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ABSTRACT

This paper proposes a new power estimation technique for array
processing applications in the low sample size regime. The tech-
nique is especially suitable for applications where the direction of
arrival (DoA) detection is performed using subspace identification
techniques, because the eigenvalues and eigenvectors of the sam-
ple covariance matrix are already computed for DoA estimation
and are therefore available for power estimation as well. Com-
pared to the traditional Maximum Likelihood (ML) power estima-
tion technique, the proposed estimator has lower computational
complexity (assuming that the eigendecomposition of the sample
covariance matrix is already available) and it is more robust to
the presence of outliers in the direction of arrival (DoA) detection
process. This is because, contrary to the ML estimator, the pro-
posed power estimator only depends on the signature of the source
of interest.

Index Terms—Array signal processing, signal detection and
estimation, G-estimation.

1. INTRODUCTION

We consider the problem of extracting the information of multi-
ple uncorrelated sources impinging on an array of sensors. The
number of signals present in the scenario is assumed to be known
beforehand, so we are basically concerned with the joint estima-
tion of the direction of arrival (DoA) and the power of the sources
using low-complexity subspace-based techniques. We consider
subspace-based techniques because they offer a good compromise
between resolution and computational complexity, and are there-
fore very attractive from an implementation point of view.

Unfortunately, most of these array processing algorithms need
to operate in situations where the number of available samples
is not much higher (sometimes, even lower) than the number of
sensors, and in that regime subspace-based algorithms are partic-
ularly vulnerable to the so-called performance breakdown effect
[1, 2]. The performance breakdown effect becomes especially rele-
vant in superresolution direction-of-arrival (DoA) detection meth-
ods based on the MUSIC algorithm [3, 4]. For example, it is
well known that MUSIC and its variants suffer from performance
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breakdown in scenarios where both classical order estimation tech-
niques (such as those based on information theoretic criteria) and
Maximum Likelihood (ML) estimators remain robust [5].

Quite recently, we presented in [6, 7] an alternative to tradi-
tional MUSIC that is able to alleviate, to some extent, this per-
formance breakdown effect. The algorithm, which is referred to
as GMUSIC, is derived by imposing consistency when both the
number of samples and the number of elements of the array tend
to infinity at the same rate. This guarantees a good behavior of
the algorithm whenever these two quantities have the same order
of magnitude, as it is the case in most practical situations. In this
paper, we go one step further and propose a new source power
estimation technique that is also consistent under the same asymp-
totic conditions. The algorithm is structured as a power estimation
stage following DoA detection using GMUSIC and has several
interesting properties, such as its low computational complexity
(once GMUSIC has been implemented) and its robustness against
outliers in the DoA detection process.

2. SIGNALMODEL AND SUBSPACE DOA DETECTION

Let us consider a collection of N complex valued array observa-
tions, y(n) ∈ CM×1, n = 1 . . . N obtained from an array of
M > 1 sensors. We consider the case where the array is receiv-
ing the signal from K different uncorrelated sources, K < M ,
in white noise. In this case, the observations can be modeled to
be independent, identically distributed random vectors with zero
mean and covariance

R = S (Θ)ΦSS (Θ)
H + σ2IM (1)

where S (Θ) is anM×K matrix that contains the steering vectors
corresponding to theK different sources,

S (Θ) =
£
s (θ1) s (θ2) · · · s (θK)

¤
(2)

ΦS is a K × K diagonal matrix containing the power of each of
the sources, ΦS = diag [P1, . . . , PK ], and σ2 is the noise power.

Now, let {ei, i = 1 . . .M} and λ1 ≤ λ2 ≤ . . . ≤ λM denote
the eigenvectors and associated eigenvalues of the true covariance
matrix. According to the structure of the covariance matrix in (1),
the lowest eigenvector has multiplicityM−K and is exactly equal
to the noise power, namely λ1 = . . . = λM−K = σ2. Hence, we



can express the true covariance matrix as

R = ESΛSE
H
S + σ2ENE

H
N

whereΛS is aK×K diagonal matrix containing the largest eigen-
values of R, ES is an M × K matrix that contains the (signal)
eigenvectors corresponding to the K largest (signal) eigenvalues,
and EN is anM ×M −K matrix that contains the (noise) eigen-
vectors associated with the smallest (noise) eigenvalue σ2.

Subspace identification algorithms are based on the property
that any vector lying on the signal subspace is orthogonal to the
columns of EN . In this sense, the main idea behind the MUSIC
approach consists in finding {θk, k = 1 . . .K} as the values of θ
such that the column vector s (θ) lies on the signal subspace ofR
or, equivalently, the values of θ such that

sH (θ)ENE
H
Ns (θ) = 0. (3)

In practice, the eigenvectors {ei} are not known, and must be esti-
mated from the received data. The MUSIC algorithm follows from
the approach described above, replacing the unknown matrix of
the true eigenvectors EN with its sample estimates [3, 4]. Hence,
if we denote by {êi, i = 1 . . .M} and

n
λ̂1 ≤ λ̂2 ≤ . . . ≤ λ̂M

o
the eigenvectors and associated eigenvalues of the sample covari-
ance matrix R̂ = 1

N

PN
n=1 y(n)y

H(n), the MUSIC estimation of
the quadratic cost function in (3) turns out to be

ηMUSIC (θ) = s
H (θ)

Ã
M−KX
m=1

êmê
H
m

!
s (θ) .

Of course, the quadratic form ηMUSIC (θ) does not need to be zero
anywhere, so that the estimated DoAs {θk, k = 1 . . .K} are se-
lected as the K deepest local minima of ηMUSIC (θ). When the
number of samples increases without bound (N → ∞) and the
observation dimension is taken to be a fixed quantity (M < ∞),
ηMUSIC (θ) tends almost surely to the deterministic original objec-
tive function sH (θ)ENE

H
Ns (θ). In other words, ηMUSIC (θ) is a

(strongly) N -consistent estimator of (3). In practice, however, the
number of samples (N ) is finite and has a similar order of mag-
nitude as the observation dimension (M ). Hence, it makes more
sense to use an estimator of this quadratic cost function that is
consistent, not only when the number of samples increases with-
out bound N → ∞, but also when the observation dimensionM
tends to infinity at the same rate, namely when M,N → ∞ for
M/N → c, 0 < c < ∞. These estimators, usually referred to as
G-estimators [8] orM,N-consistent estimators, have a very good
behavior in practical sample-size limited situations, whereM and
N have the same order of magnitude. It was shown in [6, 7] that,
under some statistical assumptions and for sufficiently low c, this
estimator takes the form

ηGMUSIC (θ) = s
H (θ)

Ã
MX
m=1

φ(m)êmê
H
m

!
s (θ)

where

φ(m) =

 1 +
PM

k=M−K+1
³

λ̂k
λ̂m−λ̂k

− µ̂k
λ̂m−µ̂k

´
m ≤M −K

−PM−K
k=1

³
λ̂k

λ̂m−λ̂k
− µ̂k

λ̂m−µ̂k

´
m > M −K

and where µ̂1 ≤ µ̂2 ≤ . . . ≤ µ̂M are the real-valued solutions to
the following equation in µ̂

1

M

MX
k=1

λ̂k

λ̂k − µ̂
=
1

c
(4)

repeated according to their multiplicity. When c > 1, we
use the convention µ̂1 = . . . = µ̂[M−N ]++1 = 0, whereas
µ̂[M−N ]++2, . . . , µ̂M contain the positive solutions to the above
equations. The GMUSIC algorithm, which selects the estimated
DoAs as the K deepest local minima of ηGMUSIC (θ), has been
shown to outperform the traditional MUSIC algorithm in the low
sample size regime.

3. TRADITIONAL POWER ESTIMATION

Once the DoAs of the K different sources impinging on the array
have been estimated, it remains the problem of determining their
corresponding power P1, . . . , PK . A very common approach is to
use the GaussianMaximum Likelihood estimator obtained without
imposing zero correlation between the different sources, namely
(see, for instance, [9])

P̂ GML
k =

n
AH(Θ̂)

³
R̂− σ̂2GMLIM

´
A(Θ̂)

o
kk

(5)

where A(Θ̂) = S(Θ̂)
³
SH(Θ̂)S(Θ̂)

´−1
, S(Θ̂) is as in (2) but

replacing the true DoAs with their corresponding estimates, {·}kk
denotes the kth element of the diagonal and

σ̂2GML =
1

M −K
tr
h
R̂P

⊥
S

i
P⊥S = IM−S(Θ̂)

³
SH(Θ̂)S(Θ̂)

´−1
SH(Θ̂).

Now, this estimator has two main drawbacks. First, the computa-
tional complexity associated with the computation of P̂ GML

k is not
low, especially when the number of sources K is high. Second
and more important, the power estimate associated with a particu-
lar source depends on the DoA of all the sources in the scenario.
Therefore, the presence of one outlier in the DoA estimation may
adversely effect even the power estimation of the sources whose
DoA has been correctly detected.

There exist in the literature other estimators of the power of
the sources that only depend on the signature of the source of inter-
est. Here, we will consider the estimator proposed in [10], which
can be particularly simple in computational complexity terms if
the DoA detection has been performed using subspace approaches.
The following identity was proven in [10]

Pk =
1

sH (θk) (R− σ2IM)
# s (θk)

whereR− σ2IM = S(Θ)ΦSS(Θ)
H is the signal-part of the true

covariance matrix and (·)# denotes the Moore-Penrose pseudoin-
verse. Based on this identity in [10], and noting that we can ex-
press ¡

R− σ2IM
¢#
= ES

¡
ΛS − σ2IK

¢−1
EH
S

the authors proposed to use the following estimator for the signal
power of the kth source

P̂k =
1

sH (θk) ÊS

³
Λ̂S−σ̂2IK

´−1
ÊH
S s (θk)

(6)

where Λ̂S and ÊS contain the signal eigenvalues and eigenvectors
of the sample covariance matrix respectively, and

σ̂2 =
1

M −K

M−KX
k=1

λ̂k



is an estimator of the noise power. Interestingly enough, this esti-
mator only depends on the signature of the source of interest s (θk)
and consequently it is robust to the presence of outliers in the es-
timation of the DoAs of the other sources. Furthermore, its im-
plementation is relatively simple if the eigendecomposition of R̂
has been performed in a previous stage. Indeed, note that we can
express

ÊS

³
Λ̂S−σ̂2IK

´−1
ÊH
S =

MX
m=M−K+1

1

λ̂m−σ̂2
êmê

H
m

and therefore

P̂k =
1PM

m=M−K+1
1

λ̂m−σ̂2 |sH (θk) êm|
2

which can be computed very efficiently without matrix inversions.
However, the main problem with this estimator is the fact that

sH (θk) ÊS

³
Λ̂S−σ̂2IK

´−1
ÊH
S s (θk) is a consistent estimator

of sH (θk)
¡
R− σ2IM

¢#
s (θk) only when N → ∞ for a fixed

M . As a consequence of this, it turns out that the performance
is quite poor whenever M,N have the same order of magnitude
(cf. Section 5) and that a much better estimation can be obtained
using (5). In the next section, we present a new estimator that
holds the advantageous properties of P̂k (namely, it is easily im-
plemented without matrix inversions and it is robust to the pres-
ence of outliers), but it has a better performance than P̂k in finite
sample size situations. This is because the estimator is designed to
be consistent when both M,N are large but have the same order
of magnitude. We will see in Section 5 that this guarantees a good
performance in the finite sample size regime, comparable to the
GML estimator in (5), with the added features of simplicity and
robustness against outliers in the DoA detection process.

4. ANM,N-CONSISTENT POWER ESTIMATOR

In order to derive a power estimator that is consistent as M,N
grow without bound at the same rate, we need the following as-
sumptions:

(As1) The observation vectors y(n) can be modeled as
y(n) = R1/2u(n), where R1/2 is a positive definite Hermitian
square-root of R, and u(n), n = 1 . . . N , is a collection of inde-
pendent and identically distributed complexM × 1 random vec-
tors. The real and imaginary parts of the entries of u(n) are all
i.i.d. absolutely continuous random variables with zero mean, vari-
ance 1/2 and finite 8 + , > 0, moments.

(As2) TheM×1 steering vector s (θ) has uniformly bounded
norm for allM , that is

sup
M
sup
θ
ks (θ)k < +∞

where k·k here denotes Euclidean norm.
(As3) The asymptotic number of snapshots per sen-

sor/antenna (1/c) is higher than the parameter ξ defined as

ξ ≡ 1

M

MX
m=1

µ
λm

λm − f̄

¶2
(7)

where f̄ denotes the smallest real-valued solution to the equation

1

M

MX
m=1

λ2m

(λm − f)3
= 0. (8)

Theorem 1 Under (As1 −As3), the following estimator of the
power of the kth source is strongly consistent as M,N → ∞ at
the same rate,

P̌k =
1

sH (θk)
³PM

m=1 ψ(m)êmê
H
m

´
s (θk)

(9)

where ψ(m), m = 1 . . .M are the coefficients1

ψ(m) =

 − 1
σ̌2

PM
k=M−K+1

³
ϑ̂k

λ̂m−ϑ̂k
− λ̂k

λ̂m−λ̂k

´
m ≤M −K

1
σ̌2

³PM−K
k=0

ϑ̂k
λ̂m−ϑ̂k

−PM−K
k=1

λ̂k
λ̂m−λ̂k

´
m > M −K.

Here σ̌2 is an estimator of the noise power σ2 that is also strongly
consistent asM,N →∞ at the same rate

σ̌2 =
N

M −K

M−KX
k=1

³
λ̂k − µ̂k

´
,

µ̂1 ≤ µ̂2 ≤ . . . ≤ µ̂M are defined in Section 2, and ϑ̂0 ≤ ϑ̂1 ≤
. . . ≤ ϑ̂M are the real-valued solutions to the following equation
in ϑ̂

ϑ̂ = σ̌2
Ã
1− c

1

M

MX
k=1

λ̂k

λ̂k − ϑ̂

!
. (10)

When c > 1, we use the convention ϑ̂0 = . . . = ϑ̂[M−N ]+ =

0 whereas ϑ̂[M−N ]++1, . . . , ϑ̂M are the positive solutions to the
above equation.

Proof. The proof follows directly from the derivations in [11].

5. NUMERICAL EVALUATION

We consider a scenario with two sources impinging on a uniform
linear array ofM = 20 elements separated half a wavelength from
DoAs of 35 and 37 degrees with a power 15dB and 10dB above
the noise floor respectively. The number of available samples was
N = 35, and the power estimation was performed after applying
the GMUSIC estimation technique for the two DoAs. Figures 1
and 2 represent the histogram obtained from 105 realizations of
the three power estimators considered herein. In particular, Fig-
ure 1 shows the histogram corresponding to the realizations where
the two sources were correctly detected, whereas Figure 2 repre-
sents the same quantity for the realizations where only the signal of
interest (that is, the one for which the power is estimated) was cor-
rectly detected while the other DoA estimation was estimated as
an outlier. In this simulation, an outlier was declared whenever the
detected and the true DoAs were separated more than 0.5 degrees.
Apart from the performance of the proposed power estimator in
(9) (solid line) we also represent the performance of the ML esti-
mator in (5) (dotted line) and the traditional form of our estimator
as given in (6) (dashed line).

Observe that, when there are no outliers in the DoA detection
process, our estimator presents a behavior very close to the ML
power estimator, and much better than the traditional form of the
estimator in (6). Furthermore, when only the DoA of the signal
of interest is correctly detected while the other one is declared as
an outlier, our estimator is able to provide much better estimates

1In the expression of ψ(m) we use the convention that any term of the
form 0/0 is identically zero.



than the other two (see further the lower plot in Figure 2). Again,
this is thanks to the fact that the proposed power estimator only
depends on the signature of the source of interest. Therefore, an
outlier in the DoA detection of the other source does not affect its
performance.

6. CONCLUSIONS

We have presented a new source power estimator that is suitable
for scenarios with low sample size constraints. The estimator is
constructed from the eigenvalues and eigenvectors of the sample
covariance matrix, and it is therefore especially indicated when
the DoA detection process is carried out using a subspace based
technique. Because the estimator only depends on the spatial sig-
nature of the user of interest, it is robust to the presence of outliers
in the DoA detection process of the other sources. Simulations
demonstrate that the performance in the absence of outliers is very
similar to that of the ML technique, with significantly lower com-
putational complexity (once the eigendecomposition of the sample
covariance matrix is available).
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Fig. 1. Histogram of the realizations of the power estimators when
there are no outliers in the DoA detection stage.
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