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ABSTRACT

We use the theory of two dimensional discrete wavelet transforms to derive inversion formulas for the Radon
transform of terahertz datasets. These inversion formulas with good localised properties are implemented for the
reconstruction of terahertz imaging in the area of interest, with a significant reduction in the required measure-
ments. As a form of optical coherent tomography, terahertz CT complements the current imaging techniques and
offers a promising approach for achieving non-invasive inspection of solid materials, with potentially numerous
applications in industrial manufacturing and biomedical engineering.
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1. INTRODUCTION

Terahertz radiation (T-rays) is a collective term to describe the part of the electromagnetic spectrum from 0.1
THz to 10 THz.1–6 The application of THz time domain spectroscopy (THz-TDS), especially in the biomedical
and security fields and in the fields of material science, is attractive owing to two intrinsic properties: a non-
ionising nature and the ability to penetrate dry, non-polar and non-metallic materials.7 Compared to traditional
X-ray techniques, terahertz 3D imaging uses coherent tomography, which allows us to obtain both phase and
amplitude information of an object.

This paper for CT reconstruction is motivated by terahertz TDS imaging mechanisms and focuses on terahertz
CT imaging with reduced projection angles. The main goal of this paper is to present a wavelet based recon-
struction algorithm for terahertz computed tomography and to show how this algorithm can be used to rapidly
reconstruct the region of interest (ROI) with a reduction in the measurements of terahertz responses, compared
with a standard reconstruction. The current algorithm provides new insight into the relationship between local
reconstruction, local projection, and the resolution of terahertz coherent tomography. This algorithm is sensitive
to terahertz data when reconstructing local projections using wavelet techniques, resulting in variations in the
boundary of the local projection region after the wavelet transform, which gives rise to different resolution and
reconstructed image sizes. This algorithm generates the approximation and detail images separately, and the
final reconstruction is found by inverse wavelet transform. The algorithm reconstructs the area of interest via
applying two sets of data from two different target experiments: polystyrene with hold inside and a tube inside
a vial—a simple nested structure. For the first datasets, we reconstruct (i) a center region of 16 pixel radius
in a 100 × 100 pixel image using 46% of full data; (ii) an off-centre region of radius 30 pixels in a 100 × 100
image using 66% of full data. For the second set of datasets, we reconstruct a center region of 6 pixel radius in
a 100 × 100 pixel radius image using 59% of full data.

This paper consists of six sections. Section II introduces a terahertz functional imaging system and gives an
overview of the nonlocality of the Radon transform — this is important because we review the difference between
the conventional Radon transform reconstruction and our modified Radon transform for coherent tomography.
In addition, following review of traditional Radon transform, this section summarize the basics of the wavelet
transform, and a full-data reconstruction technique based on the wavelet transform is also involved. Section IV
then discusses the implementation of this method, and in Section V, the tomographic results are presented.
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2. METHODOLOGY

2.1. A Brief Introduction to Terahertz Imaging

A terahertz CT system is based on a chirped terahertz time domain spectroscopy scanned imaging system.
The target is mounted on a motion stage that allows it to be translated along the x and z axes. Meanwhile,
the object can also be rotated and linearly moved. The detailed information for the chirped pulse scanning and
relative rectangular coordinate system and polar coordinates for imaging reconstruction please see.8 The current
research builds upon our previous work represented in Ferguson et al.8

2.2. An Overview of CT and Terahertz CT

Normally, a filtered back projection algorithm begins with a collection of sinograms obtained from projection
measurements. A sinogram is simply generated via a collection of the projections at all the projection angles. It
satisfies the following equation:

s(ξ, θ) =
∫
o(x, z)dξ (1)

where all points on projection offset ξ satisfy the equation: x cos θ + z sin θ = ξ and o denotes the measured
image intensity of a target object, which is a function of pixel position in an x and z plane.

The filtered back projection algorithm for terahertz CT reconstruction is expressed as follows:

I(x, y) =
∫ π

0

[∫ ∞

−∞
S(θ, β)|β|exp[i2πβξ]dβ

]
dθ (2)

where S(θ, β) is the spatial Fourier transform of the parallel projection data, defined as

S(θ, β) =
∫ ∞

−∞
s(θ, ξ)exp[−i2πβξ]dξ, (3)

here, s(θ, ξ) is the measured projection data, β is the spatial frequency in the ξ direction. It should be noted
that the operation of the ramp filter |β|, as illustrated in Eq. (3), is equivalent to a differentiation followed by a
Hilbert transform, which introduces a discontinuity in the derivative of the Fourier transform at zero frequency,
while wavelet based local reconstruction, represented in this paper, ensures localised features of a local basis for
image recovery.

2.2.1. Calculation of Terahertz Parameters for Reconstruction of Terahertz CT

One of the advantages that terahertz CT has over X-ray CT is that s(θ, ξ) may be one of several parameters
derived from terahertz pulses. Fundamentally, a terahertz CT setup is capable of measuring the transmitted
terahertz pulse as a function of time t, for a given projection angle and projection offset. In principle, terahertz
sinograms can be obtained in both time and frequency domains:

Frequency domain sinogram for terahertz CT:

The measured terahertz pulse is a function of time t, at a given projection angle and projection offset pd(t, θ, ξ).
Let us denote the Fourier transform of this time domain pulse by Pd(ω, θ, ξ). The reference pulse pi(t) and the
corresponding Fourier response Pi(ω) can be measured by removing the target object from background. If the
target is rotated and probed by terahertz beams, Pd(ω, θ, ξ) may be evaluated by adding sufficient projection
angles to allow the filtered back projection algorithm to be applied at each specific frequency ω. This is based
on the approximation that the detected terahertz signal is viewed as a linear integral of the incident terahertz
pulse,

Pd(ω, θ, ξ) = Pi(ω) exp

[∫
L(θ,ξ)

−iωn̂(r)
c

dr

]
(4)

where Pd and Pi are the Fourier transforms of the detected and incident terahertz signals, respectively; c is
the speed of light in free space, L is the projection path, a straight line between the source and detector. The
unknown complex refractive index of the sample is denoted by n̂(ω, r) = nδ(ω, r) + ik(ω, r), where nδ(ω, r) is
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the real refractive index deviation and k(ω, r) is the extinction coefficient, related to absorption coefficient α via
k(ω, r) = α/2ki (ki is the incident extinction coefficient). Let us define that,

Pn
.=

[
Pd(θ, ξ)
Pi(θ, ξ)

]
/ki =

∫
L

nδ(r)dr = �{nδ(r)} (5)

Pα
.= −2

∥∥∥∥Pd(θ, ξ)
Pi(θ, ξ)

∥∥∥∥ =
∫

L

α(r)dr = �{α(r)} (6)

where arg(x) denotes the phase or argument of complex valued x, ‖ x ‖ denotes the magnitude of the complex
scalar x, and Pn and Pα are the projection data inputs to the filtered back projection algorithm as required to
reconstruct nδ and α, respectively, at a specific terahertz frequency ω. The sign r denotes the position of the
incident field (the sensor). The frequency signogram is applied to the vial and tube data sets (see later) for this
paper’s experiments.
Time domain signogram for terahertz CT: One of the advantages that terahertz CT has over X-ray CT
is that s(θ, ξ) may be one of several parameters derived from terahertz pulses. Fundamentally, a terahertz CT
setup is capable of measuring the transmitted terahertz pulse as a function of time t, for a given projection angle
and projection offset. In principle, terahertz sinograms can be obtained in both time and frequency domains. In
this paper, we review the calculation of terahertz sinograms in the time domain.

This method is based on the assumption that the target is of less dispersion and therefore the THz pulse
shape is less unchanged after propagation through the target apart from attenuation and time delay. A reference
terahertz pulse pi(t) is measured without the target in place. To estimate the phase shift t of a terahertz pulse
pd(t), the two signals are resampled at a higher rate using low-pass interpolation. The two interpolated signals
are then cross-correlated, and the maximised cross-correlation product at each angle as the lag is taken as the
estimation of the phase delay of pd(t).

Timing sinogram can be calculated based on the following equation

ptime =
∫

L(θ,ξ)

Tdelaydr (7)

here, ptime denotes the sinogram image in the time domain, recovered from the maximum time delay. As for
detailed information for the time domain signogram calculation, please refer to Ferguson et al.8

2.3. Two Dimensional Wavelet Based CT Reconstruction
2.3.1. Two Dimensional Wavelet Transform (2D DWT)

Wavelet transforms play an important role in many image processing algorithms. Fundamentally, wavelet de-
composition corresponds to a multiresolution analysis of a signal.9–13 This has the advantage of much improved
joint time-frequency localisation over Fourier based techniques. In practice, it is nearly always implemented using
digital filters and downsamplers. In two dimensions, the discrete version of a wavelet transform can be realised
by a 2D scaling function, φ(x, y), and three 2D wavelets, ψ1(x, y), ψ2(x, y), and ψ3(x, y), which are calculated by
taking the 1D wavelet transform along the rows of f(x, y) and the resulting columns. The 2D scaling function
and 2D wavelet functions satisfy the equations represented in Gonzalez and Woods.9

Our current experiment uses symmetric (linear phase) filters for the analysis of tomographic reconstruction.
Let h0, h1, denote a pair of linear phase low- and high-pass wavelet filters and h̃0, h̃1 denote the corresponding
reconstruction filters. The discrete approximation at resolution 2j can be obtained by combination of the details
and approximation at resolution 2j+1 using reconstructed wavelet filters:

cj(k, l) =
∑
m,n

h̃0(k − 2m)h̃0(l − 2n)cj+1(m,n) + h̃0(k − 2m)h̃1(l − 2n)dH
j+1(m,n)

+h̃1(k − 2m)h̃0(l − 2n)dV
j+1(m,n) + h̃1(k − 2m)h̃1(l − 2n)dD

j+1(m,n). (8)

Our method is to focus the wavelet application on recovering local images from wavelet approximate and
detail coefficients. In order to support the reconstructed filter for the recovery of the local target area, the
calculation of these reconstructed coefficients includes the region of interest and a margin area.
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2.3.2. Two Dimensional Wavelet Reconstruction

This section briefly describes an algorithm, which is applied to obtain the wavelet coefficients of a function on R
2

space, based on the measured terahertz projection data. This method enables reduced computation compared to
the wavelet coefficients obtained, after conducting wavelet transforms in a reconstructed image. Moreover, the
wavelet coefficients are calculated locally allowing the local reconstruction to yield local computed tomography.14

The main formulas for 2D DWT, on projection data, for the reconstruction of a CT image are introduced, which
are realised via performing separate wavelet transforms on 1D projection data.

The filtered back projection algorithm for terahertz CT reconstruction is expressed as follows:

I(x, y) =
∫ π

0

[∫ ∞

−∞
S(θ, β)|β|G2j (β cos θ, β sin θ) exp(i2πβξ)dβ

]
dθ (9)

where S(θ, β) and G2j (β1, β2) are the spatial Fourier transforms of s(θ, ξ) and g2j (a wavelet ramp filter in the
time domain), respectively.

The function enables image reconstruction as the conventional inversion of the Radon transform method,
while the ramp filter |β| is replaced by the wavelet ramp filter |β|G2j (β cos θ, β sin θ).

As for a separable wavelet basis, the reconstructed approximate and detail coefficients are easily achieved via
referring to Rashid-Farrokhi et al.14

For the current image reconstruction, only one 2D wavelet transform step is used. This is because the single
level decomposition of scaling and wavelet ramp filters allows clear reconstruction of an image in the ROI and
it avoids more computational complexity due to more levels of WT employed.14 The wavelet reconstruction
formulas in Eq. (9) allow for such reconstruct by setting j = 1. The 2D inversion of the traditional wavelet
transform (IWT) is conducted on the back projection of reconstructed approximate and detail sinograms, after
the decomposition procedure is performed.

2.4. Local Reconstruction Using Wavelets

A significant characteristic of the wavelet transform is its a large number of vanishing moments. Hilbert trans-
forms of functions with many vanishing moments have been shown to decay very rapidly at infinity.15 In other
words, a wavelet function with compactly supported allows a local basis to maintain its localised features after
Hilbert transformation.15 Fig. (1)(a)-(c) illustrates the ramp filter over the full frequency domain, the Bior-
Splines bi-orthogonal scaling and wavelet filters and the ramp filtered version of the BiorSplines bi-orthogonal
wavelet and scaling filters, where the X axis means the number of time or frequency samples, and Y axis means
the relative amplitude. Fig. (1)(c) essentially shows the essentially compact support after applying Hilbert trans-
forms. Therefore, the wavelet and scaling coefficients for some wavelet basis can be calculated after applying
the projections passing through the region of interest plus a margin for the support of the wavelet and scaling
ramp filters. These reconstructed coefficients, in this experiment, are then directly applied to the inverse wavelet
transforms for terahertz image reconstruction.

3. IMPLEMENTATION

3.1. Practical Consideration

The current research based on terahertz imaging is most closely related to Rashid-Farrokhi et al.14 In this work,
we experiment with the 2D wavelet technique using terahertz tomographic data by modifying the measured
projections. As we show later, this modification involves an extrapolation technique to avoid edge effects due
to sinogram truncation. It is observed that approximate coefficients of a scaling function shows good localised
features in the local reconstruction using our algorithm, where the reconstructed intensity of an image varies
much between different target materials. It should be noted that, in the application of terahertz data for local
reconstruction, it is found that the intensity at the edges of the region of exposure (ROE) in terahertz projections,
where nonlocal data is set to zero, varies considerably after conducting either a traditional ramp filter or scaling
and wavelet ramp filters.
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Figure 1. (a) Illustration of a traditional ramp filter. (b) and (c) Illustration of the scaling and wavelet ramp filters at
the sixth projection angle (43.2 degree) using BiorSplines 2.2 wavelet, respectively.
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Figure 2. (a) An optical image of a target with 2 mm diameter holes drilled into a polystyrene cylinder with varying
interhole distances. (b) Target object photograph with simple nested structure. The line indicates the measurement
height of 7 mm. (c) Projection filtered by a scaling ramp filter and a traditional ramp filter, respectively. (d) Projection
extrapolation outside the ROI after filtered projections.

In local reconstruction, artifacts are common close to the boundary of the ROE, which can readily be observed
in the application to terahertz CT data. It is possible that reconstruction after applying a constant linear
extrapolation results in missing information. This situation is illustrated in subsection 4.1.3. In this paper, there
are two sets of terahertz data considered for reconstruction: a cylinder with holes inside (see the target photo
in Fig 2(a)) and a nested structure of a tube inside a vial. For the first set of terahertz data (the sample photo
in Fig 2(b)), with 101 projections at each of 25 projection angles covering a 180◦ projection area in a 100 × 100
image. The line in the photo indicates the measurement height of 7 mm. Two situations are analyzed for this
target sample: (i) an ROE of diameter 42 pixels at the center of the image and (ii) an ROE of diameter 67 pixels
offcenter to the image. For the second set of terahertz measurements, with 51 projections at each of 36 projection
angles covering a 360◦ projection area in a 100 × 100 image, an ROE of diameter 18 pixels at the center of the
image is explored. Each of dataset has a pixel interval of 0.5 mm.

Fig 2(c) shows sharp variation along the borders of the ROE after applying wavelet ramp filters and ramp
filter, respectively, on each of the 1D projections, which result in an image appearing relatively weakened intensity
compared to a large constant bias that exists along the reconstructed edges in the region of interest. The constant
extrapolation we use is given by Eq. 25 in Rashid-Farrokhi et al.14 In order to fit terahertz signals, the current
algorithm replaces re with (re − ra) to diminish the artificial effect along the edge of ROE, where ra is the radius
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of the region of artifacts (ROA) centered at the origin.

Fig. 2(d) shows the extrapolated projection at the 25th projection angle after the application of a scaling ramp
filters and a ramp filter. The extrapolated projection removes spikes at the edge of the ROE. The extrapolation
algorithm is suitable to the reconstruction of an image at the off-center area. In order to recover the cross-sectional
image in the region of interest, the values of the sinograms outside of the ROE are set to zero. The traditional
filtered back projection formulas and wavelet based reconstruction are applied to the remaining projections,
respectively for analysis and comparison. The original terahertz sinogram image for the current terahertz data
can be calculated via applying Eq. (6).

3.1.1. Example Three

The third experiment is performed on a simple sample with a nested structure, a tube inserted in a vial. Eq. (7) is
applied to perform a Radon transform on the measured terahertz projection data. Eq. (9) is used to reconstruct
a local image using a scaling ramp filter, with G2j being multiplied by a shape scaling factor λ. The Eq. (9) can
be rewritten

I(x, y) =
∫ π

0

dθ ·
[∫ ∞

−∞
ŝ(θ, β)|β|ĝ2j (10)

·[β(cos θ · λ), β(sin θ · λ)]exp[i2πβξ]dβ

]
.

Fig 3(a) shows the wavelet ramp filtered projection at the first sampled frequency before a shape scaling
factor is applied, where a large ‘S’ shape scaling ramp filtered projection is observed. Fig 3(b) shows and almost
flat border along the projection after applying a shape scaling factor of 1/3.
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Figure 3. (a) Scaling ramp filtered projection before a shape scaling factor is applied. (b) Scaling wavelet ramp filtered
projection after a shape scaling factor of 1/3 is applied. (c) Illustration of the resultant signogram via extrapolation of
scaling wavelet ramp filtered projection

In this example, it is observed that variation in the approximately flat border exists. In order to reduce the
loss of necessary information in the ROI, different constants are adopted based on the different projection angles.
Let us assume that the region of artifacts consists of two parts: ROA1 and ROA2 with the radii of ra1 and
ra2, and with the projection angles of ρ1 ∈ [0 : θa1] and ρ2 ∈ [0 : θa2], respectively, in an image. To overcome
the problem of edge discontinuities, truncated regions in the sinogram are extrapolated with a constant value,
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which satisfies Eq (11). Fig 3(c) shows the resultant sinogram via extrapolation of the scaling wavelet ramp
filtered projection, with the same number of the projections at each projection angles being kept for convenience
in calculation of reconstructed image.

sθ local(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sθ(p), ...
if p ∈ (ROE-ROA1), and θ ∈ [0 : θa1]
sθ(p), ...
if p ∈ (ROE-ROA2), and θ ∈ (θa1 : θa2]
sθ(r cos(θ − θ0) + (re − ra1)), ...
if p ∈ [r cos(θ − θ0) + (re − ra1)], ...
and θ ∈ [0 : θa1]
sθ(r cos(θ − θ0) + (re − ra2)), ...
if p ∈ [r cos(θ − θ0) + (re − ra2)],...
and θ ∈ (θa1 : θa2]
sθ(r cos(θ − θ0) − (re − ra1)), ...
if p ∈ [r cos(θ − θ0) − (re − ra1)],...
θ ∈ [0 : θa1]
sθ(r cos(θ − θ0) − (re − ra2)), ...
if p ∈ [r cos(θ − θ0) − (re − ra2)], ...
θ ∈ (θa1 : θa2].

(11)

3.2. Algorithm Summary

The wavelet based reconstruction algorithm assumes an image support of radius R, and the radius of the ROI
is ri. A radius re = ri + ra is exposed, where ra is the extra margin with related to radius of ROA, which is
produced by applying wavelet filters on the project data. The algorithm is summarized as follows.

3.3. Algorithm Summary

The wavelet based reconstruction algorithm assumes an image support of radius R, and the radius of the ROI
is ri. A radius re = ri + ra is exposed, where ra is the extra margin with related to radius of ROA, which is
produced by applying wavelet filters on the project data. The algorithm is summarized as follows.

1. The original projections are calculated from time or frequency parameters from terahertz measurements.

2. The region of exposure is truncated for the reconstruction of an image in the region of interest.

3. The region of exposure of each projection is filtered by modified wavelet filters at all projection angles.
This step is to recover an image related to wavelet detailed coefficients.

4. The region of exposure of each projection is filtered by modified scaling filter at all projection angles, which
will lead to the recovery of the approximation sub-image.

5. The projections from step 4 are extrapolated with constants to limit artifacts at the boundaries of the
projections.

6. Filtered projections obtained in Step 3 and Step 4 are back projected to every other point to obtain the
approximate and detail at the higher resolution. The remaining points are set to zero.

7. The image is reconstructed from the wavelet and scaling coefficients via a conventional inverse DWT.
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4. RECONSTRUCTION RESULTS

4.1. Global Reconstruction

A 196×196 pixel image of the polystyrene target is recovered from the wavelet and scaling coefficients using global
data, shown in Fig. 4(a), without decomposition in the inverse wavelet transform for clarity and comparison. Each
measured terahertz pulse is a function of time with 401 samples at uniform time intervals of 0.067 ps. Wavelet
and scaling coefficients after back projection are shown in Fig. 4(b), where the BioSpline 2.2 biorthogonal basis
is used. The quality of the reconstructed image is, as expected, almost indistinguishable from the reconstruction
using traditional filtered back projection (FBP). The differences between the wavelet based reconstruction and
traditional filtered back projection are evaluated using the reconstructed profiles at the 80th horizontal row of
pixels and 80th vertical column of pixels, illustrated in Fig. 4(d) and (e), where it is not difficult to see the
variation in detected hole positions using wavelet version of reconstruction (dash line) compared to traditional
FBP algorithm (dash dot line).

0 20 40 60 80

0

10

20

30

40

50

60

70

80

X (mm)

Y
 (

m
m

)

0.5

1

1.5

2

2.5

3

Centered wavelet based global CT 

(a)

20 40 60 80 100

20

40

60

80

100
20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100
20 40 60 80 100

20

40

60

80

100

(b)

20 40 60 80 100 120 140 160

0

0.5

1

1.5

2

2.5

Reconstructed profile at 80th horizontal pixel row

FBP
WT based recon.

M
ag

ni
tu

de
 (

dB
)

Number of pixels

(c)

20 40 60 80 100 120 140 160

0

0.5

1

1.5

2

2.5

Reconstructed profile at 80th vertical pixel column

FBP
WT based recon.

Number of pixels 

M
ag

ni
tu

de
 (

dB
)

(d)

Figure 4. (a) A 196 × 196 pixel image of the polystyrene target is recovered from the wavelet and scaling coefficients
using global data, without decomposition. (b) Wavelet and scaling coefficients after back projection. (c) Reconstructed
profiles at the 80th horizontal pixel row. (d) Reconstructed profiles at the 80th vertical pixels column.

4.2. Local Reconstruction at Center Area
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Figure 5. (a) Reconstructed image localised to a region of interest from the inverse wavelet transform. (b) Centered
approximate and three detail reconstruction subimages along clockwise direction. (c) Reconstructed profiles at the 12th
horizontal pixel row. (d) Reconstructed profiles at the 12th vertical pixel column.

Fig. 5 shows reconstructed images centered at a radius of 16 pixels using the local reconstruction method
outlined in Section4.1.1 and the traditional FBP algorithm. Each reconstruction is evaluated on a 100 × 100
image. Fig. 5(a) is the local reconstruction after extrapolation from wavelet and scaling filtered projection, with
downsampling. Fig. 5(b) shows four subimages reconstructed from wavelet and scaling coefficients after constant
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extrapolation and BP. Fig. 5(c) and (d) shows the reconstruction profiles at the 12th horizontal row and vertical
column of pixels corresponding to each reconstruction. As illustrated in Fig. 5(c) and (d), the profiles taken from
the image reconstruction are scaled to improve construct.

4.3. Local Reconstruction at off-Center Area
Fig. 6(a)-(d) shows reconstructed images at an off-center area with a radius of 61 pixels using the current local
reconstruction method and the traditional FBP algorithm. Each of the subfigures illustrates, for comparison, local
reconstruction from extrapolated wavelet and scaling filtered projection after decomposition; the reconstruction
of extrapolated approximate and detail coefficients after BP; the reconstruction profiles at the 28th horizontal
row of pixels and the 12th vertical column of pixels are illustrated in Fig. 6(c) and (d), both of which correspond
to the reconstructions from approximate wavelet coefficients, FBP based local and global recovery in the ROI.
The reconstruction from wavelet approximate coefficients shows strong contrast in intensity for different media
and FBP based local reconstruction shows a little higher intensity than FBP based global reconstruction.
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Figure 6. (a) A reconstructed image from the inverse wavelet transform without decomposition for clarity. (b) Off-
centered approximate and three detail reconstructed subimages along clockwise direction. (c) Reconstructed profiles at
the 28th horizontal row of pixels. (d) Reconstructed profiles at the 12th vertical column of pixels.

4.4. Example Three
The nested structure of a tube inside a PET vial is imaged on a 100×100 grid. Its reconstruction from the wavelet
and scaling coefficients using global data is shown in Fig. 7(a). The ten images span the sampled frequency scope
from ten lowest frequencies, from 0.0213 THz to 0.213 THz. Again, the BioSpline 2.2 biorthogonal basis is
used. The quality of the reconstructed image is similar to using traditional filtered back projection (FBP),
shown in Fig. 7(b), with a little increased recovered image intensity in the reconstructed subimages and a little
discontinuity in the third reconstructed subimage compared to the traditional FBP algorithm.

Fig. 7(c) and (d) shows reconstructed images after extrapolation, evaluated on a 100×100 grid, at a center area
with a disk radius of 6 pixels using the current local reconstruction method and the traditional FBP algorithm.
They are enlarged for clarity. Each of the reconstructed subimages is illustrated, from 0.0213 THz to 0.213 THz,
relatively, with 59% of full projection data. The 59% of full projections is shown in Fig. 7(e) at the 6th sampled
frequency. The local reconstruction in the ROI from extrapolated wavelet and scaling filtered projection is shown
in Fig. 7(c). Fig. 7(d) is the corresponding local reconstructions using FBP algorithm. The noise is obviously
reduced in wavelet based reconstructed images, especially at the two frequencies of 0.0213 THz and 0.0426 THz.
It is valuable in the exploration of biomedical images using terahertz data, though a little aliasing occurs. The
wavelet approximate and detailed coefficients after BP at the 7th sampled frequency is illustrated in Fig. 7(f),
with a relative error of 29% from the approximate reconstruction.

5. FUTURE WORK

Since the current work involves only the one level of 2D DWT, it is interesting to explore the reconstruction algo-
rithm with more levels of decomposition. Moreover, a research area of much current interest is the development
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Figure 7. (a) Illustration of a 100×100 pixel global image of the tube inside a vial, with frequency range from 0.0213 THz
to 0.213 THz. It is recovered from the wavelet and scaling coefficients, after decomposition. (b) FBP based reconstruction
from global measurement with size of 100× 100 pixels and the same frequency range of (a). (c) A reconstructed image of
the tube from the inverse wavelet transform after decompostion. (d) Corresponding reconstruction FBP algorithm using
local projection data. (e) Illustration of the truncated projections with 59% of full data. (f) Approximate and detail
reconstruction coefficients after BP using local projection data.

SPIE-OSA Vol. 6631  663113-10



of statistical based local tomography algorithm and techniques.16 It aims towards the actual localised recon-
struction with relation to the terahertz measurement. The wavelet technique is critical for local reconstruction,
and the relative wavelet transform coefficients can be thresholded to reduce the dimensions of the computational
problem.17 In addition, the current resultant experiment relies on the fact that the Hilbert transform (part of
the inverse RT) does not really change the compact support of scaling and wavelet functions. Selesnick in his
paper18 pointed out how to design coupled sets of scaling and wavelet functions which are approximate Hilbert
transforms of each other. This could prove to be useful in the future work.

6. CONCLUSION
We have developed an algorithm to reconstruct the wavelet and scaling coefficients of a function from its signo-
gram image of terahertz signals. Based on the observation that for some wavelet bases, with sufficient zero
moments, the scaling and wavelet functions have essentially the same support after ramp filtering. Two targets
are recovered from terahertz measurements, which demonstrates the current local reconstruction reconstruction
method using a wavelet based transform scheme.
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