
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2017

Vision-Based Control of a Full-Size Car by Lane Detection Vision-Based Control of a Full-Size Car by Lane Detection

N. Chase Kunz
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Kunz, N. Chase, "Vision-Based Control of a Full-Size Car by Lane Detection" (2017). All Graduate Theses
and Dissertations. 6534.
https://digitalcommons.usu.edu/etd/6534

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F6534&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fetd%2F6534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/6534?utm_source=digitalcommons.usu.edu%2Fetd%2F6534&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

VISION-BASED CONTROL OF A FULL-SIZE CAR BY LANE DETECTION

by

N. Chase Kunz

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Electrical Engineering

Approved:

Rajnikant Sharma, Ph.D. Donald Cripps, Ph.D.
Major Professor Committee Member

Xiaojun Qi, Ph.D. Mark R. McLellan, Ph.D.
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2017

ii

Copyright © N. Chase Kunz 2017

All Rights Reserved

iii

ABSTRACT

Vision-Based Control of a Full-Size Car by Lane Detection

by

N. Chase Kunz, Master of Science

Utah State University, 2017

Major Professor: Rajnikant Sharma, Ph.D.
Department: Electrical and Computer Engineering

Autonomous driving is an area of increasing investment for researchers and auto man-

ufacturers. Integration has already begun for self-driving cars in urban environments. An

essential aspect of navigation in these areas is the ability to sense and follow lane markers.

This thesis focuses on the development of a vision-based control platform using lane detec-

tion to control a full-sized electric vehicle with only a monocular camera. An open-source,

integrated solution is presented for automation of a stock vehicle. Aspects of reverse engi-

neering, system identification, and low-level control of the vehicle are discussed. This work

also details methods for lane detection and the design of a non-linear vision-based control

strategy.

(93 pages)

iv

PUBLIC ABSTRACT

Vision-Based Control of a Full-Size Car by Lane Detection

N. Chase Kunz

Self-driving cars are an area of increasing investment for researchers and auto manufac-

turers. Integration has already begun for such vehicles in urban environments. An essential

aspect of navigation in these areas is the ability to sense and follow lane markers. This

thesis focuses on the development of a self-driving, full-size, electric car which uses only a

camera and lane markers to stay on the road. A complete method for automation is shown

for a stock vehicle. Discussion includes reverse engineering of the steering, braking, and

acceleration signals, as well as methods for lane detection and full-vehicle control.

v

ACKNOWLEDGMENTS

First, I would like to thank my major professor, Dr. Rajnikant Sharma, for his constant

guidance and kind encouragement in times of difficulty. I would also like to thank Dr. Ryan

Gerdes for his meticulous attention to detail and willingness to troubleshoot at critical

moments. Together, these professors have offered me a wealth of direction in matters

relating to the project and invaluable mentorship beyond. I am also grateful for the help

from members of my committee and ECE department faculty in automating a vehicle: Dr.

Donald Cripps, Dr. Xiaojun Qi, and Dr. Jake Gunther.

Enough thanks cannot be given to my friend and primary research partner, Austin

Costley. From beginning to end, he was always willing to dedicate time and energy where

it was most needed for the research to progress. The final product would not have been

possible without the reverse engineering work of the students and unsung heroes on the EV

Automation team: Cameron Sego, Hunter Buxton, Aaron Kunz, Austin Goddard, Tyler

Travis, Zach Garrard, Gregory Vernon, Daniel McGarry, David Petrizze, Ishmaal Erekson,

and Jonathon Tousley.

For funding and use of the state-of-the-art facility I am grateful for the SELECT group.

I would also like to thank the staff at the EVR, especially Ryan Bohm, Josh Rambo, and

Paul Rau for providing us the tools and means by which to accomplish our goals.

I am grateful for my friends at the RISC Lab and Information Dynamics Lab: Anusna

Chakraborty, Srijanee Biswas, Sohum Misra, Imran Sajjad, Soudeh Dadras, Abhishek Man-

junath, Trevor Landeen, Sam Whiting, and Dana Sorensen. They offered wonderful support

and comradery in research and coursework.

Finally, I would like to thank my family for a lifetime of encouragement. I am grateful

for the sacrifices made by my parents, Nathan and Laura, to send me to school and for the

support of my siblings: Christian, Halee, Levi, and Celeste.

N. Chase Kunz

vi

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

ACRONYMS . xii

CHAPTER

1 INTRODUCTION . 1
1.1 Complete Integration of a Full-size Vision-based Autonomous Car 2
1.2 Method of Acceleration Through CAN Message Injection 4
1.3 Open-source and Low-cost Platform . 4
1.4 Outline . 4

2 REVERSE ENGINEER COMMUNICATIONS AND ENABLE REMOTE CON-
TROL . 5

2.1 Reverse Engineer Communications and Enable Remote Control 5
2.1.1 CAN Message Injection . 8
2.1.2 Sensor Emulation . 12
2.1.3 Safety and Security . 15

3 MODEL IDENTIFICATION AND LOW-LEVEL CONTROLLER DESIGN 19
3.1 Model Identification and Low Level Controller Design 19

3.1.1 Longitudinal Model . 20
3.1.2 Lateral Model . 24
3.1.3 PI Controller Design . 30

4 LANE DETECTION AND VISION-BASED CONTROL 34
4.1 Lane Detection . 34

4.1.1 Inverse Perspective Mapping . 34
4.1.2 Filtering and Thresholding . 37
4.1.3 Line Fitting . 39
4.1.4 Spline Fitting . 39
4.1.5 Lane Selection . 45

4.2 Vision-Based Control . 50
4.2.1 Kinematic Model . 52
4.2.2 Non-linear Control Law . 53

vii

5 AUTOMATION PLATFORM OVERVIEW . 58
5.1 Platform Overview . 58

5.1.1 Interfacing Architecture . 59
5.1.2 Sensing Architecture . 63
5.1.3 Computational Architecture . 64

6 RESULTS . 68
6.1 Low Level Controller . 68
6.2 Lane Detection . 69
6.3 Vision-Based Controller . 69

7 CONCLUSION . 75
7.1 Limitations and Future Work . 75

REFERENCES . 77

viii

LIST OF TABLES

Table Page

2.1 Sensor and Module Connections for Control Signals 8

3.1 Table of Values for Input Loops . 33

5.1 Microcontroller Peripherals Table . 65

ix

LIST OF FIGURES

Figure Page

2.1 Vehicle CAN bus and sensor architecture 7

2.2 CAN ramp injection from controller insertion point 1 and resulting vehicle
speed . 11

2.3 CAN step injection from controller insertion point 1 and resulting vehicle speed 11

2.4 The physical sensors emulated for vehicle control 13

2.5 Aerial view of the Electric Vehicle Roadway and Research Facility (EVR) at
Utah State University . 13

2.6 Acceleration pedal position sensor output 14

2.7 Brake pedal position sensor output signals 14

2.8 Steering torque sensor output signals . 16

2.9 CAN ramp injection through OBD-II port with resulting vehicle speed . . . 17

3.1 High-level system block diagram . 21

3.2 APP step response for 5%, 10%, and 15% pedal presses 21

3.3 Vehicle settling speeds for given APP step input percentages 22

3.4 Time constants for given APP step input percentages 22

3.5 Deceleration rate for BPP step input of 15% 23

3.6 Vehicle deceleration for BPP percentages at a variety of speeds 25

3.7 Average deceleration settling rates due to BPP step input percentages . . . 25

3.8 Steering torque step response for 58%, 60%, 62%, and 64% duty cycles at a
vehicle speed of 25 mph . 27

3.9 Steering torque step inputs for 58%, 60%, 62%, and 64% duty cycles at a
vehicle speed of 15 mph . 28

3.10 Steering angle settling values for given steering torque duty cycle step inputs 29

x

3.11 General control loop for a first order PI controller 31

4.1 Original image taken on EVR test track . 35

4.2 Inverse Perspective Mapping (IPM) frames 36

4.3 Image with Inverse Perspective Mapping (IPM) applied 36

4.4 Image filtered using a second derivative Gaussian horizontal kernel 38

4.5 Thresholded image retaining high intensity areas 38

4.6 Local maxima of image columns . 40

4.7 Vertical lines indicating the subregions of interest in image 40

4.8 Region showing line fit by RANSAC to potential lane data 41

4.9 Lines fit to subregions of image . 41

4.10 RANSAC fitting of spline to subregion data 42

4.11 Third degree Bezier Spline consisting of four control points 42

4.12 Splines detected in the image . 46

4.13 Spline localization and extension in the IPM image 46

4.14 Method for scoring pairs of lanes . 47

4.15 Pairs of splines are checked for uniform distance and shape 49

4.16 Center lane calculation . 49

4.17 Original image showing lane detection . 50

4.18 Control parameters used as input to non-linear controller 51

4.19 Block diagram of control structure . 51

4.20 Ackermann steering model . 53

5.1 Platform diagram including ROS system, hardware device interfaces, and
vehicle interfaces . 60

5.2 Custom circuit board used to interface with the vehicle CAN bus and generate
the signals required for the sensor emulation approach 61

5.3 Trunk of the 2013 Ford Focus EV with hardware setup 62

xi

5.4 Serial Message Structure . 66

6.1 Steering angle step response without deadband compensation 70

6.2 Steering angle step input with deadband compensation 71

6.3 Lane detection frames showing both lanes correctly identified 71

6.4 Lane detection frames showing correct detection of one lane and imperfect
detection of the other . 71

6.5 Lane detection frames showing poor detection of lanes or false positives . . 72

6.6 Vision-based controller lateral error . 72

6.7 Vision-based controller orientation error . 73

6.8 Path error of the vision based controller . 73

6.9 Lateral path error from center lane . 74

xii

ACRONYMS

APP accelerator pedal position

ABS antilock braking system

BPP brake pedal position

CAN controller area network

CMU Carnegie Mellon University

CRC cyclic redundancy check

DAC digital to analog converter

DARPA Defense Advanced Research Agency

ECU electronic control unit

EPAS electric power assisted steering

EVR electric vehicle roadway

GPIO general purpose input/output

GPS global positioning system

IMU inertial measurement unit

IPM inverse perspective mapping

MPH miles per hour

OBD on-board diagnostics

PCB printed circuit board

PI proportional integral

PRBS pseudorandom binary signal

PSCM power steering control module

PWM pulse width modulation

ROS Robot Operating System

RTK real time kinematic

SELECT sustainable electrified transportation

TCM transmission control module

UART universal asynchronous receiver/transmitter

xiii

USU Utah State University

UPS uninterpretable power supply

CHAPTER 1

INTRODUCTION

Control of autonomous vehicles is a topic of ever increasing relevance. Car producers

are boosting investment in and research of autonomous capabilities at a rapid rate [1]. The

race to bring self-driving cars to the market has begun, with major auto manufacturers

promising to mass produce vehicles with full autonomy within the next five years [2]. These

technologies give hope to a safer and more efficient transit system, increased mobility for

the elderly and disabled, and a more productive commute.

Self-driving cars bring with them a varied set of challenges ranging from the social issues

of public acceptance [3] to the technical capabilities of perception, planning, and control [4].

While some of the social aspects can only be address as autonomous vehicles gain traction

in the public eye, commercial and academic research can help address barriers in cost and

technological capabilities more immediately. For example, as self-driving cars enter public

roadways, they must have the ability to interact with their environment. The capability

of a vehicle to sense lane markings is a fundamental feature in autonomous driving. Lane

detection using computer vision has gained increased attention since the mid 1980s [5] [6] [7].

This method is attractive as cameras are relatively cheap when compared to other sensors

such as LIDAR [8]. There is also a demand for navigation in GPS denied environments [9].

Vision-based sensing can continue to operate without reliance on an external signal.

USU in partnership with SELECT [10] has developed a platform for the testing and

prototyping of autonomous vehicles. In October 2015 the team received a stock 2013 Ford

Focus Electric with the task of automating it with vision input. The project’s purpose was

to have a vehicle that could navigate a test track without human intervention and to a high

degree of accuracy using only a camera. This thesis outlines contributions made to the field

of vehicle automation using this platform in the following sections.

2

1.1 Complete Integration of a Full-size Vision-based Autonomous Car

The modern vehicle is a complex machine and, as such, requires many stages of de-

velopment for automation. The following sections discuss each stage to automate a regular

drive-by-wire vehicle with vision from reverse engineering to vision-based control. While

many researchers focus on development of a specific stage, few offer integrated discussions

for all stages of vision-based autonomous control as outlined in Chapters 2, 3, and 4 of this

thesis.

• Reverse Engineering and Low-level Control: The first step in vehicle automation is

to gain control of low-level steering, breaking, and acceleration abilities. Many de-

velopment platforms use external actuators on the steering wheel, brake pedal, and

accelerator pedal for this purpose [11]. Another more comfortable option is to make

use of a vehicle’s drive-by-wire capabilities to command internal actuators to this

end [12]. In order to leverage these tools, control signals for each internal actuator

must be reverse engineered. Chapter 2 provides the methods to do so for a 2013 Ford

Focus Electric.

• Low-level Controller Design and Model Identification: A split-controller, proposed by

Rajamani [13], separates control capabilities onto different levels. In the case of a

vehicle, a guidance controller sends a desired velocity and steering wheel angle to

lower-level controls which take care of the commands themselves. These take the

desired speed or angle and perform actuation on the vehicle’s hardware. This allows

for easily swapping out guidance controllers without the need to re-design actuator

controls for each new high-level controller. Chapter 3 discusses the necessary model

identification and controller design for low-level controllers on a 2013 Ford Focus

Electric.

• Lane Detection: A variety of methods have been researched and implemented concern-

ing lane detection. Many approaches use edge information for lane markers [14] [15].

These usually involve filtering for lane size. Others users use particle filtering [16]

3

and pixel clustering [17] [18]. Various lane models have been used in vision based

lane detection. Bertozzi et al. make use of polylines [19]. In [20], a hyperbola pair is

calculated from lane boundaries using fuzzy logic and RANSAC. A B-Snake is used

in [21]. This model is able to describe a wider range of lane structures since B-Splines

can form any arbitrary shape by a set of control points. Similarly, a third-degree

Bezier spline is used in [14].

A technique used by many is Inverse Perspective Mapping [14] [17] [19]. This approach

allows one to remove the perspective effect when the acquisition parameters (camera

position, orientation, optics, etc.) are completely known and when some knowledge

about the road is given, such as a flat road hypothesis [15]. Lines which converge at

the vanishing point (parallel lines on a road) are parallel on the image plane after the

image transformation. Chapter 4 shows a method for lane detection using IPM.

• Vision-based Control: Vision based vehicle control has been a subject of research for

decades. During the 1990s, CMU implemented various lane detection and control

systems using their Navlab experimental platform. In 1991 UNSCARF used pattern

recognition techniques to navigate unstructured roads with no lane markings [22]. The

SCARF system controlled the vehicle through difficult roads and added the ability

to recognize intersections without prior knowledge in 1993 [23]. In 1995, the RALPH

system used a calculation of road curvature in combination with the vehicle’s lateral

offset in the lanes to send steering commands [17]. Controlling autonomous vehicles

through neural networks has also been a topic of research since at least the same time

period [18] [24]. Spurring research in the mid 2000s were challenges put on by the

Defense Advanced Research Projects Agency. The DARPA Grand Challenge of 2005

confronted vehicles with off-road conditions [9] while the DARPA Urban Challenge

presented contestants with the difficulties of urban environments such as lane markers,

traffic signals, and other vehicles [25]. Chapter 4 shows the design of a vision-based

controller.

4

1.2 Method of Acceleration Through CAN Message Injection

As vehicles rely more on digital input and communication for control, new attack

surfaces arise through which an attacker may cause unintended vehicle responses. Building

on the work of Checkoway et. al. [26] [27], Miller and Valasek depict attacks on a 2010

Ford Escape, 2010 Toyota Prius, and a 2014 Jeep Cherokee [28] [29]. The attacks vary

in nature and function, making use of the vehicle’s native ECUs and reverse engineering

the communication protocols on the CAN bus. While their scope is limited, for example

controlling steering under 5 mph, these attacks show the ability to control a vehicle by

the understanding and manipulation of its native control signals. This thesis uses similar

methods to reverse engineer CAN message commands on the 2013 Ford Focus Electric and

cause unintended acceleration. The approach is detailed in Chapter 2.

1.3 Open-source and Low-cost Platform

The developed platform was designed to be cost-effective and open for collaboration

and further research. It uses ROS and OpenCV open-source software and all other code is

available online. Chapter 5 presents this platform and provides links to its software.

1.4 Outline

This thesis will proceed in the following manner: Chapter 2 discusses and methods

of reverse engineering through CAN message injection and sensor emulation. Methods

of model identification and the design of low-level control are outlined in Chapter 3. In

Chapter 4, a method for lane detection by monocular vision and an accompanying vision-

based controller are presented. Chapter 5 highlights the platform for development of a

vision-based, autonomous vehicle using open-source software. Results of vision and control

algorithms are presented in Chapter 6. Finally, an overview of the thesis and concluding

remarks are provided in Chapter 7.

5

CHAPTER 2

REVERSE ENGINEER COMMUNICATIONS AND ENABLE REMOTE CONTROL

This chapter discusses the methods explored in reverse engineering the low-level com-

munications of the vehicle. It examines data injection through the CAN bus as well as

sensor emulation for control of steering, braking, and acceleration.

A team of undergraduate students in the Electrical and Mechanical Engineering pro-

grams at Utah State University (including the author of this work) was assembled to explore

the 2013 Ford Focus Electric and reverse engineer the communication protocols. The work

from this team is detailed in this chapter. The reverse engineering project lasted from

November 2015 to May 2016. It is important to note the contributions of the EV Automa-

tion team. This chapter was prepared for a coauthored journal submission with Austin

Costley [30], the author’s research partner. It is included in this thesis for completeness.

2.1 Reverse Engineer Communications and Enable Remote Control

Modern vehicles use a Controller Area Network (CAN) bus system for module-to-

module communication [31]. Electronic Control Units (ECU’s) are the CAN modules that

connect to the bus that send and receive information. A CAN module receives data from

sensors, processes the data, and generates the appropriate CAN message to be broadcast

on the bus using an analog-to-digital operation.

The research team for the current work used the 2013 Ford Focus Electric Wiring

Guide [32] and the Auto Repair Reference Center Research Database from EBSCOhost [33]

to understand signal path and critical connections. The wiring guide provided diagrams

for most of the wires in the vehicle and included diagrams and pin-outs for the wiring con-

nections. The Auto Repair Reference Center was particularly useful for reverse engineering

the CAN protocols. It contains the CAN messages generated and received by each module,

diagrams of the four CAN buses in the vehicle, and the module layout on each bus. The

6

CAN message information was an incomplete list of general messages sent between CAN

modules. For example, the list would indicate that a message about the acceleration pedal

position is sent from one module to another, but it would not indicate the structure of the

message, the arbitration ID, or a conversion to useful units.

Using these resources, the team identified sensors and modules that could be used

for vehicle control. Table 2.1 summarizes these findings. In addition, the team took a

hands-on approach to vehicle exploration and verified the location and connections of these

components.

The examination of this architecture led to the identification of the two possible con-

troller insertion strategies, as shown in Fig. 2.1 . First, the CAN lines between the control

module and the CAN bus could be cut, and a controller could be inserted to intercept

and change messages being sent from the target control module. Second, the analog signal

wires from the target sensor could be cut, and the controller could be inserted between the

sensor and the control module. In either strategy, the controller would insert spurious data

into the system to control the vehicle. The details and results of these two approaches are

discussed in the following subsections.

In order to successfully implement the first controller insertion strategy and take ad-

vantage of the information on the vehicle CAN bus, the Vector CANalyzer [34] system was

used for the initial CAN message identification process. This system provides an excellent

visual tool for watching CAN messages in real time. The tool displays a table of CAN

messages with the rows organized by arbitration ID. The first column of the table indicates

the time since the last message with a given arbitration ID was received. The second col-

umn lists the arbitration ID, and the third column shows the value for each byte of the

CAN message. If a byte is changed when a new message is received, the byte is displayed

in bold. Over time the byte fades to a light gray if that value stays the same. This was

useful in identifying messages such as the accelerator pedal position, brake pedal position,

steering wheel angle, and vehicle speed. The CANalyzer system is a great resource, but it

is expensive and closed-source. Cheaper alternatives such as the Peak Systems PCAN [35]

7

ABS TCM

PCMPSCM APPSTS

BPP

Controller Insertion Type 1 - CAN Message Injection

Controller Insertion Type 2 - Sensor Emulation

ABS Automatic Braking System Module

TCM Transmission Control Module

PCM Powertrain Control Module

APP Accelerator Pedal Position Sensor

CAN Bus Wires

Analog Signal Wire

STS Steering Torque Sensor

CAN Bus Module

Vehicle Sensors

Bus
Termination

Bus
Termination

Actuates
Braking

Actuates
Steering

Actuates
Acceleration

Sends throttle
message
to TCM

Fig. 2.1: Vehicle CAN bus and sensor architecture. Controller insertion type 1 filters CAN
messages and replaces data with the message to be injected, and is represented by a filled
black square. Controller insertion type 2 emulates sensor output signals, and are represented
by filled black circles. The TCM controls the main drive motor of the electric vehicle and
therefore actuates acceleration. The PSCM actuates the power steering motor. The ABS
module actuates the hydraulic braking system.

8

Table 2.1: Sensor and Module Connections for Control Signals
Sensor CAN Module CAN Message CAN Arbitration ID

Accelerator Pedal Position Sensor Powertrain Control Module (PCM) Accelerator Pedal Position 0x204
Brake Pedal Position Sensor Automatic Braking System (ABS) Brake Pedal Position 0x7D
Steering Torque Sensor Power Steering Control Module (PSCM) Steering Torque Unknown
Steering Wheel Angle Sensor Steering Angle Sensor Module (SASM) Steering Wheel Angle 0x10

device can be used that have an open platform for development. An open-source solution

for monitoring CAN traffic with the PCAN device is provided with the open-source software

accompanying this work. Further discussion on the use of the PCAN device can be found

in Section 5.1.1. Another alternative is to use a microcontroller with a CAN bus interface

module to monitor and report CAN traffic [36].

Using the resources in the previous paragraphs, it was determined that CAN messages

have two main functions: status and control. A status message reports the status of a vehicle

component or condition, but does not control that component or condition. For example,

a module will receive input from the wheel speed sensors and send the information on the

CAN bus. Changing the data in this message will not result in a change of vehicle speed.

A control message, however, is sent by a module to control a component or condition of

the vehicle. For example, the movement of the wing mirrors is controlled by a CAN signal,

when this message is changed the mirrors will move in response.

2.1.1 CAN Message Injection

A platform for injecting CAN messages was developed using the TI TM4C129XL mi-

crocontroller evaluation kit [36] and TI CAN transceivers [37]. The platform would connect

to the CAN bus using the first controller insertion point, between the target module and

the bus. The microcontroller was programmed to record and playback CAN traffic. More

specifically, the microcontroller would receive the output from the control module and store

it in memory. Upon user request, the output from the control module could be injected on

the CAN bus. This platform was used to determine which messages, organized by arbitra-

tion ID, were generated by the target control module. Using information from the Auto

Repair Center Research Database, it was determined that the Powertrain Control Module

(PCM) sent a CAN message to the Transmission Control Module (TCM) regarding the

9

accelerator pedal position. In addition, the PCM was the only control module that received

the sensor signal from the accelerator pedal. For these reasons, the PCM was chosen as the

target module for vehicle acceleration.

The connector diagrams in the Wiring Guide were used to determine the CAN bus

connections to the PCM. These wires were cut and routed to the CAN injection platform.

The CAN messages output from the PCM were recorded and passed through to the CAN

bus for an accelerator pedal press. The recorded data was then played back on the bus and

the vehicle accelerated as expected. Additional code was added to the playback function

to selectively playback messages based on the message arbitration ID. This was used to

search the recorded data set and isolate the acceleration control message. The messages

were separated into two groups based on their arbitration ID, and each group was played

back to the vehicle separately. The group that resulted in vehicle acceleration was separated

again into two smaller groups and the process was repeated until one message arbitration

ID was left. The acceleration control message was determined to be the message with

arbitration ID 0x11A. Figs. 2.2 and 2.3 show successful CAN injections of the acceleration

control message, and the resulting speed for a ramp and step input, respectively. Due to the

similarities between the acceleration control message, and a throttle signal in a gas powered

car, this message is called the throttle message for the rest of this work.

Another approach to identify useful CAN messages for vehicle acceleration is by corre-

lating the CAN messages with the vehicle speed. This approach was attempted by recording

an accelerator pedal press and processing the data in Matlab. The CAN modules for the

2013 Ford Focus EV broadcast messages at prescribed frequencies as opposed to broad-

casting in response to another signal. The speed message for the vehicle is broadcast at

100 Hz, which is the highest frequency messages are broadcast for this vehicle. Correlation

was performed on messages of the same frequency, and the speed data was downsampled to

perform correlation with messages at lower frequencies. The correlation returned a value

between -1 and 1 for each byte of every message to indicate how closely correlated that byte

was to the speed message. If the byte did not change during the recording, the correlation

10

returned NAN. On the EV-HS CAN bus there are 102 different messages and each message

contains 8 bytes. The bytes were sorted based on the absolute value of the correlation value

to identify the highest positively or negatively correlated bytes. The bytes that had a NAN

value were rejected and the final number of bytes being ranked was 341. The highest corre-

lated byte of 0x11A was byte 4, which had a correlation value of 0.2359 and was ranked 57

out of 341. The low correlation value and rank indicates that the throttle message would

not have been identified using this strategy. In contrast, using the approach described in

the previous paragraph, the throttle message was identified and was used to control vehicle

acceleration.

The investigation of the braking system concluded that a CAN bus message about

pedal position would not actuate the hydraulic braking system. The pedal signal is sent

directly to the Automatic Braking System (ABS) CAN module, which is the only CAN

module on the vehicle that is connected to the hydraulic brake lines. From this it was

concluded that braking could not be fully controlled through the CAN bus.

The 2013 Ford Focus EV has an option to include park assist [38]. Though our specific

vehicle did not include this option, it was determined that the Electric Power Assisted

Steering (EPAS) system had the same part number and motor as the EPAS system in a

vehicle with the park assist feature. This meant that the power steering motor would be

powerful enough to turn the wheel at low speeds, and by extension, any speed. The Power

Steering Control Module (PSCM) receives inputs from the CAN bus and the steering torque

sensor located at the base of the steering column. The torque sensor uses a torsion bar to

determine the amount of torque being applied by the driver, which is used by the PSCM

to determine how much assist the power steering motor should provide. Simply, for a given

torque input, less assistance would be provided by the EPAS system at higher speeds.

Similar to the brake system, the input of interest is sent from a sensor to the module that

performs the desired action. This led to the conclusion that the control of steering would

have to be controlled through torque sensor input, and not through the CAN bus. In

addition, the work by Miller and Valasek [29] [28] identifies the short comings of exploiting

11

0x5F14

0x5F28

0x5F3C

0x5F50

0x5F64

0x5F78

0x5F8C

0x5FA0
T
h
ro
tt
le
C
A
N
B
u
s
V
al
u
e
(H

E
X
)

0 2 4 6 8 10 12 14
0xB1BC

0xB220

0xB284

0xB2E8

0xB34C

0xB3B0

Time(s)

S
p
ee
d
C
A
N
B
u
s
V
al
u
e
(H

E
X
)

Throttle Message
Speed Message

Fig. 2.2: CAN ramp injection from controller insertion point 1 and resulting vehicle speed.
Data gathered from CAN bus and represented in hexadecimal format.

0x5EEC

0x5F14

0x5F3C

0x5F64

0x5F8C

0x5FB4

T
h
ro
tt
le
C
A
N
B
u
s
V
al
u
e
(H

E
X
)

0 2 4 6 8 10 12 14
0xB1BC

0xB220

0xB284

0xB2E8

0xB34C

0xB3B0

0xB414

0xB478

Time(s)

S
p
ee
d
C
A
N
B
u
s
V
al
u
e
(H

ex
)

Throttle Message
Speed Message

Fig. 2.3: CAN step injection from controller insertion point 1 and resulting vehicle speed.
Data gathered from CAN bus and represented in hexadecimal format.

12

the park assist feature, namely, the park assist feature will cease to control the vehicle if

the speed threshold is exceeded.

2.1.2 Sensor Emulation

The CAN bus injection method was unable to control braking and steering, so the

sensor emulation method was explored. The accelerator pedal position sensor was analyzed

to control vehicle acceleration, the brake pedal position sensor was analyzed to control the

braking system, and the steering torque sensor was analyzed to control the vehicle steering.

Fig. 2.4 shows these sensors and the following paragraphs discuss the analysis.

The accelerator pedal position (APP) sensor is located at the top of the accelerator

pedal. There are six wires connected to the APP sensor, including two 5 V power wires with

corresponding ground wires, and two signal wires. The sensor power pins were connected to

a voltage source, and the signal wires were connected to an oscilloscope. It was determined

that the sensor outputs two DC voltages similar to the output of potentiometers. Fig. 2.6

shows the voltage levels of the two output signals in response to a pedal press. The third

signal on the graph is a multiplier that relates the two signals. It is seen that V1 ≈ 2V2.

The brake pedal position (BPP) sensor is located at the top of the brake pedal. There

are four wires connected to the BPP, including a 5 V power, ground, and two signal wires.

The BPP was connected to the voltage source and oscilloscope in the same manner as the

APP. However, the BPP outputs two PWM signals instead of DC voltage levels. When the

brake pedal is not pressed the duty cycles of the signals settle at 89% for signal 1 and 11%

for signal 2. During a braking event, the duty cycle for signal 1 decreases and the duty

cycle for signal 2 increases at the same rate. Fig. 2.7 shows the two PWM signals for the

BPP. The frequency of signal 1 is 533 Hz and the frequency of signal 2 is 482 Hz.

The steering torque sensor is located at the base of the steering column. The sensor

connects to the Power Steering Control Module (PSCM) on the CAN bus, which determines

the amount of power steering assist to provide. The assist is provided by an electric motor

connected to the steering rack. In the sensor, a torsion bar is used to connect two parts

of the steering shaft, where the rotational displacement can be measured to determine the

13

Fig. 2.4: The physical sensors emulated for vehicle control. Top: Steering rack for 2013
Ford Focus EV, the steering torque sensor is located at the base of the steering column
and measures torque from driver. Bottom Left: The APP sensor located at the top of the
accelerator pedal. Bottom Right: The BPP sensor that is usually mounted behind the brake
pedal assembly and measures the brake pedal press.

Fig. 2.5: Aerial view of the Electric Vehicle Roadway and Research Facility (EVR) at Utah
State University.

14

0 5 10 15 20 25 30
0

1

2

3

4

Time (s)

V
ol
ts

(v
)

Signal 1 (V1)
Signal 2 (V2)
Multiplier (V1/V2)

Fig. 2.6: Acceleration pedal position sensor output. Two analog voltage signals related by
V1 = 2V2.

−5 −4 −3 −2 −1 0 1 2 3 4 5

·10−3

0

2

4

6

Time (s)

V
ol
ts

(V
)

−5 −4 −3 −2 −1 0 1 2 3 4 5

·10−3

0

2

4

6

Time (s)

V
ol
ts

(V
)

Fig. 2.7: Brake pedal position sensor output signals. Signal 1: 89% resting duty cycle at
533 Hz. Signal 2: 11% resting duty cycle at 482 Hz.

15

torque input by the driver [39]. Similar to the BPP, there are 4 wires connected to the

steering torque sensor, including 5 V power, ground, and two signal wires. The steering

torque sensor was connected to the voltage source and oscilloscope, and it was determined

that the sensor outputs two PWM signals on the signal wires, where both signals settle

at 50% duty cycle when no torque is applied on the steering wheel. Both signals have a

frequency of 2.15 kHz. Similar to the brake PWM signals, the duty cycles always add to

100%, and the direction that the steering wheel is being turned determines which signal’s

duty cycle increases and which signal’s duty cycle decreases. Fig. 2.8 shows the two steering

PWM signals.

2.1.3 Safety and Security

In 1996, the OBD-II (On-Board Diagnostics) specification was required to be imple-

mented on any new vehicle sold in the United States [40]. This specification gives owners

and technicians the ability to diagnose issues on the vehicle. The specification standardized

connectors, message formats, and frequencies. The OBD-II port on the 2013 Ford Focus

EV connects to the EV-HS CAN bus, which is the same bus that the throttle message is

sent from the PCM to the TCM.

An attack platform was developed to inject arbitrary throttle messages through the

diagnostics port. This attack method was important because, if successful, it would demon-

strate that the acceleration of the vehicle could be controlled with limited intrusion. This

differed from the approach in Section 2.1.1, as it does not require access to the target mod-

ule, or that the CAN wires be cut and re-routed. Instead, this platform could be plugged

into the OBD-II port and monitor the bus for the target message arbitration ID. Also, it

would show that if an attacker was able to inject messages from any module on the EV-HS

CAN bus, then arbitrary vehicle acceleration could be caused. This would stand in contrast

to the findings in [28], [29], [27], [26], where the acceleration of the vehicle could only be

controlled under specific preconditions, and required intrusive access to the CAN bus.

The platform was connected to the CAN bus through the OBD-II port (other points on

the bus could be used, as well) and monitored the traffic on the bus. The user determined a

16

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1

·10−3

0

2

4

6

Time (s)

V
ol
ts

(V
)

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1

·10−3

0

2

4

6

Time (s)

V
ol
ts

(V
)

Fig. 2.8: Steering torque sensor output signals. 50% resting duty cycles at 2.15 kHz.

target message, in this case, the throttle message, and provided that message arbitration ID

to the system. In Section 2.1.1, it was determined that the throttle message is included in the

data frame associated with arbitration ID 0x11A, and is broadcast at 10 Hz. The platform

waited until a message was received with the corresponding arbitration ID, and would

replace throttle message data with an arbitrary throttle command value. The platform

was designed to only alter the parts of the message that relate to the throttle control.

The inserted message would be sent 250 µs after the actual message, leaving 9.75 ms for

the inserted message to be received and processed by the TCM. This allowed the inserted

message to dominate the period and cause the vehicle to accelerate. Fig. 2.9 shows the

successful ramp injection through the OBD-II port and the resulting vehicle speed. Thus

confirming the hypothesis that vehicle acceleration can be caused by injecting CAN messages

through the OBD-II port, and therefore, could be caused at any other point on the bus.

These results demonstrate a CAN bus security concern. If an attacker were able to

access the CAN bus, physically, or by compromising another ECU, they would be able

17

0 2 4 6 8 10 12 14
0x5F00

0x5F28

0x5F50

0x5F78

0x5FA0

Time (s)

T
h
ro
tt
le
C
A
N
B
u
s
V
al
u
e
(H

E
X
)

0xB1BC

0xB220

0xB284

0xB2E8

0xB34C

0xB3B0

S
p
ee
d
C
A
N
B
u
s
V
al
u
e
(H

ex
)

Car Throttle Message
Injected Throttle Message
Speed Message

Fig. 2.9: CAN ramp injection through OBD-II port with resulting vehicle speed. Injected
throttle message was sent on bus immediately following car throttle message. Values read
from CAN bus and displayed in hexadecimal format.

to effect the acceleration of the vehicle without causing any errors. Remote access to the

vehicle, but not necessarily the requisite CAN bus, could be effected by compromising the

Telematic Control Unit (TCU) or a wireless Tire Pressure Monitoring Sensor (TPMS).

The TPMS sends a signal to the Body Control Module (BCM), which in turn transmits

a message on the medium speed CAN bus (MS-CAN), while the TCU is connected to the

I-CAN bus (it is unlikely, however, that compromising a sensor would allow for injection of

arbitrary CAN messages onto the I-CAN or MS-CAN bus). These busses are connected to

the EV-HS bus through a gateway module; transmitting a message from one bus to another,

which would be required for either the TCU or TPMS to impersonate the PCM by passing

APP messages, was not explored in this work. Regardless of the access approach, the driver

is able to stop the unwanted acceleration by pressing the brake pedal. However, other works

indicate that it is possible to make the vehicle ignore braking requests [29] [28] [26] [27]. This

was not investigated as part of this work. Another security concern is that of a malicious

technician. Since technicians will often access the OBD-II port when a vehicle is being

serviced, it would be quite simple for them to leave an OBD-II injection platform connected

to the OBD-II port. The acceleration control could be initiated remotely or by a timer,

18

causing the vehicle to accelerate at a dangerous time.

We present two remediation strategies that could be employed to help protect against

this vulnerability. First, a simple change in the acceleration system architecture, such

that the APP sensor connects directly to the TCM, which is the actuating module. This

would remove the need of a throttle message to be sent from the PCM to the TCM and

effectively remove the attack surface. The second approach is through device fingerprinting

for both the digital and analog signals [41] [42]. This would allow the receiving module to

authenticate the transmitting module, and prevent this type of attack.

19

CHAPTER 3

MODEL IDENTIFICATION AND LOW-LEVEL CONTROLLER DESIGN

This chapter provides an examination of the methods used for model identification of

the steering, braking, and acceleration systems in the 2013 Ford Focus Electric. Details are

given of the low-level controller design of desired velocity and steering wheel angle.

The efforts discussed in this chapter were led by the author of this work and his

research partner, Austin Costley [30]. It is important to note the collaboration effort with

Austin, and identify his contributions. In particular, Austin was instrumental in model

identification and low-level controller design. This chapter was prepared for a coauthored

journal submission with Austin. It is included in this thesis for completeness.

3.1 Model Identification and Low Level Controller Design

A simple overview of the control structure for the automated vehicle platform is shown

in Fig. 3.1. The high level controller plans the path and provides the desired vehicle speed,

vdesired, and desired steering wheel angle, θdesired. The low level controllers discussed in

this section are the inner loops that control vehicle speed and steering wheel angle. The

vehicle commands are τcmd, APPcmd, and BPPcmd, and represent, steering torque, APP,

and brake pedal position, respectively.

The first step in the development of the low level controllers was to determine a model

of the system being controlled. A system model is expressed as a transfer function relating

the input to the output of the system. Models were identified to relate the accelerator

and brake pedal inputs to vehicle velocity, and steering wheel angle to vehicle heading.

The following subsections review the model identification approach and low level controller

design process for the Ford Focus.

20

3.1.1 Longitudinal Model

The longitudinal characteristics of the vehicle are affected by the APP sensor and the

BPP sensor. These two systems were tested and identified separately, then implemented

together as a complete longitudinal model.

In [43], Dias et al. perform longitudinal model identification and controller design for

an autonomous vehicle. This approach was examined for the current work, however, a

more straightforward classical controls technique using step responses was ultimately used.

Once the acceleration and braking systems were identified, a control system was developed

for each input device. The control loops for accelerator and braking were connected by

switching logic to determine whether the accelerator or brakes should be used. A similar

two loop control system with a switching logic component was used for the longitudinal

controller in the current work. However, this work is an open-source project that uses the

Robot Operating System (ROS) [44].

For the APP sensor system identification, the vehicle was placed on a dynamometer [45]

and step inputs were initiated on the APP sensor from 4% to 15% at increments of 1%.

Fig. 3.2 shows the step responses for some accelerator pedal inputs. It was observed that

for a given APP percentage, the vehicle would eventually settle at a specific speed. The

relationship between APP and speed can be described by a first order transfer function.

The general equation for a first order transfer function, G(s), can be represented by

G(s) =
K

τs+ 1
, (3.1)

where K is the constant or equation that relates APP to vehicle speed, and τ is the system

time constant. The equation for K was derived from a linear fit of the a scatter plot of max

speeds from the step input, as shown in Fig. 3.3, and given by

f(x) = 3.65x− 9.7, (3.2)

where f(x) is the vehicle speed and x is the APP percentage. The test track (shown in

21

Differential Flatness
Path Following

Algorithm
PID

Deadband
Compensation

Saturation

Switching
Logic

PID

Saturation

Car

τcmd+θd θer τ

θm

−

vm

−
+vd ver

+ver

−ver
APPcmd

BPPcmd

Pose

Longitudinal Controller

Lateral ControllerPath

Fig. 3.1: High-level system block diagram. Shows low-level control loop for lateral and
longitudinal control and high-level differential flatness path following feedback loop.

0 20 40 60 80 100 120 140
0

10

20

30

40

50

Time (s)

S
p
ee
d
(m

p
h
)

5%

10%

15%

Fig. 3.2: APP step response for 5%, 10%, and 15% pedal presses. The graph shows a
general first order speed response for a given pedal percentage.

22

4 6 8 10 12 14 16
0

10

20

30

40

50

APP %

S
p
ee
d
(m

p
h
)

Fig. 3.3: Vehicle settling speeds for given APP step input percentages.

4 6 8 10 12 14 16
0

5

10

15

APP %

T
im

e
(s
)

Fig. 3.4: Time constants for given APP step input percentages.

23

67 68 69 70 71

−0.3

−0.2

−0.1

0

Time (s)

D
ec
el
er
at
io
n
R
at
e
(m

/s
2
)

Fig. 3.5: Deceleration rate for BPP step input of 15%. The figure shows a first order
relationship between BPP percentage and deceleration rate.

Fig. 2.5) where the vehicle was operating is an oval track with sharp corners on the north and

south side. The sharp corners and the short straightaways limit the vehicle operating speeds

to between 15 and 25 mph for the initial automation. The τ value that best represented the

vehicle response between 15 and 25 mph was chosen as the time constant for accelerator

pedal input in the longitudinal model. Fig. 3.4 shows the time constants for varying APP

percentages. The time constant for the accelerator pedal input was chosen to be 7 seconds,

as this best represented the system response for the nominal operating conditions. For BPP

system identification, the vehicle was driven in a large, flat, asphalt area at speeds ranging

from 5 to 25 mph at 5 mph increments. The vehicle was accelerated to the desired speed by

a driver. Once the vehicle obtained the desired speed, an input to the braking system was

initiated through the ROS setup discussed in Section 5.1. Step inputs were initiated ranging

from 5% to 50% of BPP percentage at increments of 5% for each speed value. The speed

data seemed to show a consistent rate of change for a given BPP percentage. To confirm

this, the speed data was smoothed using a 5 point moving average, and the derivative of the

24

smoothed data was taken by calculating the difference between successive data points, and

dividing by the elapsed time between data points. Fig. 3.5 shows the vehicle deceleration

due to a braking event. It was observed that the settling value for the deceleration rate

was consistent for a given BPP percentage and varying speeds, which concluded that the

longitudinal model was independent of current vehicle speed. This speed independence can

be seen in Fig. 3.6 where each line shows the deceleration rate for a given BPP percentage.

At low BPP values, the lines converge, meaning that deceleration is unaffected by very

small brake pedal percentages. However, at higher brake pedal percentages, the lines show

distinct deceleration rates regardless of the vehicle speed. To show the relationship between

BPP percentage and deceleration, an average was taken for each BPP value across each of

the speeds. The result of this operation is shown in Fig. 3.7.

Similar to the APP model, the relationship between BPP and deceleration could be

described by a first order transfer function. After analyzing the deceleration curves at dif-

ferent BPP percentages and for different speeds, the system time constant, τ , was calculated

to be 0.3 seconds. The equation that relates BPP to deceleration was determined by finding

a curve fit algorithm for the curve in Fig. 3.7. This would result in an equation that would

provide a BPP percentage for a desired deceleration rate. The equation for K is given by

f(x) = −0.0018x2 + 0.029x− 0.3768, (3.3)

where f(x) is the deceleration, and x is the BPP percentage. This equation is used to

describe K from the general first order transfer function equation.

3.1.2 Lateral Model

The lateral model of the vehicle was determined by step response analysis. The model

relates an input from the steering torque sensor to changes in the steering wheel angle. As

discussed in Section 2.1.2, the torque sensor measures the torque applied by the driver, and

sends that information to the PSCM. The PSCM activates the power assist motor that

connects to the steering rack, and moves the wheels. The steering wheel angle is measured

25

6 8 10 12 14 16 18 20 22 24

−3

−2

−1

0

Speed (mph)

D
ec
el
er
at
io
n
(m

/s
2
) 15%

25%

30%

35%

40%

45%

50%

Fig. 3.6: Vehicle deceleration for BPP percentages at a variety of speeds. The values are
the average of the deceleration rates settling point in response to a BPP step input. The
lines for BPP percentages do not cross, and therefore, indicate speed independence for the
brake model.

10 20 30 40 50

−3

−2

−1

0

BPP (%)

D
ec
el
er
at
io
n
(m

/s
2
)

Fig. 3.7: Average deceleration settling rates due to BPP step input percentages.

26

by a sensor in the steering wheel and output on the CAN bus at a high level of precision.

Step inputs were initiated on the steering torque duty cycle signal ranging from 50% to

63% at 1% increments. Tests were performed at a large, flat, asphalt area with vehicle speeds

ranging from 5 mph to 25 mph. Fig. 3.8 shows the results of the step input tests performed

at 25 mph. It was observed that a general first order transfer function could be used

to describe the relationship between steering torque duty cycle and steering wheel angle.

However, at lower speeds and higher torque values, this observation is not valid. Fig. 3.9

shows the step response of the steering system at 15 mph. At the higher torque values, the

steering wheel angles do not settle to a consistent steering wheel angle. It was also observed

that the settling angles for a given steering torque duty cycle are not consistent for varying

speeds. Therefore, the lateral model identification is speed dependent and would require a

speed dependent limit on the steering torque duty cycle. Providing these characteristics,

the system can still be modeled as first order transfer function for a given speed.

The steering data was analyzed in order to determine the gain equation, K, and the

time constant, τ . Time constants were calculated for each step input response and for each

speed. Fig. 3.10 Bottom shows the time constants for given steering torque duty cycles.

Each of the lines indicates the speed at which the test was performed. It can be seen that at

low speeds and low duty cycles the time constants are not consistent. But at higher speeds

the inconsistencies lessen. A time constant, τ , of 0.2 seconds was chosen to optimize for

typical vehicle operation.

Since the lateral system was found to be speed dependent, the gain equation K must

also be speed dependent. The step input tests were performed at 5 mph increments so a gain

equation K would be found for each speed value. These gain equations relate steering torque

duty cycle to steering wheel angle. Fig. 3.10 shows the settling angles for varying steering

torque duty cycles when the vehicle was traveling at 25 mph. A curve fit approximation was

completed for this data set, and a solution was determined by solving the given equation.

For this data set, the given equation for K is

f(x) = 59.4x2 − 6802.7x+ 195084.5, (3.4)

27

0 0.5 1 1.5 2 2.5 3

0x1F4

0x3E8

0x5DC

0x7D0

0x9C4

0xBB8

0xDAC

Time (s)S
te
er
in
g
A
n
gl
e
fr
om

C
A
N
B
u
s
(H

E
X
)

58%
60%
62%
64%

Fig. 3.8: Steering torque step response for 58%, 60%, 62%, and 64% duty cycles at a vehicle
speed of 25 mph. The plot indicates a first order relationship between torque duty cycle
input and steering wheel angle.

28

0 0.5 1 1.5 2 2.5 3

0x7D0

0xFA0

0x1770

0x1F40

0x2710

0x2EE0

Time (s)S
te
er
in
g
A
n
gl
e
fr
om

C
A
N
B
u
s
(H

E
X
)

58%
60%
62%
64%

Fig. 3.9: Steering torque step inputs for 58%, 60%, 62%, and 64% duty cycles at a vehicle
speed of 15 mph. The plot indicates a first order relationship between torque duty cycle
input and steering wheel angles, however, at high duty cycle percentages the first order
relationship is not valid.

29

58 59 60 61 62 63 64

0x3E8

0x7D0

0xBB8

0xFA0

Duty Cycle (%)

S
te
er
in
g
A
n
gl
e
(H

E
X
)

58 60 62 64 66 68 70
0

1

2

3

Duty Cycle (%)

T
im

e
(s
)

5 mph
10 mph
15 mph
20 mph
25 mph

Fig. 3.10: Top: Steering angle settling values for given steering torque duty cycle step
inputs. Values represented in hexadecimal format as received from CAN bus. Bottom:
Steering angle time constants for given steering torque duty cycle step inputs at varying
speeds. The time constants converge at higher speeds.

30

where f(x) is the steering wheel angle and x is the steering torque duty cycle.

Figs. 3.8 and 3.9 show the step response of the vehicle due to steering torque input

signals. The graphs do not include step input values below 58% because the step responses

at such values had little effect on the steering wheel angle. This exposed a deadband in the

response from the steering torque sensor input to the steering wheel angle. A deadband

compensation algorithm was implemented to mitigate the effects of this non-linearity. As

shown in Fig. 3.1, the deadband compensation code was executed just before the signal was

sent to the vehicle. If the torque input value was greater than 50%, then

τcmd = Bmax +
τ − 50

τmax − 50
(τmax −Bmax) (3.5)

was used to compensate for the deadband. If the torque input value was less than 50%,

then

τcmd = Bmin +
50− τ

50− τmin
(τmin −Bmin) (3.6)

was used to compensate for the deadband. Where τcmd is the torque command sent to

the vehicle, τ is the value received from the PI controller, Bmax is the upper limit of the

deadband, Bmin is the lower limit of the deadband, τmax is the maximum allowed value for

the steering torque signal, and τmin is the minimum allowed steering torque signal. For the

deadband on the 2013 Ford Focus EV, the upper and lower limits were 55% and 45%, and

the maximum and minimum values for the torque signal were 64% and 37%, respectively.

3.1.3 PI Controller Design

Low-level control loops were designed to control vehicle speed and steering wheel angle.

The desired speed and desired steering wheel angle would be input to the low-level control

loops from a user or high-level controller. The low-level longitudinal controller interfaced

with the accelerator and brake pedals to effect vehicle speed. A separate loop was designed

for each vehicle input, and switching logic was used to choose whether the acceleration or

brake loop would be used. The low-level lateral controller would receive the desired steering

31

wheel angle and determine the appropriate input to the steering torque sensor to achieve

the desired angle.

A Proportional Integral (PI) Feedback Controller was implemented for longitudinal

and lateral control. Fig. 3.11 shows a basic PI Feedback Controller for a first order system.

The transfer function block represents the vehicle and contains the system model. The

1
K block effectively cancels out the gain equation K, and helps relate the speed error to a

vehicle input. For example, in the longitudinal controller, the K equation receives the APP

as an input, and outputs speed. Therefore, the input to the transfer function block must

be an APP value. However, the control loop is calculating a speed error, so the output of

the PI block is a speed value. The 1
K block translates the speed value into an appropriate

APP value.

Since the K and 1
K can be combined to equal 1, they can be ignored in the loop

equation. The open loop transfer function of this system is then given by

GOL(s) =
1

(τs+ 1)
. (3.7)

Closing the feedback loop and adding the PI controller gives

GCL(s) =

kp
τ

(
s+ ki

kp

)

s2 +
(
1
τ + kp

τ

)
s+ ki

τ

. (3.8)

PI 1
K

K
τs+1

in out

−

Controller Vehicle Model

Fig. 3.11: General control loop for a first order PI controller.

32

The system is stable if the real part of the closed-loop poles are negative. Solving for the

closed loop poles and zero yields

s =
− (kp+ 1)±

√(
kp + 1

)2 − 4kiτ

2τ
, (3.9)

and

s = − ki
kp
, (3.10)

respectively. From these equations it can be determined that if kp, and ki are positive the

system will be stable.

The second order transfer function obtained through closing the loop can be written,

in a general form, as

ω2
n

s2 + 2ζωns+ ω2
n

, (3.11)

where ζ is the damping coefficient and ωn is the natural frequency. The damping coefficient

determines whether the system will be under-damped, over-damped, or critically damped

and the natural frequency helps to determine the time constant for the system. The time

constant, τ , is given by the equation τ = 1
ζωn

. Values were chosen for the damping coefficient

and the time constant to define the system behavior. From these values one can determine

the appropriate kp and ki for the system. The equations for kp and ki are given by

kp = τ

(
2ζωn −

1

τ

)
, (3.12)

and

ki = τω2
n, (3.13)

respectively. Table 3.1 shows the calculated values for each of the control inputs, where the

τcar column shows the time constants found during model identification and are internal

vehicle parameters.

33

Table 3.1: Table of Values for Input Loops
Input τcar ζ τ ωn kp ki

Accelerator Pedal 7 1 0.5 2 27 28
Brake Pedal 0.3 1 0.5 2 0.2 1.2

Steering Torque 0.2 1 0.33 3 0.2 1.8

34

CHAPTER 4

LANE DETECTION AND VISION-BASED CONTROL

This chapter details the methods for lane detection and the design of an accompanying

vision-based controller which uses lane information to navigate within the roadway.

4.1 Lane Detection

Lane detection is an essential part of navigating urban roadways. Although it is in-

tuitive for humans to identify and follow lane markers, machines are plagued with many

obstacles in the performing the task. Difficulties include varying road types and markers,

changes in weather and lighting conditions, and other vehicles obscuring the view of the

road. This work focuses on detecting the lanes on the closed circuit test track at Utah State

University’s EVR [46]. While there are no other vehicles to obstruct the lane markers, the

track presents challenges in lane detection as shown in Fig. 4.1. Charging gutters in the

middle section of the road are surrounded by cement strips similar in width and color to

lane markers. Curves on either end of the track are sharper than those found in highway

driving and most standard roadways. Charging equipment near the side of the road casts

shadows on the lane markers, making them more difficult to detect. Extensive work on

detecting lane markers in urban roadways was performed by Aly [14]. A modified version

of his algorithm is presented in this section.

4.1.1 Inverse Perspective Mapping

Images received by a camera suffer from what is known as the perspective effect. Lines

which are parallel in the world frame do not run parallel in an image taken from a camera

mounted on a vehicle. Instead, they converge at the horizon as can be seen in Fig. 4.1.

Furthermore, without knowing an object’s size, there is not a measure of distance for a

monocular image. Inverse Perspective Mapping is a technique which resolves the perspective

35

Fig. 4.1: Original image taken on EVR test track. Difficulties for lane detection are shown
including shadows, a steep curvature, and shapes similar to lane markers in the center of
the road

problem by creating a top-view perspective of a forward facing image. This bird’s-eye view

has distinct advantages in lane detection. After an IPM transform, lanes which run parallel

in the world frame are also represented as parallel in the image frame. IPM give a sense of

depth and maps a pixel to meter distance for the image. It also focuses on a subregion of

the original image, decreasing the computational processing needed.

IPM is a geometric transformation which uses camera intrinsics and extrinsic to display

a bird’s-eye view of the image. Intrinsic parameters include camera focal length and focal

center. Camera height, pitch, and yaw are taken into account for extrinsic parameters.

Fig. 4.2 shows IPM operates in three frames: a world frame {Fw} = {Xw, Yw, Zw} centered

at the camera’s optical center, a camera frame {Fc} = {Xc, Yc, Zc}, and an image frame

{Fi} = {u, v}. Pitch angle α and yaw angle β are allowed for, but no roll angle. It is

assumed the camera’s Xc axis stays in the world frame’s XwYw plane. The camera’s height

above the ground plane is defined as h. The road surface is assumed to be flat. From any

point in the image plane iP = {u, v, 1, 1}, it’s projection on the road plane can be found by

36

Vanishing
Point

Zw

Yw

Xw

f
World
Frame

u
v

Image
Frame

h

Zc

Xc

Yc

Camera
Frame

Fig. 4.2: Inverse Perspective Mapping (IPM) frames. IPM is a geometric transformation
which maps a 2D image to a 3D world frame

Fig. 4.3: Image with Inverse Perspective Mapping (IPM) applied

37

applying the homogeneous transformation

g
i T = h




− 1
fu
c2

1
fv
s1s2

1
fu
cuc2 − 1

fv
cvs1s2 − c1s2 0

1
fu
s2

1
fv
s1c1 − 1

fu
cus2 − 1

fv
cvs1c2 − c1s2 0

0 1
fv
c1

1
fv
cvc1 + s1 0

0 − 1
hfv

c1
1
hfv

cvc1 − 1
hs1 0




(4.1)

where c1 = cosα, c2 = cosβ, s1 = sinα, and s2 = sinβ. The horizontal and vertical

focal lengths are {fu, fv} and the coordinates of the optical center are {cu, cv}. With this

transformation, gP = g
i T

iP is the point on the ground plane corresponding to iP in the

image plane. The same holds for the inverse of the transform

i
gT =




fuc2 + cuc1s2 cuc1c2 − s2fu −cus1 0

s2(cvc1 + fvs1) c2(cvc1 + fvs1) −fvc1 − cvs1 0

c1s2 c1c2 −s1 0

c1s2 c1c2 −s1 0




(4.2)

where a point in the ground plane gP = {xg, yg,−h, 1} can be obtained in the image

frame by iP = i
gT

gP , followed by a rescaling of the homogeneous part. Fig. 4.3 shows an

example of taking the IPM transform of Fig. 4.1. The original image has a size of 1280x720

and the transformed image has a size of 360x240. As mentioned before, the lanes in Fig. 4.3

now appear parallel and have a fixed width.

4.1.2 Filtering and Thresholding

After the IPM transform, the image is filtered horizontally using a second derivative

Gaussian filter: fu(x) = 1
σ2
x
exp(− x2

2δ2x
)(1 − x2

δ2x
). This is designed to accentuate bright areas

on a dark background, following our assumption of a lane marker’s appearance in the image.

The filter is tuned to keep vertical lines of a lane maker’s width. The filter also keeps quasi-

vertical lines. Fig. 4.4 shows the filter applied to Fig. 4.3. It can be seen that lane data

is kept well along with other parts of the image with similar attributes. Although Aly [14]

38

Fig. 4.4: Image filtered using a second derivative Gaussian horizontal kernel

Fig. 4.5: Thresholded image retaining high intensity areas. The image is not binarized and
keeps all intensity values above the threshold

39

suggests a vertical smoothing filter, one was not used in our implementation because it did

not significantly increase the effectiveness of the filter.

Thresholding is performed on the filtered image, keeping only the highest values. The

average pixel value is calculated for the filtered image, and values below it’s q% are set to

zero. A Value of q = 97.5 was used for the images in this chapter. It is important to note

that the thresholded image is not binarized. Pixel values above the threshold are kept to

preserve intensity data. Fig. 4.5 is the result of this thresholding method on Fig. 4.4. Lane

markers are easily seen in the image with the exception of shadow areas.

4.1.3 Line Fitting

For the thresholded image, pixels are summed vertically for each column. The result is

smoothed by a Gaussian filter and the local maxima are detected as shown in Fig. 4.6. The

lines are grouped to account for multiple entries and the resulting lines (Fig. 4.7) are used

as the basis for line and spline detection. A bounding box is taken around each of these

lines and a line is fit using RANSAC for the data within the bounding box. Fig. 4.8 shows

a line fit to a sub-image defined by a bounding box around one of the lines in Fig. 4.7. The

same process is run for each of the bounding regions and produce a line fit by RANSAC for

each. Fig. 4.9 shows the combination of all lines fit.

4.1.4 Spline Fitting

Algorithm 1 RANSAC Spline Fitting

1: for i=1 to numIterations do
2: points=getRandomSample()
3: spline=fitSpline(points)
4: score=computeSplineScore(spline)
5: if score > bestScore then
6: bestSpline = spline
7: end if
8: end for

In the previous step, a line was fit to the data within a subregion. In this step, a spline

40

Fig. 4.6: Local maxima of image columns. Pixel values are summed vertically. Local
maxima are indicated by the red lines

Fig. 4.7: Vertical lines indicating the subregions of interest in image. A bounding box is
taken around each line and a curve is fit for all data within the bounding region

41

Fig. 4.8: Region showing line fit by RANSAC to potential lane data

Fig. 4.9: Lines fit to subregions of image. These lines are used as initial guesses for RANSAC
spline fitting

42

Fig. 4.10: RANSAC fitting of spline to subregion data. The current iteration is shown in
red while the best fit spline is shown in blue

P1

P2

P3

P4

l

θ1

θ2

Fig. 4.11: Third degree Bezier Spline consisting of four control points. A measure of
straightness is estimated through θ1 and θ2 and length is defined as l

43

is fit to that data, with the line used to determine a new bounding region. A RANSAC

spline fitting method is used to robustly fit a spline. A third degree Bezier spline is used to

fit this data and is defined by

Q(t) = T (t)MP (4.3)

Q(t) =

[
t3 t2 t 1

]




−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0







P0

P1

P2

P3




(4.4)

where t ∈ [0, 1], Q(0) = P0, Q(1) = P3, and P1 and P2 are control points that determine

the shape of the spline as can be seen in Fig. 4.11. The RANSAC method is outlined in

Algorithm 1 and makes use of the following functions:

1. getRandomSample(): This function randomly selects n points from the sub-image

Points are weighted according to the filtered and thresholded value such that points

with a higher weight have a greater likelihood of being selected by getRandsomSam-

ple().

2. fitSpline(): Points supplied by the previous function are fit to a third degree Bezier

spline using a least squares method. For each of n points, a value ti ∈ [0, 1] is assigned

to each point pi = (ui, vi) in the sample, where ti is proportional to the cumulative

sum of the euclidean distances from point pi to the first point p1. Define a point

p0 = p1, for ti = 1..n

ti =

∑i
j=1 d(pj , pj−1)∑n
j=1 d(pj , pj−1)

(4.5)

44

where d(pi, pj) =
√

(ui − uj)2 + (vi − vj)2. This causes the first point t1 = 0 and the

last point tn = 1. Define a matrix:

Q =




p1

...

pn




(4.6)

Q =




t31 t21 t1 1

...

t3n t2n tn 1




(4.7)

and use the pseudo-inverse to solve for the P matrix:

P = (TM)†Q. (4.8)

The matrix P contains the control points such that the spline minimizes the sum of

squared error for the sample points in the sub-image.

3. computeSplineScore(): In this function each spline is given a score in order to deter-

mine which spline best fits the criteria for a lane marker. Normally, a spline score

would be determined by the normal distance from every point to the third degree

spline. A more efficient approach is used here in which the spline is rasterized using

an iterative method. Pixel values are summed which belong to the spline to give it

the raw score s. The final score also includes measure of the straightness and length

of the spline:

score = s(1 + k1l
′ + k2θ

′). (4.9)

The value l′ is the normalized length of the spline. This is define as l′ = (l/v) − 1

where v is the height of the image. Hence, a longer spline will return a value closer

45

to l′ = 0 and a shorter spline will have a value closer to l′ = −1. This gives a greater

penalty to shorter splines. A measure of straightness is given by θ′ = (θ− 1)/2 where

θ = (cos θ1+cos θ2), which is the mean of the cosine of angles between the lines joining

the spline’s control points as shown in Fig. 4.11. This measure gives a higher score to

straighter splines. The values k1 and k2 are used for regulation in scoring. Fig. 4.10

shows the RANSAC spline fitting. The spline in red is the most recent iteration of

the algorithm and the spline in blue is the best fit.

Algorithm 1 is run on each of the sub-images An example of its results can be seen in

Fig. 4.12. After being fit using RANSAC, the splines go through post-processing steps of

localization and extension. Localization is accomplished by choosing consistently sampled

points along the spline and extending a normal line from them. Along this normal line, the

local maximum is located and the point is moved to its location. Extension is performed in

the IPM image forward and back from the spline’s endpoints. The results of post-processing

can be seen in Fig. 4.13.

4.1.5 Lane Selection

From the previous step, a set of splines is detected and extended in the IPM frame.

This set can vary in size and range from zero to n splines. In the case that fewer than

two splines are detected, lane selection is skipped because no center lane can be calculated

without a pair of splines from which to base it. If exactly two spline are detected, the pair

is checked for validity in the method presented below. When more than two splines are

detected, the best pair is chosen based on a “goodness” criteria. Ideal splines are those

corresponding to lane markers, and more particularly the lane markers corresponding to

the lane in which the vehicle is currently driving. In order to determine a center lane to

follow, two splines must selected, one to the right of the vehicle and one to the left.

To determine which pair of splines corresponded to lane markers in the vehicle’s lane,

a score was created. Each pair of splines was analyzed and scored on the following criteria

illustrated in Fig. 4.14:

46

Fig. 4.12: Splines detected in the image. All are candidate lane markers

Fig. 4.13: Spline localization and extension in the IPM image

47

dr

davg

y

x

er1

er8

el1

el8

er2

er3

er4

er5

er6

er7

el2

el3

el4

el5

el6

el7

ravg,x

lavg,x

elx , erx

lavg,x, ravg,x

dr

davg

Actual lanes

Current splines

Previous splines

Error between current
and previous splines

Average x location of
spline

Nominal lane width

Width between average
x locations

Legend:

Fig. 4.14: Method for scoring pairs of lanes

1. Distance: A consistent number of n points were sampled from each spline. For each

pair of splines, the average x value of the sampled points in the left lane, lavg,x, and the

right lane, ravg,x, were taken. The average of these two values davg was calculated.

This value was then subtracted from the nominal lane width dr of the track. The

distance error score was ed = dr − davg.

2. Shape: A measurement of shape was taken from the measure of straightness θ′ dis-

cussed in Section 4.1.4. In this case, a difference in the measurements from each spline

eθ′ = |θ′l − θ′r| was calculated, where θ′l is the straightness of the left spline and θ′r

is the straightness of the right spline. Parallel splines will have a value of zero. The

value of eθ′ increases for splines that are less similar in shape.

3. Temporal Tracking : If the vehicle is moving at regular speeds and the camera is

sending images at a constant frame rate, it can be assumed that the lanes will not

vary greatly from frame to frame. For each pair of lanes, the average x value of the

48

spline (lavg,x and ravg,x) was used to determine which spline was on the left and which

was on the right. The current left splines were than compared to the previous frame’s

left spline by calculating the euclidean distance eln from each sample point. The same

was done for the right splines giving ern . The average error values

etl =
1

n

n∑

i=1

eli , etr =
1

n

n∑

i=1

eri (4.10)

were used to gauge how far the new candidate splines had strayed from the previous

frame. The overall temporal error et = (etl + etr)/2 gives a measure of how pairs of

splines compared to the previous lane data. A low et signified a small deviation from

the previous frame and a large et show the splines were far from those last seen.

For each of the three parameters listed above a small value was desired. A score was

used

score = k1(100− ed) + k2(100− eθ′) + k3(100− et) (4.11)

that rewarded similar splines of an expected lane width that did not deviate far from

the spline pair from the previous frame. A threshold was also set in the case that no two

splines fit lane markers. Fig. 4.15 shows the rejected splines (red) and the accepted splines

(green) that fit the criteria needed.

After two splines were validated and accepted as lane markers, a center lane was calcu-

lated between them. The calculated center lane was an average of the euclidean distances

of the n sampled points in the two splines. Fig. 4.16 shows the chosen splines in white and

the calculated center lane in red. This is the path sent to the vehicle to follow. After all

of the calculations for desired path are calculated in the world frame, the detected lanes

can be displayed in the image frame again by back-transforming them through IPM as

shown in Fig. 4.17. The detected lanes are shown in green with the blue area between them

representing the drivable area of the road.

49

Fig. 4.15: Pairs of splines are checked for uniform distance and shape. Spline pairs with
a distance close to nominal road width and parallel in form score higher. Accepted lane
markers are shown in green while rejected splines are shown in red

Fig. 4.16: Center lane calculation. The center lane is calculated as the average of corre-
sponding points in the two splines. The center lane is shown in red and the detected lane
markers are shown in white

50

Fig. 4.17: Original image showing lane detection. Detected lanes are back-transformed
through IPM and mapped to the image frame. Resulting lane markers are indicated in
green and the drivable area of the road is shown in blue

4.2 Vision-Based Control

The vision-based controller receives a desired trajectory from the lane detection algo-

rithm. The path it is designed to follow is the center of the two-lane road detected. Control

of the vehicle can be separated into lateral and longitudinal components. For the purposes

of this thesis longitudinal control simplified to constant velocity and the low-level longitudi-

nal controller developed in Chapter 3 suffices. The lateral motion of the vehicle is the main

concern when attempting to center between two lane markers. The following sections will

discuss the lateral kinematics representing the vehicle’s motion and the non-linear control

law used to develop the lateral controller and are based on the work of Sotelo [47].

The objective of lateral control is to keep the vehicle centered between5 lane markers

on either side. A vehicle must be able to stay within the lanes on straight roads as well as

when entering curved segments. To accomplish this, the control algorithm must be able to

anticipate curvature. Lateral and orientation errors (de and θe) are used to keep the vehicle

within the lanes. The problem can be seen visually in Fig. 4.18. The vehicle is traveling

with velocity v and position (x, y) centered on the rear axis. The vehicle is oriented with

51

x

y

(x, y)

v
de

(xd, yd)

θe

Lh

θ

θd

Fig. 4.18: Control parameters used as input to non-linear controller

Lateral
Controller Vehicle

Speedometer

φcmd

Lane
Detector

Road

[
de,ref = 0
θe,ref = 0

]

e

Velocity

−[
de
θe

]

Fig. 4.19: Block diagram of control structure

52

a heading θ. A control point is established at a lookahead distance Lh in the direction of

velocity of the vehicle. The point (xd, yd) is the nearest along the desired trajectory to the

control point at Lh. The distance between the two points is denoted by de. This distance

runs perpendicular to a tangent trajectory at (xd, yd) with an angle θe. The difference

between the angle of vehicle travel and the desired heading tangent on the path is θe.

Fig. 4.19 shows the design of the control architecture. The vision algorithm senses

the lane markers on the road and creates a desired trajectory along the center lane. The

purpose of the lateral controller is to minimize the lateral and orientation errors de and θe.

The controller receives these errors and the current speed of the vehicle from it’s on-board

speedometer.

4.2.1 Kinematic Model

To dynamically model the lateral and offset errors of the vehicle, an understanding

of its kinematic behavior is needed. An Ackermann steering model is used, as shown in

Fig. 4.20. Assuming that the two front wheels turn slightly differentially, a vehicle with

wheelbase L and wheel angle φ will travel in a circle with radius R. Let the instantaneous

curvature along the trajectory path k(t) be defined as

k(t) =
1

R(t)
=

tanφ(t)

L
=

dθ(t)

ds
(4.12)

where s is path length and θ is the vehicle orientation in the global frame of reference.

Orientation will change with time as a function of velocity v:

θ̇ =
dθ

dt
=

dθ

ds
· ds

dt
= k(t) · v(t) =

tanφ(t)

L
· v(t). (4.13)

Global position and orientation variables (x, y, θ) can by dynamically modeled with the

commonly used equations

ẋ =
dx

dt
= v(t) cos θ(t), ẏ =

dy

dt
= v(t) sin θ(t), θ̇ =

dθ

dt
= v(t)

tanφ(t)

L
. (4.14)

53

x

y

vy

vx

L

φ

R

φ

Fig. 4.20: Ackermann steering model

The lateral and orientation errors as shown in Fig. 4.18 and are calculated by

de = −(x+ LH cos θ − xd) sin θd + (y + LH sin θ − yd) cos θd, θe = θ − θd. (4.15)

The dynamic model of these errors is computed by taking their time derivative. In

this case, xd, yd, and θd are inputs from the vision algorithm and are treated as constant

between iterations of the control sequence:

ḋe = v sin θe +
vLh
L

cos θe tanφ, θ̇e =
v tanφ

L
. (4.16)

4.2.2 Non-linear Control Law

To keep the vehicle properly centered within the lane, the controller’s objective is to

track a reference trajectory. In particular, it attempts to minimize the lateral error de and

orientation error θe. To accomplish this, the controller is designed to make use of chained

systems theory [48]. The general theory is extended and applied to create a stable non-linear

54

controller for vehicles which follow an Ackermann steering model. A common method for

control of non-linear systems is tangent linearization. This approach is not used as it is

only accurate around a local linearized configuration and may be far from the path’s initial

conditions. To convert the non-linear system in Equation 4.16 into a desired linear one, a

change of variables is used. The use of chained form allows for a nearly linear system for

which linear control principles can be leveraged. Using state diffeomorphism and a change

of control variables, de and θe can be transformed to

Y =



y1

y2


 = Θ(X) =




de

tan θe


 , W =



w1

w2


 = Υ(U) =



v cos θe + vLh cos2 θe tanφ

L sin θe

v tanφ
L cos2 θe

.


 .

(4.17)

New states y1 and y2 with control variables w1 and w2 are defined in chained form and

create a mapping from the original states, de and θe. They are invertible so the original

values can be obtained as long as v is not zero (the vehicle is moving) and θe is not π/2

(the vehicle’s orientation in not perpendicular to the trajectory). Time derivatives of the

new states are shown in Equation 4.18 and demonstrate chained form. The vehicle model

is rewritten as

ẏ1 = ḋe = v sin θe+
vLh
L

cos θe tanφ = w1y2, ẏ2 =
d(tan θe)

dt
=

1

cos2 θe
·θ̇e =

v tanφ

L cos2 θe
= w2.

(4.18)

A differentiation with respect to distance is used to create a control law which is not

velocity-dependent. A new variable ξ is defined that is related to the path length of the

vehicle parallel to the reference trajectory tangent:

ξ =

∫ (
vcosθe +

vLh cos2 θe tanφ

L sin θe

)
dt. (4.19)

55

The state time derivative can be expressed in terms of the state variables with respect

to ξ times ξ with respect to time:

ẏ1 =
dy1
dt

=
dy1
dξ
· dξ

dt
= y′1 · ξ̇, ẏ2 =

dy2
dt

=
dy2
dξ
· dξ

dt
= y′2 · ξ̇. (4.20)

The derivative of the vehicle model is taken with respect to ξ rather than time, yielding

y′1 =
ẏ1

ξ̇
= tan θe = y2, y′2 =

ẏ2

ξ̇
=

tanφ

L cos3 θe + Lh(cos
4 θe tanφ
sin θe

)
=
w2

w1
= w3 (4.21)

where y′1 is the derivative of y1 with respect to the spatial variable ξ and y′2 is the

derivative of y2 with respect to ξ. The system now has a linear form and traditional linear

control techniques can be applied. A classical PD approach is used to set the value of

the new control input w3. In doing so, many degrees of freedom are lost, but section 6.3

demonstrates that the design is sufficient for the purpose. The new control state is set to

w3 = −Kdy2 −Kpy1, (Kd,Kp) ∈ <+2. (4.22)

Combining Equations 4.21 and 4.22 and solving for y′1 gives the following second order

equation:

y′′1 +Kdy
′
1 +Kpy1 = 0 (4.23)

where a linear dynamic behavior is exhibited by y1 with respect to ξ. As ξ increases,

the lateral and orientation errors (de, θe) tend to zero

lim
ξ→∞

de = lim
ξ→∞

θe = 0. (4.24)

This holds true as long as the integral term ξ is increasing. To assure this, the vehicle’s

velocity v must be greater than zero and its orientation error θe must be stay within the

bounds of −π/2 and π/2. In practice, it is not difficult to abide by these restrictions.

56

The desired steering angle φ is obtained by substituting the control strategy for w3 in

Equation 4.22 into Equation 4.21 and solving for

φ = arctan

[−L sin θe cos3 θe(Kd tan θe +Kpde)

sin θe + Lh cos4 θe(Kd tan θe +Kpde)

]
. (4.25)

In real-world driving, saturation of the steering angle φ is desired to account for the

physical limitations of the steering system. A sigmoid function is applied to Equation 4.25

to keep it within the desired bounds as outlined by

φ = arctan

[
−KL cos3 θe ·

1− exp−K(sin θe(Kd tan θe+Kpde)/ sin θe+Lh cos4 θe(Kd tan θe+Kpde))

1 + exp−K(sin θe(Kd tan θe+Kpde)/ sin θe+Lh cos4 θe(Kd tan θe+Kpde))

]
.

(4.26)

The steering wheel angle φ is saturated to φmax through the variable K by

φmax = ± arctan(−KL). (4.27)

Because the physical limitation of the vehicle’s steering is φmax = ±(π/6), K is chosen such

that it does not exceed this limit,

K =
tan(π/6)

L
. (4.28)

In Equation 4.23, it can be seen that variable y1 dynamically follows the response of a

second order linear system. Because of the application of the sigmoid function, the system

is not truly linear, but can still be approximated as such. Thus, its coefficients Kd and Kp

can be related to the parameters of a second order linear system ζ (damping coefficient)

and ωn (natural frequency):

ωn =
√
Kp, ζ =

Kd

2
√
Kp

. (4.29)

Similarly, system overshoot Mp and settling distance ds|2% can be designed using the

properties of a second order linear response as shown in Equation 4.30. The system error

57

dynamics are described as a function of space variable ξ rather than time:

Mp = exp

(−ζπ√
1− ζ2

)
, ds|2% =

4

ζωn
. (4.30)

System constants Kp and Kd are designed with these parameters in mind. The desired

maximum overshoot Mp should not exceed 10%. The settling distance ds is determined

based on settling time ts and velocity v as shown in Equation 4.31. Given ts = 7s, settling

distance gives the following:

ds = ts · v = 7v. (4.31)

The value of Kd can be found from Equations 4.29 and 4.30 to be

Kd =
8

ds
=

8

7v
. (4.32)

In the same fashion, an expression for the damping coefficient ζ can be found from

Equations 4.29 and 4.30:

ζ =

√
1

[π/ ln 0.1]2 + 1
=

Kd

2
√
Kp

=
4

ds
√
Kp

. (4.33)

The constant Kp is found from Equation 4.33 giving

Kp =

[
4

dsζ

]2
=

[
0.9666

v

]2
. (4.34)

At a nominal velocity of v = 6.71m/s (15mph), the resulting gains are Kp = 0.0208

and Kd = 7.6635.

58

CHAPTER 5

AUTOMATION PLATFORM OVERVIEW

This chapter examines the implementation details of hardware and software compo-

nents. Links are provided for the open source architecture.

The efforts discussed in this chapter were led by the author of this work and his research

partner, Austin Costley [30]. It is important to note the collaboration effort with Austin,

and identify his contributions. In particular, Austin was instrumental in PCB design,

ROS controller structuring, and presentation of the information in this chapter which was

prepared for a coauthored journal submission. It is included in amended form in this thesis

for completeness.

5.1 Platform Overview

A versatile and robust platform is required to enable full-sized autonomous vehicle

research. The platform was designed to enable vehicle automation for both the CAN injec-

tion and the sensor emulation approaches discussed in Section 2.1. For the CAN injection

approach the platform was able to monitor the CAN bus and inject the desired packets,

whereas for the sensor emulation approach, the platform required access to the output lines

of the sensors to be emulated. In order to proceed to autonomy, the platform had the

ability to sense the environment, determine vehicle location, communicate with the vehicle,

and monitor the CAN bus. A computer running Ubuntu and the Robot Operating System

(ROS) was used to communicate between the platform architectures. The computer was

connected to a microcontroller to allow communication with the vehicle. Fig. 5.1 shows

a diagram of the autonomous system, including the ROS software architecture, hardware

connections to devices, and the vehicle interfacing hardware.

A ROS-based platform was chosen for ease of use, modularity, and sensor interfac-

ing packages. ROS is an open source framework that encourages collaboration between

59

researchers. People can contribute to the ROS effort by creating software packages that

interface with common sensors and provide tools for development. For example, an open-

source software package for ROS was provided by Stereolabs to interface with the ZED

camera [49], which helped expedite development time for this project. The ROS architec-

ture components used in this project are packages, nodes, and topics. A ROS package is

a collection of executable files used to complete a task. Generally packages are used to

compartmentalize similar parts of a project. ROS nodes are the executable files in a ROS

package that can be written in C/C++ or Python. A ROS topic is a way to transfer data

between nodes. Any node can publish data to a topic, and any node can subscribe to that

topic to receive the data. In this sense, the ROS topic acts as a bus to transfer data.

The following subsections detail the Interfacing Architecture, Sensing Architecture, and

the Computational Architecture of the automation platform.

5.1.1 Interfacing Architecture

Interfacing devices are critical to the success of vehicle automation as they provide

a way to send commands to the vehicle, and monitor the vehicle for feedback. A PCB

(shown in Fig. 5.2) was designed to provide a connection between the microcontroller and

the vehicle. The following subsections discuss the microcontroller and associated hardware,

and the other interfacing devices used for this platform.

Microcontroller and Associated Hardware

The TI TM4C129XL evaluation kit was the chosen microcontroller platform because

it offered multiple CAN bus interfaces allowing for a combination of CAN injection and

sensor emulation from the same board [36]. The microcontroller receives input from the

computer through a UART module. After performing the appropriate computations, PWM

signals are generated and appropriate DC voltage levels are determined for vehicle input.

The control signals pass through a variety of circuit components to prepare the signals

for vehicle injection. The signals are terminated at solid state relays that select either the

original vehicle signal, or the generated signal to be sent to the vehicle. The user determines

60

ROS Node
ROS Topic
Wired Connection

STS Steering Torque Sensor
PCM Powetrain Control Module
ABS Automatic Braking System Module

PSCM Power Steering Control Module

vision
controller

can
publisher

lane
detector

serial
transmitter

Filters CAN data and
sends to controller.

Receives vision data and sends
measurements to controller.

Receives vehicle commands
from controller and sends

serial packet to PCB.

Receives data from other
nodes and executes the high-

and low-level controllers.

ZED
Camera

PCAN
Device

Custom
PCB

2013 Ford
Focus EV

vision data

can data

serial data

Vision
Data

CAN
Messages

Over Serial

Normalized
Vehicle

Commands

CAN
Messages

APPcmd

BPPcmd

STScmd

ROS System

OBD-II Port

PCM

ABS

PSCM

Fig. 5.1: Platform diagram including ROS system, hardware device interfaces, and vehicle
interfaces.

which signal is sent based on a mode switch input to the microcontroller.

The sensor emulation approach requires four PWM signals to be generated by the

microcontroller. The signals are passed through a level shifter to shift the amplitudes from

3.3 V to 5 V, and then sent through operational amplifiers in a voltage follower configuration

to help drive the signals. The PWM signals are then terminated at the normally opened

terminals of solid state relays.

The accelerator pedal input is generated by a Digital to Analog Converter (DAC) that

receives an I2C signal from the microcontroller. The DAC converts the digital communica-

tion to an analog voltage level, and sends it to an active filter IC to clean the signal and

perform a gain two operation to provide the two output signals. The generated signals then

terminate at the normally open terminals of the solid state relays.

Another key feature of the PCB is the safety circuit. Next to the driver there is a

61

Fig. 5.2: Custom circuit board used to interface with the vehicle CAN bus and generate
the signals required for the sensor emulation approach.

mode switch and an Emergency Stop button. The mode switch allows the driver to switch

between Manual Driving Mode and Autonomous Mode. The power and solid state relay

control signals are routed to the front of the vehicle so the safety driver can switch between

operating modes or press the Emergency stop button to prevent power from reaching the

circuit. The vehicle’s original sensor signals are connected to the normally closed terminals

of the solid state relays, so removing the power returns the vehicle to Manual Mode. Power

to the circuit is provided by a NewMar DC Uninterruptible Power Supply (UPS) which

connects to the 12 V car battery, and provides safe and stable voltage levels for the circuit

operations [50]. The NewMar UPS also has an internal backup battery. The voltage level is

stepped down to ± 8 V, 5 V and 3.3 V, and distributed across the custom PCB. The UPS

is shown in Fig. 5.3.

Other Interface Devices

The Peak Systems PCAN device was chosen to monitor CAN traffic [35]. The PCAN

device can connect directly to the vehicle’s OBD-II port, and provides serial output over

62

Fig. 5.3: Trunk of the 2013 Ford Focus EV with hardware setup. Left: The NewMar UPS
that connects to the vehicles 12 V battery and supplies power to the circuit and computer.
Center: The custom PCB for interfacing with the vehicle CAN bus and sensors. Right:
Computer running Linux and ROS, connected to the ZED Camera, PCAN Device, and
PCB.

USB. Every message on the connected CAN bus is received and sent serially to the computer.

The user can determine which CAN data packets are important to operation, and ignore

the rest. One approach to determine necessary CAN data packets is detailed in Section 2.1.

Instead of using the CANalyzer system to monitor CAN traffic, the PCAN device can be

used to record CAN traffic for a desired event (e.g. vehicle acceleration). The CAN data

can be replaced section by section until a message or set of messages is isolated. Additional

information on the use of the PCAN device for system feedback is given in Section 5.1.3.

A USB-to-serial device was used between the microcontroller and computer to enable

communication. The control system determines the appropriate inputs to the vehicle and

sends the commands to the microcontroller. The device receives the signal from the USB

port and sends it to a UART module on the microcontroller. More information about the

microcontroller and control system is given in Section 5.1.3.

The TI SN65HVD230 CAN Transceiver Breakout Board [51] [37] was used to connect

63

the microcontroller to the CAN bus. This board provided a direct connection with the

vehicle CAN bus that can be used for monitoring and injection.

5.1.2 Sensing Architecture

The 2013 Ford Focus EV has an array of sensors on the vehicle that monitor everything

from wheel speed to tire pressure. However, the vehicle does not have high precision wheel

encoders, an RTK-GPS receiver, or inertial measurement sensors (IMU’s) that could be

useful for vehicle automation. The sensor data is typically received by a module and sent

on the CAN bus. Using the PCAN device described in Section 5.1.1, the on-board sensor

information can be provided to the rest of the automation platform. For autonomous

driving, the accelerator pedal position sensor, brake pedal position sensor, steering wheel

angle sensor, and vehicle speed data are used for feedback in the low-level controllers.

The sensor data broadcast on the CAN bus does not provide the information in em-

pirical units, and sometimes the data is masked with other signals. An important aspect to

the sensing architecture is the conversion from CAN bus messages to useful units. These

conversions could be found experimentally for each message found on the CAN bus, but for

the purposes of this platform the vehicle speed was the only message converted to empirical

units (MPH). The vehicle speed is found on the message with arbitration ID 0x75 on bytes

7 and 8, and is represented by a 16-bit value where byte 7 is the upper byte and byte 8

is the lower byte. When the vehicle was not moving the vehicle speed was represented as

0xB0D4 on the CAN bus. The decimal representation of this constant, 45,268, is subtracted

from the 16-bit vehicle speed to align the 0 MPH value. The vehicle was driven with the

RTK-GPS units to provide a reference for the vehicle speed, and it was determined that the

CAN value would then need to be divided by 54 to achieve an accurate measure of speed.

This process is summarized by

vmph =
(b7 << 8) + b8− 45268

54
, (5.1)

64

where b7 and b8 are the integer representations of bytes 7 and 8 from the CAN message

with arbitration ID 0x75, and the << operator represents a left bit shift.

ZED Camera

The ZED camera by Stereolabs was chosen for vision sensing. It features a stereo

camera with a 100◦ wide field of view. While the camera is capable of frames rates up to 60

frames per second at 1080p resolution, only 15 frames per second at 720p were required due

to image processing and control loop timing. The ZED camera outputs monocular images

as well as depth information. Stereolabs has developed a ROS wrapper in conjunction with

the hardware. Image frames, a depth map, and visual odometry data are published by

the wrapper. Because of processing simplicity, only monocular images are used for lane

detection through computer vision. The use of depth information is anticipated in the

future.

5.1.3 Computational Architecture

The computational architecture includes the code required to combine sensor infor-

mation, controller commands, and prepare command insertion. The two computational

platforms used in this system are the microcontroller and ROS. These platforms are dis-

cussed in the following sections and code for these platforms can be found at https:

//github.com/rajnikant1010/EVAutomation.

Microcontroller Software

The code for the TI TM4C129XL was written in C and took advantage of the built in

functionality of the TivaWare Peripheral Driver Library from Texas Instruments [52]. Table

5.1 shows the peripherals used and their functionality. The following paragraphs discuss

the microcontroller code.

The microcontroller receives a serial packet from the computer in the form shown in

Fig. 5.4. The first byte is always 0xFA, the second byte gives the number of bytes in the

payload, the payload contains the steering, braking, and acceleration commands to be sent

https://github.com/rajnikant1010/EVAutomation
https://github.com/rajnikant1010/EVAutomation

65

to the vehicle, and the last two bytes is a 16-bit Cyclic Redundancy Check (CRC) using the

CRC16-CCITT algorithm to ensure data integrity. Once received, the CRC is calculated to

ensure correct data, and the payload values are stored in appropriate variables. All input

commands are normalized between zero and one. For PWM signals, the normalized value

represents the duty cycle of the signal, where 0.5 represents 50% duty cycle.

OpenCV Library

The OpenCV library was chosen for the computer vision and lane detection algorithm

because of it’s open-source community support, cost efficiency, and speed. OpenCV was

designed for computational efficiency and places a strong focus on real-time applications [53].

Developers can work in C/C++ or Python. OpenCV image structures and filtering in

C++ were used to process lane data. Splines and debugging information were drawn and

displayed using methods available in the OpenCV library. The OpenCV matrix structures

proved useful when making calculation on images and data with multiple dimensions.

ROS Architecture

The ROS architecture consists of a series of packages, nodes, and topics [44]. A ROS

package can be used to modularize code. For example, the four packages used for this project

were zed-ros-wrapper (camera), focus serial (serial communication), pcan (CAN interface),

and focus vision (high- and low-level control). Each of these packages has at least one node

and publishes or subscribes to certain topics. A program file (either C/C++ or Python)

Table 5.1: Microcontroller Peripherals Table
Port Pin Type Purpose

GPIO F 2 PWM Steering signal 1
GPIO F 3 PWM Steering signal 2
GPIO F 1 PWM Brake signal 1
GPIO G 1 PWM Brake signal 2

GPIO K (I2C4) 6 I2C SCL Acceleration I2C SCL line
GPIO K (I2C4) 7 I2C SDA Acceleration I2C SDA line

GPIO C 4 Logic Mode select signal from user
GPIO C 5 Logic Mode signal to system

66

0xFA

1-byte

of
bytes (n)

1-byte

Payload: Steering Torque,

BPP, and APP Commands

n-bytes

CRC16-CCITT

2-bytes

Fig. 5.4: Serial message structure for communication with the microcontroller. The serial
communication sends commands to the vehicle emulating the APP, BPP, and steering torque
sensors. The second byte indicates the number of bytes in the payload, n.

is written for each node and when a node publishes information to a topic, other nodes

can subscribe to that topic and receive the information that was published. The following

paragraphs will discuss each of the ROS packages, nodes, and topics used for this system.

The zed-ros-wrapper package has only one node. This node initializes the ZED camera

and publishes to a variety of topics. These topics include left and right images in color and

black and white, a depth map, and a visual odometry message. Only the left color image

was used for the project. It is published at 30Hz and is rebroadcast at 15Hz by a native

ROS throttle node. The message is throttled because a slower frequency is called for by

the lane detection algorithm.

The pcan package has one node called can publisher that receives CAN data from the

PCAN device and parses the requested data. The CAN data is translated to useful units

for the given control strategy, and published to a ROS node called can data. The can data

topic could provide as much CAN information as the user would like. For the purposes of

automating this vehicle, the CAN data of interest is vehicle speed in MPH and steering

wheel angle.

The focus vision package has six nodes:

1. LaneDetector64 : This node subscribes to the raw image data published by the ZED

ROS wrapper. Lane detection is performed on the images using OpenCV, and control

parameters de and θe are extracted. The node publishes the control information to

the sotelo de and sotelo thetae topics to be used by the vision controller.

67

2. vision controller : This node subscribes to the sotelo de, sotelo thetae and can data

topics. Using these parameters, it implements the high-level control algorithm out-

lined in Section 4.2. It publishes low-level control commands to the desired velocity

and desired velocity topics for use by the lateral and longitudinal controllers.

3. lateral controller : This controller node subscribes to the desired angle topic. From

the desired angle, it calculates a commanded steering value using the low-level PI

controller discussed in Section 3.1.3. This vehicle command is published to the lat-

eral command topic.

4. longitudinal controller : This controller node subscribes to the desired velocity topic.

From the desired velocity, it calculates a commanded brake or accelerator value us-

ing the low-level PI controller discussed in Section 3.1.3. This vehicle command is

published to the longitudinal command topic.

5. controller : This node subscribes to the lateral and longitudinal command data pub-

lished on the lateral command and longitudinal command topics. The accelerator

pedal position, brake pedal position, and steering torque duty cycle commands are

received separately and then packaged and published to the serial data topic.

6. print vision: This logging node subscribes to all topics and prints a CSV log. The

data printed is analyzed in MATLAB.

The focus serial package has one node called serial transmitter. This node subscribes

to the serial data topic and sends the accelerator pedal position, brake pedal position and

steering torque duty cycle information to the microcontroller. Before the data is sent,

a Cyclic Redundancy Check (CRC) is performed and a checksum is added to the serial

message. The microcontroller checks the CRC to verify the accuracy of the data before

sending the requested commands to the vehicle.

68

CHAPTER 6

RESULTS

This chapter details the results for autonomous driving. Experimental results of the

low-level controller are presented, followed by results of high-level vision-based control.

The efforts discussed in this chapter were led by the author of this work and his research

partner, Austin Costley [30]. It is important to note the collaboration effort with Austin,

and identify his contributions. In particular, Austin was instrumental testing the low-level

controller and the presentation of it’s results in this chapter which were prepared for a

coauthored journal submission. The results are included in this thesis for completeness.

Experiments were conducted to determine the results of the autonomous vehicle plat-

form. The low level controllers were tested with given desired steering angles and velocities.

The low level steering controller was improved by implementing a deadband compensation

algorithm. The results for the low-level controllers are given in Section 6.1. A video of the

low-level control can found at https://youtu.be/NpAUcNh4QUY.

After verification of the low-level controllers, experiments were conducted at a higher

level using lane detection and the vision-based controller discussed in Chapter 4. Results of

the vision-based controller are shown in Section 6.3. A video of autonomous vision-based

driving can be found at https://youtu.be/7ohWIwb6KfM.

6.1 Low Level Controller

The low level controllers provide speed and steering wheel angle control through the

user input signal. For the steering controller, the steering wheel torque sensor signal was

used to change the position of the steering wheel. As discussed in Section 3.1, the control

loop was designed such that, given a desired angle, the controller would change the steering

torque value until the desired angle was achieved. This controller was tested using a step

input and a graph of the result can be seen in Fig. 6.1. The y-axis is the steering wheel

https://youtu.be/NpAUcNh4QUY
https://youtu.be/7ohWIwb6KfM

69

angle as represented by a Hex value on the CAN bus. A desired steering wheel angle of

0x7D0 was used as an input to the controller node of the ROS platform. The step response

had a maximum value of 0x891, representing an overshoot of 9.65%. The resulting time

constant of the system was 1.86 seconds. The desired behavior was for the system to be

critically damped and have a time constant of 0.33 seconds.

After implementing deadband compensation, the lateral controller improved. Fig. 6.2

shows the step response of the lateral controller with deadband compensation. The maxi-

mum value for this response is 2,113, which represents a 5.65% overshoot, and has a time

constant of 1.1 seconds.

6.2 Lane Detection

The lane detection algorithm searches for a pair of lane markers as discussed in Sec-

tion 4.1. Target lanes are white lines which run parallel and at a lane’s width around the

vehicle. Successful lane detection can be seen in Fig. 6.3 with lane markers highlighted

in green and the drivable area between them indicated in blue. It can be noted that the

algorithm usually proved successful even under steep curvatures and shadow conditions.

However, occasionally lanes would be only partially detected due to shadows or return false

positives from the charging gutters in the center of the road as demonstrated in Figs. 6.4

and 6.5.

6.3 Vision-Based Controller

The vision-based controller centers the vehicle in the road based on the position of

lane markers. Design of this controller is discussed in Section 4.2. Lanes are detected and

a center lane is calculated by the lane detection algorithm outlined in Section 4.1. The

vehicle’s error is calculated based on a lateral error de and orientation error θe at a look

ahead distance Lh in front of the vehicle as shown in Fig. 4.18. The lateral error de is the

distance from the look ahead control point to the closest point on the trajectory (xd, yd).

Tangential to this point along the trajectory is the angle of the path θd. The lateral error

de is perpendicular to the tangent θd at this point. The orientation error θe is the angle

70

0 2 4 6 8 10 12 14 16 18
0x000

0x1F4

0x3E8

0x5DC

0x7D0

0x9C4

0xBB8

Time (s)

S
te
er
in
g
W
h
ee
l
A
n
gl
e
fr
om

C
A
N
B
u
s

Actual Steering Wheel Angle
Desired Steering Wheel Angle

Fig. 6.1: Steering angle step response without deadband compensation.

difference between the vehicle’s orientation θ and the tangent to the path θd. Experimental

results taken from autonomous test track data can be seen for de in Fig. 6.6 and θe in

Fig. 6.7. These errors represent the parameters calculated by the vision algorithm and are

not true measures of path error at the vehicle, but rather at the look ahead distance Lh in

front of it. True path errors were calculated by taking the middle distance between the two

lanes. The average path error is 30cm. Fig. 6.8 shows position data for the center lane and

the path the vehicle traveled as measured by RTK GPS. Vehicle path error from the center

of the vehicle to the center of the lane is shown in Fig. 6.9.

71

0 2 4 6 8 10 12 14 16 18
0x000

0x1F4

0x3E8

0x5DC

0x7D0

0x9C4

0xBB8

Time (s)

S
te
er
in
g
W
h
ee
l
A
n
gl
e
fr
om

C
A
N
B
u
s

Actual Steering Wheel Angle
Desired Steering Wheel Angle

Fig. 6.2: Steering angle step input with deadband compensation.

Fig. 6.3: Lane detection frames showing both lanes correctly identified

Fig. 6.4: Lane detection frames showing correct detection of one lane and imperfect detec-
tion of the other

72

Fig. 6.5: Lane detection frames showing poor detection of lanes or false positives

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

Time (s)

d e
(m

)

Lateral Error de

Fig. 6.6: Vision-based controller lateral error

73

0 50 100 150 200 250 300
−25

−20

−15

−10

−5

0

5

10

Time (s)

θ e
(d

eg
)

Orientation Error θe

Fig. 6.7: Vision-based controller orientation error

−100 −80 −60 −40 −20 0 20 40 60 80

−100

−80

−60

−40

−20

0

20

40

X (m)

Y
(m

)

Vehicle Path with Lanes

Inside Lane
Outside Lane
Middle Lane
Path Traveled

Fig. 6.8: Path error of the vision based controller

74

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Time (s)

Pa
th

E
rr

or
(m

)

Fig. 6.9: Lateral path error from center lane

75

CHAPTER 7

CONCLUSION

This thesis presents a platform for automation by vision of a full-size car without the

use of external actuators. The complete method for automation from a stock vehicle to

lane-based vision control is shown. Chapter 2 discusses methods of reverse engineering

low-level control signals and Chapter 3 details the design of their accompanying low-level

controllers. Lane detection and vision-based control are discussed in Chapter 4. Finally,

Chapter 5 outlines the open source platform used in the implementation of vehicle automa-

tion. Experimental results in Chapter 6 validate the design of the previous chapters. This

thesis also presents new work on injection over CAN causing vehicle acceleration.

7.1 Limitations and Future Work

The lane detection algorithm has been tuned for the scope of driving at the EVR

test track. The lane markers are solid white lines with no breaks and the roadway has

no intersections. Implementation of detection of dashed lane marker and lane makers of

different colors could be implemented. Robustness is also a concern in lane detection. The

algorithm works well in overcast weather, but more poorly in bright, sunny conditions

because of reflections cast from bright, straight objects such as poles. Shadows from the

nearby charging boxes are also cast on the lane markers during sunny conditions. Future

work could be done to increase the robustness of lane detection in more diverse lighting

conditions.

The vision-based controller is limited by velocity. Although it is designed to be velocity

independent, experimental tests have only been performed at velocities around 15mph. It

also does not have the capability of start from stop. Future work could be done to improve

the functionality of the vision-based controller with respect to velocity. The current lateral

error is around 30cm. The goal of the project is to decrease this error to around only 10cm.

76

Currently, model identification was performed with first order responses. Using second

order systems to model the vehicle could increase longitudinal and lateral accuracy.

77

REFERENCES

[1] B. Snavely. (2016) Detroit automakers ink deals for self-driving cars.
[Online]. Available: http://www.usatoday.com/story/money/cars/2016/05/16/
detroit-automakers-ink-deals-self-driving-cars/84438032/

[2] Ford targets fully autonomous vehicle for ride sharing in 2021; in-
vests in new tech companies, doubles silicon valley team. [Online].
Available: https://media.ford.com/content/fordmedia/fna/us/en/news/2016/08/16/
ford-targets-fully-autonomous-vehicle-for-ride-sharing-in-2021.html

[3] D. Howard and D. Dai, “Public perceptions of self-driving cars: The case of berkeley,
california,” in Transportation Research Board 93rd Annual Meeting, vol. 14, no. 4502,
2014.

[4] S. Thrun, “Toward robotic cars,” Communications of the ACM, vol. 53, no. 4, pp.
99–106, 2010.

[5] E. D. Dickmanns and A. Zapp, “A curvature-based scheme for improving road vehicle
guidance by computer vision,” in Mobile Robots, SPIE Proc. Vol. 727, Cambridge,
Mass., 1986, pp. 161–168.

[6] K. Kluge, “Extracting road curvature and orientation from image edge points without
perceptual grouping into features,” in Intelligent Vehicles ’94 Symposium, Proceedings
of the, Oct 1994, pp. 109–114.

[7] A. A. Assidiq, O. O. Khalifa, M. R. Islam, and S. Khan, “Real time lane detection for
autonomous vehicles,” in 2008 International Conference on Computer and Communi-
cation Engineering, May 2008, pp. 82–88.

[8] M. McFarland. (2015) The $75,000 problem for self-driving cars is going away. [On-
line]. Available: https://www.washingtonpost.com/news/innovations/wp/2015/12/
04/the-75000-problem-for-self-driving-cars-is-going-away/?utm term=.c6a3c5dc5096

[9] U. Ozguner, C. Stiller, and K. Redmill, “Systems for safety and autonomous behavior
in cars: The darpa grand challenge experience,” Proceedings of the IEEE, vol. 95, no. 2,
pp. 397–412, Feb 2007.

[10] “Select,” http://select.usu.edu/, accessed: 2016-12-7.

[11] Autonomous desert-crossing robotic car. [Online]. Available: http://web.mit.edu/
zacka/www/grandchallenge.html

[12] R. Isermann, R. Schwarz, and S. Stolzl, “Fault-tolerant drive-by-wire systems,” IEEE
Control Systems, vol. 22, no. 5, pp. 64–81, 2002.

[13] R. Rajamani, Vehicle Dynamics and Control, 2nd ed., ser. Mechanical Engineering
Series. Springer US, 2012.

http://www.usatoday.com/story/money/cars/2016/05/16/detroit-automakers-ink-deals-self-driving-cars/84438032/
http://www.usatoday.com/story/money/cars/2016/05/16/detroit-automakers-ink-deals-self-driving-cars/84438032/
https://media.ford.com/content/fordmedia/fna/us/en/news/2016/08/16/ford-targets-fully-autonomous-vehicle-for-ride-sharing-in-2021.html
https://media.ford.com/content/fordmedia/fna/us/en/news/2016/08/16/ford-targets-fully-autonomous-vehicle-for-ride-sharing-in-2021.html
https://www.washingtonpost.com/news/innovations/wp/2015/12/04/the-75000-problem-for-self-driving-cars-is-going-away/?utm_term=.c6a3c5dc5096
https://www.washingtonpost.com/news/innovations/wp/2015/12/04/the-75000-problem-for-self-driving-cars-is-going-away/?utm_term=.c6a3c5dc5096
http://select.usu.edu/
http://web.mit.edu/zacka/www/grandchallenge.html
http://web.mit.edu/zacka/www/grandchallenge.html

78

[14] M. Aly, “Real time detection of lane markers in urban streets,” in 2008 IEEE Intelligent
Vehicles Symposium, June 2008, pp. 7–12.

[15] M. Bertozzi and A. Broggi, “Gold: a parallel real-time stereo vision system for generic
obstacle and lane detection,” IEEE Transactions on Image Processing, vol. 7, no. 1,
pp. 62–81, Jan 1998.

[16] N. Apostoloff and A. Zelinsky, “Robust vision based lane tracking using multiple cues
and particle filtering,” in IEEE IV2003 Intelligent Vehicles Symposium. Proceedings
(Cat. No.03TH8683), June 2003, pp. 558–563.

[17] D. Pomerleau, “Ralph: rapidly adapting lateral position handler,” in Intelligent Vehi-
cles ’95 Symposium., Proceedings of the, Sep 1995, pp. 506–511.

[18] D. A. Pomerleau, Neural network perception for mobile robot guidance. Springer
Science & Business Media, 2012, vol. 239.

[19] M. Bertozzi and A. Broggi, “Vision-based vehicle guidance,” Computer, vol. 30, no. 7,
pp. 49–55, Jul 1997.

[20] H. Wang and Q. Chen, “Real-time lane detection in various conditions and night cases,”
in 2006 IEEE Intelligent Transportation Systems Conference, Sept 2006, pp. 1226–
1231.

[21] Y. Wang, E. K. Teoh, and D. Shen, “Lane detection and tracking using b-snake,”
Image and Vision computing, vol. 22, no. 4, pp. 269–280, 2004.

[22] J. D. Crisman and C. E. Thorpe, “Unscarf-a color vision system for the detection of
unstructured roads,” in Proceedings. 1991 IEEE International Conference on Robotics
and Automation, Apr 1991, pp. 2496–2501 vol.3.

[23] ——, “Scarf: a color vision system that tracks roads and intersections,” IEEE Trans-
actions on Robotics and Automation, vol. 9, no. 1, pp. 49–58, Feb 1993.

[24] M. Rosenblum and L. S. Davis, “An improved radial basis function network for visual
autonomous road following,” IEEE Transactions on Neural Networks, vol. 7, no. 5, pp.
1111–1120, Sep 1996.

[25] “Darpa urban challenge,” http://archive.darpa.mil/grandchallenge/, accessed: 2016-
12-7.

[26] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham et al., “Experimental security analysis of a
modern automobile,” in 2010 IEEE Symposium on Security and Privacy. IEEE,
2010, pp. 447–462.

[27] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,
A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive experimental analyses of au-
tomotive attack surfaces.” in USENIX Security Symposium, 2011.

http://archive.darpa.mil/grandchallenge/

79

[28] C. Valasek and C. Miller, “Adventures in automotive networks and control units,”
IOActive, Tech. Rep., 2014.

[29] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger vehicle,”
IOActive, Tech. Rep., 2015.

[30] A. Costley, “Platform Development and Path Following Controller Design for Full-sized
Vehicle Automation,” Master’s thesis, Utah State University, Logan, Utah, 2017.

[31] “Road vehicles - controller area network (can) - part 1: Data link layer and physical
signalling,” International Organization for Standardization, Geneva, CH, standard,
2015.

[32] Wiring Diagrams: Focus Electric 2013, Ford Motor Company.

[33] EBSCOhost, “Auto repair reference center,” https://www.ebscohost.com/public/
auto-repair-reference-center, Tech. Rep., 2013.

[34] Ecu analysis with canalyzer. Vector. [Online]. Available: https://vector.com/
vi canalyzer en.html

[35] Pcan-usb. [Online]. Available: http://www.peak-system.com/PCAN-USB.199.0.html?
L=1

[36] Arm cortex-m4f based mcu tm4c1294 connected launchpad. Texas Instruments.
[Online]. Available: http://www.ti.com/tool/ek-tm4c1294xl

[37] Sn65hvd230. Texas Instruments. [Online]. Available: http://www.ti.com/product/
SN65HVD230

[38] Active park assist. Ford Motor Company. [Online]. Available: https://owner.ford.
com/how-tos/vehicle-features/convenience-and-comfort/active-park-assist.html

[39] O. Persson and G. Persson, “Torque sensor for automotive applicaitons.” [Online].
Available: http://www.iea.lth.se/publications/MS-Theses/Full%20document/5352
full document.pdf

[40] Obd-ii background. B&B Electronics. [Online]. Available: http://www.obdii.com/
background.html

[41] P. S. Murvay and B. Groza, “Source identification using signal characteristics in con-
troller area networks,” IEEE Signal Processing Letters, vol. 21, no. 4, pp. 395–399,
April 2014.

[42] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for vehicle intrusion
detection,” in 25th USENIX Security Symposium (USENIX Security 16). USENIX
Association, 2016, pp. 911–927.

[43] J. E. A. Dias, G. A. S. Pereira, and R. M. Palhares, “Longitudinal model identifi-
cation and velocity control of an autonomous car,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 2, pp. 776–786, April 2015.

https://www.ebscohost.com/public/auto-repair-reference-center
https://www.ebscohost.com/public/auto-repair-reference-center
https://vector.com/vi_canalyzer_en.html
https://vector.com/vi_canalyzer_en.html
http://www.peak-system.com/PCAN-USB.199.0.html?L=1
http://www.peak-system.com/PCAN-USB.199.0.html?L=1
http://www.ti.com/tool/ek-tm4c1294xl
http://www.ti.com/product/SN65HVD230
http://www.ti.com/product/SN65HVD230
https://owner.ford.com/how-tos/vehicle-features/convenience-and-comfort/active-park-assist.html
https://owner.ford.com/how-tos/vehicle-features/convenience-and-comfort/active-park-assist.html
http://www.iea.lth.se/publications/MS-Theses/Full%20document/5352_full_document.pdf
http://www.iea.lth.se/publications/MS-Theses/Full%20document/5352_full_document.pdf
http://www.obdii.com/background.html
http://www.obdii.com/background.html

80

[44] Ros tutorials. [Online]. Available: wiki.ros.org/ROS/Tutorials

[45] Md-awd-150. Mustang Dynamometer. [Online]. Available: https://mustangdyne.com/
md-awd-150/

[46] Utah state university builds the nations most advanced test facility for dynamic
wireless charging. [Online]. Available: http://evr.usu.edu/news/press-releases/2014/
dec1-usu-builds-nations-most-advanced-facility

[47] M. A. Sotelo, “Lateral control strategy for autonomous steering of ackerman-like vehi-
cles,” Robotics and Autonomous Systems, vol. 45, no. 3, pp. 223–233, 2003.

[48] J. Luo and P. Tsiotras, “Control design for systems in chained form with bounded
inputs,” in American Control Conference, 1998. Proceedings of the 1998, vol. 1. IEEE,
1998, pp. 473–477.

[49] Using zed with ros. [Online]. Available: https://www.stereolabs.com/documentation/
guides/using-zed-with-ros/introduction.html

[50] Newmar powering the mobile network. NewMar. [Online]. Avail-
able: http://newmarpower.com/wp-content/uploads/2016/04/Newmar Powering the
Mobile Network Mobile Catalog 2015-Web.pdf

[51] Sn65hvd230 can board. WaveShare. [Online]. Available: http://www.waveshare.com/
sn65hvd230-can-board.htm

[52] Tivaware™for c series (complete). Texas Instruments. [Online]. Available: http:
//www.ti.com/tool/sw-tm4c

[53] Opencv library. [Online]. Available: http://opencv.org/

wiki.ros.org/ROS/Tutorials
https://mustangdyne.com/md-awd-150/
https://mustangdyne.com/md-awd-150/
http://evr.usu.edu/news/press-releases/2014/dec1-usu-builds-nations-most-advanced-facility
http://evr.usu.edu/news/press-releases/2014/dec1-usu-builds-nations-most-advanced-facility
https://www.stereolabs.com/documentation/guides/using-zed-with-ros/introduction.html
https://www.stereolabs.com/documentation/guides/using-zed-with-ros/introduction.html
http://newmarpower.com/wp-content/uploads/2016/04/Newmar_Powering_the_Mobile_Network_Mobile_Catalog_2015-Web.pdf
http://newmarpower.com/wp-content/uploads/2016/04/Newmar_Powering_the_Mobile_Network_Mobile_Catalog_2015-Web.pdf
http://www.waveshare.com/sn65hvd230-can-board.htm
http://www.waveshare.com/sn65hvd230-can-board.htm
http://www.ti.com/tool/sw-tm4c
http://www.ti.com/tool/sw-tm4c
http://opencv.org/

	Vision-Based Control of a Full-Size Car by Lane Detection
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Complete Integration of a Full-size Vision-based Autonomous Car
	Method of Acceleration Through CAN Message Injection
	Open-source and Low-cost Platform
	Outline

	REVERSE ENGINEER COMMUNICATIONS AND ENABLE REMOTE CONTROL
	Reverse Engineer Communications and Enable Remote Control
	CAN Message Injection
	Sensor Emulation
	Safety and Security

	MODEL IDENTIFICATION AND LOW-LEVEL CONTROLLER DESIGN
	Model Identification and Low Level Controller Design
	Longitudinal Model
	Lateral Model
	PI Controller Design

	LANE DETECTION AND VISION-BASED CONTROL
	Lane Detection
	Inverse Perspective Mapping
	Filtering and Thresholding
	Line Fitting
	Spline Fitting
	Lane Selection

	Vision-Based Control
	Kinematic Model
	Non-linear Control Law

	AUTOMATION PLATFORM OVERVIEW
	Platform Overview
	Interfacing Architecture
	Sensing Architecture
	Computational Architecture

	RESULTS
	Low Level Controller
	Lane Detection
	Vision-Based Controller

	CONCLUSION
	Limitations and Future Work

	REFERENCES

