevations, averaged across sample periods (monthly for July-September 2013). 
Different lower case letters (a, b) indicate significant differences for a compound among elevation classes at a site (α = 0.05). 
Compound amounts that are inversely related to elevation are highlighted in bold. MT = unidentified monoterpenoid; ST = 
unidentified sesquiterpenoid; GLV = green leaf volatiles. 

 

 Spring Mountains (n = 18) 
 
 

  
 

Cave Mountain (n = 27) 
 Elevation Elevation 
 Low 

  
 Middle 

 
  
  

High 
  

Low 
  

 Middle 
 

 High 
 

  
        
Compound Mean SE   Mean SE   Mean SE   Mean SE   Mean SE   Mean SE   
Monoterpenes                  
tricyclene1 44.71 6.77 - 60.98 9.11 - 55.74 12.83 - 49.79 5.24 - 46.69 8.39 - 54.61 4.23 - 
MT 1 0.51 0.31 - 0.94 0.49 - 0.10 0.02 - 0.21 0.03 - 0.27 0.05 - 0.29 0.07 - 
MT 2 0.38 0.28 a 0.20 0.12 a 0.03 0.01 b 0.05 0.01 - 0.04 0.01 - 0.08 0.02 - 
α-pinene1 1266.6

 
185.99 - 1475.1

 
133.54 - 1395.1

 
249.41 - 2199.5

 
194.55 - 2150.2

 
207.4

 
- 2819.8

 
322.75 - 

camphene1 118.73 18.53 - 158.86 26.39 - 137.62 33.29 - 120.04 15.48 - 106.32 21.85 - 123.37 11.08 - 
β-pinene1 373.28 61.03 - 388.18 46.21 - 681.42 134.95 - 796.36 121.91 - 670.82 84.74 - 743.90 85.31 - 
β-myrcene1 108.77 18.68 - 106.49 14.88 - 123.13 20.36 - 225.05 30.28 - 183.04 24.15 - 232.60 44.08 - 
3-Carene1 2.90 0.46 - 2.57 0.48 - 3.51 0.60 - 6.98 1.15 - 6.00 0.77 - 6.49 1.01 - 
p-cymene1 2.89 0.37 - 4.53 0.93 - 2.91 0.55 - 4.25 0.33 - 3.29 0.31 - 4.87 0.74 - 
β-phellandrene1 844.18 136.45 - 766.29 165.75 - 993.48 155.04 - 1365.1

 
146.32 - 1485.3

 
127.0

 
- 1470.3

 
115.48 - 

limonene1 37.65 5.32 - 39.96 6.13 - 45.54 7.20 - 61.14 6.81 - 62.95 7.84 - 66.49 6.09 - 
(E)-β-ocimene1 0.94 0.63 - 0.73 0.36 - 0.27 0.05 - 0.49 0.06 - 0.41 0.05 - 0.51 0.07 - 
γ-terpinene1 2.65 0.38 - 3.99 0.59 - 3.13 0.49 - 6.73 0.81 ab 3.65 0.53 a 8.24 1.78 b 
α-terpineol1 7.91 2.47 a 1.04 0.66 b 0.31 0.21 b 1.50 0.88 - 0.19 0.06 - 1.01 0.39 - 
linalyl acetate2 1.29 0.32 - 0.75 0.21 - 1.73 0.63 - 24.34 9.02 a 0.96 0.16 b 4.80 2.00 b 
MT 3 0.35 0.31 - 0.39 0.21 - 0.07 0.03 - 0.09 0.02 - 0.19 0.10 - 0.92 0.81 - 
MT 4 0.19 0.08 - 0.42 0.19 - 0.05 0.02 - 0.08 0.02 - 0.09 0.02 - 0.10 0.03 - 
camphor1 0.23 0.15 - 0.26 0.17 - 0.04 0.02 - 0.27 0.17 - 0.08 0.02 - 0.13 0.06 - 
MT 5 0.22 0.06 - 0.42 0.10 - 0.19 0.05 - 0.38 0.08 - 0.26 0.06 - 0.41 0.08 - 
borneol1 2.27 0.66 - 3.16 1.33 - 2.64 0.77 - 3.80 0.91 - 4.71 1.58 - 5.07 1.09 - 
bornyl acetate1  194.42 46.53 - 193.14 57.03 - 116.06 27.47 - 214.76 48.40 - 170.89 57.16 - 129.68 21.40 - 
α-phellandrene1 9.00 1.63 - 8.12 1.72 - 10.89 1.73 - 25.40 4.68 - 21.00 3.18 - 21.65 3.96 - 
α-terpinene1 0.90 0.10 - 1.31 0.16 - 1.12 0.16 - 2.45 0.37 ab 1.43 0.22 a 2.82 0.50 b 
α-thujene1 12.23 1.10 - 19.39 6.51 - 15.99 4.05 - 31.24 4.93 - 18.75 4.01 - 42.46 10.87 - 
sabinene1 15.61 4.24 - 22.77 3.86 - 26.82 4.02 - 35.31 8.41 - 28.46 4.60 - 37.99 6.29 - 
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MT 8 0.88 0.39 a 0.69 0.30 a 0.35 0.09 b 0.68 0.07 - 0.64 0.10 - 0.58 0.06 - 
verbenone1 3.04 1.93 - 7.37 4.92 - 0.55 0.17 - 0.74 0.15 - 1.04 0.22 - 1.29 0.38 - 
MT 9 4.32 3.91 - 2.96 1.52 - 0.13 0.03 - 4.12 1.53 a 0.76 0.22 b 0.53 0.16 b 
MT 10 0.53 0.25 - 1.01 0.49 - 0.09 0.02 - 0.20 0.05 - 0.25 0.12 - 0.22 0.08 - 
cis-verbenol1 12.32 9.25 - 17.22 10.26 - 0.46 0.12 - 1.29 0.27 - 1.93 0.49 - 2.50 0.77 - 
terpinyl acetate1  132.36 38.08 - 49.57 25.50 - 45.12 24.52 - 76.74 30.61 - 19.56 2.57 - 61.25 22.38 - 
L-pinocarveol2 3.64 2.46 - 6.44 3.75 - 0.20 0.07 - 0.40 0.16 - 0.18 0.11 - 0.38 0.24 - 
(Z)-β-ocimene1 0.62 0.32 - 0.50 0.22 - 0.22 0.03 - 0.42 0.08 - 0.28 0.07 - 0.33 0.07 - 
MT 11 2.81 2.17 - 3.48 2.08 - 0.10 0.03 - 0.35 0.10 - 0.51 0.15 - 0.56 0.17 - 
MT 12 0.41 0.28 - 0.97 0.56 - 0.04 0.01 - 0.06 0.02 - 0.10 0.02 - 0.19 0.05 - 
MT 13 1.46 0.25 - 1.78 0.32 - 2.40 0.44 - 3.47 0.42 - 3.39 0.34 - 4.10 0.57 - 
MT 14 0.60 0.28 - 1.10 0.40 - 0.26 0.05 - 0.37 0.21 - 0.08 0.07 - 0.24 0.15 - 
MT 15 0.21 0.14 - 0.34 0.19 - 0.04 0.02 - 0.01 0.00 - 0.04 0.02 - 0.02 0.01 - 
MT 16 1.22 0.29 a 4.70 1.19 b 0.52 0.18 a 2.40 0.38 - 1.33 0.34 - 1.75 0.32 - 
MT 18 2.03 0.76 - 1.76 0.25 - 1.57 0.43 - 2.41 0.57 - 1.78 0.34 - 2.58 0.44 - 
MT 19 1.23 1.04 - 1.40 0.80 - 0.06 0.01 - 0.08 0.04 - 0.06 0.03 - 0.08 0.04 - 
MT 20  0.93 0.46 a 1.51 0.54 a 0.22 0.03 b 0.43 0.06 - 0.57 0.11 - 0.52 0.10 - 
MT 21  0.46 0.10 - 0.55 0.12 - 0.29 0.07 - 0.52 0.05 - 0.48 0.03 - 0.39 0.03 - 
MT 22  3.02 0.65 - 4.84 1.36 - 4.39 0.80 - 7.37 1.88 - 5.68 1.24 - 9.06 2.09 - 
MT 23  0.52 0.38 - 0.49 0.23 - 0.14 0.04 - 0.25 0.08 - 0.25 0.09 - 0.27 0.07 - 
MT 24  11.28 3.43 - 10.25 3.37 - 14.07 3.85 - 31.80 8.21 - 19.58 2.89 - 20.62 3.41 - 
                   
Sesquiterpenes                   
(E)-β-farnesene1 5.02 0.60 a 12.90 2.05 b 10.30 2.25 b 14.43 1.39 - 13.55 2.56 - 15.55 3.30 - 
longifolene2 27.68 11.97 - 20.74 4.84 - 14.24 2.84 - 3.74 0.82 a 8.85 2.95 a 89.07 30.11 b 
β-caryophyllene1 147.72 35.78 ab 157.99 25.56 a 62.48 19.31 b 100.26 19.51 - 169.11 26.05 - 194.09 37.36 - 
α-humulene1 21.45 5.39 ab 23.41 4.05 a 8.19 2.60 b 13.76 3.14 - 23.59 3.99 - 28.63 6.10 - 
α-bisabolol2 3.51 1.06 - 3.60 1.59 - 4.12 1.55 - 2.70 1.67 - 3.57 1.95 - 7.73 2.93 - 
caryophyllene oxide 

 
11.99 2.18 - 14.82 4.39 - 6.50 1.93 - 9.89 1.01 - 12.39 1.71 - 15.93 3.83 - 

ST 14 0.92 0.32 - 1.40 0.35 - 0.54 0.13 - 0.44 0.08 a 0.51 0.11 a 2.88 0.93 b 
ST 2 1.81 0.43 ab 2.38 0.59 a 0.68 0.19 b 2.27 0.41 - 2.75 0.57 - 2.11 0.42 - 
ST 3 1.21 0.41 - 1.16 0.34 - 0.77 0.15 - 0.55 0.06 a 0.70 0.09 a 3.45 1.19 b 
ST 4 0.89 0.31 - 0.57 0.16 - 0.44 0.10 - 0.12 0.06 a 0.32 0.11 a 2.65 0.84 b 
ST 5 0.79 0.19 a 2.21 0.29 b 1.66 0.61 ab 3.98 0.66 - 2.30 0.52 - 3.36 0.76 - 
ST 6 1.53 0.26 - 2.84 0.50 - 2.32 0.78 - 5.72 0.87 - 3.24 0.70 - 4.41 1.04 - 
ST 7 0.14 0.07 - 0.43 0.10 - 0.32 0.11 - 0.70 0.16 - 0.29 0.14 - 0.77 0.25 - 
ST 8 5.31 1.63 - 12.51 3.07 - 9.64 1.69 - 17.35 2.31 - 18.37 4.04 - 11.08 2.61 - 
ST 9 2.83 0.48 - 4.41 1.43 - 1.38 0.29 - 2.05 0.39 - 2.80 0.42 - 3.23 0.52 - 
ST 10 7.03 1.93 - 16.84 1.85 - 14.99 5.08 - 33.04 4.74 - 22.77 3.03 - 32.60 5.27 - 
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 ST 11 10.46 5.05 - 51.07 12.60 - 41.79 20.21 - 123.13 24.26 - 51.98 21.48 - 90.10 30.75 - 
ST 12 3.16 1.37 a 16.93 5.39 b 8.91 3.85 ab 8.62 2.54 - 5.50 2.77 - 14.83 5.98 - 
ST 13 2.49 0.82 a 9.56 1.88 b 7.88 2.67 ab 16.59 3.27 - 10.50 3.48 - 12.40 3.81 - 
ST 14 1.73 0.96 - 1.56 0.96 - 0.50 0.26 - 3.18 1.59 - 1.58 1.15 - 2.44 2.37 - 
ST 15 0.90 0.24 - 0.55 0.31 - 0.22 0.09 - 0.59 0.18 a 0.06 0.05 b 0.25 0.16 ab 
ST 16 1.06 0.36 - 2.75 0.69 - 1.59 0.87 - 3.00 1.03 - 1.56 0.42 - 2.49 0.97 - 
ST 17 0.90 0.34 a 2.65 0.55 b 1.09 0.30 ab 1.84 0.66 - 1.08 0.48 - 3.12 1.28 - 
ST 18 0.13 0.07 - 3.95 2.89 - 0.16 0.08 - 0.94 0.58 - 0.23 0.17 - 0.49 0.39 - 
ST 19 0.68 0.29 - 6.76 4.85 - 0.23 0.16 - 0.63 0.35 - 0.00 0.00 - 0.27 0.18 - 
ST 20 0.77 0.28 - 57.32 43.01 - 1.48 0.29 - 6.94 2.32 - 2.27 0.81 - 3.36 1.00 - 
ST 21 0.01 0.01 a 1.63 1.11 b 0.05 0.05 a 0.45 0.15 - 0.70 0.18 - 0.15 0.05 - 
                   
Benzenoid 

 
                  

benzenoid 1  24.73 3.71 - 25.01 2.73 - 27.71 5.17 - 39.16 6.60 a 77.17 8.91 b 68.09 6.91 b 
                   
GLVs                   
GLV 1 0.38 0.11 - 0.28 0.08 - 0.43 0.08 - 0.84 0.21 - 0.76 0.12 - 0.66 0.18 - 
3-hexenal2 28.93 8.02 - 19.64 4.70 - 26.61 4.91 - 40.81 8.15 - 34.46 4.70 - 26.34 6.48 - 
(E)-2-hexenal1 2.91 0.72 - 2.28 0.83 - 4.47 1.04 - 10.01 3.21 - 10.30 1.92 - 9.83 3.03 - 
(Z)-3-hexenol1 2.69 0.52 - 1.43 0.44 - 1.57 0.42 - 2.05 0.48 - 4.35 0.77 - 3.28 0.95 - 
                   
Total  3554.4

 
645.52 - 3860.4

 
669.65 - 3952.3

 
765.02 - 5779.2

 
738.61 - 5512.1

 
660.2

 
- 6541.7

 
833.67 - 

1 Identity verified by comparing retention time and mass spectrum with authentic standard 
2 Identified using NIST 08 Mass Spectral Search Program 
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Ordination of VOCs and within-needle compounds 

We used NMDS ordination to visualize elevational effects on VOCs composition 

(Figure 15). NMDS ordination of the VOC data had high linear fit (R2 = 0.99) and a low 

stress value (0.057). A stress of ca. 0.05 provides an excellent representation in reduced 

dimensions, while a stress of ca. 0.1 provides a good representation (Clarke 1993). The 

distances between points in Figure 15 are proportional to the dissimilarity between the 

blends of VOCs for each tree. While there is high variability among elevations, the first 

axis of the ordination plot (NMDS1) was highly correlated with temperature [positive] 

and humidity [negative], whereas the vertical axis (NMDS2) was highly correlated with 

heat load index [positive]. Note that α-pinene, β-pinene, and camphene, the three most 

abundant VOCs, and limonene and 3-carene (compounds known to be important for tree 

defense (Gray et al. 2015, Raffa and Smalley 1995) are all clustered along the 

temperature gradient vector (Figure 15). Mean temperatures for Spring Mountains at low, 

mid, and high were 16.6, 13.1, and 11.9 °C respectively.  

The NMDS ordination of the within-needle compounds (Figure 16) also had a 

high linear fit (R2 = 0.90) and a medium stress value (0.162), indicating a good 

representation of the data (Clarke 1993). Sesquiterpenoids clustered in the lower values 

of both NMDS1 and NMDS2 and along the heat load index vector (Figure 16). The 

NMDS ordination plot shows a pattern with within-needle chemistry of trees from the 

highest elevation class distributed along the diagonal of the two NMDS axes (gray 

triangles in Figure 16), with the mid elevations points clustered centrally, and the lowest 

elevation trees exhibit more dispersion/variability (Figure 16). NMDS2 was positively 
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correlated with heat load index and elevation was not significant in the within-needle 

ordination. 

The compound ratio at all sites of α-pinene/limonene declined significantly as 

temperature increased (P < 0.001, R2 = 0.414) (Figure 17). And the compound ratio of α-

pinene/3-carene declined significantly with temperature increases (P < 0.001, R2 = 0.135) 

(Figure 17). The compound ratio of α-pinene/β-myrcene declined significantly as 

temperature increased (P < 0.001, R2 = 0.163) (Figure 17)  

 
Random Forest Classification of Elevation using VOCs 

Random Forest classification correctly assigned high, mid and low elevation sites 

in 82.7% of samples (Table 9). When holding back 10% of the sample to validate model 

classification, the accuracy averaged 83.3% (10 trials), slightly better than the initial out-

of-box (OOB) accuracy. Multidimensional scaling (MDS) of the Random Forest model 

using the 42 VOCs showed strong clustering by elevations class (Figure S1). The most 

important compounds for differentiating elevation classes were (E)-β-ocimene, α-

farnesene, B2, MT 8, geranyl acetate, tricyclene, ST 7, linalool, bornyl acetate, γ-

terpinene, and caryophyllene (Table 10) which was partly supported by the Kruskal-

Wallis-tests (Table 7). 
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Figure 15. Non-linear Multidimensional Scaling (NMDS) ordination plot of the first and 
second dimensions for the volatile organic compounds (VOCs) emitted (ng per hour per 
gram; n = 132) by Great Basin bristlecone pine. Green vectors are environmental 
gradients that are significantly correlated (α = 0.05) to the VOC ordination. The elevation 
(m) vector is plotted in light blue and is not significant. Points are tree samples at each 
time period; colors and shape indicate elevation class. Centroids compounds are overlain 
in red. 
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Figure 16. Non-linear Multidimensional Scaling (NMDS) plot of the first and second 
dimensions for within-needle terpenoid concentrations (ng per g; n = 60) of Great Basin 
bristlecone pines growing at low, middle and high elevations. Green vectors are 
environmental gradients that are significantly correlated (α = 0.05) to the terpenoid 
ordination. The elevation vector (which is not significant) is plotted in light blue. Points 
are tree samples from each date; colors and shape indicate elevation class. 
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Figure 17. Ratios of A) α-pinene/limonene, B) α-pinene/3-carene, and, C) α-pinene/β-
myrcene versus temperature (ºC) along Great Basin bristlecone pine transects. Regression 
coefficients for both ratios are significant (p < 0.001). 

 

 

 

 

 

 

 

Figure 18. NMDS ordination plots overlaid with a smoothed contours of the 
environmental variables: A) humidity, B) temperature, and C) elevation. 
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Random Forest Classification of Elevation using VOCs 

Random Forest classification correctly assigned high, mid and low elevation sites 

in 82.7% of samples (Table 9). When holding back 10% of the sample to validate model 

classification, the accuracy averaged 83.3% (10 trials), slightly better than the initial out-

of-box (OOB) accuracy. Multidimensional scaling (MDS) of the Random Forest model 

using the 42 VOCs showed strong clustering by elevations class (Figure S1). The most 

important compounds for differentiating elevation classes were (E)-β-ocimene, α-

farnesene, B2, MT 8, geranyl acetate, tricyclene, ST 7, linalool, bornyl acetate, γ-

terpinene, and caryophyllene (Table 10) which was partly supported by the Kruskal-

Wallis-tests (Table 7). 

Random Forest classification OOB accuracy for within-needle terpene 

concentrations was not nearly as good (68% correctly classified), with 30% of the high 

elevation sites misclassified, 25% of the middle, and 40% of the low sites misclassified. 

Linalyl acetate, ST21, B1, MT21, sabinene, cis-verbenol, and α-terpineol were the most 

important variables in classifying elevation using within-needle chemistry. 

 
Discussion 

Results show that tree foliage chemical compound measurements change with 

elevation. More research is needed to understand effects of abiotic stress, and tree 

susceptibility to insect attack defense and flammability. Yet the factors that control VOC 

emissions are complex and have long been a research challenge (Peñuelas and Llusià 

2003). VOCs also have multiple functions for biotic and abiotic stresses, and emission 
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Table 9. Random Forest model confusion matrix (n=60 for each class) 

 

Observed class 

Predicted class  

High Middle Low Class error 

High 48 4 8 0.200 

Middle 7 47 5 0.203 

Low 4 3 53 0.117 

 

Table 10. Importance ranking of volatile compounds in classifying GBBP based on 
elevation (high, mid, low) based on mean decreasing accuracy (MDA) using Random 
Forest. 

Importance Rank Compound Mean Decrease Accuracy 

1 (E)-β-ocimene  19.15 

2 α-farnesene  17.33 

3 MT 8  17.28 

4 B2 16.22 

5 ST 7  16.19 

6 linalool  15.33 

7 tricyclene  15.20 

8 caryophyllene oxide  15.17 

9 geranyl acetate 14.44 

10 bornyl acetate  13.61 

11 γ-terpinene 13.47 

12 β-phellandrene 11.79 

13 camphene  11.77 

14 α-terpinene  11.47 

15 MT 7  11.30 

16 α-phellandrene 11.15 

17 B1  10.95 

18 camphor  10.76 

19 p-cymene  10.42 

20 β-pinene 10.38 

21 3-carene  9.98 

MT = unidentified monoterpene, B = unidentified benzenoid, ST = unidentified sesquiterpene. 
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rates vary greatly in response to basic abiotic factors such as light or temperature. In this 

section, we discuss our major findings and the importance of those findings for science 

and management of bristlecone pines across environmental gradients. 

 
How does GBBP chemistry change with elevation, and is this correlated with air 
temperature, RH, and heat load index, and thus to climate change? 
 

Previous studies have shown that abiotic stress increases VOC emissions (Tingey 

et al. 1980, Loreto et al. 1996, Sharkey and Yeh 2001, Duhl 2008, Holopainen and 

Gershenzon 2010), results from our study correlating VOCs to elevation are more 

nuanced. Our findings showed that air temperature, heat load index, and relative humidity 

correlated well with emitted VOCs in the NMDS analysis, however, variability of 

individual VOCs was high and emissions did not always correspond to elevation (Table 

7). For example, β-pinene emissions were highest at the mid elevation site for Spring 

Mtn, but lowest at the mid elevation site for Cave Mtn. About a quarter of the time, trees 

growing at the lowest elevations emitted the most total VOCs or trees at the highest 

elevations emitted the least VOCs suggesting that temperature stress increases VOC 

emissions (Table 7). The amounts and blends of VOCs emitted by GBBP are correlated 

with some environmental gradients, while others were not measured (e.g. C02, 

precipitation, UV, ozone), suggesting that VOC relationships to environmental gradients 

are complex. The within-needle terpenoid NMDS is correlated with heat load index but 

not with elevation, suggesting that microsite (e.g. aspect, openness, etc.) variables play an 

important role in a trees chemical response and factors other than elevation are affecting 

within needle chemistry.  
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To further examine elevational effects on VOC composition, we overlaid NMDS 

with contours of environmental variables (Figure 18). The NMDS axis dissimilarities are 

more pronounced along the NMDS1 axis and the environmental variables may have 

driven the VOC amounts. The dissimilarity of compounds along the NMDS1 is 

perpendicular to the contours of the environmental variables humidity (Figure 16A) and 

temperature (Figure 18B). If this were not the case, the ordination pattern would either be 

in a compact cloud, or parallel to the contours. While elevation was not significant and 

did not drive the ordination like humidity and temperature, there is a clear similarity of 

points along the elevation contours (Figure 18C). The elevation gradients used in this 

study were relatively small, only 225 and 520 m difference between low and high sites at 

Cave Mtn and Spring Mtn, respectively. The typical range of GBBP throughout Nevada 

is 900 m (2400m-3300m) (Lanner 1983), yet at Cave Mtn, we detected a distinct signal in 

GBBP over only 225 m. This suggests VOCs are highly sensitive to relatively small 

elevation changes and to the concomitant environmental changes. 

 

Do VOCs emitted from GBBP increase at lower elevations as a proxy for climate 
warming? 
 

While there is uncertainty in how climate change will affect mountain regions of 

the Great Basin, extensive research has modeled probable effects. GBBP have often been 

used to analyze climate change effects on conifers and reconstruct climate histories. For 

example, recent unprecedented tree-ring growth in bristlecone pine at the highest 

elevations and possible causes were presented by Salzer et al. (2009). GBBP 

chronologies from near treeline show increase in precipitation sensitive tree rings (similar 
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to lower elevation GBBP chronologies), yet tree rings do not always correlate well with 

temperature (Salzer et al. 2014). Dynamical downscaling of Global Climate Models 

(GCMs) simulate future climate change effects in the Great Basin, and suggest a 2-4° C 

increase in March-April mean temperatures, 60-100% decrease in mean April snow water 

equivalent (SWE), yet possibly a 10-20% increase in October-April precipitation by the 

end of the 21st century (Scalzitti et al. 2016). Assuming that GBBP treeline communities 

are temperature limited, it is reasonable to expect higher stands to more closely 

approximate the climate conditions that are currently at the mid and low elevations 

(predicted 2-4° C warmer on average). The GBBP living at lower treeline might 

experience higher mortality rates due to drought stress, competition pressure, and 

increased likelihood of fire (Gray and Jenkins 2017). 

We developed and present an additional method to analyze future climate change 

effects on GBBP, rather than relying only on tree rings/dendrochronology to understand 

historical climate changes. NMDS ordination showed that the environmental gradients of 

temperature, RH, and heat load index all are statistically correlated with the emissions of 

the 42 identified VOCs (Figure 15 and Figure 16). Our Random Forest classification 

model was highly accurate at predicting elevation classes from VOCs, demonstrating a 

distinct chemical signature of trees growing at different elevations. One abiotic factor that 

changed predictably with elevation was temperature. Temperatures generally were 

predictable by time of day and elevation. Temperatures were coolest at 10:00, and 

warmed throughout the day during our sampling. This was not the case in only five of the 

45 sample times, when temperatures cooled throughout the day. Temperature patterns 

along elevation gradients were even more predictable, with only three cases (of 45) in 
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which a higher elevation site was warmer than a lower elevation site at the same 

corresponding sample period (and never by more than 1 °C.) The lowest sites were 

always considerably warmer, with an average 3.7 °C temperature differences between 

low to mid elevation sites, and an average 1.4 °C difference between mid to high 

elevation sites at the same time of day. The consistently warmer lower elevation 

temperatures may lead to more thermal strees and could explain the exceptionally high 

Random Forest prediction accuracy (only 12% misclassified) at the low elevation sites 

(Table 9). These exceptional accuracies are promising for accepting VOC emissions at 

different elevations as a proxy for climate warming. 

Because of the high requirement of photosynthetic carbon for terpene synthesis 

(Loreto et al. 1996), terpenes can be relatively expensive for a tree to synthesize and store 

(Lewinsohn et al. 1991, Niinemets 2004, Peñuelas and Staudt 2010), and increased 

terpene production at lower elevations, which approximates climate change induced heat 

stress, could reduce tree productivity. Examples of abiotic stresses include extreme 

temperatures, drought, and wildfires, all of which are factors to GBBP. Abiotic stress is 

an integral part of climate change which has a wide range of uncertain impacts on plants 

and trees. A stress event (e.g. extremely hot days) could deplete monoterpenes stored 

within needles and exhaust reserves (Kravitz et al. 2016). Kravitz et al. (2016) suggest 

that temperature stress before VOC sampling may affect which terpenes are available, 

which in turn may provide a potential “early warning” of stress to the ecosystem. There 

was a period of high temperatures preceding the July sample period and lower 

temperatures preceding September (Figure 19). These preceding weather events could 

affect the VOC emissions and available within needle terpenes, and might explain the 
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monthly differences of VOC emissions observed in the sample (Figure S2). The 

temperatures at our two sites (approximately the northern and southern extents of GBBP 

distribution) are highly correlated with each other (Figure 19). The southern Spring Mtn 

site was about 5 °C warmer than the Cave Mtn site. There is a need to assess tree 

chemical responses to these environmental changes, and the connection between 

organism-level stress responses and broader atmosphere-scale studies. These responses 

are an instrumental gap between atmospheric chemistry and ecosystem studies (Kravitz et 

al. 2016). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Maximum daily temperatures at Cave Mtn SNOTEL station (39.17°, -
114.62°; 3224m) and Lee Canyon weather station, Spring Mtns (36.33°,-115.66°; 
2947m) study sites. Dates that VOCs were sampled are denoted as shaded bars. 
Temperatures between sites are highly correlated (R2 = 0.78), with the Spring Mtns 
consistently warmer by ~5°C.  
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Can we apply understanding of GBBP response to elevational gradients to interpret 
potential susceptibility to threats like fire or mountain pine beetles? 
 

Ratios of α-pinene to other VOCs are important to individual tree defense (Huber 

et al. 2000, Pureswaran et al. 2004), and previous studies have shown that limonene 

affected mountain pine beetle attraction (Gray et al. 2015). Monoterpenes are essential 

co-attractants for mountain pine beetle aggregation pheromones. Yet pine monoterpenes 

are also toxic physiologically to bark beetles at high vapor concentrations and are an 

important component of pine defense to insects and fungus (Seybold et al. 2006). In this 

paper, we demonstrate a significant decrease in ratios of α-pinene/limonene, α-pinene/3-

carene, and α-pinene/β-myrcene with increasing temperature (Figure 17). We found 13 

compounds (and 3 unidentified monoterpenes) that significantly increase with 

temperature (alpha = 0.05, 11 compounds alpha < 0.001) (Table S1). Of these, several 

have been shown to interact with mountain pine beetle. β-pinene, β-myrcene, 3-carene, p-

cymene, β-phellandrene, limonene, (E)-β-ocimene, and α-terpinene all induce an antenna 

response in mountain pine beetle (Huber et al. 2000, Pureswaran et al. 2004). β-myrcene, 

3-carene, and β-phellandrene increase flight response to aggregation pheromones (Miller 

and Borden 2000). And many studies have shown β-myrcene to be an attractant to 

mountain pine beetle (Pitman 1971, Billings et al. 1976, Borden et al. 1983, Conn et al. 

1983, Miller and Lindgren 2000, Pureswaran and Borden 2005). The decrease in ratios of 

α-pinene/limonene and α-pinene/3-carene could make GBBP more closely resemble 

limber pine as temperatures increase, and mountain pine beetle (which is not strongly 

attracted to GBBP) could start investigating GBBP as a potential host. The compound 

ratios from limber pine in Gray et al. (2015) are α-pinene/3-carene = 292 + 82, and α-
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pinene/limonene = 21 + 5, these values are found only at the warmest temperatures for 

GBBP (Figure 17). 

Changes in tree chemistry can have important implications for wildfire and 

foliage flammability. Page et al. (2012) found the individual terpene compounds within 

foliage that affect flammability parameters (time to ignition, temperature at ignition, and 

maximum rate of mass loss) are α-pinene, β-pinene, β-myrcene , (E)-β-ocimene, p-

cymene, camphene, and tricyclene (along with unknown terpenes). In our regression 

analysis, the within needle volatile terpene emission rates of α-pinene, β-pinene and β-

myrcene were significant with elevation or heat load index (Table S2), suggesting that at 

lower and warmer sites these compounds contribute to increased potential flammability. 

The increase of these three flammable terpenes at the lowest elevations and sites with the 

highest heat load index suggests that along the margins of the lower tree lines, time to 

ignition, temperature at ignition, and maximum rate of mass loss could create forests that 

are more prone to mortality in the event of fire.  

 
Conclusions 

Plants have control over the compounds and amount of VOCs emitted (Widhalm 

et al. 2015). The production of monoterpenes might offer relief from temperature stress to 

plants (Peñuelas and Llusià 2003). Thermotolerance has been observed in monoterpene 

emissions from a Mediterranean oak species (Quercus ilex) (Loreto et al. 1998). 

Monoterpenes and isoprenes protect plant tissues and membranes from oxidative damage 

produced under high temperatures (Zeidler et al. 1997). It is likely that oxidative and 

thermal stresses are relieved in the presence of volatile terpenes (Loreto and Schnitzler 

2010). When we examined two of the most important variables for prediction in the 
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Random Forest model ((E)-β-ocimene and α-farnesene) (Table 10), the emissions of 

these compounds at the highest elevation sites was 30% to 50% that of the low sites, this 

suggest that low elevation trees might be experiencing oxidative stress. Finally, methyl 

salicylate is thought to provide defense from oxidative and thermal stresses (Loreto and 

Schnitzler 2010). Again, we observed much lower emissions of methyl salicylate at the 

highest elevations from both sites (Table 7), suggesting lower elevations trees are 

experiencing stress. This could offer GBBP protection from higher heat stress at the 

lower sites. Because individual trees have control over which compounds and how much 

VOCs are emitted, oxidative and thermal stress could explain why VOCs were more 

predictive than within-needle terpenes due to VOCs being more sensitive and changing 

more rapidly in response to the environment than within-needle chemistry. 

Terpenes might also play a role in tree longevity in addition to adaptation to 

abiotic stress and benefits as defenses. For example, terpenes and resins might provide 

resistance to wood decay (LaMarche 1969, Mourant et al. 2007, Brutovská et al. 2013) 

leader to great longevity. Also, energy partitioning between defensive investments and 

growth in woody plants contribute to longevity, suggesting that increasing a tree's life-

span should require increased energy invested in protective measures such as thick bark 

and defensive chemicals (Loehle 1988). Increased investment in such defenses, however, 

would slow down growth rate, thereby raising the mortality rate for juveniles in 

competition for height growth. This is the case with GBBP, which primarily grow on dry, 

nutrient-poor soils, and conditions favorable to seed germination and growth are 

infrequent (Lanner 1983). 
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In conclusion, we found that GBBP VOCs differed with elevation, and were 

correlated with air temperature, RH, and heat load index, while within-needle did not 

correlate as well. These changes along environmental gradients may be a response to 

biotic or abiotic stress. This research improves understanding of VOC emissions as a 

physiological tree response to environmental gradients and helps inform land managers 

about forests threatened by native and non-native pests and pathogens, increased threat of 

fire, and changing distribution patterns from climate change. We also improve methods to 

reliably assess and predict tree resiliency with climate change. 
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Supplemental 

Table S1.  Parameter estimates and goodness of fit statistics for linear regression models 
of compounds vs temperature, and linear regression models of ratios of α-
pinene/compound.  

 Compound ~ Temperature    (α-pinene/compound) ~ Temperature 

Compound Coefficient Intercept P value 
 

R2 
 

Coefficient Intercept P value 
 

R2 

limonene  0.23 0.72 0.000 *** 0.09  -5.65 166.57 0.000 *** 0.42 

MT 4  0.07 -0.41 0.000 *** 0.12  -111.62 2649.15 0.000 *** 0.31 

terpinolene  0.09 0.62 0.018 * 0.03  -11.89 381.81 0.000 *** 0.3 

MT 3  0.02 -0.06 0.000 *** 0.07  -256.91 6281.57 0.000 *** 0.29 

γ-terpinene 0.05 -0.38 0.000 *** 0.09  -198.67 4897.61 0.000 *** 0.28 

MT 5  0.02 -0.08 0.000 *** 0.09  -360.01 7985.99 0.000 *** 0.27 

bornyl acetate  0.14 -1.1 0.001 ** 0.06  -58.83 1546.22 0.000 *** 0.24 

α-terpinene  0.02 -0.12 0.000 *** 0.07  -607.82 14568.31 0.000 *** 0.23 

MT 9  0 -0.03 0.000 *** 0.13  -3959.83 88980.05 0.000 *** 0.20 

ST 2  0.01 -0.06 0.000 *** 0.19  0.01 -0.06 0.000 *** 0.19 

β-myrcene 0.29 1.27 0.001 ** 0.06  -3.51 115.34 0.000 *** 0.17 

3-carene  0.03 -0.15 0.000 *** 0.16  -111.89 2960.85 0.000 *** 0.14 

B1  0.14 -1.24 0.000 *** 0.12  0.14 -1.24 0.000 *** 0.12 

MT 10  0.02 -0.1 0.048 * 0.02  -832.38 19956.78 0.000 *** 0.1 

p-cymene  0.06 0.56 0.040 * 0.02  -24.34 695.91 0.000 *** 0.1 

methyl salicylate  0.03 -0.1 0.000 *** 0.09  0.03 -0.1 0.000 *** 0.09 

β-pinene 2.29 5.92 0.018 * 0.03  -0.37 14.4 0.000 *** 0.09 

ST 4  0.01 -0.02 0.006 ** 0.04  -1742.24 42189.33 0.000 *** 0.08 

ST 6  0 -0.02 0.000 *** 0.07  0 -0.02 0.000 *** 0.07 

β-phellandrene 1.72 12.34 0.003 ** 0.05  -0.75 22.58 0.001 ** 0.06 

MT 7  0.01 -0.07 0.001 ** 0.06  -4175.78 83363.2 0.001 ** 0.06 

ST 5  0 0 0.002 ** 0.05  0 0 0.002 ** 0.05 

(E)-β-ocimene  0.01 0.08 0.037 * 0.02  -142.25 4303.09 0.004 ** 0.05 

verbenone  0.01 0.01 0.006 ** 0.04  0.01 0.01 0.006 ** 0.04 

ST 7  0.02 -0.18 0.022 * 0.03  0.02 -0.18 0.022 * 0.03 

MT 6  0.01 -0.03 0.022 * 0.03  0.01 -0.03 0.022 * 0.03 

Significance codes: p < 0.001 = ***, p < 0.01 - **, 0.05 - *. 
MT = unidentified monoterpene, B = unidentified benzenoid, ST = unidentified 
sesquiterpene.  
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Table S2. Regression of flammable within needle compounds -- Parameter estimates 
and goodness of fit statistics for linear regression models of within needle terpenoid 
concentrations (μg/g) vs temperature and within needle compounds vs Heat load index  

 Elevation ~ compound  Heat load index ~ compound 

Compound Coefficien
t 

Intercep
t 

P 
value 

 
R2 

 
Coefficien
t 

Intercept P value 
 

R2 

α-pinene 1.67 -2992 0.006 ** 0.12  2214 145.5 0.0003 *** 0.21 

β-pinene  0.47 -71.5 0.04 * 0.07  NS NS NS 
  

β-myrcene NS NS NS    214 -4.6 0.003 ** 0.14 

(E)-β-ocimene  NS NS NS 
  

 NS NS NS 
  

p-cymene  NS NS NS 
  

 NS NS NS 
  

camphene NS NS NS 
  

 NS NS NS 
  

tricyclene NS NS NS 
  

 NS NS NS 
  

Significance codes: p < 0.001 = ***, p < 0.01 - **, 0.05 - *. 
 
  



110 
 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S5. The metric multi-dimensional scaling representation for the proximity matrix 
of the Random Forest model classifying environment of GBBP volatiles at high, mid and 
low elevations. The proximity matrix measures among the input (based on the frequency 
that pairs of data points are in the same terminal nodes), how far apart (relatively) clusters 
are from one another. 
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Figure S6. Non-linear Multidimensional Scaling (NMDS) plot of the first and second 
dimensions for within-needle terpene concentrations (ng per g; n = 60) of Great Basin 
bristlecone pines. Points are tree samples from each date; colors and shape indicate 
month. Black ellipsoids are centered on month. 

  



112 
 

   

CHAPTER 5 

MOUNTAIN PINE BEETLES USE VOLATILE CUES TO LOCATE HOST LIMBER 

PINE AND AVOID NON-HOST GREAT BASIN BRISTLECONE PINE2 

 
Abstract 

The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an 

important disturbance agent of western North American forests and recent outbreaks have 

affected tens of millions of hectares of trees.  Most western North American pines (Pinus 

spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful 

of pine species are not suitable hosts and are rarely attacked.  How pioneering females 

locate host trees is not well understood, with prevailing theory involving random landings 

and/or visual cues.  Here we show that female mountain pine beetles orient toward 

volatile organic compounds (VOCs) from host limber pine (Pinus flexilis James) and 

away from VOCs of non-host Great Basin bristlecone pine (Pinus longaeva Bailey) in a 

Y-tube olfactometer.  When presented with VOCs of both trees, females overwhelmingly 

choose limber pine over Great Basin bristlecone pine.  Analysis of VOCs collected from 

co-occurring limber and Great Basin bristlecone pine trees revealed only a few 

quantitative differences.  Noticeable differences included the monoterpenes 3-carene and 

D-limonene which were produced in greater amounts by host limber pine.  We found no 

evidence that 3-carene is important for beetles when selecting trees, it was not attractive 

alone and its addition to Great Basin bristlecone pine VOCs did not alter female 

2Suggested Citation: Gray CA, Runyon JB, Jenkins MJ, Giunta AD (2015) Mountain Pine Beetles 
Use Volatile Cues to Locate Host Limber Pine and Avoid Non-Host Great Basin Bristlecone 
Pine. PLoS ONE 10(9): e0135752. doi:10.1371/journal.pone.0135752 
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selection. However, addition of D-limonene to Great Basin bristlecone pine VOCs 

disrupted the ability of beetles to distinguish between tree species.  When presented 

alone, D-limonene did not affect behavior, suggesting that the response is mediated by 

multiple compounds.  A better understanding of host selection by mountain pine beetles 

could improve strategies for managing this important forest insect.  Moreover, 

elucidating how Great Basin bristlecone pine escapes attack by mountain pine beetles 

could provide insight into mechanisms underlying the incredible longevity of this tree 

species.  

 
Introduction 

The mountain pine beetle (MPB; Coleoptera: Curculionidae; Dendroctonus 

ponderosae Hopkins) is one of the most ecologically and socioeconomically important 

forest insects in North America.  Outbreaks of this native insect during the early 21st 

century have been extensive, with over 3.5 million hectares of tree mortality in 2009 

alone (Man, 2010).  Such outbreaks can have important consequences for wildlife (Saab 

et al., 2014), forest carbon dynamics (Hansen, 2014), nutrient cycling (Griffin et al., 

2011), wildfires (Jenkins et al., 2014), and have contributed to the rapid decline of some 

high elevation tree species (Gibson et al., 2008; Logan et al., 2010). 

MPBs kill trees by attacking en masse using a complex system of volatile 

semiochemicals involving multiple beetle-produced aggregation and anti-aggregation 

pheromones and host-produced kairomones (Progar et al., 2014).  Once in contact with a 

suitable host, pioneering females initiate mass attacks by oxidizing the host-produced 

monoterpene α-pinene to produce the aggregation pheromone verbenol (Progar et al., 
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2014).  Males arrive and produce exo-brevicomin which attracts more beetles.  Host-

produced monoterpenes including α-pinene (Pitman et al., 1968), myrcene, and 

terpinolene (Borden et al., 2008) synergize the aggregation pheromones. In the latter 

stages of a mass attack, increased production of the anti-aggregation pheromone 

verbenone (via oxidation of verbenol) terminates host colonization (Hunt et al., 1989).  

Despite having a good understanding of the sophisticated chemical ecology underlying 

mass attacks, less is known about the cues used by pioneering females to locate trees 

(Safranyik and Carroll, 2007).  The prevailing theory is that during the pre-aggregation 

phase females locate host trees using visual cues or through random landings (Progar et 

al., 2014; Safranyik and Carroll, 2007).  Studies have reported MPB attraction to dark 

silhouettes and large, tree-shaped cylinders (Billings et al., 1976; Shepherd, 1966) 

suggesting a role for visual cues.  Other studies have indicated that pioneering females 

intercept hosts at random which explains MPB’s preference for large diameter trees due 

to their larger surface area (Burnell, 1977; Hynum and Berryman, 1980).  Conversely, 

there is evidence for the use of long distance sensing using volatile organic compounds 

(VOCs) by MPBs (Borden et al., 1986; Raffa et al., 1993; Wood, 1982).  Plant VOCs 

emitted by trees are known to be used in host location by other bark beetle species 

(Rudinsky, 1966), suggesting they might be similarly used in host location by MPBs.   

In this study, we investigated whether pioneering female MPBs use VOCs to 

choose between the host limber pine (Pinus flexilis James) and the non-host Great Basin 

bristlecone pine (Pinus longaeva Bailey).  Limber pine is a favored and highly-

productive host of MPBs (Langor, 1989) and limber pine forests have experienced 

dramatic MPB mortality since the 1990s (Man, 2010).  In contrast, Great Basin 



115 
 

   

bristlecone pine has not been shown to be an acceptable host for MPB (Gibson et al., 

2008) and concrete records of successful MPB attack are lacking.  These two species 

often occur together as the only tree species growing at or near alpine treeline in the 

Great Basin and Intermountain West of the USA (the “P. flexilis/P. longaeva Series” 

(Youngblood and Mauk, 1985)).  These high elevation pine forests provide important 

ecosystem services (Schoettle, 2004), including stabilizing soil, improving snow 

retention, pioneering regeneration of alpine sites after fire, habitat for wildlife, and 

facilitating growth of other tree species (Baumeister and Callaway, 2006).  This study 

was spurred by our observations at several sites in Nevada where these species co-occur 

that many limber pines were killed by MPB whereas neighboring bristlecone pines were 

unattacked (Fig. 20).  
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Fig. 20. Photographs of limber pine (Pinus flexilis) and Great Basin bristlecone pine 
(Pinus longaeva) forests (a) on Cave Mountain in east-central Nevada, and (b) in the 
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Spring Mountains in southern Nevada.  These tree species co-occur in nearly equal 
abundance on and near the top of Cave Mountain (a), the dead trees (gray trees) are 
mountain pine beetle-killed limber pine.  In the Spring Mountains (b), these tree species 
co-occur below dashed line, note many dead limber pine trees (gray trees), but a nearly 
pure stand of un-attacked bristlecone pine occurs above the dashed line.  

 
The objectives of this work were to 1) collect and analyze VOCs of co-occurring 

limber and bristlecone pines as potential foraging cues for the MPB, and 2) assess the 

behavioral responses of female MPBs to limber and bristlecone pine VOCs in a Y-tube 

olfactometer.  We also explored the role of candidate individual volatile compounds in 

the behavioral response of MPBs.  We hypothesized that VOCs differ between tree 

species and serve as a readily available cue that foraging MPBs can use in host finding.  

 
Materials and Methods 

Source and handling of insects and plants 

Adult mountain pine beetles were obtained from two locations infested with MPB 

(separated by about 90 km) by felling two mature lodgepole pines (Pinus contorta 

Dougl.) infested with MPB larvae from the Bear River Range of Northern Utah 

(41.9705°, -111.5406°, elevation 2200 m) and from the Caribou-Targhee National Forest 

in Southern Idaho (42.7772°, -111.2735°, elevation 2040 m).  Sections from the bole of 

the trees (~60 cm long) were transported to the US Forest Service’s Rocky Mountain 

Research Station laboratory in Logan, UT and ends sealed with paraffin wax to reduce 

desiccation.  The sections were placed in Percival incubator cabinets (12 hours of light 

per 24-hour cycle) at room temperature (ca. 21º C) to facilitate larval development to the 

adult stage (approximately 70 to 80 days).  Emerging adults were collected daily and 

placed in petri dishes with moistened filter paper and stored in a refrigerator at 
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approximately 3º C until use.  Gender was determined using characters on the seventh 

abdominal tergite (Lyon, 1958).  Virgin females aged 5-15 days were randomly selected 

for Y-tube trials.   

Foliage of limber pine and Great Basin bristlecone pine used in bioassays was 

collected from Notch Peak, UT (39.1486°, -113.4060°, elevation 2788 m) and Wheeler 

Peak, NV (38.9991°, -114.2990°, elevation 3181 m) by cutting branches approximately 

50 cm in length from a randomly selected bristlecone pine and limber pine from each site, 

and refrigerating them in sealed plastic bags at approximately 3º C until use.  VOCs from 

these samples were collected and analyzed at time of use as described below.  The USDA 

Forest Service, Humboldt-Toiyabe and Caribou-Targhee National Forests, and the Utah 

Division of Forestry, Fire, and State Lands granted permission for use of all field sites. 

 
Collection and analysis of VOCs 

VOCs were collected from co-occurring limber pine and bristlecone pine trees of 

similar size in the Spring Mountains near Las Vegas, Nevada (June 2013; 36.2935°, -

115.6861°, elevation 2910 m) and on Cave Mountain near Ely, Nevada (August 2013; 

39.1623°, -114.6109, elevation 3220 m).  Trees of similar size were selected for sampling 

and VOCs were collected from lower branches (≤ 3 m above ground) which correspond 

to the heights at which dispersing MPBs fly [9]. The mean height of limber pine trees 

sampled was 12.1 ± 0.7 m and mean diameter at breast height (dbh) was 102 ± 11.6 cm.  

The mean height of bristlecone pine trees sampled was 12.9 ± 0.61 m and mean dbh was 

85 ± 7.9 cm).  Field collection of VOC emissions followed procedures described in Page 

et al. (Page et al., 2014, 2012).  Approximately 70 cm of the apical portion of each branch 
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on each tree was enclosed in a clear Teflon bag (50 cm wide x 75 cm deep; American 

Durafilm Co., Holliston, MA) and air was pulled (0.5 L/min) through VOC traps that 

contained 30 mg of the absorbent material HayeSep-Q (Restek, Bellefonte, Pennsylvania) 

using an automated portable VOC collection system (Volatile Assay Systems, 

Rensselaer, NY).  VOCs were collected for 30 minutes after which the foliage from the 

enclosed portion of the branch was weighed to obtain a fresh weight. 

VOCs were eluted from traps using 200 μl of dichloromethane and 1,000 ng of n-

nonyl-acetate added as an internal standard.  Samples were analyzed using an Agilent 

7890A gas chromatograph (GC) coupled with a 5975C mass spectrometer and separated 

on a HP-1ms (30 m x 0.25 i.d, 0.25 μm film thickness) column; helium was used as the 

carrier gas.  The GC oven was maintained at 35°C for 3 minutes and then increased by 

5°C per minute to 125°C, then 25°C per minute to 250°C.  Quantifications were made 

relative to internal standards using ChemStation software (Agilent Technologies, 

Wilmington, DE), and identifications of compounds confirmed by comparing retention 

times and mass spectra to commercial standards.  Measurements of VOC emissions (ng 

per hour per gram) were on a fresh weight basis. 

Statistical analyses for VOCs were performed using the non-parametric Kruskal-

Wallis one-way analysis of variance (Kruskal and Wallis, 1952) using R statistical 

software  (R Devolopment Core Team, 2012) to identify compounds with significant (P < 

0.05) differences, and to test whether samples originate from the same distribution. 
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Y-tube olfactometer trials 

We used a Y-tube olfactometer to investigate the response of adult female MPBs 

to airborne cues, following the methodology of others (e.g., (Daisy et al., 2002), (Piesik 

et al., 2008), (Liu et al., 2011)).  Y-tube olfactometers have been widely used to examine 

the role of volatile cues in host location by flying arthropods, including bark beetles (Liu 

et al., 2011).  The Y-tube system (Sigma Scientific LLC, Micanopy, FL, USA) consisted 

of a 2-port Clean Air Delivery System (CADS-2P), inline odor source chambers (custom 

made), and a glass Y-tube (YT-2425).  The CADS-2P provided flow-controlled, purified 

air via 0.64 cm outer diameter (OD) Teflon tubing to the odor source chambers (one 

chamber upwind of each Y-tube arm) and then the Y-tube.  The glass odor source 

chambers were 19 cm long with 5.5 cm inner diameter (ID); the upstream end was sealed 

with a removable 5.5 cm OD Teflon o-ring endcap with 0.64 cm OD tubing connector, 

and the downstream end tapered to accept 0.64 cm OD Teflon tubing.  The glass Y-tube 

had a 2.4 cm ID with 24/25 inner ground-glass joints on all ends, a 16 cm lower arm, and 

10 cm upper arms that branch at an inner angle of approximately 75º.  A specimen 

adapter (SA-2425), attached via ground-glass joint to the bottom of the Y-tube was used 

to introduce beetles to the airstream.   

Trials were conducted in a greenhouse at temperatures between 20-27º C.  

Mountain pine beetles are positively phototactic (Shepherd, 1966), so to assure balanced 

lighting we placed the Y-tube in an open-top box that was lined with black felt (55 tall x 

55 wide x 90 cm long).  A greenhouse light (400W metal halide, Sylvania Inc., 

Manchester, NH, USA) was centered 1 m above and just beyond the apex of the Y-tube.  

To facilitate beetle walking, we placed a 16 cm long, 2 mm diameter metal wire in the 
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bottom of the Y-tube, extending from the introduction point to the junction of the ‘Y’.  

The odor sources, 20 g of plant material (10 – 15 cm branches with attached needles) 

and/or rubber septa treated with VOCs, were placed in odor source chambers and an 

individual insect introduced via specimen adapter at the bottom of the Y-tube.  Airflow 

was set at 0.5 L/min for all trials.  Trials ended when the insect moved past the midpoint 

of the bifurcation in the Y-tube and 5 cm into one of the arms of the ‘Y’ or after 10 

minutes if the insect did not respond (“no responses”).  Individual beetles were only used 

once.  The odor source chambers were alternated every five trials.  For each odor source, 

trials were run until at least 25 choices were made (i.e. excluding no responses). 

We used rubber septa treated with synthetic VOCs to test how individual 

compounds affect beetle behavior following methods outlined by Runyon et al. (Runyon 

et al., 2006).  We chose to examine 3-carene and D-limonene because the relative 

amounts of these compounds differed greatly between bristlecone and limber pine, and 

they were commercially available in nearly pure form.  Red rubber septa (6.6 mm O.D., 

Sigma Aldrich, St. Louis, MO, USA) were treated with 1 µg of either 3-carene (Product 

No: 21986, ≥98.5% sum of enantiomers, Sigma Aldrich) or D-limonene (Product No: 

62118, ≥99% sum of enantiomers, Sigma Aldrich) in n-hexane (Macron Chemicals, 

Center Valley, PA, USA); 500 µl of 200 ng/µl hexane solution added to each septum.  

Control septa were treated with 500 µl of n-hexane only.  Treated and control septa were 

left in a fume hood at room temperature and release rates checked each day as described 

above.  Release rates of both compounds responded similarly: amounts released 

mimicked that of limber pine foliage used in Y-tube trials on day 4 after treatment for D-

limonene (approximately 80 ng per hr) and day 5 after treatment for 3-carene 
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(approximately 50 ng per hr) after treatment.  We collected and analyzed a small number 

of foliage samples with the commercial compound added to verify that the target 

compound was present and in greater abundance. 

Statistical analyses for Y-tube trials were performed using chi-square tests with 

the Yate’s continuity correction for small sample sizes (Sokal and Rohlf, 1981): for each 

trial we subtracted 0.5 from observed values greater than the expected and added 0.5 to 

observed values less than the expected.  

 
Results 

 
Great Basin bristlecone pine and limber pine VOCs 

The VOCs emitted by Great Basin bristlecone pine and limber pine at Cave 

Mountain were similar.  Both species emitted the same 28 VOCs (Fig. 21, Fig. 22 and 

Table 11) and differed in amounts produced for only ten of these compounds (P < 0.05; 

Table 1).  Moreover, the total amount of VOCs released per gram of foliage did not differ 

between species (Table 11).  Monoterpenes dominated the VOC composition of both tree 

species with α-pinene being the most abundant followed by β-pinene, β-phellandrene, D-

limonene, and β-myrcene (Fig. 21, Fig. 22 and Table 11).  A notable difference was the 

monoterpene 3-carene which was produced by limber (1.4 ± 0.72 ng per hour per gram) 

but nearly absent from bristlecone VOCs (0.02 ± 0.003 ng per hour per gram).  The ratios 

of compounds also varied between species, for example the ratio of β-phellandrene to D-

limonene was approximately 1:1 in limber but 7:1 in bristlecone (Fig. 22, Table 11). The 

amounts and identity of VOCs reported here for Cave Mountain are very similar for co-

occurring bristlecone and limber pine trees at a second site in the Spring Mountains near  
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Fig. 21. Total volatiles emitted (ng per hour per gram, n = 15) by limber pine (Pinus 
flexilis) and Great Basin bristlecone pine (Pinus longaeva) at Cave Mountain, Nevada.  
These tree species co-occur in nearly equal abundance at this site and many limber pines 
have been killed by mountain pine beetles whereas bristlecone pines have not been 
attacked. Note different scale for α-pinene. 
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Fig. 22.  Relative composition of volatiles emitted by co-occurring limber pine (Pinus 
flexilis) and Great Basin bristlecone pine (Pinus longaeva) at Cave Mountain, Nevada.  
Compounds in the legend are listed from most abundant (top) to least abundant (bottom) 
emitted by Great Basin Bristlecone pine. 
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Table 11. Volatiles emitted (ng per hour per gram; n = 15) by co-occurring Great Basin 
bristlecone pine (Pinus longaeva) and limber pine (Pinus flexilis) at Cave Mountain, 
Nevada.  Significant differences are highlighted in bold.  MT = unidentified 
monoterpene, B = unidentified benzenoid, ST = unidentified sesquiterpene. 
 

Great Basin  
bristlecone Limber 

 

Compound  Mean SE Mean SE P-value 
tricyclene 0.41 0.029 0.25 0.027 0.001 
MT 1 0.42 0.181 0.32 0.062 0.290 
α-pinene 61.25 6.473 37.95 6.533 0.011 
camphene 1.09 0.029 1.08 0.028 0.349 
MT 2 1.79 0.357 1.77 0.386 0.604 
β-pinene  6.85 0.784 10.62 2.316 0.481 
β-myrcene  1.26 0.221 6.12 1.357 <0.001 
3-carene 0.02 0.003 1.40 0.721 <0.001 
p-cymene  0.29 0.034 0.42 0.072 0.254 
β-phellandrene 8.22 1.254 3.47 1.373 0.001 
D-limonene  1.22 0.245 5.44 1.716 0.120 
e-β-ocimene  0.04 0.009 0.05 0.028 0.188 
γ-terpinene 0.09 0.031 0.07 0.016 0.573 
terpinolene 0.56 0.170 0.37 0.083 0.533 
linalool 0.03 0.017 0.04 0.037 0.318 
MT 3  0.03 0.007 0.06 0.019 0.382 
MT 4  0.10 0.025 0.65 0.225 0.001 
camphor  0.11 0.014 0.03 0.005 <0.001 
MT 5 0.03 0.005 0.07 0.029 0.208 
methyl salicylate  1.02 0.459 0.06 0.015 <0.001 
B1  0.46 0.137 0.06 0.016 <0.001 
B2 0.28 0.067 0.23 0.047 0.633 
MT 6  0.07 0.014 0.08 0.018 0.983 
bornyl acetate 0.28 0.037 0.11 0.021 <0.001 
ST 1 0.26 0.060 0.29 0.080 0.647 
e-β-farnesene 0.60 0.165 1.37 0.570 0.254 
α-farnesene 0.29 0.091 0.35 0.111 0.480 
caryophyllene 0.03 0.009 0.02 0.009 0.509 
Total volatiles 87.11 7.891 72.76 12.400 0.110 
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Las Vegas, Nevada (data not shown). We verified that VOCs from foliage used in Y-tube 

trials were similar to that of intact trees: clipped foliage emitted the same major 

compounds in approximately the same proportions, only in greater amounts per gram 

(perhaps due to clipping the branches off trees) (Fig. S7). 

 
Behavioral responses of female MPBs to VOCs 

Adult female MPBs overwhelmingly chose the Y-tube arm with limber pine 

VOCs over the arm with clean air (22 limber vs. 3 air, 5 no responses; Fig. 23A). In 

contrast, MPB females avoided bristlecone VOCs in favor of clean air (6 bristlecone vs. 

19 air, 14 no responses; Fig. 23B).  When presented with VOCs from both limber and 

bristlecone, female MPBs overwhelmingly chose limber VOCs (21 limber vs. 4 

bristlecone, 9 no responses; Fig. 23C). We tested a role for 3-carene and D-limonene in 

the behavioral response by presenting the synthetic VOCs on rubber septa in the Y-tube.  

3-carene had no effect on beetle behavior when presented alone (13 3-carene vs. 12 air, 7 

no responses; Fig. 23D) or when added to bristlecone pine VOCs (21 limber vs. 4 

bristlecone + 3-carene, 7 no responses; Fig. 23E).  Similarly, D-limonene alone did not 

affect MPB behavior (11 D-limonene vs. 14 air, 11 no responses; Fig. 23F).  However, 

addition of D-limonene to bristlecone VOCs negated MPBs strong preference for limber 

VOCs (11 limber vs. 14 bristlecone + D-limonene, 9 no responses; Fig. 23G) and blocked 

the ability of MPBs to avoid bristlecone VOCs (15 bristlecone + D-limonene, 10 air, 9 no 

responses; Fig. 23H). 
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Fig. 23. Behavioral responses of walking female mountain pine beetles (Dendroctonus 
ponderosae) to different odor sources in a Y-tube olfactometer. We used chi-square 
statistical tests for comparison between the numbers for each choice.  NR = no response 
after 10 minutes.  Significant results shown in bold. N = total number of trials (including 
no responses). 

 
Discussion 

There is some debate about how pioneering female MPBs locate hosts with the 

dominant hypothesis being a combination of random landings and visual cues followed 

by direct assessment of host suitability after landing (Progar et al., 2014; Safranyik et al., 

2004).  The explanation that pioneering females locate trees randomly (Hynum and 

Berryman, 1980; Vité and Gara, 1962), and/or using sight (Shepherd, 1966) gained 

support in part because it elegantly explains why large trees are disproportionately 
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attacked – because they present beetles with the largest landing and visual targets.  

However, there is evidence in the literature that dispersing female MPBs use VOCs when 

foraging for hosts.  Female MPBs were attracted to cages containing host material but not 

empty cages in the absence of normal visual cues (Moeck and Simmons, 1991) and 

antennae of female MPBs are capable of perceiving and responding to host tree VOCs 

(D. S. Pureswaran et al., 2004a).  Moreover, other bark beetle species are known to use 

VOCs to locate hosts, including other Dendroctonus species (Rudinsky, 1966; Sokal and 

Rohlf, 1981).  Here, the results from our study show that female MPBs are strongly 

attracted to VOCs emitted from limber pine, a preferred host, and are repelled by VOCs 

emitted from Great Basin bristlecone pine, a non-host.  Moreover, female MPBs can 

distinguish limber and bristlecone pine trees using VOCs and preferentially move toward 

the former.  These findings provide strong evidence that female MPBs use VOCs as cues 

to locate and select among potential hosts.   

The VOCs of limber and bristlecone pine are very similar (Fig. 21), so how do 

MPBs distinguish between them?  We chose two candidate VOCs that differed between 

species and examined whether they are involved in host choice: the monoterpenes 3-

carene and D-limonene.  3-carene alone or addition of 3-carene to bristlecone VOCs to 

mimic the amount in limber VOCs had no effect on beetle behavior (Fig. 23D-E).  

However, similar addition of D-limonene to bristlecone VOCs blocked MPB’s ability to 

distinguish between trees species (Fig. 23G).  Interestingly, D-limonene alone was not 

attractive to MPBs (Fig. 23F) suggesting that it is likely the combination or ratio of 

compounds that provides species-specific information to MPBs.  The relative proportion 

of volatile components in a VOC blend is known to be used in host recognition by some 
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insect herbivores (Bruce and Pickett, 2011), and experimentally enhancing levels of 

certain volatile components has been shown to interfere with host location of other 

herbivore species (Visser and Avé, 1978).  In fact, VOCs of many conifer species lack 

species-specific compounds, suggesting that bark beetles in general might detect 

differences in the ratios of different compounds to discriminate among tree species (D. S. 

Pureswaran et al., 2004b).  Recent research suggests that Dendroctonus valens LeConte, 

a species related to MPB, use small variations in ratios of VOCs to gauge and select large 

diameter trees over small diameter trees (Liu et al., 2011).  This provides a plausible 

mechanism by which beetles could measure and choose large host trees using VOCs 

alone, however, we expect that VOCs and visual cues both contribute to host location and 

selection by MPBs, as suggested by others (Campbell and Borden, 2009, 2006). 

The tree species examined in this study, Great Basin bristlecone pine and limber 

pine, are climax species that often co-occur as the only trees at or near alpine treeline 

across much of the Great Basin of North America (Youngblood and Mauk, 1985).  Such 

high elevation ecosystems are of great ecological importance, but are rapidly declining 

across western North America due to unprecedented outbreaks of MPBs, climate change, 

and the non-native white pine blister rust (Gibson et al., 2008; Tomback and Achuff, 

2010).  Great Basin bristlecone pine is of particular interest because it is one of the 

longest-lived organisms on Earth, reaching ages approaching 5,000 years, and one of the 

most highly fragmented high elevation conifer species (Ruiz-Olmo, J., Loy, A., 

Cianfrani, C., Yoxon, P., Yoxon, G., Silva, P. K. de, Roos, A., 2003).  A better 

understanding of how MPBs locate and select hosts in high elevation systems will help us 

predict impacts and could allow development of tactics to manage MPBs in these 
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important, at-risk communities.  Moreover, the discovery that MPBs avoid bristlecone 

VOCs helps shed light on the great longevity of bristlecone pines.  It is likely that 

bristlecone pines possess additional defense mechanisms to MPBs (e.g. phloem defensive 

chemistry) and that the VOCs provide long-distance cues about host quality to beetles.  

In conclusion, we show that female MPBs use VOCs in the initial location and 

selection between limber and bristlecone pines and that D-limonene plays a role in 

concert with other unidentified compounds.  Such a role for VOCs in host location by 

MPBs is not surprising given VOCs represent a readily-available cue for foraging beetles, 

and that MPBs utilize a sophisticated VOC communication system to coordinate mass 

attacks once hosts are located (Safranyik and Carroll, 2007).  These findings beg more 

questions.  We examined foliar VOCs since they should represent the largest odor source, 

but what about VOCs emitted from boles (the portion of a tree attacked by beetles), do 

they differ from foliar VOCs and are they used by MPBs?  Which compounds and ratio 

of compounds are used by MPBs to find limber pines and avoid bristlecone pines?  Are 

there common similarities and differences between VOCs of hosts and non-hosts that 

MPBs could use as general rules when searching for hosts?  How do VOCs change with 

host condition and does this affect beetle’s choices?  Finally, VOCs underlying mass 

attacks have been successfully used to manage MPBs (Progar et al., 2014) and the results 

presented here suggest that VOCs used in host location have been overlooked but might 

similarly be exploited for management of MPBs. 
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Supplemental

 

Fig. S7. Total volatiles emitted (ng per hour per gram n = 4) by limber pine (Pinus 
flexilis) and Great Basin bristlecone pine (Pinus longaeva) clipped foliage used in Y-tube 
trials.  Note different scale for α-pinene.  
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CHAPTER 6 

CONCLUSION 

This dissertation explored the unique fuels composition and chemical response of 

Earth’s oldest living tree species, the Great Basin bristlecone pine. I examined the 

chemical response of volatile organic compounds (VOCs) emitted from Great Basin 

bristlecone pine foliage and within foliage compounds in response to elevational 

gradients, and how tree VOCs cue mountain pine beetle host selection. This research is 

multidisciplinary and incorporates landscape ecology, disturbance ecology, resiliency, 

and disturbance response to evaluate the health and status of Great Basin bristlecone pine, 

a unique species with a limited distribution and a specialized niche. To understanding a 

long-lived species response to climate change, it is critical to understand how this slow-

growing species may be influenced by the multiple of climatic fluctuations faced during 

their lifetimes. Some populations may be more vulnerable to climatic changes by virtue 

of their longevity, while others such as Great Basin bristlecone pine may use longevity as 

a buffer against climatic variability and a constant source of new seed. Researching this 

fragmented species is challenging because inventorying small patches is difficult and 

small changes in one stand can have large effects on the total population. 

Below, I summarize three general findings emerging from this research. The 

greatest fire threat to Great Basin bristlecone pine growing near treeline is from fires 

ignited in the mixed conifer forests and shurblands below and progressing as crown fires 

into pure stands of Great Basin bristlecone pine during extreme wind conditions and 

exceptionally dry fuel moistures. However, current monitoring programs inadequately 

quantify the surface and canopy fuels of this system. The first finding (Chapter 2) 
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addresses the likely changes and amplification of ecological disturbances due to 

anthropogenic climate warming. I focus on the disturbance of wildland fire and alteration 

of fuels. Linear regression showed that all classes of fine woody debris (FWD) had an 

inverse relationship with elevation, yet course woody debris (CWD) remained constant 

across elevational transects (Gray and Jenkins, 2017). Fuel sampling in the pine fuel zone 

(the area directly beneath the tree crown) (Jenkins, 2011), helps describe the 

discontinuous fuels found at alpine treeline in Great Basin bristlecone pines. Accounting 

for these poorly studied fuels, lower crown base height (CBH) and foliar moisture, 

combined with warming temperatures due to climate change, and suggests an increase in 

fire potential at the Great Basin bristlecone pine treeline, threatening the oldest 

individuals of this iconic species. However, the likelihood of surface fire decreases with 

elevation, the potential for crown fire and spotting still exist. More research is needed to 

identify the wind speed and fuel moisture thresholds that could sustain crown fire 

propagation. New information about discontinuous fuels will aid in management of high 

elevation alpine treeline forests. 

The second finding (Chapter 3) of this research addresses the physiological 

response of Great Basin bristlecone pine to climate warming-induced changes to 

environmental factors. The physiological response of VOC emissions and within-needle 

terpenoid concentrations provide a promising indicator of an individual trees response to 

environmental conditions. The blend of VOCs emitted from Great Basin bristlecone 

foliage proved to be an excellent predictor (82% accuracy) for the elevation of the tree. 

Additionally, air temperature, heat load index (potential direct radiation at a site), and 

relative humidity correlated well with emitted VOCs. The changes in the amounts of 
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individual compounds (e.g E-β-ocimene, α-terpinene, β-phellandrene) could provide 

insight into a tree’s response to environmental stress. Several of the identified emitted 

compounds have been shown to interact with mountain pine beetle, provide relief from 

oxidative and thermal stresses, and to increase foliage flammability (Page et al., 2012). 

These changes, along environmental gradients (increased VOC at different elevations), 

occur in response to biotic or abiotic stressors. This improved understanding of Great 

Basin bristlecone pine response to elevational gradients (as a proxy for climate warming), 

aids in discovering potential susceptibility to threats like fire or mountain pine beetles. 

This research improves understanding of VOC emissions as a physiological tree response 

to environmental factors and helps inform land managers about forests threatened by 

native and non-native pests and pathogens, increased threat of fire, and changing 

distribution patterns from climate change. 

The final chapter (Chapter 4), describes differences of emitted VOCs and how 

mountain pine beetle (a native pest to many Pinus species in North America) use these 

compounds to identify suitable tree hosts. The comparison of VOCs emitted from Great 

Basin bristlecone pine versus limber pine revealed several differences in compounds. The 

most dramatic difference were in 3-carene (70 times more abundant in limber pine), β-

myrcene (4.8 times more abundant in limber pine), and D-limonene (4.6 times more 

abundant in limber pine)(Gray et al., 2015). My research showed that female mountain 

pine beetle use VOCs in the initial selection between limber pine, a preferred host, and 

are repelled by VOCs emitted from Great Basin bristlecone pine, a non-host. D-limonene, 

combined with other unidentified compounds, plays a role. A better understanding of 

how mountain pine beetles locate and select hosts in high elevation systems will help us 
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predict impacts of beetle attacks and could help develop tools to manage mountain pine 

beetle in these important communities.  

 
Contributions and Broader Impacts 

This dissertation improves understanding of the resiliency and response of Great 

Basin bristlecone pine to disturbance. In addition to biodiversity’s role as mitigation 

against changing environments and disturbances, there is increasing evidence that the 

collective role of rare species may be important for ecosystem services (Tscharntke et al., 

2005). The contribution of each rare species is usually small, but all species together may 

be of quantitative importance (Tscharntke et al., 2005).  My research and findings are 

useful for land managers to prioritize strategies to insure the health of Great Basin 

bristlecone pine, as well as to manage other rare, yet charismatic, species. Another 

contribution of this work is that I have researched a wide extent of Great Basin 

bristlecone pine populations. The majority of other Great Basin bristlecone pine research 

has been completed at only three sites: the Ancient Bristlecone Pine Forest in California, 

Wheeler Peak in Great Basin National Park, and the Spring Mountains National 

Recreation Area. While Great Basin bristlecone pine is a very long lived species and 

individuals are quite resilient to climate variability, the species as a whole is often 

overlooked by land managers, who focus instead on protecting high profile, ancient trees 

located in national parks and near visitor centers, or who focus on more common timber 

producing species. The fragmentation and isolation of distinct populations of Great Basin 

bristlecone pine affect gene flow, which potentially reduces resiliency to large landscape 

disturbances. It also makes coordinated management difficult. To adequately manage this 
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species into the future, we must examine Great Basin bristlecone pine’s intrinsic rareness 

on the landscape, how warming temperatures and invasive species might change 

disturbance regimes and frequency, and focus on management strategies that provide for 

future groves. Complex interactions between climate and disturbance regimes influence 

current and future forest communities, however it is  challenging to develop management 

strategies which maintain resistance and resilience in forest communities. 
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