
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2017

Object Recognition in Videos Utilizing Hierarchical and Temporal Object Recognition in Videos Utilizing Hierarchical and Temporal

Objectness with Deep Neural Networks Objectness with Deep Neural Networks

Liang Peng
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Peng, Liang, "Object Recognition in Videos Utilizing Hierarchical and Temporal Objectness with Deep
Neural Networks" (2017). All Graduate Theses and Dissertations. 6531.
https://digitalcommons.usu.edu/etd/6531

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F6531&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F6531&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/6531?utm_source=digitalcommons.usu.edu%2Fetd%2F6531&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

OBJECT RECOGNITION IN VIDEOS UTILIZING HIERARCHICAL AND

TEMPORAL OBJECTNESS WITH DEEP NEURAL NETWORKS

by

Liang Peng

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Computer Science

Approved:

Xiaojun Qi, Ph.D. Haitao Wang, Ph.D.
Major Professor Committee Member

Vicki Allan, Ph.D. Stephen Clyde, Ph.D.
Committee Member Committee Member

Adele Cutler, Ph.D. Mark R. McLellan, Ph.D.
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2017

ii

Copyright c© Liang Peng 2017

All Rights Reserved

iii

ABSTRACT

Object Recognition in Videos Utilizing Hierarchical and Temporal Objectness with

Deep Neural Networks

by

Liang Peng, Doctor of Philosophy

Utah State University, 2017

Major Professor: Xiaojun Qi, Ph.D.
Department: Computer Science

This dissertation develops a novel system for object recognition in videos. The in-

put of the system is a set of unconstrained videos containing a known set of objects. The

output is the locations and categories for each object in each frame across all videos.

Initially, a shot boundary detection algorithm is applied to the videos to divide them

into multiple sequences separated by the identified shot boundaries. Since each of these

sequences still contains moderate content variations, we further use a cost optimization-

based key frame extraction method to select key frames in each sequence and use these

key frames to divide the videos into shorter sub-sequences with little content variations.

Next, we learn object proposals on the first frame of each sub-sequence. Building upon

the state-of-the-art object detection algorithms, we develop a tree-based hierarchical

model to improve the object detection. Using the learned object proposals as the initial

object positions in the first frame of each sub-sequence, we apply the SPOT tracker to

track the object proposals and re-rank them using the proposed temporal objectness to

obtain object proposals tubes by removing unlikely objects. Finally, we employ the deep

Convolution Neural Network (CNN) to perform classification on these tubes. Experi-

ments show that the proposed system significantly improves the object detection rate of

the learned proposals when comparing with some state-of-the-art object detectors. Due

to the improvement in object detection, the proposed system also achieves higher mean

average precision at the stage of proposal classification than state-of-the-art methods.

(111 pages)

iv

PUBLIC ABSTRACT

Object Recognition in Videos Utilizing Hierarchical and Temporal Objectness with

Deep Neural Networks

Liang Peng

As the growth of mobile devices and social networks has been faster than ever,

online image and video content have become truly ubiquitous today. Understanding of

these images and videos, called vision, is one of the most primary ways for the human

being to perceive the world. Computer vision, which refers to the study of enabling

machines to see and understand the visual world, is fundamental in advancing Artificial

Intelligence.

Object recognition, which is defined as the task of locating and recognizing object

categories in images and videos, is a major research field in computer vision. Recent

research in object recognition has achieved some significant improvement utilizing larger

labeled data (e.g., ImageNet) and deep architecture of neural network algorithms (e.g.,

Convolution Neutral Network, Restricted Boltzmann Machine, etc.). However, object

recognition research using deep architectures has been mainly focused on images. Little

has been done in videos, one of the fastest growing types of multimedia content. Video

understanding, especially large-scale object detection in video, has applications in brand

awareness, autonomous cars, augmented reality, etc.

The research presented in this dissertation proposes and demonstrates a novel sys-

tem that automatically recognizes objects in videos by incorporating tracking, object de-

tection and classification using deep neural networks. By utilizing temporal and spatial

information, the proposed approach achieved the better object recognition performance

than the prior state-of-the-art methods in terms of the average precision.

v

This work is dedicated to my parents Fuping Wen, Bihe Peng, and my fiancee Zheng
Han.

vi

ACKNOWLEDGMENTS

I would like to express my deep appreciation for my major professor, Dr. Xiaojun

Qi, for her tremendous amount of effort on guiding me through my Ph.D. research. I

got interested in image processing and computer vision by taking the very first course

of the Ph.D. program: image processing and computer vision by Dr. Qi. During these

five years, she spent a lot of effort on discussing research ideas with me, designing the

experimental settings, and polishing the writing for each paper. She drove to school

under big snow in Christmas break just to pass me a co-authored paper with her hand-

written edits.

I would like to thank my committee members, Dr. Haitao Wang, Dr. Vicki Allan,

Dr. Stephen Clyde, and Dr. Adele Cutler for their valuable feedback on my proposal

to further improve my research and dissertation.

Last but not least, I want to thank my parents and fiancee for their support and

encouragement during my five years of Ph.D. studies. Sometimes I got a little disap-

pointed and depressed when struggling with the unexpected experimental results. My

long-distance fiancee often encouraged me and told me to be patient with the research

on the phone. My parents always reminded me of doing exercise and taking breaks to

keep good health during the busy work. Also, thank all my friends and colleagues for

their support.

I could not have done it without all of you.

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

DEDICATION . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Object Recognition: Definition and Applications 1

1.2 Object Recognition Challenges . 2

1.3 Related Work . 5

1.4 Overview of the Proposed System . 10

2 STABLE FRAME SEQUENCES GENERATION . 14

2.1 Shot Boundary Detection . 15

2.2 Key Frame Extraction . 18

3 OBJECT PROPOSALS LEARNING . 22

3.1 Learning Object Proposals Using a Hierarchical Tree Model 23

3.2 Learning Object Proposal Tracks Using Temporal Objectness 39

4 OBJECT PROPOSAL CLASSIFICATION WITH DNN 54

4.1 Overview . 55

4.2 Applications . 56

4.3 Architecture . 58

4.4 Feed-Forward and Back Propagation . 60

4.5 Optimization . 63

viii

4.6 Convolution Neural Networks . 67

4.7 Object Proposal Classification . 68

5 EVALUATION OF THE PROPOSED SYSTEM . 69

5.1 System Workflow . 69

5.2 Preliminary Experimental Results . 71

5.3 Refined Experiments . 73

5.4 Contributions . 83

6 CONCLUSIONS AND FUTURE WORK . 84

REFERENCES . 86

CURRICULUM VITAE . 99

ix

LIST OF TABLES

Table Page

3.1 The number of videos and shots for each class of objects. 32

3.2 Comparison of the hierarchical method and the EdgeBox 35

3.3 Detection rates 1 of the EdgeBox and the Temporal Objectness 51

3.4 Detection rates 2 of the EdgeBox and the Temporal Objectness 52

5.1 Comparison of the proposed method and the state-of-the-art 73

5.2 The number of videos and detected shots for each class 75

5.3 Comparison of the BH system and the state-of-the-art 79

5.4 Performance for the BT system under four settings 80

5.5 Dataset statistics in the final system . 82

5.6 Performance comparison of the BH, BT and the final system 82

5.7 Comparison of the final system and the state-of-the-art 83

x

LIST OF FIGURES

Figure Page

1.1 Examples of object recognition in images 2

1.2 System overview of object recognition in video 12

2.1 Sample images of gradual and hard cuts changes 16

2.2 Distribution of adjacent frame differences for aeroplane 18

3.1 Examples of bounding boxes and their corresponding trees 28

3.2 The detected bounding boxes under three IoUs 34

3.3 Comparison 1 of the EdgeBox and the proposed method 37

3.4 Comparison 2 of the EdgeBox and the proposed method 38

3.5 Comparison 3 of the EdgeBox and the proposed method 39

3.6 Sample images of positive and negative patch tubes 43

3.7 PR curves comparison for all objects 48

3.8 PR curves comparison for rigid objects 49

3.9 PR curves comparison for non-rigid objects 49

3.10 Qualitative examples of our object proposals 50

3.11 Comparison 1 of the EdgeBox and the Temporal Objectness 51

3.12 Comparison 2 of the EdgeBox and the Temporal Objectness 52

3.13 PR curves 1 of the Temporal Objectness and the EdgeBox 53

3.14 PR curves 2 of the Temporal Objectness and the EdgeBox 53

xi

4.1 Example of a perceptron . 58

4.2 Example of a neural network with 2 hidden layers 59

4.3 A step function . 60

4.4 A sigmoid function . 60

4.5 Convolution neural network example 68

5.1 Detection rate for IoU = 0.5 . 76

5.2 Detection rate for IoU = 0.7 . 77

5.3 Detection rate for IoU = 0.9 . 78

CHAPTER 1

INTRODUCTION

Objects are ubiquitous all over the world and we see them everywhere in our daily

life. Humans can quickly recognize any object from billions of different objects within

a millisecond using their vision systems. After evolving three thousand decades, human

vision is one of the most complex visual systems among all animals. The process of rec-

ognizing objects by human vision could be considered as extracting high-level concepts

by looking at the objects followed by processing them in the brain. The objects could

be in the 3-D form as seen in the physical word, or could be in the 2-D form such as

objects in images or videos. More specifically, human eyes take in the physical stimuli

of light rays and convert them into electrical and chemical signals in the brain. Then a

complex process going through the central nervous system in the brain finally constructs

and interprets the images and extracts high-level concepts of objects from the images.

1.1 Object Recognition: Definition and Applications

Computer vision, a research field in computer science, aims at using computers to

serve similar functions of human vision. It includes a wide range of subtopics such as

object detection, object recognition [1–8], image classification [9–16], image retrieval

[17–23], and many others [24–26]. Among these subtopics, object recognition, as the

task of locating and recognizing object categories in images and videos, is arguably one

of the most important and challenging tasks in computer vision.

Object recognition could be defined as follows: given a digital image or a digital

video, which is essentially a sequence of digital images, containing the unknown ob-

ject(s), the computer outputs the position(s) and category label(s) of the object(s) in

the image or the video.

Computer vision is a major component of Artificial Intelligence (AI) [27]. Object

recognition serves as an essential part in computer vision and there is a wide range

2

Figure 1.1. Examples of object recognition in images

of existing and potential applications driven by object recognition. For instance, for

Augmented Reality (AR) [28], if we want to develop some hardware devices (e.g., wear-

able glasses) [29] with the capability of generating the assistive information (e.g., object

names, merchandise names, etc.) which can be integrated with the reality, we need to

recognize these objects first. Robotics [30–32] also requires object recognition. For any

type of robots that want to perform some tasks (e.g., walking, running, and picking up

items) by interacting with the environments, perceiving the objects in their surroundings

is a precondition. Another application is autonomous driving [33], [34]. Even though

the sensors on the car could detect the physical objects around them, it is difficult for

them to distinguish the objects of similar distances, sizes, and shapes. Hence, it is nec-

essary to utilize computer vision-based object recognition techniques to understand the

objects via the video signal captured by the cameras, which are installed and spinning

on the top of the self-driving car. Object recognition also plays an important role in

automating the manufacturing process [35], [36]. Recognizing the mechanical parts and

defects of parts could make the manufacturing pipeline automated for some hardware in-

dustries. Therefore, object recognition plays a crucial role in developing a large number

of applications and pushing the frontiers of AI.

1.2 Object Recognition Challenges

Object recognition by computers is a great challenge due to the following reasons:

First, a digital color image is essentially a 3-D array, which contains three 2-D matrices

corresponding to red, green, and blue channels and a gray-scale image is a 2-D matrix

with each element representing the intensity value of the corresponding pixel in the

image. Second, an image could contain one object, multiple similar objects, or no objects

at all. Third, when an image contains one or more objects, each object could appear

3

in any size, shape, orientation, and lighting condition in the image. A small change

in any of these factors would have great impact on the values of matrices by which

images are represented. Accurately recognizing objects by computers requires capturing

the patterns of objects with effective algorithms and features, which are invariant to

changes in size, shape, orientation, and illumination for objects of the same category

and are discriminative to objects from different categories. Fourth, the background of

objects in images or videos could be anything in any complex visual appearance. This

adds additional difficulty to extract objects from images or videos.

To address these challenges, machine learning techniques have been heavily applied

in the research problem of detecting and recognizing objects in images and videos. Both

object detection and object recognition could be treated as classification problems in

the machine learning context. Due to the possibility that an object may appear in any

size anywhere in an image, there are two questions we need to answer: First, where are

the objects? Second, which category does an object belong to? For the first question,

if we know a certain category of objects we are looking for, this problem refers to an

object detection problem. More specifically, in object detection, the input is a model of

an object (e.g., dog), and images possibly containing the object of interest. The output

is the position(s) containing that type of the target objects if they are present in the

image. The position is typically represented by an estimated bounding box to cover

the target objects with the least amount of background. For the second question, the

answer relies on object recognition. Actually, for object recognition, we need to answer

both aforementioned questions assuming that we are looking for multiple categories of

objects. The input is an image containing object(s) of unknown categories and a set of

object categorical labels each object possibly belongs to. The output is the position(s)

and object category (or categories) of object(s) in the unknown (new) image.

To find out the answers to both questions, a large number of rectangular boxes of

varying sizes and aspect ratios can be used to scan over the image and classify each box

to contain a certain object category or non-object. For object detection, since we know

the type of objects we are looking for (e.g., dog), a binary classifier is usually employed

to assign the class label (e.g., dog or non-dog) to each box. Each box is classified to

a class either containing an object (e.g., dog) or not containing an object. For object

4

recognition, a multi-class classifier is usually employed to assign the appropriate class

label to each box. For example, having known that an image possibly contains objects

from the following categories: people, bird, horse, dog and bike, we need to not only

find out which boxes may contain objects, but also find the categorical label from the

five categories for each box.

Two stages, namely, training and classification, are typically involved in machine

learning based classification problems. In the training stage, a set of data points with

known labels are used to generate a model; In the classification stage, the learned model

is applied to a set of unseen data points to classify each data point to a certain class

label. Depending on the specific classification tasks, certain features are extracted from

each data as a representation of data, which are used as the inputs to both learning

and classification. As a result, the performance of a machine learning classification

task typically depends on two factors: feature representation and classifier. Feature

representations should be discriminative to different object classes and classifiers should

be powerful to generate distinct models for different object classes. In the past few

decades, researchers have been developing various features [37–39] and classifiers to

improve machine learning performance for different tasks in various domains.

Considering object detection and object recognition in the context of machine

learning-based classification, each bounding box among all scanned boxes could be con-

sidered as a data point. For object detection, in the training stage, we collect a set of

images with labeled objects, which are enclosed by bounding boxes. We select a set

of bounding boxes that contain the objects as positive examples and a set of bounding

boxes that do not contain the objects as negative examples. Distinguishable features

are then extracted from the bounding box to represent each example, and appropriate

classifiers are employed on the extracted features to generate a model. In the classifica-

tion stage, the generated model is applied on the same feature representation for each

unknown bounding box to assign its class label. For object recognition, we still treat it

as a classification problem. Various specific learning strategies have been developed to

recognize objects, which will be discussed in the following sub-section.

5

1.3 Related Work

A lot of research work is carried out in object detection and recognition, and achieves

the significant progress in recent two decades. Object detection and recognition methods

can be roughly classified into two categories: multi-class approaches and class-agnostic

approaches. Multi-class approaches treat the problem as a binary classification problem

for each object category versus the non-object category on a huge number of windows.

Several representative techniques in this category include: sliding window-based exhaus-

tive search methods, boosting-based cascade methods, segmentation-based methods, and

saliency-based methods. Class-agnostic approaches generate proposals, which are likely

to contain objects of interests. A (n + 1)-way classification with n object categories and

one background category is then followed to classify each object.

Sliding window-based exhaustive search methods aim to locate each category of

objects by using template windows. Since the presence of the objects could be of any

size and position in an image, a lot of candidate bounding boxes of different sizes at

different positions need to be examined. One naive way is to use a large number of

sub-windows of different sizes at different positions to scan over the image. Regarding

the size of the sub-window, the smallest size could be the smallest box that the objects

could appear in an image (e.g., 5x5). The size of the sub-windows in either width or

height can be gradually increased by one pixel at a time until one dimension reaches the

width or height of the image or the size of the bounding box equals to the size of the

image itself. Next, on each sub-window, binary classification is performed to see if the

bounding box contains an object (i.e., positive) or not (i.e., negative). Since this type

of methods only address one type of objects, and the human face is a type of objects

with great of interest, early object detection work mostly focused on face detection [40].

Sung and Poggio [41] proposes a face detection method based on examples of face images

and non-face images. It collected a set of face templates and non-face templates as the

training set, uses a ”Mahalanobis-like” metric as the feature representation for each

image, and employs a Multi-Layer Perceptron (MLP) net as the classifier to decide if

each scanned window is a face or non-face. It can detect faces of different scales under

various illuminations. However, it can only detect frontal faces with high computational

cost. Rowley et. al. [42] introduce a similar face detector by a ”bootstrap” technique. It

6

avoids the difficulty of manually selecting diverse non-faces samples by selectively adding

the false detection result to the training set as the training progresses. Comparing

with [41], it reduces the false detection rate. Souheil Ben-Yacoub [43] propose another

face detection method with faster speed. Building upon the MLP classifier of sliding

windows, it performs the convolution in the frequency domain to increase detection speed

by 8 to 14 times with the same detection rate. There are many other sliding window-

based approaches [44–46]. The advantages of these sliding window-based approaches are

two-fold: First, they do not miss any searching location due to the exhaustive search.

Second, they decompose the difficult problem (detecting multiple categories of objects)

into multiple simpler problems. However, the search space is huge even for detecting

one category of objects and most sub-windows do not contain objects. Furthermore,

the computational complexity grows linearly as the number of categories increases and

it becomes impractical when detecting objects from a large number of objects.

Boosting-based cascade methods aim to boost the speed of original sliding window-

based methods by improving the image representation, features evaluation, and clas-

sifiers. The most representative approach under this category is Viola Jones’s face

detection method [47], which offers three major novelties. First, it introduced the inte-

gral image representation, which enabled the fast computation for features. An integral

image is pre-generated so the sum of pixel values within any window can be quickly

computed to extract features. Second, it uses a set of weak classifiers with each weak

classifier only dependent on a single feature. Third, it combines the set of weak classi-

fiers in a cascade structure to form a strong classifier so the windows that are unlikely to

contain objects are eliminated very early and most computation focuses on object-like

regions. Boosting-based cascade methods significantly increase the detection speed and

make real-time detection for some categories possible (e.g., face and car). However,

similar to the sliding-window-based approaches, the number of windows that need to

be checked at the beginning is still very large and this number is much larger than the

number of pixels in the images.

Unlike sliding window-based approaches, segmentation-based methods and saliency-

based methods [48–50] aim to isolate objects-like regions quickly from pixel levels, fol-

lowed by other techniques such as codebook, contour, or part-based model [51–53].

7

Segmentation refers to the task of partitioning an image into multiple regions with each

having some unique characteristics. More specifically, segmentation is considered as the

process of assigning pixels into different regions so that the pixels within the same re-

gion share the same characteristic. Consider a simple image which has two regions, one

for foreground (e.g., an object), and the other for background. Top-down segmentation

algorithms compute the conditional probability that each pixel belongs to the figure

(i.e., foreground) given a hypothesis corresponding to the object category. Similarly,

the conditional probability for each pixel to belong to the ground (i.e., background) is

also computed. As a result, a probability map is generated and the segmentation result

is then obtained based on the likelihood ratio between figure and ground. Once the

segmentation is done, the detection focuses around the figure region. The codebook

approach has been proposed to learn object proposals. It first generates some interest-

ing regions (e.g., key points) from the figures in the training images and extract some

features from these interesting regions. A clustering algorithm is then applied to group

the interesting regions into n clusters. This clustering result is called a codebook (i.e.,

dictionary). For a new image, segmentation is first applied to find the figure. The same

interesting region generation procedure is applied to the figure and each of these regions

is assigned to one cluster in the codebook based on the Euclidean distance. In this way,

the distribution of the newly given region is computed based on the codebook. This

distribution is treated as the feature representation of the region. Finally, each region

is classified as a certain category based on the labeled regions from the training set.

This completes the object detection process. The contour-based method detects edges

from the segmentation results and then generates contours of the objects. It builds the

object category model using the contour-based geometric shape of objects to perform

object detection. The advantage of segmentation-based methods is that it can quickly

eliminate a large portion of images in the search space from the pixels level, so rest of

techniques can focus on the object-like regions. Saliency detection serves as a prepro-

cessing step for segmentation. Once the saliency map is generated, segmentation can be

done by thresholding the map.

Selective Search (SS) [54] is another segmentation-based method for object detec-

tion. It combines the advantages of exhaustive search and segmentation methods to

8

capture sliding windows at all scales and significantly reduce the number of bounding

boxes. It achieves these properties by the following steps: First, it uses diversifying im-

age properties such as color, texture, and contours to segment out some object regions.

Second, it uses these regions as the initial regions and starts merging the regions using

a bottom-up approach. This merging process picks the two regions that have the most

similarity to merge and continues this merging strategy until there is only one merged

region left. The bounding boxes in this iterative merging process are likely to contain the

true objects. Another successful segmentation-based object detection method is called

Deformable Parts Model (DPM) [55]. It describes the objects by a collection of parts

and the connection between them. An energy function is defined to model the sum of

these two parts. Specifically, the wellness of matches between each part of the testing

image and each part of a standard template of each object is measured by Histogram

of Gradient (HOG) feature. Then the relationship between these parts is formed by a

classic spring model to measure how much stretch occurs for the spring to match the

standard template object and the test object. The DPM scans parts on a pyramid to

minimize the energy function to find the possible object regions.

All these aforementioned ones are methods of detecting one category of objects at a

time. For tasks of detecting multiple categories of objects, the computational cost grows

linearly with the number of object categories. To address this issue, The class-agnostic

approaches [56], [57] have been introduced to generate proposals, which are likely to

contain objects of interest. It starts with a localization stage to rank all possible sub-

windows based on the likeliness of including an object regardless of object categories and

select top k windows as object proposals. It then proceeds to the classification stage,

where a (n+1)-way classification with n object classes and 1 background class is followed

to classify each object proposal. Two types of learning algorithms, namely, training-free

and training-required, are commonly used for localization. One of the best training-free

methods for learning generic object proposals is EdgeBox [58], which achieves a fairly

high detection rate in a quick time. It uses the number of contours that are entirely

enclosed in a bounding box as the likeliness of the box containing an object. To this end,

it uses an edge detector to detect edges from each image and computes the contours

based on the proposed affinity from edges. The objectness measure is computed as

9

the affinity score within each bounding box scanned across the entire image. Many

training-required algorithms are also employed for learning object proposals. In recent

years, due to the development of the computing power (e.g., GPU) and rapid growth of

the labeled data, artificial neural network algorithms [49, 59, 60] with deep architecture

have reached state-of-the-art performance for object detection. Region Convolution

Neural Networks (RCNNs) [61–63] use raw pixels from images to feed in as the input

layer and gradually learn the meaningful features to differentiate the objects from non-

objects. Forward feeding and backpropagation are used in training to learn weights and

biases of the network. Unlike the engineered features in the traditional machine learning

paradigm, features are learned in the training process are globally optimized to reach

the high object detection rate. The downside is that the training process is slow due

to the intensive computation from a large number of forward and backward iterations

for learning weights and biases. Therefore, the class-agnostic generation of proposals is

expensive if using deep neural networks to detect object proposals and classify them.

From what has been discussed above, generating object proposals remains a bot-

tleneck in object recognition. Quickly and accurately generating object proposals has

been of a topic of great interest. A new BING-feature-based objectiveness measure [64]

has been proposed to quickly generate object proposals (at 300 frames per second) with

a high detection rate (i.e., 90% with 50 proposals and 96.2% with 1000 proposals on

the VOC 07 data set [65]). EdgeBox we mentioned above achieves the state-of-the-art

object recall rate (e.g., 75% recall at Intersection over Union (IoU) of 0.7 using 1000

proposals on the VOC 07 data set [65]) with the speed of approximate 0.25 seconds per

image.

Most of aforementioned work has been focusing on generating object proposals for

images. Video consisting of a sequence of dense images (e.g., 25 frames per second)

raises additional challenges for methods that fit for images, due to high complexity and

lack of temporal consistency if detectors were directly applied on individual frames.

Some recent studies use temporal information and image-based detectors on videos.

Sharir and Tuytelaars [66] apply object proposals in each frame and link them over

frames into spatiotemporal object hypothesis. The detection on individual frames is still

costly. Oneata et al. [67] propose the supervoxel method using hierarchical clustering of

10

superpixels in a graph with spatial and temporal connections. Hua et al. [68] incorporate

tracking and detection to improve the consistency and reduce the cost of detection

on individual frames. Some motion-based methods [69], [70] for object detection in

video can only address moving objects but not static objects in video. In addition,

unlike constrained video, which has constant background, unconstrained videos refer to

the type of video that contains both static and moving objects with frequent changes

of background. Even though breakthrough has been achieved on object recognition

in images along with the development of deep neural networks, object recognition for

both static and moving objects in an unconstrained video remains a challenging task in

computer vision.

1.4 Overview of the Proposed System

In this section, we provide a brief overview of the proposed system, emphasizing

the rationale for developing such a system. In chapter 5, we will describe the system

in detail by presenting the input, output, and method for each module, and showing

preliminary results on YouTube-Objects database.

As mentioned earlier, quickly and accurately generating object proposals in images

remains a bottleneck for object recognition in general. Even though breakthrough results

have been achieved on images for object recognition, it is computationally impractical

to recognize objects by directly employing image-based object recognition methods in

individual images for videos since a video is composed of a dense sequence of images. To

address these two limitations, we propose a novel object recognition approach in video,

which takes advantages of temporal and spatial properties of video to accurately and

quickly recognize objects.

The proposed framework to recognize objects in video offers the following contri-

butions:

• We formulate a novel cost function, which ensures good local representation and

good content variation coverage in a video, and apply dynamic programming on

this cost function to select key frames from the video. Applying this key frame

extraction method on each shot of a long unconstrained video, the long uncon-

strained video can be decomposed into multiple stable frame sequences with little

11

content variation in each frame sequence. The effective decomposition of videos

made it possible to apply image-based object recognition approaches to videos

with dramatic reduction of computational cost and little loss in accuracy.

• We develop a compact feature representation to map each object’s visual appear-

ance into a tree-based feature representation by taking advantages of internal hi-

erarchical structures of objects. Using this representation, we formulate a domain-

specific learning schema to bridge the gap between generation of object proposals

and classification of proposals existing in the traditional frameworks to improve

the quality of object proposals.

• We propose a model-free method that is able to dynamically measure the object-

ness of each object proposal by exploiting temporal consistency within each optical

flow during tracking. This method does not require any training and can simul-

taneously track and learn object proposals while further improving the quality of

object proposals.

• We integrate the three proposed modules into a single large framework to quickly

learn more accurate object proposals and apply Convolution Neural Network

(CNN) to classify object proposals to achieve higher accuracy of recognizing ob-

jects in videos. To the best of our knowledge, it is the first generic framework that

is capable of recognizing both static and moving objects in every single frame in

unconstrained videos.

As we mentioned in section 1.2, detecting and recognizing objects in individual

frames of a video is impractical due to extremely high computational complexity. It

is well known that an unconstrained video typically has large content variations across

all frames in a relatively long time range; On the other hand, adjacent frames within a

relatively short time range have small content variations. We call each short sequence

of frames with small content variations as ”a stable frame sequence”. The rationale of

the entire proposed system is as follows: First, we develop an approach to divide each

video into many ”stable frame sequences”; Second, we only generate object proposals

on the first frame of each ”stable frame sequence” and use these proposals as initial

12

possible positions of objects to initialize multiple object trackers to track through each

”stable frame sequence”. This step produces a lot of object proposal tracks, which are

a sequence of object proposals extracted from a sequence of frames. Due to the small

variations in each ”stable frame sequence”, we assume each object proposal track has

the same categorical label. The total number of possible categories include n object

categories defined in the problem domain and one background category (i.e., does not

contain any object). In the last step, we need to classify these object tracks into one of

the n+ 1 categories to produce labeled videos as output.

Following this rationale, there are three major components in the proposed sys-

tem as shown in Figure 1.2: Frame sequence generation, object proposals learning, and

RCNN [49] classification.

............

Input
Video

Shot
Boundary
Detection

Key Frame
Extraction

Hierarchical
Tree Model
Construction

Temporal
Objectness
Learning

Labeled
Data

Classification by CNN

Labeled
Video

..

.
..
.

..

.

boat

Object
Proposal
Tracks

Stable Frame Sequence Generation

 Object Proposal Learning

Figure 1.2. System overview of object recognition in video

In the frame sequences generation module, we apply a shot boundary detection

algorithm [71] to divide the entire video into many shots and propose the key frames

13

extraction algorithm to extract key frames from each shot. In the object proposal learn-

ing module, we develop a hierarchical model to generate high quality object proposals

on each of the key frames and use these object proposals to initialize trackers to track

and refine object proposals based on the proposed temporal objectness measure. In

the CNN classification module, we apply a two-stage (i.e., train and fine-tune) learning

schema to train a model on a large labeled data set and fine tune the trained model

using the domain-specific data set. We then classify each of the object proposal tracks

into a specific object category or background to produce labeled object proposal tracks.

Extensive experiments have been conducted on benchmark datasets to evaluate each

proposed module as well as the entire framework by comparing with the state-of-the-art

methods. The proposed method achieved significant improvement over state-of-the-art

methods in terms of the average precision of each individual category as well as the

mean average precision overall.

The rest of the dissertation is organized as follows: In chapter 2, we describe frame

sequence generation for video in detail. In chapter 3, we introduce the proposed hi-

erarchical model and temporal objectness to learn object proposals in video. We also

present the experimental result on each individual component in chapter 4, we illus-

trate the classification of object proposals using deep neural networks. In chapter 5, we

describe the entire integrated framework and workflow, and present the corresponding

experimental results. Finally in chapter 6, we present the conclusion and the future

work.

14

CHAPTER 2

STABLE FRAME SEQUENCES GENERATION

As cameras and social networks became more and more popular in the recent years

[72], a large proportion of the online multimedia content is in the form of videos [73].

There are two types of videos: constrained and unconstrained. Constrained videos refer

to the type of videos that contain relatively fixed or stable background. The foreground

objects that are moving while the background is constant. For example, the videos

that are captured from the cameras inside the elevators or buses are constrained videos.

By contrast, unconstrained videos refer to the type of videos with frequent changes of

background. For example, if we hold a camera to shoot 360-degree scenes around our

houses, the resultant video is unconstrained. Another example of unconstrained videos

would be a movie that contains different scenes.

It is much more challenging to recognize objects in unconstrained videos than in

constrained videos because the frequent changes in the background bring up a lot of

noise in the temporal domain, which makes it difficult to segment out the foreground

objects and track them.

Our proposed system aims to address the problems of object recognition in videos.

Since an unconstrained video includes frequent changes of visual content, we propose

a method to divide the entire video into many stable frame sequences such that each

frame sequence has little content variations. Then we develop an object detection al-

gorithm building upon the existing state-of-the-art object detectors to generate object

proposals on the first frame for each of these sequences. Third, we use these detected

object proposals to initialize multiple trackers to estimate the optical flow of each object

proposal over each stable frame sequence to generate the object patch tubes. Last, we

assign a label to each of these tubes by deep neural networks based classification.

In this chapter, we describe the proposed method of generating stable frame se-

quences. The proposed method consists of two modules: shot boundary detection and

15

key frame extraction. Shot boundary detection aims to divide the video into multiple

shots by finding the boundary frames in the video. It should be noted that moderate

content variations may still exist within each shot. As a result, we propose an algorithm

to select key frames from each shot, where each key frame is significantly distinct from

each other. In this way, each frame sequence between two selected key frames has little

content variations. Hence, we can use these key frames to divide the videos into a set

of stable frame sequences.

2.1 Shot Boundary Detection

Hard-cut and gradual changes are two common shot changes in a video. The hard-

cut changes refer to the sharp changes between two adjacent frames with one belonging

to the previous shot and the next one belonging to the next shot. The gradual changes

mean a transition consisting of several frames, which belong to two shots. Common

gradual shot changes include fade, wipe, and dissolve. Fig. 2.1 shows one example for

gradual change and one example for hard cut change. The aeroplane images sequence in

the top two rows shows an example of gradual change. More specifically, it is a dissolve.

The bird image sequence in the bottom two rows shows an example of hard cut change,

as we can see that the last image in row 3 suddenly changes to a quite different image,

which is the first one in row 4.

We introduce two shot boundary detection methods in the following two sections.

The first method is able to quickly detect hard cut shot boundaries with a pre-set thresh-

old. The second method is able to detect both hard cut shot boundaries and gradual

changes using an adaptive threshold. Depending on the types of the videos and shot

changes, each method has its own suitable scenario. For the type of videos with only

slow movements and only hard cut changes, it is better to use the method with pre-set

threshold since it is very fast and there is no need to compute the distribution of frame

differences. For the type of videos containing both gradual changes and hard cut with

fast movements, adaptive thresholding is more suitable since the threshold is adjusted

based on different types of movements. In Fig. 2.1, the aeroplane image sequence is

divided by two shots by the fixed-threshold method (row 1 contains images in shot 1

and row 2 contains images in shot 2). the bird image sequence is divided by two shots

16

by the shot boundary detection method with the adaptive thresholding (row 3 contains

the images in shot 1 and row 4 contains the images in shot 2). We describe how each

method works in the following two sections.

Figure 2.1. Sample images of gradual and hard cuts changes: images of gradual change
(row 1 and row 2) from a aeroplane video and hard cuts change (row 3 and row 4) from
a bird video

2.1.1 Hard Cut Detection Using the Fixed Threshold

For a given video, we apply a simple shot boundary detection algorithm to divide

the video into multiple shots. For this module, the input is a given video, and the output

is a set of shots, which are indicated by the starting and ending frame number in each

shot. The first shot starts at the first frame, and the last frame in each shot is the

previous frame of the next shot. A content-aware detector [74] is used to detect shot

boundaries and it computes the difference between every pair of subsequent frames in a

video by averaging the differences of every corresponding pixels between two adjacent

frames in red, green, and blue channels. This differences is compared with a pre-set

threshold. Two frames are separated into different shots if the difference is greater than

or equal to the threshold. Two frames are grouped into the same shot if the difference

is less than the threshold.

2.1.2 Hard Cut and Gradual Changes Detection Using the Adaptive Threshold

Content-aware detector uses the pre-set threshold to decide shot boundaries. Even

though this method achieves the reasonable shot boundary detection results, it does not

17

work well for videos with both fast and slow movements. Since the portion in video with

faster movement should have a larger threshold than the portion in video with slower

movement, one fixed threshold cannot work well on both types of movements in a video.

To this end, we develop a more sophisticated approach using an adaptive threshold to

detect not only hard cut shot boundaries but also gradual changes regardless the type

of movements in the video.

This sophisticated approach sets an adaptive threshold in a local temporal range

of frames rather than a global range. Specifically, to detect the shot boundaries with

hard cut changes, it computes the discontinuity of each frame by calculating the change

between the current frame and its previous frame using their corresponding feature vec-

tors. It then uses a moving window of size 32 to slide across the video. At each sliding

location, if the middle frame located at the center of the window has the maximum dis-

continuity which is also significantly greater than the discontinuity of the other frames

within the window, this middle frame is defined a shot boundary. To detect the shot

boundaries with gradual changes, we develop a method using the adaptive threshold.

To this end, we use a moving temporal window of size 32 to compute the difference

of standard deviation between each pair of adjacent frames across the video. Second,

we calculate the differences between minimum and maximum change of standard devi-

ations within each window (e.g., the mean discontinuity of the other frames plus twice

the standard deviation of the discontinuity values) . The middle frame in the win-

dow with a large difference, whose value is both the maximum in the current window

and also greater than an adaptive threshold, is set as a shot boundary. By empiri-

cal studies, we found these differences follow exponential distribution after conducting

the Kolmogorov-Smirnov test [75] for goodness of fit. Fig. 2.2 shows the histogram of

one video (i.e., 0001.mp4) from the aeroplane category as an example. This histogram

can be approximated by the exponential distribution. The Probability Density Function

(PDF) for exponential distribution is λe−λx and its Cumulative Density Function (CDF)

is 1−e−λx. We estimate the parameter λ by fitting the data. Then we set the threshold

by letting 1− e−λx = 95% and solve for x so that the adaptive threshold is set to be a

value, which leads to the value of CDF to be greater than 95% of all differences.

In terms of the computational complexity, suppose we compute a histogram for

18

Figure 2.2. Distribution of adjacent frame differences for aeroplane: adjacent frame
differences for aeroplane video 0001.mp4 (X: frame differences; Y: Frequency)

each frame (i.e., an image with width m and height n) as its feature vector. The time

complexity for calculating the feature is O(mn). Suppose there is total of k frames, the

time computational complexity of calculating the discontinuity is O(k).

2.2 Key Frame Extraction

After shot boundary detection, we propose a method [76], [77] to find key frames

to divide each shot into a set of ”stable frame sequences” with little content variation.

Key frames refer to a set of frames selected from a video (could be either a shot or

a long video) that can best summarize and represent the content of the entire video.

We formulate the problem of key frame extraction as a cost optimization problem and

provide the solution to this optimization.

2.2.1 Problem Formulation

The key frames should possess two properties: 1) Good local representation: Each

selected key frame has good representativeness for its neighboring frames; and 2) Good

content variation coverage: The selected frames cover large content variations from

the whole shot or video. Based on these two properties, we formulate the key frame

19

extraction problem as a cost optimization problem. Let N represent the total number of

frames in a shot or video to be summarized, and {Fi} (i = 1, ..., N) represent the set of

frames from the entire shot or video. The goal is to select M frames {ai}(i = 1, ...,M)

from {Fi}, which are the best representative frames to summarize the shot or video.

Good local representation means that each selected frame has large visual similarity

with its neighboring frames (i.e., each selected frame is similar enough to represent its

neighboring frames from the original shot or video). Let Hi stand for the 1-D feature

vector of the ith frame, Fi. Let Sim represent a function that computes the similarity

between two 1-D vectors. The local representation of the ith frame Fi is defined as:

P (i) =


Sim(Hi, Hi+1) if i = 1

Sim(Hi−1,Hi)+Sim(Hi,Hi+1)
2 if 1 < i < N

Sim(Hi−1, Hi) if i = N

(2.1)

That is, the local representation of Fi is computed as the average similarity between

its previous frame Fi−1 and its next frame Fi+1 (except for the first and last frames

whose local representation is computed by its similarity with the second frame and its

similarity with the second to the last frame, respectively).

A good content variation coverage can be interpreted as that consecutively selected

frames have a large dissimilarity. Here, we define the similarity of the two key frames

containing the objects of interest by:

Q(k, j) = Sim(Hk, Hj), (2.2)

1 ≤ k ≤ N, 1 ≤ j ≤ N, k 6= j,

where Hk and Hj are the 1-D feature vectors of two selected adjacent key frames from

Fk and Fj , respectively.

A good summary of the video requires larger
∑M

i=1 P (ai) (i.e., better local repre-

sentation), and smaller
∑M

i=2Q(ai−1, ai) (i.e., better content variation coverage). Then

20

we create a total cost function C:

C(a1, a2, ..., aM)

=
∑M

i=1 α[1− P (ai)] +
∑M

i=2(1− α)Q(ai−1, ai), (2.3)

where α is a weighting factor with its value in [0, 1]. This total cost function consists

of cost for local representation based on a single frame and its neighboring frames and

content variation coverage based on a pair of consecutive key frames.

2.2.2 Solution to Key Frame Extraction

The goal is to find the solution set (a∗1, · · · , a∗M) to minimize the cost function (2.3),

which can be solved by dynamic programming [78]. Let Ωi [ai] denote the cost based

on the optimal selection of the first i frames, i.e., Ωi [ai] = Minimize C(a1, · · · , ai). For

selecting the 1st key frame, the cost function only involves cost for local representation

since the content variation coverage cost is zero. Hence, we have

Ω1 [a1] = α(1− P (a1)) (2.4)

as the base case. In addition, by definition of Ωi [ai], we have

Ωi [ai] = Ωi−1 [ai−1] + α(1− P (ai)) + (1− α)Q(ai−1, ai) (2.5)

which shows that the selection of the next key frame index ai is independent of the

selection of previous frames for a given cost function. Once Ωi is computed, the optimal

solution to the whole problem can be obtained by taking:

a∗M = argmin
aM

ΩM [aM] (2.6)

21

and tracking back in order of decreasing i until the base case (2.4) is satisfied. In other

words,

a∗i−1 = argmin
ai−1

{Ωi−1 [ai−1] + α(1− P (a∗i))

+(1− α)Q(ai−1, a
∗
i)} (2.7)

The computational complexity of this dynamic programming approach is O(MN2)

where M is number of the key frames and N is the number of frames from the original

shot or video.

After dividing the video into multiple shots and extracting key frames from each

shot, we have formed a set of key frames by merging all key frames from each shot. This

set could be considered as the key frames of the entire video. Then we use key frames

to divide the entire video into multiple ”stable frame sequences” by using the ith key

frame as the first frame and using the frame before i+ 1th key frame as the last frame

in the ith stable frame sequence. The number of resultant stable frame sequences in the

video is equal to the total number of key frames.

22

CHAPTER 3

OBJECT PROPOSALS LEARNING

As we mentioned in chapter 1, object proposal generation remains a bottleneck

for object recognition in video. This chapter focuses on presenting the proposed novel

methods to improve the quality of object proposals. First, we propose a tree-based hier-

archical model to capture the internal structural properties of each category of objects

and develop a learning schema to improve object proposal generation. Second, taking

advantages of object consistency in the optical flow, we formulate a temporal objectness

measure to further reduce false positive object proposals during tracking.

To test the effectiveness of the proposed tree-based hierarchical model and the tem-

poral objectness measure, we design separate experiments to test each module. Specifi-

cally, for evaluating the tree-based hierarchical model, we use EdgeBox [58] to generate

object proposals and use the proposed model to re-rank them to see if higher recalls

are achieved. For evaluating the temporal objectness, we first use EdgeBox to gener-

ate the top 50 proposals on each shot representative frame obtained by applying key

frame extraction on each shot to compute the precision-recall curve. Then we apply the

SPOT trackers to track each object for all the frames in each stable frame sequence,

and re-rank the object proposal tracks based on the temporal objectness to compute

the precision-recall curve for comparison. Furthermore, we evaluate the integrated sys-

tem to see if the object recognition performance is improved by combining all proposed

modules including shot boundary detection, key frame extraction, tree-based hierarchi-

cal model, and temporal objectness. It should be noted that the specific parameter

settings for testing the integrated system are slightly different from those used to test

each individual module based on empirical studies and running time. The details of the

methods and experiment settings are described in each subsection.

23

3.1 Learning Object Proposals Using a Hierarchical Tree Model

3.1.1 Introduction

Existing methods for generating object proposals (e.g., BING [64] and EdgeBox

[58]) typically use measures of likelihood of a bounding box containing objects to re-

trieve top n bounding boxes as candidate proposals. Due to the class-agnostic nature of

these methods, all generated object proposals are generic objects. On the other hand,

during the classification stage, the object categories are usually bounded in a certain

domain, which is dependent on the labeled training data sets. For example, the VOC 07

data set [65] has 20 object categories. This difference means that the object proposals

usually contain additional categories of objects that may not be in labeled categories for

classification. For example, a ”propeller” of an aeroplane might be generated by object

proposal generation methods as an object, but the labeled categories for classification

only contains a category such as ”aeroplane” instead of ”propeller”. Similarly, a ”bicycle

wheel” might be detected as a proposal whereas the classification labels only contain

”bicycle” not ”bicycle wheel”; A ”train window” might be detected as a proposal but

the classification labels only contain ”train” instead of ”train window”. The false pos-

itives caused by these gaps have significant negative impact on both detection recall

and precision of object detection. Consequently, it will further affect object recognition

accuracy in the object proposal classification stage. For example, in the classification

stage, usually all object proposals from the generation stage, which are not in the labeled

categories for classification are treated as the ”background” category. However, part of

these ”background” objects are in some out-of-domain categories (i.e., some object cate-

gories are not in the set of object categories in the domain of problems being addressed)

and are not truly ”background”. Hence, reducing false positives in object proposal gen-

eration stage will improve object detection precision, retrieve more candidate proposals

to improve recall and further improve classification accuracy.

With the goals of reducing false positives and improving the recall rate for any

domain-specific object detection task, we observe that each object category differs from

others not only by its visual appearance as a whole part, but also by its intrinsic struc-

ture, such as its sub-parts and complexity of its structures. For example, a bicycle differs

24

from a train when being looked at as a whole, which corresponds to its visual appear-

ance as a whole entity. In addition, a bicycle contains two ”wheels” and one ”frame”

whereas a train contains ”multiple rectangular windows”. A bounding box of blue ”sky”

object may not contain any sub-parts as an object since it is relatively pure and it is

true background. Hence, in additional to visual appearance, sub-part structures and

the complexity of an object can be employed to construct richer objectness to better

represent the objects.

Driven by this intuition, we develop a model which takes an object’s visual appear-

ance as a whole and its parts-based hierarchical structure into account. There are three

major novelties for the proposed work. First, we develop a compact 1-D feature vector

of length 23 as the visual appearance representation of an object; Second, we develop

an algorithm to map each object to a hierarchical tree structure representation, which

captures the relationships among sub-parts and the complexity of the object structure.

Third, we formalize a learning schema to measure each proposal’s objectness by com-

paring with visual features and tree structures using the nearest neighbor method.

3.1.2 The Proposed Hierarchical Tree Method

The proposed method builds upon the existing object proposal generation methods

to improve the object detection precision and recall. As a high-level view, we first employ

the existing object proposal generator on each image to obtain top n object proposals.

Since many of these proposals include generic objects and backgrounds and only a small

portion of them include the objects that belong to domain-specific categories in labeled

training data, we develop a learning schema to compute a confidence (i.e., objectness) for

each object and re-rank top n objects in each image, with the aim of ranking category-

specific objects towards the top to improve the recall rate for different levels of n. In

other words, we want to select a fewer number of proposals from the top n object

proposals to achieve the same recall as obtained by n proposals of the state-of-the-art

methods. The subsections below are organized as follows: Section 3.1.2.1 introduces the

proposed compact feature for object’s appearance as a whole. Section 3.1.2.2 describes

the methodology to map each object to a hierarchical structure represented by a tree.

Section 3.1.2.3 formalizes the proposed learning schema to compute confidence of each

25

object using the compact feature and the tree-based hierarchical model.

3.1.2.1 Compact Feature Representation

Even though approaches based on deep neural networks can learn feature represen-

tations with high discriminative power, it is quite costly in terms of time. For object

proposal generation, we want to develop a fast learning schema to eventually rank ob-

ject proposals from the category-specific dataset higher than object proposals of the

other categories. Hence, the constructed compact feature should have high discrimina-

tive power to distinguish objects from non-objects and moderate discriminative power

across different categories of objects.

We observe that object and non-object proposals differ a lot in terms of their

properties. First, non-object proposals usually contain background and object proposals

usually have one dominate object present within the bounding box. Second, background

proposals are generally more evenly distributed and have less variations in terms of their

pixel intensities. In contrast, object proposals are generally more skewness and have

more intensity variations due to the few dominate colors of the main object and a small

background region outside of the object boundary. Third, from the spatial point of view,

background proposals are usually more evenly distributed among different color pixel

intensities inside the bounding box while object proposals would have a few dominant

colors occupying the majority region of the bounding box. Hence, the variation-related

and spatial-related properties can be used to distinguish object proposals from non-

object proposals.

To this end, we define the first category of features to measure the color variations

by computing variances in red, green, and blue channels (three values) and entropy of

the luminance-based histograms within the proposal (one value). We then define the

second category of features to measure the spatial evenness of the color distribution.

Specifically, we convert the proposals into a histogram in red, green, and blue color

channels. We empirically choose the top five bins with the highest frequencies and

compute their normalized frequencies. This would produce 15 features (five normalized

frequencies for each of the three channels). Finally, we observe that the positions of

the object proposals are not evenly distributed within an image. For example, the

26

probability for object proposals near the four corners or the edge of the image is far

less than the probability for object proposals near the center. Some aspect ratios of the

object proposals may occur much more frequently than other aspect ratios due to the

limited shapes of objects in the entire set of object categories. Following this intuition,

we incorporate the distribution of the relative locations and aspect ratios of proposals

into extracted features to represent each proposal. Since the image dimension (i.e.,

the width and height) may vary among different images, we use the relative positions

and dimensions of the proposals within an image to define four additional features as

follows: the relative width (ratio of the width of the proposal to the width of the image),

the relative height (ratio of the height of the proposal to the height of the image),

the relative horizontal coordinate, and the relative vertical coordinate. The relative

horizontal coordinate is the ratio of the horizontal coordinate of the upper-left corner of

the proposal to the width of the image. The relative vertical coordinate is the vertical

coordinate of the upper left corner of the proposal to the height of the image. These

four features capture the properties regarding the relative aspect ratio and position of a

proposal. In all, the compact feature of the length of 23 is extracted for a proposal and

will be used to classify object and non-object proposals.

To clearly explain the proposed features, we provide the mathematical definition for

some of these features. For a given image I with width W and height H and a proposal

B in the image with x and y representing the horizontal and vertical coordinates of the

upper-left corner of B, respectively, let w and h represent the width and height of B

and Pi,j,c represent the pixel value at the horizontal and vertical coordinates (i, j) of I

in the channel c of the RGB color space, where c ∈ {R,G,B}.

For the first category of the proposed features, the variance of B in a red color

channel could be expressed as:

∑y+h
j=y

∑x+w
i=x (Pi,j,c=R −

∑y+h
j=y

∑x+w
i=x Pi,j,c=R

w×h)2

(w × h− 1)
(3.1)

The variance of B in green and blue channels can be computed similarly using the

above formula by substituting c = G and c = B, respectively.

To compute the entropy, we first compute the histogram based on the pixel counts

27

for each of 768 bins (i.e., 256 possible values in each color channel times the total number

of channels), and then apply the standard entropy formula on relative frequencies of 768

bins.

For the second category of the proposed features, we use 64-bin histogram on each

of the RGB channels to compute the five highest normalized frequencies. Firstly, we

compute the histogram based on the pixel counts of 64 bins on each of RGB channels.

Secondly, for each channel, we normalize the frequency of each bin by dividing the total

pixel counts in the channel. Lastly, we rank relative frequencies and select top 5 relative

frequencies in each channel to produce a total of 15 values.

For the third category of the proposed features, we compute Xr (the relative hor-

izontal coordinate), Y r (the relative vertical coordinate), Wr (the relative width), Hr

(the relative height) as follows:

Xr =
x

W
(3.2)

Y r =
y

H
(3.3)

Wr =
w

W
(3.4)

Hr =
h

H
(3.5)

3.1.2.2 Hierarchical Tree Structure

A total of n object proposal bounding boxes may be retrieved by the proposal gen-

erator for an image. Since each object or non-object bounding box may include smaller

bounding boxes corresponding to sub-parts of an object, we convert all bounding boxes

on each image to several trees in the following way: each node represents a bounding

box. If a bounding box Ba is mostly included in another bounding box Bb (indicated

by a ratio close to 1’s, defined as overlap of Ba and Bb over Ba), the corresponding tree

node Ta should be a child node of the tree node Tb. This condition will be applied to all

bounding boxes in an image. Figure 3.1 shows two examples of this type of mapping.

28

 Bounding boxes on images Converted trees

Figure 3.1. Examples of bounding boxes and their corresponding trees

We then propose a method [79] to build multiple trees by considering all bounding

boxes in an image. First, we sort all bounding boxes by their areas (i.e., width * height)

in descending order. Second, we use the first bounding box (i.e., the biggest one) to

create a root node as the initial tree and gradually process the remaining bounding

boxes one-by-one. For each bounding box, we check if it can be inserted in any of the

existing trees by calculating the ratio of the overlap between the bounding box of the

root of the tree and the candidate bounding box to the candidate bounding box. If the

computed ratio is larger than a pre-set threshold, we insert the candidate bounding box

into the tree. Otherwise, the bounding box cannot be inserted into any of the existing

trees. We then use this bounding box to create a new tree by setting it as the root node

of the new tree. The detail of the algorithm is shown in Algorithm 1.

The detail of the tree insertion function is summarized in Algorithm 2, where the

input is a bounding box, the root node of a tree (i.e., treeRoot), and a predefined

overlapping threshold. The output is the altered tree after the insertion. It should be

29

Algorithm 1 Convert multiple bounding boxes in an image to multiple trees

input: bbs: multiple bounding boxes; thresh: a pre-defined threshold for overlap
output: trees: multiple trees built based on bounding boxes
function name: convertBbsToTrees(bbs, thresh)
sortedBbsDescend ← sortBySizes(bbs) /*sort bbs by sizes in descending order*/
trees← new List /*initialize a new list to place all the root nodes of resultant trees*/
for bb in sortedBbsDescend do
insertSuccess ← False
for treeRoot in trees do
if the ratio of the overlap between treeRoot.Bb and bb to bb ¿ thresh then

insert(treeRoot, bb, thresh) /*see Algorithm 2 for details of this function*/
insertSuccess ← True
break

end if
end for
if insertSuccess is Ture then

continue /* process next bounding box */
else
newTreeRoot ← createNewTreeNode(bb)
trees.append(newTreeRoot)

end if
end for
return trees

Algorithm 2 Insert a bounding box into an existing tree

input: bb: a bounding box; treeRoot: the root node of a tree; thresh: a pre-defined
threshold for overlap
output: altered tree after insertion
pre-condition: the ratio of overlap of treeNode.rootBb and bb to bb ¿ thresh
function name: insert(treeRoot, bb, thresh)
if treeRoot.children is NULL /*base case*/ then
newTreeRoot ← createNewTreeNode(bb)
treeRoot.addChild(newTreeRoot)
return

end if
for each child c of treeRoot do
if the ratio of overlap of c.Bb and bb to bb ¿ thresh then

insert(c, bb, thresh) /*recursive call*/
end if

end for
newTreeRoot ← createNewTreeNode(bb) /* all children of treeNode do not have
sufficient overlap with bb */
treeRoot.addChild(newTreeRoot) /* Add newTreeRoot as a child of treeRoot */
return

30

noted that the input bounding box is mostly included in the bounding box corresponding

to the input root of the tree based on pre-condition in Algorithm 1. As a result, calling

this function will insert the input bounding box at the right location of the tree, where

its parent corresponds to the smallest bounding box which has the sufficient overlap

with the inserted bounding box. We use recursion to implement the insert function.

Let us denote the function by insert(treeRoot, bb, thresh). The base case is that the

treeRoot has no children. In this case, we simply create a new node for bb and add

this new node as a child of treeRoot. If the treeRoot has children, we will check if bb

is tightly included in the bounding box corresponding to any of the children. If yes, we

make a recursive call by passing this child, bb and thresh as parameters. If bb is not

tightly included in the bounding box corresponding to any of the children, we simply

create a new node using bb and add this new node as the child of treeRoot. The details

of this algorithm are shown in Algorithm 2

The time complexity to compute the visual feature representation for an image with

width m and height n is O(mn). The time complexity to convert all the bounding boxes

in an image to the structure of the hierarchical trees is O(klog(k)), when there are total

of k bounding boxes in an image. Specifically, sorting these k bounding boxes takes

O(klog(k)) in time complexity. Inserting sorted bounding boxes into an appropriate

position in the trees takes O(klog(k)) in time complexity.

3.1.2.3 Learning Schema to Compute Confidence

Based on sections 3.1.2.1 and 3.1.2.2, each object proposal bounding box has a tree

associated with it. If the root node of a tree T corresponds to a bounding box B, the

children of T correspond to all bounding boxes inside of B. We compute feature F from

box B as the root node feature. Hence, for each bounding box Bi, Fi represents its

visual feature and tree Ti with a certain number of children representing its hierarchical

structure, whose root node corresponds to bounding box Bi.

Since each bounding box maps to a tree, we compare two bounding boxes by com-

paring their corresponding trees and their visual features. We define the distance be-

tween two bounding boxes as:

Dist(Bi, Bj) = b× FeatureDist(Fi, Fj) + (1− b)× TreeDist(Ti, Tj)

31

where Bx, Fx, and Tx represent xth Bounding Box, Feature, and Tree, respectively. b

is the balancing factor between the overall visual feature distance and the hierarchical

tree distance. FeatureDist(Fi, Fj) is a distance measure between two feature vectors

and is computed by normalized Euclidean distance (i.e., Mahalanobis distance) with the

Euclidean distance defined as follows:

FeatureDist(Fi, Fj) =
√∑23

k=1(Fi,k − Fj,k)2

TreeDist(Ti, Tj) is a distance measure between two general trees. The edit distance

used to measure between two trees as defined in 3.1.2.3. Here we use the Euclidean

distance to compare two visual features and use the edit distance to compare two trees.

Tree(Ti, Tj) = A(Ti, Tj)+D(Ti, Tj)+R(Ti, Tj)whereA(Ti, T j) represents the num-

ber of additions, D(Ti, T j) represents the number of deletions, and R(Ti, Tj) represents

the number of replacements.

The edit distance computes the minimum number of operations needed to convert

from one tree to another tree using three types of operations: adding a node, deleting a

node, replacing a node.

For each object bounding box Bi, we compute its distance to each bounding box

Bj in the training data using Dist(Bi, Bj) and find the n closest Bjs. Among n Bjs,

there may be p objects and q non-objects (i.e., p + q = n). So, we define a confidence

score by:

ConfB =
p

n
(3.6)

The higher the confidence score, the more likely the proposal being an object.

Last, for each image, we order all object proposals by their confidence scores in the

descending order. The time complexity of computing the confidence is the same as

K-Nearest-Neighbor (KNN) algorithm (e.g., O(kgd)) where g is the cardinality of the

training set and d the dimension of each proposal or sample. Specifically, computing

Euclidean distance for one testing tree with all g training trees takes O(g) in time and

computing the edit distance for one testing tree with all g training trees also takes O(g)

in time.

32

3.1.3 Experimental Results

To evaluate the proposed method, experiments are conducted on YouTube-Objects

dataset V2.2 [80]. The dataset is composed of the videos that are collected from YouTube

and from names of 10 object classes of the PASCAL VOC Challenge [65]. There are 9

to 24 videos for each object class. The duration of each video varies between 30 seconds

and 3 minutes. The videos are weakly annotated, where each video contains at least

one object of the corresponding class.

The entire dataset contains a total of 720,000 frames with 6975 bounding-box an-

notations. The annotated frames are divided into the training set and the testing set.

One instance has been annotated per frame in the training set and all instances have

been annotated in the testing set. In total, there are 4306 annotated frames with 4306

bounding box annotations in the training set. There are 1781 annotated frames with

2669 bounding box annotations in the testing set. Each video contains multiple shots

with their annotated starting and ending frame numbers. Table 3.1 lists the 10 classes

of objects (e.g., rigid and non-rigid objects) together with the number of videos and

shots for each class.

Table 3.1. The number of videos and shots for each class of objects.

Rigid objects Non-Rigid objects
aeroplane: 13 videos, 482 shots bird: 16 videos, 175 shots

boat: 17 videos, 191 shots cat: 21 videos, 245 shots
car: 9 videos, 212 shots cow: 11 videos, 70 shots

motorbike: 14 videos, 444 shots dog: 24 videos, 217 shots
train: 15 videos, 324 shots horse: 15 videos, 151 shots

We perform two experiments to evaluate the performance of the proposed system.

The first experiment is to compare the detection rate of the proposed hierarchical model

and the EdgeBox detector using the same selected frames from annotated training and

testing frames. We consider this as the baseline comparison. The second experiment is

to compare the proposed hierarchical model and the EdgeBox in the context of running

the entire proposed workflow which includes stable frame sequence generation, EdgeBox

proposal generation, and hierarchical model with parameters tuned for the whole system.

To this end, the input frames for learning object proposals are the output frames from

33

the stable sequence generation module. The aim of this experiment is to tune the

parameters of the hierarchical model and fit the hierarchical model in the context of

the entire system. We describe the details of these two experiments in the next two

subsections.

3.1.3.1 Baseline Comparison

Due to the nature of the video dataset, the frame sequence within the same shot

changes gradually and the differences between frames within the same shot are small.

The YouTube-Objects V2.2 dataset has the beginning frame number and ending frame

number for each shot. Hence, we select the first labeled image within each shot as

the representative image from that shot. Some shots do not have any labeled image,

we simply skip them. As a result, all images we select are from different shots. We

call these labeled images shot representative images. Among these shot representative

images, 870 images are from the training set and 334 images are from the testing set.

We use these 870 as training data and these 334 images as testing data to evaluate the

hierarchical model as baseline.

Several parameters affect the performance of both EdgeBox and the proposed

method. First, Intersection Over Union (IoU) is commonly used to measure the overlap

of two bounding boxes. For two bounding boxes in an image, suppose the area of their

overlap is S1 and the area of their union is S2, IoU = S1
S2

. To decide whether a predicted

bounding box correctly captures a true object, typically an IoU is computed between the

predicted bounding box and the ground truth bounding box, which includes the object.

If IoU is bigger than a pre-defined threshold, we conclude that the predicted bounding

box correctly detects the object. The higher value the IoU threshold is, the more strict

the correct detection is defined. Fig 3.2 shows the positive and the negative detected

bounding boxes on the same images under three IoU values: 0.5, 0.7 and 0.9. We can see

from the figure that the number of positive bounding boxes decreases as the IoU value

increases. In other words, the detection rate decreases as the IoU threshold increases.

Another parameter that affects the proposed system is the weight b in equation 3.1.2.3.

First, we apply EdgeBox [58] on every shot representative image in training and

testing sets and generate top 50 bounding boxes per image. Since this is the video

34

Figure 3.2. The detected bounding boxes under three IoUs: positive and negative
bounding boxes under three IoUs on the same images. Yellow bounding boxes show
the ground truth on every image. Three columns from left to right show the detected
bounding boxes under IoU values of 0.5, 0.7, and 0.9, respectively. The top row shows
the positive bounding boxes and the bottom row shows the negative bounding boxes

dataset and the number of objects is relatively large in each image, top 50 bounding

boxes generated by EdgeBox would detect nearly 70% of true objects. We use top n =

50 in our experiment. The values of EdgeBox parameters are: the step size of sliding

window search is 0.8; the non-maximum suppression threshold is set to be 0.55, and the

min score of boxes to detect is 0.01. EdgeBox will produce 50 bounding boxes together

with their confidence scores. The balancing weight b in Eq. (3.1.2.3) is set to 0.5 and

IoU is set to be 0.7 is used. To evaluate performance, we compute the recall rate of

shot representative images based on their EdgeBox output and annotated ground truth

labels in testing images. Here, the recall rate is computed by Eq.(3.7)

Recall =
TP

TP + FN
(3.7)

where TP stands for the number of true positives and FN represents the number of

false negatives.

We further employ the proposed tree-based hierarchical model on top n proposals to

recompute the confidence score by using Eq. (3.6). The recall rate of shot representative

images based the tree model is similarly computed.

35

Table 3.2. Comparison of the hierarchical method and the EdgeBox: the recall rates of
the tree-based hierarchical method and EdgeBox for top n proposals

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

EdgeBox .10 .18 .22 .27 .29 .31 .33 .35 .36 .37 .39 .41 .42 .43 .43 .44

Proposed .11 .17 .22 .26 .29 .32 .37 .41 .44 .46 .47 .49 .51 .53 .54 .54

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

EdgeBox .46 .48 .49 .50 .51 .51 .52 .53 .55 .55 .57 .58 .58 .59 .59 .60

Proposed .54 .55 .55 .55 .57 .58 .58 .59 .59 .60 .60 .60 .61 .62 .62 .63

n 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

EdgeBox .60 .61 .61 .62 .62 .62 .63 .63 .64 .64 .64 .65 .65 .65 .65 .66

Proposed .63 .64 .64 .64 .64 .64 .65 .66 .66 .66 .66 .66 .67 .67 .67 .67

n 49 50

EdgeBox .66 .67

Proposed .67 .67

Table 3.2 shows the comparison of the recall rate of EdgeBox and the proposed

method using top 1 to 50 boxes. We clearly see that the proposed method outperforms

EdgeBox for most values of n. The convergence at n=50 is due to the fact we use all 50

boxes from EdgeBox to re-order proposals. It shows that the proposed method is able

to use fewer top proposals to achieve the same recall as achieved by top 50 proposals

generated by EdgeBox.

3.1.3.2 Comparison of the System Performance Under Different Parameters

For this experiment, instead of selecting the first frame from each shot based on

the ground truth, we apply stable sequence generation as described in chapter 2 to

get all stable frame sequences. For key frame extraction component in stable sequence

generation, we set the parameter κ (i.e., the proportion of key frames over the total

number of original frames) to be 0.04. Among the selected key frames, we only keep the

key frames that have ground truth labels of objects. The original dataset has a training

set and a testing set for annotated frames. Hence, the key frames with the annotation

in the original training set are chosen as the training frames for the hierarchical model.

Similarly, we choose key frames with the annotation in the original testing set as the

testing frames for the tree-based hierarchical model. Consequently, we have 4240 frames

in the training set and 65 frames in the testing set for evaluating the hierarchical model.

36

We use the 50 bounding boxes generated from EdgeBox as the input to the hi-

erarchical method. When designing the experiments, we want to test the relationship

between the IoU values and the recalls. In addition, we also want to test the performance

of the proposed method by using different balancing weights b defined in Eq. (3.1.2.3).

From what has been discussed above, we choose three typical values for IoU thresh-

old: 0.5, 0.7 and 0.9, in the experiments. Also, we choose three values of balancing

weight which are 0.4, 0.5 and 0.6, in the experiments. Therefore, we design three sets

of experiments to compare the performance of EdgeBox and the proposed hierarchical

method.

In the first experiment, we label each of these 50 bounding boxes in the training set

as positive (i.e., contains object) if the IoU is greater than or equal to 0.5 or as negative

(i.e., does not contain object) if IoU is less than 0.5. The same labeling procedures are

applied to the testing data to obtain the ground truth in order to compute the recalls.

We then apply the proposed method with three different values of b (0.4, 0.5 and 0.6) to

compute a new confidence score for every proposal and re-order them in the descending

order for every testing image. The recall rate can then be computed by Eq. (3.7) based

on the labeled ground truth. The comparison of results is shown in Fig. 3.3. We can see

that the overall recall rates for the hierarchical model regardless the weight values are

higher than the recall rates for EdgeBox. The three recall curves corresponding to the

three weights are very close and the recall curve with the weight value of 0.4 is the best.

The recall curve with the weight value of 0.5 is slightly higher than the recall curve with

the weight value of 0.6.

In the second experiment, we label each of these 50 bounding boxes in the training

set as positive (i.e., contains object) if IoU is greater than or equal to 0.7 or as negative

(i.e., does not contain object) if IoU is less than 0.5. For boxes with IoU between 0.5 and

0.7, since they do not show obvious characteristics of object or non-object, we ignore

these boxes to achieve better performance as suggested by literature, we simply ignore

them. The same labeling procedures are applied to the testing data to obtain the ground

truth and compute recall. Similar to the first setting, we apply the proposed method

with three weight values such as 0.4, 0.5 and 0.6 to compute a new confidence score for

every proposal and re-order them in the descending order for every testing image. The

37

Figure 3.3. Comparison 1 of the EdgeBox and the proposed method: the recalls of
EdgeBox and the proposed method when IoU = 0.5 and b = 0.4, 0.5, 0.6

recall rate can then be computed by Eq. (3.7) based on the labeled ground truth. The

results are shown in Fig. 3.4. Comparing with the results in Fig. 3.3, we can see that

the overall recall rates of IoU = 0.7 are lower than the recalls for IoU = 0.5. This is

consistent with the definition of IoU. Fig. 3.4 clearly shows that the hierarchical model

with different weights have higher recall than EdgeBox. All three recall curves are close

to each other. Recalls with the weight value of 0.6 are slightly better than recalls with

the other two weights when the number of proposals is greater than 20.

In the third experiment, for the training set, we label each of these 50 bounding

boxes in the training set as positive (i.e., contains object) if the IoU is greater than or

equal to 0.9 and or negative (i.e., does not contain object) if the IoU is less than 0.9.

The same labeling procedures are applied to the testing data to obtain the ground truth

and compute recall. We then apply the proposed method with b’s of 0.4, 0.5 and 0.6

to compute a new confidence score in the same way as we do in the first two settings.

38

Figure 3.4. Comparison 2 of the EdgeBox and the proposed method: the recalls of
EdgeBox and the proposed method when IoU = 0.7 and b = 0.4, 0.5, 0.6

The recall rate can then be computed based on the labeled ground truth. The results

are shown in Fig. 3.5. Comparing with Figures 3.3 and 3.4, we can see that the overall

recall rates of IoU = 0.9 are significant lower than the recall for IoU = 0.5 and IoU =

0.7. This matches the intuition based on the definition of IoU. In Fig. 3.5, overall all

three curves from the hierarchical model are close to each other and show higher recall

than the curve of EdgeBox. Recalls with weight of 0.6 are slightly higher than recalls

with the other two weights when the number of proposals is greater than 25.

3.1.4 Summary

Generating class-agnostic object proposals followed by classification has become a

common paradigm for object recognition in recent research. Current state-of-the-art

approaches typically generate generic objects, which serve candidates for object cate-

gories classification. Since these objects proposals are generic whereas the categories for

39

Figure 3.5. Comparison 3 of the EdgeBox and the proposed method: the recalls of
EdgeBox and the proposed method when IoU = 0.9 and b = 0.4, 0.5, 0.6

classification are domain specific, there is a gap between these two steps. In this section,

by taking advantages of the intrinsic structure and the complexity of each object’s cat-

egory, we propose a novel tree-based hierarchical model to learn object proposals based

on the generic proposals generated by the existing object proposal generation methods.

First, we develop a tree-structure representation for each object to capture its intrinsic

hierarchical structure. Second, we propose a compact feature to efficiently represent

the object’s visual appearance. Third, we formulate a learning schema to evaluate the

objectness of each proposal from the perspectives of visual appearances and complexity

of sub-parts. Experiments show the significant improvement of our proposed approach

over the state-of-the-art methods for object detection rate.

3.2 Learning Object Proposal Tracks Using Temporal Objectness

After detecting the object proposals in the first frame of each stable frame sequence,

40

we can use the positions of these object proposals as initial positions of candidate objects

to estimate the object proposals in the following frames of each sequence. We use

tracking methods to estimate the optical flow of each object proposal over each sequence.

Compared with the approaches of detecting object proposals in every frame, estimating

the optical flow of each proposal via tracking offers two advantages. First, since tracking

considers the temporal information, the object proposals across different frames are more

consistent; Second, detecting object proposals in individual frames could be costly and

some existing tracking methods can perform estimation in real-time.

Most tracking methods take the initial positions of objects in the first frame as the

input and estimate the corresponding positions of objects in the next frame. They keep

estimating the object positions in every single frame based on the estimated positions

of objects in the previous frame. A lot of tracking methods have been developed over

the past two decades.

Tracking-Learning-Detection (TLD) [81] is one of the state-of-the-art tracking meth-

ods. It builds upon the classic Lucas and Kanade method [82] with the three assumptions

for the objects’ movements in the video. The first assumption is the brightness consis-

tency, which means every pixel’s intensity from a frame moves to another position with

the approximately same intensity in the next frame by a small displacement distance

d. The second assumption is the temporal persistence, which means each pixel moves

to another position by a small displacement distance d. The third assumption is the

spatial coherence, which means all pixels in the Regions Of Interest (ROIs), e.g., ob-

ject regions, move coherently in the same direction. Based on these three assumptions,

tracking is formulated to a minimization problem of the displacement distance d, which

is expressed by pixels in the current frame, pixels in the next frame, and the gradient of

pixels in the current frame. For every pixel in the ROIs, tracking predicts its position

in the next frame. However, due to the scale changes, the predicted positions for some

pixels may not be reliable. Hence, the TLD method develops a forward-backward error

measure to refine the tracking result. It uses the Lukas-Kanande method to track for-

ward to estimate all pixel positions in the next frame. Then it uses the same method

to track back pixel positions from the next frame to the current frame. The pixels with

either large distance or large value change are filtered out during the tracking process

41

and a bounding box containing the remaining reliable pixels as the predicted position

is located in the next frame. Whenever the tracked objects are lost, the TLD algorithm

re-detects the objects to re-initialize the tracker. The advantage of the TLD algorithm

is that it is robust to track objects with scale changes and occlusion. However, it could

only track a single object.

Most visual object tracking methods are able to track a single object in a video

sequence. Simultaneously tracking multiple objects in videos is still a challenging prob-

lem. Zhang et. al. [83] propose a tracking method called Structure Preserving Object

Tracker (SPOT), which is able to track multiple objects with high accuracy. To the best

of our knowledge, SPOT track is the first work that can track multiple generic objects.

It is a model-free tracker requiring the initial positions of objects in one frame. The

SPOT tracker uses HOG features to represent each image patch to be tracked and an

SVM classifier to predict the position of each patch in the next frame. It also considers

the geometric relationship of the multiple objects that are being tracked. To this end, it

proposes an objective function to include not only the similarity of the observed patch

features and the classifier weights among all objects but also a penalized deformation

score measuring how much a configuration compresses or stretches between the tracked

objects. A configuration here means a set of bounding boxes for these multiple objects

with fixed positions. By maximizing this objective function, the tracker predicts the po-

sitions of each object while preserving the overall structures of multiple tracked objects.

Hence, the SPOT tracker performs especially well under the circumstances, where all

objects being tracked move in the same direction in the videos.

3.2.1 Introduction

After learning object proposals using the hierarchical model, we generate high qual-

ity proposals on key frames. Each of these key frames serves as the first frame of each

stable frame sequence as described in Chapter 2. In this section, we use the object

proposals generated on each key frame to initialize multiple object trackers to track the

objects across each frame sequence. At the same time, we learn object proposal tracks

using a novel temporal objectness [84].

42

Intrinsic natures of different appearances between sub-regions of objects and non-

objects in optical flows lead to more visual consistency for object proposals. Hence,

visual variations in different sub-regions of a video sequences over time is a good in-

dicator for likeliness of objects. We propose a method that dynamically measures the

objectness of each proposal by exploiting temporal consistency within each optical flow

during tracking. We develop a block-based feature representation using object’s spatial

property and define an objectness measure using the temporal changes of this spatial

representation. As a result, the proposed temporal objectness learns good object pro-

posals over a short period (e.g., less than 1 second). The proposed method is model-free

and can be used to simultaneously learn and track object proposals without training.

Experiments on a video dataset shows that the proposed approach significantly outper-

forms state-of-the-art methods in terms of the precision-recall measure.

3.2.2 The Proposed Temporal Objectness Method

Since applying object detection on individual frames of a video is undesirable, we

seek to incorporate detection and tracking to effectively detect objects in each frame

of a video. For object detection in static images, some recent generic object detection

algorithms (e.g., EdgeBox [58] and BING) could quickly locate the patches that likely

contain objects. These patches serve as candidates for true object locations. Since

objects differ from non-objects (i.e., pure backgrounds or regions containing partial

objects and partial backgrounds) by their structural closed boundary, the fast generic

object detector exploits this property to detect objects. For example, EdgeBox exploits

the edges of objects and uses the boundaries that are wholly enclosed in a bounding box

to measure objectness. BING uses norm of gradients to measure objectness. However,

these detectors tend to assign high objectness scores to patches that contain either true

objects or partial objects and partial backgrounds, and assign low objectness scores to

patches containing relatively pure background. Therefore, further distinguishing the true

object patches and patches that contain partial objects and backgrounds can enhance

the discriminative power of classifying objects and non-objects. Compared to images,

videos contain additional temporal information. Since tracking methods aim to estimate

optical flows over temporal frames by assuming that the objects move coherently, the

43

consistency of patches in optical flows can be a good indicator for objectness. We did

some preliminary studies and came up with the following hypothesis: the object patches

tend to have more consistency than patches that include partial objects and partial

backgrounds. In other words, object patches tend to have less variations than patches

that include partial object and partial background in an optical flow. Fig. 3.6 shows an

example of the comparison of negative bird patch tube and positive bird patch tube. It

clearly demonstrates the less variations in the positive bird patch tube. Driven by this

hypothesis, we propose a compact feature representation for spatial appearance of each

patch, and formulate a temporal objectness to learn object proposals.

Figure 3.6. Sample images of positive and negative patch tubes: positive bird patch tube
(upper) and negative patch tube (lower), where patch tube is a set of patches across
frames in the temporal order generated by tracker

3.2.2.1 Block-based Spatial Feature Representation

All objects could be roughly divided into: rigid objects and non-rigid objects. Ex-

amples of rigid objects include airplanes, cars, and boats. Example of non-rigid objects

include human, birds, and dogs. A sub-region of an image is called a patch. In a

video, tracker generates a set of patches across frames in the temporal order. This set

of patches is called a patch tube. Our preliminary studies show that patch tubes for

objects in optical flow during tracking generally have much higher consistency and lower

variations over time than patch tubes for non-objects. Non-rigid objects typically have

consistency in optical flow as a whole part but some internal part/parts of the object

might move and change appearances more than other parts depending on the structure

of deformable objects. For example, the body of a running horse usually does not change

appearances as much as the four legs.

To measure the relative consistency in appearances of both rigid and non-rigid

objects, we develop the following block-based feature representation. First, we divide

44

the patch of interest into a 3x3 grid, resulting in a total of 9 blocks. Within each of 9

blocks, we develop a compact and powerful feature vector to represent the local visual

properties. Using the variation of pixel values in red, green, and blue channels, the

entropy, the spatial distribution of 3 color channels, and the aspect ratio, we define the

feature representation as a 20-dimensional feature vector. These 20 values in the feature

vector include standard deviations of pixel intensities in rgb color channels (3 values),

the entropy of the luminance-based histograms (1 value), relative frequencies of 5 bins

with top frequencies in rgb color channels (15 values), and the aspect ratio of the patch

(1 value). The first 19 features are the same as the corresponding 19 features described

in section 3.1.2.1. The aspect ratio is the new feature introduced and is computed as

the ratio of the width to the height of a patch.

Each patch has 9 blocks with each block represented by a 20-dimensional feature

vector. For non-rigid objects, the changes in some blocks with moving parts are typically

bigger than the changes in other blocks with non-moving parts. Using this block-based

spatial feature representation, we capture the relatively steady regions by measuring the

changes of each patch in the optical flow represented by the patch tube.

3.2.2.2 Temporal Objectness

We describe how to measure temporal objectness using this block-based spatial

feature representation and temporal information in detail. Our goal is to measure how

the patch’s visual appearance changes over consecutive frames over time by using the

block-based spatial features. Since only parts of the object move in the non-rigid ob-

ject patch tube, we would like to measure the overall variation of consecutive patches

at relatively static regions of the object in a patch tube. Hence, we first compute 9

block-wise distances between neighboring patches in the patch tube and keep the least 5

distances. Next, we compute the average of these 5 distances as the neighbor change be-

tween two neighboring patches. Finally, we compute the median of all neighbor changes

across the patch tube as a measure of overall variation. Since more variation indicates

less likeliness of objects, we subtract this median from zero as the temporal objectness.

Algorithmically, let Pti represent a patch in frame ti, Bx,y,ti represent the spatial feature

vector of a block at the xth horizontal partition and yth vertical partition in patch P

45

of frame ti where x=1,2,3, y=1,2,3, and ti = 1,...,n, and n is the number of frames in

a stable frame sequence. A tracked patch tube can be represented as {Pti} and the

corresponding block features are {Bx,y,ti}. The Algorithm 3 describes how to compute

temporal objectness o for {Bx,y,ti}.

Algorithm 3 Compute the temporal objectness for a patch tube

input: {Bx,y,ti} (a sequence of 20-D feature vectors)
output: o (a value represents temporal objectness)
DT ← new List /*temporal distances*/
for ti ← 1 to n− 1 do
DN ← new List /*neighbor patch distances*/
for x← 1 to 3 do
for y ← 1 to 3 do
d← EuclideanDist(Bx,y,ti , Bx,y,ti+1)
DN .append(d)

end for
end for
sortedDn ← sort(DN , order=ascending) /*sort 9 values in DN*/
min5D ← first 5 elements of sortedDN

aveD ← average(min5D)
DT .append(aveD)

end for
o ← -median(DT) /*find 0 minus median of n − 1 temporal distances in a patched
tube*/

Temporal objectness o represents zero minus the central tendency measure of changes

over time sequence for each patch tube. We use the median value on temporal distances

of all pairs of adjacent frames to compute temporal objectness since it is more robust

than the mean value when handling outliers.

After computing temporal objectness, we use it as a measure of likeness for an

object and rank the temporal objectness for all object proposal tracks. Precision and

recall using different thresholds ranging from top 1 to top n proposals are then computed

to evaluate the performance of the proposed temporal objectness method.

The time complexity for calculating the feature is O(mn) for a patch with width

m and height n. The time complexity for calculating the temporal objectiveness is

O(kLog(k)), where k is the total number of frames in the tube.

46

3.2.3 Experimental Results

We perform two experiments on YouTube-Objects V2.2 database to evaluate the

temporal objectness model. First, based on the ground truth of the shot, we pick a

fixed number of frames to individually apply the EdgeBox detector and the proposed

temporal objectness measure to generate top object proposals for comparison. We treat

this as the baseline. Second, we compare the EdgeBox and the proposed method on

the stable frame sequences, which are selected by the proposed stable frame sequence

generation model. The purpose for the second setting is to test the performance of

the temporal objectness in the context of the entire proposed system. We describe the

experiments and results for both settings in the following two sections.

3.2.3.1 Baseline Comparison

Since not all frames are annotated and all instances have been annotated in the

testing set for annotated frames, we select up to 10 annotated frames from each shot

in each video in the testing set as the initial frame for object detection. Specifically,

if a shot has 10 or more annotated frames, we select the first 10 annotated frames. If

a shot has fewer than 10 annotated frames, we select all annotated frames. Due to

the sparse annotation of frames, the first 10 annotated frames have sufficient temporal

gaps along the frame numbers and there are no duplicated frames for initializing the

tracker. After selecting up to 10 frames per shot for all shots, this data set contains

frames from different shots and therefore is called a shot representative frame set. For

each frame in this shot representative frame set, we apply EdgeBox detector [58] to

generate object proposals and use EdgeBox objectness to select top 20 proposals, whose

locations are used as the initial object locations for tracking. The parameters of Edge-

Box are set as follows: the step size of the sliding window is 0.8; the non-maximum

suppression threshold is 0.55, the min score of boxes to be detected is 0.01, and the

maximum number of boxes to be detected equals 100. After selecting top 20 bounding

boxes, we use them as initial positions and apply SPOT tracking [83] for each of boxes

for a total of 20 consecutive frames to generate optical flows in video. We chose 20

frames for tracking because empirical studies suggested that it is long enough to have

discriminative temporal objectness. The duration of 20 frames is typically less than 1

47

second so most tracked patch tubes still cover the initial region without drifting, even

in an unconstrained video, unless the video shot has big changes or the tracked objects

move out of the scene. Since SPOT tracker [83] uses constraints among multiple objects

for initialization, we use frames that have at least 2 detected positive objects to initialize

tracker. For each object track covered in 20 frames, we compute its temporal objectness

as described in Algorithm 3. Since we use the annotated positions of objects in the

initial frames to compute recall rate and precision of top n proposals, we need to make

sure that each tracked patch tube correctly contains objects without drifting (i.e., an

object become a non-object or vice versa). To this end, we manually remove the last

few patches to make sure each patch in a tube is consistently tracked (i.e., containing

objects from start to end).

In the end, we use 425 frame sequences (i.e., 260 rigid and 165 non-rigid frame

sequences) which contain 687 annotated objects (i.e., 362 rigid objects and 325 non-rigid

objects) in our experiments. For comparison, we rank patch tubes based on EdgeBox

objectness and select top 1 to top 20 patch tubes from each of 20 frames in the frame

sequence to compute precision and recall at each level from 1 to 20. We also use the

proposed temporal objectness to select from top 1 to top 20 patch tubes from each frame

sequence to compute precision and recall. Fig. 3.7 shows the precision-recall (PR) curves

of the proposed method versus EdgeBox objectness for all 10 categories of objects. It

clearly shows that the proposed method significantly outperforms the state-of-the-art

EdgeBox method overall. The curves merge at the top 20 patch tubes because we use all

20 tubes generated from EdgeBox. From this comparison, we can see that the proposed

objectness learns better object proposals than EdgeBox within top 20 proposals by

considering temporal information. Fig. 3.8 and Fig. 3.9 show the PR curves for rigid

and non-rigid objects, respectively. For rigid objects, we can see from Fig. 3.8 that the

proposed method outperforms EdgeBox when the precision is greater than 0.26. This

corresponds to extracting approximately top 10 proposals per image. For non-rigid

objects, we can see from Fig. 3.9 that the proposed method significantly outperforms

EdgeBox since its PR curve covers a significantly larger area. It is clear that the proposed

method performs especially well on non-rigid objects due to its computation of temporal

objectness using the minimum 5 block-wise distances on block-based features. Overall,

48

the proposed method achieves significant improvement in generating accurate proposals

for rigid and non-rigid objects compared with the EdgeBox method. For object detection

in videos, which typically employs tracking, temporal objectness can be computed to

improve the quality of the object proposals. In other words, incorporating the proposed

temporal objectness in video can achieve higher precision (i.e., fewer false positives)

with the same number of proposals or the same recall rate with the fewer number of

proposals. This improvement is obtained with the model-free learning (i.e., no training

is needed) and with little additional cost on detection. Hence, this approach leads to

further development of a system that incorporates tracking and detection with improved

quality of object proposals. Fig. 3.10 shows a sample of qualitative results using the

proposed object proposal learning method.

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e
a
ca

ll

EdgeBox
Proposed

Figure 3.7. PR curves comparison for all objects: curves of the proposed temporal
objectness and EdgeBox objectness for top n=1,...,20

3.2.3.2 Comparisons of the System Performance Under Different Parameters

In this experiment, we compare the EdgeBox detector and the proposed temporal

objectness in the context of employing shot detection and key frame extraction. In

other words, we apply the stable frame sequence generation module first and select

the overlapping frames between the ground truth and key frames in the training and

testing sets. This step is exactly the same as how we prepare training and testing

images in section 3.1.3.2. We used top 20 object proposals on each frame in section

49

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e
a
ca

ll

EdgeBox
Proposed

Figure 3.8. PR curves comparison for rigid objects: curves of the proposed temporal
objectness and EdgeBox objectness for top n=1,...,20

0.10 0.15 0.20 0.25 0.30 0.35
Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e
a
ca

ll

EdgeBox
Proposed

Figure 3.9. PR curves comparison for non-rigid objects: curves of the proposed temporal
objectness and EdgeBox objectness for top n=1,...,20

3.1.3.2. Since the proposed temporal objectness method is training-free, we use the

65 frames in the testing set to evaluate the temporal objectness module. For testing

the tuned parameters, on one hand, we would like to select more object proposals on

each frame to have higher detection rate (i.e., greater than 0.7). On the other hand,

if we select too many proposals, the experiments showed it affects the performance of

tree-based hierarchical model. Hence, we keep top 50 proposals on each frame based on

the ranking from EdgeBox detector. We then apply the proposed temporal objectness

to re-rank the top 50 proposals. We finally compare both recall and PR curves for the

50

Figure 3.10. Qualitative examples of our object proposals: green bounding boxes show
matched objects using IoU=0.7, red ones show missed ground truth. For 9 images from
top left to bottom right, the number of matched bounding boxes and the number of
missed objects are: 3,0; 2,0; 2,0; 2,1; 3,0; 2,0; 2,0; 4,1; and 2,1 respectively

different levels of IoU when defining the match between predicted bounding boxes and

ground truth bounding boxes. We choose the values of IoU to be 0.5, 0.7 and 0.9 since

they are the typical values for most experiments in prior literature.

Table 3.3 and Fig. 3.11 show the comparison of recalls of the EdgeBox and the

proposed temporal objectness using top 50 object proposals under the IoU value of 0.5.

It shows the proposed temporal objectness method significantly improves the recall over

the EdgeBox for number of proposals from 1 to 50. To reach the recall value of 0.8,

the EdgeBox needs 46 proposals and the proposed temporal objectness method only

requires 21 object proposals.

Table 3.4 and Fig. 3.12 show the comparison of recalls of the EdgeBox and the

proposed temporal objectness using the top 50 object proposals under the IoU value

of 0.7. It shows the proposed temporal objectness method reaches much higher recalls

than the EdgeBox for the number of proposals from 1 to 50. To reach the recall value

of 0.6, the EdgeBox needs 30 proposals and the proposed temporal objectness method

51

Table 3.3. Detection rates 1 of the EdgeBox and the Temporal Objectness: the detection
rates of the EdgeBox and Temporal Objectness for top n proposals under IoU = 0.5

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

EdgeBox .16 .28 .36 .42 .46 .48 .50 .54 .56 .56 .58 .59 .59 .59 .60 .61

Temporal Objectness .26 .39 .48 .49 .54 .57 .61 .62 .62 .64 .66 .66 .69 .69 .70 .74

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

EdgeBox .63 .63 .63 .63 .64 .66 .68 .68 .70 .71 .71 .73 .73 .74 .76 .76

Temporal Objectness .73 .75 .77 .79 .82 .82 .84 .84 .85 .85 .85 .85 .85 .85 .85 .85

n 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

EdgeBox .78 .78 .78 .78 .78 .78 .79 .79 .79 .79 .79 .79 .79 .80 .80 .80

Temporal Objectness .85 .85 .85 .85 .87 .87 .87 .87 .89 .90 .90 .90 .92 .92 .92 .92

n 49 50

EdgeBox .80 .80

Temporal Objectness .92 .92

Figure 3.11. Comparison 1 of the EdgeBox and the Temporal Objectness: the recalls
using the EdgeBox and Temporal Objectness under IoU = 0.5 and top n=1,...,50

only requires 10 object proposals.

The comparison of PR curves for the EdgeBox and the proposed temporal object-

ness under IoU = 0.5 is shown in Fig. 3.13. We can see that the proposed temporal

objectness method clearly outperforms the EdgeBox detector. The upward shape of

both lines are due to the randomness for the small value of top n proposals. In other

words, when we only retrieve a few number of top object proposals, it is possible that

both precision and recall increase. In this graph, we see that we can reach recall of 0.8

and precision of 0.25 approximately for the proposed temporal objectiveness method

when returning top 22 object proposals.

52

Table 3.4. Detection rates 2 of the EdgeBox and the Temporal Objectness: the detection
rates of the EdgeBox and Temporal Objectness for top n proposals under IoU = 0.7

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

EdgeBox .09 .19 .29 .32 .36 .39 .40 .44 .44 .44 .45 .45 .46 .46 .46 .48

Temporal Objectness .14 .21 .29 .36 .40 .45 .45 .50 .55 .62 .62 .64 .64 .69 .71 .79

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

EdgeBox .49 .49 .50 .51 .51 .51 .54 .54 .55 .56 .58 .59 .59 .60 .61 .61

Temporal Objectness .79 .79 .79 .79 .79 .79 .83 .83 .83 .83 .86 .86 .88 .88 .88 .88

n 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

EdgeBox .63 .64 .64 .64 .64 .64 .64 .64 .64 .64 .65 .66 .66 .66 .66 .66

Temporal Objectness .88 .90 .93 .93 .93 .93 .93 .93 .93 .93 .93 .93 .95 .95 .95 .95

n 49 50

EdgeBox .66 .66

Temporal Objectness .95 .95

The comparison of PR curves for the EdgeBox and the proposed temporal object-

ness under IoU = 0.7 is shown in Fig. 3.14. We can see that the proposed temporal

objectness method also clearly has the better performance than the EdgeBox detector.

Since we are more strict in defining the correct detection by using IoU of 0.7, the overall

PR curves are a little worse than the PR curves under IoU = 0.5. It shows that we can

reach the recall of 0.8 and precision of 0.1 approximately using the proposed temporal

objectiveness when returning top 23 proposals. When setting the IoU value to be 0.9,

the first frame from each sequence has at most one correctly detected proposal. The

SPOT tracker could not be applied since it requires at least two objects for initialization.

Figure 3.12. Comparison 2 of the EdgeBox and the Temporal Objectness: the recalls
using the proposed temporal objectness and EdgeBox objectness under IoU = 0.7 and
top n=1,...,50

53

Figure 3.13. PR curves 1 of the Temporal Objectness and the EdgeBox: the curves
using the proposed temporal objectness and EdgeBox objectness under IoU = 0.5 and
top n=1,...,50

Figure 3.14. PR curves 2 of the Temporal Objectness and the EdgeBox: the curves
using the proposed temporal objectness and EdgeBox objectness under IoU = 0.7 and
top n=1,...,50

3.2.4 Summary

We propose a temporal objectness measure that takes both spatial feature and tem-

poral changes into consideration and achieves higher performance in generating general

object proposals than state-of-the-art methods. The advantage of the proposed method

is that it is generally applicable to various object proposals and tracking methods. With

tracking along the way, it can learn better object proposal representation using temporal

information.

54

CHAPTER 4

OBJECT PROPOSAL CLASSIFICATION WITH DEEP NEURAL NETWORKS

After learning object proposal tracks, we have a large number of object proposal

tracks resultant from one or multiple videos. Each object proposal track either contains

non-object background or an object of a specific category. Suppose that there is a total

of n object categories in the dataset domain, each object proposal track belongs to one

of n + 1 categories (e.g., n object categories plus one background category). Based on

the previous assumption that all object proposals in one track contain objects from the

same category, we can simply select one object proposal (e.g., the first one) from each

track as the representative object proposal and apply classification on it. The remaining

object proposals in the same track have the same object category label. Hence, in this

last module, the task is to classify each representative object proposal as one of n + 1

classes.

Traditional machine learning paradigms typically include two steps: engineering of

feature representation and classification. Researchers have been working on developing

new features with high discriminative power to represent instances from different classes

in the past three decades. Different classifiers have been developed to be combined

with the appropriate features for the classification task. Good feature representation is

crucial for yielding high classification accuracy.

With the development of computing power such as faster CPUs and parallel pro-

cesses with GPUs, along with the ever-growing big data, neural networks with deep

architectures trained on large-scale data have achieved breakthrough performance on

classification task since 2012. In the image processing and computer vision domain, the

use of Convolution Neural Network (i.e., CNN) [85–87] achieved breakthrough perfor-

mance for tasks such as image classification, object detection, and object recognition.

The major difference between deep learning approaches and traditional machine learning

approaches is that good feature representation is learned through deep neural networks

55

instead of engineered features developed by humans. By minimizing the loss function

based on a certain type of classification error between predicted labels and true labels,

weights and biases are gradually updated through backpropagation using the scholastic

gradient descent for global optimization. Since features are learned by the global op-

timization function, they are better than traditional engineered features. That is the

main reason that deep-learning-based methods have achieved striking results in recent

five years.

In this chapter, we provide a detailed description of deep neural networks and how

to employ deep learning to perform object proposal classification in the proposed frame-

work. Section 4.1 provides an overview of the deep neural networks, together with the

definition, some state-of-the-art methods, and the relevant concepts. Section 4.2 dis-

cusses some applications that are driven by deep neural networks. Section 4.3 introduces

the basic structure of the neural networks and their basic components, named percep-

trons. Section 4.4 discusses the backpropagation and the gradient descent algorithm,

which are used to perform learning. Section 4.5 talks about different optimization tech-

niques using objective functions, regularization functions, and hyper-parameter tuning

methods. Section 4.6 introduces the CNN and its use in the proposed system to perform

the classification of object proposals in the proposed system.

4.1 Overview

Unlike traditional machine learning, deep learning is a set of new algorithms inspired

by the artificial neural network algorithm in machine learning but has been extended

to deep architectures. The word ”deep” here has two meanings. First, it refers to the

height of the neural network. That is, the neural network has many more layers than the

traditional neural networks. Second, it refers to the width of the neural network. That

means the number of neurons in each layer is much larger than the number of neurons in

each layer of the traditional neural networks. Even through the artificial neural network

was introduced back in the 1980s [88], it has two limitations: First, the neural network

typically requires a large amount of training data to have good performance on the

testing data. Second, the computation power is limited, and the learning process is very

computationally intensive. Various supervised and unsupervised machine learning and

56

data mining algorithms have been developed in the past 30 years. These algorithms

include decision trees [89] , K-Nearest-Neighbors (KNN) [90], Support Vector Machine

(SVM) [91], Naive Bayes [92], Regression [93], K-means [94] and many others. The

performance and the choice of the classifiers depend on the specific problem and its

context. Overall, SVM was one of the best classifiers for many problems before 2006.

In the past 20 years, as the growth of the electronic devices (e.g., computers, mobile

devices, etc.) and Social Network Services, labeled data in different domains have been

growing rapidly. Driven by Moore’s law, the computational capacity of the machines has

also been significantly increased with the advancement of hardware such as CPUs and

GPUs. Driven by these two forces, artificial neural networks algorithm started achiev-

ing breakthrough performance and outperformed many state-of-the-art algorithms since

2006 [95], [96]. These breakthroughs occurred in the domains of image understanding,

computer vision, speech recognition, and Natural Language Processing (NLP).

4.2 Applications

Driven by the significant progress of deep neural networks, many applications have

been developed in multiple domains.

In the image processing and computer vision domain, some apps (e.g., Blippar [97])

are developed to automatically recognize the objects in real life through phone camera

and provide assistive information such as wiki, knowledge graph, direct purchase, and

video instruction of usage of each recognized object. For example, if a user scans a chair,

he/she can then find the information such as the inventor of the chair, the history and

the manufacturing process of the chair, and other related entities of the chair together

with their information. If a user goes to a tourist place and sees a temple, he/she can

scan the phone to recognize this temple. If a user sees a cool car, he/she can scan the

app to recognize the model and made of the car and order for a test drive. If a user

purchases a new cleaner, he/she can use the app to scan the cleaner and access the

instructional video of how to use it once the cleaner is recognized. Users can scan the

objects to check their relevant information or make purchases. Google photo app [98] can

automatically assign the tags (e.g., objects and scenes) to everyone’s photo collections

on their mobile phones using the offline trained deep neural networks. Then the users

57

can easily search and locate the photos they are looking for by the query keywords

such as ”park”, ”mountain”, ”car” or ”beach”. Some other web services [99] provide

API to automatically recognize the logos and the brands of the commercial products in

images, so users can perform the reverse search by images to find the products of the

particular brands. Enterprises can also use this to do marketing for their products. In

terms of face recognition, DeepFace [100] reaches the accuracy comparable to humans.

New face recognition technologies driven by deep neural networks can be employed

in a wide range of applications in security domains. For example, users can log into

the computers by their faces. This has already been used in many PCs today (e.g.,

Microsoft Surface). Another application is that people can scan their faces to make

payments or enter the authorized places instead of using sensors or badges. Autonomous

driving [101] is another big area in which computer vision and deep learning can be

applied. Even though the self-driving cars use multiple sensors to detect the physical

objects around them, it is challenging to distinguish multiple objects with similar size,

and similar shapes at the same distances. Hence, perceiving and understanding of

various objects such as traffic signs [102–104], lights, other cars, and many other objects

using deep learning is one of the core components for implementing autonomous driving.

Robotics [105] is a complex system with vision as one of the core parts. Accurately

recognizing the objects and the environments is a pre-step for robots to take logic actions.

Material classification [32] is a research topic, in which machines can automatically

categorize different materials of objects and perform auto recycling. In this way, robots

operate differently when walking on different materials of the surfaces.

NLP is another domain in which many applications have been driven by deep neural

networks. It mainly uses Recurrent Neural Networks (RNN) [106], [107] to capture

the temporal information as the memory to build the language model. Both speech

recognition and machine translation have recently achieved significant improvement in

accuracy. Microsoft Research has developed a real-time speech translation system using

deep neural networks [108], [109]. Combining RNN in the language model and CNN

in the computer vision can develop advanced AI applications. For example, once the

objects in the images are recognized and the relationship between the entities is analyzed

by the language model, description of images could be automatically generated. Some

58

examples of machine-generated descriptions based on the images are ”two pizzas are

sitting on top of the oven” and ”a group of young kids are playing frisbee on some grass

field”.

4.3 Architecture

The basic unit of a neural network is called a perceptron. A perceptron can be

considered as a ”gate”, which takes several input values and produces a single output

value. Graphically, a perceptron is as shown in Fig. 4.1. The function of a perceptron

is:

output =


0 if

∑
j(wjxj) < threshold

1 if
∑

j(wjxj) ≥ threshold
(4.1)

where wj represents the weight for the jth neuron and xj represents the value of the

jth input neuron.

Figure 4.1. Example of a perceptron

A typical neural network consists of several layers with each layer containing mul-

tiple perceptrons. Fig. 4.2 shows a 4-layer neural network with 2 hidden layers, where

the first layer contains 4 nodes and the second layer contains 3 nodes.

Each node inside the network is called a neuron. There are mainly three types of

variables inside a neural network: the neuron values X, the weights W , and the biases

b. Each neuron has a neural value associated with it. Each link between two nodes

has a weight. Each neuron also has a bias except the neurons in the input layer. The

activation function defined in Eq. (4.2) is used to compute a single output neuron value z

59

Figure 4.2. Example of a neural network with 2 hidden layers

(with bias b) based on the neuron values X from the input layer and their corresponding

weights W .

Z = WX + b (4.2)

Eq. (4.1) represents a step function, which maps from multiple inputs to a single

output as shown in Fig. 4.3. However, the drawback is that the change is too abrupt.

In other words, a nice property we want a perceptron to have in a neural network is

that the small change in each input causes a small and gradual change in output.

Driven by this desired property, we choose to use the sigmoid function instead of

the step function as the activation function to do the mapping. The sigmoid function is

defined as Eq. (4.3)

σ(z) =
1

1 + e−z
(4.3)

where z is the input parameter. The graph of the sigmoid function is shown in Fig. 4.4.

As we can see, the shape of the sigmoid function is a smooth curve with input z ranging

from negative infinity to positive infinity and output σ(z) ranging between 0 and 1. The

function is also monotonic. Hence, a small change in z causes a small change in σ.

60

Figure 4.3. A step function

Figure 4.4. A sigmoid function

4.4 Feed-Forward and Back Propagation

The learning of a neural network is carried out through two types of update: feed-

forward and back propagation. Feed-forward takes data from input layer and updates

the neuron values layer by layer in the forward direction until it reaches the output layer.

Suppose there is a total of n instances in a training set. The number of neurons in the

61

input layer is equal to the dimension of each data instance. At the beginning, all the

weights and biases of the network are initialized in a random fashion. The neuron values

in the input layers are fed in by the raw feature values of each training data instance.

To compute each neuron value of the second layer (i.e., the first hidden layer), all the

neuron values of the first layer (i.e., input layer) are multiplied with their corresponding

weights to obtain a weighted sum by the activation function defined by Eq. (4.2). This

weighted sum is fed into a non-linear transformation by using the activation function

defined in Eq. (4.3). After each neuron value in the second layer is computed, we can

use them as the input to similarly compute the neuron values in the third layer. In this

way, we keep computing the neuron values in each layer in the forward direction until

we obtain the neuron values in the output layer. This process is called feed-forward.

The process of updating the weights and the biases from the output layer to the

input layer is called back propagation. To perform the back propagation, we first define

a loss function (i.e., objective function) to measure the overall differences between the

predicted labels from the network and the true labels of the training data. There are

many different types of loss functions. For illustration purpose, we use a quadratic loss

function as an example. The quadratic loss function is defined as follows:

C(w, b) =
1

2n

∑
x

‖y(x)− a2‖ (4.4)

where C is the loss, w is the weight, b represents the bias, n is the total number of

the training instances, y(x) is the true label of the training instance and a = σ(z) is

computed by Eq. (4.3) and contain the predicted label from the network.

The goal of training the network is to minimize the cost function. We use back

propagation to achieve this minimization. Theoretically, this minimization problem can

be solved analytically. However, it becomes impractical when the feature dimension of

the input data X is high. Therefore, an approximation technique is applied to solve

it. The most common solver for this problem is gradient descent. Suppose that the

parameters of the loss function are two dimensions, the loss function is in a 3-d space.

Gradient descent treats the problem as finding the minimum point for a ball on a plane

from some initial points by rolling the ball a little in a certain direction each time by

62

gravity. If the loss function is convex, each parameter is updated by subtracting the

product of its partial derivative from a small weight using Eq. (4.5) and (4.6), where η

is called the learning rate, and k and l represent the index for iteration. The learning

rate decides how big the ball is moving in each iteration.

wk → wk − η
∂C

∂wk
(4.5)

bl → bl − η
∂C

∂bl
(4.6)

In practice of training a neural network, we need to compute the gradient vector for

each of the large number of training instances, which leads to high computational cost.

Therefore, a variant of gradient descent using sampling and approximation techniques is

usually used to reduce the computational cost. It is called stochastic gradient descent.

Its main idea is to take a sample from the training set each time to compute the gradient

and use the average of the gradients in a small set of samples to approximate the update

of the weight and the bias. Each time a sample called mini-batch is drawn from all the

training instances without replacement. We keep taking samples until all the training

instances are used up. Suppose the total number of mini-batches is m, the updates for

stochastic gradient descent is computed by Eq. (4.7) and (4.8).

wk → wk −
η

m

∑
j

∂CXj

∂wk
(4.7)

bl → bl −
η

m

∑
j

∂CXj

∂bl
(4.8)

In summary, when training a neural network through feed-forward and back prop-

agation, each input training instance X is directly passed into the input layer and goes

through feed-forward steps. The output from the previous layer is the input to the next

layer. During the transformation between two layers, the summation of the weighted

products followed by a nonlinear transformation (e.g., sigmoid function) is applied. Dur-

ing the training, the entire dataset is split into three sets: a training set, a validation

set, and a testing set. The training set is used to learn the weights and the biases by

63

iteratively feeding instances from the training data via mini-batches. After getting the

output labels from the network by going forward, the predicted labels in the output layer

are computed with the true labels of the training instances. Based on a pre-defined ob-

jective function, gradient descent is applied to update the weights and biases. After all

m mini-batches are used once, one epoch is completed. For each iteration in the training

process, the validation set is used to compute the classification error as the validation

error. There are three options for the termination criterion in the training: First, a fixed

number of epochs is pre-defined and the training is terminated once this fixed number

of epochs is reached. Second, the training is stopped if the learning process converges,

i.e., the change in loss between two consecutive epochs is less than a pre-defined small

threshold. Third, the training is terminated if the change in validation errors between

two consecutive epochs is less than a pre-defined small value.

Due to the non-linear transformation nature between every two layers, theoretically,

this whole network can approximate any function if the network is large enough. This is

the main reason deep network is able to achieve better performance than other classifiers

in many problems.

4.5 Optimization

After defining the basic architectures of neural networks and their solvers, we discuss

different cost functions and optimization strategies that can be used for training neural

networks.

Recall the loss function defined in Eq. (4.4) is called the quadratic loss function.

There are some drawbacks for the quadratic loss function. For simplicity, suppose that

there is only one training instance, the Eq. (4.4) becomes

C =
(y − a)2

2
(4.9)

where a = σ(z) where z = wx+ b.

To compute the updates, we take partial derivative of cost C with respect to weight

w and bias b, suppose x = 1 and the desired output y = 0, then we have:

64

∂C

∂w
= (a− y)σ′(z)x = aσ′(z) (4.10)

∂C

∂b
= (a− y)σ′(z)x = aσ′(z) (4.11)

It shows that the updates mainly depend on σ′(z). However, based on the shape

of the curve as shown in Fig. 4.4, the derivative of σ(z) becomes smaller when σ(z)

approaches 0 or 1 (i.e., curve becomes smoother). Therefore, the learning is slow.

To speed up the learning, various techniques are proposed. One technique is to

define different loss functions. There are two conditions that need to be met when

defining a loss function. First, the cost needs to be greater than or equal to 0 (i.e.,

C ≥ 0). Second, the cost is equal to 0 when the predicted output label from the neural

network is equal to the true label for data points (i.e., C = 0 when a = y). Cross-entropy

is one of the cost functions that can be used to speed up the learning, which is defined

as in Eq. (4.12)

C = − 1

n

∑
x

[yln(a) + (1− y)(1− a)] (4.12)

where a = σ(z) and z =
∑

j wjxj + b

The cross-entropy loss function satisfies the two conditions. In addition, it has a

nice property to speed up learning. To see that, by taking partial derivative of cost C

with respect to weight w and bias b, we have

∂C

∂wj
=

1

n

∑
x

xj(σ(z)− y) (4.13)

∂C

∂b
=

1

n

∑
x

(σ(z)− y) (4.14)

It is clear that the learning speed depends on σ(z) − y, which is the output error.

Consequently, it learns fast for big errors and slow for small errors. The cross-entropy is

almost always better than the quadratic cost unless the relationship between input and

output is linear since quadratic cost is able to model the linear relationship.

65

There are many other techniques that can improve the learning of neural networks.

For example, softmax is a function that is commonly used to connect the output layer.

It is defined in Eq. (4.15) and (4.16).

zLj =
∑
k

wLjka
L−1
k + bLj (4.15)

where wLjk represents the weight connecting jth neuron in Lth layer and kth neuron in

L− 1th layer, aL−1k represents the neuron values in kth neuron of L− 1th layer, and bLj

stands for the bias on jth neuron of Lth layer, and

aLj =
ez

L
j∑

k e
zLk

(4.16)

Since
∑

j a
L
j equals to 1, the softmax can be interpreted as the probability distribu-

tion of each class in the output layer. The weighted sum in Eq. (4.15) for the softmax

function is the same as the one in the sigmoid function. The difference is the activation

function defined in Eq. (4.16). Hence, the sigmoid function cannot be interpreted as the

probability distribution of each class whereas the softmax function can be interpreted

as such. To avoid the slow learning issue for the softmax function, we use natural log

to define the cost function so the learning speed depends on the error.

Overfitting is a general problem existing in machine learning, with no exception

for neural networks. It makes the model capture many details from the noisy data and

not have enough generalization power. It typically performs well on the training set

but poorly on the testing set. Regularization can be used to reduce overfitting. For

cross-entropy defined in Eq. (4.12), we can add an extra term λ
2n

∑
w w

2, where λ is a

fixed ratio as the penalty to the original cross-entropy function. The regularized cross-

entropy encourages small weights so noise in the input data does not change weights

too much. In other words, it is less likely that the model is affected by the noise of the

data. Similarly, the same extra term can be added to the quadratic function as well.

This type of penalty is called L1 regularizer. Another type of regularizer defined by

λ
2n

∑
w |w| is called L2 regularizer. After taking the partial derivative of the regularized

cross-entropy, L1 updates the weights by subtracting a constant and L2 updates the

weights by subtracting a fixed ratio of the weight. Therefore, L1 regularization has

66

much less reduction than L2 regularization if the weight itself is large. In summary,

regularized loss functions tend to learn a simpler model in general. However, it does

not always perform better than the un-regularized loss. Large data is required for the

regularized model to have good performance.

Unlike L1 and L2 regularization, which change the cost function, another technique

called dropout reduces overfitting by changing the structure of the network. An obser-

vation is that overfitting could be reduced by training multiple neural networks followed

by computing the average of the output. Driven by this observation, dropout reduces

overfitting by randomly dropping a half of neurons at each layer and using the other

half of the network to train for each iteration.

There are several other factors that can affect the learning of the neural networks.

First, the way to initialize weights may affect the learning behaviors. If the weights are

initialized to be too large, most z values defined by in Eq. (4.15) are either much greater

than 1 or much less than -1. Based on the shape of the sigmoid function, the gradients

of σ(z) are small for these values. This can cause the learning to be slow. A good

way of initializing weights is to generate weights from Gaussian distribution with mean

being equal to 0 and standard deviation being equal to 1/
√
nin, where nin represents

the number of neurons in the input layer. Second, the choice of the activation function

plays an important role in the learning process. Here we focus on two common activation

functions, namely, the sigmoid function and the softmax function. The sigmoid function

can cause the vanishing gradient problem. The vanishing gradient problem is defined

as the unstable learning caused by the fact that updates of the gradient of the next

layer is accumulated multiple of the previous layers. Rectified linear function defined

by y = max(0, w × x + b) is used to handle the vanishing gradient problem. Since the

sigmoid function has the range from 0 to 1 and the rectified linear unit function ranges

from 0 to positive infinity, the sigmoid function can describe the probabilities and the

rectified unit function can describe real numbers. In addition, the gradients decrease as

input data X feed-forward through the layers for the sigmoid function. However, it is

not the case for the rectified unit function. Hence, the rectified unit function does not

have the vanishing point problem.

Other hyper-parameters that affect the learning of neural networks include the

67

number of epochs to run, choices of the mini-batch size, the learning rate, and the

regularization parameter. How to systematically tune these parameters to optimize the

learning of neural networks is still an ongoing research topic. There are some rules of

thumb. First, we can fix a small number of epochs and mini-batch size and start tuning

the learning rate from a fixed number (e.g., 0.1). If the cost starts increasing, a small

adjustment on the learning rate to a smaller scale can be performed before continuing

the training. The regularization parameter can be tuned in the same way as the learning

rate. In term of the mini-batch size, if it is too small, we are not taking full advantage of

the parallel computations of GPU, and large variations exist in different mini-batches.

If it is too large, there will be infrequent updates of weights and biases. The good news

is that the mini-batch size is independent of the choice of the other parameters, so we

don’t need to change it once it is fixed. Some variations of the gradient descent are

Hessian and Momentum-based descent.

4.6 Convolution Neural Networks

All traditional networks are comprised of some layers with perceptrons, and each

layer is one dimension. For some classification tasks in image domains, each gray-scale

image is essentially a 2-dimensional matrix with each pixel represented by an element

in the matrix. Furthermore, the spatial relationship between pixels has correlations in

terms of the semantic meaning of the images. Therefore, flattening the image into a

vector and feeding it into a 1-d input layer in neural networks lose the original spatial

relationships in the image and cannot achieve great performance. A different type of

network called Convolution Neural Network (CNN) is developed to do the learning for

the problems in the image domain.

A CNN is similar to a traditional multi-layer perceptron network except that each

layer is a 2-d array of neurons. Fig. 4.5 shows that convolution and pooling operations

are used to connect each layer to the next layer. For convolution, a per-defined small

template (e.g. 5x5) operates on each input layer by convolution in the scanning fash-

ion to generate feature maps. Pooling means subsampling feature maps to a smaller

dimension. For the weights between two layers, all the weights are shared by connecting

template neurons in the input layer to different neurons in the next layer. It can signifi-

68

Figure 4.5. Convolution neural network example

cantly reduce the total number of parameters in the network to make training practical.

The remaining steps for training are the same as the techniques that are used in the

traditional multi-layer perceptron networks.

4.7 Object Proposal Classification

In our task of object proposal classification, we employ a two-stage deep convolution

net approach: pre-train and fine-tune.

In the pre-train stage, large-scale out-of-domain labeled data could be used to train

the network and learn the meaningful features, as long as the categories in the domain-

specific dataset is a subset of the categories in the large-scale out-of-domain dataset.

In the fine-tune stage, the pre-trained weights and bias are used to initialize training,

replace the number of neurons in the output layer is replaced by the number of categories

in the domain-specific dataset, and domain-specific data are used to train (i.e., fine tune)

the network.

Specifically, we use ImageNet data [110] in the pre-train step since it is the largest

image dataset with the labeled objects. We use the open-source deep learning frame-

work Caffe [111] with AlexNet [85], which is an eight-layer convolution network, in the

pre-training to learn meaningful feature representation from ImageNet data. We then

use labeled objects in the domain-specific dataset from a video or videos to fine-tune

the parameters (e.g., weights and biases). After the training, we will classify each of

representative proposals into background or a specific object category. By assigning the

same categorical label to the rest of object proposals in the same proposal track, we can

label all object proposals in all individual frames throughout the video.

69

CHAPTER 5

EVALUATION OF THE PROPOSED SYSTEM

In this chapter, combining all the modules from the previous chapters, we illustrate

the entire system in details by describing the input and output of each module in a

workflow. Then we describe the experiments conducted on the entire system for object

recognition in video, followed by presenting preliminary experimental results and refined

experimental results. In preliminary experiments, we use the hard-coded threshold for

shot boundary detection and only select a few representative frames from each shot to

pass down to the remaining modules. In the refined experiments, we use an adaptive

threshold for shot boundary detection and all labeled frames for experiments. For refined

experiments, we have four settings which can separately evaluate the effect of adding

each individual proposed module (i.e., hierarchical model and temporal objectness) to

the whole system.

5.1 System Workflow

The architecture of the entire proposed system is shown in Fig. 1.1. Since a video

includes multiple shots with relatively small visual content variations within each shot

and large variations between the shots, we firstly apply the shot boundary detection

algorithm to find the shot boundaries of the video. In other words, the video is divided

into multiple shots with each shot containing a sequence of consecutive frames. The last

frame of each shot is the predecessor of the first frame of the next shot.

Multiple shots are generated after applying the shot boundary detection algorithm

on a video. For each shot, we apply the key frame extraction method to find the key

frames. Key frames refer to a few frames in the shot that best represent the entire

shot. In each shot, the number of resultant key frames depends on a parameter in the

key frames extraction algorithm, which is defined as the ratio of the number of the key

frames to the total number of frames in the shot. The key frames selected in each shot,

70

form a set of M key frames in the entire video. It should be noted that the first frame

of the shot is always a key frame. We would have M frame sequences with the ith

sequence starting with the ith key frame and ending with the frame before the (i+ 1)th

key frame. In this way, each frame sequence between two selected key frames has little

content variation.

Once the key frames in each shot are obtained, we apply the object proposal gen-

eration method on each of these key frames to locate the regions, which are likely to

contain objects. We use bounding boxes on the images to represent the corresponding

object proposals. Specifically, we apply the tree-based hierarchical model on a training

set of images with labeled objects, which belong to one of the object categories of the

video, to learn the characteristics of each object and generate top n object proposals on

each key frame.

Since each of the M key frame sequences starts with a key frame containing up to n

generated object proposals, we use the generated object proposals as the initial bounding

boxes and apply the SPOT tracker together with the temporal objectness algorithm to

simultaneously track the object proposals and re-rank the objectness of these object

proposals during tracking for each key frame sequence. Finally, we have up to M × n

object proposal tracks (i.e., each track refers to a sequence of tracked object proposals

across consecutive frames). We remove object proposals with low temporal objectness

for each of M sequences since low temporal objectness indicates low possibility to contain

objects.

In the last step, the goal is to classify each object track into one of object categories.

Due to the very small variations within each key frame sequence from the shot boundary

detection and the key frame extraction, the object category usually stays the same within

each object proposal track. Hence, after classifying object proposals of the first key

frame in each key frame sequence, all object proposals in this object proposal track are

assigned to the same classified label in the first key frame. The two-stage deep CNN is

applied on a large labeled dataset, containing the categories of objects in testing videos

for training.

Finally, we have the object locations, which are denoted by bounding boxes and

category labels for all bounding boxes for every frame in the entire video.

71

5.2 Preliminary Experimental Results

We use the YouTube-Objects V2.2 dataset as described in chapter 3.1.3 to run the

experiments.

In the shot boundary detection step, we detect shot boundaries by comparing the

differences of neighboring frames with a predefined threshold value. We set the threshold

to be 20 in the shot boundary detection method to locate all shots for each video. As a

result, we divide these 155 videos into 6392 shots. For each shot, we always set the first

frame as the key frame and apply dynamic programming to select the rest of the key

frames. The ratio of the number of key frames to the total number of frames in each shot

is empirically set to be 0.02. As a result, we generate a total of 15744 key frames from

6392 shots. We select 7380 frames out of 15744 key frames that contain annotations

for bounding boxes as the testing set. We directly use images in the training set of the

Youtube-Objects V2.2 database as training images. Since 101 images in the training

set of Youtube-Objects V2.2 are also chosen as the testing key frames, we exclude these

101 images from the training set and use the remaining 4205 images in the training

set to train the hierarchical model on the bounding boxes obtained by EdgeBox [58] to

learn object proposals. We select up to 50 object proposals in each train image and

generate top 20 object proposals in each key frame (if the number of detected object

proposals is less than 20, we simply select all of the object proposals). Then we use top

20 proposals in each testing key frame (i.e., the first frame of each track) and apply the

SPOT tracker [83] on up to 7380× 20 object proposals to generate proposed track and

compute the temporal objectness for all proposals on each track. Using the computed

temporal objectness, we filter out the object proposals with temporal objectness less

than two standard deviations from the mean of each track. In this way, we keep the

”high quality” proposals based on the temporal objectness.

The last step is to classify each proposal into one of 10 object categories. We

need the images that have the ground truth labels to evaluate the performance of the

system. Hence, from the object proposals generated so far, we select those proposals

that have ground truth object category labels from annotated images in Youtube-Objects

V2.2. This includes a total of 9558 object proposals as the testing set. For training,

we pre-train CNN on 1 million images from ImageNet with more than 1000 categories

72

(including 10 categories of the Youtube-Objects V2.2 dataset) to get the initial model

(i.e., weights and biases with discriminative features). We then fine-tune the model by

replacing the output layer with 11 neurons corresponding to 11 classes (i.e., 10 object

categories and 1 background category) and replacing the training data with the data

in domain-specific dataset. This domain-specific dataset is generated by the following

two steps: 1) excluding the key frames that are from the annotated training set in the

YouTube-objects V2.2 dataset; 2) applying object proposal generation on the remaining

frames and compare the generated proposals with the ground truth annotations to select

positive and negative proposals. Specifically, we label all proposals with IoU higher than

0.7 as positive proposals and assign them the same label as the ground truth label of one

of possible 10 classes. For proposals with IoU lower than 0.7, we label them as negative

proposals (i.e., the background proposals). Since there are significantly more negative

proposals than positive proposals, we limit the number of the negative proposals to be 5

per image by sub-sampling. As a result, we have a total of 24824 labeled proposals (12662

background proposals + 12162 object proposals) in our training data for classification.

The entire system is implemented using Java, Python and Matlab. For module of

learning object proposals, the experiment runs in a parallel fashion to process a large

number of images on Amazon Web Service (AWS) EC2 m4.10xlarge linux instance with

40 virtual CPUs and 160G memory; For module of object proposal classification with

deep neural networks, the experiment runs using AWS EC2 g2.8xlarge linux instance

with 4 NVIDIA G520 GPUs (each with 1536 CUDA cores) and 32 virtual CPUs and

60G memory for about 24 hours.

We use two common criteria, interpolated average precision per category and mean

Average Precision overall, to evaluate the proposed system. Table 5.1 compares the aver-

age precision per category and mean average precision overall of the proposed system and

five state-of-the-art systems, namely, RCNN [49], Deformable Part Model (DPM) [55],

fine-tune Selective Search [112], Fine-tune EdgeBox [58] and fine-tine Videos Through

label Propagation (VOP) [113] on the test set of YouTube-Objects V2.2. For categories

of bird and car, during the module of learning object proposal tracks using temporal

objectness, we remove all object proposals of bird and car based on the temporal object-

ness. This is possibly due to the relatively skewed distribution of temporal objectness

73

Table 5.1. Comparison of the proposed method and the state-of-the-art: average preci-
sion for each category and mean average precision on the YouTube-Objects V2.2 testing
set

R-CNN DPM Fine-tune SS Fine-tune EB Fine-tune VOP Proposed
plane 14.10 28.42 25.57 26.52 29.77 49.99
bird 24.20 48.14 27.27 27.27 28.82 N/A
boat 16.90 25.50 27.52 33.69 35.34 37.18
car 27.90 48.99 35.18 36.00 41.00 N/A
cat 17.90 1.69 25.02 27.05 33.7 38.04
cow 28.60 19.24 43.01 44.76 57.56 7.15
dog 12.20 15.84 24.05 27.07 34.42 47.86

horse 29.40 35.10 41.84 44.82 54.52 36.52
mbike 21.30 31.61 26.70 27.07 29.77 46.13
train 13.2 0 39.58 20.48 24.93 29.23 45.23
mAP 20.570 29.411 29.664 31.918 37.413 38.5125

for car and bird optical flows and the threshold for temporal objectness (i.e., mean mi-

nus two standard deviation). For the remaining eight categories, we can see that the

proposed system achieves the highest precision in six categories and outperforms all

state-of-the-art methods in terms of mAP. Since the object proposals of bird and car

categories are all filtered out by the temporal objectness module due to the threshold

used in temporal objectness, the AP for bird and car categories are not available. We

improve the way to remove the object proposals with low temporal objectness in the

refined experiments so the final AP for every object category is available.

5.3 Refined Experiments

In the proposed system, there are two major novel components: tree-based hierar-

chical model and temporal objectness. To evaluate the effectiveness of each proposed

component, we design and conduct the experiments with different settings. In the fol-

lowing section, we describe each experiment in detail.

Overall, we design four settings of experiments to evaluate the impact of each

proposed component.

The first experiment aims to test the performance of the system without the hier-

archical model or temporal objectness. In other words, for stable sequence generation,

we apply shot boundary detection followed by key frame extraction to obtain stable

key frame sequences. In object proposal learning, we employ EdgeBox algorithm to

74

detect object proposals on the key frames that have ground truth labels. Then we apply

SPOT tracker and CNN for objects classification. We call the system without these two

components as the base system.

The second experiment aims to evaluate the impact of the proposed hierarchical

model. We use the same setting for stable sequence generation to obtain stable key

frame sequences. In object proposal learning, we use the hierarchical model to re-rank

the learned object proposals generated by the EdgeBox algorithm. Last, we apply SPOT

tracker and CNN for objects classification. We call this system as the base system plus

the hierarchical model.

The third experiment aims to evaluate the effectiveness of the proposed temporal

objectness. We generate the stable sequences in the same manner as the base system.

In object proposal learning, we generate object proposals using EdgeBox, apply SPOT

tracker to track object proposals, and use the proposed temporal objectness to re-rank

the object proposals based on objectness. Last, we classify the object proposals by CNN.

We call this system as the base system plus temporal objectness model.

The fourth experiment aims to evaluate the performance of the entire proposed

system, which includes the two novel components. Specifically, after generating stable

frame sequences, we apply EdgeBox followed by the hierarchical model to learn object

proposals. During tracking using SPOT tracker, we also further re-rank the object

proposals by computed temporal objectness. Finally, we employ CNN to classify the

object proposals. We call this system as the proposed system.

5.3.1 Base System

For the base system, we first apply shot boundary detection for both hard cuts and

gradual changes for each video. It outputs the divided shots, which are indicated by

starting and ending frame numbers for each shot. The number of resultant shots for

each category is summarized in Table 5.2. After shot boundary detection, we perform

key frame extraction for each shot. One important parameter in key frame extraction

is κ, which represents the proportion of the number of resultant key frames to the total

number of frames. To test and tune this parameter, we repeat the key frame extraction

experiment three times with κ values of 0.02, 0.04, and 0.06. As a result, we generate

75

18015, 31497, and 45157 key frames, respectively. This completes the module of stable

sequence generation. Second, we apply EdgeBox object detector to learn top 50 ob-

ject proposals on each key frame. To evaluate the detection rate of EdgeBox on these

key frames, we select the key frames that have the ground truth labels available as de-

scribed in section 3.1.2.3. For each of these images, we compute and plot the detection

rate with the number of proposals increasing from 1 to 50. We use the standard IoU as

the measure to detect whether an object proposal bounding box correctly detects the

true object. We set the values of IoU as 0.5 0.7, and 0.9. For each value of IoUs, we

compare the detection curves corresponding to three κ values.

Table 5.2. The number of videos and detected shots for each class

aeroplane: 13 videos, 460 shots bird: 16 videos, 204 shots
boat: 17 videos, 588 shots cat: 21 videos, 325 shots

car: 9 videos, 168 shots cow: 11 videos, 228 shots
motorbike: 14 videos, 428 shots dog: 24 videos, 395 shots

train: 15 videos, 689 shots horse: 15 videos, 351 shots

Fig 5.1, 5.2 and 5.3 present the detection rates for the different κ values at IoU

values of 0.5, 0.7, and 0.9, respectively. Setting κ value of 0.04 achieves the highest

detection rate across all three IoU values. Hence, we select 0.04 as the optimal to build

the base system and this value is used in the variant other systems, too. Using the object

proposals learned on each key frames, we initialize the SPOT tracker and start tracking

objects for each stable frame sequence. Out of all the tracked object patch tubes, we

select the tubes with at least one frame containing the ground truth label. There are

1781 frames in tracked frames with at least one frame containing ground truth. Within

each tube, we assign all frames the same label as the frames with the known object

category based on the ground truth. This completes the module of object proposals

learning.

Last, we apply CNN to classify the learned object proposals into 11 categories (10

object classes + 1 background class). For the training set, we simply employ EdgeBox

object detector on all the frames that have the ground-truth labels, which are in the

original training set of the YouTube-Objects V2.2 database. For the testing set, we

76

Figure 5.1. Detection rate for IoU = 0.5

exclude the key frames that are also in the training set. For the remaining key frames,

we use the top 20 tracked object proposals that have ground-truth labels in the testing

set of YouTube-Objects V2.2 dataset. As for CNN classification, we have 34848 images

for training and 34895 images for testing. Surprisingly, all object proposals are classified

as background. It turns out that most object proposals in the testing set for classification

are background. It is clear that EdgeBox object detector is not able to generate good

object proposals.

5.3.2 Base System Plus the Hierarchical Model

To build the first variant system, we incorporate the proposed hierarchical model

into the base system. First, we directly use the resultant stable frame sequences gen-

erated from the base system. Since three κ values (i.e., 0.02, 0.04 and 0.06) for key

frame extraction are tested in the base system and the κ value of 0.04 achieves the best

performance, we use κ value of 0.04 throughout to test the remaining experiments. In

77

Figure 5.2. Detection rate for IoU = 0.7

other words, we use the resultant stable frame sequences from the base system (based

on κ = 0.04 for key frame extraction) as the input for learning object proposals.

Second, we apply EdgeBox object detector to learn top 50 object proposals on each

key frame. This step is also the same as the base system. So, we directly use the

detected object proposals from the base system.

Third, we apply the hierarchical model to re-rank the object proposals from Edge-

Box detector as described in section 3.1.3.2. We want to test the performance for IoU

= 0.7. Since the weight w for balancing the visual distance and tree distance with the

value 0.6 yields the best performance under IoU = 0.7, we use the object proposals

generated from the hierarchical model with b of 0.6.

After applying the hierarchical model, we only choose the key frames that also have

ground truth labels to start tracking. There are 65 frames of this type. Then we use

each of these frames and apply the SPOT tracker with detected object proposals to

start tracking. After tracking, up to 65 × 50 tracked patch tubes are generated. We

78

Figure 5.3. Detection rate for IoU = 0.9

use all frames with ground truth for each of these tubes as the testing set for CNN

classification.

Last, we apply CNN to classify the object proposals. The training set is the same

as the training set we used in the base system. The testing set includes 9720 object

proposals.

The classification results are shown in Table 5.3. We can see that the average

precision for most categories are still zeros. However, we get a little bit improvement

comparing with the base system since we get some correct results for car, horse, and

train categories. The final mAP is 3.92, which is still quite low compared with the

state-of-the-art methods.

5.3.3 Base System Plus the Temporal Objectness Model

We incorporate the proposed temporal objectness model into the base system to

build the second variant system. Since the stable frame sequence generation module

79

Table 5.3. Comparison of the BH system and the state-of-the-art: average precision of
the state-of-the-art and base+hierarchical system for each category and mean average
precision on the YouTube-Objects V2.2 testing set

R-CNN DPM Fine-tune SS Fine-tune EB Fine-tune VOP Base+Hierarchical
plane 14.10 28.42 25.57 26.52 29.77 0.00
bird 24.20 48.14 27.27 27.27 28.82 0.00
boat 16.90 25.50 27.52 33.69 35.34 0.00
car 27.90 48.99 35.18 36.00 41.00 15.66
cat 17.90 1.69 25.02 27.05 33.7 0.00
cow 28.60 19.24 43.01 44.76 57.56 0.00
dog 12.20 15.84 24.05 27.07 34.42 0.00

horse 29.40 35.10 41.84 44.82 54.52 1.33
mbike 21.30 31.61 26.70 27.07 29.77 0.00
train 13.2 0 39.58 20.48 24.93 29.23 22.25
mAP 20.570 29.411 29.664 31.918 37.413 3.92

is exactly the same with the base system, we use the resultant stable frame sequences

from the experiment in the base system. This time, after applying EdgeBox detector to

generate object proposals on the key frames, we directly apply the SPOT tracker to track

the top 50 object proposals in each sequence. Then we compute the temporal objectness

for each object patch tube and re-rank the object proposals based on their temporal

objectness. After re-ranking, we use an empirically-studied threshold to remove the

object proposals with low temporal objectness. For the remaining object proposals, we

feed them into the CNN for classification and compute the AP for each category and

mAP.

Under this setting, there are two parameters we would like to test. The first param-

eter is the value of IoU when we use detected object proposals based on the ground-truth

labels to start tracking. We test 3 values of IoU, which are 0.5, 0.7 and 0.9. The other

parameter we test is the threshold to use for removing the object proposals with low ob-

jectness. We test four values for this parameter and they are: mean minus one standard

deviation, mean minus two standard deviations, median minus one standard deviation,

and median minus two standard deviations.

When initializing trackers using the object proposals, we only the select first frame

with at least two positive object proposals based on the ground truth to start tracking.

This is due to the constraint imposed by the SPOT tracker (i.e., require the structures

80

from multiple objects). When using IoU value of 0.5, we have 51 tracked patch tubes

satisfying the requirement; when using IoU value of 0.7, we have 34 qualified tracked

patch tubes; when using IoU value of 0.9, no frames that contain two positive proposals,

and we do not perform tracking. The CNN classification is finally applied to label each

proposal.

In the Table 5.4, we present the AP for each category and the final mAP for IoU

=0.7 under four different temporal thresholds in CNN classification. Overall, the results

are much better than the results in the base system. Comparing the four thresholds, the

APs for all 10 categories are close to each other. The four mAPs are also very close. The

threshold with median minus one standard deviation has the highest mAP. Therefore,

we will use this threshold in the final system.

Table 5.4. Performance for the BT system under four settings: average precision for
each category and mean average precision for four settings of temporal objectness for
base+temporal on the YouTube-Objects V2.2 testing set

mean-1std mean-2std median-1std median-2std
plane 0.00 0.00 0.00 0.00
bird 41.11 40.90 41.09 40.90
boat 98.69 98.69 98.69 98.69
car 27.74 24.70 24.90 24.70
cat 0.00 0.00 0.00 0.00
cow 0.00 0.00 0.00 0.00
dog 60.32 60.30 60.34 60.32

horse 78.70 74.75 78.70 74.75
mbike 32.14 50.63 50.00 41.76
train 0.00 0.00 0.00 0.00
mAP 33.90 37.84 37.93 36.66

5.3.4 Final System

We incorporate the proposed modules into the base system to test the performance

of the entire system. First, we still apply stable frame sequence generation module.

Second, we apply EdgeBox detector to learn the object proposals on the first frame of

each stable sequence. Third, we apply the proposed hierarchical model to refine the

object proposals. Then we apply SPOT tracker and compute the proposed temporal

objectness to remove the object patch tubes with low objectness. Finally, we apply

81

CNN to classify all object proposals to one of 11 categories (10 object categories and 1

background category).

For the experiments, the setting of generating the stable frame sequences and learn-

ing object proposals from the hierarchical model, are exactly the same as the settings of

the first variant system (i.e., Base Plus the Hierarchical model). We choose the optimal

values for two parameters based on the experimental results obtained for the first variant

system. We use IoU = 0.7 in testing the final system since it is the most commonly

used value in all related work. For the weight b of balancing the visual distance tree

distance in the hierarchical model, we use 0.6 since it achieves the best performance for

IoU of 0.7. We have 1128 frames with ground truth labels and we use these detected

object proposals to initialize the SPOT tracker to start tracking in each stable frame

sequence and remove the object proposals with low temporal objectness. The threshold

of removing the low temporal objectness is the median minus one standard deviation

since it achieves the best performance in previous setting. Since we want to include as

many frames as possible for the remaining experiments, we keep all the tracked frames,

which have at least one frame with ground truth in each sequence. As a result, we

have 558 tracked frames. After removing the frames that have object proposals with

low temporal objectness, we end up with having 464 frames in the testing set for CNN

classification. Table 5.5 shows the summary, which includes the number of detected

shots, the number of the selected key frames, the number of frames with annotations

testing set from YouTube-Objects V2.2, and the number of frames used in testing set

of CNN classification.

The last module is to apply CNN classification on the proposals from these 464

frames. We specifically test the effect of the number of top proposals resulted from

the temporal objectness. Suppose that k represents the number of top object proposals

we employed for classification. We test three values of k, which are 30, 40, and 50, in

classification accuracy.

Table 5.6 shows the average precision for each category, and mAP for two variant

systems and the final system with different values of k’s. We can see from the table that

the worst performance is from the first variant system (i.e., the base plus the hierarchical

model). The variant system with the base plus the temporal model achieves better

82

’

Table 5.5. Dataset statistics in the final system: the number of shots, number of key
frames, number of frames in annotated testing set from YouTube-Objects V2.2, and
number of frames in testing set of CNN classification using the threshold of one standard
deviation from median in the final system

shots key frames annotated testing set testing set in CNN
plane 460 3095 180 29
bird 204 1352 162 51
boat 588 4683 234 31
car 168 1055 606 58
cat 325 2325 165 26
cow 228 1597 140 90
dog 395 3221 164 36

horse 351 2665 181 45
mbike 428 2623 165 57
train 689 5035 158 41

Table 5.6. Performance comparison of the BH, BT and the final system: average preci-
sion for each category and mean average precision for three settings of final system on
the YouTube-Objects V2.2 testing set. BH: Base + Hierarchical. BT: Base + Temporal.
F: Final

BH BT F(k=30) F(k=40) F(k=50)
plane 0.00 0.00 13.49 12.48 12.48
bird 0.00 40.09 62.55 61.47 61.30
boat 0.00 98.69 53.78 52.88 52.73
car 15.66 24.90 55.12 54.90 54.81
cat 0.00 0.00 25.06 26.30 27.36
cow 0.00 0.00 6.64 6.62 6.62
dog 0.00 60.34 47.26 45.11 44.92

horse 1.33 78.70 58.31 58.27 58.31
mbike 0.00 50.00 53.90 53.06 54.35
train 22.25 0.00 53.60 53.80 53.61
mAP 3.92 37.93 42.97 42.49 42.65

result. The final system that includes both hierarchical and temporal achieves the best

performance overall. Among three k values, the k value of 30 has the highest mAP.

There are total of 23239 object proposals in the testing set for CNN classification.

Table 5.7 compares the proposed final system with k value of 30 with five state-

of-the-art methods. We can see that the proposed final system achieves the highest

AP for most categories. However, AP for the cow category achieves low AP since

this particular Youtube-Objects V2.2 dataset has many crowded cows. The proposed

83

Table 5.7. Comparison of the final system and the state-of-the-art: average precision
of the proposed final system (=30) with state-of-the-art systems for each category and
mean average precision on the Youtube-Objects V2.2 testing set

R-CNN DPM Fine-tune SS Fine-tune EB Fine-tune VOP Proposed
plane 14.10 28.42 25.57 26.52 29.77 13.49
bird 24.20 48.14 27.27 27.27 28.82 62.55
boat 16.90 25.50 27.52 33.69 35.34 53.78
car 27.90 48.99 35.18 36.00 41.00 55.12
cat 17.90 1.69 25.02 27.05 33.7 25.06
cow 28.60 19.24 43.01 44.76 57.56 6.64
dog 12.20 15.84 24.05 27.07 34.42 47.26

horse 29.40 35.10 41.84 44.82 54.52 58.31
mbike 21.30 31.61 26.70 27.07 29.77 53.90
train 13.2 0 39.58 20.48 24.93 29.23 53.60
mAP 20.570 29.411 29.664 31.918 37.413 42.97

hierarchical model does not perform very well under this type of scenario due to many

overlapping bounding boxes during the construction of the trees. However, the proposed

system has the highest mAP across all the methods, which shows the effectiveness of

the proposed system.

5.4 Contributions

In summary, we propose a system to recognize objects in videos with the following

contributions: First, we propose a method to select key frames from a shot or video

by formulating a novel cost function and applying dynamic programming to solve it.

Second, we develop a tree-based hierarchical model for objects’ structural representation

and a compact feature for objects’ visual appearance to learn better object proposals.

Third, we propose a temporal objectness measure using visual consistency during the

optical flows to further reduce false positive object proposals. Last, we integrate all

modules into a single large framework and apply CNN to classify object proposals. To

the best of our knowledge, this is the first framework that can recognize both static and

moving objects across individual frames in unconstrained videos.

84

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We propose a system that can automatically recognize generic objects in uncon-

strained videos with high precision. There are three modules for the proposed system:

stable frame sequence generation, object proposal learning, and CNN classification. The

stable frame sequence generation module is able to divide the video/videos into multiple

stable frame sequences with little content variation in each sequence. We take advantage

of spatial and temporal features of objects in videos by developing the tree-based hier-

archical model and temporal objectness model to improve the object detection rate. We

finally employ CNN to classify the object proposals. Extensive experiments demonstrate

the effectiveness of the proposed system in both object localization and classification.

Our proposed system has the following contributions:

• Proposing a system that can recognize both static and moving objects in every

frame in unconstrained videos with high precision.

• Developing a shot boundary detection method using an adaptive threshold to

detect both hard cuts changes and gradual changes between the shots.

• Designing a tree-based hierarchical model to capture not only the visual features

but also the internal structures of the objects. This model improves the detection

rate over the state-of-the-art object detectors.

• Defining a temporal objectness measure to re-rank object proposals during tracking

to further improve the detection rate.

• Integrating all the proposed modules into a system to bridge the gap between

domain-specific objects for classification and generated generic object proposals

and therefore lead to high object recognition accuracy in videos.

85

The hierarchical model has relatively high computational complexity when building

trees. Effectively building the hierarchical trees with reduced computation cost will be

the future direction. Currently, the proposed system is feasible to run on the desk-

top or server environments due to the required computational cost. The training on

CNN classification module is also computational intensive. With the development of

computing devices such as CPUs, GPUs and FPGAs on mobile devices, training deep

neural networks on mobile devices becomes possible now. Exploring ways to perform

the optimization on CNN classification to make it run on the mobile devices will be

interesting future research work. With some compromise in accuracy, refining the whole

system to make it become a real-time object recognition on mobile devices will have

a lot of applications. For example, how to instantly recognize the objects in videos or

real-time scenes on mobile can provide a user with assistive information about the envi-

ronment or potential shopping opportunities. Comparing with desktops, mobile devices

are much more battery hungry, especially for high intensive tasks such as training deep

convolution neural networks. There are some existing works on offloading the battery

consumption of mobile devices to other devices [114–121]. Using and improving this

type of technology will further enhance the capability of computing on mobile devices,

and will make running the proposed techniques on mobile devices become a reality.

86

REFERENCES

[1] G. Xu and Z. Zhang, Epipolar geometry in stereo, motion and object recognition:

a unified approach, vol. 6. Springer Science & Business Media, 2013.

[2] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple object recognition with visual

attention,” arXiv preprint arXiv:1412.7755, 2014.

[3] L. Bo, X. Ren, and D. Fox, “Unsupervised feature learning for rgb-d based object

recognition,” in Experimental Robotics, pp. 387–402, Springer, 2013.

[4] P. Agrawal, R. Girshick, and J. Malik, “Analyzing the performance of multilayer

neural networks for object recognition,” in Proceedings of the IEEE European

Conf. on Comput. Vision, pp. 329–344, Springer, 2014.

[5] C. F. Cadieu, H. Hong, D. L. Yamins, N. Pinto, D. Ardila, E. A. Solomon, N. J.

Majaj, and J. J. DiCarlo, “Deep neural networks rival the representation of pri-

mate it cortex for core visual object recognition,” PLoS Comput Biol, vol. 10,

no. 12, p. e1003963, 2014.

[6] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3d object recognition in

cluttered scenes with local surface features: A survey,” IEEE Trans. on Pattern

Analysis and Machine Intell., vol. 36, no. 11, pp. 2270–2287, 2014.

[7] S. S. Bucak, R. Jin, and A. K. Jain, “Multiple kernel learning for visual object

recognition: A review,” IEEE Trans. on Pattern Analysis and Machine Intell.,

vol. 36, no. 7, pp. 1354–1369, 2014.

[8] A. Barsegyan, J. L. McGaugh, and B. Roozendaal, “Noradrenergic activation of

the basolateral amygdala modulates the consolidation of object-in-context recog-

nition memory,” Frontiers in Behavioral Neuroscience, vol. 8, p. 160, 2014.

87

[9] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional net-

works: Visualising image classification models and saliency maps,” arXiv preprint

arXiv:1312.6034, 2013.

[10] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classification with

the fisher vector: Theory and practice,” Int. Journal of Comput. Vision, vol. 105,

no. 3, pp. 222–245, 2013.

[11] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid, “Good practice in large-scale

learning for image classification,” IEEE Trans. on Pattern Analysis and Machine

Intell., vol. 36, no. 3, pp. 507–520, 2014.

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[13] J. Yu, Y. Rui, Y. Y. Tang, and D. Tao, “High-order distance-based multiview

stochastic learning in image classification,” IEEE Trans. on Cybernetics, vol. 44,

no. 12, pp. 2431–2442, 2014.

[14] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “Pcanet: A simple deep

learning baseline for image classification?,” IEEE Trans. on Image Processing,

vol. 24, no. 12, pp. 5017–5032, 2015.

[15] Y. Huang, Z. Wu, L. Wang, and T. Tan, “Feature coding in image classification:

A comprehensive study,” IEEE Trans. on Pattern Analysis and Machine Intell.,

vol. 36, no. 3, pp. 493–506, 2014.

[16] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image classification

via kernel sparse representation,” IEEE Trans. on Geoscience and Remote sensing,

vol. 51, no. 1, pp. 217–231, 2013.

[17] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantization: A

procrustean approach to learning binary codes for large-scale image retrieval,”

IEEE Trans. on Pattern Analysis and Machine Intell., vol. 35, no. 12, pp. 2916–

2929, 2013.

88

[18] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier, “Large-scale image retrieval with

compressed fisher vectors,” in Comput. Vision and Pattern Recognition (CVPR),

2010 IEEE Conf. on, pp. 3384–3391, IEEE, 2010.

[19] H. Müller, P. Clough, T. Deselaers, B. Caputo, and I. CLEF, “Experimental eval-

uation in visual information retrieval,” The Information Retrieval Series, vol. 32,

2010.

[20] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for scalable im-

age retrieval,” in Proceedings of the IEEE Conf. on Comput. Vision and Pattern

Recognition, pp. 3424–3431, IEEE, 2010.

[21] Y. Zhang, Z. Jia, and T. Chen, “Image retrieval with geometry-preserving visual

phrases,” in IEEE Conf. on Comput. Vision and Pattern Recognition, pp. 809–816,

IEEE, 2011.

[22] B. Siddiquie, R. S. Feris, and L. S. Davis, “Image ranking and retrieval based on

multi-attribute queries,” in IEEE Conf. on Comput. Vision and Pattern Recogni-

tion, pp. 801–808, IEEE, 2011.

[23] C. B. Akgül, D. L. Rubin, S. Napel, C. F. Beaulieu, H. Greenspan, and B. Acar,

“Content-based image retrieval in radiology: current status and future directions,”

Journal of Digital Imaging, vol. 24, no. 2, pp. 208–222.

[24] S. Murala, R. Maheshwari, and R. Balasubramanian, “Local tetra patterns: a

new feature descriptor for content-based image retrieval,” IEEE Trans. on Image

Processing, vol. 21, no. 5, pp. 2874–2886, 2012.

[25] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural codes for image

retrieval,” in Proceedings of the IEEE European Conf. on Comput. Vision, pp. 584–

599, Springer, 2014.

[26] Z.-C. Huang, P. P. Chan, W. W. Ng, and D. S. Yeung, “Content-based image

retrieval using color moment and gabor texture feature,” in Proceedings of IEEE

Int. Conf. on Machine Learning and Cybernetics, vol. 2, pp. 719–724, IEEE, 2010.

89

[27] S. Russell, P. Norvig, and A. Intell., “A modern approach,” Artificial Intell..

Prentice-Hall, Egnlewood Cliffs, vol. 25, p. 27, 1995.

[28] W. Barfield, Fundamentals of wearable Comput. and augmented reality. CRC

Press, 2015.

[29] M. S. Patel, D. A. Asch, and K. G. Volpp, “Wearable devices as facilitators, not

drivers, of health behavior change,” Jama, vol. 313, no. 5, pp. 459–460, 2015.

[30] V. Rosenzveig, S. Briot, P. Martinet, E. Özgür, and N. Bouton, “A method for

simplifying the analysis of leg-based visual servoing of parallel robots,” in IEEE

Int. Conf. on Robotics and Automation, pp. 5720–5727, 2014.

[31] J. Aggarwal, Multisensor fusion for Comput. vision, vol. 99. Springer Science &

Business Media, 2013.

[32] J. Yu, S. Skaff, L. Peng, and F. Imai, “Leveraging knowledge-based inference for

material classification,” in ACM Int. Conf. on Multimedia, pp. 1243–1246, ACM,

2015.

[33] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance

for direct perception in autonomous driving,” in Proceedings of the IEEE Int.

Conf. on Comput. Vision, pp. 2722–2730, 2015.

[34] C. Berger and B. Rumpe, “Autonomous driving-5 years after the urban chal-

lenge: The anticipatory vehicle as a cyber-physical system,” arXiv preprint

arXiv:1409.0413, 2014.

[35] A. Pugh, Robot vision. Springer Science & Business Media, 2013.

[36] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research on cloud

robotics and automation,” IEEE Trans. on Automation Science and Engineering,

vol. 12, no. 2, pp. 398–409, 2015.

[37] Y. Ke and R. Sukthankar, “Pca-sift: A more distinctive representation for local

image descriptors,” in Proceedings of the IEEEE Comput. Vision and Pattern

Recognition, vol. 2, pp. II–II, IEEE, 2004.

90

[38] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in

Proceedings of IEEE Comput. Vision and Pattern Recognition, vol. 1, pp. 886–893,

2005.

[39] B. Zhang, Y. Gao, S. Zhao, and J. Liu, “Local derivative pattern versus local

binary pattern: face recognition with high-order local pattern descriptor,” IEEE

Trans. on Image Processing, vol. 19, no. 2, pp. 533–544, 2010.

[40] L. Peng, Y. Yang, and H. Wang, “Automatic face annotation method and system,”

Nov. 3 2015. US Patent 9,176,987.

[41] K.-K. Sung and T. Poggio, “Example-based learning for view-based human face

detection,” IEEE Trans. on pattern analysis and machine Intell., vol. 20, no. 1,

pp. 39–51, 1998.

[42] H. A. Rowley, S. Baluja, T. Kanade, et al., Human face detection in visual scenes.

Carnegie-Mellon University. Department of Comput. Science, 1995.

[43] S. Ben-Yacoub, “Fast object detection using mlp and fft,” tech. rep., IDIAP, 1997.

[44] C. H. Lampert, M. B. Blaschko, and T. Hofmann, “Beyond sliding windows: Ob-

ject localization by efficient subwindow search,” in Comput. Vision and Pattern

Recognition, 2008. CVPR 2008. IEEE Conf. on, pp. 1–8, IEEE, 2008.

[45] C. Wojek, G. Dorkó, A. Schulz, and B. Schiele, “Sliding-windows for rapid ob-

ject class localization: A parallel technique,” in Pattern Recognition, pp. 71–81,

Springer, 2008.

[46] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and energy compari-

son of fpgas, gpus, and multicores for sliding-window applications,” in Proceedings

of the ACM/SIGDA Int. symposium on Field Programmable Gate Arrays, pp. 47–

56, ACM, 2012.

[47] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of sim-

ple features,” in Comput. Vision and Pattern Recognition, 2001. CVPR 2001.

Proceedings of the 2001 IEEE Comput. Society Conf. on.

91

[48] B. Leibe, A. Leonardis, and B. Schiele, “Robust object detection with interleaved

categorization and segmentation,”

[49] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” in Comput. Vision and

Pattern Recognition (CVPR), 2014 IEEE Conf. on, pp. 580–587, IEEE, 2014.

[50] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich features from rgb-

d images for object detection and segmentation,” in Proceedings of the European

Conf. on Comput. Vision, pp. 345–360, Springer, 2014.

[51] J. Shotton, A. Blake, and R. Cipolla, “Contour-based learning for object detec-

tion,” in Comput. Vision, 2005. ICCV 2005. Tenth IEEE Int. Conf. on, vol. 1,

pp. 503–510, IEEE, 2005.

[52] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, “Groups of adjacent contour

segments for object detection,” IEEE Trans. on pattern analysis and machine

Intell., vol. 30, no. 1, pp. 36–51, 2008.

[53] V. Ferrari, T. Tuytelaars, and L. Van Gool, “Object detection by contour segment

networks,” in European Conf. on Comput. vision, pp. 14–28, Springer, 2006.

[54] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders, “Selective

search for object recognition,” Int. Journal of Comput. Vision, vol. 104, no. 2,

pp. 154–171, 2013.

[55] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively trained,

multiscale, deformable part model,” in Comput. Vision and Pattern Recognition,

2008. CVPR 2008. IEEE Conf. on, pp. 1–8, IEEE, 2008.

[56] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection

using deep neural networks,” in Comput. Vision and Pattern Recognition (CVPR),

2014 IEEE Conf. on, pp. 2155–2162, IEEE, 2014.

[57] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection,”

in Advances in Neural Information Processing Systems, pp. 2553–2561, 2013.

92

[58] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals from edges,”

in Comput. Vision–ECCV 2014, pp. 391–405, Springer, 2014.

[59] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object de-

tection with discriminatively trained part-based models,” IEEE Trans. on Pattern

Analysis and Machine Intell., vol. 32, no. 9, pp. 1627–1645, 2010.

[60] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief net-

works for scalable unsupervised learning of hierarchical representations,” in Pro-

ceedings of the 26th Annual Int. Conf. on Machine Learning, pp. 609–616, ACM,

2009.

[61] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convolutional

networks for accurate object detection and segmentation,” IEEE Trans. on pattern

analysis and machine Intell., vol. 38, no. 1, pp. 142–158, 2016.

[62] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE Int. Conf. on Comput.

Vision, pp. 1440–1448, 2015.

[63] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time ob-

ject detection with region proposal networks,” in Advances in Neural Information

Processing Systems, pp. 91–99, 2015.

[64] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr, “Bing: Binarized normed gradi-

ents for objectness estimation at 300fps,” in Comput. Vision and Pattern Recog-

nition (CVPR), 2014 IEEE Conf. on.

[65] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-

man, “The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.”

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.

[66] G. Sharir and T. Tuytelaars, “Video object proposals,” in Proceedings of the IEEE

Workshops on Comput. Vision and Pattern Recognition, pp. 9–14, IEEE, 2012.

[67] D. Oneata, J. Revaud, J. Verbeek, and C. Schmid, “Spatio-temporal object detec-

tion proposals,” in Proceedigns of the European Conf. on Comput. Vision, Sept.

2014.

93

[68] Y. Hua, K. Alahari, and C. Schmid, “Online object tracking with proposal selec-

tion,” in Proceedings of the IEEE Int. Conf. on Comput. Vision, pp. 3092–3100,

2015.

[69] P. KaewTraKulPong and R. Bowden, “An improved adaptive background mixture

model for real-time tracking with shadow detection,” in Video-Based Surveillance

Systems, pp. 135–144, 2002.

[70] D. H. H. Santosh, P. Venkatesh, L. Rao, and N. Kumar, “Tracking multiple mov-

ing objects using gauusian mixture model,” Int. Journal of Soft Computing and

Engineering (IJSCE), vol. 3, no. 2, 2013.

[71] W. Abd-Almageed, “Online, simultaneous shot boundary detection and key frame

extraction for sports videos using rank tracing,” in IEEE Int. Conf. on Image

Processing, pp. 3200–3203, IEEE, 2008.

[72] S. Utz, M. Tanis, and I. Vermeulen, “It is all about being popular: The effects of

need for popularity on social network site use,” 2012 Mary Ann Liebert, Inc. 140

Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA.

[73] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and

analytics,” Int. Journal of Information Management, vol. 35, no. 2, pp. 137–144,

2015.

[74] A. Hanjalic, “Shot-boundary detection: Unraveled and resolved?,” IEEE Trans.

on Circuits and Systems for Video Technology, vol. 12, pp. 90–105, Feb. 2002.

[75] F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,” Journal of the

American statistical Association, vol. 46, no. 253, pp. 68–78, 1951.

[76] L. Peng, Y. Yang, X. Qi, and H. Wang, “Highly accurate video object identifi-

cation utilizing hint information,” in Int. Conf. on Computing, Networking and

Communications (ICNC), pp. 317–321, IEEE, 2014.

[77] L. Peng and H. Wang, “Object identification system and method,” Sept. 1 2015.

US Patent 9,122,931.

94

[78] A. A. Amini, T. E. Weymouth, and R. C. Jain, “Using dynamic programming

for solving variational problems in vision,” IEEE Trans. on Pattern Analysis and

Machine Intell., vol. 12, no. 9, pp. 855–867, 1990.

[79] L. Peng and X. Qi, “A hierarchical model to learn object proposals and its ap-

plications,” Journal of Intelligent & Fuzzy Systems, vol. 31, no. 5, pp. 2543–2551,

2016.

[80] A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari, “Learning object

class detectors from weakly annotated video,” in Comput. Vision and Pattern

Recognition (CVPR), 2012 IEEE Conf. on, pp. 3282–3289, IEEE, 2012.

[81] Z. Kalal, K. Mikolajczyk, and J. Matas, “Face-tld: Tracking-learning-detection

applied to faces,” in IEEE Int. Conf. on Image Processing (ICIP), pp. 3789–3792,

IEEE, 2010.

[82] B. D. Lucas, T. Kanade, et al., “An iterative image registration technique with

an application to stereo vision.,” in Int. Joint Conf. on Artificial Intell., vol. 81,

pp. 674–679, 1981.

[83] L. Zhang and L. van der Maaten, “Structure preserving object tracking,” in IEEE

Internatioinal Conf. on Comput. Vision and Pattern Recognition, pp. 1838–1845,

IEEE, 2013.

[84] L. Peng and X. Qi, “Temporal objectness: Model-free learning of object proposals

in video,” in Image Processing (ICIP), 2016 IEEE Int. Conf. on, pp. 3663–3667,

IEEE, 2016.

[85] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing

Systems, pp. 1097–1105, 2012.

[86] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural net-

work for modelling sentences,” arXiv preprint arXiv:1404.2188, 2014.

95

[87] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei,

“Large-scale video classification with convolutional neural networks,” in Proceed-

ings of the IEEE Conf. on Comput. Vision and Pattern Recognition, pp. 1725–

1732, 2014.

[88] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme

recognition using time-delay neural networks,” IEEE Trans. on Acoustics, Speech,

and Signal processing, vol. 37, no. 3, pp. 328–339, 1989.

[89] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier methodol-

ogy,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 21, no. 3, pp. 660–674,

1991.

[90] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is nearest neighbor

meaningful?,” in Int. Conf. on database theory, pp. 217–235, Springer, 1999.

[91] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classi-

fiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999.

[92] A. McCallum, K. Nigam, et al., “A comparison of event models for naive bayes text

classification,” in AAAI Workshop on Learning for Text Categorization, vol. 752,

pp. 41–48, Citeseer, 1998.

[93] D. R. Cox, “Regression models and life-tables,” in Breakthroughs in statistics,

pp. 527–541, Springer, 1992.

[94] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering al-

gorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics),

vol. 28, no. 1, pp. 100–108, 1979.

[95] Y. Sun, D. Liang, X. Wang, and X. Tang, “Deepid3: Face recognition with very

deep neural networks,” arXiv preprint arXiv:1502.00873, 2015.

[96] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of

the IEEE Conf. on Comput. Vision and Pattern Recognition, pp. 1–9, 2015.

96

[97] M. Singh and M. P. Singh, “Augmented reality interfaces,” IEEE Internet Com-

puting, vol. 17, no. 6, pp. 66–70, 2013.

[98] S. B. Gokturk, D. Anguelov, V. O. Vanhoucke, K.-c. Lee, D. T. Vu, D. Yang,

M. Shah, and A. Khan, “System and method for providing objectified image ren-

derings using recognition information from images,” Aug. 30 2016. US Patent

9,430,719.

[99] F. N. Iandola, A. Shen, P. Gao, and K. Keutzer, “Deeplogo: Hitting logo recog-

nition with the deep neural network hammer,” arXiv preprint arXiv:1510.02131,

2015.

[100] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to

human-level performance in face verification,” in Proceedings of the IEEE Conf.

on Comput. Vision and Pattern Recognition, pp. 1701–1708, 2014.

[101] G. Hee Lee, F. Faundorfer, and M. Pollefeys, “Motion estimation for self-driving

cars with a generalized camera,” in Proceedings of the IEEE Conf. on Comput.

Vision and Pattern Recognition, pp. 2746–2753, 2013.

[102] M. Diaz-Cabrera, P. Cerri, and J. Sanchez-Medina, “Suspended traffic lights de-

tection and distance estimation using color features,” in Proceedings of IEEE Int.

Conf. on Intelligent Transportation Systems, pp. 1315–1320, 2012.

[103] R. de Charette and F. Nashashibi, “Real time visual traffic lights recognition based

on spot light detection and adaptive traffic lights templates,” in IEEE Intelligent

Vehicles Symposium, pp. 358–363, 2009.

[104] C. Yu, C. Huang, and Y. Lang, “Traffic light detection during day and night

conditions by a camera,” in IEEE 10th Int. Conf. on Signal Processing, pp. 821–

824, IEEE, 2010.

[105] G. Sommer, Geometric computing with Clifford algebras: theoretical foundations

and applications in Comput. vision and robotics. Springer Science & Business

Media, 2013.

97

[106] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory recurrent neural

network architectures for large scale acoustic modeling.,” in Interspeech, pp. 338–

342, 2014.

[107] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regulariza-

tion,” arXiv preprint arXiv:1409.2329, 2014.

[108] J. Norberto Pires, “Robot-by-voice: Experiments on commanding an industrial

robot using the human voice,” Industrial Robot: An Int. Journal, vol. 32, no. 6,

pp. 505–511, 2005.

[109] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image

caption generator,” in Proceedings of the IEEE Conf. on Comput. Vision and

Pattern Recognition, pp. 3156–3164, 2015.

[110] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Ima-

geNet Large Scale Visual Recognition Challenge,” Int. Journal of Comput. Vision

(IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[111] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-

rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-

ding,” arXiv preprint arXiv:1408.5093, 2014.

[112] K. E. Van de Sande, J. R. Uijlings, T. Gevers, and A. W. Smeulders, “Segmen-

tation as selective search for object recognition,” in IEEE Int. Conf. on Comput.

Vision, pp. 1879–1886, IEEE, 2011.

[113] S. Tripathi, S. Belongie, Y. Hwang, and T. Nguyen, “Detecting temporally con-

sistent objects in videos through object class label propagation,” arXiv preprint

arXiv:1601.05447, 2016.

[114] H. Qian and D. Andresen, “Extending mobile devices battery life by offloading

computation to cloud,” in 2nd ACM Int. Conf. on Mobile Software Engineering

and Systems, 2015.

98

[115] H. Qian and D. Andresen, “Jade: An efficient energy-aware computation offload-

ing system with heterogeneous network interface bonding for ad-hoc networked

mobile devices,” in Proceedings of the 15th IEEE/ACIS Int. Conf. on Software

Engineering, Artificial Intell., Networking and Parallel/Distributed Computing,

2014.

[116] H. Qian and D. Andresen, “An energy-saving task scheduler for mobile devices,”

in Proceedings of the 14th IEEE/ACIS Int. Conf. on Comput. and Information

Science, pp. 423–430, IEEE, 2015.

[117] H. Qian and D. Andresen, “Emerald: Enhance scientific workflow performance

with computation offloading to the cloud,” in Proceedings of the 14th IEEE/ACIS

Int. Conf. on Comput. and Information Science, pp. 443–448, IEEE, 2015.

[118] H. Qian and D. Andresen, “Reducing mobile device energy consumption with com-

putation offloading,” in IEEE/ACIS Int. Conf. on Software Engineering, Artificial

Intell., Networking and Parallel/Distributed Computing (SNPD), pp. 1–8, IEEE,

2015.

[119] H. Qian and D. Andresen, “Jade: Reducing energy consumption of android app,”

the Int. Journal of Networked and Distributed Computing (IJNDC), Atlantis press,

vol. 3, no. 3, pp. 150–158, 2015.

[120] L. Peng, “Enhanced camera capturing using object-detection-based autofocus on

smartphones,” in Int. Conf. on Computational Science/Intell. and Applied Infor-

matics (CSII), pp. 208–212, IEEE, 2016.

[121] L. Peng, “Gscheduler: Reducing mobile device energy consumption,” in 4th Int.

Conf. on Applied Computing and Information Technology (ACIT), pp. 1–6, IEEE,

2016.

99

CURRICULUM VITAE

Liang Peng

EDUCATION

Ph.D., Computer Science. Utah State University, Logan, UT. 2017.

M.S., Statistics. Kansas State University, Manhattan, KS. 2011.

B.S., Economics (Minor in Math). Emporia State University, Emporia, KS. 2008.

RESEARCH INTERESTS

Image processing computer vision, machine learning, deep learning, artificial intel-

ligence

CONFERENCE PUBLICATIONS

Liang Peng, Yimin Yang, Xiaojun Qi, Haohong Wang. Highly accurate video object

identification utilizing hint information. International Conference on Computing,

Networking and Communications (ICNC 2014) in Honolulu, Hawaii, Feb. 2014

Jie Yu, Sandra Skaff, Liang Peng, Francisco Imai. Leveraging Knowledge-based Infer-

ence for Material Classification. In Proceedings of the 23rd Annual ACM Conference

on Multimedia Conference (MM15). ACM, New York, NY, USA, 2015

Liang Peng, Xiaojun Qi. A Hierarchical Model to Learn Object Proposals and Its

Application. Journal of Intelligent & Fuzzy Systems. Special Issue: Multimedia in

Technology Enhanced Learning, Feb. 2016

Liang Peng, Xiaojun Qi. Temporal Objectness: Model-Free Learning of Object

Proposals in Video. IEEE International Conference on Image Processing (ICIP),

Phoenix, AZ, Oct. 2016

100

U.S. PATENTS

Object Identification System and Method. Liang Peng, Haohong Wang (US20150117703

A1, Issued in 2015)

Automatic Face Annotation Method and System. Liang Peng, Yimin Yang, Haohong

Wang (US9176987 B1, Issued in 2015)

INDUSTRY EXPERIENCE

Summer intern, Ads and Data Team, Yahoo! Inc., Sunnyvale, May-Aug. 2015

Research intern, Computational Imaging, Canon USA, San Jose, May-Dec. 2014

Research assistant, TCL Research America, San Jose, Dec. 2012 - May 2014

Summer intern, IM Flash Technologies, Lehi, UT, May-July 2012

TEACHING EXPERIENCE

STAT 325, 250: Intro. to Statistics, Kansas State University, 2008 to 2011.

CS 2410: Intro. to Java GUI, Utah State University, 2011 to 2012.

SKILLS

Proficient in software development using Java (6 years) Python (4 years), R (4 years),

C# (4 years), Matlab (5 years), familiar with C++

Proficient in operating systems and toolkits of Linux, Mac OS X, Windows, AWS,

Caffe, Tensorflow, Hive, Hadoop, PyLearn2, OpenCV

Deep understanding hands-on experiences of machine learning and computer vision

algorithms

Excellent analytic and implementation skills in handling big data

Strong statistical analytic skills in regression, hypothesis testing and experimental

design

	Object Recognition in Videos Utilizing Hierarchical and Temporal Objectness with Deep Neural Networks
	Recommended Citation

	tmp.1502290380.pdf._Zux3

