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Abstract— Wireless ad hoc networks often require a method
for estimating their nodes’ locations. Typically this is achieved
by the use of pair-wise measurements between nodes and their
neighbours, where a number of nodes already accurately know
their location and the remaining nodes must calculate theirs
using these known locations. Typically, a minimum mean square
estimate (MMSE), or a maximum likelihood estimate (MLE) is
used to generate the unknown node locations, making use of
range estimates derived from measurements between the nodes.
In this paper we investigate the efficacy of using radio frequency,
received signal strength (RSS) measurements for the accurate
location of the transmitting nodes over long ranges. We show
with signal strength measurements from three or more wireless
probes in noisy propagation conditions, that by using a weighted
MMSE approach we can obtain significant improvements in the
variance of the location estimate over both the standard MMSE
and MLE approaches.
Keywords: Wireless Networks, Location, MMSE, MLE, RSS.

I. INTRODUCTION

The localisation of nodes within Wireless Ad Hoc Networks
(WAHNs) continues to be the focus of many research efforts.
Accurate node localisation is often critical in WAHNs, par-
ticularly sensor networks, where this information is crucial
to both the observed data and the mechanisms by which
the sensing nodes deploy and optimise their collection and
communication architectures. Often the nodes deployed in
these networks are required to be simple devices that use the
minimum of complexity and power to perform their designated
functions. The drivers for this are many, with cost, size and
operational life under battery power, being the most important,
particularly when hundreds of nodes are being deployed to
sense a large area. For this reason it is common for the majority
of the network nodes to calculate their location based on range
estimates derived from measurements to a select few nodes,
that accurately know their location from either prior defined
information or from additional capability, such as a Global
Positioning System (GPS) receiver.

The localisation problem we consider here, is to investigate
the efficacy of using radio frequency, received signal strength
(RSS) measurements for the accurate location of transmitting
nodes over long ranges. Previous research has highlighted that
the localisation accuracy reduces with increasing range [1],
for the RSS case. For our scenario, we are concerned with

the vulnerability of WAHNs to topology reconstruction and
characterisation in a military sense. In a previous paper [2],
we showed that for an overly simplified propagation model
it is possible to approximately reconstruct both the physical
and logical topology of a wireless network and characterise
individual nodes over time. In this paper, we are interested
in optimising the localisation, which is critical for wireless
topology reconstruction. The focus is on longer propagation
ranges in open terrain, which differs considerably from the
often studied problem of locating a transmitting node in an
office environment. A more realistic log-normal shadowing
propagation model is used, where the propagation exponent
that describes the decay in received signal strength propor-
tional to range is set to n = 2. This is significantly lower
than the value used in an office environment, and results in
more ideal propagation over longer ranges than experienced
within a building. However extending the range worsens the
localisation performance due to the log-normal tail in the RSS.

The paper’s main contributions are a detailed investigation
into the performance of multilateration techniques for node
localisation using minimum mean square estimate (MMSE)
approaches, and the development of a simple technique to im-
prove the localisation performance by weighting the MMSE.
We compare various weighting schemes and show that sig-
nificant per measurement location bias, that is dependent on
the selection of the reference measurement equation, can be
introduced if only a simple weighting approach is used. To
overcome this limitation, we develop a covariance matrix
weighting approach whose performance is independent of the
reference equation selected. We compare our technique to the
maximum likelihood estimate (MLE) technique developed by
Patwari et al. [3] and show that it performs better than the
MLE for our purposes.

Section II describes the RF propagation environment. The
standard multilateration or MMSE approach is described in
Section III. Section IV investigates simple weighting schemes,
while Section V uses a mean measurement equation to solve
the MMSE. Section VI develops the covariance weighting
approach, and this weighted MMSE is compared to the MLE
in Section VII. We conclude and propose future work in
Section VIII.



II. PRELIMINARIES

Estimating a transmitting node’s location from RF signal
strength measurements is fraught with much uncertainty. The
RF propagation environment can vary markedly, especially
with node movement. Fading effects caused by the propagation
path or the channel bandwidth can result in large variances in
the received signal strength. However, the technique is simple,
cheap and the hardware required to estimate the received
power already highly integrated in the wireless local area
networks (WLAN) receivers used commercially on 802.11
networks and WAHNs.

A log-normal shadowing model was used to simulate the RF
propagation loss, with the received signal strength calculated
at each node using the distance d between it and the associated
nodes. Typically the received power decays proportionally to
d−n where n is the path loss exponent. The average received
power P (d), at distance d from a transmitting node is typically
modelled relative to a small reference distance do, and its
received power Po. In units of (dBm), we have

P (d) = Po − 10n log10

d

do
. (1)

Rappaport [4] shows that n varies between 2 and 4, and for
the free space model n = 2. It has also been shown that
variations in the received power measurements in dB, can
be modeled by a Gaussian distribution and that the standard
deviation σ, of the received power can be as low as 4 and as
high as 12 [1], [4]. For our simulations, the exact distance from
the nodes with known locations, henceforth known as probes,
to the unknown node locations was calculated to provide a
perfect measurement. Log-normal noise with a mean of zero
and a variance of 20 dB, was added to this to simulate the
range distance estimates for our open battlefield scenario. This
channel model although simplified, provides a good model
for our scenario where we assume that there is clear line of
sight (CLOS) to our unknown node for the majority of the
time and that what variations do occur are from only simple
reflections arising from movement or small obstructions. For
our simulations we are concerned with only one unknown node
as depicted in Figure 1.
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Fig. 1. Probe to node distances.

III. NODE LOCALISATION

To calculate an estimated node location, the noisy distance
measurements are compared to a receiver threshold distance
that is calculated according to the sensitivity of a standard
802.11b receiver plus 6 dB of loss. The additional loss is
included to allow for receiver variations. If this threshold is
exceeded for at least three measurement probes, then a MMSE
for each node location (xest, yest) can be generated. This is
often termed multilateration in the WAHN location literature.
To solve the MMSE we need n location estimates, where
n ≥ 3. These are calculated by using the probe distance
measurements di,est, determined from the simulated power
measurements via equation (1). Then,

di,est =
√

(xi − xest)2 + (yi − yest)2, i = 1, . . . , n. (2)

Squaring and rearranging these terms yields the following
equation for each probe measurement

−x2
i − y2

i = x2
est + y2

est − 2(xestxi + yestyi)− d2
i,est. (3)

For n such probe equations the x2
est + y2

est can be removed
by subtracting the pn probe/reference equation from the set,
with the resultant being in the form of v = βA, where

v =




−x2
1 − y2

1 + x2
pn

+ y2
pn
− d2

n,est + d2
1,est

−x2
2 − y2

2 + x2
pn

+ y2
pn
− d2

n,est + d2
2,est

...
−x2

n−1 − y2
n−1 + x2

pn
+ y2

pn
− d2

n,est + d2
n−1,est


 ,

and

β =




2(xpn − x1) 2(ypn − y1)
2(xpn − x2) 2(ypn − y2)

...
...

2(xpn − xn−1) 2(ypn − yn−1)


 ,

are known and the unknown node’s location estimate is

A =
[

xest

yest

]
.

A is solved using the Moore-Penrose generalised matrix in-
verse solution for the MMSE [5], [6]

A = (βT β)−1βT v. (4)

Figure 2 plots the MMSE location and its one-standard devia-
tion uncertainty ellipse (1 − σ) for a single unknown node
calculated using 7000 simulated range estimates from four
probes, with the highlighted probes acting as the reference.
The one-standard deviation uncertainty ellipse is used as
a coarse 2-D confidence interval as in [7]. For a detailed
description of this type of uncertainty representation refer to
[8].

To provide a measure of the estimated location’s variance,
we define ẑ = (xest, yest), and σ2

ẑ to be the trace of the
location’s covariance matrix cov(ẑ),

σ2
ẑ = tr{cov(ẑ)}. (5)



As such, σẑ for the MMSE above is approximately 100 metres,
which clearly shows how poor the location estimate can be and
that for long range measurements using the standard MMSE
is of little use. Further, it appears that whether the probes
are placed either approximately symmetric to the node or
asymmetrically, that the mean estimated location is largely
unbiased.

The log-normal model for the range estimates means that
their standard deviation will be proportional to the actual
distance separating the probes and nodes. As such the variance
for the MMSEs will worsen with increasing distance as shown
in the second part of Figure 2. It can also be seen that the un-
certainty ellipses for the two MMSEs in each plot are slightly
different. This is a result of the fact that with the same data,
different reference probes lead to different estimates. Only data
with valid (ie above the threshold) readings from the reference
probe can be analysed and so there is a degree of biased
selection involved for each reference probe. Consequently, if
a more distant probe is chosen as the reference probe, less
estimates will be generated as less valid measurements are
made by that probe. There will also be an associated bias
in the number of poor to good distance estimates, as many
poor results will drop below the threshold and thus effectively
improve the averaged result.

IV. NODE LOCALISATION USING A WEIGHTED MMSE

With the log-normal model resulting in the variance of
the range estimates increasing proportionally to the separation
distance, it would appear obvious that weighting our measure-
ment matrix inversely proportional to range should improve
our MMSE. Accordingly, the weighting matrix w,

w =




dnw
1,est 0 · · · 0
0 dnw

2,est · · · 0
...

...
...

...
0 0 · · · dnw

n−1,est


 , (6)

was incorporated into the Moore-Penrose location estimate,

A = (βT w−1β)−1βT w−1v. (7)

It was anticipated that larger values for the weighting exponent
nw in (6), should improve the variance of the location MMSE.
To investigate this, the resulting RMS error after 7000 location
estimates was plotted for increasing values of nw, and is
shown in Figure 3. The results clearly suggests that we
should increase the weighting exponent to at least 4. Although
larger values further reduce the errors for this well behaved
system, they can cause arithmetic problems at higher orders,
particularly if the probes and the unknown nodes align co-
linearly.

Figure 4 shows the mean estimated locations when the
MMSE is weighted by 1/d4 for the same simulations as in
Figure 2. Both plots clearly show that weighting has reduced
the variance of the location estimates, but also introduced a
significant reference probe dependent bias, in the estimated
mean location. For the upper plot, where the probes are
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Fig. 2. Unweighted MMSE node locations and their one-standard deviation
uncertainty ellipses for approximately symmetric and asymmetric probe
placement.

relatively close and symmetric to the unknown node, the
bias effects are very similar and clearly orientated relative to
the reference probe. For the lower plot, the reference probe
dependency is not nearly as obvious. This effect is again a
result of the thresholding, which limits the set of possible
measurements.

This again highlights, that depending on the relative location
of the probes to the unknown node’s location, there will be an
optimum reference probe choice for the localisation, especially
if weighted in this fashion. The problem is that we can’t
easily tell which probe will produce the best estimate. What
is required is a weighting technique that gives robust location
estimates independent of the reference probe choice.

V. MMSE USING A MEAN REFERENCE EQUATION

In the previous two sections the unknown node’s location
was calculated by subtracting one probe’s distance measure-
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ment equation (the “ reference probe ”) from the set of probe
equations, so that a MMSE for the location could be generated.
Instead of subtracting a single probe equation a similar result
can be achieved by subtracting the mean of the set of probe
measurement equations, thus removing the dependence on
a particular probe. The down side of this approach is that
probes with very poor estimates will corrupt the average
and thus the location estimate. Conversely there may also
be an improvement if the variances of the individual probe
measurements are all similar. To achieve this, equation (3) is
rearranged as below,

d2
i,est − x2

i − y2
i = x2

est + y2
est − 2(xestxi + yestyi). (8)

Define,

X̄ =
1
N

N∑

i=1

xi, Ȳ =
1
N

N∑

i=1

yi,

V̄ =
1
N

N∑

i=1

(d2
i,est − x2

i − y2
i ), (9)

Summing (8) over all i and dividing by N gives,

V̄ = x2
est + y2

est − 2xestX̄ − 2yestȲ . (10)

Subtracting (8) from (10) for each i we obtain the equations

vi = 2(xi − X̄)xest + 2(yi − Ȳ )yest, (11)

where vi = V̄ +x2
i +y2

i −d2
i,est. We can rewrite equation (11)

as
v = βA, (12)

where β is the known locations as before, just redefined in
terms of the means. β = 2[x−1X̄,y−1Ȳ ], where the column
vectors x = (x1, . . . , xN )T , y = (y1, . . . , yN )T , and 1 =
(1, 1, . . . , 1)T . A is the unknown node’s location as before
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Fig. 4. Plots of mean node location estimates and their one-standard deviation
uncertainty ellipses for the selected reference probes when the MMSE is
calculated using 1/d4 weighting.

and once again is solved using the same weighted MMSE as
in equation (7).

Comparing the second plot in Figure 2 with the location
estimate generated using the mean reference equation in Figure
5 we see that the mean location estimate is approximately
the same with a small improvement in it’s variance. However,
we have almost completely removed the bias introduced with
weighting alone as seen in Figure 4. The estimate’s variance
however, is still too large and even subtracting a weighted
mean equation had no significant effect. Another approach
that removes probe dependence and also reduces the estimate’s
variance is required.

VI. COVARIANCE WEIGHTED MMSE

Motivated by the fact that weighting a normal distribution
via its inverse covariance matrix provides the maximum like-
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Fig. 5. Weighted mean reference equation MMSE node location and its
one-standard deviation uncertainty ellipse.

lihood estimate for the least squares solution, we modify our
weighting matrix to include all the covariance terms for the
log-normal shadowing case.

For brevity, let d be the distance from the probes to the
unknown node. The covariance between the elements of v,
given that di, dj and dn are independent, where n denotes the
reference probe, is

cov(vi, vj) = cov(−d2
n + d2

i ,−d2
n + d2

j ),
= cov(−d2

n,−d2
n) + cov(−d2

n, d2
j )

+ cov(d2
i ,−d2

n) + cov(d2
i , d

2
j ),

= cov(−d2
n, d2

n) + I{i = j}cov(d2
i , d

2
j ),

= var(d2
n) + I{i = j}var(d2

i ).
(13)

Consequently the variance for our location estimate for log-
normal shadowing is,

cov(vi, vj) =
{

var(d2
n) + var(d2

i ), i = j,
var(d2

n), i 6= j.
(14)

Using the second and fourth raw moments of the log-normal
distribution, µ′2 = e2σ2

and µ′4 = e8σ2
we can estimate these

variances as,

var(d2
i ) = E

[
(d2

i )
2
]− (

E[d2
i ]

)2
,

= E[d4
i ]−

(
E[d2

i ]
)2

,

= d4
i e

8(σ ln 10
10n )2

− d4
i e

4(σ ln 10
10n )2

,
= d4

i C.

(15)

Our weighting matrix is then the covariance matrix as in (14),
which can be written as

w = C




d4
n + d4

1 d4
n · · · d4

n

d4
n d4

n + d4
2 · · · d4

n
...

...
...

...
d4

n d4
n · · · d4

n + d4
n−1


 . (16)

Surprisingly applying this weighting as in equation (7)
results in exactly the same location estimate independent of
which probe is chosen to be the reference, for every data
set. Figure 6 shows the estimated locations produced by
weighting the MMSE by the covariance matrix. The one-
standard deviation uncertainty ellipses have been considerably
reduced in comparison with both the unweighted and weighted
cases. Also significant is that the bias in the mean estimated
location is removed or heavily reduced. The results for the
first plot show that for the covariance weighted MMSE, σẑ has
been reduced to 53.32 m as compared to those for the 1/d4

weighted MMSEs of 82.28 m, 82.97 m, 81.55 m and 81.07
m for probes one to four respectively acting as the reference
probe, and σẑ = 96.49 m for the unweighted case using probe
one as the reference probe.
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Fig. 6. Plot of mean node location estimates and the one-standard deviation
uncertainty ellipses when the MMSE is calculated using the covariance
weighting matrix.



Initial investigations into why the previous weighting matrix
provided the same estimate independent of the choice of
reference probe were undertaken by expanding equation (7)
for an arbitrary weighting matrix with structure

w =




W4 + W1 W4 W4

W4 W4 + W2 W4

W4 W4 W4 + W3


 .

It appears that the independence of the estimates to ref-
erence probe is related to the structure of the covariance
matrix. We have yet to prove that the covariance weighting
is independent of the choice of reference equation for all
situations and leave this for future investigation.

VII. MLE AND COVARIANCE WEIGHTED MMSE

It can be shown that the density of the received power at
probe i transmitted from node j (expressed in Watts) Pi,j(W )
is

f(Pi,j(W )) =
10/ loge 10√

2πσ2
dB

1
Pi,j(W )

exp−

 b

2
loge

(
d̄i,j

d̃i,j

)2

 ,

(17)
where

b =
(

10n

σdB loge 10

)2

,

d̄i,j = log-normal mean distance,

d̃i,j = estimated distance.

Using this density function, Patwari et al. [3] derived the MLE
for the unknown node location. This can be simplified to
include only those probe-to-node combinations that provide
valid range estimates such that the MLE is

arg min
{z}

n∑

i=1

(
loge

(
d̄2

i,j

d̃2
i,j

))2

, (18)

where z = (xest, yest) represents the potential location of
the unknown node. Using (18) we generate a MLE for the
unknown node’s location for the same scenario. We also use
the derivation for the Cramér-Rao bound (CRB) from [1] to
compare with the MLE, as shown in Figure 7. Comparing
Figures 6 and 7, we see that the σẑ of 53.32 m for the
location estimate provided by the covariance weighted MMSE
is considerably better than that for the MLE which is 70.48
m, and approaches the CRB of 51.58 m.

VIII. CONCLUSION

This paper has considered in detail the problem of long
range wireless node location estimation using range estimates
derived from RSS measurements. We have shown that the
estimated location variance can be significantly improved by
using the covariance matrix of the measurement equations as
a weighting function in the generation of the MMSE. It has
also been shown that this approach significantly out performs
the MLE and approaches the CRB, for our scenarios.
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Future work will further investigate the properties of the co-
variance weighting approach to ascertain if the independence
of the technique to the choice of reference equation holds in
general. Similar approaches are currently being investigated
for location estimation using time difference of arrival (TDOA)
measurements and will be reported in a future paper. We are
also exploring the possible benefits of deliberately introducing
a distinct form of the variance structure for the estimation
process and then exploiting this in tracking and other related
problems.
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