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ABSTRACT 
 
 

Extension of Behavioral Momentum Theory to Conditions with Changing  

Reinforcer Rates 

 
by 
 
 

Andrew R. Craig, Doctor of Philosophy 
 

Utah State University, 2017 
 
 

Major Professor: Timothy A. Shahan, Ph.D. 
Department: Psychology 
 
 

Behavioral momentum theory states that resistance to change of operant behavior 

is governed by the Pavlovian stimulus-reinforcer relation in a given discriminative-

stimulus situation. That is, higher reinforcer rates in the presence of a discriminative 

stimulus result in a stronger stimulus-reinforcer relation and, thereby, greater resistance 

to change. Within the momentum-based quantitative framework of resistance to change, 

the construct relating persistence to pre-disruption reinforcer rates is termed “behavioral 

mass.” All research on which momentum theory is based has examined resistance to 

change following prolonged exposure to stable reinforcer rates in multiple schedules of 

reinforcement. Thus, at present little is known about the time frame over which 

behavioral mass accumulates or the manner by which newly experienced stimulus-

reinforcer relations are incorporated into mass when these rates change. The experiments 

described in this dissertation aimed to clarify these facets of the construct. Chapters 1 and 



iv 
	
2 provide a detailed overview behavioral momentum theory and resistance to change. 

Topics discussed include quantitative models of resistance to change, clinical 

implications of resistance-to-change research, some notable limitations of behavioral 

momentum theory, and extensions of the theory to account for diverse behavioral 

outcomes. A recently published study is presented in Chapter 3 that aimed to determine 

how resistance to change and behavioral mass of pigeons’ key pecking adapts in the face 

of stimulus-reinforcer relations that change across time during baseline. Results suggest 

that resistance to change is a function of recently experienced stimulus-reinforcer 

relations and that behavioral mass depends most heavily on these recent experiences. The 

experiment described in Chapter 4 extended the findings reported in Chapter 3 by 

examining whether behavioral mass changes during operant extinction. Pre-exposure to 

extinction in an alternative multiple-schedule component decreased resistance to 

extinction of target-component key pecking relative to conditions without pre-exposure to 

extinction. Between-condition differences in extinction were well accounted for 

quantitatively by either variation in behavioral mass or changes in the magnitude of 

factors that are assumed to disrupt responding during extinction. Chapter 5 offers an 

integrative discussion of this research and emphasizes theoretical implications, practical 

applications, and areas for future research. 

(211 pages) 
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PUBLIC ABSTRACT 
 
 

Extension of Behavioral Momentum Theory to Conditions with Changing  

Reinforcer Rates 

 
Andrew R. Craig 

 
 

 Behavior is more likely to persist when disrupted in some way in the presence of 

stimuli correlated with frequent delivery of reward than in the presence of stimuli 

correlated with infrequent rewards. In laboratory investigations, the correlation between 

reward rates and specific stimuli are almost always held constant before testing for 

persistence. In the real world, however, how often rewards are encountered is likely to 

vary substantially over time. The major goal of the work described in this dissertation 

was to explore effects of reward rates that change over time on persistence of behavior in 

controlled laboratory settings using pigeon subjects. The first study demonstrated that 

persistence is more strongly influenced by rates of reward that were experienced recently 

than by rates of reward that were experienced in the distant past. The second study 

demonstrated that removing rewards for behavior in one context can subsequently reduce 

persistence of behavior maintained in another correlated context. Together, results from 

these studies provide initial insights into how persistence is affected by environments that 

change over time. They also underscore potentially important shortcomings of our current 

understanding of factors that cause behavior to persist. 
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CHAPTER 1 

INTRODUCTION 
 
 

Resistance to Change 
 
 

 Our everyday behavior often is faced with challenges. A doctoral student writing 

a dissertation document might become distracted from this task by friends, social media, 

or other sources. Likewise, a smoker might be discouraged from lighting a cigarette by 

his or her significant other, family, or social stigma. Regardless of the behavior in 

question or the means by which that behavior is challenged, a likely outcome is that 

behavior will persist to some degree despite challenges that deter it. The extent to which 

operant behavior persists in the face of disruption relative to the rate at which it occurred 

in the absence of disruption is referred to as “resistance to change.” Given that resistance 

to change is a fundamental component of behavior in the real world, it is important to 

understand the environmental factors that affect it and the underlying behavioral 

mechanisms that cause it. 

One variable that reliably has been shown to influence response persistence is the 

rate at which reinforcers are delivered prior to disruption. More specifically, when 

resistance to change is examined using multiple schedules of reinforcement, multiple-

schedule components associated with relatively high-rate reinforcement tend to produce 

behavior that is more resistant to change than components associated with relatively low-

rate reinforcement. Nevin (1974) conducted an early series of experiments that 

demonstrated this dependency. In his Experiment 1, pigeons pecked keys for food 
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reinforcement in a two-component multiple schedule. One component was associated 

with a red key light, the other component was associated with a green key light, and key 

pecking produced food three times as frequently in the presence of the red key than in the 

presence of the green key. Component presentations were separated by inter-component 

intervals (ICIs) during which the chamber was dark and response keys were inoperative. 

After responding stabilized in both multiple-schedule components, key pecking was 

disrupted in two different ways. First, food was presented at various frequencies during 

ICIs. Second, food presentations were suspended (i.e., key pecking was placed on 

extinction) in both multiple-schedule components. In the case of both disruptors, Nevin 

observed greater resistance to change of key pecking in the red-key component (i.e., the 

component associated with higher rate reinforcement) than in the green-key component. 

The positive dependency between resistance to change of responding in multiple 

schedules and baseline reinforcer rates is robust—it has been demonstrated in a number 

of species other than pigeons including humans (e.g., Ahearn, Clark, Gardenier, Chung, 

& Dube, 2003; Cohen, 1996; Mace et al., 1990, 2010), rats (e.g., Blackman, 1968; 

Pyszczynski & Shahan, 2011), and goldfish (Igaki & Sakagami, 2004) using a variety of 

disruptors. 

In light of the generality of this effect, much empirical work has been dedicated to 

determining the behavioral processes linking resistance to change and baseline reinforcer 

rates within multiple schedules. For example, increasing the rate of response-dependent 

reinforcement within a discriminative-stimulus situation increases the frequency of 

pairings between responses and reinforcers (i.e., strengthens the operant response-
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reinforcer contingency) while simultaneously increasing the Pavlovian relation between 

the multiple-schedule component stimuli and reinforcer deliveries. Thus, under these 

circumstances, either the response-reinforcer relation or stimulus-reinforcer relation (or 

both) could contribute to resistance to change.  

Nevin, Tota, Torquato, and Shull (1990) conducted a series of experiments to 

explore which of these relations determined response persistence. In their first 

experiment, pigeons pecked keys for food reinforcement in a two-component multiple 

schedule. In Component A, food for key pecking was delivered according to a variable-

interval (VI) 60-s (60 reinforcers/hr) schedule. In Component B, three reinforcement 

situations were introduced across conditions. In the first condition, contingencies of 

reinforcement were the same as in Component A (i.e., food was delivered for key 

pecking according to a VI 60-s schedule). In the second condition, response-dependent 

food continued to be available according to a VI 60-s schedule, and response-independent 

food was delivered concurrently according to either a variable-time (VT) 30- or 15-s 

schedule (for a total of 180 and 300 VI + VT reinforcers per hr, respectively). In the third 

condition, VI and VT food were delivered concurrently such that their combined rate was 

equal to Component-A reinforcer rates (60 reinforcer/hr; i.e., VI 180 s plus VT 90 s or VI 

300 s plus VT 75 s). 

The rationale for the study was that adding response-independent reinforcement 

into Component B should weaken the response-reinforcer relation relative to Component 

A because only some portion of reinforcers were delivered contingently on key pecking 

in Component B. Response-independent food, however, should contribute to the 
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Pavlovian stimulus-reinforcer relation in Component B. Thus, if the response-reinforcer 

relation governed resistance to change, one would anticipate less persistence in 

Component B than in Component A when some Component-B reinforcers were delivered 

independently of key pecking. Conversely, if the Pavlovian stimulus-reinforcer relation 

governed resistance to change, persistence should be greater in Component B when the 

rate of VI + VT reinforcement in that component was higher than the rate of VI 

reinforcement in Component A. The results of this experiment supported the latter of 

these conclusions. Adding VT food in Component B produced lower rates of key pecking 

than in Component A during baseline. Resistance of key pecking to both presession 

feeding and extinction, however, was higher in Component B when the combined rates of 

VI and VT reinforcement were higher than rates of VI reinforcement in Component A.  

Nevin et al.’s (1990) result subsequently has been replicated both in pigeons and 

in other species (e.g., Ahearn et al., 2003; Grimes & Shull, 2001; Podlesnik & Shahan, 

2009, 2010; Pyszczynski & Shahan, 2011; Shahan & Burke, 2004), providing strong 

support for the generality of this finding. Further, a second study in this paper 

demonstrated that provision of extra reinforcers in a multiple-schedule component 

contingently on a second response can increase resistance to change of target behavior in 

that component (see also Mace et al., 2010; Podlesnik, Bai, & Elliffe, 2012). Thus, 

resistance to change appears to be independent of the response-reinforcer relation (though 

a few notable exceptions have been reported; see Aló, Abreu-Rodrigues, Souza, & 

Cançado, 2015; K. A. Lattal, 1989; Nevin, Grace, Holland, & McLean, 2001; Shull & 

Grimes, 2006). Instead, the contribution of reinforcers within a discriminative-stimulus 
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situation to the Pavlovian stimulus-reinforcer relation, regardless of the type or source of 

those reinforcers, appears to govern resistance to change. 

 
Behavioral Momentum Theory 

 
 

Behavioral momentum theory (Nevin, Mandell, & Atak, 1983) offers a 

formalized approach to understanding how variables in an organism’s reinforcement 

history affect resistance to change and is predicated on the positive relation between 

baseline reinforcer rates and resistance to change in multiple schedules detailed above. 

According to momentum theory, response rate and resistance to change are two separable 

aspects of operant behavior (for review, Nevin, 1992a; 2002; Nevin & Grace, 2000). On 

the one hand, response rate is governed by the relation between responding and delivery 

of reinforcers made contingent on the response. Resistance to change, on the other hand, 

describes the degree to which behavior persists when faced with a disruptor and is related 

to two factors. First, resistance to change is directly related to the magnitude of the 

disruptor. Second, resistance is inversely related to a mass-like quality of behavior that is 

determined by the Pavlovian relation between discriminative stimuli and the reinforcers 

delivered in their presence. In its simplest form, behavioral momentum theory is 

described by the following equation: 

log ൬
Bx

Bo
൰ =

-x

m
. 

(1)

The left side of Equation 1 is log-transformed proportion-of-baseline response 

rates during disruption. The right side of the equation represents those factors that affect 

response persistence and can be broken into two more general terms. The numerator 
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represents the magnitude of the disruptive factor applied to ongoing behavior (x), and the 

denominator represents the mass-like quality of behavior, engendered by the Pavlovian 

stimulus-reinforcer relation established during baseline, that promotes response 

persistence. Based on parametric analyses of resistance to change, Grace and Nevin 

(1997) characterized m in Equation 2 as a power function of baseline reinforcer rates 

within a multiple schedule component (see also Nevin, 1992a, 2002). Thus, the term m in 

Equation 1 may be replaced with a more specific characterization of behavioral mass, rb, 

where r is baseline reinforcer rates within a multiple-schedule component (in reinforcers 

delivered per hr) and b is a sensitivity parameter. 

When modeling resistance to change, it is important that the disruptors that are 

applied to behavior maintained by different rates of reinforcement in the components of a 

multiple schedule are either equal or that differences in the magnitudes of the disruptors 

are clearly and quantitatively defined. Nevin and Grace (2000) suggested disruptors like 

presession feeding or delivery of free reinforcers during the ICIs of a multiple schedule 

suppress responding in a way that is independent of reinforcer rates within multiple-

schedule components and dependent only on the magnitude of the disruptor applied (see, 

Nevin, 1974; Nevin et al., 1983; see also Nevin, 1992a; 2002, for review). 

Mathematically, persistence in the face of these disruptors may be expressed as: 

log ൬
Bx

Bo
൰=

-kx

rb  . 
(2)

where x is the magnitude of the disruptor (i.e., amount prefed or frequency of ICI food in 

the animal laboratory) and k is a scaling parameter such that a one-unit increase in x does 

not necessarily represent a one-unit increase in disruption.  
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When extinction is applied as a disruptor, the contingencies of reinforcement that 

previously maintained responding in the components of a multiple schedule are removed. 

Because suspending high- and low-rate reinforcement is likely to produce unequal 

disruptive impacts on responding (for discussion, see Baum, 2012; Gallistel, 2012), 

Nevin and Grace (2000; see also Nevin & Shahan, 2011) expanded the numerator of 

Equation 2 to describe the specific disruptive effects of extinction as follows: 

log ൬
Bt

Bo
൰=

-tሺc + d∆rሻ
rb . 

(3)

The parameter t is time in extinction (measured in sessions), c is the disruptive impact on 

responding of suspending the response-reinforcer contingency, and dΔr represents 

generalization decrement. Here, Δr is the change in reinforcer rates between baseline and 

extinction (in reinforcers omitted per hr) and d is a scaling parameter. The model asserts 

that the disruptive impacts of c and dΔr are separate and additive because operant 

extinction may progress, albeit more slowly, if the operant response-reinforcer 

contingency is suspended in the absence of generalization decrement (i.e., by delivering 

response-independent reinforcement during extinction at the same rate that response-

dependent reinforcement was delivered during baseline; Koegel, & Rincover, 1977; 

Nevin, McLean, & Grace, 2001; Rescorla & Skucy, 1969).  

 
Open Questions Regarding Behavioral Mass 

 
 
 Behavioral mass is the major construct within momentum theory that relates 

reinforcer rates in a given discriminative context to resistance to change of behavior 

within that context. Despite the theoretical and practical implications of this construct, 
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and notwithstanding a tradition of studying resistance to change from the perspective of 

behavioral momentum theory that has spanned several decades (since Nevin et al., 1983), 

there remain several unanswered questions regarding the nature of behavioral mass. Two 

of these uncertainties are reviewed below. 

First, it is important to acknowledge that the studies on which behavioral 

momentum theory and its quantitative models are based have examined response 

persistence under a relatively restricted set of circumstances. An archetypal resistance-to-

change procedure proceeds as follows. Responding first is established in the components 

of a multiple schedule. Then, reinforcement conditions are held constant until behavior in 

the various components stabilizes. Finally, a disruptor is applied to ongoing behavior in 

all multiple-schedule components to assess resistance to change (for review, see Nevin, 

1992a, 2002, 2012; Nevin & Grace, 2000; Nevin & Shahan, 2011). Because baseline 

reinforcement schedules almost always are held constant for a prolonged period of time 

in the study of resistance to change (for an exception, see Craig & Shahan, 2016b), it 

remains unclear how long a stimulus-reinforcer relation must be in effect for that relation 

to affect resistance to change. Put another way, it is uncertain over what time frame 

behavioral mass accumulates given a stimulus-reinforcer relation. As a consequence, it 

also is uncertain whether, and if so how, behavioral mass might change in the face of 

stimulus-reinforcer relations that change over time. 

Another area for research regarding behavioral mass is associated with the 

augmented model of extinction (Equation 3). This equation suggests that a Pavlovian 

stimulus-reinforcer relation that is formed during baseline remains intact during 
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extinction (see Nevin & Grace, 2000; Nevin & Shahan, 2011, for review). Put another 

way, behavioral mass (rb in the denominator of the equation) does not change with 

extinction experiences, however extensive those experiences might be. Instead, decreases 

in responding during extinction are attributed to the growth of disruptive factors 

(suspending the response-reinforcer contingency, c, and generalization decrement, dΔr, in 

the numerator) with time in extinction, t. This assertion is counterintuitive—it is difficult 

to believe, for example, that the strength of a response that was reinforced for one week 

would not change if reinforcement were suspended for several decades. Because of the 

way that extinction performance has been quantitatively characterized by behavioral 

momentum theory, however, no existing multiple-schedule extinction data may be used 

to determine whether or not behavioral mass stays the same given extinction experiences. 

If Equation 3 were fitted to extent data, decreases in responding would be captured by 

variations in disruptor terms, not variations in behavioral mass. 

 
Applied Relevance 

 
 
 One major goal of applied behavior analysis is to promote socially significant 

behavior change in human populations (Cooper, Heron, & Heward, 2007) either through 

increasing the frequency of socially desirable behavior or decreasing the frequency of 

socially inappropriate behavior. Whatever the goal of a behavioral intervention, the 

behavior that is targeted for treatment almost certainly has some extensive, preexisting 

history of reinforcement. Further, reinforcement-based treatments often are used to 

promote positive behavior change (for review, see Higgins & Petry, 1999; Jessel, & 
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Ingvarsson, 2016; Petscher, Rey, & Bailey, 2009; Stitzer & Petry, 2015), and these 

treatments necessarily entail manipulating the reinforcement history associated with a 

target behavior.  

A basic understanding of how historical variables affect response persistence thus 

could be informative for at least two reasons. First, it could help to clarify how pre-

intervention reinforcement conditions associated with behavior that is targeted for 

treatment affect resistance to treatment contingencies. Second, such an understanding 

could help to identify likely effects on future persistence of target behavior that result 

from reinforcement-based treatments themselves (for discussion, see Mace et al., 2010; 

Nevin et al., 2016; Nevin & Shahan, 2011; Nevin & Wacker, 2013; Podlesnik et al., 

2012; Pritchard, Hoerger, Mace, Penney, & Harris, 2014). The momentum-based 

framework for understanding resistance to change described above offers a 

straightforward method for not only comprehending but also predicting these effects.  

It also is worthwhile to mention that an emphasis recently has been placed on 

translating principles of behavioral momentum theory into clinical applications. These 

principles have been used to clarify the effects of treatment parameters on persistence of 

problem behavior during, and susceptibility of problem behavior to relapse following, 

treatment in humans (e.g., Fuhrman, Fisher, & Greer, 2016; Mace et al., 2010; Nevin et 

al., 2016; Pritchard et al., 2014; Sweeney et al., 2014; Wacker et al., 2011). Further, 

basic-research studies (e.g., Craig & Shahan, 2016a; Nevin et al., 2016; Podlesnik, Bai, & 

Elliffe, 2012; Sweeney et al., 2014; Sweeney & Shahan, 2013) have sought to more 

thoroughly explore effects of clinically relevant treatment factors on suppression and 
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relapse of non-human animals’ behavior from the perspective of behavioral momentum 

theory. Thus, clearly defining how the momentum-based framework describes resistance 

to change under diverse situations could inform future applications of behavioral 

momentum theory to practice. Further, such endeavors hold the potential to aid in 

development of novel strategies for treating problematic behavior in clinical populations. 

 
Purpose 

 
 

 The purpose of the work reported in this dissertation is to investigate resistance to 

change in the face of stimulus-reinforcer relations that change across time. From the 

perspective of behavioral momentum theory, this work aimed to examine more 

thoroughly the temporal dynamics of behavioral mass. A thorough historical analysis of 

resistance to change and behavioral momentum theory is described in Chapter 2. The 

purpose of this chapter is to create a detailed context from which to evaluate the 

theoretical and practical foundations of momentum theory and to describe limitations to 

the theory and its extensions to more complex behavioral outcomes. Chapter 3 presents 

data from a recently published study that aimed to determine effects of changing 

stimulus-reinforcer relations over time on subsequent resistance to change. Data from an 

extension of this experiment are described in Chapter 4. The purpose of this study was to 

determine if behavioral mass changes during operant extinction. Chapter 5 presents an 

integrative discussion of the results from Chapters 3 and 4. Emphasis is placed on 

theoretical and practical implications of these findings and areas for future research and 

theoretical development. 
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CHAPTER 2 

AN ANALYSIS OF BEHAVIORAL MOMENTUM THEORY1 
 
 

Introduction 
 
 

Persistence is an important dimension of behavior for both theoretical and 

practical reasons. Persistence of behavior, in itself, is neither good nor bad. If the 

behavior in question were completing math problems in a third-grade classroom, then 

persistence would be a desirable attribute. If the behavior in question were cigarette 

smoking, then persistence would be an undesirable attribute. The context and function of 

the behavior will determine whether the individual, her family, and others concerned 

would wish it to continue. Basic learning factors, though, will determine whether it will 

continue, and for how long, and in the face of what challenges. 

 Nevin (1974) conducted a groundbreaking experiment on the basic processes that 

contribute to the persistence of behavior (this experiment will be described briefly here, 

and in more detail later in the chapter). He used pigeons pecking lit disks (conventionally 

called “keys”) to earn food as his subjects, and a sound-and light-attenuated chamber (a 

so-called “Skinner box” or “operant chamber”) as his setting, but the findings have long 

since been shown to have broad applicability. In Nevin’s experiment, the pigeons could 

peck the key when it was lit either of two colors. When the key was lit one color (the 

                                                 
1 Chapter 2 of this dissertation was adapted from “Behavioral momentum and resistance to change,” by A. 
R. Craig, A. L. Odum, & J. A. Nevin, 2014, The Wiley Blackwell handbook of classical and operant 
conditioning (pp. 249-274), with permissions from John Wiley & Sons Publishing and J. A. Nevin. A copy 
of the corresponding license agreement and permission-to-use letter may be found in Appendices A and B, 
respectively. 



13 
	
“rich” component of the reinforcement schedule), they could earn relatively more food 

(which served as the reinforcer). When the key was lit another color (the “lean” 

component of the schedule), they could earn relatively less food. Nevin employed various 

ways to make one component richer than the other, as well as various ways of 

challenging and disrupting the performance engendered by the schedule. The result was 

the same: Behavior maintained by a richer schedule of reinforcement was more resistant 

to change than behavior maintained by a leaner schedule of reinforcement. 

These basic findings, along with findings from a number of related studies (see 

Nevin, 1992a; Nevin & Grace, 2000, for review), led Nevin and his colleagues to draw 

parallels between the resistance to disruption of voluntary (i.e., “operant”) behavior and 

Newton’s second law of motion (see Nevin et al., 1983). Newton’s second law states that 

when some outside force acts on a moving object, the resulting change in the velocity of 

the object will be directly related to the magnitude of the force that is applied, and 

inversely related to the mass of the object (Newton, 1686). That is, larger external forces 

tend to slow down an object more quickly, and heavier objects are harder to slow down. 

Objects that are more massive, then, are more resistant to changes in the velocity. 

Building on the metaphor between behavior and Newton’s second law of motion, Nevin 

et al. (1983) suggested that the rate of responding (i.e., the number of responses emitted 

by an organism across some period of time) in a given situation might be analogous to the 

velocity of a moving object. Based on the observation that behavior that is maintained by 

higher reinforcer rates generally is more resistant to change (i.e., more persistent in the 

face of disruption) than behavior that is maintained by lower reinforcer rates, Nevin et al. 
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(1983) continued this metaphor by suggesting that behavior also possesses a mass-like 

quality that contributes to resistance to change, and that reinforcer deliveries in a stimulus 

situation contribute to this “behavioral mass.” Nevin and colleagues called this metaphor 

“behavioral momentum theory.” 

The overarching goal of this chapter is to provide a general review of behavioral 

persistence from the perspective of behavioral momentum theory. In the following 

sections, we first will describe the basic theoretical underpinnings of behavioral 

momentum, the procedures that historically have been use to investigate behavioral 

persistence, and some general findings from the resistance-to-change literature. Second, 

we will detail some conceptually problematic findings that are not well captured by the 

metaphor offered by Nevin et al. (1983). Finally, we will discuss recent extensions of 

momentum theory to more complex behavioral phenomena.  

 
Behavioral Momentum Theory: An Overview 

 
 

As it currently is understood, behavioral momentum theory contends that 

response rate and resistance to change are two separate aspects of operant behavior. 

Further, distinct relations between reinforcers and (1) the responses that produce them 

and (2) the stimuli in the presence of which they are delivered contribute to response rate 

and resistance to change (Nevin, 1992a). The separability of these relations can be 

illustrated by considering the operant three-term contingency (Skinner, 1938; for an 

illustration, see Figure 2.1).  
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Figure 2.1. The operant three-term contingency. Here, SD represents a discriminative 
stimulus, R is a response in the presence of the SD, and C is the delivery of a 
consequence. The response-consequence and stimulus-consequence relations are outlined 
with indication to which aspect of operant behavior these contingencies are thought to 
contribute. 
 

According to the three-term contingency, a discriminative stimulus (SD, in Figure 

2.1) in the organism’s environment sets the occasion for a response (R), and dependent 

on that response, a consequence (C), in the context of this chapter, a reinforcer, might be 

delivered. One can derive a number of two-term contingencies from the overall three-

term contingency. The first contingency, that between the response and the reinforcer, 

governs the rate at which responding occurs in the stimulus situation. The second 

contingency, that between the discriminative stimulus and the presence of reinforcers, 

also called the Pavlovian stimulus-reinforcer relation, contributes to resistance to change 

independently of the response-reinforcer relation. 

 In this section, we will provide an overview of the foundational work underlying 

behavioral momentum theory. First, we will discuss the methods that traditionally have 

been used to study behavioral persistence. We then will present some findings that 

support both the basic predictions and theoretical underpinnings of behavioral 

momentum. 

SD : R     C

Resistance to Change

Response Rate
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Traditional Methods for Studying  
Behavioral Persistence 
 
 When a single behavior is trained and subsequently disrupted, the decrease in 

behavior that occurs may tell the observer little about the factors that influence resistance 

to change. Indeed, determining the functional relation between an independent variable 

(in this case, reinforcer rate) and a dependent variable (here, resistance to change) 

requires that contrasts between the effects of different levels of the independent variable 

on the dependent variable be examined (see Baron & Perone, 1998, for further 

discussion). To clarify the contribution of reinforcers to behavioral persistence, 

comparisons must be made between behavior that is maintained in the presence of two or 

more stimuli that are associated with different reinforcer frequencies or magnitudes (see 

Nevin, 1974; Nevin et al., 1983). This arrangement, known as a multiple schedule 

(Ferster & Skinner, 1957), provides a useful tool for studying resistance to change.  

In the multiple-schedule paradigm, two or more separate discriminative stimuli, 

each of which is associated with a distinct schedule of reinforcement, alternate 

successively within an experiment; each stimulus and its associated schedule of 

reinforcement defines a multiple-schedule component (see Figure 2.2 for a schematic 

depiction of a basic two-component multiple-schedule preparation; see also Nevin & 

Grace, 2000). In the case of a pigeon in an operant chamber, these separate components 

are signaled by different key colors. The pigeon’s pecking the response key when it is lit 

one color (C1, in Figure 2.1) might produce food relatively frequently, while pecking the 

key while it is lit another color (C2) might produce food relatively infrequently.  
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Figure 2.2. A schematic representation of a two-component multiple schedule. ‘C1’ 
represents the first component, and ‘C2’ represents the second. Raised bars are periods 
during which the stimuli correlated with each component are present. Note that C1 and 
C2 components are separated by periods of blackout (inter-component intervals). 
Adapted from Nevin and Grace (2000). 
 
 

In resistance-to-change research, variable-interval (VI) schedules, arranging 

between 3:1 and 12:1 reinforcer-rate ratios between the rich and lean components, 

respectively, historically have been the preferred rule by which reinforcers are delivered 

within multiple schedules (for reviews, see Nevin, 1992a; Nevin & Grace, 2000). The 

rate at which responding produces reinforcers according to VI schedules tends to be fairly 

constant despite potential variations in rate of responding, thereby ensuring that obtained 

reinforcer rates closely approximate the reinforcer rates that are programmed by the 

experimenter (see Nevin et al., 2001, for detailed discussion). This is an important 

consideration, given that baseline reinforcer rates typically are the major independent 

variables in momentum studies.  

Another important detail of the multiple-schedule preparation is that the distinct 

C1

C2

Resp.

SR

Session Time
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components of the schedule usually are separated by brief (e.g., 30-s) inter-component 

intervals (ICIs), periods of blackout during which the operandum is unavailable. Inter-

component intervals tend to decrease interactions between the components of the 

multiple schedule, such as those that produce behavioral-contrast effects in response rate 

(see Nevin, 1992b, for discussion). Intercomponent intervals, therefore, help to ensure 

that the separate components of the multiple schedule represent distinct stimulus 

situations. 

The meaningful comparison in resistance-to-change research is between the 

relative contributions of different rates of reinforcement to behavioral persistence. The 

multiple schedule allows for such comparisons to be arranged both within subjects and 

within a single experimental condition. This feature limits the need to conduct lengthy, 

multi-phase or between-groups experiments (for a discussion of other relative advantages 

of within-subject designs, see Baron & Perone, 1998). Further, because disruptors can be 

applied to various stimulus situations of the multiple schedule within the same session, 

this paradigm eliminates any potential confounds that might be associated with exposing 

subjects to conditions of disruption multiple times. For example, repeated exposure to 

extinction, a commonly used disruptor in which responding no longer produces 

reinforcers, might change the discriminability of nonreinforcement and thereby affect 

data from subsequent extinction tests (see Baum, 2012). 

Once stable responding is achieved in the various components of the multiple 

schedule, resistance to change may be assessed by applying a disruptor to all of the 

multiple-schedule components within a session. In the animal laboratory, such disruptors 
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as operant extinction, providing hungry animals with some portion of their daily ration of 

food prior to sessions (conventionally, “pre-feeding”), and the presentation of response-

independent food during ICIs traditionally have been used (e.g., Harper, 1996; Nevin, 

1974, 2012; Nevin & Grace, 2000).  

One can classify disruptors by whether they alter the motivation of the organism 

to respond for reinforcers or change the baseline contingencies under which the organism 

responded (see Nevin & Grace, 2000, for review). On one hand, pre-feeding and the 

presentation of free, ICI food may be classified as “external disruptors.” These disruptors 

alter the motivation of the organism to respond for reinforcement while the internal 

workings of the experimental situation, like reinforcer availability for performing some 

behavior, remain intact. External disruptors tend to result in decreases in behavior that are 

proportional to the magnitude of the disruptor. For example, if a hungry pigeon is pre-fed 

prior to a session in which it typically would respond for food, the decrease in behavior 

that is observed during the session generally is greater when they are given more food 

than when they are given less food (cf., Nevin, 1992b; Nevin et al., 1990). Extinction, on 

the other hand, is an internal disruptor. It alters the response-reinforcer relation that 

previously maintained responding. Because the baseline contingencies necessarily are 

altered during extinction, behavior typically decreases across time with continued 

exposure to extinction contingencies (see Nevin, 2012, for review).  

 Aside from the methodological considerations just reviewed, thought also must be 

given to the manner in which data are analyzed when studying behavioral persistence. 

One challenge for studying the effects of reinforcer rate on resistance to change is that 
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different reinforcer rates tend to maintain different rates of responding. More specifically, 

higher reinforcer rates typically produce higher response rates. This finding is ubiquitous 

in behavioral psychology (see Shull, 2005, for review). Describing the resistance to 

change of one behavior relative to that of another behavior might be difficult if the two 

behaviors occurred at different rates prior to disruption. For example, if behavior in one 

multiple-schedule component occurs at a higher rate (e.g., 100 responses per min) than 

behavior in the other component (e.g., 50 responses per min), disruption potentially could 

decrease responding in both components by a similar absolute amount (e.g., a decrease of 

25 responses per min). The relative change in responding produced by disruption, 

however, actually would be larger in the component that occasioned lower response rates. 

In this example, behavior in the component with lower rates would be reduced by 50%, 

whereas behavior in the component with the higher rates would be reduced by only 25%. 

From the perspective of behavioral momentum theory, then, absolute response rate in the 

face of disruption might not be the ideal measure of resistance to change. A standardized 

unit of measurement is advantageous. 

Converting absolute rates of responding during disruption to proportion-of-

baseline response rates helps to address the issue present when comparing decreases in 

behavior between different stimulus situations in which behavior occurred at different 

rates (see Nevin et al., 1983). Proportion-of-baseline rates of responding typically are 

calculated by dividing the rate of responding in a given session of disruption by the 

average rate of responding obtained in the last few sessions during baseline. This measure 

can range from zero when no responses occurred during that session of disruption to one 
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when responding occurred at exactly the same rate during that session of disruption as it 

had during the final sessions of baseline. Occasionally, responding briefly will increase in 

frequency relative to baseline when disruption is applied, resulting in a proportion-of-

baseline value that is greater than one. A common example of this is the extinction burst 

(e.g., Lerman, Iwata, & Wallace, 1999). This effect, though, is usually transient.  

Proportion-of-baseline response rates describes the frequency at which behavior is 

occurring now (during disruption) relative to how fast it was, then (during baseline). 

Figure 2.3 presents hypothetical extinction data from two multiple-schedule situations to 

illustrate the advantages of this measure of resistance to change. These data were 

modeled after those reported by Nevin’s (1974) Experiment 5 (to be discussed later). The 

left panel depicts extinction data from a typical rich-VI/lean-VI multiple schedule in 

which responding occurred more frequently in the rich component than in the lean 

component during baseline. The right panel depicts extinction data from a rich-VI/lean- 

VI multiple schedule in which additional constraints were placed on the form of 

responding that was eligible for reinforcement. Here, inter-response times (IRTs) had to 

be greater than (IRT > t) or less than (IRT < t) some specified duration (these schedule 

arrangements also are referred to as differential reinforcement of low rate [DRL] and 

high rate [DRH] behavior, respectively; Ferster & Skinner, 1957). With these additional 

constraints, behavior occurred more frequently in the lean component during baseline 

despite its producing reinforcers less frequently in this stimulus situation. Comparing data 

from the bottom graphs to those from the top graphs, it is easier to determine the 

persistence of behavior in the rich-schedule component relative to that of behavior in the  
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Figure 2.3. Hypothetical extinction data demonstrating the utility of proportion of 
baseline as a measure of resistance to change. The left panels represent data from a 
typical rich/lean multiple schedule using variable-interval (VI) schedules, while the right 
panel represents data from a rich/lean multiple schedule with VI schedules in which 
additional constraints on responding were arranged. Here, the response that earned 
reinforcement had to have occurred following either a relatively long inter-response time 
(IRT > t) or a relatively short IRT (IRT < t) in the rich and lean components, respectively. 
The top graphs depict absolute response rates in the rich and lean components of a 
multiple schedules, and the bottom graphs depicts proportion-of-baseline rates for the 
same data. 
 

lean-schedule component when the data are represented as proportion of baseline. Indeed, 

in the case of the right panel, converting responding across days of extinction to 

proportion of baseline reveals greater persistence in the rich-schedule component that 

might not have been apparent otherwise. The advantages of converting response-rate data 

from conditions of disruption to proportion of baseline are clear: Doing so provides a 
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quantitative measure of responding in the face of disruption that is robust with respect to 

variations in baseline response rates. 

 
Some Representative Findings 
 
 Now that we have discussed the methods that traditionally have been used to 

study behavioral persistence, we will describe some general findings from studies that 

have used these methods and variations on them. Many data sets have supported the 

notion that reinforcers contribute to behavioral persistence in the face of disruption (see 

Nevin, 1992b, 2012; Nevin & Grace, 2000, for reviews). As described briefly above, 

Nevin (1974) conducted an example of this work demonstrating that higher reinforcer 

rates yielded more persistent behavior. In his Experiments 1 and 2, pigeons pecked keys 

for food in a two-component multiple schedule. In the rich component, food was 

available three times as often as in the lean component. After responding had stabilized in 

both components of the multiple schedule, behavior was disrupted either by presenting 

response-independent (VT) food at various frequencies during ICIs (Experiment 1) or by 

extinction (Experiment 2). In both experiments, key pecking in the component associated 

with the richer schedule of reinforcement was more resistant to disruption than was key 

pecking in the component associated with the leaner schedule. Further, in Experiment 1, 

larger amounts of ICI food resulted in more disruption in both components.  

 The positive relation between reinforcer presentations during baseline and 

resistance to change is not limited to the frequency with which reinforcers are delivered. 

Resistance to change also is affected by the amount of each reinforcer that is delivered 

(i.e., variations in reinforcer magnitude). Shettleworth and Nevin (1965) offered an early 
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demonstration of this effect. Here, pigeons pecked keys for food in a two-component 

multiple schedule in which both components arranged food according to VI 120-s 

schedules (providing on average 30 reinforcers per hr). The critical difference between 

the components was that one component delivered 1 s of access to food while the other 

component delivered 9 s of access. When resistance to extinction was assessed following 

baseline, behavior in the component associated with 9-s hopper presentations was more 

persistent than behavior in the component associated with 1-s hopper presentations. 

Nevin (1974, Experiment 3) subsequently replicated these findings using a different 

disruptor. Here, pigeons responded under a multiple VI 60-s VI 60-s schedule in which 

the components differed in the reinforcer magnitudes that they arranged. Reinforcers 

consisted of 2.5 s of access to food in one component and 7.5 s of access in the other. 

Across different phases of disruption, different frequencies of response-independent (VT) 

food were introduced into the dark-key periods that separated the components of the 

multiple schedule. Resistance to change was greater in the component that was associated 

with 7.5 s of access to food and higher frequencies of free ICI food resulted in more 

disruption to behavior in both multiple-schedule components. The findings just reviewed 

provide support for the general observation that higher reinforcer rates and/or magnitudes 

during baseline produce behavior that is more persistent in the face of disruption. These 

general findings have been demonstrated in a number of species other than pigeons, 

including rats (e.g., Blackman, 1968; Grimes & Shull, 2001; Shahan & Burke, 2004), 

goldfish (Igaki & Sakagami, 2004), and different human populations (Cohen, 1996; Mace 

et al., 1990, 2010). Furthermore, as will be noted in detail below, these observations hold 



25 
	
with a variety of different reinforcers and settings. 

In addition to the generality of the basic empirical findings associated with 

behavioral momentum theory, various studies have provided support for the conceptual 

underpinnings of the theory as well. As previously noted, behavioral momentum theory 

states that baseline response rate (velocity) and resistance to change (related to a mass-

like aspect of behavior) are independent dimensions of discriminated operant behavior. 

We now consider the support for the conjecture that the response-reinforcer relation 

governs response rate while the Pavlovian stimulus-reinforcer relation governs resistance 

to change (refer to Figure 2.1).  

 
The Stimulus-Reinforcer Relation:  
Support for Momentum Theory 
 
 When all of the reinforcers that are delivered in the presence of a discriminative 

stimulus are dependent on a response, increasing the reinforcer rate strengthens both the 

stimulus-reinforcer and the response-reinforcer relations. Under most circumstances, one 

would expect that adding more reinforcers to a multiple-schedule component should 

result in higher rates of responding and behavior that is more resistant to change. How, 

then, might one tease apart these aspects of behavior to empirically test whether response 

rate and resistance to change depend on two separate relations?  

Possibly the most straightforward method for answering the question just posed is 

by manipulating either the stimulus-reinforcer or the response-reinforcer relation 

independently of the other. Nevin et al. (1990) conducted a series of experiments that 

elegantly addressed this issue by strengthening the stimulus-reinforcer relation 
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independently of the response-reinforcer relation. In their first experiment, pigeons 

pecked keys for food in a two-component multiple schedule. One component, signaled by 

a green key, arranged food according to a VI 60-s schedule. In the other component, 

signaled by a red key, food was available according to the same VI schedule, but 

additional food also was given independently of responding according to VT schedules. 

The addition of this extra food had two effects. First, because responding produced only a 

portion of the food in the VI+VT component, the relation between responding and 

reinforcer deliveries was weakened to some extent. Second, the Pavlovian stimulus-

reinforcer relation in that component was strengthened because more food was delivered 

in the presence of the discriminative stimulus. Therefore, Nevin et al. predicted that 

response rates would be lower (due to the weaker response-reinforcer relation), but 

resistance to change would be higher (due to the stronger stimulus-reinforcer relation), in 

the component with added VT food. This prediction was exactly what was observed: 

Response rates in the red-key component tended to be lower than in the green-key 

component during baseline. When resistance to change was assessed by either pre-

feeding or extinction, however, behavior was more persistent in the component with the 

added food than in the other, VI-only, component. 

 In a second, admittedly complex, experiment, Nevin et al. (1990) asked whether 

adding food to a stimulus context dependent on an alternative response would increase 

the resistance to change of a target behavior. Here, Nevin et al. arranged a three-

component multiple-concurrent schedule of reinforcement. In all of the components, two 

response keys, each of which was associated with different contingencies, were available 
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simultaneously to the pigeons. In Component A, the two response keys were illuminated 

green. Food was delivered according to a VI 240-s schedule (15 reinforcers per hr) for a 

target response on one key while food was delivered concurrently according to a VI 80-s 

schedule (45 reinforcers per hr) for an alternative response on a second key. In 

Component A, therefore, there were 60 possible reinforcers per hr. In Component B, two 

red response keys were available. The target response key again delivered food according 

to a VI 240-s schedule (15 reinforcers per hr) while responding on the alternative 

response key had no consequences (i.e., extinction; 0 reinforcers per hr). In Component 

B, therefore, there were 15 possible reinforcers per hr. In Component C, two white 

response keys were available, and responding on the target key produced food according 

to a VI 60-s schedule (60 reinforcers per hr) while responding on the alternative response 

key was on extinction (0 reinforcers per hr), thus providing the same reinforcer rate as the 

sum of rates in Component A (60 reinforcers per hr). Baseline response rates on the target 

key in Component A (the component with additional food for alternative responding) 

were lower than in Components B and C with no alternative reinforcement. Resistance to 

both pre-feeding and extinction of target responding, however, was greater in Component 

A than in component B, which arranged the same rate of response-dependent food for the 

target response, and about the same as in Component C, which arranged the same overall 

reinforcer rate. In summary, the findings of Nevin et al. demonstrate that increasing the 

rate of reinforcement in a stimulus situation increases behavioral persistence, even when 

some reinforcers are delivered independently of responding or dependent on another 

response. In other words, behavioral persistence is independent of the source of 
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reinforcers in the situation, but instead depends simply on the sum total of reinforcers in 

the situation.  

 Other experiments subsequently have replicated and extended the results reported 

by Nevin at al. (1990). For example, Mace et al. (1990; Experiment 2) delivered edibles 

to adults with intellectual disabilities for sorting different colors of dinnerware. These 

differently colored stimuli served to distinguish the separate components of a multiple 

schedule. The same rate of response-dependent edible presentations was delivered for 

sorting in both components, but in the presence of one color of dinnerware, response-

independent edibles also were delivered. Resistance to change was assessed by 

distracting the participants with access to a video program during the sorting task. The 

adults sorted at a lower rate, but also sorted more persistently, in the component with 

added reinforcement.  

Recent studies have extended the findings of Nevin et al. (1990) and Mace et al. 

(1990) to situations where qualitatively different reinforcers concurrently are delivered in 

a discriminative-stimulus situation. For example, Grimes and Shull (2001) demonstrated 

that sweetened condensed milk, when delivered independently of responding in one 

component of a multiple schedule, decreased the lever-press response rates of rats but 

increased resistance to extinction of behavior that was maintained by food. Shahan and 

Burke (2004) replicated these results with drug reinforcement by demonstrating that 

adding response-independent food deliveries into one component of a two-component 

multiple schedule increased the persistence of alcohol-maintained responding in rats. 

Together, these results suggest that, so long as reinforcers are delivered in the presence of 
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a discriminative stimulus, they may increase the stimulus-reinforcer relation and thereby 

increase resistance to change, even when those reinforcers that are delivered 

independently of responding are different from those produced by responding. 

Above, we discussed the effects of augmenting the stimulus-reinforcer relation, 

alone, on resistance to change. Another approach to studying the separable nature of 

response rate and resistance to change is to place the response-reinforcer relation into 

opposition with the stimulus-reinforcer relation. Nevin (1974, Experiment 5) investigated 

exactly this arrangement. In this experiment, pigeons responded under a multiple VI 60-s 

VI 180-s schedule of reinforcement. Across conditions, additional constraints were added 

to the underlying VI schedules such that, when an interval elapsed, the IRTs between two 

consecutive responses had to be either less than or greater than 3 s (IRT < 3 s and IRT > 

3 s contingencies, respectively) to earn a reinforcer. If separate reinforcer relations 

governed response rates and resistance to change, Nevin reasoned that behavioral 

persistence in the separate multiple-schedule components should be positively related to 

baseline reinforcer rates, regardless of the additional constraints (i.e., IRT < 3 s or IRT > 

3 s) placed on responding. This is precisely what Nevin observed. The IRT < 3-s and IRT 

> 3-s arrangements produced high-and low-rate responding, respectively. When 

responding was disrupted by either free ICI food presentations or by extinction, however, 

behavior maintained in the context that was associated with the VI 60-s schedule 

consistently was more resistant to disruption than behavior maintained in the context 

associated with the VI 180-s schedule (see Figure 2.3 for an illustration of this finding 

using hypothetical data).  
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  Nevin (1992b) offered a third approach demonstrating the dependency of 

resistance to change on the Pavlovian stimulus-reinforcer relation. The relation between 

reinforcers and a target discriminative stimulus, by definition, reflects the reinforcer rate 

in the presence of that stimulus relative to the reinforcer rate in the absence of that 

stimulus (i.e., in the context within which the target stimulus appears; see Rescorla, 

1968). This definition of the stimulus-reinforcer relation suggests that resistance to 

change should be governed both by the absolute reinforcer rate in a given multiple-

schedule component and by the reinforcer rate in that component relative to the 

reinforcer rate in other components in the experimental session. Put more simply, 

resistance to change should be susceptible to behavioral-contrast effects. Nevin 

demonstrated precisely this effect. In his experiment, pigeons pecked keys for food in a 

multiple schedule in various conditions. In all of these conditions, responding in the 

presence of a red key was reinforced according to a VI 60-s schedule (60 reinforcers per 

hr). Responding in the presence of the other, green, key was reinforced according to 

either a VI 12-s (300 reinforcers per hr) or a VI 360-s (10 reinforcers per hr) schedule 

across conditions. When food was delivered in the green-key component according to the 

VI 12-s schedule, the food rate in the red-key component was relatively lean, and when 

the green-key component delivered VI 360-s food, the food rate in the red-key 

component was relatively rich. Following baseline, resistance to both pre-feeding and 

extinction was assessed.  

The critical comparison in this experiment was between the resistances to change 

of responding in the red-key component, which was always associated with VI 60-s food, 
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across conditions. Nevin (1992b) reported a behavioral-contrast effect in resistance to 

change between conditions in that responding in the red-key component was more 

persistent when the green-key component arranged VI 360-s food than when it arranged 

VI 12-s food. In other words, resistance to change depended on the reinforcer rate in the 

constant red-key component relative to the reinforcer rate in the alternative green-key 

component. 

In summary, when either the response-reinforcer relation or the stimulus-

reinforcer relation is manipulated alone (or the two relations are placed in opposition of 

one another), separate effects on response rate and resistance to change might be 

observed. Therefore, in terms of momentum theory, resistance to change generally is a 

function of the relative reinforcer rate that is delivered in the presence of a discriminative 

stimulus, and this relation largely is independent of the response-reinforcer relation. In 

the cases just discussed, this relation was independent of the source of reinforcers (i.e., 

whether or not reinforcers were delivered dependently on responding; Grimes & Shull, 

2001; Nevin et al., 1990; Shahan & Burke, 2004), the type of reinforcers (Grimes & 

Shull, 2001; Shahan & Burke, 2004), and the rate at which responding was maintained 

during baseline (Nevin, 1974, Experiment 5). Further, resistance to change can be 

affected by manipulating the relative rates of reinforcer presentations between a 

component and its surrounding context (Nevin, 1992b). 

These results demonstrate the broad applicability of the simple metaphor offered 

by behavioral momentum theory. This metaphor accurately describes the general finding 

that higher relative reinforcer rates (or amounts) produce behavior that is more resistant 
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to disruption, independently of baseline response rates. There are, however, a number of 

findings that might be considered problematic for behavioral momentum theory. While 

these findings might not have implications for most situations outside of the laboratory, 

they provide insights into the accuracy of the fundamental metaphor of behavioral 

momentum. In the following section, we will describe some of these challenges. 

 
Challenges to Behavioral Momentum Theory 

 
 

Behavioral momentum theory proposes that the resistance to change of response 

rate in the presence of a stimulus situation depends directly on the reinforcer rate or 

amount signaled by that stimulus after extended training (i.e., the Pavlovian stimulus-

reinforcer relation), regardless of whether all reinforcers are dependent on the target 

response. Although several lines of evidence support that proposition, as described above, 

there are some challenges to its generality. Much as Newtonian physics works well under 

most conditions that would be encountered in daily life but might fail to predict what 

happens under extreme conditions (like the physics of objects approaching the speed of 

light or of objects on the molecular scale; see Feynman, 1994), these challenges to 

behavioral momentum theory might pose little difficulty and have few implications in 

many applied and clinical situations. Ultimately, however, these problems suggest that 

behavioral momentum theory might profitably be replaced or supplemented by a theory 

that more accurately captures a wider range of situations and outcomes. The main areas 

in which discrepancies have emerged are different response-reinforcer relations, extreme 

differences in reinforcer rates, and single schedules of reinforcement.  
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Different Response-Reinforcer Relations 
 
 If resistance to change depends on stimulus-reinforcer relations, there should be 

no difference in resistance to change between multiple-schedule components when 

stimulus-reinforcer relations are the same. To the contrary, several studies have found 

that when obtained reinforcer rates are matched between components but response-

reinforcer relations differ between components, high response rates are generally less 

resistant to disruption than low response rates. A study by Blackman (1968) provides an 

early example. Rats were trained in multiple schedules with identical VI schedules of 

food reinforcement but with different constraints on response rate in the components. For 

example, in Component A, Rat 1 obtained reinforcers on a schedule that reinforced only 

those responses occurring within 0.2 s of the previous response (IRT < t, or DRH), and in 

Component B, only those responses that were spaced between 1.5 and 3.0 s were 

reinforced (a pacing schedule). As a result, response rates in Component A were about 

double those in Component B, even though obtained reinforcer rates were essentially 

identical. When a 1-min tone signaling an unavoidable shock was presented in the middle 

of each 8-min component, responding was suppressed much more in Component A 

(high-rate IRT < t) than in Component B (low-rate pacing). These results should be 

contrasted with those obtained by Nevin (1974, Experiment 5) discussed above. In his 

experiment, Nevin arranged similar constraints on response rates in a two-component 

multiple schedule that arranged different reinforcer rates. Nevin’s experiment, unlike 

Blackman’s, provided support for behavioral momentum.  

 The finding that relatively low response rates are more resistant to change in 
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multiple schedules has been confirmed in subsequent experiments. For example, K. A. 

Lattal (1989) had pigeons respond on VI schedules with fixed-ratio (FR) or IRT > t 

(DRL) contingencies that produced different response rates in components with equated 

reinforcer rates. When responding was disrupted by introducing food during ICIs, 

response rate decreased less in the DRL component than in the FR component. Similarly, 

Nevin et al. (2001, Experiment 2) evaluated resistance to change with VI versus variable-

ratio (VR) schedules, where the VR value was adjusted every few sessions so that higher-

rate VR responding yielded the same obtained reinforcer rate as that in the VI 

component. Lower-rate VI responding was less disrupted by ICI food, extinction, and ICI 

food plus extinction, than higher-rate VR responding. The common feature of these 

studies is that when reinforcer rates were the same in two multiple-schedule components, 

resistance to change was greater in the component with the lower response rate.  

Another area of research on the effect of response-reinforcer contingencies on 

resistance to change also reveals a relation between response rate and persistence, but in 

the opposite direction as described above. When reinforcers are presented immediately 

after eligible responses, the rate of responding is usually higher than when unsignaled 

delays intervene between responses and reinforcers (see K. A. Lattal, 2010, for review). 

Bell (1999) and Grace, Schwendiman, and Nevin (1998) confirmed this result in 

components of multiple schedules with obtained reinforcer rates equated between 

components, and then compared resistance to prefeeding, ICI food, and extinction 

between components. Both studies obtained greater resistance to change in the 

component that arranged immediate reinforcers. The results not only challenge the role of 
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Pavlovian factors (stimulus-reinforcer relations) in determining resistance to change, 

because reinforcer rates were equated between components, but also question the 

generality of the findings cited above that low response rates are more resistant to change 

than high response rates.  

In summary, differential stimulus-reinforcer relations between the component 

stimuli in multiple schedules evidently are not necessary to produce differential 

resistance to change. Resistance to change may be influenced by contingencies that 

generate different response rates in the absence of differences in reinforcer rates. The 

critical differences, however, between response-reinforcer relations that selectively 

reinforce higher or lower response rates and those that involve reinforcer delays remain 

obscure. Both procedures affect response rate, but in one case (pacing contingencies), 

lower response rates are more persistent, and in the other case (delaying reinforcers), 

lower response rates are less persistent. Both lines of research show, however, that 

response persistence can be affected by factors other than reinforcer rate, which 

challenges one of the basic tenets of behavioral momentum theory - that persistence is 

affected only by the stimulus-reinforcer relation in a discriminative-stimulus situation. 

 
Extremely Different Reinforcer Rates 
 
 In addition to challenges when reinforcer rates are the same, the generality of 

Pavlovian determination of resistance to change recently has been challenged from the 

opposite direction, when reinforcer rates are very different. McLean, Grace, and Nevin 

(2012) arranged standard two-component multiple VI VI schedules that covered a far 

greater range of reinforcer-rate ratios than any previous study. The studies reviewed 
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above that reported greater resistance to change in a multiple-schedule component with 

more frequent reinforcement arranged VI schedules with reinforcer-rate ratios between 

3:1 and 12:1. By contrast, McLean et al. covered a range from about 1:100 to 100:1 and 

assessed resistance to change using pre-feeding. 

Figure 2.4 depicts a summary of the results of this (admittedly complex) study. In 

this figure, the x-axis is log (base 10) reinforcer-rate ratios for Components 1 and 2 (r1 

and r2, respectively). The y-axis in the top panel shows log response-rate ratios in 

Components 1 and 2 (B1 and B2), and the y-axis in the bottom panel shows log 

proportion-of-baseline response rates during disruption for both components. These data 

were log-transformed because this technique has the advantage of rendering equal unit 

changes for proportional differences. For example, a decrease in responding from 0.4 to 

0.2 proportion of baseline (a 50% decrease) will be reflected in an equal change in log 

units as a change from 0.2 to 0.1. McLean et al. (2012) found that response rates were 

always higher in the richer component, and that the ratio of response rates between the 

two components increased and approached matching to the most extreme reinforcer-rate 

ratios (see the top panel of Figure 2.4). Resistance to pre-feeding, however, became less 

differentiated between rich and lean components at those extreme ratios (see the bottom 

panel of Figure 2.4), suggesting that differential Pavlovian stimulus-reinforcer relations 

are not sufficient to account for differential resistance to change. McLean et al. (2012) 

noted that when response ratios match reinforcer ratios, it is necessarily true that the 

probability of reinforcement per response is the same in both components. Therefore, 

there should be little or no difference in resistance to change at extreme reinforcer ratios  
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Figure 2.4. Log response-rate ratios and log proportion of baseline, both plotted as a 
function of log reinforcer-rate ratios across multiple-schedule conditions used by McLean 
et al. (2012). Note that as the reinforcer-rate ratios became more extreme (closer to the 
left or right side of the x-axis), log proportion-of-baseline response rates were more 
similar between the two components than they were at less extreme ratios. Average data 
adapted from McLean et al. (2012). 
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if probability rather than rate of reinforcement determines resistance to change. In 

standard multiple VI VI schedules, such as those that were used in this experiment, 

reinforcer probability and rate are generally confounded, so support for this notion must 

be sought elsewhere. 

The findings of greater resistance to change of lower than higher response rates 

with equated reinforcer rates, described above, are consistent with determination by 

reinforcer probability. The effects of reinforcer delays described above, however, are 

contrary to expectation because the higher response rates observed with immediate 

reinforcers necessarily correspond to lower reinforcer probabilities per response. Neither 

can reinforcer probability account for the effects of reinforcer context found by Nevin 

(1992b) because in that study, lower response rates in a constant component when the 

alternated component was rich were less resistant to change than when the alternated 

component was lean—a result consistent with Pavlovian determination of resistance to 

change. At least to our current knowledge, no single principle can account for all of these 

findings that challenge momentum theory. 

 
Resistance to Change in Single Schedules 
 
 Another situation in which behavioral momentum theory has difficulty predicting 

response persistence has to do with how the schedules of reinforcement are arranged. As 

previously described, virtually all laboratory research on resistance to change has used 

multiple schedules. This arrangement allows baseline response rates and resistance to 

change to be compared within subjects and sessions, and resistance to extinction is 

usually greater in the rich component than in the lean component. By contrast, when 
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different conditions of reinforcement are arranged in single schedules for entire sessions 

and compared across successive conditions, the usual positive relation between resistance 

to change and reinforcer rate might not be obtained. For example, with rats as subjects, 

Cohen, Riley, and Weigle (1993) found that resistance to prefeeding was about the same 

for VI 30-s, VI 60-s, and VI 120-s schedules arranged singly in successive conditions 

(i.e., not in a multiple schedule). If resistance to change followed the usual result, 

behavior should have been most persistent in the richest schedule (VI 30-s) and least 

persistent in the leanest schedule (VI 120-s). 

Cohen (1998) suggested that the difference between resistance to change in single 

and multiple schedules arose from the frequency of alternating exposure to different 

reinforcer rates. He compared resistance to both pre-feeding and extinction after training 

with VI 30-s and VI 120-s schedules in different arrangements. Schedules were arranged 

singly in successive conditions (Part 1), on alternating days (Part 2), and in a standard 

multiple schedule (Part 3). Distinctive stimuli accompanied the schedules throughout all 

three phases.  

Cohen (1998) found that resistance to pre-feeding was about the same for both 

schedules in Part 1 (successive conditions) but was greater for the richer component in 

Part 3 (the standard multiple schedule); results for Part 2 were mixed. Relatedly, 

resistance to extinction was greater in the richer component during Phase 3 (the standard 

multiple schedule), but differed in the opposite direction (i.e., behavior maintained by the 

leaner schedule was more persistent) in Phases 1 (successive conditions) and 2 

(alternating days). The latter findings essentially replicate the well-known ‘partial-
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reinforcement extinction effect’ that routinely is observed in single schedules (see 

Sutherland & Mackintosh, 1971). That is, in single schedules, behavior that is 

intermittently reinforced (or reinforced at a relatively low rate) tends to be more 

persistent than behavior that is reinforced continuously or relatively frequently. Cohen’s 

and other authors’ (e.g., Shull & Grimes, 2006) finding resistance to extinction is 

negatively related to baseline reinforcer rate in single schedules is not easily reconciled 

with momentum theory (see Nevin, 2012, for a discussion). 

A recent study by Lionello-DeNolf and Dube (2011) compared the effects of 

added VT reinforcement (cf., Nevin et al., 1990) in successive conditions and in multiple 

schedules with separate groups of children with various developmental disabilities. In 

different stimulus conditions, all participants tapped pictures on a touch screen to gain 

access to either edibles or tokens exchangeable for various preferred items. In both 

conditions, reinforcers were delivered dependently on tapping the touch screen according 

to VI 12-s schedules. In one condition, free reinforcers also were delivered independently 

of responding according to a VT 6-s schedule. Tapping the touch screen was disrupted by 

presenting a different stimulus that signaled VI 8-s reinforcement for an alternative 

response presented concurrently with the target response. The results were striking: 

Responding was less disrupted in the VI+VT component for all six children trained and 

tested with multiple schedules, consistent with many previous findings described above, 

but the same ordering was observed with only two of six children experiencing the same 

schedules in successive conditions. Evidently, the difference between single and multiple 

schedules extends to translational settings and includes the effects of added response-
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independent reinforcers. 

In summary, it appears that the direct relation between resistance to change and 

the rate of reinforcement that is characteristic of behavior maintained in multiple-

schedule components does not generalize to behavior maintained by single schedules. As 

we know from Nevin (1992b), resistance to change in a constant component depends 

inversely on the reinforcer rate in an alternated component; equivalently, resistance to 

change depends directly on the relative rate of reinforcement in a component. In single 

schedules, where environmental conditions and reinforcer rates are uniform throughout 

the session, relative reinforcer rates cannot be meaningfully calculated. In that sense, 

behavioral momentum theory is not challenged by single-schedule data. However, 

resistance to change is a fundamental dependent variable of great interest in clinical and 

educational settings, and the inability of momentum theory to incorporate single-schedule 

data is a serious limitation to the theory’s application.  

The preceding discussion has highlighted some findings that are problematic for 

behavioral momentum theory, as it historically has been used to describe the contribution 

of the Pavlovian stimulus-reinforcer relation to resistance to change. Undoubtedly, these 

considerations challenge the generality of behavioral momentum as a unified framework 

for describing behavioral persistence. Theoretical development continues within the 

framework, however, and recently it has been extended to more complex aspects of 

behavior (i.e., relapse and stimulus control). In the following section, we hope to 

demonstrate that, though there are a number of challenges to behavioral momentum 

theory, the applicability of the theory outside of these challenging situations is robust. 
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Extensions of Behavioral Momentum Theory 
 
 

Most research on resistance to change has employed multiple schedules of 

reinforcement and measured the rate of a response in the steady state and during 

disruption. As reviewed above, many studies have shown that baseline response rate is 

more resistant to change in a multiple-schedule component with larger or more frequent 

reinforcers. Given the generality of this finding, one reasonable question is: To what 

extent does reinforcer rate or magnitude govern other aspects of behavior? 

In light of this question, behavioral momentum theory recently has been extended 

to account for more complex behavioral phenomena. One extension of behavioral 

momentum is to the recurrence (or “relapse”) of previously reinforced behavior. 

Behavioral momentum also has been applied to studying the resistance to change of a 

qualitative dimension of operant behavior, remembering. In the following section, we 

will describe both of these recent extensions.  

 
Behavioral Momentum and Relapse 
 
 In clinical situations, extinction often is used in conjunction with other behavioral 

interventions as a method for decreasing the frequency of undesirable behavior (see 

Lerman & Iwata, 1996). One characteristic of behavior that demonstrates persistence is 

the propensity of that behavior to relapse when the conditions of disruption that were 

established during treatment are altered in some way (see Podlesnik & Shahan, 2009; 

2010; Shahan & Sweeney, 2011). Just as it is important to understand the factors that 

contribute to the resistance to change of behavior, it is also important to understand the 
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conditions under which one might anticipate that behavior will return, and to what 

degree.  

There are three general relapse paradigms: reinstatement, renewal, and 

resurgence. Reinstatement, the most commonly investigated relapse phenomenon, occurs 

when a stimulus that was previously associated with reinforcement (or the reinforcer, 

itself) is presented following the extinction of a target response (e.g., Reid, 1958; see also 

Katz & Higgins, 2003, for a review of the reinstatement paradigm in the context of drug 

use). For example, an ex-smoker, after months of abstinence and under normal 

circumstances, might no longer crave cigarettes. If he is exposed to cigarette-related cues 

(e.g., cigarette smoke, the sound of a match striking, etc.), he might experience intense 

cigarette cravings and potentially relapse to, or ‘reinstate,’ cigarette smoking. 

In the renewal paradigm, behavior first is maintained in one stimulus context 

(Context A) and then is extinguished in a separate stimulus context (Context B). Once 

behavior is extinguished, a return to the context in which it was trained (Context A) 

typically results in the reoccurrence of the target responding. For example, a child might 

learn to aggress against others to gain access to attention. In the setting of a clinic, a 

behavioral intervention might be implemented that effectively extinguishes his 

aggressing. When the child is returned to the environment in which aggressing previously 

was reinforced, however, its occurrence might be re-occasioned or ‘renewed.’ Other 

variations of this basic procedure, namely ‘AAB’ (training and extinction in one context, 

then a change to a second context) and ‘ABC’ (training in one context, extinction in a 

second context, and then a change to a third context) renewal, exist as well. Relapse of 
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operant behavior has been observed in each of these preparations (see Bouton, Todd, 

Vurbic, & Winterbauer, 2011).  

Finally, resurgence entails the reoccurrence of a previously reinforced and since 

extinguished behavior when reinforcement for a more recently trained alternative 

response is withheld (see Leitenberg, Rawson, & Mulick, 1975; see also K. A. Lattal & 

St. Peter Pipkin, 2009, for review). Consider the child mentioned above. In treatment, he 

might have been taught to appropriately request attention instead of engaging in problem 

behavior. If the therapist were not to reinforce these requests, appropriate behavior might 

decrease in frequency and aggressing might reoccur or ‘resurge.’ 

Based both on the observation that relapse tends to be positively related to the rate 

of reinforcement in a stimulus context (cf., Leitenberg et al., 1975; see Winterbauer, 

Lucke, & Bouton, 2013, Experiment 1, for a more recent example) and on insights from 

momentum theory, Podlesnik and Shahan (2009) investigated whether the Pavlovian 

stimulus-reinforcer relation that governs resistance to change also governs the magnitude 

of relapse that is obtained in basic reinstatement, renewal, and resurgence preparations. In 

their first experiment, Podlesnik and Shahan investigated the role of baseline reinforcer 

rates on reinstatement in pigeons. Here, they arranged a two-component multiple 

schedule in which both components delivered food according to VI 120-s schedules (30 

reinforcers per hr). In one component, VT 20-s food (180 per hr) concurrently was 

available in addition to the VI 120-s food. After behavior in both components was 

extinguished, a few food presentations were made available at the beginning of sessions 

to test for reinstatement. Experiment 2 investigated the effects of baseline rates of food 
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on resurgence. The procedure was the same as that of Experiment 1, but VI 30-s food 

(180 per hr) was made available for responding on an alternative-response key during 

extinction in both components. Alternative food was discontinued during resurgence 

testing. In their final experiment, Podlesnik and Shahan arranged an ABA renewal 

preparation in which baseline stimulus conditions were identical to those of the previous 

experiments, with steady house lights throughout the session (Context A). During 

extinction, the house lights in the pigeons’ chambers flashed constantly, thereby 

establishing a separate stimulus context (Context B). Once behavior had been eliminated 

in both components, the pigeons were returned to Context A for renewal testing. 

In all three relapse preparations that Podlesnik and Shahan (2009) arranged, two 

findings were general. First, responding in the context that was associated both with VI 

and VT food (and thus had an overall higher rate of food delivery) was more persistent 

during extinction than was behavior in the other, VI-only, component (cf., Grimes & 

Shull, 2001; Nevin et al., 1990; Shahan & Burke, 2004). Second, and most importantly 

for the current discussion, behavior in the component that was associated with both VI 

and VT food relapsed to a greater degree than did behavior in the VI-only component. 

Though reinstatement, renewal, and resurgence entail the reoccurrence of extinguished 

behavior through different environmental manipulations, one underlying effect appears to 

be common among them: More reinforcement during baseline conditions (and thus 

greater stimulus-reinforcer relations in those conditions) yields greater relapse following 

extinction. 

The findings of Podlesnik and Shahan (2009) have been replicated in a number of 
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species using a variety of procedures. For example, Mace et al. (2010) either reinforced 

the targeted problem behavior of children at relatively low rates (lean reinforcement) or 

differentially reinforced an alternative behavior (DRA) at relatively high rates (rich 

reinforcement, but for an alternative behavior), across conditions. Problem behavior in 

the DRA condition decreased to low levels during treatment, analogous to the decrease in 

target responding observed in the second phase of a standard resurgence preparation. 

When the target and alternative behaviors were extinguished, problem behavior resurged 

to a higher level following the relatively rich DRA condition than following relatively 

lean reinforcement of problem behavior. In other words, adding reinforcers for alternative 

behavior made the problem behavior occur at a lower rate, but when the additional 

reinforcers were removed after the problem behavior was extinguished, the problem 

behavior came back at a higher rate than when no reinforcers were added for alternative 

behavior.  

Two recent experiments with laboratory animals have extended the initial 

experiments on behavioral momentum and relapse. Pyszczynski and Shahan (2011) 

demonstrated that adding food to one component of a multiple schedule in which rats 

responded for dippers full of alcohol solutions produced behavior that was more 

susceptible to reinstatement. Further, Thrailkill and Shahan (2011) showed that, in 

pigeons, the renewal, reinstatement, and resurgence of responding maintained by 

conditioned reinforcement (i.e., stimuli predictive of food in an observing-response 

preparation; see Wyckoff, 1952) was positively related to the rate at which food was 

delivered prior to relapse testing.  
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In summary, behavioral momentum theory offers not only an approach to 

understanding the factors that contribute to the persistence of behavior in the face of 

disruption, but also helps us to understand factors that contribute to the return of 

extinguished responding. The implications for this extension of momentum theory are 

clear: It provides a formalized approach to understanding how environment and 

reinforcers interact to contribute to the recurrence of prior behavior. It also addresses a 

longstanding issue in learning theory: Does extinction abolish learning or merely affect 

performance? The persistence of differential strengthening effects of baseline 

reinforcement that are revealed in testing for relapse suggests that extinction, although 

characterized as an internal disruptor, leaves intact at least some aspects of a 

reinforcement history, expressed as behavioral mass in momentum theory. In other 

words, extinction does not abolish prior learning. Moreover, using momentum theory as 

an approach to understanding relapse might inform treatment strategies for problematic 

behaviors that are susceptible to relapse (i.e., drug taking, aggressive behavior, etc.).  

All of the results reviewed in this chapter so far have focused on the resistance to 

change of one dimension of operant behavior: Response rate. Recent investigations, 

however, suggest that the metaphor of behavioral momentum is not limited to 

understanding the resistance to change of response rate in the face of disruption: It may 

also be extended to qualitative dimensions of behaviors. In particular, momentum theory 

has been used to describe the effects of reinforcer rates on the accuracy and persistence of 

delayed stimulus control in procedures used to assess remembering.  
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Measuring Resistance to Change of  
Accuracy and Response Rate 
 

Delayed matching-to-sample (DMTS) procedures historically have been used to 

assess the stimulus control over responding across time (cf., Maki, Moe, & Bierly, 1977). 

In DMTS preparations, a pigeon might first be presented with a sample stimulus (say, a 

green key). After some delay (called the ‘retention interval’), two comparison stimuli are 

presented, one that matches the sample stimulus and one that does not. If the pigeon 

chooses the stimulus that matches the sample stimulus, it may gain access to food 

according to some schedule. The proportion of correct matches emitted during a DMTS 

procedure reflects the extent to which the pigeon (or rat, or person) remembers the 

sample stimulus given a delay. If the DMTS procedure permits the study of delayed 

stimulus control (or remembering), how might it be adapted to study the resistance to 

change of stimulus control? 

Schaal, Odum, and Shahan (2000) developed a paradigm that incorporated DMTS 

and that permits measurement of both response rate and accuracy of stimulus control (and 

of the resistance to change of both of these aspects of behavior). Briefly, the paradigm 

arranges that a pigeon may respond to produce DMTS trials (instead of food) on a VI 

schedule; accordingly, the paradigm is designated VI DMTS. Food reinforcers for correct 

matches maintain responding both in the VI and DMTS portions of the preparation, and 

the probability or magnitude of the reinforcer can be varied between signaled multiple-

schedule components. After stable baseline performances have been established in both 

components, resistance to change of both VI response rate and DMTS accuracy can be 

examined within subjects and sessions and related to the conditions of reinforcement 
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exactly as in standard multiple schedules. 

 Nevin, Milo, Odum, and Shahan (2003) reported the first study to employ the 

multiple VI DMTS paradigm in this way. They arranged a two-component multiple 

schedule in which pigeons produced matching-to-sample trials according to VI 30-s 

schedules. The center key was lit red or green during the VI to signal the probability of 

reinforcement for a correct match. When the VI timed out, a center-key peck turned off 

the color and produced a vertical or slanted line as a sample stimulus. After 2 s, the 

sample was extinguished and the side keys were lit with the comparison stimuli, vertical 

and slanted lines displayed randomly on the left and right keys (DMTS with 0-s delay). A 

peck to the side key with the same orientation as the sample produced food with a 

probability either of .8 (rich) or .2 (lean), depending on the key color during the VI. Key 

colors and the correlated reinforcer probabilities alternated after four such cycles, 

separated by a 30-s ICI. After baseline response rates and matching accuracies were 

stable, resistance to change was evaluated by pre-feeding, free ICI food, extinction, and 

the abrupt insertion of a short delay between sample offset and comparison onset.  

 During baseline, both response rates and matching accuracies generally were 

higher in the rich component, and during disruption by prefeeding, ICI food, and 

extinction, both response rates and matching accuracies generally were more resistant to 

change. When matching performance was disrupted by a 3-s delay, response rate was 

largely unaffected but matching accuracy was drastically reduced, more so in the lean 

component. Overall, though, matching accuracy under disruption was positively 

correlated with VI response rate under disruption, suggesting that these separate aspects 
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of behavior were similarly strengthened by reinforcement. 

 Odum, Shahan, and Nevin (2005) modified the Nevin et al. (2003) procedure to 

study the resistance to change of forgetting functions—the relation between accuracy and 

duration of the delay between sample offset and comparison onset (see White, 1985, 

1991, for quantification and discussion of forgetting functions). Specifically, they 

arranged identical VI 20-s schedules in the initial segments of the VI DMTS with 

reinforcer probabilities of .9 (rich) or .1 (lean) signaled by red or green center key lights. 

They used yellow or blue key lights as samples and comparisons. Samples remained on 

until the first peck after 3 s, after which the center key returned to its color during the VI 

for 0.1, 2, 4, or 8 s before onset of the side-key comparison stimuli. Correct matches were 

reinforced with the signaled probability. Components alternated after four such cycles, 

separated by 15-s ICIs. After both VI response rates and DMTS forgetting functions were 

judged to be stable, resistance to change was tested by presenting free ICI food and by 

extinction. As expected, Odum et al. observed that responding in the VI portion of the VI 

DMTS was more resistant to disruption in the rich component than in the lean 

component. Further, relative to baseline, the rate of forgetting was more resistant to 

disruption in the rich component than in the lean component. Thus, both response rates 

and the accuracy of remembering were strengthened similarly in relation to relative 

reinforcement in a component, extending the results of Nevin et al. (2003). 

 
Separating Baseline Accuracy and  
Resistance to Change 
 
 Early studies of free-operant responding in typical multiple schedules have found 
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that resistance to change was correlated with baseline response rate, as in Experiment 1 

by Nevin (1974). Subsequent research, described above, has suggested that baseline 

response rate and resistance to change might be separately determined by response-

reinforcer and stimulus-reinforcer relations. The studies with the VI DMTS paradigm 

described above found that the resistance to change of accuracy was correlated with 

baseline accuracy, in that higher probabilities of reinforcement maintained higher levels 

of accuracy and also established greater resistance to change. An extension of behavioral 

momentum theory to DMTS, based on findings with free-operant responding, would 

suggest that response-reinforcer relations within DMTS trials might control baseline 

accuracy whereas stimulus-reinforcer relations (i.e., relative reinforcer rate in a 

component) might control resistance to change. 

 To explore this possibility, Nevin, Ward, Jiminez-Gomez, Odum, and Shahan 

(2009) exploited the differential outcomes effect (DOE), whereby DMTS accuracy is 

higher when different outcomes are arranged for the two correct side-key responses. In an 

early study, for example, Peterson, Wheeler, and Trapold (1980) trained a group of 

pigeons in red-green matching to sample where correct responses to green comparisons 

were followed by a tone plus food, but correct responses to red comparisons were 

followed by the tone only (differential outcomes for correct green responses vs. correct 

red responses). A second group received tone plus food for all correct side-key responses 

(same outcomes for correct green responses and correct red responses). Despite the fact 

that the same outcomes group obtained more frequent reinforcers, accuracy was higher 

for the differential outcomes group, especially at longer delays between samples and 
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comparisons.  

Nevin et al. (2009) compared differential outcomes with more-frequent same 

outcomes in the multiple-schedule VI DMTS paradigm. Reinforcer probabilities were .9 

and .1 for correct responses to yellow and blue comparisons in the different-outcome 

(DO) component and probabilities were .9 and .9 for responses to both colors in the 

same-outcome (SO) component. Thus, relative reinforcement was greater in the SO 

component. The DO or SO components were signaled by lighting the center key red or 

green during the VI and the DMTS retention interval; components alternated after four 

completed DMTS trials, and were separated by 15-s ICIs. After 50 training sessions, 

resistance to disruption by pre-feeding, ICI food, and extinction were evaluated.  

In baseline, VI response rate was higher in the SO component, consistent with the 

greater overall reinforcer probability in that component, but the forgetting function was 

substantially higher (showing better accuracy) in the DO component, replicating the 

standard DOE. Nevertheless, during disruption by pre-feeding, ICI food, and extinction, 

decreases relative to baseline in both VI response rate and DMTS accuracy were greater 

in the DO component. Thus, the higher level of DMTS accuracy maintained by 

differential response-reinforcer relations in the DO component was weaker than the lower 

level in the SO component with overall richer reinforcement— clear evidence of the 

dissociability of baseline performance and resistance to change.  

In a final part of the study, reinforcer probabilities in the SO component were 

changed to .5, .5, so the overall probability of reinforcement was the same in both 

components. Baseline accuracy remained higher in the DO component, but resistance to 
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change was essentially the same in DO and SO components, confirming the importance 

of relative reinforcement in determining resistance to change. 

In summary, in addition to response rates, remembering appears to follow the 

basic tenets of behavioral momentum theory. Greater reinforcer availability during 

baseline produces relatively more persistent remembering, just as greater reinforcer 

availability during baseline produces relatively more persistent response rates (e.g., 

Nevin, 1974). Further, how accurate remembering is in baseline can be dissociated from 

how perseverant it will be, just as how fast response rates are at baseline can generally be 

dissociated from how perseverant they will be (e.g., Nevin et al., 1990, 2001). 

 
Conclusions 

 
 

Human and nonhuman animals alike persist in performing tasks despite disruptors 

every day. Behavioral momentum theory is concerned with the contribution of the 

Pavlovian stimulus-reinforcer relation to the persistence of behavior in the face of 

disruption. Like the topography, patterning, or frequency of a response, resistance to 

change is a fundamental dimension of operant behavior. Persistence also is a fundamental 

part of life. Returning to the vignettes offered in the introduction of this chapter, for 

example, a 3rd grade student might persist in performing math problems despite noisy 

classmates, or a cigarette smoker might persist in smoking despite disapproval from 

friends and loved ones. Regardless of the behavior in question, that it persists in the face 

of disruption is a simple observation. To what degree or under what circumstances 

behavior persists are the more precise attributes of behavior that are addressed by 
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behavioral momentum theory. 

In this chapter, we provided a historical and contemporary overview both of the 

study of resistance to change and of the theoretical underpinnings of behavioral 

momentum. This overview included a description of the methods that typically are used 

to study behavioral persistence, some findings that have generated support for behavioral 

momentum theory, and some challenges to the simple metaphor. Further, we described 

the various facets of behavioral persistence (i.e., the resistance to change of response 

rates, remembering, and the relapse of previously extinguished responding), and how 

momentum theory has been extended to each. Clearly, the basic tenets of behavioral 

momentum theory are generalizable (e.g., across species, types of reinforcers, settings, 

behavioral dimensions, etc.), despite the practical limitations to the theory noted above. 

The literature concerning the persistence of behavior in the face of disruption and 

behavioral momentum theory is extensive and oftentimes highly conceptual. Therefore, 

the overarching purpose of this chapter was to provide a general review of behavioral 

momentum and resistance to change. Because of our general approach, much of the 

preceding discussion focused on the ability of momentum theory to describe, 

qualitatively, the relation between the Pavlovian stimulus-reinforcer relation and 

resistance to change in various situations. That is, relatively high reinforcer rates tend to 

increase the stimulus-reinforcer relation in a given stimulus situation and thereby produce 

behavior that is more resistant to disruption.  

Another important quality of momentum theory worth noting is its power to 

predict the degree to which a behavior will persist in a given circumstance. That is, given 
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information about the magnitude of the behavioral disruptor and baseline reinforcer rates, 

one can make precise predictions about resistance to change. This predictive capability of 

momentum theory is dependent on its quantitative underpinnings (see Nevin & Grace, 

2000; Nevin et al., 1983; Podlesnik & Shahan, 2009, 2010; Shahan & Sweeney, 2011). A 

complete discussion of these models, however, is outside of the scope of this chapter. The 

general concepts of behavioral momentum theory as well as these more specific 

quantitative models have implications, though, for work outside of the animal laboratory. 

For example, they provide insights into how one might promote persistence when it is a 

desirable attribute of behavior (e.g., completing school work) and deter persistence when 

it is undesirable (e.g., smoking). 

To summarize, behavioral momentum theory is a conceptual framework that can 

be used to describe why and to what degree behavior will persist in a given stimulus 

situation. It also may be considered a practical framework that can be used to extend the 

fundamental principles of resistance to change to clinical or everyday situations. Thus, 

there are many theoretical and real-world implications of momentum theory. This chapter 

outlined a few of these implications, but it will be up to future researchers to continue to 

determine its conceptual boundaries and clinical relevance.   
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CHAPTER 3 

RESISTANCE TO CHANGE FOLLOWING CHANGING  

REINFORCER RATES2 

 
Introduction 

 
 

Persistence of discriminated operant behavior tends to be positively related to 

baseline reinforcer rates. For example, Nevin (1974) trained pigeons to peck keys for 

food in two-component multiple schedules, where two stimulus situations, signaled by 

different key-light colors, alternated successively within sessions. In the presence of one 

key-light color, pecking produced food relatively frequently according to a variable-

interval (VI) schedule, and in the presence of the other color, VI food was delivered 

relatively infrequently. When responding subsequently was challenged by presenting free 

food during inter-component intervals (ICIs) or by extinction, responding in the 

component associated with high-rate reinforcement was more resistant to change than 

responding in the component associated with low-rate reinforcement. This finding is 

general to the study of resistance to change in multiple schedules and has been 

demonstrated in several species (e.g., humans, rats, and goldfish; Blackman, 1968; 

Cohen, 1996; Grimes & Shull, 2001; Igaki & Sakagami, 2004; Mace et al., 1990; Shahan 

& Burke, 2004) using a variety of different disruptors (e.g., pre-session feeding, aversive 

                                                 
2 Chapter 3 of this dissertation was adapted from “Behavioral momentum and accumulation of mass in 
multiple schedules,” by A. R. Craig, P. J. Cunningham, and T. A. Shahan, 2015, Journal of the 
Experimental Analysis of Behavior, Volume 103, Issue 3, pp. 437-449, with permissions from John Wiley 
& Sons and P. J. Cunningham. A copy of the corresponding license agreement and permission-to-use letter 
may be found in Appendices C and D, respectively. 
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consequences, and distraction; see Craig, Nevin, & Odum, 2014; Nevin, 1992a; 2002; 

Nevin & Grace, 2000, for review). Note, though, that some limited evidence suggests that 

factors other than frequency of baseline reinforcer delivery can influence resistance to 

change (see, e.g., Bell, 1999; K. A. Lattal, 1989; Nevin et al., 2001; Podlesnik, Jimenez-

Gomez, Ward, & Shahan, 2006). 

Behavioral momentum theory (Nevin et al., 1983) offers a conceptual and 

quantitative framework that may be used to describe the contribution of reinforcer 

deliveries to resistance to change. According to momentum theory, response persistence 

in the face of disruption is a function of a mass-like quality of behavior engendered by 

reinforcer deliveries in a given stimulus situation (e.g., a multiple-schedule component). 

As reinforcer rates in a stimulus situation increase, the Pavlovian stimulus-reinforcer 

relation in the situation is strengthened, thereby producing greater behavioral mass and 

resistance to change (for discussion, see Nevin, 1992a; 2002; Nevin et al., 1990). 

Quantitatively, the positive relation between resistance to change and baseline 

reinforcer rates may be expressed as follows (see Nevin et al., 1983; Nevin & Shahan, 

2011): 

log ൬
Bt

Bx
൰=

-x

rb . 
(1)

 

The left side of Equation 1 is log-transformed proportion-of-baseline response rates given 

a disruptor. The right side of the equation represents those factors that contribute to 

responding during disruption and may be broken into two more general terms. The 

numerator represents the negative impact of the disruptor on responding, where x varies 
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with the magnitude of the disruptor applied (e.g., the amount of food given to a hungry 

animal during pre-session feeding preparations in the animal laboratory). The 

denominator of Equation 1 is thought to correspond to a mass-like construct that governs 

the persistence of behavior and has been shown to be a power function of pre-disruption 

reinforcer rates (Nevin, 1992a). Thus, r is baseline reinforcer rates, in reinforcers 

delivered per hr, and b is a free parameter that represents sensitivity to baseline reinforcer 

rates. The b parameter typically assumes a value near 0.5 when Equation 1 is fit to 

disruption data from multiple schedules (see Nevin, 2002).  

The numerator of Equation 1 may be expanded as follows to account for the 

specific effects of extinction as a disruptor:  

log ൬
Bt

Bo
൰=

-tሺc + d∆rሻ
rb . 

(2)

 

Here, t is time in extinction, measured in sessions, and c is the impact on responding of 

suspending the response-reinforcer contingency (a free parameter typically assuming a 

value near 1; Nevin & Grace, 2000). The parameters d and ∆r collectively represent the 

impact on responding of transitioning from a period of reinforcement during baseline to a 

period of non-reinforcement during extinction (i.e., generalization decrement) where ∆r 

is the change in reinforcer rates between baseline and extinction (in reinforcers omitted 

per hr) and d is a scaling parameter that is free to vary and typically assumes a value near 

0.001.  

 The quantitative theory of resistance to change offered by Equations 1 and 2 

accounts for an array of persistence data obtained from multiple-schedule preparations 
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(for review, see Nevin, 1992a, 2002, 2012; Nevin & Shahan, 2011). When these models 

are used to describe resistance to change from these situations, behavioral mass typically 

is characterized by setting r in the denominator equal to programmed pre-disruption 

reinforcer rates. In addition, all investigations of resistance to change have examined 

response persistence following prolonged exposure to stable baseline reinforcer rates. 

Under these conditions, the method by which one calculates reinforcer rates (i.e., r) 

essentially is inconsequential: Under VI schedules, which conventionally are used in 

resistance-to-change research, mean obtained reinforcer rates in a multiple-schedule 

component over any number of sessions should approximate programmed reinforcer rates 

in that component. It is unclear, then, if resistance to change depends on longer-term 

reinforcer rates (i.e., mean reinforcer rate for a given component over the entirety of 

baseline) or on reinforcer rates from some smaller subset of recently experienced sessions 

(e.g., the mean reinforcer rate for a given component from the two most recent sessions 

preceding disruption). In short, it is unknown how long particular discriminative 

stimulus-reinforcer situations must be in effect before the reinforcer rates signaled by 

those stimuli affect the persistence of responding. 

 Thus, the purpose of the present experiment was to determine if the temporal 

epoch over which discriminative stimulus-reinforcer relations are in effect prior to 

disruption impacts relative resistance to that disruption. To this end, pigeons pecked keys 

in multiple schedules of reinforcement in which the component stimuli signaled different 

reinforcement rates for a larger or smaller number of sessions prior to disruption. Overall 

baseline reinforcer rates in the multiple-schedule components were the same when 
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calculated across conditions but differed between components immediately before 

extinction testing. The number of sessions during which these differences were held 

constant prior to extinction was varied between conditions 

 
Method 

 
 

Subjects 
 

Seven unsexed homing pigeons with previous experience responding under 

schedules of positive reinforcement served in all conditions of the experiment. An eighth 

unsexed homing pigeon, also with experience responding under schedules of positive 

reinforcement, was included in conditions 3-7. Pigeons were housed separately in a 

temperature-controlled colony room with a 12:12 hr light/dark cycle and were maintained 

at 80% of their free-feeding weights by the use of supplementary post-session feedings as 

necessary. Each pigeon had free access to water when not in sessions. Animal care and 

all procedures detailed below were conducted in accordance with guidelines set forth by 

Utah State University’s Institutional Animal Care and Use Committee. 

 
Apparatus 
 
 Four Lehigh Valley Electronics operant chambers for pigeons (dimensions 35-cm 

long, 35-cm high, and 30-cm wide) were used. Each chamber was constructed of painted 

aluminum and had a brushed-aluminum work panel on the front wall. Each work panel 

was equipped with three equally spaced response keys. Only the center key was used in 

this experiment and was transilluminated various colors to signal the different 

components of the multiple schedule across pigeons and conditions (see Appendix E for a 
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list of stimulus assignments). A force of at least 0.1 N was required to operate the key. A 

rectangular food aperture (5-cm wide by 5.5-cm tall, with its center 10 cm above the floor 

of the chamber) also was located on the work panel. The food aperture was illuminated 

by a 28-v DC bulb during reinforcer deliveries, which consisted of 1.5 s of access to 

Purina Pigeon Checkers collected from a hopper in the illuminated aperture. This 

reinforcer duration is standard for our laboratory and ensures maintenance of pigeons’ 

criterion weights given that pigeon chow is a denser food source by vol than mixed grain. 

General illumination was provided at all times by a 28-v DC house light that was 

centered 4.5 cm above the center response key, except during blackout periods and 

reinforcer deliveries. A ventilation fan and a white-noise generator masked extraneous 

sounds at all times. Timing and recording of experimental events was controlled by Med 

PC software that was run on a PC computer in an adjoining control room. 

 
Procedure 
 

Under all conditions of the experiment, pigeons key pecked for food under a two-

component multiple schedule with the following specifications: Each component of the 

multiple schedule lasted for three min, components were separated by 30-s ICIs, and each 

session consisted of 10 strictly alternating components (i.e., 30 min of session time, 

excluding time for ICIs and reinforcer deliveries). The first component that occurred was 

randomly determined at the start of each session.  

One multiple-schedule component stimulus initially signaled a VI 30-s schedule 

of reinforcement (i.e., the rich schedule) while the other component stimulus initially 

signaled a VI 120-s schedule of reinforcement (i.e., the lean schedule). Both VI schedules 
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consisted of 10 intervals derived from Fleshler and Hoffman’s (1962) constant-

probability algorithm. In each condition, the component stimuli associated with rich and 

lean reinforcement schedules were constant within sessions but alternated across sessions 

for the entirety of baseline. The number of sessions between each alternation was 20, 5, 

3, 2, or 1 session(s), depending on the condition. For example, in the 5-Day alternation 

condition, one component stimulus signaled the rich schedule while the other component 

stimulus signaled the lean schedule for five sessions. Then, schedule-stimulus 

associations changed such that the component that first signaled the rich schedule 

signaled the lean schedule, and the component that first signaled the lean schedule 

signaled the rich schedule, for another five sessions. Alternations of the component 

stimuli associated with rich and lean schedules continued across blocks of sessions 

specified by each condition until baseline ended. In each condition, schedule alternations 

were arranged such that the component that started rich ended lean (hereafter the “Rich-

to-Lean” component) and the schedule that started lean ended rich (hereafter the “Lean-

to-Rich” component) prior to extinction testing. Consequently, both multiple-schedule 

component stimuli were associated with the VI 30-s and VI 120-s schedules for an equal 

number of sessions, and overall rates of reinforcement were the same for each component 

when averaged over the entirety of baseline. Further, the VI 120-s schedule was in effect 

in the Rich-to-Lean component, and the VI 30-s schedule was in effect in the Lean-to-

Rich component, just prior to extinction testing. The chronological list of conditions 

(including the number of sessions per schedule alternation and the number of sessions per 

condition) can be found in Table 3.1.  
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Table 3.1 

Condition Order, Number of Sessions per Baseline Condition, 
and Component-Wide Food Rates 
 

    
Component-wide foods/min 

─────────────────────── 

  
Lean-rich 

────────── 
Rich-lean 

────────── 

Condition Sessions Mean SEM Mean SEM 

20-Day 40 1.14 0.04 1.15 0.04 

1-Day 30 1.15 0.05 1.14 0.05 

5-Day 30 1.15 0.05 1.14 0.05 

3-Day 30 1.15 0.05 1.15 0.05 

2-Day 32 1.15 0.05 1.15 0.05 

5-Day (Rep.) 30 1.14 0.05 1.14 0.05 

20-Day (Rep.) 40 1.14 0.04 1.16 0.05 

 
 
 
 

Following each baseline schedule, extinction was assessed for five sessions. In 

extinction, the stimulus situation was the same as during the preceding baseline 

condition. Responding, however, had no consequences. 

 
Results 

 
 

 Mean obtained reinforcer rates for both components across sessions of baseline in 

each condition are shown in Figure 3.1. Obtained reinforcer rates within a component 

approximated programmed reinforcer rates. Importantly, there were no noticeable 

decreases in overall obtained reinforcer rates following a change in schedule value. That 

is, obtained reinforcer rates between components were maintained across the course of a 

condition. Mean (plus standard error of the mean; SEM) overall, component-wide  
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Figure 3.1. Mean reinforcers per min (plus SEM) from both multiple-schedule 
components across sessions of each baseline condition. 
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reinforcer rates for each condition are included in Table 3.1. These rates were virtually 

the same across components and conditions. 

 Mean response rates across sessions of baseline in both components for each 

condition are shown in Figure 3.2. Response rates tended to track reinforcer rates across 

baseline sessions. That is, response rates tended to be higher in the component that was 

associated with the VI 30-s schedule of reinforcement during a session, and lower in the 

component that was associated with the VI 120-s schedule. A change in reinforcer rate 

for a given component was accompanied by a change in response rate for that 

component, usually within the first session following the change in reinforcer rate. For 

example, the Rich-to-Lean component in the 20-Day alternation conditions arranged VI 

30-s food for the first 20 sessions of baseline, after which this component arranged VI 

120-s food for the remaining 20 sessions (see top panels of Figure 3.1). Response rates in 

this component were higher than in the Lean-to-Rich component for the first 20 sessions 

of baseline (when that component signaled the VI 30-s schedule) but were lower than in 

the Lean-to-Rich component for the last 20 sessions of baseline (when that component 

signaled the VI 120-s schedule). A similar patterning of changes in response rate 

following changes in reinforcer rate was present in each of the other conditions. 

The extent to which differences in resistance to extinction between components 

were associated with frequency of baseline-schedule alternation was examined using 

relative resistance-to-extinction measures (see Grace & Nevin, 1997). First, proportion-

of-baseline response rates were calculated for each subject in each condition by dividing 

response rates during each session of extinction by response rates during the last session  
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Figure 3.2. Mean responses per min (plus SEM) from both multiple-schedule components 
across sessions of each baseline condition. 
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of the corresponding baseline condition.3 Then, relative resistance to extinction was 

calculated by averaging proportion-of-baseline response rates across all five sessions of 

extinction separately for each component and in each condition. This value for the Lean-

to-Rich component in a condition then was divided by the equivalent measure for the 

Rich-to-Lean component, after which this ratio was log transformed. Values of 0 indicate 

no difference in resistance to extinction between Lean-to-Rich and Rich-to-Lean 

components, values greater than 0 indicate greater resistance to extinction in the Lean-to-

Rich component, and values less than 0 indicate greater resistance to extinction in the 

Rich-to-Lean component. Results of this analysis for each condition of the experiment 

are shown in Figure 3.3. Bars represent mean relative-resistance measures, and individual 

data points represent these measures for individual subjects. Data are plotted with respect 

to frequency of schedule alternation within a condition and not order of condition 

presentation. 

Without exception, resistance to extinction was greater in the Lean-to-Rich 

component (i.e., the component that arranged VI 30-s food in the sessions just before 

extinction testing) than in the Rich-to-Lean component (i.e., the component that arranged 

VI 120-s food in the sessions just before extinction testing) in the 20-Day, 5-Day, and 3-  

                                                 
3 Though response rates changed across sessions of baseline with respect to obtained reinforcer rates, the 
method by which proportion-of-baseline response rates were calculated did not affect measurement of 
relative resistance to extinction. Proportion-of-baseline response rates were calculated for each condition 
using mean response rates from the last 1, 2, 3, 5, and 10 sessions, then converted into relative resistance-
to-extinction-measures. A 7 X 5 (Condition X Method) repeated-measures analysis of variance (ANOVA) 
was used to determine if the manner by which proportion-of-baseline response rates were calculated 
(Method) affected relative resistance-to-extinction measures. Neither the main effect of Method nor the 
Condition X Method interaction was statistically significant (respectively, F[1.23, 24] = 7.35, NS; and 
F[24, 144] = 1.40, NS; note the Greenhouse-Geisser correction for degrees of freedom were applied to the 
main effect of Method because assumptions of sphericity, tested using Mauchly’s method, were violated). 
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Figure 3.3. Relative-resistance-to-extinction (Lean-to-Rich/Rich-to-Lean; see text for 
details) measures aggregated across subjects for each condition. Bars represent group 
means and data points represent measures for individual subjects. From left to right, data 
are shown from the 20-Day, 5-Day, 3-Day, 2-Day, 1-Day, 20-Day-Replication, and 5-
Day replication conditions. 
 

 
 

Day alternation conditions. There were not, however, systematic differences in relative 

resistance to extinction between these conditions. In the 2-Day and 1-Day alternation 

conditions, resistance to extinction was not systematically higher in one component than 

in the other component. Relative resistance to extinction from replication of the 20-Day 

alternation condition was essentially the same as the first 20-Day alternation condition. 

Though resistance to extinction tended to be higher in the Lean-to-Rich component than 

in the Rich-to-Lean component during replication of the 5-Day alternation condition, the 

effect was not as pronounced as it was during the initial 5-Day alternation condition. A 

one-way repeated-measures ANOVA was conducted on relative resistance-to-extinction 

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

20 5 3 2 1 20R 5R

R
el

at
iv

e 
R

es
is

ta
nc

e 
to

 E
xt

in
ct

io
n

(L
ea

n-
to

-R
ic

h/
R

ic
h-

to
-L

ea
n)



69 
	
measures to further examine mean differences in these measures between conditions. The 

main effect was significant, F(6, 36) = 10.67, p < .001. Least-significant difference post-

hoc comparisons were conducted to examine this main effect more closely. These 

comparisons used estimated marginal mean scores for relative resistance to extinction 

from each condition to determine for which conditions relative resistance to extinction 

differed. Results from this analysis are summarized in Table 3.2. Most importantly, these 

post hoc analyses revealed that relative resistance to extinction differed significantly 

between those conditions where responding was more persistent in the Lean-to-Rich 

component than in the Rich-to-Lean component (i.e., the 20-Day, 5-Day, and 3-Day 

 
Table 3.2  
 
Absolute Mean Differences Between Grouped Relative-Resistance-to-Extinction 
Measures from Each Condition 
 

Condition/   20-Day   5-Day       

Condition 20-Day (Rep.) 5-Day (Rep.) 3-Day 2-Day 1-Day 

20-Day - - - - - - - 

20-Day (Rep.) -0.033 - - - - - - 
 (0.058)   

5-Day -0.057 -0.024 - - - - - 
 (0.078) (0.084)   

5-Day (Rep.) 0.212* 0.245* 0.207* - - - - 
 (0.079) (0.088) (0.082)   

3-Day 0.116 0.149 0.173 -0.097 - - - 
 (0.077) (0.069) (0.101) (0.052)   

2-Day 0.370* 0.403* 0.427* 0.158 0.254 - - 
 (0.080) (0.067) (0.082) (0.068) (0.072)  

1-Day 0.309* 0.342* 0.366* 0.097 0.193* -0.061 - 

  (0.050) (0.059) (0.094) (0.075) (0.057) (0.054)   
Note. alues in parentheses represent SEM. 
 
*Mean difference is statistically significant (p < .05). 
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alternation conditions) and those conditions where no differential resistance to extinction 

was observed (i.e., the 2-Day and 1-Day alternation conditions). 

Relative resistance to extinction provides a measure of differences in resistance to 

extinction between components, but this measure is limited in that it does not necessarily 

show the origins of these differences. For example, a relative resistance-to-extinction 

value of 0 could indicate that proportion-of-baseline response rates in both multiple-

schedule components were virtually unaffected by extinction or that responding occurred 

at zero rates in both multiple-schedule components across sessions of extinction. 

Accordingly, comparisons of proportion-of-baseline response rates between conditions 

were conducted to determine if the frequency of schedule alternation during baseline 

affected rate of extinction. Proportion-of-baseline response rates (calculated here as 

above) across extinction sessions for each condition (excluding 5-Day and 20-Day 

replications for clarity), separated for each component, are shown in Figure 3.4. Data 

from the Rich-to-Lean component are shown in the top panel of this figure, and data from 

the Lean-to-Rich component are shown in the bottom panel.  

Proportion-of-baseline response rates in the 2-Day and 1-Day alternation 

conditions in the Rich-to-Lean component were elevated above those rates from the 

remaining components during the second and third sessions of extinction testing. A 7 X 6 

(Condition X Session) repeated-measure ANOVA conducted on these data revealed 

significant main effects of Condition, F(6, 36) = 2.48, p < .05, and Session, F(5, 30) = 

139.94, p < .001, but a non-significant interaction between these terms, F(30, 180) = 

1.30, NS. Least-significant-difference post-hoc tests based on estimated marginal means  
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Figure 3.4. Mean (plus SEM) proportion-of-baseline response rates across sessions of 
extinction for the Rich-to-Lean (top panel) and Lean-to-Rich (bottom panel) components. 
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Session and a significant Condition X Session interaction (respectively, F[5, 30] = 78.61, 

p < .001; and F[30, 180] = 1.70, p < .05). The main effect of Condition was non-

significant, F(2.69, 16.14) = 2.14, NS (note that Greenhouse-Geisser corrections for 

degrees of freedom were used because, according to Mauchly’s method, the assumption 

of sphericity for Condition was violated). Thus, differences in resistance to extinction 

between conditions depended on session, as suggested above. In summary, resistance to 

extinction was lower in the 2-Day and 1-Day alternation conditions than in the other 

conditions during the first day of extinction in the Lean-to-Rich component. Further, in 

the Rich-to-Lean component, responding tended to persist to a greater degree in the 2-

Day and 1-Day alternation conditions than in the other conditions. This difference was 

only statistically significant, however, between the 2-Day alternation condition and the 5-

Day and replication of the 20-Day alternation conditions. 

To examine how frequency of baseline-schedule alternation affected estimates of 

behavioral mass, Equation 2 was fit to mean log proportion-of-baseline response rates 

several different ways via least-squares regression using Microsoft Excel Solver. Data 

from replication of the 20-Day and 5-Day conditions were excluded from these analyses. 

There is no principled reason to believe that alternation of stimulus-reinforcer relations 

during baseline should change the disruptive impacts of suspending the response-

reinforcer contingency or of generalization decrement during extinction. Accordingly, for 

all fits, the free parameters c and d were fixed at 1 and 0.001, respectively, and the ∆r 

term in the numerator was fixed to 30 and 120 reinforcers omitted per hr for the Rich-to-

Lean and Lean-to-Rich components, respectively.  
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First, to determine how behavioral mass, per se, was impacted by frequency of 

schedule alternation, the denominator of the equation was collapsed into a composite 

mass term that was free to vary between components. This mass composite was 

substantially larger in the Lean-to-Rich component than in the Rich-to-Lean component 

in the 20-Day, 5-Day, and 3-Day alternation conditions but similar between components 

in the 2-Day and 1-Day alternation conditions (see the top-left panel of Figure 3.5). Next, 

to determine if these changes in mass could be attributed to changes in sensitivity to 

baseline reinforcer rates, the r parameter in the denominator of the model was fixed at 30 

and 120 reinforcers per hr for the Rich-to-Lean and Lean-to-Rich components, 

respectively, while b was free to vary. Sensitivity to baseline reinforcer rates did not 

change systematically between conditions (see the top-right panel of Figure 3.5). Thus, 

changes in b likely did not produce the observed changes in relative resistance to 

extinction across conditions. Finally, b was allowed to vary as in the previous fit, and the 

reinforcer-rate terms in the denominator (i.e., r) were allowed to vary between 

components as a parameter. In this fit, b assumed similar values as in the previous fit (see 

the bottom-right panel of Figure 3.5), but the reinforcer-rate terms (r in the bottom-left 

panel of Figure 3.5) were substantially larger in the Lean-to-Rich component than in the 

Rich-to-Lean component in the 20-Day, 5-Day, and 3-Day alternation conditions. These 

parameter values were similar between components in the 2-Day and 1-Day alternation 

conditions. 
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Figure 3.5. Parameter values from fits of the augmented model of resistance to extinction 
data obtained from each condition. Top left: composite-mass values (rb). Top right: 
sensitivity values (b) when only this parameter was allowed to vary. Bottom left: 
baseline-reinforcer-rate values (r in the denominator of Equation 2) from both 
components when b was allowed to vary and shared by both components and r was 
allowed to vary between components. Bottom right: sensitivity values when b was 
allowed to vary and shared by both components and r was allowed to vary between 
components. From left to right, data are shown from the 20-Day, 5-Day, 3-Day, 2-Day, 
and 1-Day alternation conditions. 
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 Behavioral momentum theory is centrally concerned with the relation between 

Pavlovian stimulus-reinforcer contingencies and persistence of discriminated, free-

operant responding (see Craig, Nevin, & Odum, 2014; Nevin, 2012; Nevin & Grace, 
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Nevin, 1984a; Nevin et al., 1990), no research previously has examined the timeframe 

over which stimulus-reinforcer relations have functional effects on resistance to change 

in multiple schedules. Investigations of resistance to change historically have focused on 

response persistence following periods of prolonged exposure to stable baseline 

reinforcer rates, precluding identification of how behavioral mass (i.e., the term in the 

denominators of Equations 1 and 2) accumulates in these conditioning situations. 

The present experiment aimed to address this gap in the literature by arranging 

situations in which stimulus-reinforcer relations varied over the course of baseline. If, for 

example, resistance to change depended on the association between condition-wide 

reinforcer rates (i.e., the average reinforcer rate in a given stimulus situation across 

baseline) and multiple-schedule component stimuli, proportion-of-baseline response rates 

across sessions of extinction should have been the same in both multiple-schedule 

components in all conditions because both stimulus situations were correlated with VI 

30-s and VI 120-s food for an equal number of sessions. If resistance to change depended 

only on the association between stimuli and those reinforcer rates experienced most 

recently (i.e., during the last session of baseline), proportion-of-baseline response rates 

should have been higher in the Lean-to-Rich component (the component that arranged VI 

30-s food during the last session of baseline training), regardless of frequency of schedule 

alternation.  

The results from the present experiment agree with neither of these possibilities: 

Proportion-of-baseline response rates tended to be higher in the multiple-schedule 

component most recently associated with VI 30-s food (i.e., the Lean-to-Rich component) 
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than in the component most recently associated with VI 120-s food (i.e., the Rich-to-Lean 

component) only when schedules alternated as frequently as every three sessions. When 

schedules alternated more frequently (i.e., every session or every other session) resistance 

to extinction was similar between components. Differences in relative resistance to 

extinction between conditions resulted from systematic differences in proportion-of-

baseline response rates between those conditions where resistance to extinction differed 

between components (i.e., the 20-Day, 5-Day, and 3-Day alternation conditions) and 

those conditions where no differences were present (i.e., the 2-Day and 1-Day alternation 

conditions). That is, in both multiple-schedule components, proportion-of-baseline rates 

from the 20-Day, 5-Day, and 3-Day conditions tended to cluster together across sessions 

of extinction, and the same was true for the 2-Day and 1-Day conditions. These clusters 

of rates, however, behaved differently during extinction. Specifically, in the Rich-to-Lean 

component, responding tended to persist to a greater degree in the 2-Day and 1-Day 

alternation conditions than in the other conditions. In the Lean-to-Rich component, the 

opposite was true—responding, at least initially, tended to be less persistent in the 2-Day 

and 1-Day alternation conditions than in the other conditions.  

Fits of Equation 2 to the present data clarified the behavioral mass produced by 

these conditioning situations. When stimulus-reinforcer relations alternated as frequently 

as every three sessions, behavioral mass was substantially higher in the Lean-to-Rich 

component than in the Rich-to-Lean component. This difference was absent, however, 

when schedules alternated more frequently. Further, differences in mass were not the 

result of differences in sensitivity to baseline reinforcer rate. Instead, they apparently 
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were related to the reinforcer-rate parameters of the mass term in Equation 2, suggesting 

that behavioral mass in multiple schedules reflects a combination of recently experienced 

reinforcer rates within a discriminative-stimulus situation. 

Experiments investigating choice dynamics in stochastic environments might 

provide insights into the manner by which recently experienced stimulus-reinforcer 

relations combine to govern response persistence in multiple schedules. For example, in 

foraging situations, non-human animals such as rats, squirrels, chipmunks, horses, and 

canines allocate foraging behavior in temporally dynamic ways (see J. A. Devenport & 

Devenport, 1993; J. A. Devenport, Patterson, & Devenport, 2005; L. D. Devenport & 

Devenport, 1994; L. D. Devenport, Hill, Wilson, & Ogden, 1997). Specifically, if these 

organisms are exposed to several foraging options directly prior to being given a choice 

between those options, they tend to prefer the option that most recently produced food 

regardless of patch yield (i.e., the amount of food earned per patch visit). If, however, 

choice between options is assessed following an extended delay, these organisms tend to 

allocate foraging behavior with respect to overall patch yield (i.e., they prefer options that 

provided more food over options that provided less food). Similar findings have been 

demonstrated in the Pavlovian reversal-learning literature (e.g., Rescorla, 2007), thus 

demonstrating the dependency of behavior on temporally recent information is relatively 

robust and not necessarily restricted to choice situations. 

To explain these findings, L. D. Devenport et al. (1997) argued that, when 

foraging options are experienced relatively recently with respect to a choice opportunity, 

it is likely that the option that most recently produced food still contains food. That is, 
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under these circumstances information about food availability is reliable, so recent 

experience might govern choice. As information about patch payoff grows older, recently 

gathered information concerning patch quality might become unreliable, producing a 

default foraging strategy governed by average incomes. It is reasonable to believe that 

changing the reinforcer rates associated with the discriminative-stimulus situations in the 

present experiment might have impacted the reliability of stimulus-reinforcer relations 

associated with those situations in a similar manner. When stimulus-reinforcer relations 

were relatively stable with respect to recent experience, it is possible that the 

discriminative stimuli were associated most strongly with recently experienced reinforcer 

rates at the onset of extinction. When these pairings were unstable (i.e., unreliable) with 

respect to recent experience, the discriminative stimuli might have been associated with 

the mean rate of reinforcement historically delivered in its presence at the onset of 

extinction. From this perspective, this experiment suggests three sessions of stable 

stimulus-reinforcer pairings are sufficient for these relations to be considered reliable, at 

least with pigeons responding within multiple schedules of reinforcement. 

Choice behavior in stochastic environments also is a function of the frequency 

with which reinforcer rates change. For example, Gallistel, Mark, King, and Latham 

(2001) examined adaptation of rats’ response allocation in two-lever choice situations 

when relative reinforcer rates delivered for left- and right-lever responding changed. In 

one phase of the experiment, relative reinforcer rates were held constant for 32 sessions, 

after which relative rates changed midsession and were held constant for another 20 

sessions. In another phase, relative reinforcer rates changed both between and within 
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sessions for the entirety of the condition. Under conditions of infrequent change, 

behavioral allocation adapted slowly (i.e., across several session) to prevailing 

contingencies following a change in relative reinforcer rates (see also Mazur, 1995, 

1996). Under conditions of frequent change, however, behavioral allocation adapted to 

prevailing contingencies quickly, usually within a few cycles of visits to both levers (see 

also Baum, 2010; Baum & Davison, 2014). 

Choice data like those above suggest that, under conditions of frequently 

changing reinforcer rates, subjects may discriminate changes in rate (and estimate newly 

introduced rates) very quickly. Further, once previously collected information about 

reinforcer rates becomes unreliable based on frequency of changes in rate, this 

information no longer influences behavior. Based on these findings, it is reasonable to 

believe that pigeons in the present experiment learned the relation between a component 

stimulus and the reinforcer rate it signaled over the course of a single session when 

reinforcer rates alternated frequently. That is, within sessions of the 2-Day and 1-Day 

alternation conditions, transient stimulus-reinforcer relations may have been established. 

Indeed, in these conditions, response rates tended to track reinforcer rates, even when 

reinforcement schedules alternated frequently, suggesting that the pigeons discriminated 

the reinforcer rates associated with component stimuli. Because of frequent changes in 

reinforcer rates, however, it is possible that stimulus-reinforcer relations established 

within sessions did not exert control over behavior in subsequent sessions (cf., Gallistel et 

al., 2001). If this were the case, on might anticipate the observed undifferentiated 

resistance to extinction between Rich-to-Lean and Lean-to-Rich components.  
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If Pavlovian stimulus-reinforcer relations indeed were established within sessions 

in the 2-Day and 1-Day alternation conditions of the present experiment, dependency of 

resistance to extinction on recently experienced reinforcer rates might be observed in 

these conditions if extinction were introduced at the end of a baseline session (i.e., after 

the relation between component stimuli and reinforcer rate was established but before it 

was “lost” in the interim between sessions). Thus, results from the present experiment do 

not necessarily preclude the possibility that stimulus-reinforcer relations in multiple 

schedules are determined over very small, within-session timeframes. Instead, the lack of 

differential resistance to extinction observed in these conditions might have resulted from 

stochasticity-induced deterioration of stimulus control once subjects were removed from 

the conditioning situation. 

Doughty et al. (2005) conducted a series of experiments investigating behavioral 

history effects on resistance to change that were conceptually similar to the current 

experiment. In their Experiment 2, Doughty et al. examined resistance to change of 

pigeons’ key pecking in a multiple schedule where one component arranged a VI 90-s 

schedule while the other arranged extinction for the first 90 sessions of baseline. 

Following the 90th session, the extinction component was switched to a VI 90-s schedule, 

thus arranging equal reinforcer rates in both multiple-schedule components. Resistance to 

change was examined using probe extinction sessions in the 5th, 10th, and 15th session 

following the transition to the multiple VI 90-s VI 90-s schedule. Responding was less 

resistant to change in the component previously associated with extinction during the first 

extinction probe session, while there were no differences in resistance to change in 
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subsequent extinction probes. 

As in the present experiment, the Doughty et al. (2005) findings demonstrated that 

effects of previously experienced conditions of reinforcement exert less control over 

resistance to change as they become increasingly temporally distant from resistance 

testing. Interestingly, 5 days of equal reinforcement rates in both components was not 

sufficient to eliminate the effects of previously experienced extinction contingencies in 

the Doughty et al. experiment (though the effect was relatively small), which is at odds 

with results from the present experiment (i.e., alternations of rich and lean schedules 

between multiple-schedule stimulus situations every five sessions were sufficient to 

produce dependency of resistance to extinction on recently experienced reinforcer rates). 

Perhaps these differences can be attributed to differences in frequency with which 

reinforcement schedule-stimulus alternations occurred in the present experiment. In 

Doughty et al., the 5th session following the transition was preceded by 90 sessions of 

stable baseline conditions, while the 5-Day alternation condition here arranged changes in 

reinforcement schedules associated with multiple-schedule component stimuli every five 

sessions. Thus, extended exposure to changing stimulus-reinforcer contingencies (as in 

the current experiment) might produce greater sensitivity to current reinforcer rates (or 

decreased sensitivity to previously arranged reinforcer rates) than extended exposure to 

stable stimulus-reinforcer contingencies (as in the Doughty et al. experiment). Such an 

interpretation would be consistent with the Gallistel et al. (2001) findings with choice 

preparations discussed above. 

To summarize, the present findings suggest the construct relating baseline 
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reinforcer rates to response persistence from the perspective of behavioral momentum 

theory, behavioral mass, is temporally dynamic. That is, it represents some subset of 

experienced stimulus-reinforcer rate relations that might be influenced both by the 

recency with which those relations were experienced and the frequency with which those 

relations change in an organism’s environment. Identifying the precise function relating 

previously experienced stimulus-reinforcer relations to mass (e.g., a moving average or 

some other such rule), however, is beyond the scope of these data.  

That only one disruptor (extinction) was used in the present experiment limits 

determination of the generality of the present findings. For example, it remains unclear 

whether accumulation of behavioral mass in multiple schedules would be similar if other 

disruptors were applied. Studies examining resistance to change generally include 

multiple disruptors such as pre-feeding and presentation of free food during ICIs, both of 

which tend to produce more consistent response suppression than extinction (see, e.g., 

Nevin 1992a, 2002). Because the patterning of relative resistance to extinction in the 

present experiment was relatively consistent between subjects in most conditions (see, 

e.g., Figure 3.3) and because applications of extinction, pre-feeding, and presentation of 

ICI food as disruptors produce similar results in multiple schedules (i.e., a positive 

relation between baseline reinforcer rates and resistance to change), however, it is 

reasonable to believe that results from the present experiment would be general across 

disruptor types. Nevertheless, this empirical question is a direction for future research. 

The present data extend previous investigations of response persistence in several 

ways that could have practical, as well as theoretical, implications. As previously noted, 
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all investigations of resistance to change in multiple schedules have assessed persistence 

following many sessions of static stimulus-reinforcer rate pairings (see Nevin, 1992a; 

2002; Nevin & Grace, 2000, for summary). The present data suggest that these protracted 

periods of exposure might not be necessary to build behavioral mass, or discriminative 

stimulus-reinforcer relations, sufficient to produce dependency of response persistence on 

previously experienced reinforcer rates. Indeed, three sessions were sufficient to produce 

this dependency in the present experiment. 

Further, the present experiment demonstrates that, when reinforcer rates change 

relatively rapidly in an organism’s environment (here, as often as every three sessions), 

experience from the distant past might become irrelevant in terms of governance of 

resistance to change. This second extension of previous work in resistance-to-change 

research could have implications for application of the principles of behavioral 

momentum theory to clinical settings (see Nevin & Shahan, 2011, for discussion). In 

every-day situations, the sources and rates of reinforcement for human behavior may be 

(and in all likelihood, are) much more difficult to control than rates of reinforcement 

programmed for pigeons pecking keys in an operant chamber. Despite probable 

variability in stimulus-reinforcer relations across time in naturalistic settings, persistence 

of human behavior might depend only on some subset of recent experiences, like those 

arranged during treatment of problem behavior. Defining precisely which experiences 

matter in terms of resistance to change might depend on the individual’s history of 

reinforcement (e.g., how many and when reinforcers were experienced, how often rates 

of reinforcement for responding changed), among other variables. 
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CHAPTER 4 

BEHAVIORAL MASS DURING EXTINCTION 
 
 

Introduction 
 
 

Suspension of reinforcement that previously maintained an operant behavior is 

termed “extinction” (for reviews, see K. A. Lattal, St. Peter, & Escobar, 2013; K. M. 

Lattal & Lattal, 2012), and behavior usually decreases in frequency across time in the 

absence of reinforcement. Extinction is a common component of clinical interventions 

aimed at decreasing problematic operant behavior in humans (e.g., Lerman & Iwata, 

1996; Lerman et al., 1998; Petscher & Bailey, 2008; Petscher et al., 2009). Further, 

behavior during extinction is thought to reveal important characteristics of pre-extinction 

reinforcement processes (Nevin, 2012) and adaptive behavioral strategies in the face of 

changing environments (Craig & Shahan, 2016b; Gallistel, 2012). Accordingly, 

determining the processes that are responsible for persistence of behavior during 

extinction (conventionally “resistance to extinction”) is important for both practical and 

theoretical reasons. 

One thoroughly documented finding from the resistance-to-extinction literature is 

that persistence of discriminated operant behavior during extinction tends to be positively 

related to pre-extinction reinforcer rates (see, for review, Craig, Nevin, & Odum, 2014; 

Nevin, 2012). That is, after reinforcement has been suspended, behavior maintained in a 

multiple-schedule component associated with a relatively high rate of reinforcement 

tends to persist to a greater degree than behavior maintained in a component associated 
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with relatively low-rate reinforcement. The positive relation between reinforcer rates and 

resistance to extinction within multiple-schedule components is robust and has been 

demonstrated in several species including pigeons (e.g., Nevin, 1974; Nevin et al., 1990), 

rats (e.g., Cohen, 1998; Cohen et al., 1993), humans (e.g., Cohen, 1996; Mace et al., 

2010), and goldfish (Igaki & Sakagami, 2004). Further, this finding served as part of the 

empirical basis for a conceptual approach to understanding persistence of operant 

behavior termed “behavioral momentum theory” (Nevin et al., 1983; see also Nevin, 

1992a; 2002). 

Momentum theory states that resistance to extinction of discriminated operant 

behavior is determined by the interaction between two opposing forces. On the one hand, 

disruptive factors produce decreases in response rate. Response strength, on the other 

hand, promotes persistence of operant behavior and is determined by the Pavlovian 

discriminative stimulus-reinforcer relation established during baseline conditioning (see, 

however, Aló et al., 2015; K. A. Lattal, 1989; Nevin et al., 2001, for data that challenge 

Pavlovian determination of resistance to change). The momentum-based augmented 

model of extinction (see Nevin & Grace, 2000) expresses these relations as follows: 

log ൬
Bt

Bo
൰=

-tሺc + d∆rሻ

rb . 
(1)

The left side of the equation is log-transformed proportion-of-baseline response rates at 

time t during extinction, and the right side of the equation represents the disruptive and 

response-strengthening factors that affect behavior during extinction. In the numerator, c 

is the disruptive impact of suspending the response-reinforcer contingency and d and Δr 

collectively represent generalization decrement produced by removing reinforcers from 
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the conditioning context (Δr is the change in reinforcer rates between baseline and 

extinction in reinforcers omitted per hr and d is a scaling parameter). Disruption from 

these two sources grows with time in extinction, t (measured in sessions). The 

denominator represents response strength (metaphorically, “behavioral mass”) 

engendered by stimulus-reinforcer pairings experienced prior to extinction. Here, r is the 

baseline rate of reinforcement in the presence of a multiple-schedule component stimulus 

(in reinforcers per hr), and b is a sensitivity parameter. Equation 1 suggests that a 

Pavlovian stimulus-reinforcer relation that is formed during baseline remains intact 

during extinction (see Nevin & Grace, 2000; Nevin & Shahan, 2011, for review). Put 

another way, behavioral mass (rb in the denominator of the equation) does not change 

with extinction experiences. Instead, decreases in responding during extinction are 

attributed to the growing impact of disruptive factors across time.  

Though Equation 1 provides a satisfactory description of extinction data from 

multiple schedules after steady-state conditions (see, e.g., Nevin, 2012), an experiment by 

Craig, Cunningham, and Shahan (2015) calls into question momentum theory’s 

characterization of response strength during extinction. In this experiment, pigeons 

pecked keys in a multiple schedule where the reinforcer rates associated with the 

component stimuli changed during baseline before assessing resistance to extinction of 

key pecking. In one condition, for example, one component initially was associated with 

120 food deliveries per hr (a relatively high rate) and the other component was associated 

with 30 foods per hr (a relatively low rate). After 20 sessions, the reinforcement 

schedules associated with the multiple-schedule component stimuli were switched, such 
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that the component previously associated with high-rate food was then associated with 

low-rate food and vice versa for an additional 20 sessions. In this condition, then, the 

stimulus-reinforcer rate pairings alternated every 20 sessions. Several other conditions 

were conducted in which stimulus-reinforcer rate pairings alternated between 

components more frequently (including every five, three, two, and one session[s]). 

During extinction testing, key pecking was more persistent in the component most 

recently associated with high-rate food than the component most recently associated with 

low-rate food when discriminative stimulus-reinforcer rate pairings alternated during 

baseline as frequently as every three sessions. When these pairings alternated more 

frequently (every two or one session[s]), resistance to extinction was the same between 

components.  

Craig et al. (2015) asserted that behavioral momentum theory could be extended 

to account for their findings by allowing behavioral mass to vary between components 

and across conditions. A series of fits of Equation 1 to data from each of these conditions 

revealed that mass was larger in the component most recently associated with high-rate 

food than in the component associated with low-rate food when stimulus-reinforcer rate 

pairings alternated every 20, 5, or 3 sessions. Mass was similar between components 

when alternations occurred ever two or one session(s). The authors thus concluded that 

behavioral mass is a dynamic construct that changes when stimulus-reinforcer rate 

relations change. Given that extinction is functionally a change to zero-rate 

reinforcement, it is reasonable to believe that behavioral mass could change during 

extinction in a manner similar to that reported by Craig et al. In the absence of a formal 
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function that incorporates reinforcer rates that change across time into behavioral mass, 

however, momentum-based quantitative analyses of conventional multiple-schedule 

extinction data cannot be used to determine whether mass changes during extinction— 

As Equation 1 currently is understood, any changes in mass would be subsumed into 

variations in the disruptive terms in the numerator to describe decreases in response rate 

across sessions of extinction. 

Other findings from the resistance-to-change literature could offer a potential 

method for addressing this empirical question. For example, resistance to extinction in 

one multiple-schedule component has been shown to depend both on the reinforcer rate 

experienced in that component and on the reinforcer rates in other components. In a 

seminal study on this topic, Nevin (1992b) trained pigeons to peck keys in a series of 

multiple schedules where one, target, component was always associated with 60 

reinforcers per hr. Reinforcement in the other, alternative, component was delivered at a 

rate of 300, 60, or 10 reinforcers per hr. The critical comparison in this experiment was 

resistance to extinction of target-component key pecking across conditions. Resistance to 

extinction in this component was highest when it was paired with the 10 reinforcers per 

hr in the alternative component and lowest when it was paired with the 300 reinforcers 

per hr (see also Grace, Arantes, & Berg, 2012; Grace, McLean, & Nevin, 2003; Nevin & 

Grace, 1999). Nevin suggested these “behavioral contrast” effects on resistance to change 

represent changes in behavioral mass (rb in Equation 1), where mass in the target 

multiple-schedule component is expressed in terms of Gibbon’s (1981) Pavlovian-

contingency ratio as follows:  



89 
	

log ൬
Bt

Bo
൰=

-tሺc + d∆rሻ

ቀ
rs
rc
ቁ

b . 
(2)

In the denominator, rs is the reinforcer rate experienced in the presence of target-

component stimulus and rc is the contextual reinforcer rate (rc = [rTarget + rAlternative]/2; i.e., 

session-wide reinforcer rate, averaged between components), both in reinforcers 

delivered per hr. 

Based on these insights and on the findings of Craig et al. (2015), it is reasonable 

to believe that changing the rate of reinforcement in an alternative multiple-schedule 

component for several sessions prior to persistence testing could affect behavioral mass 

and thus produce a contrast effect on resistance to change of behavior maintained in 

another, target, component. More specifically for present purposes, introducing extinction 

in an alternative-component stimulus situation before introducing extinction in the target 

component could influence subsequent target-component resistance to extinction. The 

present experiment aimed to test this possibility. Across several conditions, pigeons’ key 

pecking was reinforced during baseline and subsequently extinguished during persistence 

testing in a two-component multiple schedule. In all conditions, baseline reinforcement 

was provided at the same rate in both components, and an alternative-component 

treatment phase intervened between baseline and persistence testing. During the 

alternative-component treatment, the key-light color associated with the alternative 

component was presented alone in a single schedule, and pecking this key produced 

either the same rate of reinforcement as during baseline, a higher rate, or no 

reinforcement.  
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Delivering a higher rate of reinforcement in the alternative component should 

decrease subsequent resistance to extinction of key pecking in the target component 

because the target component would be associated with a relatively low rate of 

reinforcement in that condition, and exposure to zero-rate reinforcement in the alternative 

component should increase target-component resistance to extinction because the target 

component then would be associated with a relatively high reinforcer rate (cf. Grace et 

al., 2012, 2003; Nevin, 1992b; Nevin & Grace, 1999). Manipulations of the rate of 

reinforcement in the alternative component were conducted outside of the multiple 

schedule to avoid potential issues associated with behavioral-contrast effects on baseline 

response rates (see, e.g., McSweeney, 1983; McSweeney, Dougan, Higa, & Farmer, 

1986). That is, changing the rate of reinforcement in an alternative multiple-schedule 

component can lead to changes in target-component response rate, despite no change in 

reinforcer rate in that component. If contrast of response rates produced different baseline 

response rates between conditions, target-component proportion-of-baseline response 

rates might be rendered unreliable for the purposes of between-condition comparisons. 

The major dependent variable in this experiment was target-component proportion-of-

baseline response rates during persistence testing, and this variable was compared 

between conditions. Momentum-based quantitative analyses were used to explore 

potential mechanisms responsible for differences in target-component extinction 

performance between conditions.  
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Method 
 
 
Design 
 
 A within-subjects ABCA (counterbalanced ACBA) design was used for this 

experiment. Conditions labeled “A” were Control conditions, where alternative-

component reinforcer rates were the same in baseline and treatment. The purpose of these 

conditions was to determine levels of target-component resistance to extinction following 

an alternative-component treatment without any reinforcer-rate manipulation. Further, 

two Control conditions were included to determine potential effects of repeated 

extinction tests on resistance to extinction across conditions. The “B” condition was a 

High-Rate condition, where key pecking in the alternative-component stimulus situation 

produced reinforcement four times as frequently as during baseline prior to target-

component extinction. The effects of off-baseline exposure to different reinforcer rates in 

an alternative-component stimulus situation on subsequent resistance to change of target-

component responding has never been investigated. Accordingly, the High-Rate 

condition was included as a manipulation check. As reviewed above, exposure to 

relatively high-rate reinforcement in an alternative multiple-schedule component reduces 

resistance to extinction of target-key pecking when both components are presented 

together in a multiple schedule (Grace et al., 2012, 2003; Nevin, 1992b; Nevin & Grace, 

1999). Thus, reduced resistance to extinction of target-component pecking in the High-

Rate condition would indicate similar behavioral effects of off-baseline and during-

baseline alternative-component reinforcer-rate manipulation. Finally, Condition “C” was 

an Extinction condition, where extinction of key pecking in the alternative-component 
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stimulus situation was arranged prior to target-component extinction. Thus, every pigeon 

experienced the Control condition first (referred to as the “Control-1” condition below) 

and last (referred to as the “Control-2” condition below). Pigeons were exposure to the 

Extinction and High-Rate conditions in a counterbalanced order. 

 
Subjects 
 
 Seven unsexed homing pigeons with identical histories of responding under 

schedules of positive reinforcement (see Craig & Shahan, 2016b) served. Pigeons were 

housed individually in a temperature-controlled colony room with a 12:12 hr light/dark 

cycle (lights on at 7:00 AM). Each pigeon had free access to water in its home cage and 

was maintained at 80% of it free-feeding body weight (± 15g) by the use of 

supplementary post-session feedings when necessary. Animal housing and care were 

conducted in accordance with the regulations of Utah State University’s Institutional 

Animal Care and Use Committee (protocol #2150). 

 
Apparatus 
 

Four operant chambers for pigeons (dimensions approximately 29 cm long, 26 cm 

wide, and 29 cm high), enclosed in sound-attenuating chambers, were used. These 

chambers were constructed of clear Plexiglas and aluminum with and aluminum work 

panel on the front wall. Each work panel was equipped with two opaque response keys 

measuring 2.5 cm in diameter and located 16 cm from the floor of each chamber and 2 

cm from either of the sidewalls. Only the left key was used during this experiment and 

was transilluminated blue or white to signal the two multiple-schedule components 
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(colors counterbalanced across pigeons). A 28-V lamp located in the center of the work 

panel and 23 cm from the floor of the chamber provided general illumination. Both this 

lamp and the left key light were illuminated at all times except during reinforcer 

deliveries and inter-component intervals (ICIs). A food aperture measuring 6 cm wide by 

5 cm high was located in the center of the work panel 5 cm from the floor of the chamber. 

A 28-V lamp illuminated this aperture during reinforcement, which consisted of 1.5 s of 

access to Purina ® Pigeon Checkers delivered by a solenoid-operated food hopper. White 

noise was present at all times to mask extraneous sound. All experimental sessions were 

controlled by MedPC ® software from a PC computer. 

 
Procedure 

General features. The experiment consisted of three conditions, and each 

condition consisted of three phases. A graphical summary of these procedures may be 

found in Figure 4.1. In Phases 1 (baseline) and 3 (persistence test), a two-component 

multiple schedule was in place. One component was designated the “target” component, 

and the other was designated the “alternative” component. Components lasted for three 

min and were separated by 30-s ICIs. The first component within each session was 

selected randomly, after which components strictly alternated for a total of 10 component 

presentations (five target and five alternative).  

In Phase 1, key pecking in both components produced food according to a 

variable-interval (VI) 60-s schedule constructed of 10 intervals using Fleshler and 

Hoffman’s (1962) constant-probability algorithm. This phase lasted for a minimum of 20 

sessions during the Control-1 condition and a minimum of 10 sessions for each remaining  
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Figure 4.1. A graphical summary of reinforcement schedules across phases of each 
condition. “Target” and “Alternative” refer to the target and alternative components, 
respectively. “Mult” and “Single” indicate that phases consisted of either a multiple or 
single schedule of reinforcement. 

 

 

condition. Further, pigeons finished Phase 1 only if no visual trends in response rates 

were evident in either component during the final five sessions of the phase. Phase 2 

differed between conditions as described in the sections below. Phase 2 lasted for 10 
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available continuously (i.e., a single schedule of reinforcement was arranged) for 15 min, 

and pecking this key produced food according to a VI 60-s schedule. 

High-rate condition. The key-light associated with the alternative component 

was presented for 15 min in a single schedule. Pecks to this key produced food according 

to a VI 15-s schedule.  

Extinction condition. As in the other Phase-2 conditions the key-light associated 

with the alternative component was available continuously for 15 min, but reinforcement 

for key pecking was suspended.  

Data analyses. All statistical tests reported below were deemed significant at an α 

level of .05. The assumption of sphericity for repeated factors in analyses of variance 

(ANOVA) was tested using Mauchly’s method and, if this assumption was violated, 

Greenhouse-Giesser reductions to degrees of freedom were used. 

 
Results 

 
 

Phase 1 (Baseline) 

Figure 4.2 shows mean response and reinforcer rates from the last five sessions of 

each baseline condition in both multiple-schedule components. Pecking occurred at 

comparable rates across conditions and at roughly equal rates in the target and alternative 

components. Obtained reinforcer rates from the last five sessions of each baseline 

condition closely approximated programmed the reinforcer rate (i.e., one reinforcer per 

min) across components and conditions. Baseline phases for lasted an average of 23.42 

(SD = 2.15), 15.86 (SD = 4.56), 14.29 (SD = 3.40), and 15.57 (SD = 4.50) sessions in the 

Control-1, High-Rate, Extinction, and Control-2 conditions, respectively. 
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Figure 4.2. Mean (plus SEM) key pecks and reinforcers per min in both multiple-
schedule components across conditions. 
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Mean proportion-of-baseline response rates in the alternative component across 
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Figure 4.3. Mean (plus SEM) alternative-component proportion-of-baseline response 
rates across sessions of the treatment phase in each condition. Session “0” represents 
response rates during the final five sessions of Phase-1 baseline. 
 
 
 
preceding baseline condition. Session “0” and the dashed line that bisects the figure 

horizontally represent baseline levels of responding. Alternative-component key pecking 

in the Control conditions tended to occur at baseline levels throughout the course of 

treatment. Response rates were slightly elevated relative to baseline in the High-Rate 

condition, and key pecking decrease across sessions of the phase in the Extinction 

condition. These observations were supported by a 4 X 11 (Condition X Session) 

repeated-measures ANOVA. The main effects of Condition, F(3, 18) = 16.11, MSE = 

0.38, p < .001, Session, F(10, 60) = 2.01, MSE = 0.03, p = .048, and Condition X Session 

interaction, F(30, 180) = 5.30, MSE = 0.03, p < .001, were significant. To identify the 

source of the significant interaction, follow-up 2 X 11 (Condition X Session) repeated-
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these analyses are found in Table 4.1. The interaction term remained significant when 

responding in the Extinction treatment was compared to responding in the other three 

(Control-1, High-Rate, and Control-2) conditions. No other pairwise comparisons yielded 

a significant interaction. Thus, responding decreased in the Extinction condition but 

continued roughly at baseline rates in the other conditions. 

 Mean reinforcer rates from the last five sessions of the Control and High-Rate 

treatment conditions are shown in Figure 4.4. Note that the Extinction condition was 

omitted from this figure because reinforcer rates were zero across Phase-2 sessions. 

Obtained Phase-2 reinforcer rates approximated programmed rates in each condition (i.e., 

one reinforcer per min in the Control-1 and Control-2 conditions and four reinforcers per 

min in the High-Rate condition).  

 
Phase 3 (Extinction Testing) 
 

Within-component comparisons. Mean proportion-of-baseline alternative- 
 
 

Table 4.1 
 
Results from Follow-Up 2 X 11 (Condition X Session) Repeated-
Measures ANOVA Conducted on Each Pairwise Comparison of 
Condition for Alternative-Component Proportion-of-Baseline 
Response Rates from Treatment Conditions 
 

Comparison Fa MSE p 

Control 1 vs. Control 2 0.96 0.04 .489 

Control 1 vs. High Rate 0.93 0.01 .514 

Control 1 vs. Extinction 9.47 0.03 < .001 

Control 2 vs. High Rate 0.71 0.03 .716 

Control 2 vs. Extinction 7.13 0.04 < .001 

High Rate vs. Extinction 14.85 0.02 < .001 
a Interaction degrees of freedom = 10; error degrees of freedom = 60 
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Figure 4.4. Mean (plus SEM) alternative-component reinforcer rates from the final five 
sessions of the treatment phase from the Control-1, High-Rate, and Control-2 conditions.  
 

 
component response rates from each extinction test are shown in Figure 4.5. Session “0” 

represents baseline rates of responding. Alternative-component key pecking decreased 

across sessions of extinction in all conditions and occurred at the lowest rate in the 

Extinction condition. Further, comparisons between data presented in Figure 4.3 and 4.5 

reveal that key pecking in this condition remained low between the treatment and test 

phases. In the Control-1, High-Rate, and Control-2 conditions, responding decreased at 

roughly equivalent rates. A 4 X 4 (Condition X Session) repeated-measures ANOVA was 

conducted to support these observations. Note that Sessions 0 in Figure 4.5 was excluded 

from this analysis because treatment conditions intervened between baseline and testing. 

The main effects of Condition, F(3, 18) = 14.43, MSE = 0.11, p < .001, and Session, F(3, 

18) = 36.41, MSE = 0.02, p < .001, and the interaction between these terms, F(9, 54) = 
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Figure 4.5. Mean (plus SEM) alternative-component proportion-of-baseline response 
rates across sessions of Phase-3 persistence testing. Session “0” represents response rates 
from the last session of Phase-1 baseline. 
 
 
 
repeated-measures ANOVA were conducted for each pairwise comparison of Condition 

to identify the source of the significant interaction. Results from these analyses may be 

found in Table 4.2. The interaction term remained significant when proportion-of- 

baseline response rates in the Extinction condition were compared to the other three 

conditions. No other pairwise comparisons were significant.  

Mean target-component proportion-of-baseline response rates during extinction in 

each condition are shown in Figure 4.6. Key pecking decreased across sessions of 

extinction in each condition, and it tended to decrease at roughly equal rates between 

conditions. Proportion-of-baseline response rates, however, were lower in the Extinction 

condition than in the remaining conditions and were slightly elevated in the initial 
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Table 4.2 
 
Results from Follow-Up 2 X 4 (Condition X Session) Repeated-
Measures ANOVA Conducted on Each Pairwise Comparison of 
Condition for Alternative-Component Proportion-of-Baseline 
Response Rates from Persistence Testing 
 

Comparisons Fa MSE p 

Control 1 vs. Control 2 1.52 0.03 .244 

Control 1 vs. High Rate 1.14 0.03 .360 

Control 1 vs. Extinction 7.61 0.01 .002 

Control 2 vs. High Rate 1.46 0.02 .259 

Control 2 vs. Extinction 4.55 0.02 .015 

High Rate vs. Extinction 3.60 0.02 .034 
a Interaction degrees of freedom = 10; error degrees of freedom = 60. 
 
 
 
 
 
 

 
Figure 4.6. Mean (plus SEM) target-component proportion-of-baseline response rates 
across sessions of Phase-3 persistence testing. Session “0” represents response rates from 
the last session of Phase-1 baseline. 
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effects of Condition, F(3, 18) = 3.37, MSE = 0.07, p = .042, and Session, F(4, 24) = 

75.01, MSE = 0.32, p < .001, were significant, but the Condition X Session interaction 

was not, F(12, 72) = 1.76, MSE = 0.02, p = .071. Fisher’s protected t-tests were used to 

follow up on the significant main effect of Condition, and the results from these analyses 

are found in Table 4.3. Proportion-of-baseline response rates, collapsed across sessions, 

were lower in the Extinction condition than in the Control-1 and High-Rate conditions. 

Response rates, however, were not statistically different between the Extinction and 

Control-2 conditions. Further, comparisons between the Control-1, High-Rate, and 

Control-2 conditions were not significant. Thus, target-component key pecking persisted 

most in the Contol-1 and High-Rate conditions, least in the Extinction condition, and to 

an intermediate degree in the Control-2 condition.4 

 
Table 4.3 
 
Fisher’s Protected t Tests Comparing Overall Levels of Target-Component 
Persistence Between Conditions  
 

    
95% confidence interval 

──────────────────   

Comparisons Da Lower bound Upper bound p 

Control 1 vs. Control 2 0.07 -0.12 0.26 .381 

Control 1 vs. High Rate 0.06 -0.05 0.16 .259 

Control 1 vs. Extinction 0.20 0.01 0.38 .039 

Control 2 vs. High Rate -0.02 -0.17 0.13 .772 

Control 2 vs. Extinction 0.13 -0.04 0.29 .117 

High Rate vs. Extinction 0.14 0.01 0.28 .039 
a Mean difference. 

                                                 
4 The pattern of results shown in Figures 4.5 and 4.6 also were evident on the individual-subject level. 
Relative resistance to extinction, expressed as the log ratio of mean proportion-of-baseline response rates 
for each pairwise comparison of conditions, may be found in Appendix F. Data points represent individual 
subjects, and bars represent mean relative resistance. The left panel of the figure shows comparisons across 
conditions for the Alternative component, and the right panel shows comparisons for the Target 
component. 
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Between-component comparisons. Mean proportion-of-baseline response rates 

in the target and alternative components, organized by condition, are shown in Figure 4.7. 

Regardless of condition, proportion-of-baseline responding tended to decrease at 

comparable rates between components. Further, in the Control-1, High-Rate, and 

Control-2 conditions, proportion-of-baseline response rates were comparable between 

components. In the Extinction condition, however, responding occurred at a lower rate in 

the alternative component than in the target component. Decreases in response rates 

across sessions of extinction in this condition also tended to be less extreme than in the 

other conditions. These observations were confirmed by 2 X 4 (Component X Session) 

repeated-measures ANOVA conducted on proportion-of-baseline data for each condition, 

 

 

Figure 4.7. Mean (plus SEM) target- and alternative-component proportion-of-baseline 
response rates from each condition. 
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separately. The results from these analyses are found in Table 4.4. Similar patterns of 

results were obtained from analyses of data from them Control-1, High-Rate, and 

Control-2 conditions. That is, the main effects of Session were the only significant effects 

in these models. In the Extinction condition, however, only the main effect of Component 

was significant. 

 
Modeling Treatment Effects on Target-  
Component Persistence 
 

It was of interest to determine the extent to which behavioral momentum theory 

could be extended to account for systematic differences in target-component resistance to  

  
Table 4.4 
 
Results from 2 X 4 (Component X Session) Repeated-Measures ANOVA Conducted on 
Target- and Alternative-Component Proportion-of-Baseline Response Rates during 
Persistence Testing 
 

      Degrees of freedom 
──────────── 

    

Condition Effect F Effect Error MSE p 

Control 1 Component 4.25 1.00 6.00 0.03 .085 

Session 23.26 3.00 18.00 0.04 < .001 

Component X Session 1.70 3.00 18.00 0.01 .204 

Control 2 Component 0.10 1.00 6.00 0.06 .767 

Session 34.85 3.00 18.00 0.02 < .001 

Component X Session 0.50 3.00 18.00 0.02 .684 

High Rate Component 2.49 1.00 6.00 0.09 .166 

Session 23.80 3.00 18.00 0.03 < .001 

Component X Session 0.88 1.53 9.21 0.01 .421 

Extinction Component 23.79 1.00 6.00 0.02 .003 

Session 2.61 1.69 10.16 0.06 .127 

  Component X Session 1.84 2.32 13.91 1.84 .193 
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extinction across conditions of the present experiment. Fits described below were 

conducted by minimizing the sum of squared residuals between obtained and predicted 

target-component proportion-of-baseline response rates using Microsoft Excel Solver. 

Because treatment contingencies were the same between the Control-1 and Control-2 

conditions and patterns of behavior during these conditions were statistically the same, 

the Control-2 condition was omitted. 

Craig et al. (2015) suggested that the reinforcer-rate term associated with 

behavioral mass (i.e., r in the denominator of Equation 1) changes when the reinforcer 

rate associated with a discriminative-stimulus situation changes. Accordingly, one 

approach to modeling target-component resistance to extinction between conditions 

might be to assume that changes in alternative-component reinforcer rates during the 

various treatment conditions affected calculation of rc in Equation 2, where rc = (rTarget + 

rAlternative)/2 and both r terms are expressed in reinforcers per hr. Craig et al. also noted 

that the form of the specific function relating stimulus-reinforcer relations experienced 

across time is unknown. Thus, estimates of rAlternative for each condition were free to vary 

but were assumed to be bounded by the reinforcer rates experienced in the alternative 

component during baseline and treatment. For the control, high-rate, and extinction 

conditions, respectively, these bounds were: [60, 60] = 60, [60, 240], and [0, 60].5 Values 

of c and d were allowed to vary and were shared between conditions. The b parameter 

also was shared between conditions. In one round of fits, this parameter was allowed to 

                                                 
5	Based on this premise, rTarget, rAlternative, and rs should continue to change during Phase-3 extinction. 
Nevertheless, the modeling approach described above provides a strong test of the ordinal predictions 
offered by Nevin’s (1992 b) approach.	
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vary. In another, it was fixed at a conventional value of b = 0.5 (see Nevin et al., 2017). 

Resulting parameter estimates from these model fits are found in Table 4.5 (see  

columns titled “Equation 2”), and model predictions are plotted along with obtained data 

in the top panels of Figure 4.8. Both fits revealed a similar pattern of results. Estimates of 

d approximated typical values derived from fits of Equation 1 to obtained multiple- 

schedule extinction data from pigeons (i.e., d = .001; see, Craig & Shahan, 2016b), but 

estimates of c were substantially smaller than the typically reported value of c = 1. 

Estimates of c were likely smaller than 1 because Nevin’s (1992b) method for calculating 

behavioral mass results in smaller overall estimates than the method offered by the 

augmented extinction model. That is, within-component reinforcer rates are divided by 

session-wide reinforcer rates in Equation 2 but not in Equation 1. When sensitivity to 

 
Table 4.5 
 
Parameter Estimates from Model Fits to Target-Component Extinction Data Across 
Conditions 
 

  
Equation 2 

──────────── 
Equation 3 

────────────     
Parameter b Fixed b Free dc Fixed dc Free Mass Disruption 

c 0.140 0.140 1.000 1.000 1.000 1.000 
d 0.000 0.000 0.001 0.001 0.001 0.001 
b 0.500 0.500 0.500 0.500 - 0.050 
ralt (High Rate) 60.000 60.000 60.000 60.000 - - 
ralt (Extinction) 60.000 60.000 60.000 60.000 - - 
dc - - 0.001 0.001 - - 
m (Control) - - - - 9.140 - 
m (High Rate) - - - - 8.310 - 
m (Extinction) - - - - 5.900 - 
xd (Control) - - - - - 0.000 
xd (High Rate) - - - - - 0.000 
xd (Extinction) - - - - - 0.340 
R2 .860 .860 .860 .860 .960 .940 
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Figure 4.8. Fits of Equations 2 and 3, and the models with free variation in mass (m) and 
disruption (xd) to obtained target-component extinction data across conditions. 
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baseline reinforcer rates (b) was allowed to vary, the best-fitting estimate of this 

parameter was b = 0.5. In both fits, estimates of rAlternative in each condition were 60.  

Inasmuch, the behavioral-mass term in the denominator = 60/([60 + 60]/2) = 1 in all 

conditions, resulting in identical model predictions between conditions. Equation 2 thus 

failed to account for the differences in target-component resistance to extinction between 

conditions of the present experiment, even with complete freedom for non-fixed 

parameters within to model to vary. Additional fits where rAlternative was fixed at values 

other than 60 in the High-Rate and Extinction conditions resulted estimates of b = 0, 

eliminating any differential impact of alternative-component reinforcer rates between 

conditions on target-component resistance to extinction. 

Nevin and Grace (1999) argued that Nevin’s (1992b) formalization of behavioral 

mass was incorrect because these authors failed to demonstrate contrast effects on 

resistance to change using any disruptor other than extinction. They reasoned that, if 

contextual reinforcer rates modify behavioral mass, contrast effects should occur 

regardless of the disruptor applied. Instead, Nevin and Grace suggested that effects of 

alternative-component reinforcer rates on target-component resistance to change should 

be isolated to extinction and could be expressed by adding an additional source of 

disruption to the numerator of Equation 1 as follows:  

log ൬
Bt

Bo
൰ =

-tሺc + d∆r + dc∆rcሻ

rb . 
(3)

The Δrc term in this expression is the change in overall session-average reinforcer rates 

between baseline and extinction and dc scales this disruption. Subsequent studies (Grace 

et al., 2003, 2012), including one condition from Nevin (1992b), have found contrast 
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effects in resistance to change using prefeeding and presentations of free inter-component 

interval food as disruptors with pigeons, suggesting Equation 2 provides a more general 

approach to modeling these contrast effects than Equation 3. Nevertheless, this model 

was fitted to obtained data to more thoroughly explore potential momentum-based 

approaches to modeling target-component resistance to extinction in the present 

experiment. 

 Two model fits were conducted. In both fits, c, d, and b were allowed to vary, and 

the r and Δr parameters in Equation 3 were fixed at 60 reinforcers per hr. The contextual 

reinforcer rate term (Δrc) in the numerator was calculated by averaging target- and 

alternative-component reinforcer rates prior to Phase 3 (i.e., Δrc = (rTarget + rAlternative)/2), 

and rAlternative was allowed to vary under the same constraints that were in place for the fits 

of Equation 2 described above. That is, this term was bounded by the same values in the 

Control (i.e., rAlternativ = [60, 60] = 60 reinforcers per hr), High-Rate (i.e., rAlternativ = [60, 

240] reinforcer per hr), and Extinction (i.e., rAlternativ = [0, 60] reinforcer per hr) 

conditions. In the first model fit, dc was allowed to vary. In the second fit, this parameter 

was fixed at dc = 0.001 (see Nevin & Grace, 1999). Results of these fits are shown in 

Table 4.5 (see columns titled “Equation 3”), and model predictions are plotted along with 

obtained data in the middle panels of Figure 4.8. Equation 3 converged on predictions 

that were identical between conditions—when dc was allowed to vary, this parameter 

assumed a value of 0.001, and rAlternative = 60 in all conditions in both fits. Of note, 

predictions of Equation 3 were identical to those of Equation 2, and, in addition, model 

fits that fixed rAlternative at any value other than 60 resulted in estimates of dc = 0. Thus, 
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even provided substantial flexibility in parameter variation, Equation 3 accounted poorly 

for between-condition differences in target-component resistance to extinction.  

Two additional model fits were conducted in the absence of any functional 

influences of contextual reinforcer rates on behavioral mass and disruption to determine 

whether free variations in these terms could adequately describe changes in target-

component resistance to extinction across conditions. The fitted models were as follows: 

log ൬
Bt

Bo
൰=

-tሺc + d∆rሻ
m

 
(4a)

and 

log ൬
Bt

Bo
൰=

-tሺc + d∆r + xdሻ
rb  . 

(4b)

In both fits, the following parameters were held at constant values: c = 1, d = 0.001, and 

Δr = 60 reinforcer omitted per hr. For fits of Equation 4a, m represented a composite 

mass term that was allowed to vary between conditions (see Craig et al., 2015). For fits of 

Equation 4b, r and b in the denominator were set equal to 60 and 0.5, respectively, and xd 

in the numerator was allowed to vary between conditions.  

Resulting parameter estimates may be found in Table 4.5 (see columns labeled 

“Mass” and “Disruption”), and model predictions are plotted along with obtained data in 

the bottom panels of Figure 4.8. Estimates of m in Equation 4a were smaller in the 

Extinction condition and roughly comparable between the Control and High-Rate 

conditions. When Equation 4b was fitted to obtained target-component extinction 

functions, xd assumed values of 0 for both the Control and High-Rate conditions, but 

additional disruption from this parameter was evident in the Extinction condition. Of 
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note, both approaches described lower proportion-of-baseline response rates in the 

Extinction condition than in the other two conditions, thus accounting for substantially 

more variation in obtained data than the other modeling approaches described above (see 

Table 4.5). 

 
Discussion 

 
 

 The purpose of the present experiment was to determine whether previous 

exposure to extinction in one (alternative) multiple-schedule component would affect 

subsequent resistance to extinction of behavior maintained in a second (target) 

component. More specifically, this experiment aimed to explore the possibility that 

behavioral mass, the construct within behavioral momentum theory that relates stimulus-

reinforcer contingencies to response persistence, changes during extinction. To this end, 

pigeons pecked keys for VI 60-s food in both components of a two-component multiple 

schedule during baseline phases. Next, the alternative-component key was presented in a 

single schedule and, across conditions, different treatments were introduced. Pecking the 

alternative key either produced the same rate of reinforcement as during baseline (i.e., 60 

reinforcers per hr in the Control conditions), a higher rate (i.e., 240 reinforcers per hr in 

the High-Rate Condition), or a zero rate (i.e., extinction in the Extinction condition). 

Finally, the multiple schedule was reintroduced, but key pecking in both components was 

placed on extinction. 

This experiment used a preparation similar to those used to examine behavioral-

contrast effects in resistance to change, where baseline reinforcer rates in a target 
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multiple-schedule component remain the same but reinforcer rates in an alternative 

component vary across conditions. Thus, it is important to compare results from the 

present study to those of others examining contextual reinforcer-rate effects on response 

persistence. As reviewed in the Introduction, the routine finding from these experiments 

is that behavior in the target component tends to be more persistent when the alternative 

component arranges relatively low-rate reinforcement during baseline and lass persistent 

when a high rate of reinforcement is arranged in the alternative component (see Grace et 

al., 2012, 2003; Nevin, 1992b; Nevin & Grace, 1999). That is, persistence in the 

unchanging component is inversely related to reinforcer rates in the other, changing, 

component. 

If behavioral contrasts of resistance to change occurred in the present experiment 

as in the studies reviewed above, one would expect resistance to extinction of target-

component key pecking to be lowest in the High-Rate condition and highest in the 

Extinction condition. Relative to these predictions, results from the present experiment 

differed in two major ways. First, exposure to a four-fold increase in reinforcer rates for 

key pecking in the alternative component during Phase-2 treatment had no impact on 

subsequent target-component resistance to extinction relative to conditions were Phase-2 

treatment arranged an intermediate rate of reinforcement. Further Phase-3 key pecking 

was less resistant to extinction in the target component in the Extinction condition than in 

the other conditions. Thus, even though introducing extinction into the alternative-

component during Phase-2 treatment changed the subsequent resistance to extinction of 

target-component key pecking, behavioral contrast might not be responsible for this 
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effect. 

Fits of the momentum-based models used to describe behavioral-contrast effects 

on resistance to change (i.e., Equations 2 and 3) to the present target-component 

extinction data across conditions corroborate this conclusion. These models suggest that 

session-wide, contextual reinforcer rates (rc) affect resistance to change of target-

component behavior by modulating behavioral mass (Equation 2) and by adding a source 

of disruption when reinforcement is suspended (Equation 3). Despite freedom of rc to 

vary in a manner consistent with reinforcer rates experienced across phases of each 

condition (and complete flexibility of the other free parameters in these models to vary), 

neither model was able to describe lower target-component persistence in the Extinction 

condition than in the other conditions. Clearly, alternative explanations for the present 

findings are worth exploring. 

Discriminative stimuli are thought exert control over operant behavior because 

they provide information about current reinforcement contingencies. These stimuli could, 

for example, be temporally discrete (e.g., Craig, Lattal, & Hall, 2014; Marcucella, 1976; 

Marcucella & Margolius, 1978) or extended (e.g., Andrzejewski, Terry-Cain, & Bersh, 

2004; Cohen, 1998; Fuhrman et al., 2016; Tiger, Wierzba, Fisher, & Benitez, 2017) cues 

in the presence of which reinforcement for a specific response is available and in the 

absence of which reinforcement is unavailable. In the case of multiple schedules with 

reinforcers available in all schedule components, the stimuli associated with the 

components serve discriminative functions because they are associated with different 

rates, magnitudes, or qualities of reinforcement (see Nevin, 1974, for discussion). During 
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baseline conditions of the present experiment, reinforcement contingencies were the same 

between target and alternative multiple-schedule components. Because the component 

stimuli did not differentially signal any dimension of reinforcement during baseline, it is 

possible that key pecking failed to come under discriminative control by these stimuli 

despite different manipulations of alternative-component reinforcer rates across treatment 

phases. This possibility could help to explain lack of differential resistance to extinction 

between components during the High-Rate condition. If behavior had come under 

discriminative-stimulus control, momentum theory (and myriad research on reinforcer-

rate effects on resistance to extinction in multiple schedules) would predict greater 

persistence of key pecking in the alternative component during this condition because 

that component most recently was associated with a reinforcer rate that was four-times as 

high than in the target component. Resistance to extinction during the Extinction 

condition, however, was greater in the target component than in the alternative 

component, suggesting that the different key colors in the multiple-schedule components 

exerted some amount of discriminative control over key pecking. Thus, an account based 

solely on stimulus control cannot describe the overall pattern of resistance to extinction 

across conditions in the present experiment. 

A second potential explanation for lower target-component persistence during the 

Extinction condition than during the other conditions is that extinction learning that took 

place in the alternative-component stimulus situation during Phase 2 generalized not only 

between phases but also to some extent between component stimuli. Relative to terminal 

Phase-2 response rates, responding in the alternative component during the Extinction 
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condition remained low. Further, persistence of target-component responding in this 

condition was greater than persistence of alternative-component responding. Thus, from 

this perspective Phase-2 extinction learning in the alternative component could have fully 

generalized to the alternative component and partially generalized to the target 

component during Phase 3. The extent to which operant learning generalizes between 

stimulus conditions depends in part on the similarity between the stimulus in the presence 

of which original learning took place and the stimulus to which that learning is meant to 

generalize (e.g., Blough, 1969; Hanson, 1957, 1959). Because the key-light stimulus was 

the same between phases in the alternative component but different in the target 

component, then, data from this condition are reasonably consistent with data from 

conventional tests of stimulus generalization. 

 It is important to note that, according to this argument, Phase-2 exposure to high-

rate reinforcement in the alternative-component stimulus situation apparently failed to 

generalize between conditions. This is evidenced by the lack of differential resistance to 

extinction between components in the High-Rate condition and the lack of differential 

resistance to extinction of alternative-component key pecking between the Control and 

High-Rate conditions. It is unclear at present why extinction learning would be expected 

to generalize between stimulus situations more readily than learning about new reinforcer 

rates, but recent conceptual approaches to understanding multiple-schedule extinction 

processes could inform this issue. Craig and Shahan (2016b; see also Gallistel, 2012), for 

example, argued that behavior during extinction in a multiple schedule might depend 

partially on organisms’ overall assessment of reinforcer availability. More specifically, 
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discrimination of extinction in one multiple-schedule component is likely to indicate a 

global change in reinforcer availability and, accordingly, reduce the amount of evidence 

necessary for discrimination of extinction contingencies in other schedule components. In 

the present experiment, previous experience with extinction contingencies in the 

alternative component during the Extinction condition might have influenced the 

pigeons’ overall assessment of reinforcer availability and thus produced generalization of 

extinction learning between component stimuli. Further, because reinforcement was still 

available for alternative-component key pecking in Phase 2 of the High-Rate condition, 

treatment in that condition would not be expected to influence an assessment of whether 

or not reinforcement is available globally. Craig and Shahan’s discussion of this 

approach was admittedly speculative and, inasmuch, is applied tentatively here. 

Whatever the underlying behavioral processes that are responsible for decreased 

target-component resistance to extinction in the Extinction condition of the present 

experiment, behavioral momentum theory as it presently is understood does not offer any 

quantitative method for describing this effect. The augmented model of extinction 

(Equation 1), for example, suggests that extinction processes should operate 

independently in multiple-schedule components (for discussion, see Nevin & Grace, 

1999, 2000). To the contrary, data from the present experiment clearly demonstrate that 

expression of extinction learning is not necessarily specific to discriminative-stimulus 

situations previously paired with extinction. Further, Equations 2 and 3 which incorporate 

potential cross-component influences of reinforcer rates failed to capture differential 

target-component persistence between conditions. Exploratory fits of Equations 4a and 
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4b to target-component extinction data demonstrate that decreased target-component 

persistence following exposure to extinction in the alternative component might be 

equally well characterized by a decrease in behavioral mass (i.e., m in Equation 4a) or an 

increase in disruption (i.e., xd in Equation 4b). Data from the present experiment are 

insufficient to distinguish between these possibilities. Future empirical and theoretical 

work is necessary to determine more precisely the mechanism(s) through which 

extinction in one stimulus situation subsequently affects resistance extinction of behavior 

in other correlated stimulus conditions. Inasmuch, the answer to the empirical question 

posed earlier, whether or not behavioral mass remains static during extinction as 

behavioral momentum theory currently asserts, remains unknown.  

An alternative approach to answering this question that might be worth pursuing 

is to individually extinguish behavior in an alternative component of a multiple schedule 

while maintaining reinforcement in the target component prior to a test where behavior in 

both components is placed on extinction. Because this procedure is more similar to 

procedures typically used to study behavioral contrast in resistance to change, it might 

produce a result that is substantially different from the present experiment and, perhaps, 

more in line with the results typical results of previous (cf. Grace et al., 2012, 2003; 

Nevin, 1992b; Nevin & Grace, 1999). As described previously, this procedure was not 

pursued here due to the potential for extinction of alternative-component responding to 

affect target-component response rates prior to extinction and thus render proportion-of-

baseline response rates unreliable. This approach, however, might at the least provide 

initial insights into the potential dynamics of response strength during extinction. 
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CHAPTER 5 

GENERAL DISCUSSION 

 
Introduction 

  

The work contained in this dissertation had two overarching focuses. First, 

Chapters 1 and 2 offered a review of behavioral momentum theory and the resistance-to-

change research that has provided its empirical foundations. These chapters were meant 

to provide a thorough background from which to evaluate the predictive and descriptive 

utility of the behavioral-momentum metaphor and to detail the conceptual underpinnings 

of the theory. Second, Chapters 3 and 4 broadly aimed to explore factors associated with 

resistance to change of operant behavior that had not been previously examined. More 

specifically, Chapter 3 described an experiment conducted to determine the effect of 

changing over time the stimulus-reinforcer relations experienced prior to disruption on 

resistance to change. The experiment detailed in Chapter 4 provided a novel examination 

of the dynamics of response elimination by manipulating reinforcer rates in one 

discriminative-stimulus situation prior to extinction of behavior maintained in a 

correlated stimulus situation. An additional goal of the experiments detailed in these 

chapters was to critically analyze how behavioral momentum theory might be used to 

describe resistance to change under these novel treatment conditions.  

As detailed above, the augmented model of extinction (see Nevin & Grace, 2000) 

suggests persistence of behavior at time t in extinction is directly related to the disruptive 

impact of suspending the response-reinforcer contingency (c) and generalization 
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decrement (dΔr). Further, persistence is inversely proportional to a mass-like quality of 

behavior engendered by the Pavlovian stimulus-reinforcer relation in a conditioning 

situation (i.e., “behavioral mass”; rb) as follows: 

log ൬
Bt

Bo
൰ =

-tሺc + d∆rሻ

rb . 
(1)

Chapter 3 asked whether and how rb in Equation 1 changes when stimulus-reinforcer 

relations alternate between multiple-schedule components prior to extinction. Chapter 4 

asked whether rb remains constant or whether it changes when reinforcer rates are 

dramatically reduced in a discriminative-stimulus situation during extinction.  

In the sections that follow, findings from these studies first will be summarized 

from the perspective of behavioral momentum theory. Based on this discussion, potential 

extensions of the momentum-based quantitative framework of resistance to change will 

be offered to describe the findings reported in Chapters 3 and 4. Practical implications 

and future areas for empirical work also will be described. 

 
Implications for Behavioral Momentum Theory  

 
 

The study reviewed in Chapter 3 was the first to examine effects of temporally 

dynamic reinforcer rates on resistance to change in multiple schedules. The principle 

finding from this experiment was that resistance to extinction of pigeons’ key pecking 

depended most heavily on stimulus-reinforcer relations that were arranged in the sessions 

just prior to extinction testing. Further, the extent to which resistance to extinction was 

related to these reinforcer rates depended on the number of sessions during which they 

were held constant. At least three sessions with the same stimulus-reinforcer relations 
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arranged in the multiple-schedule components prior to extinction testing were required 

for these relations to differentially affect resistance to change. When stimulus-reinforcer 

relations changed more frequently (i.e., every session or every two sessions), persistence 

was the same between components.  

With respect to Equation 1, assuming that persistence was governed by average 

baseline reinforcer rates would result in predictions of non-differential persistence 

between components in all condition because both multiple-schedule components were 

associated with high- and low-rate reinforcement for equal numbers of sessions per 

condition. Likewise, assuming persistence was governed by the stimulus-reinforcer rate 

relation most recently experienced prior to extinction would result in predictions of 

greater persistence in the component last associated with high-rate reinforcement 

regardless of condition. As reviewed above, neither of these possible outcomes were 

observed. Fits of Equation 1 to these data revealed that the reinforcer-rate parameter in 

the behavioral-mass term, r, changed to account for between-condition differences in 

relative resistance to extinction. Based on this finding, one may conclude that behavioral 

mass is temporally dynamic. That is, the term changes when the reinforcer rate within a 

stimulus situation changes in a manner that depends most heavily on recently experienced 

stimulus-reinforcer rate pairings. 

It was argued in Chapter 3 that changing stimulus-reinforcer relations during 

baseline should not affect the disruptive impacts of suspending the response-reinforcer 

contingency or generalization decrement during extinction, so model fits were carried out 

holding these parameters in Equation 1 (i.e., c and dΔr) constant. Data published more 
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recently, however, challenge this assumption. Using single schedules of reinforcement, 

Craig and Shahan (2016b) found that changing the rate of reinforcement for pigeons’ key 

pecking within and between sessions of baseline hasted extinction of key pecking relative 

to a condition where baseline reinforcer rates stayed the same. Further, fits of Equation 1 

to their data revealed that the disruptive impact of generalization decrement (dΔr) was 

greater following changing than following non-changing baseline reinforcement (a 

finding that is consistent with theories of extinction and choice based on statistical 

change-detection mechanisms; see, e.g., Gallistel, 2012; Gallistel et al., 2001). 

Accordingly, Equation 1 was refitted to extinction data from Chapter 3 to evaluate the 

possibility that generalization decrement contributed to the differential relative resistance 

to extinction observed between conditions. The model was fitted to data from each 

condition individual while allowing c, d, and b to vary. Values of r and r were fixed at 

30 and 120 reinforcers per hr, depending on the schedule of reinforcement in a 

component that was in effect just prior to extinction testing. Resulting parameter and R2 

estimates from these model fits may be found in Table 5.1.  

 
Table 5.1 
 
Parameter Estimates from Reanalysis of Data Reported in Chapter 3 
 

  
Parameter estimate 

──────────────────────   

Condition c d b R2 

20 Day 0.89 0.0010 0.41 .78 

5 Day 0.89 0.0010 0.36 .77 

3 Day 0.55 0.0011 0.29 .80 

2 Day 0.26 0.0016 0.18 .96 

1 Day 0.32 0.0016 0.22 .96 
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Two results from these fits are particularly noteworthy. First, estimates of d did 

not vary substantially between conditions, suggesting minimal impact on generalization 

decrement of changing stimulus-reinforcer relations prior to extinction. Indeed, Craig and 

Shahan (2016b) reported values of d that differed by several orders of magnitude between 

conditions with stable and changing reinforcer rates. Differences between these results 

and those of Craig and Shahan could have owed to any of a number of procedural 

differences between these studies (e.g., use of single vs. multiple schedules, rapidity of 

reinforcer-rate changes prior to extinction, the specific reinforcement schedules used, 

etc.). Second, estimates of c and b tended to decrease with increasing frequency of 

stimulus-reinforcer rate alternations. Mathematically, this result was due to the decreases 

in relative resistance to change across conditions. At b = 0, Equation 1 suggests no 

impact of pre-extinction reinforcer rates on resistance to extinction because r0 = 1 

regardless of the value of r. Subsequently, c decreased to describe the fact that 

responding persisted despite relatively little behavioral mass to support persistence.   

These model fits present an example of the post hoc flexibility of the momentum-

based equations to describe data that do not necessarily accord with their basic 

predictions. Without a priori or empirically driven reasons to assume systematic 

variations in parameter estimates under different treatment situations (like those provided 

in Chapter 3 and by Craig & Shahan, 2016b), interpretation of such results warrants 

caution. Atypical variation in parameter estimates might, on the one hand, direct 

researchers towards higher order dependent variables that affects response persistence 

(for discussion, see Nevin, 1984b). On the other hand, it might also represent an inherent 
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shortcoming of the momentum-based quantitative framework for understanding 

resistance to change (for related discussion, see Craig & Shahan, 2016a; Shahan & Craig, 

2017). That is, with sufficient flexibility of model parameters to vary between conditions, 

Equation 1 could describe almost any pattern of results from resistance-to-change studies 

whether or not the specific parameter estimates are related in a meaningful way to 

underlying behavioral processes. At present, there is no clear reason to believe that 

changing stimulus-reinforcer rate relations prior to extinction should impact c or b in 

Equation 1 in the manner reported in Table 5.1. Thus, assuming that stimulus-reinforcer 

relations that change over time impact behavioral mass appears to be the most 

theoretically grounded explanation for the results reported in Chapter 3. 

This interpretation of the data reported in Chapter 3 directly provided the 

theoretical rationale for the experiment described in Chapter 4. If behavioral mass 

changes when discriminative stimulus-reinforcer rate pairings change and extinction 

functionally represents an extreme decrease in reinforcer rate, it stood to reason that 

behavioral mass might change during extinction. Results from this study demonstrated 

that exposure to extinction in one stimulus situation did, indeed, affect subsequent 

extinction of behavior in a correlated stimulus situation. Specifically, off-baseline 

exposure to extinction in an alternative multiple-schedule component hastened 

subsequent elimination of pigeons’ target-component key pecking relative to conditions 

were the alternative component was associated with a constant rate of reinforcement prior 

to persistence testing. Further, off-baseline treatment contingencies in the alternative 

component affected target-component extinction only when that treatment entailed 
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extinction: Exposure to a higher rate of reinforcement in the alternative-component 

stimulus situation had no systematic impact on persistence of target-component key 

pecking.  

These findings did not conform to initial predications based on the literature 

investigating behavioral-contrast effects on resistance to change in multiple schedules 

(see Grace et al., 2012, 2003; Nevin, 1992b; Nevin & Grace, 1999). The pattern of results 

from these studies would suggest that resistance to extinction of target-component key 

pecking should have been highest following previous exposure to extinction, and lowest 

following previous exposure to high-rate reinforcement, in the alternative-component 

stimulus situation during treatment. Exploratory quantitative analyses of target-

component persistence from this experiment revealed that lower resistance to extinction 

of target-component key pecking following alternative-component extinction could be 

characterized either by assuming that behavioral mass was smaller or that disruption of 

key pecking was larger in this condition. These model fits, however, relied on 

unconstrained variation of model parameter between conditions, precluding identification 

of any precise mechanisms responsible for differential resistance to change. Thus, it 

remains unclear whether behavioral mass ought to or ought not to change during 

exposure to zero-rate reinforcement in extinction.  

Despite inability to make any firm conclusions about the mechanisms responsible 

for the effects reported in Chapter 4, it is noteworthy these findings are not well described 

by models of resistance to extinction offered by behavioral momentum theory. For 

example, the augmented model of extinction (Equation 1) asserts that extinction 
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processes affect behavior in discriminative-stimulus situations independently (see Nevin 

& Grace, 2000). Because reinforcement contingencies in the target component were 

identical between conditions, Equation 1 would predict no effect of alternative-

component reinforcer rates on persistence of responding in the target component. 

Extensions of Equation 1 that incorporate alternative-component reinforcers rates in 

determination of target-component resistance to change (i.e., Equations 2 and 3 in 

Chapter 4; Nevin, 1992b; Nevin & Grace, 1999) also failed to account for differences in 

target-component resistance to extinction between conditions: Best-fitting parameter 

estimates from these models predicted no difference in target-component persistence. 

Thus, these data further challenge the specificity of the resistance-to-change mechanisms 

offered by behavioral momentum theory.  

To conclude, data reported in Chapters 3 and 4 suggest the current behavioral-

momentum based understanding of resistance to change is incomplete. These findings 

add to a broader literature, reviewed in Chapter 2, that delimits the scope of behavioral 

momentum theory in terms of the generality of its basic predictions. It is important to 

acknowledge, however, that the limitations to the theory described in Chapter 2 and those 

described in Chapters 3 and 4 might be qualitatively different. The fundamental argument 

of momentum theory is that that behavior in the presence of a stimulus becomes stronger 

(i.e., more resistant to change) when the rate of reinforcement delivered in the presence 

of that stimulus increases. Further, effects of this stimulus-reinforcer relation on 

persistence are completely independent of operant response-reinforcer relations. Thus, 

failure of momentum theory to adequately describe response persistence in single 
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schedules (e.g., Cohen, 1998; Cohen et al., 1993), in multiple schedules with extremely 

different reinforcer rates (McLean et al., 2012), or in the face of different response-

reinforcer contingencies (e.g., K. A. Lattal, 1989; Nevin et al., 2001) calls into question 

the adequacy of the underlying analogy between Newton’s (1686) laws of motion and 

operant behavior. With few exceptions (e.g., Craig & Shahan, 2016b), resistance to 

change has never been studied following exposure to dynamic environments like those 

used in the experiments described above, so little was known about resistance to change 

under conditions associated with changing reinforcer rates prior to this work. 

Accordingly, inability to extend the specific momentum-based quantitative models of 

response persistence to data reported in Chapters 3 and 4 might indicate a lack of 

precision in these models when applied to novel treatment situations instead of a failure 

of the underlying metaphor. The section that follows will explore potential quantitative 

approaches to describe these findings in a more exact manner.  

 
Modeling the Effects of Changing Stimulus-Reinforcer  

Relations on Persistence 

 
The findings reported in Chapter 3 suggest that a quantitative method for 

incorporating stimulus-reinforcer relations that change over time into behavioral mass 

should weight recently experienced reinforcer rates such that they contribute more 

heavily to the term than reinforcer rates experienced in the distant past. Possibly the 

simplest quantitative approach to accomplishing this task would be a moving average, 

where rw = (rm + rm - 1 + ... rm— n ) / n. Here, rw is a weighted reinforcer-rate term, rm is the 
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discriminative stimulus-reinforcer relation in the most recently experienced session, and 

n is the number of sessions that are considered by the moving average. Because n is 

defined by the experimenter, this approach (and any other method that relies on a moving 

window over which to calculate an average; e.g., Harley, 1981; Killeen, 1982, 1984; 

Wynne, Staddon, & Delius, 1996) is limited in that it arbitrarily defines which 

experiences within an organism’s reinforcement history should be relevant to current 

behavior. To avoid this issue, it would be helpful to consider functions that incorporate 

larger subsets of an organism’s historical experiences into behavioral mass and that place 

particular relevance on relatively recent experiences.  

Exponential-decay functions often are used in experimental psychology to 

represent how the passage of time affects memorial and valuation processes (see, e.g., 

Killeen, 2015; White, 2001). A simple exponential-decay function may be expressed as: 

 wx = e-kx , (2)

where the parameter k modifies the steepness of the function’s decay and x represents 

time (measured in sessions for present purposes). This function could be used to reflect 

how behavioral mass changes when stimulus-reinforcer rate relations change across time 

by assuming that wx is a weighting factor and x is the number of sessions that have passed 

since the to-be-weighted experience. Figure 5.1 shows exponential weighting functions 

with k = 0.25, k = 0.5, and k = 1 distributed across 10 sessions. Here, “10” on the x-axis is 

an experience that happened 10 sessions ago and “1” is the most recently experienced 
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Figure 5.1. Potential exponential weighting functions generated using Equation 2 with k 
= 0.25, k = 0.50, and k = 1.00. 
 

session. These factors then could be multiplied by the reinforcer rates experienced in their 

corresponding sessions, and these products could be summed across the series to compute 

behavioral mass as follows: 

rw = ෍wiri

n

i = 1

. 
(3)

Though an exponential-weighting function distributes more weight to recently 

experienced reinforcer rates, this function has one important limitation. If, for example, 

60 reinforcers per hr were delivered in each of the 10 sessions for which weights are 

displayed in Figure 5.1, the output from Equation 3 using the parameter values shown in 

the figure would differ from the veridical reinforcer rate (i.e., rw = 193.91, 91.87 and 

34.92 reinforcer per hr for k = 0.25, 0.50, and 1.00, respectively). There are no practical 

or conceptual reasons to believe organisms systematically overestimate or underestimate 
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the rate of reinforcement delivered in the presence of discriminative stimuli. For the 

output of Equation 3 to match veridical reinforcer rates in this example, it is necessary 

that the weights derived from Equation 2 sum to unity—this condition may be met with k 

ൎ 0.69. The specific limits to k required to produce weights that sum to 1, however, will 

depend on the number of sessions being weighted with larger values required for a larger 

number of sessions. The dependency between k and experiment duration potentially 

limits the utility of Equation 2 as a descriptor of how past experiences that are temporally 

separated influence behavioral mass. 

J. A. Devenport and Devenport (1993) introduced a model to describe the 

dynamics of foraging behavior in changing environments that avoids this issue. Their 

model, referred to as the Temporal Weighting Rule (TWR), is parameter-free and 

assumes only that recent experiences contribute more to an organism’s estimate of the 

overall quality of a patch than do temporally distant experiences. According to the TWR, 

the weight assigned to a previous experience (wx) is determined by the relative recency 

with which that experience occurred as follows: 

wx =
1

txൗ

∑ 1
tiൗ

n
i = 1

. 
(4)

Here, the recency of a given experience ( ) is 1 divided by the number of temporal 

intervals (e.g., minutes, hours, days; for present purposes, sessions) that have passed 

since that experience. This recency then is divided by the sum of the recencies associated 

with all previous experiences with a particular patch, such that all weights sum to 1 

regardless of the number of time points being weighted. According to Equation 4, 

1/ tx
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weights decrease hyperbolically as patch experiences move more distantly into the past, 

and the amount of weight distributed to recent experiences depends on the length of an 

organism’s history of reinforcement with a particular foraging situation. Figure 5.2 shows  

weighting functions derived from reinforcement histories 5-, 15-, and 30-sessions long to 

illustrate these properties. Using Equation 4 to calculate wx, rw could be determined using 

Equation 3. 

Equation 4 has been applied successfully to describe the choice behavior of rats 

(L. D. Devenport et al., 1997), horses (J. A. Devenport et al., 2005) dogs (J. A. Devenport 

& Devenport, 1993), squirrels, and chipmunks (L. D. Devenport & Devenport, 1994; 

Winterrowd & Devenport, 2004) in foraging situations where patch qualities were varied 

systematically across time. In the operant laboratory, Equation 4 also has been used to 

describe the choice behavior of pigeons responding under dynamic concurrent-schedule  

 

Figure 5.2. Weighting functions generated by the Temporal Weighting Rule (Equation 5) 
for experiences spread across 5, 15, and 30 sessions. 
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procedures (see Mazur, 1995, 1996). Thus, it is reasonable to believe that the TWR 

captures some underlying behavioral process related to organisms’ valuation of response 

alternatives over time. 

Because the TWR is a parameter-free model, Shahan and Craig (2017) suggested 

this equation might not be sufficiently flexible to describe individual or species 

differences in how organisms weight previous experiences based on their relative 

recencies. These authors suggested a scaled version of Equation 4 could be used to 

describe these potential differences in weighting that appears as follows:  

wx = 
1

txsൗ

∑ 1
tisൗn

i = 1

, 
(5)

where s determines the proportion of weight that is given to past experiences. When s is 

greater than 1, more weight is given to recent experiences and less to more temporally 

distant experiences. The opposite is true when s is less than 1. That is, weight is 

distributed more evenly across experiences being weighted, with weights being 

distributed equally to each previous experience when s = 0.  

In sum, Equation 5 offers the following characteristics that suggest it would be an 

appropriate candidate function for representing how stimulus-reinforcer relations that are 

experienced across time contribute to behavioral mass. First, it asserts that all previously 

experienced conditions of reinforcement that are associated with a particular 

discriminative stimulus contribute to behavioral mass. Second, the weights determined by 

Equation 5 when applied to a series of any length sum to 1. The equation therefore avoids 

issues related to over- or underestimation of the reinforcer rate associated with a 
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discriminative stimulus that were present with Equation 2. Finally, unlike Equation 4, 

Equation 5 may account for individual or species differences in how strongly temporally 

distant experiences influence organisms’ behavior.  

 Several different model fits were conducted to determine if including Equation 5 

into Equation 1 increases the ability of the model to account for resistance-to-change data 

under conditions with changing stimulus-reinforcer relations during baseline. First, 

Equation 1 was fitted to log-transformed proportion-of-baseline response rates from the 

20-, 5-, 3-, 2-, and 1-Day conditions from the experiment reported in Chapter 3 

simultaneously. That is, values of c, d, and b were shared between conditions. Further, 

the r and Δr terms were fixed at values of 120 and 30 reinforcers per hr, depending on the 

reinforcer rate most recently associated with a multiple-schedule component prior to 

extinction. This fit was conducted to provide a point of comparison for the remaining 

model fits that incorporate Equation 5 and will be referred to hereafter as the “Standard” 

model.  

Whether or not behavioral mass changes during extinction of operant behavior 

remains equivocal based on the results from the experiment reported in Chapter 4. Thus, 

Equation 5 was applied in two ways to describe these data. The first application operated 

under the assumption that behavioral mass does not change during extinction— Equation 

5 (with s free to vary here and below) was used to determine rw for both multiple-

schedule components such that, during extinction, these terms remained the same. This 

approach will be referred to as the “Weighted-Baseline” model.  

The second application was conducted under the assumption that behavioral mass does 
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change during extinction. Experiences continued to be weighted during extinction, 

meaning that zero-rate reinforcement contributed to rw in both multiple-schedule 

components as extinction progressed. Thus, rw decreased during extinction. As reviewed 

previously, Equation 1 currently describes decreases in behavior during extinction by 

assuming that disruptive factors grow with time in extinction, t. If the behavioral-mass 

term in the denominator of the equation decreases, these two assumption might be 

redundant. Thus, in the case of the second application, fits were conducted with and 

without t in the numerator of the equation (referred to hereafter as the “Weighted-

Extinction [t]” and “Weighted-Extinction [no t]” models, respectively). Because rw could 

be taken to represents organisms’ estimates of expected reinforcer rates within a 

discriminative context, rw terms also were incorporated into generalization decrement 

(i.e., dΔr in the numerator of Equation 1) such that Δrw replaced Δr in both schedule 

components for fits of the Weighted Baseline, Weighted-Extinction (t), and Weighted-

Extinction (no t) models. Results from these model fits may be found in Figures 5.3 

through 5.6 in the following order: standard, weighted baseline, weighted extinction (t), 

and weighted extinction (no t). Parameter estimates derived from these fits may be found 

in Table 5.2. 

The Standard model provided a relatively poor description of these data (R2 = .77; 

see Figure 5.3). As one would expect, because the same r and Δr values were used in 

each condition, model predictions were identical across conditions. The Weighted-

Baseline model accounted for a slightly larger proportion of variance in obtained data 

than did fits of the Standard model (i.e., R2 = .79). This model predicted decreasing 
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Figure 5.3. Fits of the standard model (Equation 1) of extinction to data reported in 
Chapter 3. 
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Figure 5.4. Fits of the weighted-baseline model (Equation 1 with rw, where this term did 
not change during extinction) to data reported in Chapter 3. 
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Figure 5.5. Fits of the weighted-extinction (t) model (Equation 1 with rw, where this term 
changed during extinction, and t included in the numerator) to data reported in Chapter 3.  
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Figure 5.6. Fits of the weighted-extinction (no t) model (Equation 1 with rw, where this 
term changed during extinction, and t omitted from the numerator) to data reported in 
Chapter 3. 
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Table 5.2 
 
Parameter Estimates, R2, and AICc Values from Fits of Four Models to Data Reported in 
Chapter 3 
 

  
Parameter estimates 

────────────────────────    

Model c d b s R2 AICc 

Standard 0.50 0.001 0.27 - .77 -263.05 

Weighted baseline 3.41 0.000 0.67 0.76 .79 -267.82 

Weighted extinction (t) 0.88 0.000 0.40 0.78 .75 -255.40 

Weighted extinction (no t) 0.53 0.001 0.33 3.74 .82 -277.55 

Note. Values of c, b, and s are rounded to the nearest hundredth of a whole number. Values of d are 
rounded to the nearest thousandth. AICc = Akaike information criterion with correction for small sample 
sizes. 
 
 
 
relative resistance to extinction as the frequency of stimulus-reinforcer rate alternations 

increased (see Figure 5.4). This was true because, as the frequency with which these 

relations alternated increased, rw became more similar between multiple-schedule 

components. A similar pattern was obtained from the fit of the Weighted-Extinction (t) 

model (see Figure 5.5). That is, predicted relative resistance to extinction tended to 

decrease as stimulus-reinforcer rate relations alternated more frequently across 

conditions. It is noteworthy, however, that this model predicted relatively modest 

differences in resistance to extinction between components in every condition, even 

though persistence differed substantially between components in the 20-, 5-, and 3-Day 

conditions. In addition, this model accounted for the lowest proportion of variance in the 

data of any of the four fitted models (i.e., R2 = .75). Finally, the Weighted-Extinction (no 

t) model predicted diminished differences in relative resistance to extinction across  

conditions as in the previous two model fits, and the size of the predicted difference in 
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persistence between components was roughly proportional to obtained differences in 

persistence between conditions (see Figure 5.6). Of the present model fits, those of the 

Weighted-Extinction (no t) model accounted for the largest proportion of variance in 

obtained extinction data (R2 = .82).  

Because the standard model has one fewer parameter (n = 3) than the other 

models tested here (n = 4 each), comparisons between models based on R2 are not entirely 

appropriate. Accordingly, Akaike information criteria with corrections for small samples 

(AICc; see Hu, 2007) were applied to each model fit to determine the relative quality of 

these fits by weighing the goodness of each individual fit against the corresponding 

model’s complexity. Smaller values of AICc indicate higher quality models, with 

differences between values greater than 6 indicating strong support for the model with the 

smaller value and differences greater than 10 indicating almost no support for the model 

with the larger value (see Akaike, 1973; Bai, Cowie, & Podlesnik, 2017; Navakatikyan, 

Murrell, Bensemann, Davison, & Elliffe, 2013). Values of AICc may be found in Table 

5.2. According to this method of model comparison, the model ranking (from highest to 

lowest quality) was: weighted extinction (no t), weighted baseline, standard, and 

weighted extinction (t). Further, AICc associated with the weighted-extinction (no t) 

model was at least 10 units smaller than for any other model fit except for the weighted-

baseline model (ΔAICc = 9.73), providing strong support for superior capability of the 

weighted-extinction (no t) model to account for the present data despite its complexity. 

Based on the model fits shown in Figures 5.3 through 5.6, and on values of AICc 

derived from these fits, it is clear that the behavioral-momentum based model of 
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extinction as it currently stands (i.e., the Standard model) is not adequate to describe 

effects of changing stimulus-reinforcer rate relations on response persistence. 

Incorporating a temporal-weighting based approach to calculating behavioral mass into 

Nevin and Grace’s (2000) augmented model of extinction provides one promising 

method for extending the behavioral-momentum metaphor to understand these effects. 

According to the present model fits, two methods for incorporating Equation 5 into 

Equation 1 are particularly promising. Weighting reinforcer rates experienced across 

baseline to determine a behavioral-mass term that remains the same during extinction 

(i.e., the Weighted-Baseline model) accounted well for the ordinal differences in 

persistence between components and across conditions. Second, distributing weight to 

experiences with zero-rate reinforcement during extinction also produced a reasonable 

description of the present data, but only when the t parameter was omitted from the 

numerator of Equation 1 (i.e., the weighted-extinction [no t] model).  

The findings reported in Chapter 4 suggest that learning factors associated with 

reductions in behavior during extinction do not necessarily operate in a manner that is 

context dependent. Put another way, extinction learning that occurs in one context 

appears to generalize to other correlated contexts. Though the temporal-weighting 

approach offered above described well the effects of within-component variations in 

reinforcer rates on resistance to extinction, it is unclear how this approach could be 

extended to account for effects of the interaction between reinforcer rates in different 

schedule components on resistance to extinction. Further, at present it is unclear whether 

generalization of extinction between alternative and target multiple-schedule components 
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resulted from increased disruptive factors or decreased response-strengthening factors. 

Thus, a temporal-weighting approach to modeling data from the experiment reported in 

Chapter 4 will not be pursued here. Instead, two potential models of extinction 

generalization that are based on the pre-existing quantitative architecture of momentum 

theory will be developed below. 

First, to provide a point of comparison for potential model extensions, Equation 1 

was fitted to log-transformed proportion-of-baseline response rates from the Control-1, 

High-Rate, and Extinction conditions of this experiment simultaneously. In this fit, c, d, 

and b were allowed to vary, and r and Δr were fixed at 60 reinforcers per hr (i.e., the rate 

of reinforcement delivered in the target-component stimulus situation during baseline in 

Chapter 4). Model predictions plotted with obtained mean log proportion-of-baseline 

response rates from each condition are shown in the top panel of Figure 5.7. Estimates of 

c, d, and b were 1.01, .001, and 0.49, respectively, and Equation 1 accounted for 

approximately 86% of the variance in extinction data. This equation, however, predicted 

identical extinction functions in each condition.  

The first approach to modeling these data explored here assumed that previous 

exposure to extinction in the presence of stimuli correlated with the alternative multiple-

schedule component subsequently affected behavioral mass of target-component key 

pecking. More specifically, it is possible that exposure to extinction in the alternative 

component reduced sensitivity of pigeons’ key pecking to target-component reinforcer 

rates that were experienced during baseline (i.e., b in the denominator of Equation 1) –

smaller values of b would result in less behavioral mass and thus and less resistance to  
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Figure 5.7. Fits of Equation 1 (top panel), Equation 1 with separate b parameters for each 
condition (center panel), and Equation 6 with separate ߬ parameters for each condition 
(bottom panel) to target-component extinction data reported in Chapter 4. 
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extinction. To determine whether variation in b could account for differences in target-

component resistance to extinction between conditions of the experiment reported in 

Chapter 4, Equation 1 was fitted to extinction data across conditions of this experiment 

simultaneously. Because fitted estimates of c, d, and b deviated only slightly from the 

values that these parameters typically assume (i.e., c = 1, d = 0.001, and b = 0.5; see 

Craig & Shahan, 2016b; Nevin & Grace, 2000) for the initial fit of Equation 1, the c and 

d parameters were fixed at these typical values for the present fit. Further, r and Δr 

assumed values of 60 reinforcers per hr, and the b parameter was allowed to vary 

between conditions. 

Model predictions, plotted along with log proportion-of-baseline response rates, 

are shown in the middle panel of Figure 5.7. Estimates of b for the Control, High-Rate, 

and Extinction conditions were 0.53, 0.52, and 0.43, respectively, indicating comparable 

sensitivity of pigeons’ key pecking to baseline reinforcer rates in the Control and High-

Rate conditions with lower sensitivity in the Extinction condition. Allowing b to vary 

between conditions while holding all other parameters in the model constant accounted 

for approximately 96% of the variance in extinction performance between conditions. 

Importantly, affording variability in sensitivity to baseline reinforcer rates between  

conditions allowed Equation 1 to accurately predicted lower resistance to extinction of 

target-component key pecking in the Extinction condition than in the other conditions. 

Some evidence from the choice literature provides support for this method for 

characterizing differential resistance to extinction of target-component key pecking 

across conditions of this experiment. For example, Davison and Jones (1995) 
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demonstrated that pigeons’ behavior in concurrent schedules tends to be allocated 

between response alternatives in a manner that is roughly proportional to the reinforcer 

rates obtained from those alternatives when intermediate reinforcer-rate ratios (e.g., less 

than 10:1 or greater than 1:10) are arranged. Under more extreme reinforcer-rate ratios, 

however, more behavior tends to be allocated to alternatives associated with low-rate 

reinforcement than anticipated by the generalized matching law (see Baum, 1974). That 

is, as the rate of reinforcement delivered by one alternative decreases to near zero, 

pigeons’ behavior becomes less sensitive to relative reinforcer rates (see also Davison & 

Jones, 1998, who demonstrated similar effects under concurrent VI extinction schedules). 

Thus, to the extent that sensitivity to reinforcer rates in choice situations is similar to 

sensitivity to reinforcer rates in multiple-schedule components, it is reasonable to assert 

that exposure to extinction in an alternative multiple-schedule component might decrease 

sensitivity of behavior in a target component to baseline reinforcer rates. 

Another straightforward approach to modeling generalization of extinction 

between the alternative and target components in this experiment is to assume that, when 

extinction initially was introduced in the alternative-component stimulus situation during 

the Phase-2 treatment, time in extinction began to accumulate in the target component. 

Put another way, generalization of extinction might have resulted from increased 

disruption of target-component key pecking despite lack of experience with extinction in 

that component. Quantitatively, generalization of extinction in this manner may be 

expressed by multiplying the t parameter in Equation 1 by a scaling factor, ߬, as follows 

(see Podlesnik & Shahan, 2010, for a similar approach to modeling contextual control of 
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operant extinction): 

log ൬
Bt

Bo
൰  = 

-ሺτtሻሺc + d∆rሻ

rb  . 
(6)

When ߬ = 1, Equation 6 is the same as Equation 1. Larger values of ߬ indicate greater 

disruption by extinction due to generalization of previous extinction experiences to the 

present stimulus situation. Equation 6 was fitted to obtained target-component extinction 

data from Chapter 4 to determine whether the model provided a satisfactory description 

of between-condition differences in resistance to extinction of target-component key 

pecking. For these fits, c, d, and b were held constant at values of 1, 0.001, and 0.5, 

respectively, and values of ߬	were allowed to vary between conditions. 

Predictions of Equation 6 plotted along with obtained log proportion-of-baseline 

response rates from each condition of the experiment may be found in the bottom panel 

of Figure 5.7. Overall, Equation 6 accounted for approximately 96% of the variance in 

extinction functions between conditions. For the Control, High-Rate, and Extinction 

conditions, respectively, estimates of ߬ were 0.87, 0.91, and 1.32. These estimates were 

roughly equal and less than 1 for the Control and High-Rate conditions, indicating 

diminished suppressive effects of time on extinction performance. A clear conceptual 

explanation for these estimates is not immediately apparent. Indeed, because no 

alternative-component reinforcer-rate change occurred in the Control condition, and 

extinction performance was statistically the same between the Control and High-Rate 

conditions, one would expect ߬	to approximately equal 1. It is possible that decreases in ߬ 

occurred for these conditions because all other parameters within the model were fixed 

for demonstrative purposes. Additional flexibility of other model parameters to vary 
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could result in equally accurate fits with ߬ = 1. Most importantly, however, the passage of 

time contributed roughly 43% more to disruption of target-component key pecking in the 

Extinction condition than in the other conditions. As a result, the model accurately 

described between-condition differences in resistance to extinction.  

Because each fitted model shown in Figure 5.7 included three free parameters 

(i.e., c, d, and b in the top panel; three b parameters in the center panel; and three ߬ 

parameters in the bottom panel), relative goodness of fit may be judged based on R2. The 

model fits shown in the center and bottom panels of the figure accounted for a 

substantially larger proportion of variance than the fit shown in the top panel (i.e., R2 = 

.96 vs. R2 = .86). Thus, Equation 6, and Equation 1 with variation in sensitivity to 

baseline reinforcer rates between conditions, most accurately described extinction data 

from Chapter 4. Moreover, the novel model applications explored here predicted identical 

extinction functions. These modeling efforts corroborate the conclusions drawn from the 

exploratory model fits included in Chapter 4. That is, principled changes in behavioral 

mass account equally well for the generalization-of-extinction effects observed in this 

experiment as changes in disruption. Relatively speaking, though, the present models 

come closer to identifying potential mechanisms of behavior change in this experiment.  

To summarize, the modeling approaches detailed above offer potential 

behavioral-momentum based methods for describing the effects of reinforcer rates that 

change over time on persistence of operant behavior. Weighting previously experienced 

stimulus-reinforcer relations in such a way that recent experiences more heavily 

influenced behavioral mass than temporally distant experiences accounted well for the 
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findings reported in Chapter 3. Further, it was possible to describe generalization of 

extinction between multiple-schedule components observed in Chapter 4 by assuming 

that previous exposure to extinction either decreased pigeons’ sensitivity to baseline 

reinforcer rates or increased the suppressive effects of time on extinction performance. 

These models extend momentum theory by highlighting potential behavioral mechanisms 

capable of describing resistance to change in dynamic environments.  

 
Practical Applications 

 
 

  In addition to any theoretical implications, results from the studies described in 

Chapters 3 and 4 might also have direct applications outside of the laboratory. As 

described in the Discussion section of Chapter 3, persistence of human behavior might 

depend only on recently experienced stimulus-reinforcer relations. Thus, acutely 

changing the rate of reinforcement for a behavior likely to face disruption in the future 

could strongly influence the extent to which behavior persists. This insight could 

introduce a novel technology for manipulating response persistence to achieve 

therapeutic outcomes. For example, briefly increasing reinforcer rates could increase the 

likelihood that desirable behavior would persist if disrupted. Similarly, briefly decreasing 

the frequency of reinforcer deliveries for a problematic behavior prior to treatment could 

decrease the propensity of that behavior to persist in the face of treatment contingencies.  

Tentative support for this conjecture may be found in the literature examining 

resurgence of extinguished behavior following loss of alternative reinforcement. 

Delivering alternative reinforcers during extinction of target behavior has been shown to 
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increase the likelihood that behavior will relapse once these reinforcers ultimately are 

suspended (e.g., Bouton & Trask, 2016; Craig & Shahan, 2016a; Leitenberg et al., 1975). 

The extensions of behavioral momentum theory to relapse (as described in Chapter 2; see 

also Nevin & Shahan, 2011; Podlesnik & Shahan, 2009, 2010; Shahan & Sweeney, 2011) 

suggests that alternative reinforcers increase resurgence by adding to the mass of target 

behavior because they are delivered in the presence of stimuli previously associated with 

reinforcement of that behavior. Gradually reducing the rate of alternative reinforcement 

during target-response extinction results in less resurgence when alternative 

reinforcement subsequently is discontinued than consistent delivery of high-rate 

alternative reinforcement before relapse testing (Schepers & Bouton, 2015; Sweeney & 

Shahan, 2013; Winterbauer & Bouton, 2012). From the current perspective, “thinning” 

alternative-reinforcer rates in this manner might reduce resurgence by weakening the 

Pavlovian stimulus-reinforcer relation that contributes to the behavioral mass of target 

behavior. 

 Results reported in Chapter 4 provided evidence that extinction of behavior in one 

stimulus situation can hasten subsequent elimination of behavior during extinction in 

other correlated stimulus situations. It is not difficult to imagine practical situations in 

which problematic human behavior might occur in several correlated stimulus contexts. 

For example, a participant might engage in academically disruptive behavior in different 

classrooms, aggress towards others in his or her home or at school, etc. It is possible that 

reducing problem behavior by means of extinction in one of these contexts could produce 

therapeutically relevant reductions in problem behavior in other contexts if extinction 
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subsequently was introduced.  

An important limitation to this potential application, however, is that extinction of 

problem behavior alone often is associated with undesirable and potentially dangerous 

collateral outcomes. For example, extinction might result in an initial escalation in the 

intensity or frequency of problem behavior or engagement in other topographies of 

problem behavior that are members of the same functional response class (see Lerman et 

al., 1999; Lieving, Hagopian, Long, & O’Connor, 2004; Petscher & Bailey, 2008). For 

these reasons, alternative-reinforcement based treatments often are used instead of or in 

conjunction with extinction to eliminate problem behavior in clinical settings. Thus, the 

practical utility of this finding in terms of treatment for problem behavior in clinical 

populations is debatable. 

A final potential implication of the present work for practice is related to the 

inherent translational utility of the quantitative framework for understanding resistance to 

change offered by behavioral momentum theory. These models have been used to inform 

clinical applications and to identify relevant treatment factors that affect persistence of 

human behavior during and after behavioral interventions (e.g., Fuhrman et al., 2016; 

Mace et al., 2010; Nevin et al., 2016; Nevin & Shahan, 2011; Pritchard et al., 2014; 

Sweeney et al., 2014; Wacker et al., 2011). Unlike in controlled laboratory settings, 

however, reinforcer rates for humans’ operant behavior are likely to vary across time to 

considerable degrees in naturalistic settings. The extensions of the momentum-based 

models described above might provide insights into the way such dynamic reinforcement 

histories ultimately affect response persistence. Inasmuch, these models could contribute 
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more precise tools for predicting and manipulating persistence to produce therapeutically 

relevant behavior change. 

 
Future Directions 

  
 
 The major conclusion from the experiment presented in Chapter 3 was that 

behavioral mass changes in the face of changing stimulus-reinforcer relations. This 

argument followed from differences in relative resistance to extinction produced by 

conditions where discriminative stimulus-reinforcer rate relations within the components 

of a multiple schedule changed after different number of sessions during baseline. As 

described in Chapters 1 and 2, behavioral mass is thought to promote persistence of 

behavior in the face of disruption, in general, and not only in the face of extinction 

contingencies. One important shortcoming of this work, then, is that effects of changing 

stimulus-reinforcer relations on resistance to change were only examined in extinction. 

As a result, at present it is not clear whether reinforcer rates that change over time affect 

resistance to change in a manner that is general across types of disruptors.  

It would be important to establish whether or not changing stimulus-reinforcer 

relations have similar effects on resistance to change in the face of other commonly 

investigated behavioral disruptors (e.g., reinforcer satiation or presenting free reinforcers 

during inter-component intervals). If, on the one hand, the effects of stimulus-reinforcer 

relations that change over time on response persistence prove to be general across 

disruptors, stronger support for the notion that behavioral mass changes in the face of 

changing stimulus-reinforcer relations would be provided. On the other hand, failure to 
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systematically replicate these results with other disruptors would suggest that other 

behavioral mechanisms that are specific to extinction performance contributed to the 

results reported in Chapter 3. 

 Another potential area for empirical work might focus on determining relevant 

environmental factors that affect the relation between stimulus-reinforcer contingencies 

that change over time and response persistence. For example, if reinforcer-rate changes 

are relatively large (i.e., greater than the four-fold differences used Chapter 3), behavioral 

mass and resistance to change might be affected by these changes more quickly. 

Likewise, if reinforcer-rate changes are relatively small, mass might take a longer period 

of time to adjust following reinforcer-rate changes. These possibilities seem reasonable 

given than changes in reinforcer rates that are relatively large tend to affect behavior 

more immediately than changes in reinforcer rates that are relatively small (see Gallistel, 

2012; Gallistel et al., 2001). Researchers might also aim to determine how changes to 

dimensions of reinforcement other than rate that have been shown to affect resistance to 

change (e.g., magnitude, delay, response-reinforcer contingency; see Craig, Browning, 

Nall, Marshall, & Shahan, 2017; Nevin, 1974; Nevin et al., 2001; Podlesnik & Shahan, 

2008) affect persistence over time. Such work would help to determine the overall 

generality of these findings. 

 The experiment described in Chapter 4 also leaves open several areas for future 

research. First among these is more thorough analysis of the possible temporal dynamics 

of response strength during extinction. As reviewed above, this experiment failed to 

provide support for or to disconfirm the notion that behavioral mass decreases during 
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extinction. An alternative method that might offer first step towards answering this 

question was described in the Discussion section of this chapter. Briefly, the reinforcer 

rate associated with the alternative component of a multiple schedule could be 

manipulated during baseline instead of in a separate treatment condition prior to 

extinction testing. This type of procedure might allow for more specific interpretation of 

obtained target-component persistence in terms of the literature investigating behavioral-

contrast effects on resistance to change (see Grace et al., 2012, 2003; Nevin, 1992b; 

Nevin & Grace, 1999). Regardless of the specific results generated from this procedure, 

they would be helpful in delimiting the potential behavioral processes responsible for the 

findings reported in Chapter 4. 

Further, it is unknown at present if experience with extinction contingencies in the 

presence of stimuli associated with an alternative multiple-schedule component would 

affect persistence of target-component responding in the face of other forms of 

disruption. Conducting similar procedures with different disruptors would not only help 

to determine the generality of the effects reported in Chapter 4 but might also inform 

efforts to incorporate generalization-of-extinction effects into the behavioral-momentum 

based quantitative framework. For example, it was suggested earlier in the General 

Discussion that such generalization effects might occur because the disruptive impact of 

time (t in Equation 1) on target-component extinction performance becomes inflated. If 

exposure to extinction in an alternative stimulus situation subsequently impacted 

resistance to, say, prefeeding in a target stimulus situation, this approach to quantitatively 

modeling generalization of extinction would seem inappropriate: As reviewed in Chapter 
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1 (see also Nevin & Grace, 2000; Nevin & Shahan, 2011), the passage of time is thought 

not to influence resistance to change in the face of disruptors other than extinction. 

  Finally, translational work will be critical to determining the extent to which the 

findings reported in Chapters 3 and 4 may be generalized to human participants. Such 

work would also help to determine the clinical merit of the practical applications of these 

findings detailed in the previous section. It currently is unclear if the timeframe over 

which stimulus-reinforcer relations that change over time affect persistence is general 

across species, but relevant cross-species differences suggest this is likely not the case. 

For example, humans’ temporal horizons (i.e., the amount of time between a behaviorally 

relevant event and the present over which that event may influence current behavior; see 

Bickel, Yi, Kowal, & Gatchalian, 2008; Jones, Landers, Yi, & Bickel, 2009) for inter-

temporal decision making tend to be much longer than those of non-human animals (see 

Bickel & Marsch, 2000). Further, organism’s perception of time and use of temporal 

information have been linked to body size, metabolic rate, and other factors that are 

notably dissimilar between humans and laboratory animals (see Healy, McNally, Ruxton, 

Cooper, & Jackson, 2013). Thus, a certain degree of caution may be warranted if 

clinicians or applied researchers aim to directly translate the specific procedures from the 

present experiments into practice. Though it is reasonable to believe that the same factors 

govern resistance to change of human and non-human animal behavior, it is also 

reasonable to expect that the specific time course over which stimulus-reinforcer relations 

come to affect resistance to change of human behavior could differ substantially from the 

time courses determined in the present series of experiments with pigeon subjects. 
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Conclusions 
  

The empirical work presented in this dissertation focused on extending the study 

of resistance to change to situations with changing reinforcer rates. Chapter 3 described 

an experiment that aimed to determine how stimulus-reinforcer relations that change 

across time prior to disruption affect resistance to change, and the study reported in 

Chapter 4 examined the influence of changing stimulus-reinforcer relations in one 

context on persistence in another correlated context. These experiments provided novel 

insights into the temporal dynamics of resistance to change. They also challenged the 

current understanding of resistance-to-change mechanisms offered by behavioral 

momentum theory. As it currently is understood, momentum theory could not account for 

the findings in either of these experiments. These interpretive complications might owe in 

part to the simplicity of its analogy between operant behavior and Newtonian mechanics. 

Behavioral momentum theory is based on Newton’s (1686) second law of motion: 

∆v = 
-f

m
 . 

(7)

That is, when acted on by an outside force that opposes motion (f), the change in velocity 

(∆v) of a moving object is directly proportional to the magnitude of the force applied and 

inversely related to the physical mass (m) of the object. In this simple form, Equation 7 

describes changes in objects’ velocities under a restricted set of circumstances. For 

example, Equation 7 is not well suited for describing dynamic changes in velocity for 

objects that become more or less massive with time (e.g., Lichtenegger, 1984; Plastino & 

Muzzio, 1992). Under these “variable-mass systems,” it is necessary to mathematically 
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characterize changes in physical mass over time to accurately determine point estimates 

of an object’s momentum. Further, the magnitudes of forces that act on objects are rarely 

stable in the real world, requiring estimation of net forces over discrete units of time to 

infer momentum (see Semat & Katz, 1958).  

The augmented model of extinction (i.e., Equation 1) and the other simple 

behavioral-momentum models reviewed in Chapter 1 appear to be similarly constrained 

to description of resistance to change under specific circumstances. Put another way, the 

experiments described in this dissertation demonstrate that behavioral equivalents of 

variable-mass and variable-force systems might exist in the context of resistance to 

change. In the same way that Equation 7 alone is not adequate to describe more complex 

mechanical situations in the physical world, the momentum-based equations of resistance 

to change might not be adequate to describe more complex determiners of resistance to 

change in the behavioral world. The model-building efforts described above represent an 

initial attempt to extend the momentum-based quantitative framework to these situations 

more fully.  

In reference to statistical modeling of real-world phenomena, George Box (1979) 

famously observed that, “... all models are wrong but some are useful” (pp. 202). It is 

difficult to argue that behavioral momentum theory is anything less than useful. It has 

provided the basis for mathematical models of several behavioral outcomes (see Nevin, 

Davison, & Shahan, 2005; Nevin & Grace, 2000; Nevin & Shahan, 2011; Odum et al., 

2005; Podlesnik & Shahan, 2010; Shahan & Sweeney, 2011). Scores of empirical studies 

have been conducted to test the predictions of momentum theory in the contexts of basic, 
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translational, and applied research. Further, as described previously, it has informed 

translational efforts aimed at increasing the immediate and long-term efficacy of 

behavioral interventions in human populations. However imprecise it might be under 

specific circumstances, then, behavioral momentum theory has been (and will likely 

continue to be) both conceptually and empirically generative. 

 It is well known today, however, that classical mechanics offers only an 

approximation to the physical laws of nature. Applications of classical mechanics are 

restricted to the macroscopic world, and quantum mechanics are used to describe 

physical systems on a microscopic level (for discussion, see Acedo, 2014; Sebens, 2015). 

Quantum mechanics, in turn, may be used to approximately describe many phenomena in 

the macroscopic world usually characterized by classical mechanics (though see, e.g., 

Allori & Zanghì, 2009, for discussion of the uncertain nature of classical limits in 

quantum mechanics). To the extent that governance of operant behavior may be related to 

governance of the physical world by analogy, it is possible that behavioral momentum 

theory at present offers only an approximate understanding of the behavioral processes 

that cause behavior to persist. Indeed, the challenges to behavioral momentum theory 

described in Chapter 2 call into question the generality of the fundamental mechanisms of 

response persistence offered by the theory (for similar discussion, see also Craig & 

Shahan, 2016a; Nevin et al., 2017; Shahan & Craig, 2017). Thus, pursuit of alternative 

conceptual analyses of persistence may be warranted, and the litmus test for any such 

analysis would be description of the well-documented relation between discriminative 

stimulus-reinforcer contingencies and resistance to change in multiple schedules.  
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In pursuing that goal, however, abandoning the insights into response persistence 

offered by behavioral momentum theory entirely might be a case of throwing the baby 

out with the bathwater. Despite its shortcomings, classical mechanics played a critical 

role in establishing our current understanding of how the physical world works. Only by 

identifying shortcomings of these basic tenets were researchers and theoreticians able to 

develop more general physical principles. Likewise, behavioral momentum theory has 

played a critical role in leading researchers to discover variables that affect persistence of 

operant behavior. Identifying higher-order dependent variables that affect response 

persistence, like those uncovered in the present experiments, could continue to shape our 

understanding of resistance-to-change mechanisms and operant behavior more generally. 
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Figure F.1. Relative resistance to extinction between conditions reported in Chapter 4. 
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