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The well-known general problem of signal detection in
background interference is addressed for situations where a certain
statistical description of the interference is unavailable, but is
replaced by the observation of some secondary (training) data that
contains only the interference. For the broad class of interferences
that have a large separation between signal- and noise-subspace
eigenvalues, we demonstrate that adaptive detectors which use a
diagonally loaded sample covariance matrix or a fast maximum
likelihood (FML) estimate have significantly better detection
performance than the traditional generalized likelihood ratio test
(GLRT) and adaptive matched filter (AMF) detection techniques,
which use a maximum likelihood (ML) covariance matrix estimate.
To devise a theoretical framework that can generate similarly
efficient detectors, two major modifications are proposed for Kelly’s
traditional GLRT and AMF detection techniques. First, a two-set
GLRT decision rule takes advantage of an a priori assignment
of different functions to the primary and secondary data, unlike
the Kelly rule that was derived without this. Second, instead of
ML estimates of the missing parameters in both GLRT and AMF
detectors, we adopt expected likelihood (EL) estimates that have
a likelihood within the range of most probable values generated
by the actual interference covariance matrix. A Gaussian model
of fluctuating target signal and interference is used in this study.
We demonstrate that, even under the most favorable loaded
sample-matrix inversion (LSMI) conditions, the theoretically derived
EL-GLRT and EL-AMF techniques (where the loading factor is
chosen from the training data using the EL matching principle)
gives the same detection performance as the loaded AMF technique
with a proper a priori data-invariant loading factor. For the least
favorable conditions, our EL-AMF method is still superior to the
standard AMF detector, and may be interpreted as an intelligent
(data-dependent) method for selecting the loading factor.
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I. INTRODUCTION

Techniques for adaptive signal processing for
radar target detection in an unknown interference
environment stem from the pioneering work of Reed,
Mallet and Brennan (RMB) [1], followed by Kelly’s
seminal paper [2], and now embrace various scenarios
with both Gaussian and non-Gaussian (spherically
invariant random process (SIRP)) interference [3—5].
Depending on the practical application, two rather
different formulations are considered for the adaptive
detection problem.
The first, addressed in RMB [1], is considered

when the secondary (training) data is used to design
the adaptive filter that is then used to process
the entire set of primary data (range cells, say).
For example, in adaptive antenna external-noise
suppression applications, a limited number of range
cells (or even an “inter-dwell gap” that is free of
clutter and targets) is typically used to estimate
the external-noise covariance matrix and design
the adaptive antenna. Since the external noise is
supposed to be homogeneous over the set of range
cells, this adaptive antenna weight vector is then used
to process all operational range cells that usually
contain clutter and possible targets. Final target
detection is performed downstream after clutter
suppression (moving-target indicator or Doppler
filtering) and noncoherent integration. Adaptive
threshold calculation is done at the output of this
signal processing chain using primary range cells.
This (adaptive) detection threshold is therefore
calculated for this specific (adaptive) antenna weight
vector; for Gaussian primary data, the antenna output
is also Gaussian with, possibly, unknown output
noise power. For this (conditional) Gaussian model,
a typical way to calculate adaptive thresholds was
introduced by Finn and Johnson [6]. In such schemes,
detection performance degradations with respect to the
clairvoyant (exact) detector are due to two statistically
independent factors. One factor is associated with the
adaptive threshold calculations (using primary data),
while the other is associated with the signal-to-noise
ratio (SNR) degradation in the adaptive antenna (using
the secondary data). Therefore, for such applications,
analysis of the SNR probability density function (pdf)
at the output of the adaptive antenna gives a complete
description of the adaptive antenna (filter) design
performance. Specifically, receiver operational curves
(ROCs), derived for example in Finn and Johnson’s
paper [6] for a particular adaptive threshold design
and a (fluctuating) target with a certain SNR, must
now be additionally averaged over the SNR pdf for
the given adaptive antenna algorithm. In RMB [1],
this pdf for the normalized output SNR was accurately
calculated for the case when the unconditional
maximum likelihood (ML) covariance matrix estimate
(direct sample covariance matrix) is used for adaptive
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antenna filter design, drawn from the training
(secondary) data. This famous ¯-distribution has an
extremely important invariance property with respect
to the observed scenario, namely, it is fully specified
by only two parameters: the training sample size (N)
and the adaptive antenna (filter) dimension (M). The
sample-support requirement

N ' 2M (1)

that ensures approximately 3 dB average SNR losses
compared with the clairvoyant solution has become
the most quoted requirement in studies on adaptive
filters.
Meanwhile, since the early 1980s, considerable

research was focused on a specific class of
interferences whose covariance matrix has a
distinct difference between the size of the m (<M)
signal-subspace eigenvalues and the n´M ¡m
noise-subspace eigenvalues. The prototypical model
that results in this covariance matrix structure is a
mixture of m powerful external-noise point sources
with (internal) white noise. The minimum eigenvalue
here is equal to the noise power, while the sum of the
signal eigenvalues is almost equal to the overall power
of the external interferences.
Interference-to-noise ratio (INR) values of 20

to 40 dB are not uncommon for practical adaptive
antenna applications. In fact, adaptive filter (antenna)
design is efficient only for scenarios with a significant
ratio of maximum to minimum eigenvalue (¸1=¸M).
Indeed, if S is the M-variate normalized useful signal
(target) array-signal manifold (“steering”) vector, and
R is the M-variate interference covariance matrix, then
the clairvoyant optimum filter

Wopt ´ R¡1S, SHS = 1 (2)

has an SNR improvement over the “white-noise
optimum” filter Wwn ´ S of

´ ´ (SHR¡1S)(SHRS): (3)

According to the so-called Kantorovich inequality [7]

(SHR¡1S)(SHRS)· (¸1 +¸M)
2

4¸1¸M
if SHS = 1:

(4)

Even an improvement of, say, ´ = 10 means that
¸1=¸M&40 for the interference covariance matrix R.
For the subclass of interferences, whose

eigenvalues (sorted in descending order) are such that

¸1 > ¢ ¢ ¢> ¸mÀ ¸m+1 = ¢ ¢ ¢¸M (5)

it is known that diagonal loading of the direct
sample covariance matrix leads to a quite dramatic
SNR improvement over the ML covariance matrix
estimate considered by RMB [1]. This improvement
was described in [8, 9]. In [10, 11], quite accurate
analytic derivations showed that for these scenarios

the normalized output SNR does not depend on the
loading factor, provided it is chosen to be within a
certain range. The SNR loss factor, that in RMB was
a function of M and N only, was then specified by m
and N, irrespective of M.
Specifically, the RMB requirement (1) for the

diagonally loaded sample-matrix inversion (LSMI)
algorithm was supplanted by the condition

N ' 2m (6)

which means a significant performance improvement
for scenarios with m¿M . Since the early 1980s, the
properties of the LSMI algorithm have been widely
explored and validated in practice for various radar
and sonar applications [12, 13]. It is known that
diagonal loading offers many other important features
that make adaptive antennas robust against numerous
inaccuracies in the scenario model [14—16].
The superior SNR performance of LSMI over the

RMB sample-matrix inversion (SMI) technique raises
concerns about the optimality of the ML criterion for
covariance matrix estimation in adaptive antenna/filter
design. Nevertheless, the same ML principle was
exploited by Kelly in [2], and subsequently by
Robey, Fuhrmann, Kelly and Nitzberg (RFKN) in
[17], when the significantly different problem of
adaptive detection was addressed. This is the second
formulation we consider for the adaptive detection
problem. This problem is formulated as a hypothesis
test, where a decision regarding the presence or
absence of a target in a single primary datum (one
range cell, say) is made based only on this datum and
the auxiliary training (secondary) data. In essence,
the training data here must be used to provide all
missing information required for decision making,
including adaptive antenna/filter design and adaptive
thresholding. Since the same training data is used
for these two purposes, SNR losses (as in RMB, for
example) and adaptive threshold losses (as in Finn)
cannot be treated as independent random values,
and specific analysis of adaptive detection ROCs is
required. This was performed by Kelly in [2] for
the generalized likelihood ratio test (GLRT) detector
and by RFKN in [17] for the “constant false-alarm
rate (CFAR) adaptive matched-filter” detector. In
practice, this formulation is satisfactory for scenarios
where each primary datum (range cell) is processed
by its own (independent) adaptive filter, and the
detection threshold must be calculated over the set
of all (random) adaptive filters. A typical example is
“sliding-window” adaptive processing where a small
number of “guard cells” is used for adaptive detection
within a specific range cell, and so each range cell is
processed by a different adaptive filter with a different
set of training guard cells involved. In such cases,
the invariance of the output detector statistics for
target-free primary data (CFAR) is required for the
direct implementation of this approach. Indeed, when
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the pdf of the scenario-free output statistics is known,
detection can be completed without adaptive threshold
calculations (over a set of homogeneous range cells).
Both Kelly’s GLRT detector and the CFAR

adaptive matched filter (AMF) detector [17] that
use the ML covariance matrix estimate enjoy this
important invariance property. Due to its importance,
the invariance (CFAR) property became a necessary
condition for adaptive detector design in one of
the modern adaptive detector developments of
Scharf, et al. in [18—20]. Nevertheless, for some
models invariant solutions may not exist (e.g.,
adaptive detection for different interference-to-noise
ratios (INRs) in primary and secondary data [21]),
or come at an excessive performance cost. It is
important to emphasize that when this invariance
cannot be assured, single primary data detection is
strictly impossible. However in practice, a number
of homogeneous ranges cells (even processed by
different but statistically identical filters) can often
be specified and again used for adaptive threshold
calculations. Naturally, the additional losses of this
method must be taken into consideration.
Various modifications of the adaptive detection

problem have been considered since Kelly’s paper
[4, 5, 22, 3, 23, 24]. However there is frequently
confusion of these two quite different problems:
adaptive filtering (the same filter for all primary data)
and adaptive detection (a different filter for each
primary datum). In [25], Lekhovitskii demonstrates
that the application of nonnormalized adaptive filters
(in fact, randomly normalized) Wj = R̂

¡1
j S with

independent R̂j for each cell leads to a dramatic
degradation in detection performance. Indeed, a
single threshold for the various R̂j has to account for
significant output power fluctuations that are due to
variations in the norm of the adaptive filter. Clearly
this problem does not exist for single adaptive antenna
applications. Confusion also occurs when the famous
RMB 3 dB SNR average loss factor for N ' 2M with
the ML covariance matrix estimate is compared with,
say, the 6 dB SNR degradation in ROC of the CFAR
AMF detector which uses the same estimate [17].
In this paper, we consider the adaptive detection

problem in Kelly’s context where each range cell is
processed by an individually tailored filter, and the
(unconditional) output statistics are averaged over
a (random) set of adaptive solutions. Our goal is
two-fold. First, based on the well-known superior
properties of the LSMI algorithm for adaptive filter
performance, we want to investigate the class of LSMI
or loaded AMF (LAMF) adaptive detectors. We hope
and expect that the superiority of LSMI adaptive
filters will lead to a superiority of LAMF adaptive
detectors for the class of interference scenarios (5).
As we shall see, this expectation turns out to be
true. The other properties of LAMF detectors (such

as CFAR) also need to be specified. Second, this
superiority of LAMF over ML-based AMF means
that the theoretical framework for adaptive detection
(GLRT and AMF) needs to be modified so as to
include LAMF detectors. Specifically, we expect that
a modified framework would either directly lead to
LAMF detectors with some theoretically specified
loading factor, or produce different adaptive detectors
whose performance is at least as good as the LAMF
performance for the class of interference scenarios (5).
In accordance with most papers on adaptive

detection [1, 2], we assume that the training data
contains only interference that is statistically partly
or completely the same as the interference within
the primary data. In what follows, we consider
the cases where the interferences are exactly the
same (homogeneous), or just have a different power
(nonhomogeneous). This model comprises “supervised
training conditions” since the secondary data does
not contain targets or other interference sources. Of
course, for “sliding training-window” implementations
it is impossible to exclude the possibility that a target
or other inhomogeneity is present in the training
data. Indeed, the selection of a homogeneous training
dataset (inhomogeneity detection) is an important
research topic in adaptive radar studies [26—30].
However, here we reconsider the traditional GLRT
and AMF solutions under their original assumptions.
Recall that the AMF detector in RFKN [17] is derived
as a GLRT where the covariance matrix is known.
After the test statistics are derived, the ML estimate
of the covariance matrix based on the secondary
data is substituted for the known covariance matrix.
Kelly’s GLRT method is to treat the primary and
secondary data as a single dataset, then for both of
the hypotheses regarding the presence or absence
of a target signal, ML estimates of all parameters
(including the interference covariance matrix) are
used to construct the decision rule. Therefore, both
the AMF and Kelly GLRT techniques heavily rely
on the same ML principle for interference parameter
estimation.
In this regard, it is quite instructive to recall the

discussion in RFKN [17] comparing the performance
of AMF and GLRT detectors. The AMF detection rule
was considered to be inferior to GLRT simply because
“the AMF test makes no use of the primary vector
to estimate the covariance, therefore poorer detection
performance might be expected” compared with the
GLRT that “uses all the data (primary and secondary)
in the likelihood optimization under each hypothesis.”
This argument could have been easily justified by
comparing the detection performance of Kelly’s
GLRT technique with N secondary samples against
the AMF performance with just (N +1) secondary
samples. If those expectations were correct, then
the (N +1)-variate AMF should always outperform
the N-variate Kelly GLRT, which is not the case.
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Moreover, Kelly’s GLRT is effectively based on
two ML interference covariance matrix estimates
constructed for the hypotheses H0 and H1. Specifically
[2],

const R̂ jH0 = XNXHN +YYH (7)

where XN ´ [x1, : : : ,xN] 2 CM£N » CNN(0,R0) is the
N-sample secondary (training) data with independent
identically distributed (IID) samples xj (j = 1, : : : ,N)
described by the M-variate complex (circular)
Gaussian distribution with covariance matrix R0,
and

const R̂ jH1 = XNXHN +
·
IM ¡

SSH(XNX
H
N )

¡1

SH(XNX
H
N )
¡1S

¸
YYH

£
·
IM ¡

(XNX
H
N )
¡1SSH

SH(XNX
H
N )
¡1S

¸
: (8)

The primary sample is

Y =
½
X0 » CN (0,R0) for H0

X0 + aS for H1
(9)

where S 2 CM£1 is the target wavefront, and a is the
unknown (complex) target amplitude. We can see
that for H1, the primary sample contribution to the
covariance matrix estimate in (8) does not retain any
interference component that corresponds to the target
signal wavefront. This component is rejected by the
projection matrix·

IM ¡
SSH(XNX

H
N )
¡1

SH(XNX
H
N )

¡1S

¸
(10)

along with the possible target signal. Since only
this component is essential for target detection, the
primary sample-produced covariance matrix update in
(8) with this component canceled out is nonsensical.
As a result, in some situations GLRT was found to
be superior to AMF, and inferior in others. Therefore
in RFKN [17], the authors rightly conceded that
“the generalized likelihood-ratio test is not optimal
in the Neyman-Pearson sense as the AMF test has
a probability of detection that is higher than that of
the GLRT for some situations.” For the same reason,
AMF is not optimal either. With LAMF and its
non-ML covariance matrix estimate, that for scenarios
(5) have better detection performance, it became
clear that the ML estimation principle needs to be
reexamined.
Note that diagonal loading (as well as the fast ML

(FML) technique [30]) are quite different from the
numerous methods that assume a restricted class of
admissible covariance matrices, but still use the ML
criterion. Of course, if properly adopted, any valid
a priori information on the interference properties
that somehow restricts the (ML) search should lead
to improved adaptive detection performance, though
the CFAR property may not be so easy to maintain. A

typical example is restricting to the class of Toeplitz
covariance matrices for uniform antenna arrays (or
pulse trains). On the contrary, it is straightforward
to demonstrate that the ML optimization restricted
to the set of diagonally loaded or finite-subspace
(FML) covariance matrices results in zero loading and
maximal signal subspace, which drives the optimum
solution to the same unconstrained (ML) sample
covariance matrix estimate with ML.
Hence the main important question is whether the

ML principle within the GLRT and AMF framework
can be replaced by another general principle that
will generate adaptive detectors that are at least
not inferior to (say) LAMF for the most favorable
scenarios. While these considerations stem mostly
from the known discrepancy between SMI and LSMI
performance, there are also important theoretical
considerations that raise concerns regarding the ML
criterion for small sample sizes (which are typical in
radar applications).
In this regard, let us consider the traditional

likelihood function (LF) for the covariance matrix
given N >M IID training samples XN as in (7) [31]

f(R j XN) =
const

detN R
exp[¡tr(R¡1XNXHN )] (11)

then with probability one we have

det(XNX
H
N ) 6= 0 (12)

and so the likelihood ratio (LR) [32]

LR(R,XN)´ [f(R j XN)det(XNXHN )]1=N

=
det(R¡1R̂)expM

exp[tr(R¡1R̂N)]
(13)

where

R̂ ´ 1
N
XNX

H
N (14)

can also be treated as the LF with respect to R
(e.g., [31]). We can see that the (unconstrained) ML
solution

RML = R̂ (15)

derived by Anderson [33] by direct maximization of
the LF f(R j XN) yields the ultimate value for the LR
of unity:

max
R
LR(R,XN) = LR(R̂,XN) = 1 (16)

irrespective of the sample support N and filter
dimension M.
At the same time, for the true (exact) covariance

matrix R0, the pdf of the LR

LR(R0,XN) =
det(R¡1=20 R̂R

¡1=2
0 )expM

exp[tr(R¡1=20 R̂R
¡1=2
0 )]

(17)
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Fig. 1. Sample pdfs for the general test.

does not depend on R, since

Ĉ ´ R¡1=20 R̂R
¡1=2
0 » CW(N,M,IM) (18)

where Ĉ is the “white-noise” sample matrix with
complex Wishart distribution, is (for N >M) specified
by two parameters only, namely N and M. Later we
introduce moments and series representations for
the pdf of this ratio derived for the complex-valued
case similarly to the real-valued case in [34]. For
the sake of our current discussion, we refer to Fig. 1
where this pdf is shown for the values M = 12 and
N = 24.
Note that according to RMB [1], the average

SNR degradation for SMI is about 3 dB here,
which is often considered acceptable in practical
applications. Yet Fig. 1 shows that there is a huge
distinction between the LR values generated by the
true covariance matrix R0 and the ultimate value
LR = 1 produced by the ML estimate RML = R̂.
Indeed, the median LR is only 0.0257, and with
probability 99.99% the LR is less than 0.1051!
Based on this pdf, it seems natural to replace the ML
estimate by one that generates LR values consistent
with what is expected for the true covariance matrix.
We call this approach the expected likelihood (EL)
estimation criterion and will demonstrate that, unlike
the ML criterion, this approach inherently justifies
the appropriate selection of parameters (such as
loading factor and interference signal subspace
dimension) based on direct likelihood matching, rather
than on “external considerations” as suggested in
[12], [13]. Moreover, we demonstrate that this EL
principle, when incorporated into the GLRT and AMF
framework, leads to detection rules that are at least not
inferior to LAMF with its data-independent loading
factor selection.
The issue of ML estimation within the GLRT

approach is not the only one that raises concerns
within Kelly’s “single data” GLRT method. Indeed,
Kelly’s approach whereby “the decision rule will
be formulated in terms of the totality of input
data without the a priori assignment of different
functions to the primary and secondary input”
[2] is not self-evident. It is difficult to accept two
different covariance matrix estimates for the same

interference, depending on the hypothesis for a single
primary snapshot. It is expected that the proper
methodology would search for the single interference
covariance matrix that is most supportive to the
detection problem, possibly dependent on the primary
snapshot, but not on the hypothesis. This methodology
should suggest both the primary and secondary data
processing governed by the detection hypothesis
testing criteria on the primary data, with the a priori
classification of the secondary data as target-free
being respected. The latter means that modification
of the GLRT methodology should consider two sets
instead of a single-set approach using “the totality
of the input data,” and for the above reasons use
EL rather than ML estimation. This new GLRT
framework should deliver adaptive detectors that are
at least as efficient as LAMF, even for the scenarios
that are most favorable to LAMF (5). Finally, we may
hope that if the different adaptive techniques have the
same performance, the potential accuracy set by the
problem formulation is approached, and then we can
favor the simplest technique for practical reasons.
The above-mentioned goals are pursued in this

study, where Section II discusses our theoretical
framework for the two-set GLRT and AMF detectors
that use EL estimation. Section III specifies these
techniques for Gaussian interference and a Gaussian
(fluctuating) target. Section IV introduces the
parametric class of covariance matrix estimates as
the class of LSMI and FML estimates, and discusses
the “conventional” constant-loaded AMF detector.
For the “favorable” scenarios where the interference
covariance matrix has an eigendecomposition of
the form of (5), we give important features of our
detectors (such as the CFAR property). Section V
introduces the results of Monte-Carlo simulations
that validate the theoretical results and demonstrate
the high detection performance of the new adaptive
detectors. The main points are summarized in
Section VI, while Appendices A—D contain certain
analytic derivations.

II. TWO-SET EL AND GLRT AMFs

According to the conventional single-set GLRT
criterion, the decision d1 that a target is present in a
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(single) snapshot Y (or absent d0) is taken according
to the rule

¤¤(Y) =
max¹2−1 f(Y j ¹1,H1)
maxÂ2−0 f(Y j Â1,H0)

d0
7
d1

h¤ (19)

where f(Y j ¹1,H1) is the (primary) data Y pdf for
hypothesis H1 (target signal present), and ¹ 2 −1 is
the set of unknown (nonrandom) parameters that
completely specify this pdf. In most cases, random
parameters with an unknown (or not accurately
known) marginal pdf are treated as ¹ 2 −1. Similarly,
f(Y j Â1,H0) is the (primary) data pdf for hypotheses
H0 (target signal absent) specified by the parameters
Â1 2−0. The threshold h

¤ is defined asZ
¤¤(Y)>h¤

f(Y j Â1,H0)dY · PFA 8 Â 2 −0

(20)

where PFA is the desired probability of false alarm.
Note that for a finite-dimensional vector Y, the

GLRT criterion does not have a rigorous theoretical
justification, similar to the Bayesian rule with given
marginal pdfs f¹(¹) and fÂ(Â), for example. Only
asymptotic considerations (M!1) are used to justify
the GLRT method, despite its obvious intuitive appeal.
In practice, this means that estimates other than the
ML ones for ¹ and Â in (19) could be employed,
and could result in better detection performance. We
explore this avenue whenever alternative estimates are
available, especially for covariance matrix estimation.
To fit into this single-set GLRT framework, Kelly

[2] considered a single total data set fXN ;Yg, and
introduced Â= R and ¹= (R,a) with the two different
solutions (7) and (8) for the interference covariance
matrix. In our two-set GLRT framework, we introduce

f(XN j ´,Â12), ´ 2 −2 (21)

f(Y j Â0,Â12 :H0), Â0 2 −0 (22)

f(Y j ¹,Â12 :H1), ¹ 2 −1 (23)

where Â12 2−12, and −12 is the set of common
(interference) parameters that describe the pdf for both
the primary data Y and the secondary set XN , and ´,
Â0 and ¹ are now parameters specific to each set and
hypothesis.
The a priori classification of the training

(secondary) data XN and the primary snapshot Y
means that the estimates Â12 do not depend on the
hypothesis H0 versus H1, and so is the same as
appears in (22) and (23). Therefore the following
option can be considered

GLRT: ¤12 = max´,Â12
f(XN j ´,Â12)

£ max¹2−1 f(Y j ¹,Â12 :H1)
maxÂ02−0 f(Y j Â0,Â12 :H0)

d0
7
d1

h¤:

(24)

Note that this joint optimization over Â12 is already
different from the standard AMF approach,
namely:

AMF: ¤(2)12 =
max¹2−1 f(Y j ¹,Â12ML :H1)
maxÂ02−0 f(Y j Â0,Â12ML :H0)

d0
7
d1

h¤

(25)
where

Â12ML = argmax´,Â12
f(XN j ´,Â12): (26)

On the other hand, the joint optimization in (24)
should result in a single solution in Â12 for both
the hypotheses H0 and H1. It is important that this
solution depends on the actual primary snapshot Y,
but not on the hypothesis itself regarding this primary
snapshot. Therefore, at least in principle, the GLRT
approach (24) differs from Kelly’s solution and the
AMF technique, even though the same ML principle
is used for both GLRT (24) and AMF (25).
However, in most of the cases considered here, we

can replace the LF f(XN j ´,Â12) by the LR

LR(XN j Â12) = max´
f(XN j ´,Â12)
f0(XN)

2 (0,1] (27)

that has the same ML solution for Â12ML:

arg
Â12

max
´,Â12

f(XN j ´,Â12) = argmaxÂ12
LR(XN j Â12):

(28)

The most important property of this LR is that, for
the actual (true, exact) Â(0)12 , the pdf does not depend
on Â(0)12 , i.e., is scenario-free, depends only on the
parameters M and N, and can be precalculated.
Hence for a given probability P0, the upper and lower
bounds (®U and ®L, respectively) can be found such
that Z 1

®L

w[LR(XN j Â(0)12 )]dLR =Z ®U

0
w[LR(XN j Â(0)12 )]dLR = P0 = 1¡ ",

0< "¿ 1 (29)

so that with the high probability (1¡ 2"), the exact
parameters Â(0)12 generate the LR within the specified
bounds. Here w[¢] is the scenario-free pdf for the
likelihood ratio LR(XN j Â(0)12 ).
For most cases with relatively small sample size

(N 'M), Fig. 1 shows that
®U¿ 1 (30)

and so the ML solution Â12ML is far away from the
true set of parameters in terms of the LR metric. Of
course, very small LRs may be generated not only by
the true parameters, but by a variety of completely
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erroneous solutions as well. For this reason, we
propose an EL approach that is based on LR matching
for a certain parameterization of the estimate Â̂12(¯)
such that

Â̂12(¯0) = Â12ML (31)

and the parameterization corresponds to some valid
a priori assumptions regarding the class of covariance
matrices.
We can now propose the following two-set GLRT

(2S-GLRT) techniques:

ML-GLRT: ¤(3)12 = max
¯

max¹2−1 f(Y j ¹, Â̂12(¯);H1)
maxÂ02−0 f(Y j Â0, Â̂12(¯);H0)

d0

7
d1

h¤

(32)
for ¯ such that

®L · LR(XN j ¯)· 1 (33)

and

EL-GLRT: ¤(4)12 = max
¯

max¹2−1 f(Y j ¹, Â̂12(¯);H1)
maxÂ02−0 f(Y j Â0, Â̂12(¯);H0)

d0

7
d1

h¤

(34)
for ¯ such that

®L · LR(XN j ¯)· ®U: (35)

The only difference between these two methods is
that ML-GLRT allows the likelihood ratio LR(XN j ¯)
generated by the parameterized estimate Â̂12(¯)
to arbitrarily approach the upper bound of unity,
whereas EL-GLRT restricts the LR to the range of
values where the exact parameters are concentrated,
according to (29).
Similarly, we can also introduce the EL-AMF

detector, where we replace ML estimates by EL
ones:

EL-AMF: ¤(5)12 =
max¹2−1 f(Y j ¹, Â̂12EL :H1)
maxÂ02−0 f(Y j Â0, Â̂12EL :H0)

d0
7
d1

h¤:

(36)

The EL estimate is the estimate which, for given
training data XN , generates the specific precalculated
likelihood ratio LR0, i.e.,

LR[XN j Â̂12(¯EL)] = LR0: (37)

This value LR0 is chosen by referring to the
scenario-free pdf LR(XN j Â(0)12 ). For example, the mean
or median value of the pdf could be selected.
In the next section, we derive the two-set

ML-GLRT, EL-GLRT, and EL-AMF techniques
for the typical Gaussian model of interference and
target signal. Later we compare the detection
performance of these techniques with standard AMF
and the clairvoyant case with known interference
parameters.

III. TWO-SET GLRT AND AMF DETECTORS FOR
GAUSSIAN MODELS

In most GLRT studies, the target is modeled by a
vector of given structure (wavefront) with an unknown
complex scaling factor that is an additional unknown
deterministic parameter (see (9)). We adopt the typical
target model here, namely the Swerling 1 model
[35], which is the Gaussian model (Rayleigh target)
with uniform initial phase and Rayleigh-distributed
envelope.

A. Homogeneous Interference Training Conditions;
Fluctuating Target with Known Power

In this case, we assume that the only information
that is unavailable is the interference covariance
matrix, which is identical for both the training and
the primary data:

−0 = Ø, −1 = Ø, −2 = Ø, −12 = fRg
(38)

and

f(XN) =
1

¼N detN R
exp[¡tr(R¡1XNXHN )] (39)

f(Y jH1) =
1

¼det(R+¾2s SSH)
exp[¡YH(R+¾2s SSH)Y]

(40)

where S is the target signal wavefront vector and ¾2s is
the target power.
Hence, according to (32)—(35), the 2S-GLRT

detection problem is

¤12 = max
R(¯)

1
1+¾2s SHR¡1(¯)S

exp
·
¾2s jYHR¡1(¯)Sj2
1+¾2s SHR¡1(¯)S

¸
(41)

subject to

ML-GLRT: ®L ·
detR¡1(¯)R̂N expM

exp trR¡1(¯)R̂N
· 1

(42)

EL-GLRT: ®L ·
detR¡1(¯)R̂N expM

exp trR¡1(¯)R̂N
· ®U

(43)
where

R̂N ´
1
N
XNX

H
N : (44)

The AMF technique is based on

¤12 =
1

1+¾2s SHR̂¡1(¯)S
exp

"
¾2s jYHR̂¡1(¯)Sj2
1+¾2s SHR̂¡1(¯)S

#
(45)

subject to

standard ML-AMF: R̂(¯ = ¯0) = R̂N (46)

EL-AMF:
det R̂¡1(¯EL)R̂N expM

exp tr R̂¡1(¯EL)R̂N
= LR0: (47)
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In (42) and (43),

°(1)0 ´ LR(XN j R0) =
detN¡1Ĉ expM

exp trN¡1Ĉ
(48)

where Ĉ » CW(N,M,IM), is described by a
scenario-free (complex Wishart) pdf. Indeed,
Appendix A shows that the hth moment is given by

Ef°(1)h0 g=
³
e

N

´Mh (N + h)¡M(N+h)
N¡M(N+h)

QM

j=1¡ (N + h+1¡ j)QM

j=1¡ (N +1¡ j)
(49)

=NMNeMh
1

(N + h)M(N+h)

QM

j=1¡ (N + h+1¡ j)QM

j=1¡ (N +1¡ j)
:

(50)

The pdf for °(1)0 , w(°
(1)
0 ), can be expressed as an

infinite series by applying a Mellin transform,
similarly to [34] (see Appendix A).
The bounds are determined from the equationsZ ®U

0
w(°(1)0 )d°

(1)
0 = P0,

Z 1

®L

w(°(1)0 )d°
(1)
0 = P0

(51)Z LR0

0
w(°(1)0 )d°

(1)
0 = 0:5 (52)

by using either the analytical expression for °(1)0 or by
direct Monte-Carlo simulations.

B. Homogeneous Interference Training Conditions;
Fluctuating Target with Unknown Power

In this case

−0 = Ø, −1 = f¾2s g, −2 = Ø, −12 = fRg:
(53)

According to (32), we first need to find the ML
estimate of the target signal power ¾2s :

max
¾2s

1
1+¾2s SHR¡1(¯)S

exp
·
¾2s jYHR¡1(¯)Sj2
1+¾2s SHR¡1(¯)S

¸
:

(54)
Since ¾2s ¸ 0, the solution is

¾̂2s =

8>>>>>>><>>>>>>>:

jYHR¡1(¯)Sj2¡ SHR¡1(¯)S
[SHR¡1(¯)S]2

for
jYHR¡1(¯)Sj2
SHR¡1(¯)S

¸ 1

0 for
jYHR¡1(¯)Sj2
SHR¡1(¯)S

< 1:

(55)

The solution ¾̂2s = 0 clearly means that there is no
target signal present in the input data, hence our

2S-GLRT test is

¤12 = max
R(¯)

SHR¡1(¯)S
jYHR¡1(¯)Sj2 exp

· jYHR¡1(¯)Sj2
SHR¡1(¯)S

¸
£H

μ jYHR¡1(¯)Sj2
SHR¡1(¯)S

¡ 1
¶
d0
7
d1

h¤ (56)

where H(x) is the unit step function

H(x) =
½
1 for x¸ 0
0 for x < 0:

(57)

Note that the function

f(x) = ex=x (58)

is monotonic for x¸ 1, and so this decision rule can
be replaced by the more familiar one

¤12 = max
R(¯)

jYHR¡1(¯)Sj2
SHR¡1(¯)S

d0
7
d1

h¤ > 1 (59)

together with the same constraints on ¯ as in (42) for
ML-GLRT and in (43) for EL-GLRT. Note that this
maximization can be interpreted as the intuitively
appealing maximization of the sample output
signal-to-interference ratio (SIR) when the adaptive
filter is set to Ŵ(¯) = R̂¡1(¯)S, and the interference
output power is calculated as ŴH(¯)R̂(¯)Ŵ(¯).
Actually, the fuller decision rule

¤12 = max
R(¯)

SHR¡1(¯)S
jYHR¡1(¯)Sj2 exp

· jYHR¡1(¯)Sj2
SHR¡1(¯)S

¸
d0
7
d1

h¤

(60)

can still be used for maximization, since for x < 1
it will lead to a further reduction in x. This means
that if the target is absent from Y then a significant
number of trials will result in x < 0, which means no
target detected according to (56) and (58). Of course,
a similar maximization result is probable for a weak
target. Hence we may use the decision rule

¤12 =
jYHR̂¡1( ˆ̄)Sj2
SHR̂¡1( ˆ̄)S

d0
7
d1

h¤ > 1 (61)

where

R̂( ˆ̄) = argmax
R(¯)

SHR¡1(¯)S
jYHR¡1(¯)Sj2 exp

· jYHR¡1(¯)Sj2
SHR¡1(¯)S

¸
(62)

subject to the usual ML- (42) or EL-GLRT constraints
(43).
Note that if we replace the x-monotonic

function (56) or (58) by the function (62) that is
unconstrained by the condition x > 1, we would
expect a significantly different detection performance,
even for the clairvoyant case R = R0.
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Similarly, we may introduce the AMF decision
rule

SHR̂¡1(¯)S

jYHR̂¡1(¯)Sj2
exp

"
jYHR̂¡1(¯)Sj2
SHR̂¡1(¯)S

#

£H
Ã
jYHR̂¡1(¯)Sj2
SHR̂¡1(¯)S

¡ 1
!
d0
7
d1

h¤ > 1 (63)

or
jYHR̂¡1( ˆ̄)Sj2
SHR̂¡1( ˆ̄)S

d0
7
d1

h¤ > 1: (64)

Here R̂(¯) should be chosen either in the standard
way R̂(¯ = ¯0) = R̂N to get the well-known ML-AMF
method, or by (47) to get the EL-AMF rule.

C. Arbitrary Scaling Factors for Interference Matrices;
Fluctuating Target with Unknown Power

Here we assume that the (total) power of the
interference within the training data could be different
to that in the primary data, so that the interference
covariance matrix is the same up to an arbitrary
scaling factor [18].
More specifically,

EfXNXHN g= c2NR, EfYYH jH0g= c1R: (65)
Hence we have

−0 = fc1g, −1 = fc1,¾2s g, −2 = fc2g, −12 = fRg:
(66)

According to (27) and (32), we first need to find

LR(XN j R) = maxc2
f(XN j c2)
f0(XN)

: (67)

Since

max
c2

1
¼NcMN2 detR

exp
·
¡ 1
c2
tr(R¡1XNX

H
N )
¸

(68)

leads to the ML estimate

ĉML =
1
M
tr[R¡1R̂N] (69)

we end up with the familiar “sphericity test” in (67):

LR(XN j R(¯)) =

0BBB@ detR¡1(¯)R̂N·
1
M
trR¡1(¯)R̂N

¸M
1CCCA
N

: (70)

For the GLRT detection rule, we also find

max
c1
f(Y jH0) =

detR¡1(¯)·
1
M
trR¡1(¯)R̂N

¸M (71)

and

max
c1,¾

2
s

f(Y jH1)

= max
¾2s >0
c1>0

exp

2664¡YHR¡1(¯)Y+ ¾2sc1 jYHR¡1(¯)Sj2

1+
¾2s
c1
SHR¡1(¯)S

3775
detc1R(¯)

·
1+

¾2s
c1
SHR¡1(¯)S

¸ :

(72)

We first find ¾2sML by solving the log-likelihood
equation

@

@¾2s
logf(Y jH1) = 0 (73)

hence

1+
¾2s
c1
SHR¡1(¯)S =

1
c1

jYHR¡1(¯)Sj2
SHR¡1(¯)S

(74)

which leads to the estimate (cf (55))

¾̂2sML =
jYHR¡1(¯)Sj2¡ c1SHR¡1(¯)S

[SHR¡1(¯)S]2
(75)

for
jYHR¡1(¯)Sj2
SHR¡1(¯)S

¸ c1: (76)

Substituting (74) into (72) yields

max
c1,¾2s

f(Y jH1)

=
SHR¡1(¯)S

cM¡11 detR(¯)jYHR¡1(¯)Yj2

£ exp
½
1
c1

·
¡YHR¡1(¯)Y+ jY

HR¡1(¯)Sj2
SHR¡1(¯)S

¸¾
:

(77)
Therefore the equation

@

@c1
log
·
max
¾2s

f(Y jH1)
¸
= 0 (78)

leads to the solution

ĉ1ML =
1

M ¡ 1
·
YHR¡1(¯)Y¡ jY

HR¡1(¯)Sj2
SHR¡1(¯)S

¸
:

(79)

Schwarz’s inequality gives us ĉ1ML ¸ 0, so substituting
the above into (76) gives

jYHR¡1(¯)Sj2
SHR¡1(¯)SYHR¡1(¯)Y

¸ 1
M

(80)

so our 2S-GLRT decision rule is

max
R
(¯)

H(ccos2¡ 1
M
)

[1¡ ccos2]M¡1ccos2 d07d1 h¤ > 1 (81)
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where

ccos2 ´ jYHR¡1(¯)Sj2
SHR¡1(¯)SYHR¡1(¯)Y

(82)

subject to

ML-GLRT: ®L ·
detR¡1(¯)R̂N·
1
M
trR¡1(¯)R̂N

¸M < 1 (83)

EL-GLRT: ®L ·
detR¡1(¯)R̂N·
1
M
trR¡1(¯)R̂N

¸M · ®U:
(84)

It is straight forward to show that the function

f(ccos2) = 1

[1¡ ccos2]M¡1ccos2 (85)

is monotonic for ccos2 ¸ 1=M, so for the same reasons
as before we may express the 2S-GLRT decision rule
in the traditional form

jYHR̂¡1(¯)Yj2
SHR̂¡1(¯)SYHR̂¡1(¯)Y

d0
7
d1

h¤ ¸ 1
M

(86)

where

R̂¡1(¯) = argmax
R(¯)

1

[1¡ ccos2]M¡1ccos2 (87)

subject to the same constraints (83) or (84).
Naturally, the optimized function (85) should

not be used directly, in order to avoid the inevitable
performance degradation due to the nonmonotonic
nature of this function over the entire interval 0·ccos2 · 1.
We may now introduce the traditional ML-AMF

solution (that is the adaptive coherence estimation
(ACE) detector [36, 5]) as

ccos2ML = jYHR̂¡1N Sj2
SHR̂¡1N SYHR̂

¡1
N Y

d0
7
d1

h¤ >
1
M

(88)

and the EL-AMF solution as

ccos2ML = jYHR̂¡1(¯EL)Sj2
SHR̂¡1(¯EL)SYHR̂¡1(¯EL)Y

d0
7
d1

h¤ >
1
M

(89)
where ¯EL is determined by the condition

det R̂¡1(¯EL)R̂·
1
M
tr R̂¡1(¯EL)R̂

¸M = LR0: (90)

As usual, the bounds ®L, ®U, and LR0 are specified
by the scenario-free pdf that has been derived in [37]

for °(2)0 :

°(2)0 =
det Ĉ·
1
M
tr Ĉ

¸M (91)

Ĉ » CW(N,M,IM) (92)

w(°(2)0 ) = C(M,N)[°
(2)
0 ]

N¡MGM,0M,M

Ã
°(2)0

¯̄̄M2¡1
M

,M
2¡2
M

,:::,M
2¡M
M

0,1,:::,M¡1

!
(93)where

C(M,N)´ (2¼)(M¡1)=2M (1¡2MN)=2 ¡ (MN)QM
j=1¡ (N ¡ j+1)

(94)

and GM,0M,M(¢) is Meijer’s G-function [38].
Note that the above well-known models have been

elucidated since they permit analytic solutions for the
ML estimates ¾̂2sML and ĉML. The same methodology
can be applied for more complex models where such
estimates are found numerically [21].

IV. DIAGONALLY LOADED AND FML ADAPTIVE
DETECTORS; “FAVORABLE” SCENARIOS

According to the two-fold goal of this study,
we now have to specify the particular parametric
families for the covariance matrix estimate R(¯)
within the above 2S-GLRT and AMF detection rules
as the diagonally loaded and FML ones, and consider
scenarios that are known to be most favorable for
LSMI and FML adaptive filter techniques. We also
have to specify the LSMI-based LAMF detector with
its data-independent (constant) loading factor that
is typically recommended for these scenarios. The
performance of this conventional LAMF detector must
then be compared with that of the new 2S-GLRT
and EL-AMF methods that operate with adaptive
data-dependent loading-factor selection.
The scenarios most favorable for LSMI treatment

(5) are equivalently described by a covariance matrix
of the form

R0 = ¹Us¤sU
H
s +UnU

H
n (95)

where, for simplicity, the white-noise power ¾2n is set
to unity; Us is the M £m matrix of m signal-subspace
eigenvectors; Un is the M £ n matrix of noise-subspace
eigenvectors, and ¹¤sÀ Im is the m-variate matrix of
signal-subspace eigenvalues. The conditions

m<M, ¹À 1 (96)

(or eigm(R0)À ¾2n in the general case) are favorable,
meaning that there is typically tens of dBs difference
between the signal- and noise-subspace eigenvalues.
For this class of interference covariance matrices, it
was demonstrated [10] that the adaptive filter
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WLSMI that arises from the diagonally loaded SMI
technique

WLSMI ´ (¯IM + R̂N)¡1S (97)

where R̂N ´ XNXHN =N, and the loading factor ¯ is
selected within the broad range of values

¹¸mÀ ¯ > 1, (in general, eigmR0À ¯ > ¾2n)

(98)

gives the normalized output SNR (SNR loss factor)

°LSMI =
[SH(¯IM + R̂N)

¡1S]2

SH(¯IM + R̂N)¡1RN(¯IM + R̂N)¡1SSHR
¡1
N S

(99)

that is approximately described by the ¯-distribution

w(°LSMI) =
N!

(N ¡m)!(m¡ 1)! (1¡ °LSMI)
m¡1°N¡mLSMI:

(100)

This distribution only depends on N and m, not
on the loading factor or other scenario parameters.
Moreover,

Ef°LSMIg ' 3 dB for N ' 2m: (101)

Later in [39], the same pdf was used to describe the
SNR loss factor of the FML (Hung-Turner type)
adaptive beamformer

WFML ´ (¾̂2nIM + ÛmÂmÛHm )S (102)
where

¾̂2n ´
1

M ¡m
M¡mX
j=1

¸m+j , Âm ´ diag[ ˆ̧ j ¡ ¾̂2n]

for j = 1, : : : ,m (103)

with Uj and ¸j (j = 1, : : : ,M) coming from the
eigendecomposition of the sample (ML) covariance
matrix

R̂N = Û¤̂Û, Û ´ [Ûm,Ûn], ¤̂´ diag[¤̂m,¤̂n]:
(104)

Note that unlike the LSMI algorithm, the FML
technique requires the signal-subspace dimension
(order) m to be specified. For favorable conditions
(95)—(96), this order can be estimated with high
accuracy by treating R̂ with an information-theoretic
criterion (ITC) [40]. This approach is actually similar
to the EL philosophy, and we show in Section IV that
for favorable scenarios, EL matching gives as reliable
an order estimate as any ITC. Therefore, for the
FML method there is no practical difference between
EL-FML and conventional FML (for (95)—(96)).
For this reason, we concentrate our comparative
analysis on the LAMF detector with constant

diagonal loading:

R̂LSMI = ¯cIM + R̂N: (105)

According to the conventional AMF methodology,
the LAMF detector can be derived from (105) being
substituted into the detection test instead of the known
covariance matrix [17]. We can now finally specify
the adaptive detectors that are to be compared for
favorable scenarios.

A. Homogeneous Interference Training Conditions;
Fluctuating Target with Unknown Power

2S-GLRT:

max
¯

jYH(¯IM + R̂N)¡1Sj2
SH(¯IM + R̂N)¡1S

d0
7
d1

h¤ > 1 (106)

subject to

®L ·
det[(¯IM + R̂N)

¡1R̂N]expM

exp tr[(¯IM + R̂N)¡1R̂N]
· 1 (ML-GLRT)

(107)
or

®L ·
det[(¯IM + R̂N)

¡1R̂N]expM

exp tr[(¯IM + R̂N)¡1R̂N]
· ®U (EL-GLRT)

(108)
ML-AMF:

jYHR̂¡1N Sj2
SHR̂¡1N S

d0
7
d1

h¤ > 1: (109)

EL-AMF:

jYH( ˆ̄IM + R̂N)¡1Sj2
SH( ˆ̄IM + R̂N)¡1S

d0
7
d1

h¤ > 1 (110)

where

ˆ̄ ´ arg¯
(
det[(¯IM + R̂N)

¡1R̂N]expM

exp tr[(¯IM + R̂N)¡1R̂N]
´ LR0

)
(111)

LAMF:
jYH(¯cIM + R̂N)¡1Sj2
SH(¯cIM + R̂N)¡1S

d0
7
d1

h¤ > 1 (112)

where the constant ¯c is about two or three.

B. Nonhomogeneous Interference Training Conditions;
Fluctuating Target with Unknown Power

2S-GLRT:

max
¯

jYH(¯IM + R̂N)¡1Sj2
SH(¯IM + R̂N)¡1SYH(¯IM + R̂N)¡1Y

d0
7
d1

h¤ >
1
M

(113)
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subject to

®L ·
det[(¯IM + R̂N)

¡1R̂N]½
1
M
tr[(¯IM + R̂N)¡1R̂N]

¾M · 1 (ML-GLRT)

(114)
or

®L ·
det[(¯IM + R̂N)

¡1R̂N]½
1
M
tr[(¯IM + R̂N)¡1R̂N]

¾M · ®U (EL-GLRT)

(115)
ML-AMF (“ACE”):

jYHR̂¡1N Sj2
SHR̂¡1N SYHR̂

¡1
N Y

d0
7
d1

h¤ >
1
M

(116)

EL-AMF:

jYH( ˆ̄IM + R̂N)¡1Sj2
SH( ˆ̄IM + R̂N)¡1SYH(

ˆ̄IM + R̂N)¡1Y

d0
7
d1

h¤ >
1
M

(117)
where

ˆ̄ ´ arg¯

8>>><>>>:
det[(¯IM + R̂N)

¡1R̂N]½
1
M
tr[(¯IM + R̂N)¡1R̂N]

¾M ´ LR0
9>>>=>>>;
(118)

LAMF:

jYH(¯cIM + R̂N)¡1Sj2
SH(¯cIM + R̂N)¡1SYH(¯cIM + R̂N)¡1Y

d0
7
d1

h¤ >
1
M

(119)
where the constant ¯c is about two or three.
Naturally we are interested in the performance of

these detectors compared with the FML-based ones.
These can be introduced in a similar way, where
now the signal-subspace dimension m in (102) is
used as a parameter in 2S-GLRT optimization. As
we have already mentioned, EL-FML has the same
performance as the FML matrix estimate using the
true m for favorable scenarios (95)—(96).
Note that only the familiar ML-AMF (ACE)

detectors are known to be strictly CFAR detectors
[17, 36]. Indeed, for signal-free primary data Y and
no mismatch in the interference properties between
the primary and secondary data, the above ML-AMF
detectors have pdfs that are functions only of M
and N. Such pdfs have been analytically derived in
[17, 36], and can be used for false-alarm threshold
calculations. For the other detectors introduced
above, the strict CFAR property cannot be proven.
Yet, for favorable scenarios, we can demonstrate a
certain invariance of the output signal-free statistics
that is sufficient for practical false-alarm threshold
calculations. This invariance is specified by the
following two theorems.

THEOREM 1 Suppose we have a “favorable”
interference covariance matrix of the form

R0 = ¹Us¤sU
H
s +UnU

H
n , ¹À 1, ¤s > Im

(120)

and let the loading factor ¯ in the LSMI estimate

R̂LSMI = ¯IM + R̂N , R̂N = XNX
H
N =N, XN » CNN(0,R0)

(121)
be selected within the range ¹ > ¯&1, then
a) the test statistics

t̂1 ´
jYH(¯IM + R̂N)¡1Sj2
SH(¯IM + R̂N)¡1S

, Y » CN (0,R0)
(122)

can be approximately (as ¹!1) represented as

t̂1 '
j[YH1n ¡YH1s (ZsZHs )¡1ZsZHn ]Ze1j2

eT1Ze1
(123)

where

Z ´
½
¯In+

1
N
Zn[IN ¡ZHs (ZsZHs )¡1Zs]ZHn

¾¡1
(124)

and where

Y1n 2 CN n£1 » CN (0,In)
Y1s 2 CNm£1 » CN (0,Im)
Zn 2 CN n£N » CNN(0,In)
Zm 2 CNm£N » CNN(0,Im)
e1 2Rn£1 ´ [1,0, : : : ,0]T

(125)

and Y1n, Y1s, Zn, Zm are mutually independent; and
b) the test statistics

t̂2 ´
jYH(¯IM + R̂N)¡1Sj2

SH(¯IM + R̂N)¡1SYH(¯IM + R̂N)¡1Y
,

Y » CN (0,R0) (126)

can be approximately (as ¹!1) represented as
t̂2 ´ t̂1L¡1LGIP (127)

where

LLGIP ´ YH(¯IM + R̂N)¡1Y

' YH1s
·
1
N
ZsZ

H
s ¡

1
N2
ZsZ

H
n (¯IN +

1
N
ZnZ

H
n )

¡1ZnZ
H
s

¸¡1
Y1s

¡ 2<[YH1s (ZsZHs )¡1ZsZHn ZY1n] +YH1nZY1n: (128)

The proof appears in Appendix B.

Despite being rather bulky, these representations
mean that for scenarios satisfying (95)—(96) with
sufficiently large ¹, the test statistics for target-free
primary data can be expressed as a function of
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white-noise IID data, and so its pdf will depend only
upon the parameters N, M, m, and ¯. For LAMF,
these representations can be used directly to calculate
false-alarm thresholds, at least, by direct Monte-Carlo
simulations. Of course, in this case the order m must
be specified, but this is not a problem for favorable
scenarios (95)—(96). With respect to these properties,
we can treat the LAMF detector as being CFAR in
practice.
Here we derived our most accurate representations

for t̂1 and t̂2, sufficient for threshold calculations even
for reasonably small ¯. For large values, we get less
complicated expressions; specifically for

N¯À 1 (129)

t̂1 '
1
¯
j[YH1n ¡YH1s (ZsZHs )¡1ZsZHn ]e1j2 (130)

and

LLGIP 'NYH1s (ZsZHs )¡1Y1s+YH1nY1n=¯ (131)

and with

f̂ ´ YH1s (ZsZHs )¡1Y1s »
f̂m¡1

B(m,N +1¡m)(1+ f̂)N+1
(132)

ĝ ´ YH1nY1n »
ĝM¡m+1 exp[¡ĝ]
¡ (M ¡m) (133)

where B is the incomplete ¯-function. Note that the
statistics LLGIP can be considered to be the loaded
version of the generalized inner product (GIP) test that
was introduced in [26] for nonhomogeneity detection.
In order to expand these invariance properties to

the new 2S-GLRT and EL-AMF techniques, all we
have to do now is to demonstrate that (under favorable
interference conditions) the LRs in (107) and (114)
can be approximately represented as functions of the
same random white-noise variables Zs and Zn. When
dealing with GLRT optimization in (106) and (113),
we are unlikely to get analytic expressions for the
target-free thresholds. Yet, since both the optimized
test statistics and constraints can be represented by
white-noise variables, these pdfs can be defined by
N, M, m, ®L and ®U, and may be precalculated using
Monte-Carlo simulations.
For EL-AMF, such LR representation means that

the EL loading factor ¯ is a function of the same
white-noise variables Zs and Zn, together with the
expected median LR value LR0, and so the target-free
test statistics for EL-AMF are a function of N, M,
m, and LR0, and may again be precalculated using
Monte-Carlo simulations. The invariance of the LRs
is formalized by the following theorem.

THEOREM 2 Suppose we have a favorable interference
covariance matrix of the form

R0 = ¹Us¤sU
H
s +UnU

H
n , ¹À 1 (134)

and let the loading factor ¯ in the LSMI estimate

R̂LSMI = ¯IM + R̂N , R̂N = XNX
H
N =N, XN » CNN(0,R0)

(135)

be selected within the range ¹ > ¯&1, then the LRs

°(1)`0 ´
det[R̂¡1LSMIR̂N]expM

exp tr[R̂¡1LSMIR̂N]
(136)

°(2)`0 ´
det R̂¡1LSMIR̂N·
1
M
tr R̂¡1LSMIR̂N

¸M (137)

may be approximately represented as

°(1)`0 =
det[Z(Z¡1¡¯IN)]
exp[¡¯trZ] (138)

°(1)`0 (¯ = 0) = 1 (139)

°(1)`0 (¯À 1) = ¯¡(M¡m) det[Z¡1¡¯IN]exp[M ¡m]
(140)

and

°(2)`0 =
det[Z(Z¡1¡¯IN)]
[1¡¯trZ=M]M (141)

°(2)`0 (¯ = 0) = 1 (142)

°(2)`0 (¯À 1) = ¯¡(M¡m) det[Z¡1¡¯IN]
³
1¡ m

M

´¡M
:

(143)

The proof appears in Appendix C.

In the next section, we demonstrate that these
approximations are sufficiently accurate for practical
false-alarm threshold calculations for “favorable”
scenarios.

V. DETECTION PERFORMANCE ANALYSIS OF
2S-GLRT, AMF AND LAMF DETECTORS

A. Favorable Interference Scenario

Consider an M = 12-sensor uniform linear antenna
array, and m= 6 independent Gaussian interference
sources, each with 30 dB signal-to-white-noise
ratio (SWNR). The interference directions of arrival
(DOAs) were chosen to be

w6 ´ sinμ6 = [¡0:8,¡0:4,0:2,0:5,0:7,0:9]
(144)

so that the eigenspectrum of the interference
covariance matrix

R0 = ¾
2
nIM +

6X
j=1

¾2j S(wj)S
H(wj) (145)
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Fig. 2. Eigenspectrum of favorable and unfavorable interference covariance matrices used in the simulations.

where ¾2n is the white-noise power, and

¾2n = 1, ¾2j = 1000, wj = 2¼
d

¸
sinμj

(146)

as shown in Fig. 2 perfectly meets the favorable
interference conditions (95)—(96), since ¸7=¸8 =
¸7=¾

2
n ' 35 dB. Note that under our assumption

regarding the training data consisting of N IID
samples, the above adaptive detectors are applicable
to any spatial, temporal or space-time application. In
fact, the eigenspectrum in Fig. 2 has been specifically
chosen to look like that of the terrain-scattered
space-time covariance matrix in a side-looking
airborne radar with three antenna sensors and four
repetition periods [41].
Two separate target DOAs w0 have been selected

to represent two extreme cases, namely

SH0 [I¡ S6(SH6 S6)¡1SH6 ]S0
SH0 S0

=

½
0:949 for wH0 =¡0:60
0:040 for wL0 = 0:18:

(147)

In the first case (“fast target” in STAP (space-time
adaptive processing) terminology), total interference
mitigation is not accompanied by a significant
degradation in target SWNR, whereas in the second
case (“slow target”), such interference “nulling” leads
to a dramatic signal-power reduction.
Note that for the clairvoyant detector (R = R0), as

well as for the standard GLRT and AMF detectors,
this distinction does not affect the ROC if the output
SNRs are identical:

¾2sLS
LH
0 R¡10 S

L
0 = ¾

2
sHS

HH
0 R¡10 S

H
0 : (148)

Of course, the standard GLRT and AMF detectors
are CFAR detectors and therefore their false-alarm
rate (thresholds) do not depend on the particular
scenario in (147). For the introduced 2S-GLRT,
EL-AMF, and LAMF detectors, we have yet to
demonstrate that their invariance of the output
target-free statistics predicted in Section IV holds
sufficiently for constant false-alarm thresholds.
The training sample size N in all our simulations

as been chosen according to the RMB rule that
ensures 3 dB average SNR losses in the SMI adaptive
filter: N = 2M = 24.

1) Homogeneous Interference Training Conditions;
Fluctuating Target with Unknown Power: First,
consider the performance of the clairvoyant detector

jYHR¡10 Sj2
SHR¡10 S

d0
7
d1

h > 1 (149)

whose ROC has the well-known analytic expression

PD = exp

"
¡ h

1+¾2s S
H
0 R

¡1
0 S0

#
(150)

where h is the threshold and (¾2s S
H
0 R

¡1
0 S0) is the

output SNR. For the AMF (ML-AMF) detector, the
probability of false-alarm PFA and of target detection
can be expressed somewhat differently to RFKN [17]
(see Appendix D)

PFA = 2F1(N ¡M +1,N ¡M +2,N +1;¡h)

=
1

(1+ h)N¡M+1 2
F1

μ
N ¡M +1,M ¡ 1,N +1;¡ h

1+ h

¶
(151)

where 2F1(®,¯,°;x) is the hypergeometric function
[38], and

PD =
·
1+¾2s S

HR¡1S
1+¾2s SHR¡1S+h

¸N¡M+1
£F1

μ
M ¡ 1,¡(N ¡M +1),N ¡M +1,N +1;

¾2s S
HR¡1S

1+¾2s SHR¡1S
,
¾2s S

HR¡1S+ h
1+¾2s SHR¡1S+ h

¶
(152)

where F1(®,¯,¯
0,°;x,y) is the hypergeometric function

of two variables [38]. Note that [38]

2F1

μ
M ¡ 1,0,N +1; ¾2s

1+¾2s

¶
= 1 (153)

hence for h= 0 we have PD = 1, and for ¾
2
s = 0

we have PD = PFA. These analytical expressions
are used to validate the results of our Monte-Carlo
simulations. Specifically, we compare the
simulated and theoretical ROC for the clairvoyant
detector, and use the free software routine
gsl sf hyperg 2F1 from the GNU Scientific Library
(GSL) (http://www.gnu.org/software/gsl/) to calculate

2F1(®,¯,°;x) and so find the threshold values h for
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Fig. 3. Sample pdfs for the loaded general test.

Fig. 4. Sample pdfs for target-free output signal of LAMF detector.

Fig. 5. Sample pdf for white-noise theoretical model for target-free output signal of LAMF detector.

false-alarm rates from 10¡2 to 10¡4. Comparison of
the analytically computed values with those computed
over one million Monte-Carlo trials demonstrated a
perfect match that finally validates the accuracy of the
other Monte-Carlo results.
Next we consider the performance of our new

detectors, beginning with LAMF which we expect
to serve as a benchmark for the 2S-GLRT and
EL-AMF detectors with adaptive (data-dependent)
loading factors, as suggested by the theoretical
framework. Fig. 3 shows sample pdfs calculated over
106 Monte-Carlo trials for the LR °(1)0` (13) and three
fixed loading factors ¯ = 0:5, 1.6, 2.5. We see that the
loading factor ¯ = 1:6 comes close to matching the
pdf of the LR generated by the true covariance matrix
R0, as shown in Fig. 1. Therefore for this scenario we
expect ¯ = 1:6 to be a “sufficient” constant loading
factor.
For this relatively low diagonal loading, the

accuracy of our white-noise approximation (123) of
the output target-free statistics becomes a critical issue
that must be addressed first. Fig. 4 illustrates sample

pdfs for the output target-free statistics calculated over
106 Monte-Carlo trials for the “low-ratio” target in
(147). (The pdfs for the “high-ratio” target are not
presented here, since they are indistinguishable.) The
invariance of false-alarm rate with respect to the target
scenario is thus demonstrated.
In order to assess the accuracy of our white-noise

theoretical approximations for the output target-free
statistics, Fig. 5 shows the sample pdfs for
loading factors ranging from ¯ = 0:5 to 48, and
at Fig. 6 we compare the actual threshold values
calculated for PFA = 10

¡2 using the theoretical
white-noise representation (123) (106 trials) and direct
Monte-Carlo simulations (104 trials, low-ratio target).
We find an absolutely accurate correspondence of
threshold values, hence for this scenario the LAMF
detector is indeed a CFAR detector, since false-alarm
threshold values can be precalculated with sufficient
accuracy for any given value of m (the number
of dominant covariance matrix eigenvalues). This
comparison also proves similar CFAR properties of
EL-AMF and 2S-GLRT detectors, since they are
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Fig. 6. Comparison of theoretical and actual threshold values for PFA = 10
¡2 and varying loading factors.

Fig. 7. AMF ROCs for high-ratio target for false-alarm probability PFA = 10
¡4.

based on the same analytical approximation (see
Theorem 2).
Now we are in a position to consider the ROC

of the clairvoyant, standard AMF, and LAMF
detectors, which are presented in Fig. 7 for false-alarm
rate set at PFA = 10

¡4. The ROCs for PFA = 10
¡2

and 10¡3 are not presented here, as they are little
different. (Again, the ROCs for the low-ratio
target are identical to this high-ratio target.) We
observe a perfect match between the simulated and
analytical ROCs for the clairvoyant detector (149),
proving the accuracy of the simulations. Despite
the different target model (fluctuating in our study
and nonfluctuating in [2, 17]), the standard AMF
detector demonstrates performance similar to [17].
Indeed, for PFA = 10

¡4 and PD = 0:5, our SNR loss
factor is about 5 dB, compared with about 3 dB
in [1]. A simplistic interpretation of this could
be the additional » 2 dB losses due to adaptive
thresholding.

The most important result following from Fig. 7
is that LAMF does indeed have significantly better
performance. Indeed, the SNR loss factor for PFA =
10¡4 and PD = 0:5 is 1.6 dB, compared with 5 dB
for the standard AMF detector. Less expected is the
fact that a very small diagonal loading (¯ = 0:5) is
only marginally inferior (< 0:1 dB) to LAMF for its
“optimal” loading of ¯ ' 1:6. The “optimality” for
this fixed loading factor does not need to be very
accurately specified, since even for ¯ = 12, 24, 48
(Fig. 8), we observe the same performance as for
¯ = 1:6.
Thus our expectations regarding LAMF superiority

and performance invariance with respect to the
constant loading factor 1.¯ < ¹ are proven correct
for this favorable scenario. Its quasi-CFAR properties
obviously make LAMF especially attractive in
such cases; this and its high performance make it
challenging for our “theoretically derived” 2S-GLRT
and EL-AMF detectors to be as good. For this reason,
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Fig. 8. AMF ROCs for high-ratio target for larger loading factors.

Fig. 9. Sample pdfs for optimum loading in EL-AMF technique.

we now concentrate on EL-AMF performance,
wherein for each trial the loading factor is selected
adaptively so that the LR °(1)`0 for the observed sample
matrix R̂LSMI is equal to LR0 = 0:0257. For the FML
algorithm with its limited range of admissible signal
subspace dimensions m, in each Monte-Carlo trial the
LR °(1)`0 closest to LR0 = 0:0257 has been generated
for the true number of sources m= 6. Hence for
the FML class of covariance matrix estimates, no
difference can be reported between the adaptive
EL-FML and the nonadaptive FML detector with the
fixed (true) parameter m.
Fig. 9 shows a sample pdf of the optimum loading

factors over 106 trials. Unsurprisingly, it spans the
familiar range of loading factors 1.¯.2:3. As
predicted, the false-alarm rate is found to be invariant
with respect to target scenario, with identical threshold
values calculated for our high- and low-ratio targets.
Moreover, the ROCs are found to depend on the
output SNR irrespective of the target type. We see

that both EL-AMF (loading) and EL-AMF (FML)
techniques have practically indistinguishable detection
performance, and most importantly, both are in
turn indistinguishable from the “properly” loaded
(1· ¯ · 48) LAMF technique. It is important to note
that EL-AMF is not trivially identical to the constantly
loaded LAMF. For example, LAMF false-alarm rates
of 10¡2, 10¡3, and 10¡4 give rise to LR threshold
values of 4.00, 6.16, and 8.33, respectively, for ¯ = 1,
while for EL-AMF the same thresholds are 2.90,
4.55, and 6.23. Despite this significant difference
in detection statistics, as we have just seen, the
EL-AMF and LAMF performance is here practically
indistinguishable.
Next, we consider the ROCs of the ML-GLRT

method (106) and (107), where only the lower bound
for the LR is introduced (that is dependent on the
optimized loading factor ¯ or interference subspace
dimension m). Fig. 10 shows the ML-GLRT ROCs
for the high-ratio/fast target; as before, the ROCs for
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Fig. 10. ML-GLRT ROCs for high-ratio target for three different false-alarm probabilities.

Fig. 11. Sample pdf for optimum loading in ML-GLRT technique.

the low-ratio/slow target are visually identical. The
lower bound ®L = 0:0142 has been chosen so that the
probability of generating a LR below this threshold
for the true matrix R0 is very low: P(LR < ®L) = 0:1
(see Fig. 1). As we might expect, we see that the
ML-GLRT performance is practically identical to that
of the (standard) ML-AMF method with its (unloaded)

SMI. Again, this precise coincidence is not caused by
a trivial zero loading-factor selection in the detection
test optimization (106). The pdf for the selected
loading factor for 3 dB output SNR is presented at
Fig. 11. We see that, despite their different nature, our
2S ML-GLRT detector has the same performance as
the traditional (zero loading) ML-AMF detector. This
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Fig. 12. EL-GLRT ROCs for high-ratio target for three different false-alarm probabilities.

proves our assertion that a single snapshot does not
make a significant difference, even for the relatively
small sample support studies here. The difference in
the covariance matrix estimates for the specific target
model analyzed by Kelly [2] is responsible for the
slightly better performance of ML-GLRT compared
with ML-AMF, whereas for some other models these
two techniques are found to be identical (e.g., [18]),
or even AMF outperforming GLRT (e.g., [17]).
When both lower and upper bounds on the LR for

the optimized loading are introduced in accordance
with the EL-GLRT method (106) and (108), the
results are completely different. Fig. 12 show the
ROCs for the high-ratio target; the ROCs for the
low-ratio target are practically identical, and are not
presented. Despite the broader area of admissible
LR values, P(LR < ®L) = 10

¡2 and P(LR > ®U) =
10¡2 (®L = 0:0084 and ®U = 0:0647), the EL-GLRT
ROCs are surprisingly close to those produced
by the EL-AMF and LAMF methods. Indeed, the

same improvement compared with 2S ML-GLRT
and ML-AMF is observed in this case. The same
practical performance for the diagonal loading and the
interference subspace dimension selection is observed,
despite the fact that in this case the optimized signal
subspace dimension is far from being always correct
in the 2S EL-GLRT algorithm.
This analysis of a typical scenario with

fluctuating target in homogeneous interference
clearly demonstrates that ML-based ML-GLRT and
ML-AMF detectors share the same performance, while
a significant and practically identical performance
improvement is obtained for both techniques when our
new EL approach is substituted for the standard ML
criterion for finding the appropriate diagonal loading
or interference subspace dimension.
As expected for this favorable scenario, the

data-independent loading of LAMF (112) has the
same performance as the theoretically derived
EL-GLRT and EL-AMF techniques. The precise
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Fig. 13. The pdf for sphericity test.

Fig. 14. Sample pdfs for loaded sphericity test.

coincidence of performance for the completely
different detectors EL-GLRT, EL-AMF, and LAMF
most likely means that they have all approached the
ultimate performance set by the adaptive detection
problem formulation.
Note that the LR generated by the properly loaded

(¯ = 1:6) matrix R̂LSMI is statistically close to that for
the true matrix R0. This match could then be used as
a new guide for selecting the diagonal loading factor,
but from a theoretical viewpoint could again be treated
as another justification of our EL methodology.
2) Nonhomogeneous Interference Training

Conditions; Fluctuating Target with Unknown Power:
Here we briefly introduce our simulation results for
this alternate signal model, detection rules, and LRs
(113)—(119) which demonstrate the same overall
findings as for homogeneous interference training
conditions.
We begin with the ROC of the clairvoyant

detector:
jYHR¡10 Sj2

SHR¡10 SYHR
¡1
0 Y

d0
7
d1

h¸ 1
M

(154)

that can be analytically computed as [42]

PD =
·
(1¡h)(¾2s SHR¡1S+1)

(1¡ h)(¾2s SHR¡1S+1)+ h
¸M¡1

(155)

with PD = PFA for ¾
2
s = 0. This expression will again

be used to validate our Monte-Carlo simulation
accuracy.
As before, we start with an analysis of the

traditional ML-AMF (ACE) detector (116), and
compare it with LAMF and EL-AMF. Fig. 13 shows
the pdf of the “sphericity test” LR that is used for

this model as the EL benchmark. This pdf is only
slightly different from the “general (nonsphericity)
test” that we saw in Fig. 1, for example, the median
LR value is here 0.0262 instead of 0.0257 as before.
Fig. 14 shows the sample pdf for the sphericity test
generated by the constantly loaded covariance matrix
estimate R̂LSMI with the three example loading factors
¯ = 1:5, 2.5, and 3.5. The best correspondence with
the “EL pdf” in Fig. 13 is for ¯ = 2:5, and this means
for this constant loading we can already expect the
best possible detection performance (similar to that of
EL-GLRT and EL-AMF).
Similarly to the previous homogeneous case, we

checked the accuracy of our theoretical white-noise
approximation for the target-free output statistics
(Theorem 1) and found a perfect match between
these and the directly calculated false-alarm threshold
values.
Fig. 15 shows the high-ratio target sample ROCs

for the clairvoyant, ML-AMF (ACE) and LAMF
detectors, the latter for our three example loading
factors. As expected, the theoretical and sample
ROCs for the clairvoyant case match perfectly.
ML-AMF (ACE) has familiar detection losses of
about 3.5 dB for PFA = 10

¡4 and PD = 0:5 [17, 36].
The practically identical performance of LAMF
for all three loading factors (and that is only 1 or
1.5 dB inferior to the clairvoyant detector) now
comes as no surprise. Fig. 9 also shows the sample
pdf of the EL-AMF loading factor that matches
LR[R̂LSMI(¯)] of the loaded sample matrix to the
median LR value 0.0262. We see that the less accurate
a priori assumptions on the interference covariance
matrices in the primary and training data has resulted
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Fig. 15. Nonhomogeneous AMF ROCs for high-ratio target for three different false-alarm probabilities.

in noticeably greater admissible loading factors, from
about 1.6 to 3.5. Most importantly, Fig. 15 shows
that EL-AMF is as good as the properly loaded
LAMF. Again, the FML detector correctly found the
number of sources, and is as good as EL-AMF and
LAMF.
Now we consider the ML-GLRT (113) and

(114) results, with its lower bound on optimized
LR: P(LR < ®L) = 0:01 (®L = 0:0145 according
to Fig. 3). Fig. 16 presents the slow target ROCs
(the fast ones are almost identical). Unsurprisingly,
standard ML-AMF (ACE) and ML-GLRT have almost
the same performance for all PFA and PD, both for
diagonal loading and interference subspace dimension
selection. Once again, this coincidence does not
mean the trivial equality of these routines. In fact,
the ultimate interference subspace dimension m̂= 9
was selected in about 40% of all trials, and the true
interference rank (equal to six) was selected in only
10% of trials.

Similar insight is provided by analyzing the
sample pdf of the optimized ML-GLRT loading
factor (not shown here). For target-free input data,
this pdf is dominated by one peak at ¯ ' 0 and has a
second peak at ¯ ' 2:8. The second peak is present
for small SNRs such as 3—5 dB, and disappears for
sufficiently strong targets (&15 dB), where zero
loading dominates the selection (probability above
0.9 for SNR > 15 dB). It seems remarkable that these
“random walks” in the optimized loading factor and
interference subspace dimension leave practically no
trace on the ROC’s behavior, as they are found to be
the same as for the standard AMF (ML-AMF) test
with constant zero loading.
Finally, let us consider the results of the EL-GLRT

technique (113) and (115) for this scenario, where
the upper and lower bounds are specified by the
conditions P(LR > ®U) = 10

¡2, P(LR < ®L) = 10
¡2

(with ®L = 0:0056 and ®U = 0:0659 according to
Fig. 3). Fig. 17 illustrates the EL-GLRT ROCs that
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Fig. 16. Nonhomogeneous ML-GLRT ROCs for low-ratio target for three different false-alarm probabilities.

repeat the trend of being practically indistinguishable
from those of EL-AMF. Despite this, the EL-GLRT
optimum loading factor has strikingly different
behavior, and is strongly dependent on the primary
data SNR.
In this regard, it is instructive to analyze the

sequence of sample loading factor distributions with
output SNRs varying from 3—30 dB (not all illustrated
here). We found that for the smallest output SNR,
the pdf has two distinct peaks at ¯ = 1:5 and 3.2. As
the SNR increases, the second peak decreases, until
it disappears at 30 dB SNR. A detailed analysis of
the maximized function ccos2(¯) of (85) reveals the
cause of the two peaks for small output SNR; Fig. 18
shows the sample pdf f(ccos2) for the slow target and
3 dB output SNR. We see that maximization of this
function in the vicinity of ccos2 = 1=M can “drive”
the argument either into the area ccos2 < 1=M (which
means no detection), or into the admissible area

with ccos2 > 1=M. In the former case, greater loading
factors (within the permitted range) are selected,
while in the latter case, smaller loading factors are
found to be optimal. Similar behavior is exhibited by
the optimal interference subspace dimension m. It is
remarkable that, despite the significant redistribution
of the optimized ccos2 compared with the clairvoyant
(and EL-AMF) cases, the overall ROCs are exactly
the same as the EL-AMF ones, and only about 1 dB
below the clairvoyant case.
This detailed analysis demonstrates that the

accurate equivalence of EL-GLRT, EL-AMF
and LAMF performance is not due to the trivial
equivalence of these routines for the given model, as
in [18] for example. Such an accurate performance
equivalence of these three quite different algorithms
suggests that in different ways both methods approach
the ultimate performance set by the nature of the
adaptive detection problem. It is also evident that
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Fig. 17. Nonhomogeneous EL-GLRT ROCs for low-ratio target for three different false-alarm probabilities.

Fig. 18. Sample pdf for ccos2 for slow target scenario and 3 dB output SNR.

the particular parameters used here for EL-GLRT
(Pbound = 10

¡2) and EL-AMF (Pmedian = 0:5) have no
practical impact upon the demonstrated performance.

B. “Unfavorable” Interference Scenario

It seems quite important to conclude our study by
considering the performance of our new detectors

for interference models that are unfavorable for the
LSMI and/or FML techniques, that is, scenarios with
full-rank interference (no noise subspace) and having
no obvious abrupt change in the size of the (sorted)
covariance matrix eigenvalues.
In fact, adaptive processing does not make

sense for small ratios ¸1=¸M . Even the clairvoyant
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Fig. 19. Sample pdfs for loaded sphericity test for spread (distributed) interferences.

detector has a marginal improvement over the
white-noise-matched receiver in this case, hence the
loss associated with adaptivity can actually exceed the
potential improvement. The ultimate example of such
a scenario is input white noise. Of course, nobody
should consider adaptive processing for internal
white noise, but sometimes the external interference
environment can resemble white noise, such as
when the number of strong interference sources
exceeds the number of antenna sensors (exceeding
the degrees of freedom of the array). If the only
available information about the external interference
is contained in the training data, then a properly
designed adaptive detector should succeed for such
scenarios as well.
Let us now consider the same six-source

interference scenario (144) and (146), except that
each source is now equally “spread” (distributed)
[43]. Here the interference covariance matrix R0 can
be written as [44]

R0 = B¯
24¾2nIM + 6X

j=1

¾2j S(wj)S
H(wj)

35 (156)

where [43]

B = fexp[¡ºj`¡ kj]g`,k=1,:::,M , ¯ > 0 (157)

is the “spreading matrix” and ¯ denotes the
Schur-Hadamard (element-wise) matrix product.
Similarly to [43], we use a spreading factor of º =
0:25.
Such spreading “annihilates” the noise subspace

of the original point-source covariance matrix. The
eigenspectrum shown in Fig. 2 is now characterized
by a ratio ¸1=¸M = 10 compared with the original
¸1=¸M ' 35 dB. Moreover, the clairvoyant optimum
filter (Wopt = R

¡1
0 S) has an SNR improvement over the

white-noise matched filter (Wwn = S) of only 0.40 dB
for the high-ratio (fast) target and 0.27 dB for the
low-ratio (slow) target, compared with the favorable
scenario values of 28.5 dB and 26.7 dB, respectively.
We consider nonhomogeneous training conditions

with a fluctuating target of unknown power. (Based
on our previous results, we expect similar behavior
for the homogeneous scenario.) Since the clairvoyant
and ACE ROCs do not depend on scenario and are

exhaustively specified by N, M, PFA, and output SNR,
the ACE detector will again be about 3.5 dB inferior
to the clairvoyant detector. We need to investigate
whether the EL-AMF and properly loaded LAMF
detectors can reduce these losses for diagonally loaded
and FML sample covariance matrix estimates. Since
the pdf for the sphericity test LR(R0) is scenario
independent and so is the same as already shown in
Fig. 13, we can proceed to the pdfs of the sphericity
test LR(R̂LSMI) for the three loading factors ¯ = 3,
5000, and 10000; Fig. 19 shows the latter two. The
traditional loading factor of ¯ = 3 (with respect to
unit internal noise power) for favorable scenarios
is in this case “as good as” zero loading, as it does
not affect the LR whose pdf is concentrated within
the range of LRs 0.9996—1. Only for such very high
loading factors as five or ten thousand does the LR
pdf behave similarly to the EL benchmark presented
in Fig. 13. Note that ¯ = 104 means that the diagonal
loading here is of the same order of magnitude as the
maximum eigenvalue of the true covariance matrix
R0. In fact, such loading drives LAMF towards the
white-noise matched detector

jYHSj2
YHYSHS

d0
7
d1

h >
1
M

(158)

which is quite understandable given the marginal SNR
improvement provided by the clairvoyant optimal
filter.
Naturally, the CFAR properties for favorable

covariance matrices that were proven in Section IV
do not hold for these scenarios and such loading
factors. Indeed, for the low-ratio (slow) target and
¯ = 104, the false-alarm rates PFA = 10

¡2,10¡3,10¡4

are imposed by the threshold values 0.43, 0.56, 0.66,
respectively, while for the high-ratio (fast) target
they are 0.22, 0.32, 0.42. Despite losing the CFAR
properties, an ROC analysis of LAMF still makes
sense (see Fig. 20). Whereas the clairvoyant detector
ROCs again demonstrate a perfect match between
analytical calculations and simulations, we see that
the LAMF performance for ¯ = 3 is the same as for
ACE, as predicted. At the same time, the properly
loaded LAMF detector (¯ = 5000,10000) is only
0.4 dB inferior to the clairvoyant detector. The similar
performance of EL-AMF now comes as no surprise.
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Fig. 20. Nonhomogeneous AMF ROCs for high-ratio target for spread interferences.

Fig. 21. Sample pdf for optimum loading in EL-AMF technique for spread interferences.

Fig. 21 shows the sample pdf (calculated over one
million trials) of the optimum loading factor in the
EL-AMF technique that was found by matching the
sphericity test LR for the loaded sample covariance
matrix R̂LSMI with the expected LR value LR0 =
0:0262 (see Fig. 13). As we might expect, the
optimum loading factor lies mostly in the range

5000.¯.10000. Interestingly, the optimum signal
subspace dimension histogram (not illustrated here)
is not single-valued: 146 trials chose m̂= 6, with
the remainder m̂= 7. While the loaded EL-AMF
detector is as good as LAMF with proper loading,
the EL-FML detector (where the signal subspace
dimension is found by LR matching (117) and (118))
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is marginally inferior (less than 0.2 dB). The coarse
discretization of the parameter m could be the reason
for this small degradation.
Note that traditional recommendations regarding

loading factor selection (¯ = 3) or signal-subspace
selection (m= 6), stemming from favorable
conditions, are completely inappropriate here.
Whereas the properly loaded LAMF detector is

statistically equivalent to EL-AMF, in practice, when
only a sample covariance matrix is available, the only
option seems to be to choose the “proper loading
factor” (such as ¯ = 104) through LR matching with
the expected LR.
Results for the low-ratio (slow) target, as well as

the 2S EL-GLRT detector, are similar: 2S ML-GLRT
is as good as the conventional ACE, with 2S
EL-GLRT, EL-AMF, and properly loaded LAMF
being marginally inferior to the clairvoyant detector.
Finally, we wish to comment that the loss of the

CFAR property for 2S EL-GLRT, EL-AMF, and
LAMF is explainable by the EL matching driving
them close to the robust white-noise matched detector,
which is not a CFAR detector with respect to the
covariance matrix R0 ( 6= IM) and signal S.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have diligently pursued two
major goals. Firstly, based on the well-known
properties of the LSMI and FML adaptive filter
techniques, we introduced adaptive detectors that use
the same type of covariance matrix estimates. We did
this anticipating that such detectors should have better
performance than those that use the conventional ML
covariance matrix estimate, at least for (favorable)
interferences that have widely separated signal and
noise eigensubspaces. Having achieved this, we
secondly addressed an important theoretical issue
that follows from the now-established superiority of
these LSMI and FML detectors. Namely, it seemed
necessary to us to suggest modification of the
frameworks that were introduced for GLRT by Kelly
[2] and for AMF by RFKN [17] to include these new
advanced detectors. We sought a modified theoretical
framework that would either justify these detectors,
and/or generate new ones that are at least as efficient
as LAMF and FML for favorable scenarios.
More specifically, with respect to the first goal,

we demonstrated that (for favorable interference) the
LAMF detector that uses the diagonally loaded sample
covariance matrix estimate whose loading factor is
chosen from the broad range between the minimum
signal and the noise eigenvalues does indeed give
a significant detection performance improvement.
Moreover, for such interference we demonstrated
an important invariance property of the target-free
detection statistics. We showed that these statistics are
invariant with respect to the true covariance matrix,

and can be closely approximated by white-noise
generated data, and that the pdf is only a function
of the filter dimension, the training sample size, the
signal subspace dimension, and the loading factor. The
approximation accuracy is sufficiently high to permit
the precalculation of false-alarm thresholds, which
means that in this case the LAMF detector has, in fact,
the CFAR property.
With quite negligible losses demonstrated by

LAMF compared with the clairvoyant detector, it
then became a challenging problem to propose a
theoretical adaptive detection framework capable
of giving similar detection performance. In order to
achieve this second goal of our study, we reconsidered
two important issues in adaptive detection that were
postulated within the traditional (Kelly’s one-sample)
GLRT and AMF techniques. The first concerns the
arrangement made by Kelly [2] whereby “the decision
rule will be formulated in terms of the totality of
input data without the a priori assignment of different
functions to the primary and secondary input.”
Specifically, despite the assumption that the secondary
data is free of target component, “any selection rules
applied to make this assumption more plausible are
ignored” in his technique. We have reformulated
the GLRT problem as a two-set adaptive detection
problem, where the target-free status of the training
data is respected, and so the interference covariance
matrix estimate, while depending on the primary
sample, does not depend on the hypothesis being
tested.
More specifically, we have introduced a new

two-set GLRT technique whereby the single
covariance matrix estimate for both hypotheses is
adaptively selected from a family of admissible
solutions so as to maximize the “detection function,”
which is the associated LR. Unlike most published
studies, we used the fluctuating Swerling I model
for the target signal, that is specified by a (possibly
unknown) positive power. This modeling introduced
some important changes into the nature of the
optimized LR; most importantly, since a nonpositive
ML target power estimate is inadmissible, it must
be replaced by a zero estimate that corresponds to a
decision that the target is absent.
The second (more important) issue that we have

reconsidered here concerns the ML criterion used
within the traditional GLRT and AMF techniques. It
is important that only asymptotic arguments support
the GLRT methodology, so there is no reason why
estimates other than the ML one could not be found to
be better suited for detection, especially for relatively
small training sample sizes. Three straight forward
observations alerted us to challenge this dogma.
The first stems from the difference in performance
between Kelly’s GLRT and the AMF methods;
for different models, one method was found to be
superior [17]. The suggestion made in [17] that
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Kelly’s technique should be better just because it
involves an additional single (primary) snapshot in the
covariance matrix estimation could be easily refuted,
and so the performance difference should rather be
attributed to the specific estimates used.
The second observation arises from the fact that

the LSMI or FML sample covariance matrix estimates,
that are found to be very successful in LAMF (FML)
detectors, are not the ML covariance matrix estimates.
The third theoretical observation arises from

a comparison of the actual LR (which is just
the normalized LF) produced by the exact (true)
covariance matrix and the (unconstrained) ML
estimate adopted by both GLRT and AMF. While
the ML covariance matrix estimate (sample matrix)
always delivers the ultimate value for the maximized
LR, equal to one irrespective of the sample size, the
exact covariance matrix yields much smaller LRs
for relatively small sample support. For the specific
example analyzed here, with an M = 12-sensor
uniform linear antenna array and N = 24 samples,
the median value of the LR for the exact covariance
matrix is found to be only 0.025, and with probability
0.99 the LR lies in the range 0.008—0.07. Thus for
relatively small sample support, the ML estimator is
extremely far from the true covariance matrix, even in
terms of the LR/LF metric.
For this reason, we have introduced an approach

called EL, whereby we try to find the estimate that
statistically generates the same LR as the exact
covariance matrix. This is feasible in practice since
the pdf for the LR generated by the exact covariance
matrix does not depend on the matrix itself, but
only the parameters M and N, and so it can be
precalculated.
We have used the above well-known families

of covariance matrix estimates: the diagonally
loaded sample matrix (i.e., the loaded unconstrained
ML solution) and the finite-subspace interference
approximation of the ML solution. For these
estimates, respectively, the traditional ML criterion
drives the loading factor to zero, and the interference
subspace dimension to its maximum. For 2S
ML-GLRT, the loading factor and interference
subspace dimension are constrained only by the
lower bound on LR, while the maximum LR value
is allowed to reach the ultimate value of unity, as
per the ML solution. Despite the new formulation,
our Monte-Carlo simulations demonstrated that 2S
ML-GLRT detection performance is almost the same
as for the traditional ML-AMF (ACE) method that
uses the standard ML covariance matrix estimate (zero
loading, full interference rank). Thus the detection
performance is again proven to be dominated by the
type of ML estimate rather than the choice of GLRT
or AMF method that uses this estimate.
Our new EL method searches for the diagonal

loading or interference subspace dimension so

that the modified EL estimate gives an LR value
properly within the range of LRs expected for the
exact covariance matrix. To be more specific, for
the 2S EL-GLRT method we maximize the detection
function over the set of (loaded, finite-rank) solutions
bounded by the precalculated upper and lower LR
bounds. For the EL-AMF (ACE) technique, we seek
the loaded solution that generates the median LR
value of the exact covariance matrix. For finite-rank
approximations that have only a finite number of
solutions, we simply find the one that is closest to the
upper LR bound, if no solution within the bounds is
available.
Our extensive Monte-Carlo simulations for a

scenario with signal- and noise-subspace eigenvalues
separated by several tens of dBs showed that the
EL-GLRT and EL-AMF methods have practically
the same performance. For finite-rank approximation
in this example, all solutions were of the same
subspace dimension, as only the true interference
rank estimate was closest to the bounded LR region,
making no difference between “adaptive” and “fixed”
signal-subspace dimension. While the loading factor
fluctuates in the well-known range of 1.5—3 times the
white-noise power, depending on the output SNR, the
detection performance of EL-GLRT is the same as for
the EL-AMF approach, whereby the loading factor
is selected based on the training sample only. Most
importantly, this performance is significantly better
than that of the ML-GLRT or ML-AMF detectors
(the loss factor improved to 1—1.5 dB below the
clairvoyant case for PD = 0:5 and PFA = 10

¡2—10¡4

compared with 5 dB for the standard GLRT or ACE
techniques), and again is practically the same in this
case as for robust selection of the constant loading
factor (¯ = 3¾2n) for the LAMF technique.
These results demonstrate that our EL criterion

for the proper families (diagonally loaded, finite
interference rank) gives a significant improvement
in detection performance compared with the ML
criterion, which for small sample support produces
solutions far away from the exact ones. We emphasize
that the introduced families include the standard
(unconstrained) ML covariance matrix estimate, while
the major distinction stems from the attempt to get a
statistically close LR to that of the exact covariance
matrix, rather than just the (ultimate) maximum LR
value. This is an important distinction from some
optimum search over a restricted set of covariance
matrices, such as the class of Toeplitz covariance
matrices. Any reliable a priori structural information
on the covariance matrix should always lead to a
detection improvement, however we chose the most
generic families specifically to underline the difference
in criteria (EL versus ML), rather than any possible
difference in covariance matrix description.
More specifically, this approach allowed us to

generate solutions that for favorable scenarios and
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LSMI/FML applications demonstrated the same
detection performance as the constant-loaded LAMF
detector. The fact that in this case the modified
2S EL-GLRT and EL-AMF framework had the
same performance may be treated as an additional
justification for the conventional LSMI/FML
technique that is now used in the adaptive detectors.
Indeed, we believe that the surprisingly accurate
coincidence of ROCs for the three quite different
techniques as 2S EL-GLRT, EL-AMF (with adaptively
chosen loading) and conventional LAMF (with
constant loading) just means that they all approach the
best possible performance that is set by the adaptive
detection problem formulation itself.
For favorable scenarios, it has been known since

[8, 9] that the loading factor can be robustly selected
so that the SNR performance of the LSMI adaptive
filter does not depend on any particular loading value.
Now we have demonstrated that this property extends
to include LAMF detection performance under the
condition that the false-alarm threshold is adjusted to
the selected loading factor.
The other simulation scenario that we considered

was specifically selected to not have this favorable
property, with its full-rank “spread” interference
sources and relatively small separation between signal-
and noise-subspace eigenvalues. We demonstrated that
for a given sample support, a constant loading factor
can still be selected that makes LAMF performance as
good as EL-AMF performance with its data-dependent
loading factor. Both these detectors are significantly
better than the standard AMF (ACE) technique,
even though at the expense of losing the CFAR
property. Yet, the loading factor for this scenario
must be chosen to be comparable to the maximum
eigenvalue, unlike our previous favorable scenario
whose optimum loading was comparable to the
white-noise power (minimum eigenvalue). It is evident
that some scenario recognition needs to be considered
in order to avoid erroneous loading-factor selection.
From this viewpoint, the EL-AMF method that has
a universal LR fitting for adaptive loading-factor
selection based only on the training data has an
important practical advantage.
Finally, we demonstrated that for favorable

scenarios, our new EL-AMF and 2S EL-GLRT
detectors enjoy the CFAR property, similarly to the
LAMF detector. The output target-free statistics
for these detectors can be approximated with high
accuracy by white noise-only data. The pdfs of
these statistics are functions of sample support N,
filter (antenna) dimension M , number of dominant
eigenvalues m, the lower and upper LR bounds ®L,
®U (for EL-GLRT), and the median LR value (for
EL-AMF). While accurate analytic expressions for
these pdfs have not been derived, we demonstrated
that white-noise Monte-Carlo simulations can be used
to give sufficiently accurate false-alarm threshold
values.

Note that the framework of our 2S-GLRT
approach naturally includes any restriction on the
admissible covariance matrix, unlike the traditional
GLRT method. Obviously, any proper restrictions
include the exact covariance matrix in the admissible
set, and so all the introduced scenario-free pdfs
and associated bounds remain invariant to such a
restriction. For example, autoregressive interference
modeling [3] fits into our scheme.
Several important issues, such as the application to

non-Gaussian (SIRP) models have not been addressed
in this paper. These and many other important facets
of the introduced methodology should be addressed in
the future.

APPENDIX A. LR DISTRIBUTION FOR COMPLEX
GAUSSIAN DATA

Let Ĉ » CW(N,M ,IM) where

CW(N,M ,IM) =
1

K(N,M)
det[ĈN¡M]exp[¡tr Ĉ]

(159)

K(N,M)´ ¼M(M¡1)=2
MY
j=1

¡ (N +1¡ j): (160)

Let us find the hth moment Ef°hg of the LR ° (= °(1)0
in (48))

° =
exp(M)det(Ĉ)

exp[tr(Ĉ=N)]NM
: (161)

Correspondingly,

Ef°hg= exp(Mh)
NMhK(N,M)

Z
Ĉ

[det(Ĉ)]N+h¡M

£ exp
·
¡
μ
1+

h

N

¶
tr(Ĉ)

¸
dĈ: (162)

Note that

CW
Ã
N + h,M,

μ
1+

h

N

¶¡1
IM

!

=

μ
1+

h

N

¶M(N+h)
K(N + h,M)

[det(Ĉ)]N+h¡M exp

·
¡
μ
1+

h

N

¶
tr(Ĉ)

¸
:

(163)
Therefore

Ef°hg=
³
e

N

´MhQM

j=1¡ (N + h+1¡ j)QM

j=1¡ (N +1¡ j)
¢ (N + h)

¡M(N+h)

N¡M(N+h)

(164)
or

Ef°hg=NMNeMh

QM

j=1¡ (N + h+1¡ j)QM

j=1¡ (N +1¡ j)
¢ 1
(N + h)M(N+h)

:

(165)
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According to Mellin’s transformation, we get

!(°) =
NMNQM

j=1¡ (N +1¡ j)

¢ 1
2¼i

Z i1

¡i1

°¡h¡1
QM

j=1¡ (N + h+1¡ j)exp(Mh)
(N + h)M(N+h)

dh:

(166)
Putting N + h= t, we get

!(°) =
³ e
N

´¡MN °N¡1Qm
j=1¡ (N + j¡ 1)

£
Z N+i1

N¡i1

³e
t

´Mt
°¡t

MY
j=1

¡ (t+1¡ j)dt: (167)

Let us investigate the integral

J =
1
2¼i

Z N+i1

N¡i1

³e
t

´Mt
°¡t

MY
j=1

¡ (t+1¡ j)dt:

(168)

This gamma function has the expansion [38]:

log¡ (t+1¡ j) = 1
2
log(2¼) + (t+1¡ j) log t¡ t

¡
mX
r=1

(¡1)rBr+1(1¡ j)
r(r+1)tr

+Rm+1(t)

(169)

where jRm(t)j ·£jtmj, and Br(h) is the Bernoulli
polynomial of degree r and order one.
Correspondingly,

MX
j=1

log¡ (t+1¡ j)¼ M
2
log(2¼) + log t

MX
j=1

(t+1¡ j)¡Mt

¡
mX
r=1

1
tr

MX
j=1

(¡1)rBr+1(1¡ j)
r(r+1)

+ ¢ ¢ ¢ :

(170)
Let us define

MX
j=1

(¡1)rBr+1(1¡ j)
r(r+1)

=Qr (171)

and since
MX
j=1

(t+1¡ j) =
MX
j=0

(t¡ j) = M
2
(2t¡M ¡ 1)

we get

MX
j=1

log¡ (t+1¡ j)

¼ M
2
log(2¼) +Mt log t¡ M(M +1)

2
log t¡Mt

¡
mX
r=1

Qr
tr
+ ¢ ¢ ¢ : (172)

Correspondingly, we get the following expression for
the integral J:

J = (2¼)M=2
1
2¼i

Z N+i1

N¡i1
t¡M(M+1)=2°¡t

Ã
1+

1X
r=1

Br
tr

!
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(173)

where the following expansion has been used:

exp

Ã
¡

mX
r=1

Qr
tr

!
= 1¡

1X
r=1

Qr
tr
+
1
2!

Ã 1X
r=1

Qr
tr

!2

¡ 1
3!

Ã 1X
r=1

Qr
tr

!3
+ ¢ ¢ ¢= 1+

1X
r=1

Br
tr
:

(174)
Let us calculate the integral J2

J2 =
1X
r=1

Br
1
2¼i

Z N+i1

N¡i1
t¡(º+r)°¡tdt: (175)

Note that º =M(M +1)=2 is always an integer.
Therefore

1
2¼i

Z N+i1

N¡i1
t¡(º+r)°¡tdt= res[t¡(º+r)°¡t]t=0

(176)
where
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1
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Therefore

J2 =
1X
r=1

Br
(¡ log°)º+r¡1
¡ (º+ r)

, B0 = 1 (178)

and finally we get

!(°) =
³
e

N

´¡MN °N¡1(2¼)
M
2QM

j=1¡ (N + j¡ 1)

1X
r=0

(¡ log°)º+r¡1
¡ (º+ r)

Br,

B0 = 1, º = 1
2M(M +1): (179)

Comparing this with [38, eq. (2.13)], we can conclude
that the serial part (the integral J2) is the same as
per the real random value case. Therefore, further
modifications suggested in [38] for computational
convenience could be applied.

APPENDIX B. PROOF OF THEOREM 1

Let us express the favorable exact interference
covariance matrix as

R0 ´ ¹Us¤sUHs +UnUHn , ¹À 1, ¤s > Im

(180)
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and investigate the LR (122)

t̂1 ´
jYH(¯IM + R̂N)¡1Sj2
SH(¯IM + R̂N)¡1S

(181)

R̂N = XNX
H
N =N,

(182)
XN » CNN(0,R0), Y » CN (0,R0):

Since [45]

Y ´ R1=20 Y1, XN ´ R1=20 ZN ,
(183)

ZN » CNN(0,IM), Y1 » CN (0,IM)
we have

t̂1 =
jYH1 (¯R¡10 +ZNZ

H
N =N)

¡1R¡1=20 Sj2
SHR

¡1=2
0 (¯R¡10 +ZNZ

H
N =N)

¡1R¡1=20 S
:

(184)
Let

R0 =U¤U
H

(185)
UUH =UHU = IM

then since Y1 =
p UHY1 and ZN =

p UHZN (where “=
p”

means statistically equivalent), we get

t̂1 =
jYH1 (¯¤¡1 +ZNZHN =N)¡1¤¡1=2UHSj2

SHU¤¡1=2(¯¤¡1 +ZNZ
H
N =N)

¡1¤¡1=2UHS
:

(186)

Let us present ¯¤¡1 in block form and use (180):

¯¤¡1 ´
·
¯=(¹¤s) 0

0 ¯In

¸
(187)

Y1 ´
·
Y1s

Y1n

¸
where

¯=(¹¤s)¿ Im: (188)

For this reason, the kernel in (186) can be
approximated as

(¯¤¡1 +ZNZ
H
N =N)

¡1 ¼
·
ZsZ

H
s =N ZsZ

H
n =N

ZnZ
H
s =N ¯In+ZnZ

H
n =N

¸¡1
(189)

where

Zn ´
·
Zs

Zn

¸
, Zs » CNN(0,Im), Zn » CNN(0,In)

(190)

and n´M ¡m. Due to (188), we may also consider
the approximation

¤¡1=2UHS =
·
¤s=¹ 0

0 ¯In

¸·
UHs

UHn

¸
S ¼

·
0

UHn S

¸
(191)

hence the test statistics are now

t̂1 ¼

¯̄̄̄
¯[YH1s j YH1n ]

·
ZsZ

H
s =N ZsZ

H
n =N

ZnZ
H
s =N ¯In+ZnZ

H
n =N

¸¡1· 0

UHn S

¸¯̄̄̄
¯
2

[0 j SHUn]
·
ZsZ

H
s =N ZsZ

H
n =N

ZnZ
H
s =N ¯In+ZnZ

H
n =N

¸¡1· 0

UHn S

¸ :

(192)
Let us now introduce

UnS

(SHUnUHn S)1=2
´ Vne1, VnV

H
n = VHn Vn = In

(193)
where e1 is the unit vector. First, by using the
block-matrix inversion formula [46], we get

t̂1 ¼
j[YH1n ¡YH1s (ZsZHs )¡1ZsZHn ]f¯In+N¡1Zn[IN ¡ZHs (ZsZHs )¡1Zs]ZHn g¡1UnSj2

SHUnf¯In+N¡1Zn[IN ¡ZHs (ZsZHs )¡1Zs]ZHn g¡1UnS
: (194)

Since Y1n =
p VnY1n and Zn =

p VnZn, we finally get

t̂1 ¼
j[YH1n ¡YH1s (ZsZHs )¡1ZsZHn ]f¯In+N¡1Zn[IN ¡ZHs (ZsZHs )¡1Zs]ZHn g¡1e1j2

eT1f¯In+N¡1Zn[IN ¡ZHs (ZsZHs )¡1Zs]ZHn g¡1e1
(195)

which is the same as (123).
Similarly to (187) and (189), we get

YH(¯IM + R̂N)
¡1Y

¼ [YH1s j YH1n ]
·
ZsZ

H
s =N ZsZ

H
n =N

ZnZ
H
s =N ¯In+ZnZ

H
n =N

¸·
Y1s

Y1n

¸
:

(196)
By the block-matrix inversion formula,

YH(¯IM + R̂N)
¡1Y

¼ YH1s [N¡1ZsZs¡N¡2ZsZHn (¯In+N¡1ZnZHn )¡1ZnZHs ]¡1Y1s
¡ 2<[YH1s (ZsZHs )¡1ZsZHn
£f¯IN +N¡1Zn[IN ¡ZHs (ZsZHs )¡1Zs]ZHn g¡1]Y1n
+YH1nf¯In+N¡1Zn[IN ¡ZHs (ZsZHs )¡1Zs]ZHn g¡1Y1n (197)

and then it is seen that Y1n and Zn may be substituted
by VnY1n and VnZn, respectively, without changing the
formula.
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APPENDIX C. PROOF OF THEOREM 2

Under the same favorable conditions as (180), let
us consider the LR

°(1)`0 ´
det[R̂¡1LSMIR̂]expM

exp tr[R̂¡1LSMIR̂]
(198)

where R̂LSMI = ¯IM + R̂N .
Firstly,

det[R̂¡1LSMIR̂]¼ det
Ã·
ZsZ

H
s =N ZsZ

H
n =N

ZnZ
H
s =N ¯In+ZnZ

H
n =N

¸¡1·ZsZHs =N ZsZ
H
n =N

ZnZ
H
s =N ZnZ

H
n =N

¸!
: (199)

By the block-matrix inversion formula [46], we have

det[R̂¡1LSMIR̂]

¼ f¯In+N¡1Zn[IN ¡ZHs (ZsZHs )¡1Zs]ZHn g¡1

£N¡1Zn[IN ¡ZHs (ZsZHs )¡1Zs]ZHn (200)

and by the approximation (199):

tr[R̂¡1LSMIR̂]

¼ tr[IM]¡¯ trf¯In+N¡1Zn[IN ¡ZHs (ZsZHs )¡1Zs]ZHn g
(201)

since the product R̂¡1LSMIR̂ can be expressed as

R̂¡1LSMIR̂ = IM ¡
·
ZsZ

H
s =N ZsZ

H
n =N

ZnZ
H
s =N ¯In+ZnZ

H
n =N

¸·
0 0

0 ¯In

¸
:

(202)

Again, Zn here can be replaced by VnZn without any
change in the formulas.

APPENDIX D. ALTERNATIVE ROC DERIVATION

Consider the pdf for the AMF statistics

¸=
jYHR̂¡1Sj2
SHR̂¡1S

(203)

in the case when the target signal is absent. Since [1]

R̂ = R1=2ĈR1=2, Ĉ » CW(N,M,IM) (204)
and

Y = R1=2», » » CN (0,IM) (205)

R¡1=2S = (SHR¡1S)¡1=2UHe1 (206)

where UHU =UUH = IM and e1 ´ [1,0, : : : ,0]T, we
obtain

¸=
jeT1UĈ¡1»j2
eT1UĈ

¡1UHe1
: (207)

Since U» » » and UĈ¡1UH » Ĉ¡1 (statistical
equivalence), we get

¸=
jeT1 Ĉ¡1»j2
eT1 Ĉ

¡1e1
: (208)

Using matrix partitioning, similarly to [1]:

Ĉ =
·
C11 CH12

C12 C22

¸
, Ĉ¡1 =

·
C11 C12H

C12 C22

¸
(209)

where
C11 ´ [C11¡CH12C¡122 C12]¡1 (210)

and

C12 ´¡
·
C22¡

C12C
H
12

C11

¸¡1
C12
C11

=¡ C¡122 C12
[C11¡CH12C¡122 C12]¡1

(211)

we get

¸=
j»H[1,¡C¡122 C12]j2
C11¡CH12C¡122 C12

: (212)

In [1] it was demonstrated that

D11 ´ C11¡CH12C¡122 C12 and E12 ´ C¡122 C12
(213)

are independent, and that D11 has a chi-square
distribution with 2(N ¡M +1) degrees of freedom:

f(D11) =K1D
N¡M
11 expD11

K1 ´
1

¡ (N ¡M +1)
=

1
(N ¡M)!

(214)

and

f(E12) =
K4

[1+EH12E12]
N+1

, K4 ´
N!

¼M¡1(N ¡M +1)!

(215)
i.e., f(E12) is described by a multivariate
t-distribution.
Since » and E12 are mutually independent,

the E12-conditional pdf of the product in (212) is
Gaussian zero with power [1+EH12E12]. Hence

¸(D11,E12) =
1
D11

j»(E12j2» » CN (0,[1+EH12E12]):

(216)
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Now since

j»(E12j2 »
1

[1+EH12E12]
exp
μ
¡ x

[1+EH12E12]

¶
(217)

(chi-square pdf), and due to the ¯-distribution derived
in [1]:

1
[1+EH12E12]

» N!
(N ¡M +1)!(M ¡ 2)!½

N+1¡M(1¡ ½)M¡2

(218)
we finally get

f(j»j2) = N!
(N ¡M +1)!(M ¡ 2)!

£
Z 1

0
½N+2¡M(1¡ ½)M¡2e¡½xd½

(219)
which is equal to [38]

f(j»j2) = N ¡M +2
N +1 1F1(N ¡M +3;N +2,¡x):

(220)

Now we have to find the pdf of the quantity ¸=
j»j2=D11:

f(¸) =
N ¡M +2
N +1

1
(N ¡M)!

£
Z 1

0
1F1(N ¡M +3;N +2,¡u¸)uN¡M+1e¡udu:

(221)
According to [38], we have

f(¸) =
N ¡M +2
N +1

¡ (N ¡M +2)
(N ¡M)!

1
(1+¸)N¡M+2

£ 2F1

μ
M ¡ 1,N ¡M +2,N +2;

¸

1+¸

¶
: (222)

According to [47, 15.3.5],

2F1

μ
M ¡ 1,N ¡M +2,N +2;

¸

1+¸

¶

=

·
1

(1+¸)

¸¡(N¡M+2)
2F1(N ¡M +2,N ¡M +3,N +2;¡¸):

(223)
On the other hand, according to [47, 15.2.1]:

(N¡M +2)(N¡M +1)
N +1 2F1(N¡M +2,N ¡M +3,N +2;¡¸)

=
d

d¸ 2
F1(N ¡M +1,N ¡M +2,N +1;¡¸) (224)

hence

PFA=1¡
Z h

0

·
d

d¸ 2
F1(N ¡M +1,N ¡M +2,N +1;¡¸)

¸
d¸

(225)

=1¡
Z 0

¡h

·
d

d¸ 2
F1(N ¡M +1,N ¡M +2,N +1;¡¸)

¸
d¸

(226)

=2F1(N ¡M +1,N ¡M +2,N +1;¡h) (227)

and by [47, 15.3.4],

PFA =
1

(1+ h)N¡M+1 2
F1

μ
N ¡M +1,M ¡ 1,N +1; h

1+ h

¶
(228)

which is our (151).
Now let us consider the pdf for the AMF statistics

¸ when the signal is present, whereby

Y = R1=2»+ aS, a» CN (0,¾2s ): (229)

We have

SHR̂¡1Y = SHR¡1=2Ĉ¡1R¡1=2(R1=2»+ aS)

= (SHR¡1S)1=2eT1UĈ
¡1»+(SHR¡1S)eT1UĈ

¡1UHe1

(230)
hence

¸=
jeT1UĈ¡1»+ a(SHR¡1S)1=2eT1UĈ¡1UHe1j2

eT1UĈ
¡1UHe1

:

(231)
According to (211) and (212),

¸=
1
D11

j»H[1,¡C¡122 C12]+ a(SHR¡1S)1=2j2:

(232)
Similarly, we get

¸(D11,E12) =
1
D11

j»(E12,¾2out)j2 (233)

where

¾2out ´ ¾2s SHR¡1S, »(E12,¾
2
out)» CN (0,[1+¾2out +EH12E12]):

(234)
Again, the E12-conditional pdf for j»j2 is

f[j»(E12,¾2out)j2] =
1

[1+¾2out +EH12E12]

£ exp
·
¡ x

1+¾2out +EH12E12

¸
:

(235)
Since

PD = Probfj»(E12,¾2out)j2 > hD11g (236)
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the D11,E12-conditional pdf is

PD(E12,¾
2
out,D11) = exp

·
¡ hD11
1+¾2out +EH12E12

¸
:

(237)

We now need to integrate over the pdf for D11 and
E12. Integrating (214) gives us

PD(1+¾
2
out +E

H
12E12) =

·
1+

h

1+¾2out +E
H
12E12

¸¡(N¡M+1)
:

(238)

Using (218), it is straight forward to show that

f

·
x=

1
1+¾2out +EH12E12

¸

=
N!

(N ¡M +1)!(M ¡ 2)!
xN+1¡M[1¡ (1+¾2out)x]M¡2

(1¡ x¾2out)N+1
(239)

for 0· x· 1=(1+¾2out). Therefore

PD(¾
2
out) =

N!
(N ¡M +1)!(M ¡2)!

£
Z 1=1+¾2out

0

xN+1¡M[1¡ (1+¾2out)x]M¡2
(1+ xh)N¡M+1(1¡ x¾2out)N+1

dx

(240)
then according to [38],

PD =

·
1+¾2s S

HR¡1S
1+¾2s S

HR¡1S+ h

¸N¡M+1
£F1
μ
M ¡ 1,¡(N ¡M +1),N ¡M +1,N +1;

¾2s S
HR¡1S

1+¾2s S
HR¡1S

,
¾2s S

HR¡1S+ h
1+¾2s S

HR¡1S+ h

¶
(241)

which is our (152).
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