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Abstract

Architecture description languages (ADLs) describe the
abstracted structure of a system. In this paper we describe a
new ADL based on extension of the existing CARE language
used in formally specifying and implementing reusable soft-
ware components. The main elements of this ADL are com-
ponents and connectors, with functional and non functional
behaviours and interfaces defined. The ADL includes a con-
figuration part, describing the connection between compo-
nents and connectors, defined using a CSP-like notation.
The ADL is amenable to the use of theorem proving tech-
niques for establishing correctness of the architecture. The
recursive architecture is also specified as a part of the com-
munication. The design for the CARE ADL is incorpo-
rated with the plan to leverage existing tools for match-
ing and adapting CARE components, to develop support for
the detection and correction of architecture mismatches (i.e.
where components do not interoperate correctly).
Keywords: software architectures, formal languages

1. Introduction

Increasingly complex computer control systems are
being built from Commercial-off-the-shelf (COTS) and
Government-off-the-shelf (GOTS) components. Examples
of complex systems that are built by combining a number of
existing off-the-shelf components include: Enterprise Sys-
tems (e.g., Human Resource systems, Library Management
systems and Student Record systems); SCADA (supervi-
sory control and data acquisition) systems; and Defence ap-
plications such as Naval Combat Systems.

On the surface the use of off-the-shelf components for
the development of complex systems is an attractive ap-
proach, with potential savings in both cost and time. How-
ever, there are often incompatibilities between an off-the-
shelf component and the system that it is to be integrated
into. Also, where multiple off-the-shelf components are to
be integrated, incompatibilities often exist between these

components. Incompatibilities can include: different data
and message formats; time related issues such as latency
and throughput; and differences in functionality. If these
incompatibilities are not recognised and dealt with early in
the development lifecycle, they can lead to huge blowouts
in the budget, or failure to meet performance and functional
requirements.

1.1. Aims

Our aim is to develop techniques that will help predict
and correct incompatibilities, both between pairs of compo-
nents and across the overall system, early in the design pro-
cess for computer-based systems. We will develop a formal
mathematical based approach to predicting and correcting
incompatibilities. This will allow us to describe component
interfaces in a more precise and unambiguous manner, and
will also allow us to develop automated tool support for de-
tecting incompatibilities. Since many SCADA and Defence
applications are safety or mission critical it is not unreason-
able to adopt formal methods approach, especially early in
the lifecycle. Specifically we aim to develop:

• A machine-checkable language for specifying time-
dependent software architectures.

• Analysis techniques for detecting functional and tim-
ing requirement mismatches.

• Automated techniques for correcting component mis-
matches.

We will use specification matching techniques as a means
of detecting component mismatches. These techniques
are used in library component retrieval, and make use of
formally specified pre- and post- conditions to increase
search recall. We will extend specification matching to
handle matching of complex time-dependent properties.
More recently, the focus of the specification matching com-
munity has been on developing techniques for correcting
mismatches between user queries and library components,
based on automated adaptation of library components. This
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work will be a useful starting point for developing automat-
able methods for correcting architectural mismatches.

1.2. This paper

The focus of this paper is the development of an archi-
tecture description language that will be amenable to these
matching and adaptation techniques. We use the CARE lan-
guage [4, 5] as a starting point for the ADL, since we have
already made good progress in developing matching and
adaptation techniques for this language. We can keep the
original methodologies, basic notions and functionalities
based on CARE. However, as we will illustrate through an
example, CARE is not rich enough to capture the essential
features of a software architecture. In particular, in the lan-
guage of Allen and Garlan [1], CARE can capture low level
implementation relationships between modules, but cannot
express implementation independent, or so-called interac-
tion relationships.

Implementation relationships express the definition/use
dependency relationships between implementation ”mod-
ules”. Implementation relationships represent the lower
level structure, which contains relationships between parts
of a system. It is also called implementation constraining
in [11], which require a high degree of fidelity of an archi-
tecture to its implementation.

Interaction relationships not only contain the functions
of implementation relationships, but also reflect directly the
abstract interactions that result in the effective composition
of independent components. interaction relationships de-
scribe higher level conceptual architecture of a system. The
same concept is called implementation independent in [11].
With this type of ADLs, components and connectors are
modelled at a high level of abstraction and do not assume or
prescribe a particular relationship between an architectural
description and an implementation.

In this paper, we extend the CARE language to describe
interaction relationships. It is a significant progress that
CARE is developed as a sound formal Architecture Descrip-
tion Language (ADL).

This paper is organised as follows. Section 2 reviews the
framework of common ADLs. Section 3 extends the exist-
ing CARE language into CARE ADL. Section 4 formalises
the CARE ADL using the Z specification. Section 5 checks
the correctness of the CARE ADL using theorem proving
methods. Section 6 describes the recursive architecture and
proves the correctness of it. Section 7 compares the advan-
tages, differences and similarities between CARE and other
ADLs. Finally, this paper is concluded with section 8.

2. Framework of Architecture Description
Languages

Software architectures describe: the elements from
which systems are built; interactions among those elements;
patterns that guide their composition; and constraints on
these patterns [9]. An Architecture Description Language
(ADL) is a language for defining software architectures.

There are many recently developed Architecture De-
scription Languages (ADLs). The ADLs vary from one to
another, each with a different focus and demonstrating their
own strength and weakness. However, there are common
themes among them. Medvidovic and Taylor [11] classified
three essential modeling features for ADLs: components;
connectors; and architectural configurations.

Components represent the primary computational ele-
ments and data stores of a system [11]. Components may
have multiple interfaces (or ports), which define a point of
interaction between a component and its environment. Con-
nectors represent interactions among components, and me-
diate the communication and coordination activities among
components. Connectors also have interfaces that define the
roles played by the various participants in the interaction
represented by the connector. Configurations describe the
interactions between components and connectors.

Other features of architecture structures include: types;
properties; and constraints. Types represent families of re-
lated system. An architectural style typically defines a vo-
cabulary of design element types and rules for compos-
ing them [9]. For example, the pipe-file style represents
dataflow architectures. Properties represent semantic infor-
mation about a system and its components that goes beyond
structure. Constraints represent claims about an architec-
tural design that should remain true even as it evolves over
time. Typical constraints include restrictions on allowable
values of properties, topology, and design vocabulary.

In addition architecture description languages typically
include a means of defining the behavior of a system.
The properties of behavior contain functional and non-
functional behaviors. Examples of non-functional behav-
iors are timing, schedulability, reliability and security anal-
ysis. Different ADLs are supported by particular tools to
check the compatibilities, refinement of different parts, such
as components and connectors, and the correctness of prop-
erties of an architecture.

3. Motivating example

3.1. Existing CARE language

To illustrate the use of CARE we look at a simple ex-
ample for inserting an element into a list. We propose im-
plementing list insertion by sorting the list, then inserting
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the element in the sorted list. Such a program can be con-
structed by combining a component that sorts a list with a
second component that inserts an element into a sorted list.
This is an example of sequential architecture. The architec-
ture is shown in Fig. 1.

Figure 1. High-level architecture for list inser-
tion

Such a problem can be specified in the existing CARE
language. In the following specification the top-level pro-
gram is represented by the fragment insert, which takes
an element and a list and returns a list. A precondition is
given, stating that the element cannot already be in the list,
and the postcondition states that the elements in the return
list are the same as those in the original list with the addition
of the new element. We implement this by calling two other
components. The first, sort, takes a (possibly) unsorted
list and returns a sorted list. The second, sortedinsert,
inserts an element in a sorted list, returning a sorted list.

fragment insert(in x:E,in y:List,out z:List)
pre x 6∈ elems(y)
post items(z) = [[x]] ] items(y)

::= sort(y)::u:List;
sortedinsert(x,u).

fragment sort(in u:List,out v:List)
post items(v) = items(u) ∧ isSorted(v).

fragment sortedinsert(in x:E,in s:List,out t:List)
pre isSorted(s) ∧ x 6∈ elems(s)
post isSorted(t) ∧ ∃ a, b : List • t = a a 〈x〉a b ∧ s = a a b.

From this specification we can reconstruct the architec-
ture shown in Fig. 1. However the approach is rather clumsy
in that we don’t explicitly identify the connectors. More im-
portantly it is difficult to see how we might extend the lan-
guage to include non-sequential connectors, such as those
used in other ADLs such as Wright. Our aim is to intro-
duce explicit connector specifications into CARE, whilst at
the same time ensuring that the existing tools, in particular
those detecting and correcting component mismatches, can
still be applied.

3.2. Extending the language

In this section we show how we can extend the CARE
language in order to specify component architectures. In
particular we add support for explicit component connec-
tors. We follow the lead of other ADLs that allow us to
specify “classes” of components, and then create one or
more instances of these components. Likewise we specify
a class of connectors and then create multiple instances of
these.

In Fig. 2 we revisit the list insertion problem. This time
we define insert as an architecture. We begin by specifying
the inputs and outputs of the architecture (also referred to
as ports). Next we give the contract for insert, specifying
functional properties that are required by the architecture,
as well as properties that are provided by the architecture.
Then we give specifications for the two component classes,
representing sort and sortedinsert. Each component class
has a contract, specifying functional properties. We will
create one instance of each of these components, but are by
no means limited to creating just a single instance.

The next part defines the interface for a connector class,
in this case a simple pipe connector. This connector has two
roles, one for writing data to the pipe, the other for reading
data from the pipe at the other end.

Next we create instances of the components and connec-
tors. In this case there are two components and four con-
nectors (corresponding to the four arrows in Fig. 1).

Following the interface part of the architecture is the con-
figuration part. In the configuration part we declare the
component and connector instances. Next the connections
between these instances are defined, giving details of con-
nections between ports and roles.

The final part of the architecture is the communica-
tion part, describing how the data is passed between com-
ponents and connectors. This part models the data flow
shown in Fig. 1 using a CSP-like notation. There are two
different kinds of events used here: calls to components
(e.g. call(s)); and flow of data along a connection (e.g.
flow(con1)). This example joins processes using a se-
quential join (“->”) and a parallel join (“||”).

4. Formalising the CARE ADL

In this section we give a formal definition of the CARE
ADL, defining the major elements of an architecture. The
CARE ADL is formalised using the Z specification lan-
guage.

The CARE ADL contains and extends the syntax of the
existing CARE language [4]. The extended language gives
explicit recognition to component connectors, and the as-
sociated machinery of roles and ports as well as configu-
ration information about the architecture. The CARE ADL
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architecture insert(in x:E,in y:L,out z:L) is
pre x 6∈ elems(y)
post items(z) = [[x]] ] items(y)
component sort(in u:L,out v:L)

post items(v) = items(u) ∧ isSorted(v).
component sortedinsert(in x:E,in s:L,out t:L)

pre isSorted(s) ∧ x 6∈ elems(s)
post isSorted(t) ∧ ∃ a, b : L • t = a a 〈x〉a b ∧ s = a a b.

connector pipe(in writer:X,out reader:X)
params X
post reader′ = writer

instances
component s::sort
component si::sortedinsert
connector con1::pipe(L)
connector con2::pipe(L)
connector con3::pipe(E)
connector con4::pipe(L)

connections
con1.writer→ y
con1.reader → s.u
con2.writer →s.v
con2.reader → si.s
con3.writer →x
con3.reader →si.x
con4.writer →si.t
con4.reader →z

communication
((flow(con1) → call(s)
→ flow(con2)) || flow(con3))
→ call(si) → flow(con4) → stop

end architecture

Figure 2. An architecture for list insertion

supports hierarchical architectures. High-level architectures
can include sub-architectures that are connected via inter-
face ports. These sub-architectures may be pre-defined, rep-
resenting commonly used architectural configurations, and
may be supplied as part of a library repository.

4.1. Architecture overview

Conceptually an architecture consists of an interface and
a configuration. The interface gives the external view of
the architecture, while the configuration describes how the
individual parts of the architecture are pieced together.

Architecture
name : Id
interface : ArchInterface
configuration : ArchConfiguration

ran configuration.components ⊆ interface.components

ran configuration.connectors ⊆ interface.connectors

The first condition in the above schema states that ev-
ery component instance in the configuration part must have
a corresponding component type declared in the interface
part. The second condition is the corresponding require-
ment on connectors.

For the list insertion architecture shown in Fig. 2, the
interface part of the architecture is everything up to the
keyword “instances”. The remainder of the architecture is
the configuration part, defining the instances of components
and connectors, and how they are pieced together.

4.2. Architecture interface

The interface part of an architecture defines: the external
ports of the architecture; the types of any components and
connectors used in the architecture; and a contract specify-
ing functional and non-functional properties of the architec-
ture.

ArchInterface
ports : F Port
components : F Component
connectors : F Connector
contract : Contract

A port is a point at which data flows into or out of an
architecture or component. A port is identified by a name.
Port names must be locally unique, that is a particular com-
ponent cannot have multiple ports with the same name. A
port also has an associated type, identifying the type of data
flowing into or out of the data. Finally, a port has an as-
sociated mode, which indicates whether the data is flowing
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into the component or out of the component. The mode is
represented as an enumerated type with two values, in or
out.

Port
name : Id
type : Type
mode : Mode

A contract defines properties on an architecture, com-
ponent or connector. These properties may be functional
properties, or non-functional properties. In the current ver-
sion of the CARE ADL, we support functional properties,
however in later versions we will extend this to include non-
functional properties, in particular timing properties. We
split the properties into two broad categories: those prop-
erties that are required for the architecture, component or
connector to operate correctly; and those properties that are
ensured by the architecture, component or connector.

Contract
requires : F Property
ensures : F Property

4.2.1 Components and connectors

Components and connectors are the basic building blocks
for architectures. A component type consists of a name, a
collection of ports, and a contract.

Component
name : Id
ports : F Port
contract : Contract

A connector is defined by a name, a set of roles and a
contract that states properties about the connector.

Connector
name : Id
roles : F Role
contract : Contract

Each connector will have a number of roles (interfaces)
associated with it. For example a pipe connector will typi-
cally have a role that allows data to be written to the pipe,
and a role that allows data to be read from the pipe.

4.3. Architecture configuration

The configuration part of an architecture defines the in-
stances of components, connectors and sub architectures

used within the architecture. Component instances are mod-
elled as a partial function from instance identifiers to the
component type. Similarly connector instances are mod-
elled as a partial function from instance identifiers to the
connector type. The topology of the architecture is defined
in terms of connections between roles and ports. We dif-
ferentiate between internal connections and external con-
nections. External connections are those that connect to the
external ports of the main architecture.

ArchConfiguration
components : Id 7→ Component
connectors : Id 7→ Connector
subarchs : Id 7→ Architecture
int connections : Role ↔ Port
ext connections : Role ↔ Port
communication : Process

dom int connections ⊆ {r : Role |
∃ c : ran connectors • r ∈ c.roles}

ran int connections ⊆ {p : Port |
(∃ c : ran components • p ∈ c.ports) ∨

(∃ a : ran subarchs • p ∈ a.interface.ports)}
dom ext connections ⊆ {r : Role |

∃ c : ran connectors • r ∈ c.roles}

Roles used in both internal and external connections
must be a role from one of the connector instances. Ports
used in internal connections must be a port from one of the
component instances or an external port of one of the sub
architectures.

The communications part of the configuration describes
how the order in which data flow between components
via connectors. Non-terminal communication processes
are: sequential processes; parallel processes; or conditional
(branching) processes. Terminal processes are: the flow
event; the call event; and the skip process.

Process ::= skip
| flow〈〈Id〉〉
| call〈〈Id〉〉
| then〈〈Process× Process〉〉
| parallel〈〈Process× Process〉〉
| ifthenelse〈〈Condition× Process× Process〉〉

A flow event corresponds to a flow of data along a connector
instance. A call event corresponds to a call to a component
instance. The skip process does nothing.

5. Checking the architecture

In this section we describe three correctness checks that
can be performed on the architecture: type correctness; par-
tial correctness; and well-formedness.
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5.1. Type checking the architecture

The architecture description language includes types for
all ports and roles. Ports and roles that are connected should
have compatable types. We therefore need to check that for
every connection defined within an architecture configura-
tion, the type of the role is equal to the type of the port.

Consider the list insertion architecture, shown in Fig. 2.
If we focus on the connection between the s port of sorte-
dinsert and the reader port of con2, then it is easy to see
that they both have type L.

Further type checking can be done for each of the com-
ponents and connectors defined in the architecture to en-
sure that produce the correct output type given correct input
types.

5.2. Partial correctness

To establish partial correctness we show that the post-
condition of the architecture holds assuming that the pre-
condition holds. To check the partial correctness of the
architecture, we establish the functional behaviour of the
architecture from the contracts of the component and con-
nector instances involved, and the communication process.
To do this we step through the communications process, to
generate a strongest postcondition. The strongest postcon-
dition semantics are shown in Fig. 3.

spost(skip) = true
spost(flow(c)) = InRolePortRel(c) ∧
OutRolePortRel(c) ∧ Post(c)
spost(call(c)) = Post(c)
spost(then(p1, p2)) = spost(p1) ⇒ spost(p2)
spost(parallel(p1, p2)) = spost(p1) ∧ spost(p2)
spost(ifthenelse(c, p1, p2)) = c ⇒ spost(p1)

∧ ¬ c ⇒ spost(p2)

Figure 3. Strongest postcondition semantics

For flow events, we can assume the postcondition of the
connector holds. Moreover we can assume certain relation-
ships between ports and roles. For in roles, we can assume
that the initial value (before the flow occurs) of the in role is
equal to the value at the port that it is connected to. The re-
lation InRolePort captures these associations for all in roles.
For out roles, we can assume that the value of port that the
role is connected to is equal to the final value of the out role
(i.e. after the flow occurs).

To establish partial correctness, we need to show that the
precondition of the architecture together with the strongest

postcondition imply that the postcondition of the architec-
ture holds.

For the insert example we need to establish the post-
condition:

items(z) = [[x]] ] items(y) (1)

Assuming the precondition, x 6∈ elems(y) holds, we gener-
ate the strongest postcondition by processing the communi-
cations part of the architecture. The resulting proof obliga-
tion is shown in Fig. 4.

Upon simplifying the proof obligation we get:

∀ a, b • x 6∈ elems(y) ∧ items(s.u) = items(a a b)
⇒ items(a a 〈si.x〉a b) = [[si.x]] ] items s.u

This can be easily proven using the following properties,
together with the fact that the bag union operator, ], is as-
sociative and commutative:

items(a a b) = items(a) ] items(b) (2)
items(〈x〉) = [[x]] (3)

5.3. Well-formedness

To establish well-formedness we need to show that the
required properties (pre-condition) of all components and
connectors used in the architecture are satisfied.

For example, consider the call to the component si. To
establish well-formedness for this call, we need to show that
the precondition of the instance si of sortedinsert is
satisfied. To do this we can assume that the precondition of
the architecture holds, together with the strongest postcon-
dition for the communication process up to the point of the
call. That is for the process:

((flow(con1) → call(s)
→ flow(con2)) || flow(con3))

The resulting proof obligation is shown in Fig. 5. The
proof of the first conjunct is straightforward. The proof of
the second conjunct follows from the following property:

∀ a, b : seq X • items(a) = items(b) ⇒ elems(a) = elems(b)

This proof obligation, together with the partial correctness
obligation have been discharged with the Isabelle theorem
prover.

6. Recursive architectures

In this section we look at an example of a recursive ar-
chitecture (as shown in [1]), that is one that repeatedly calls
one or more of its component instances. The example con-
verts a list of characters into a new list, where all of the
original characters have been capitalised.
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x 6∈ elems(y) ∧ ((con1.writer = y ∧ con1.reader′ = s.u ∧ con1.writer = con1.reader′) ⇒
(isSorted(s.v) ∧ items(s.u) = items(s.v)) ⇒

(con2.writer = s.v ∧ con2.reader′ = si.s ∧ con2.writer = con2.reader′)) ∧
(con3.writer = x ∧ con3.reader′ = si.x ∧ con3.writer = con3.reader′) ⇒

isSorted(si.t) ∧ (∃ a, b • si.t = a a 〈si.x〉a b ∧ si.s = a a b) ⇒
con4.writer = si.t ∧ con4.reader′ = z ∧ con4.reader′ = con4.writer ⇒

items(z) = [[x]] ] items(y)

Figure 4. Proof obligation for partial correctness of insert contract

x 6∈ elems(y) ∧ ((con1.writer = y ∧ con1.reader′ = s.u ∧ con1.writer = con1.reader′) ⇒
(isSorted(s.v) ∧ items(s.u) = items(s.v)) ⇒

(con2.writer = s.v ∧ con2.reader′ = si.s ∧ con2.writer = con2.reader′)) ∧
(con3.writer = x ∧ con3.reader′ = si.x ∧ con3.writer = con3.reader′) ⇒

isSorted(si.s) ∧ si.x 6∈ elems(si.s)

Figure 5. Well-formedness proof obligation for insert architecture

Previously we would have represented this using a single
component (or fragment), with a list as input and another
list as output. Recursion was handled within the component
implementation. For this example, as shown in Fig. 6, we
have a component (upper) that capitalises a single character
at a time. The recursion is handled within the communica-
tion process.

The architecture includes a single component instance
and two connectors. The first connector connects the input
list to the up component. The connection is made by get-
ting the first element of the list and sending this to the up
component. The second connector connects the result from
the up component to a buffered list which is accumulated to
give the final result. Initially this buffered list is empty.

The communication process is defined using a recursion
block. A local recursive process, f , is defined. We define the
ports used in the recursion block, and the external connec-
tors involved in the recursion block. Within the recursion
block is a conditional process. If the input port s is non-
empty, then a recursive call to f is made after the compo-
nent up is called. If the input list is empty then the process
is complete.

6.1. Partial correctness

To prove partial correctness for the Capital architecture
we will consider the two paths in the communication pro-
cess separately. We shall not give a formal treatment of this
here, instead we sketch the main details.

Firstly consider the else branch, where s = 〈 〉. To prove

architecture Capital(in s:List,out t:List) is
post t = map toupper s
component upper(in x:Char, out y:Char)

post y = toupper(x).
connector queuew(in wr:List,out rdr:Char)

post rdr′ = head wr ∧ wr′ = tail wr
connector queuer(in wr:Char out rdr:List)

init rdr = 〈 〉
post rdr′ = 〈wr〉a rdr

instances
component up::upper
connector con1::queuew
connector con2::queuer

connections
con1.wr→s
con1.rdr→up.x
con2.wr→up.y
con2.rdr→t

communication
rec f(s,t; con1, con2) .
if s 6= 〈 〉 then
flow(con1) -> call(up) ->
f(s’,t’) -> flow(con2)

else
skip

end rec
end architecture

Figure 6. An architecture for capitalising a list
of characters
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partial correctness for this branch we are required to show:

t = map toupper 〈 〉 (4)

Simplifying the right-hand side, it remains to show that t =
〈 〉. From the initialisation statement for con2, we know that

con2.rdr = 〈 〉 (5)

Furthermore, because there is no flow along con2 in this
branch of the process, we can assume

con2.rdr′ = con2.rdr (6)

Finally we can assume that the ports s and t used in the
call to the recursion block are connected to the writer and
reader roles respectively of the connectors con1 and con2.
Therefore we can assume:

con1.wr = s (7)
con2.rdr′ = t (8)

Combining (8), (5) and (6) we can infer that t = 〈 〉 thus
completing the proof for the else case.

To generate the proof obligation for the if branch, we
need to introduce some additional notation and assumptions
concerning the recursive call f(s’,t’). For a connector
con and a role r, we shall use f .con.r to refer to role r of the
connector con as it is used in the recursive call. We make
the following assumptions regarding recursive roles:

1. For any role r belonging to a connector con, which
comes before the recursive call f f .con.r = con.r′

2. For any role r belonging to a connector con, which
comes after the recursive call f f .con.r′ = con.r

Furthermore we can assume that the architecture post-
condition holds between s′ and t′ for the recursive call, i.e.

t′ = map toupper s′ (9)

Finally we can assume that the ports s′ and t′ used in the
recursive call f (s′, t′) are connected to the writer and reader
roles respectively of the connectors f .con1 and f .con2, i.e.

f .con1.wr = s′ (10)
f .con2.rdr′ = t′ (11)

Combining these assumptions with the strongest post-
condition semantics for the other constructs in the if branch,
we can derive the proof obligation as shown in Fig. 7. The
conjecture of this proof obligation, represented in the last
line, can be discharged using an inductive proof.

7. Comparison between CARE and Other ADLs

7.1. Other ADLs

Darwin [8] is a declarative binding language used to de-
fine hierarchical compositions of interconnected compo-
nents for parallel and distributed systems. It supports both
static and dynamic structures, where the latter may evolve
during execution. The central abstraction managed by Dar-
win are components and services, where services are the
means by which components interact. Primitive compo-
nents contain the local names of required and provided ser-
vices. Composite components are constructed other com-
ponents (primitive or composite), by declaring both the in-
stances of other components they contain and the bindings
between those components. Darwin provides support for
reducing complex configurations to a system of primitive
component instances.

The semantics of Darwin are expressed in π − calculus.
The configuration description is a precise specification of
the potential structure at execution time. Darwin also sup-
ports hierarchical architecture mechanisms and reuse. How-
ever, Darwin does not have strong support for architecture
abstraction or connectors.
UniCon [10] emphasises the structural aspects of exe-
cutable software systems. It is actually a compiler and pro-
vides matching from implementation code to the architec-
ture. The executable code is extracted as the architecture
via a wrapper, then represented in the textual or graphical
notations. The major elements of this ADL are primitive
components, connectors and composite components. Com-
posite components contain primitive components, connec-
tors, instantiation of primitive components and connectors,
an implementation topology and communications of the ar-
chitecture. Unicon supports hierarchical decomposition by
allowing components to be defined in terms of either a sub-
configuration or a concrete implementation. The primitive
component contains a built-in type, players and the imple-
mentation. The implementation in the component is further
specified with attributes to emphasise the features of a par-
ticular part of a software system to achieve a tight match
in between the architecture and the system. UniCon creates
an initialisation routine that starts up a particular composite
component and handles arbitrary topologies correctly. Uni-
con supports non-functional scheduleability properties and
incorporates a tool for analysing the scheduleability.
Rapide [6] is an executable specification language. The re-
sult of executing a Rapide architecture (a set of interfaces
and connections) is a partially ordered set of events, describ-
ing dependencies and independencies between events [6].
The main elements of Rapide are the interface, the connect
and the constraint. The interface defines the type of compo-
nents and provides an abstract definition of externally vis-
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s 6= 〈 〉 ∧ con2.rdr = 〈 〉
s = con1.wr ∧ con1.rdr′ = head con1.wr ∧ con1.wr′ = tail con1.wr ∧ con1.rdr′ = up.x ⇒

up.y = toupper(up.x) ⇒
f .con1.wr = con1.wr′ ∧ f .con1.rdr = con1.rdr′ ∧ f .con2.wr′ = con2.wr ∧ f .con2.rdr′ = con2.rdr ∧
t′ = map toupper s′ ∧ f .con1.wr = s′ ∧ f .con2.rdr′ = t′ ⇒

con2.wr = up.y ∧ con2.rdr′ = 〈con2.wr〉a con2.rdr ∧ con2.rdr′ = t ⇒
t = map toupper s

Figure 7. Partial correctness proof obligation for if-branch of Capital architecture

ible behaviour. The behaviour (action) in the interface is
expressed as functions, classified as “in” and “out”, where
“in” is for received message and “out” is for outgoing mes-
sage (trigger event). The interface is instantiated before it
is used by the connect. The connect calls functions in the
interface via each instantiated interface in a similar way of
calling methods from a class in Object-Oriented languages.
The connect shows dependencies, indicating whether a sys-
tem is sequential or concurrent. Rapide executes the pro-
cesses in the connect to run an architecture. Rapide also
provides the use of event pattern mappings to define the re-
lationship between two architectures at different levels of
abstraction. It accommodates hierarchical refinement. Con-
nections in Rapide are refinable into architectures.
Wright [1] is a conceptual architecture description lan-
guage and uses CSP as its major mathematical tool for spec-
ifying sequential and concurrency processes. The major
structure of Wright contains components, connectors, in-
stances, binding and attachments (topology). The interface
is called port in a component and role in a connector. The
behaviour is called computation in a component and Glue
in a connector. The topology of an architecture is drawn
in attachments. Wright specifies connectors explicitly, pro-
viding clear abstraction for the architecture. Properties are
checked in Wright using the FDR model checker, apply-
ing deadlock and refinement checks among different parts
of an architecture to ensure the architecture’s correctness.
The specification is predefined for all possibilities of a finite
system, thus Wright can do exhaustive checking. However,
Wright cannot simulate an on-the-fly system run.

There are other ADLs which are not reviewed in detail.
For example, ACME [3], which is for interchange between
difference architectures; MetaH AADL [2], which is mainly
for dynamic real time system; and C3 [7].

7.2. CARE Compared with Other ADLs

Compatibilities

The CARE ADL is designed to accommodate the best fea-
tures of the ADLs described above. As described in the

earlier sections, the structure of CARE ADL consists of:
components; connectors; configurations; communications
and constraints. Components and connectors are compati-
ble with those in the above ADLs. The interfaces of compo-
nents in CARE are compatible with players in Unicon, and
ports in Wright; the interfaces of connectors in CARE are
compatible with roles in Unicon and Wright. Configura-
tion and communication together describe the overall struc-
ture and topology of the ADL, and are compatible with
“Bind” and “Connect” in Unicon, “attachment” in Wright
and “connect” in Rapide. Behaviour in CARE is compati-
ble with “implementation” in UniCon, “glue” for the con-
nector and “computation” for the component in Wright and
“interface” in Rapide. The architecture style in CARE is im-
plicitly represented within the components and connectors,
as done in Wright, this differs to Unicon which represents
the style explicitly. Similar to Darwin and Unicon, where
composite components contain primitive components, and
“mapping” in Rapide, CARE supports hierarchical architec-
tures and sub-architectures. CARE is amenable to using the-
orem proving methods to check the architecture, with the
correctness conditions derived in this paper checked using
the Isabelle theorem prover. This differs to other ADLs,
such as Wright, which use model checking methods.
Advantages

The CARE ADL specifies configuration and communi-
cation separately. This means that the CARE ADL is more
expressible than other ADLs for connections between in-
stances of connectors and components, and processes of
an architecture. The CARE ADL separates functional and
relational behaviours in components and connectors mak-
ing it possible to check correctness using different tools ac-
cording to the features of behaviours. Architecture check-
ing is done using theorem prover in this paper. However
in the future we anticipate using model checking to check
certain non functional properties. This makes CARE more
flexible than other ADLs like Wright, although some ADLs
such as Unicon do already support different kinds of non-
functional properties. Architecture properties (contracts) in
the CARE ADL are more expressible than the similar func-
tions in other ADLs. For the above reasons, we decided
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to extend CARE as a ADL instead of using other existing
ADLs.

A major weakness of Rapide that is addressed in the
CARE ADL is that it does not specify connectors and topol-
ogy separately, and gives no clear interface between differ-
ent parts of the system. UniCon functions as a compiler to
convert executive code into the architecture, which is sound
for a software system but not so applicable for systems that
include hardware. In contrast, the focus of the CARE ADL
is at a more abstract level, applicable during the design
phases and suitable to both software and hardware.

Finally, we intend to utilise one of the main features of
the existing CARE system, that is the notion of reusable
library components. In this case we propose a library of
reusable architectures or sub-architectures which can be ap-
plied to solve a variety of design problems. Such a feature
is not supported by other ADLs described here.

8. Conclusions and Future Work

This paper introduced an architecture description lan-
guage which extends the existing CARE language. The
structure and major elements of this ADL have been for-
malised using the Z specification. The major elements
of the ADL are components, connectors, connections and
communications, where components and connectors are
specified using the existing CARE style and the communi-
cation is specified using CSP-like notations.

Architectures specified using the CARE ADL can be
checked for functional correctness using theorem proving
technologies. Recursive architectures can be specified us-
ing recursion blocks inside the communications part, thus
enabling quite a sophisticated connection of components
within an architecture, beyond the simple sequential and
parallel connections.

In future work we will focus on extending the ADL to
support the definition of adaptable and reusable architecture
templates. Furthermore we will extend the language to sup-
port the specification of non-functional properties, specifi-
cally timing properties, and develop techniques for check-
ing whether or not these timing properties are satisfiable.
We will also look at incorporating model checking based
techniques to check features such as deadlock freedom and
refinement checking. Eventually, we will implement a com-
prehensive case study for a real time system.
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