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Pseudoscalar and vector meson form factors from lattice QCD
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We present a study of the pseudoscalar and vector meson form factors, calculated using the fat-link
irrelevant clover (FLIC) action in the framework of quenched lattice QCD. Of particular interest is the
determination of a negative quadrupole moment, indicating that the � meson is not spherically symmetric.
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I. INTRODUCTION

The important role that electromagnetic form factors
play in our understanding of hadronic structure has been
well documented for more than 50 years. The reason for
their popularity is that they encode information about the
shape of hadrons, and provide valuable insights into their
internal structure in terms of quark and gluon degrees of
freedom.

Most of the attention, both experimentally and theoreti-
cally, has focused on the electromagnetic form factors of
the nucleon (see Refs. [1–5] for recent reviews). The
electromagnetic form factors of pseudoscalar mesons, es-
pecially the pion, being the lightest QCD bound state, have
also been studied extensively [6–11] in lattice QCD. More
recently, there is a renewed interest in calculating the pion
form factor on the lattice [12–18]. This is especially timely
considering the new [19] and reanalysis of old [20] experi-
mental data from JLab.

The vector meson form factors, on the other hand, have
received less attention (see Refs. [21–25] for recent work).
Of particular interest is the quadrupole moment of the �
meson, where theoretical determinations can disagree by
as much as a factor of 2 [25]. We aim to resolve this issue
by performing the first direct lattice calculation of the
�-meson quadrupole form factor. Charge and magnetic
form factors are also calculated and from these we extract
the relevant static quantities, namely, the mean square
charge-radius and magnetic moment. We also analyze the
dependence of light-quark contributions to these form
factors on their environment and contrast these with a
new calculation of the corresponding pseudoscalar-sector
result.

Our aim is to reveal the electromagnetic structure of
vector mesons and to study to what extent the qualitative
quark model picture is consistent with quenched lattice
QCD. Interestingly, it has been shown in a lattice calcu-
lation by Alexandrou et al. [26] that the distribution of
charge in the vector meson is oblate, and therefore not
consistent with the picture of a quark antiquark in relative
S-wave. By calculating the vector meson quadrupole form
factor we make a direct comparison with the findings of
Ref. [26].

For each observable we calculate the quark sector con-
tributions separately. Using this additional information we
examine the environmental sensitivity of the light-quark
contributions to the pseudoscalar and vector meson charge
radii. We also evaluate the dominance of the light quark
contributions to the K and K�.

This paper builds on the preliminary work presented in
Ref. [27]. In Sec. II A we introduce the theoretical formal-
ism of meson form factors, including the techniques re-
quired to extract them from a lattice calculation. Section III
contains details of our lattice simulation, while in Sec. IV
we present and discuss our results for both pseudoscalar
and vector mesons. Finally, in Sec. V we summarize our
findings and discuss future work.

II. THEORETICAL FORMALISM

A. Meson form factors

Meson form factors are extracted from matrix elements
involving the vector (electromagnetic) current

 hM� ~p0�jJ�jM� ~p�i; (1)

where M� ~p� (M� ~p0�) denotes a meson state with initial
(final) momentum ~p ( ~p0). The momentum transfer is q� �
�p0� � p��.

For a pion, the matrix element in Eq. (1) is described by
a single form factor

 h�� ~p0�jJ�j�� ~p�i �
1

2
���������������������������
E�� ~p�E�� ~p

0�
p �p� � p�0�F��Q

2�;

(2)

where Q2 � �q2 is the invariant momentum transfer, and

the energy of the pion with momentum ~p is E�� ~p� ��������������������
m2
� � ~p2

p
. Here we adopt the notation of Bjorken and

Drell [28] utilizing the Dirac representation for gamma
matrices, a Minkowski-style metric, and q2 � �q0�2 �
� ~q�2. The formula for the kaons are exactly analogous.
The �-meson, on the other hand, is spin-1 and is described
by three form factors [29],
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h�� ~p0; s0�jJ�j�� ~p; s�i �
1

2
��������������������������
E�� ~p�E�� ~p0�

q
	 �0?� �p

0; s0�J����p0; p����p; s�

(3)

where � and �0 are the initial and final polarization vectors,
respectively, and
 

J����p0; p� � �
�
G1�Q

2�g���p� � p�0�

�G2�Q
2��g��q� � g��q��

�G3�Q
2�q�q�

p� � p�0

2m2
�

�
: (4)

The covariant vertex functions G1;2;3 can be rewritten in
terms of the Sachs charge, magnetic and quadrupole form
factors [29,30],

 GQ�Q2� � G1�Q2� �G2�Q2� � �1� ��G3�Q2� (5)

 GM�Q2� � G2�Q2� (6)

 GC�Q2� � G1�Q2� � 2
3�GQ�Q2�; (7)

where m� is the mass of the vector meson system calcu-
lated on the lattice and � � Q2=4m2

�.
The charge q�, magnetic moment ��, and quadrupole

moment Q� are then extracted from GC, GM, and GQ,
respectively, at zero momentum transfer

 eGC�0� � q� (8)

 eGM�0� � 2m��� (9)

 eGQ�0� � m2
�Q�: (10)

The formulas for the K� are exactly analogous.

B. Meson form factors on the lattice

In practice, we work with a Hermitian gamma-matrix
representation in our lattice simulations and select the
Pauli representation of Sakurai [31] for our correlation
function construction. This representation utilizes a
Euclidean-style metric, 	�
.

Since the Dirac and Pauli representations of the gamma
matrices differ by factors of i in the spatial components, it
is a simple matter to transform our Euclidean-time lattice
correlation functions from the Pauli representation to the
Dirac representation which incorporates a Minkowski-
style metric. In this way we may connect the Euclidean-
time correlation functions to the results of Sec. II A.

Thus, the matrix elements in Eqs. (2) and (3) are ob-
tained from ratios of three-point and two-point correlation
functions

 R��p0; p� �

���������������������������������������������������������������������
hG�� ~p0; ~p; t2; t1�ihG

�� ~p; ~p0; t2; t1�i
hG� ~p0; t2�ihG� ~p; t2�i

s
(11)

for pseudoscalar mesons, and

 R��
�p
0; p� �

��������������������������������������������������������������������������
hG�

�
� ~p
0; ~p; t2; t1�ihG

�

�� ~p; ~p

0; t2; t1�i

hG���t2; ~p0�ihG

�t2; ~p�i

vuut
(12)

for vector mesons. Note repeated indices are not summed
over. The square root in Eqs. (11) and (12) spoils the
covariant/contravariant nature of R��
 and no meaning
should be attached to the location of these indices.
However, we prefer to use this notation due to the close
connection with G�

�
.
The two-point correlation function for the pseudoscalar

mesons is

 G�t2; ~p� �
X
~x2

e�i ~p
 ~x2h�j��x2��y�0�j�i: (13)

Similarly for the vector mesons,

 G�
�t2; ~p� �
X
~x2

e�i ~p
 ~x2h�j���x2��
y

�0�j�i: (14)

The three-point correlation function for the pseudoscalar
meson is
 

G��t2; t1; ~p
0; ~p� �

X
~x1; ~x2

e�i ~p
0
� ~x2� ~x1�

	 e�i ~p
 ~x1h�j��x2�J
��x1��

y�0�j�i:

(15)

Similarly the three-point function for the vector meson is
 

G�
�
�t2; t1; ~p

0; ~p� �
X
~x1; ~x2

e�i ~p
0
� ~x2� ~x1�

	 e�i ~p
 ~x1h�j���x2�J
��x1��

y

�0�j�i:

(16)

The Lorentz indices� and 
 are only present for the vector
mesons, while � is the index of the electromagnetic
current.

The ratios in Eqs. (11) and (12) are constructed in such a
way as to remove the time-dependence and constants of
normalization from the correlation functions at large time
separations, t1 and t2 � t1.

These ratios differ subtly from previous work [32], in
that we are explicitly enforcing the parity of the terms
through the choice of momenta �p0; p� and �p; p0� vs
�p0; p� and ��p;�p0�. This requires two three-point propa-
gators (with momentum-transfer q and �q) for each con-
figuration. However with the well established technique of
averaging overU andU� configurations [32,33], there is no
additional cost.
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1. �-meson case

Since the pion has zero spin, the vertex is extraordinarily
simple and takes the form given in Eq. (2). Here we show
how this function is extracted from the ratio Eq. (11) by
evaluating the correlation functions at large Euclidean
times.

First we define the matrix elements as,

 h�j���0�j�� ~p�i �
1����������������

2E�� ~p�
p ��� ~p�;

h�� ~p�j�y��0�j�i �
1����������������

2E�� ~p�
p ���� ~p�:

(17)

Here ��� ~p� and ���� ~p� are the couplings of the interpolator
to the pion with momentum ~p at the sink and source,
respectively. The momentum dependence allows for the
use of smeared fermion sources and sinks. The bar allows
for different amounts of smearing at the source and sink.

By inserting a complete set of energy and momentum
states into Eq. (13), we can show that at large Euclidean
time,

 lim
t2!1

G�t2; ~p� �
e�E�� ~p�t2

2E�� ~p�
��� ~p� ���� ~p�: (18)

Following the same treatment, one can show that the three-
point function Eq. (15) at large Euclidean time is

 lim
t1;t2�t1!1

G��t2; t1; ~p
0; ~p� �

e�E�� ~p
0��t2�t1�e�E�� ~p�t1

2
���������������������������
E�� ~p�E�� ~p0�

p ��� ~p
0�

	 h�� ~p0�jJ��0�j�� ~p�i ���� ~p�:

(19)

Substituting these expressions into Eq. (11) and using
Eq. (2), the ratio R��p0; p� simply reduces to

 R��p0; p� �
1

2
���������������������������
E�� ~p�E�� ~p0�

p �p� � p�0�F��Q
2�; (20)

such that the large Euclidean time limits of the ratio R� is a
direct measure of F��Q2� up to kinematical factors.

2. �-meson case

Following [29], we define the matrix element of the
electromagnetic current for �-meson in terms of the cova-
riant vertex functions G1;2;3 as in Eqs. (3) and (4).

The analogues of the matrix elements in Eq. (17) are

 h�j���0�j�� ~p; s�i �
1���������������

2E�� ~p�
q ��� ~p����p; s�

h�� ~p; s�j�y
�0�j�i �
1���������������

2E�� ~p�
q ���� ~p��?
�p; s�:

(21)

The polarization vectors obey the transversality condition

 

X
s

���p; s��?
�p; s� � �
�
g�
 �

p�p

m2
�

�
; (22)

because the vector meson current is a conserved current.
The evaluation of the two- and three-point functions

proceeds as for our discussion of the pion. However the
completeness relation includes a sum over spin-states.
Using the transversality condition Eq. (22) the analogue
of Eq. (18) becomes

 lim
t2!1

G�t2; ~p� �
X
s

e�E�� ~p�t2

2E�� ~p�
��� ~p� ���� ~p����p; s��

?

�p; s�

� �
e�E�� ~p�t2

2E�� ~p�
��� ~p� ���� ~p�

�
g�
 �

p�p

m2
�

�
:

(23)

Similarly, using Eq. (3) we can evaluate the Euclidean-time
three-point function,

 lim
t1;t2�t1!1

G�
�
�t2; t1; ~p

0; ~p� �
X
s;s0

e�E�� ~p
0��t2�t1�e�E�� ~p�t1

4E�� ~p�E�� ~p0�
��� ~p

0����p
0; s0��0?� �p

0; s0�J����p0; p����p; s� ���� ~p��
?

�p; s�

�
e�E�� ~p

0��t2�t1�e�E�� ~p�t1

4E�� ~p�E�� ~p0�
��� ~p

0� ���� ~p�
�
g�� �

p0�p0�
m2
�

�
J���

�
g�
 �

p�p

m2
�

�
: (24)

Inserting the above expressions into the ratio in Eq. (12), together with our choice of momentum used in the simu-

lations, namely p0 � �E�; px; 0; 0� (E� �
������������������
m2
� � p

2
x

q
) and p � �m�; 0; 0; 0�, it is possible to express R��
 in terms of the

Sachs form factors,

 R0
11 �

p2
x

3m�
�������������
E�m�

p GQ�Q2� �
E� �m�

2
�������������
E�m�

p GC�Q2�; R0
22 � R0

33 � �
p2
x

6m�
�������������
E�m�

p GQ�Q2� �
E� �m�

2
�������������
E�m�

p GC�Q2�;

R3
13 � R3

31 �
px

2
�������������
E�m�

p GM�Q
2�:
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We remind the reader that the square root in Eqs. (11) and
(12) spoils the covariant/contravariant nature of R��
 and
no meaning can attached to the location of these indices.
The notation is simply a reflection of the close connection
to G�

�
, where the index position is significant due to our
use of the common Bjorken and Drell notation to express
the phenomenology of vector meson form factors.

The individual form factors are isolated as follows:

 GC�Q
2� �

2

3

�������������
E�m�

p
E� �m�

�R0
11 � R

0
22 � R

0
33�; (25)

 GM�Q
2� �

�������������
E�m�

p
px

�R3
13 � R

3
31�; (26)

 GQ�Q
2� �

m�
�������������
E�m�

p
p2
x

�2R0
11 � R

0
22 � R

0
33�: (27)

While we have used the subscript � to denote a vector
meson, the results are applicable to vector mesons in
general, including the K� for example.

C. Extracting static quantities

The mean squared charge radius hr2i is obtained from
the charge form factor through the following relation,

 hr2i � �6
@

@Q2 G�Q
2�jQ2�0: (28)

To calculate the derivative the monopole form is used,

 GC�Q
2� �

�
1

Q2

�2 � 1

�
: (29)

� is referred to as the monopole mass. Inserting this form
into Eq. (28) and rearranging provides

 hr2i �
6

Q2

�
1

GC�Q2�
� 1

�
; (30)

valid for quantities with GC�Q2 � 0� � 1.
As mentioned in Sec. II A, the charge [Eq. (8)], magnetic

moment ([Eq. (9)], and quadrupole moment [Eq. (10)] can
be extracted from the Sachs form factors at zero momen-
tum transfer. Since we perform our calculations at a single,
finite value of Q2, we will need to adjust our results to zero
momentum transfer.

From studies of nucleon properties, it is observed that
GM andGC have similarQ2-scaling at smallQ2 [34]. In the
following, we shall assume that this scaling also holds for
quark contributions to mesons. If GC�0� � 1, we have

 GM�0� ’
GM�Q

2�

GC�Q2�
: (31)

Whilst a similar scaling could be used to relate our
quadrupole form factor to the quadrupole moment, we
believe that the form factor at our small finite Q2

( ’ 0:22 GeV) will be of greater phenomenological inter-
est. We note that for a positively charged meson a negative
value of GQ corresponds to an oblate deformation.

III. METHOD

The electromagnetic form factors are obtained using the
three-point function techniques established by Leinweber,
et al. in Refs. [32,35,36] and updated for smeared sources
in Ref. [33]. Our quenched gauge fields are generated with
the O�a2� mean-field improved Luscher-Weisz plaquette
plus rectangle gauge action [37] using the plaquette mea-
sure for the mean link. We use an ensemble of 379
quenched gauge field configurations on 203 	 40 lattices
with lattice spacing a � 0:128 fm. The gauge field con-
figurations are generated via the Cabibbo-Marinari pseudo-
heat-bath algorithm [38] using a parallel algorithm with
appropriate link partitioning [39].

We use the fat-link irrelevant clover (FLIC) Dirac op-
erator [40] which provides a new form of nonperturbative
O�a� improvement [41]. The improved chiral properties of
FLIC fermions allow efficient access to the light quark-
mass regime [42], making them ideal for dynamical fer-
mion simulations now underway [43]. For the vector cur-
rent, we an O�a�-improved FLIC conserved vector current
[33]. We use a smeared source at t2 � 8. Complete simu-
lation details are described in Ref. [33].

Table I provides the 
-values used in our simulations,
together with the calculated pseudoscalar and vector me-
son masses. While we refer to m2

� in our figures and tables
to infer the quark masses, we note that the critical value
where the pion mass vanishes is 
cr � 0:131 35. Im-
portantly the vector mesons remain bound at all quark
masses considered in this calculation due to finite volume
effects. That is, the mass of the vector mesons is less than
the energy of the lowest lying multihadron state with the
appropriate quantum numbers.

The strange quark mass is chosen to be the third heaviest
quark mass. This provides a pseudoscalar mass of
697 MeV which compares well with the experimental
value of �2M2

K �M
2
��

1=2 � 693 MeV motivated by chiral
perturbation theory. Two vector meson interpolating fields

TABLE I. Meson masses for the respective values of the hop-
ping parameter 
.


 am� amK am� amK�

0.12780 0.5411(10) 0.4993(11) 0.7312(30) 0.7057(27)
0.12830 0.5013(11) 0.4782(11) 0.7067(36) 0.6933(40)
0.12885 0.4539(11) 0.4539(11) 0.6797(46) 0.6796(46)
0.12940 0.4014(12) 0.4285(11) 0.6537(49) 0.6668(47)
0.12990 0.3471(15) 0.4044(12) 0.6309(56) 0.6556(50)
0.13205 0.3020(19) 0.3862(13) 0.6160(64) 0.6484(52)
0.13060 0.2412(42) 0.3671(19) 0.6039(71) 0.6423(54)
0.13080 0.1968(52) 0.3574(16) 0.5982(80) 0.6393(56)
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are considered, namely �q�iq and �q�i�4q. Since results for
the two interpolators agree, we simply present the results
for the �q�iq interpolator, which displays a significantly
stronger signal.

The error analysis of the correlation function ratios is
performed via a second-order, single-elimination jack-
knife, with the �2 per degree of freedom (�2

dof) obtained
via covariance matrix fits. We perform a series of fits
through the ratios after the current insertion at t � 14.
By examining the �2

dof we are able to establish a valid
window through which we may fit in order to extract our
observables. In all cases, we required a value of �2

dof no
larger than 1.5. The values of the static quantities quoted in
this paper on a per quark-sector basis correspond to values
for single quarks of unit charge.

IV. RESULTS

A. Charge radii

We begin the discussion of our results with the charge
radii of the vector and pseudoscalar mesons. From the
quark model we would expect a hyperfine interaction

between the quark and antiquark of the form ~�q
 ~� �q

mqm �q
. The

interaction is repulsive where the spins are aligned, as in
the vector mesons, and attractive where the spins are anti-
aligned, as in the pseudoscalar mesons. In Fig. 1 we show
the charge radii of the vector and pseudoscalar mesons. For
comparison the charge radius of the proton is also shown.
Indeed we find that the charge radii of the vector mesons
are consistently larger than the pseudoscalar mesons, and
in fact similar to the charge radii of the proton, even at
heavier quark masses. This is contrary to earlier lattice

simulations with relatively small spatial extent [44], that
have suggested that the ��, �� and proton should have a
very similar RMS charge radius at larger quark masses. It is
possible that the agreement obtained in the previous study
reflects finite-volume effects attendant with the use of a
small spatial volume.

By comparing the results for the up-quark contributions
to the� andK (� andK�) charge radii, it is possible to gain
insights into the effect that the presence of a heavier
strange-quark has on the lighter up-quark in pseudoscalar
(vector) mesons. Figs. 2 and 3 show the quark sector
contributions to the charge radii (hr2i) of the pseudoscalar
and vector mesons, respectively. The quark sector contri-
butions to the charge radii for the pseudoscalar and vector
meson are recorded in Tables II and III. From Fig. 2, we
find no evidence of environmental sensitivity in the light-
quark contribution the pseudoscalar mesons. However in
the vector sector, Fig. 3, we find a consistently broader

 

FIG. 1. Strange and nonstrange meson mean squared charge
radii for charged pseudoscalar and vector mesons. We also
include for comparison results for the proton taken from
Ref. [33]. The � and �-meson results are centered on the
relevant value of m2

�, other symbols are offset horizontally for
clarity.

 

FIG. 3. As for Fig. 2 but for vector mesons.

 

FIG. 2. The quark sector contributions to the mean squared
charge radius of the pseudoscalar mesons. The symbols are
offset horizontally for clarity.

PSEUDOSCALAR AND VECTOR MESON FORM FACTORS . . . PHYSICAL REVIEW D 75, 094504 (2007)

094504-5



distribution of up-quark charge in the � compared to the
up-quark in the K� at the smaller quark masses. The broad-
ening of the charge distribution in the � is consistent with
the hyperfine repulsion discussed above. The strange quark
in the K� shows a particularly interesting environment
sensitivity. While the strange quark mass is held fixed,
the distribution broadens as the light-quark regime is ap-
proached. This is consistent with the prediction of en-
hanced hyperfine repulsion as one of the quarks becomes
light.

The strange neutral pseudoscalar and vector meson
mean squared charge radii obtained from the weighted
sum of the quark sector radii are displayed in Fig. 4. For
the neutral strange mesons, we see a negative value for hr2i,
indicating that the negatively charged d-quark is lying
further from the center of mass on average than the �s.
We should expect just such a behavior for two reasons,
both stemming from the fact that the �s quark is consider-
ably heavier than the d: the center of mass must lie closer
to the �s, and the d-quark will also have a larger Compton
wavelength. Of course with exact isospin symmetry in our
simulations, the nonstrange charge neutral mesons have a
zero electric charge radius.

To measure the environmental sensitivity of the light-
quark sector more precisely, in Figs. 5 and 6 we show a fit
to the ratio of the light-quark contributions to the pseudo-
scalar and vector mesons charge radii, respectively. The
difference is striking: for the pseudoscalar case we see no
environment-dependence at all, whereas in the vector case

TABLE II. Mean-square charge radius (hr2i) for quarks of unit
charge in units of fm2. m2

� is given as a measure of the input
quark mass.

m2
� (GeV2) u� uK sK

0.6956(26) 0.216(5) 0.215(7) 0.242(7)
0.5970(26) 0.225(6) 0.224(7) 0.241(7)
0.4895(24) 0.240(8) 0.240(8) 0.240(8)
0.3828(23) 0.256(10) 0.257(9) 0.239(9)
0.2862(25) 0.274(14) 0.275(11) 0.239(10)
0.2166(27) 0.287(22) 0.289(12) 0.241(11)
0.1382(48) 0.304(44) 0.303(14) 0.243(13)
0.0920(49) 0.287(63) 0.306(15) 0.241(13)

 

FIG. 4. The mean squared charge radii for the neutral K0 and
K0�.

 

FIG. 6. As in Fig. 5 but for the vector mesons.

TABLE III. Mean-square charge radius (hr2i) for quarks of
unit charge in units of fm2.

m2
� (GeV2) u� uK� sK�

0.6956(26) 0.268(9) 0.271(11) 0.309(12)
0.5970(26) 0.287(11) 0.290(13) 0.311(14)
0.4895(24) 0.315(16) 0.315(16) 0.315(16)
0.3828(23) 0.350(23) 0.342(20) 0.321(19)
0.2862(25) 0.397(36) 0.372(26) 0.331(23)
0.2166(27) 0.436(46) 0.395(30) 0.339(25)
0.1382(48) 0.492(72) 0.417(35) 0.353(28)
0.0920(49) 0.546(97) 0.436(41) 0.360(29)

 

FIG. 5. The ratio of the light quark contributions to the � and
K mean squared charge radius.

J. N. HEDDITCH et al. PHYSICAL REVIEW D 75, 094504 (2007)

094504-6



we see that the presence of a strange quark acts to heavily
suppress the light charge distribution. This is the effect one
predicts from a quark model, where the large mass of the s
would act to suppress the hyperfine repulsion between the
quark and antiquark. It is also qualitatively consistent with
effective field theory where the couplings of the light
mesons are suppressed by the presence of the strange
quark.

B. Magnetic moments

In Fig. 7 we present our results for the magnetic mo-
ments of the vector mesons. At the SU�3�flavour limit, where
we take the light quark flavours to have the same mass as
the strange quark, quark model arguments suggest the
magnetic moment for a �� should be�3 times the strange
magnetic moment of the � (assuming no environmental
dependence). According to the particle data group [45], the
magnetic moment of the � is �0:613�N . Therefore we
would naively expect a value of 1:84�N for the magnetic
moment of the ��, which is consistent with our findings.

In an earlier study, Anderson et al. [46] argued that the
magnetic moment of the �-meson in natural magnetons
(otherwise called the g-factor) should be approximately 2
at large quark masses. Converting our result to natural
magnetons, we observe in Fig. 8 that our calculation of
the �-meson g-factor (g�) is fairly consistent with this. At
light quark masses, however, we do see some evidence of
chiral curvature, which would indicate that the linear chiral
extrapolations of that paper should be considered with
caution.

In Fig. 9 we present the quark sector contributions to the
vector meson magnetic moments, the data is recorded in
Table IV. Here we observe a similar scenario to that ob-
served earlier in the charge radius discussion, namely, that
the u-quark contribution to the K� is consistently larger
than the contribution from the heavier s-quark. We also
find that the contribution of the u-quark to the magnetic moment of a vector meson is suppressed when it is an

environment of a heavier s-quark compared to when it is in
the presence of another light quark. This is further sup-
ported when we consider the ratio of the contributions of a
u-quark to the magnetic moments of the � and K� mesons,

 

FIG. 8. The g-factor of the � meson.

 

FIG. 9. Quark-sector contributions to the vector meson mag-
netic moments.

TABLE IV. Magnetic moment for quarks of unit charge inside
a vector meson in units of nuclear magnetons �N .

m2
� (GeV2) u� uK� sK�

0.6956(26) 1.71(2) 1.73(2) 1.82(3)
0.5970(26) 1.77(2) 1.78(3) 1.83(3)
0.4895(24) 1.84(3) 1.84(3) 1.84(3)
0.3828(23) 1.94(4) 1.92(4) 1.86(3)
0.2862(25) 2.04(6) 1.99(5) 1.88(4)
0.2166(27) 2.11(8) 2.04(5) 1.90(4)
0.1382(48) 2.20(11) 2.10(6) 1.92(5)
0.0920(49) 2.25(15) 2.14(7) 1.93(5)

 

FIG. 7. Charged vector meson magnetic moments.
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displayed in Fig. 10. This ratio is clearly greater than 1
below the SU�3�flavour limit and is increasing for decreasing
u-quark mass.

The magnetic moment of the vector meson, like the
RMS charge radius, shows considerable environment de-
pendence in the quark sector contributions. The larger
contribution of a u-quark in a � relative to a K� is con-
sistent with what we have already observed with the RMS
charge radius, as follows: since hr2i is larger for the
u-quark in a � meson than for the u-quark in a K�, the
effective mass is reciprocally smaller for the u-quark in a
�. This smaller effective mass gives rise in turn to a larger
magnetic moment. Figure 10 shows this pattern. Figure 11
presents our results for the magnetic moment of the neutral
K�0 meson. As the d-quark becomes lighter than the �s we
see the magnetic moment exhibiting a very linear negative
slope. The magnitude of the magnetic moment is quite
small, but clearly differentiable from zero everywhere
except at the SU�3�flavour limit where symmetry forces it
to be exactly zero.

C. Quadrupole form factors

The quadrupole form factors of the �� and K�� mesons
are shown in Fig. 12. We find that the quadrupole form
factor is less than zero, indicating that the spatial distribu-
tion of charge within the � and K� mesons is oblate. This is
in accord with the findings of Alexandrou et al. [26] who
observed a negative quadrupole moment for spin �1
�-meson states in a density-density analysis. We note
that in a simple quark model, a negative quadrupole form
factor requires that the quarks possess an admixture of s-
and d-wave functions.

The quark sector contributions to the quadrupole form
factor are shown in Fig. 13. The corresponding data is
contained in Table V. The flavour independence of the
results is remarkable.

We also find that the ratio of the light-quark contribu-
tions to the quadrupole form factor, shown in Fig. 14, is
consistent with one within our statistics. In Fig. 15, we

 

FIG. 10. The ratio of the light-quark contributions to the
magnetic moment of the � and K�.

 

FIG. 11. Neutral K�-meson magnetic moment.

 

FIG. 12. Vector meson quadrupole form factors for �� and
K��.

 

FIG. 13. Quark-sector contributions to the quadrupole form
factors.
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show the quadrupole form factor of the charge neutral K�0

meson. We find that the quadrupole moment of the K�0 is
nontrivial but just outside the 1 standard deviation level.
The chiral trend towards positive values reflecting the
negative charge of the larger d-quark contributions.

TABLE V. The quadrupole form factor (in fm2) for quarks of
unit charge inside a vector meson.

m2
� �GeV�2 u� uK� sK�

0.6956(26) �0:0047�4� �0:0047�4� �0:0048�5�
0.5970(26) �0:0047�4� �0:0047�5� �0:0048�5�
0.4895(24) �0:0048�5� �0:0048�5� �0:0048�5�
0.3828(23) �0:0049�7� �0:0049�6� �0:0048�6�
0.2862(25) �0:0050�9� �0:0050�7� �0:0048�7�
0.2166(27) �0:0049�12� �0:0052�9� �0:0047�7�
0.1382(48) �0:0051�19� �0:0055�11� �0:0046�9�
0.0920(49) �0:0050�27� �0:0056�13� �0:0046�10�

 

FIG. 14. Environment-dependence for light-quark contribution
to vector meson quadrupole form factor.

 

FIG. 15. Quadrupole form factor for neutral K� meson.

TABLE VI. The quark sector contributions to the charge form
factor of the pseudoscalar mesons.

m2
� �GeV�2 u� uK sK

0.6956(26) 0.833(4) 0.835(4) 0.818(4)
0.5970(26) 0.828(4) 0.830(5) 0.820(5)
0.4895(24) 0.822(5) 0.822(5) 0.822(5)
0.3828(23) 0.815(6) 0.813(6) 0.823(6)
0.2862(25) 0.810(8) 0.804(6) 0.825(6)
0.2166(27) 0.809(12) 0.798(7) 0.826(7)
0.1382(48) 0.812(22) 0.792(8) 0.826(8)
0.0920(49) 0.833(30) 0.791(8) 0.828(8)

TABLE VII. As in Fig. 6 but for the vector mesons.

m2
� �GeV�2 u� uK� sK�

0.6956(26) 0.795(5) 0.794(7) 0.771(7)
0.5970(26) 0.784(7) 0.783(8) 0.771(8)
0.4895(24) 0.769(9) 0.769(9) 0.769(9)
0.3828(23) 0.750(12) 0.754(11) 0.766(10)
0.2862(25) 0.727(18) 0.738(13) 0.760(12)
0.2166(27) 0.708(22) 0.727(15) 0.756(13)
0.1382(48) 0.683(32) 0.716(17) 0.749(15)
0.0920(49) 0.660(40) 0.707(19) 0.745(15)

TABLE VIII. The quark sector contributions to the magnetic
form factor.

m2
� �GeV�2 u� uK� sK�

0.6956(26) 1.360(16) 1.373(19) 1.406(21)
0.5970(26) 1.389(19) 1.395(21) 1.413(23)
0.4895(24) 1.418(25) 1.418(25) 1.418(25)
0.3828(23) 1.455(29) 1.445(28) 1.428(27)
0.2862(25) 1.484(37) 1.469(31) 1.435(28)
0.2166(27) 1.496(47) 1.485(36) 1.438(30)
0.1382(48) 1.500(60) 1.501(41) 1.440(31)
0.0920(49) 1.483(81) 1.513(46) 1.441(33)

TABLE IX. The quark sector contributions to the quadrupole
form factor.

m2
� �GeV�2 u� uK� sK�

0.6956(26) �0:285�22� �0:286�26� �0:294�28�
0.5970(26) �0:289�26� �0:289�29� �0:294�30�
0.4895(24) �0:293�33� �0:293�33� �0:293�33�
0.3828(23) �0:299�44� �0:301�39� �0:292�37�
0.2862(25) �0:303�56� �0:307�45� �0:291�41�
0.2166(27) �0:296�74� �0:317�52� �0:288�46�
0.1382(48) �0:309�112� �0:334�65� �0:282�53�
0.0920(49) �0:304�165� �0:342�79� �0:280�60�
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The lattice data for the quark sector contributions to the
charge form factor is contained in Tables VI and VII for the
pseudoscalar and vector mesons, respectively. The mag-
netic and quadrupole form factors of the vector mesons is
contained in Tables VIII and IX respectively.

V. CONCLUSIONS

We have established a formalism for determining the
charge, magnetic and quadrupole Sachs form factors of
vector mesons in lattice QCD. For the first time the elec-
tric, magnetic, and quadrupole form factors of the light
vector mesons have been calculated. The electric form
factor of the pseudoscalar mesons have also been
calculated.

With a large lattice volume and high statistics we have
resolved a clear difference between the charge radii of the
pseudoscalar and vector mesons. We argue that this is
consistent with quark model predictions. Furthermore,
we find significant environmental sensitivity of the light-
quark contributions to the charge radii of the vector
mesons.

We also presented a calculation of the magnetic mo-
ments of the vector mesons. We found that the magnetic

moment of the �� was consistent with the quark model
predication of 1:84�N at the SU�3�flavour limit. We deter-
mine that there is also an environmental sensitivity in the
magnitude of the light-quark contributions to the charged
vector meson magnetic moments. We argue that this is
consistent with the environmental sensitivity in the light-
quark contributions to the charge vector meson charge
radii.

Finally, we have determined that the quadrupole form
factor for a charged vector meson is negative in quenched
Lattice QCD. This is consistent with previous calculations
using density-density analysis. We find that the ratio of
quadrupole moment to mean square charge radius is 1:30,
so the deformation is small but statistically significant.
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