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Abstract—There is a need to analyze power-quality (PQ) signals
and to extract their distinctive features to take preventative actions
in power systems. This paper offers an effective solution to auto-
matically classify PQ signals using Hilbert and Clarke Transforms
as new feature extraction techniques. Both techniques accommo-
date Nearest Neighbor Technique for automatic recognition of PQ
events. The Hilbert transform is introduced as single-phase mon-
itoring technique, while with the Clarke Transformation all the
three-phases can be monitored simultaneously. The performance
of each technique is compared with the most recent techniques
(S-Transform and Wavelet Transform) using an extensive number
of simulated PQ events that are divided into nine classes. In ad-
dition, the paper investigates the optimum selection of number of
neighbors to minimize the classification errors in Nearest Neighbor
Technique.

Index Terms—Automatic recognition, Clarke transformation,
Hilbert transform, power quality (PQ), S-transform, wavelet
transform.

I. INTRODUCTION

THE utilizations of the nonlinear loads such as power elec-
tronic devices have become a common practice in power

systems. Although these devices are manufactured individually
according to the associated standards, the wide utilization of
such loads can alter the quality of the power supply, which can
appear in various forms of events such as voltage sags, swells,
and harmonics. If such disturbances are not mitigated, they can
lead to failures or malfunctions of various sensitive loads in
power systems and may be costly. Therefore, there is a growing
need to develop power-quality (PQ) monitoring techniques that
can classify the potential sources of disturbances.

Before the implementation of a mitigation technique to re-
duce or eliminate the disturbances, it is required to monitor two
primary indicators: voltage and current signals at the points of
interest in the power system. In a monitoring system, such in-
dicators that contain the unique features of power systems are
acquired for distinguishing among disturbances. However, for
an effective classification of the disturbances, there is a need to
avoid the storage of a large number of data that may present in
the case of multiple faults and disturbances. Moreover, if a large
number of data is present, it is desirable to have a monitoring
system that can automatically classify the disturbances. There-
fore, there is a need for further improvement of the PQ moni-
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Fig. 1. Principle block diagram of an automatic recognition system.

toring systems, which can offer an effective classification tech-
nique and can be efficient in terms of computational resources.

Fig. 1 illustrates the principal diagram of an automatic moni-
toring process. As shown in the figure, the distorted signals are
captured using voltage and/or current signals. This is based on
various triggering strategies used by the data acquisition de-
vices. Then, the features that distinguish the captured signals
are extracted using a suitable signal-processing technique in the
feature extraction block. Finally, the disturbances are separated
automatically by applying the decision-making techniques on
the relevant features.

This paper begins with a detailed literature review of
monitoring and classification of PQ signals in Section II.
Both S-Transform and Wavelet Transform are described in
Section III together with two novel PQ monitoring approaches
introduced in the paper. In Section IV, k-nearest neighbor
technique (kNN) for automatic classification is explained. The
classification results and the optimum number of neighbors of
the kNN technique using selected feature extraction techniques
are given in Section V. The paper concludes with the summary
of the accuracy of the proposed classifiers.

II. LITERATURE REVIEW ON MONITORING AND

CLASSIFICATION OF PQ SIGNALS

In order to extract distinctive features of power disturbances
for automatic classification, a number of studies on signal pro-
cessing techniques were reported in the literature.

Among these, the Fourier transform (FT) technique is com-
monly used in practice to provide harmonic information about
the signals monitored. However, as reported in [1]–[3], FT alone
is not sufficient for the feature extraction due to the transient na-
tures of most of the PQ signals where the time information is
required.

As an improvement to FT technique, the short time Fourier
transform (STFT) technique was implemented in [4], where the
voltage disturbances were analyzed in the time-frequency do-
main. In the paper, the signal studied was split into a set of output
signals, which were obtained using bandpass filters centered at
the harmonic frequencies. The paper provided a comparison of
STFT and Wavelet multiresolution analysis. It was shown that,
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once the center of the window function is selected, the center
frequencies of the bandpass filters associated with the discrete
STFT can be chosen freely. However, it was found out that the
proposed technique requires a significant amount of computa-
tional resources. This is due to the fact that the proposed STFT
needs the implementation of FT technique times, where

is the length of the signal and is the window function
length.

The wavelet transform (WT), was shown to be suitable for the
PQ analysis, specifically for nonstationary signals. Due to the
varying window function of WT at different frequency levels, it
has been explored extensively in various studies as an alternative
to STFT in [5]–[10], including continuous wavelet transform
(CWT) and discrete wavelet transform (DWT) [also known as
multiresolution analysis (MRA)]. Most of the previous works
on CWT were based on visual detection of PQ events in the
time-scale plane [5], [6], which has the capability of handling
the noisy signals. However, the main disadvantage of CWT is
its redundancy of using large number of scales.

In order to avoid the redundancy in the CWT, the MRA was
adapted by many researchers. In [7], wavelet MRA has been ap-
plied on three types of PQ events (transformer energizing, con-
verter operation, and capacitor energizing). The features of these
events were extracted using the statistics of the squared wavelet
coefficient at four decomposition scales. The reason of squaring
wavelet coefficient was to reduce the effect of the noises in the
signals.

In [8] and [9], the MRA and the Parseval’s Theorem have
been implemented to extract the disturbances features of the PQ
signals in terms of their energies at different resolution levels. In
both studies, it was shown that energy values of the decomposed
signals at different levels are sensitive to the type of the dis-
turbances. However, these studies did not investigate the phase
shift effect of the signal, which has a significant effect on the
energy values of the decomposed signals.

It can be concluded here that, WT can be considered as a
powerful technique. However, it has limitations in detecting and
extracting some PQ signals that have gradient changes such as
sags or swells that start at the beginning of the half periods of
the measured signal.

S-Transform (ST) was also introduced recently in [3] as a
new PQ signal processing technique. In this study, the features
of seven simulated signals were extracted by calculating the
minima and maxima of the ST absolute matrix. It was shown
that the use of such features with Neural Network classifier led
to a very high degree of classification (99.28%) for signals con-
taminated with 40 dB noise (almost pure signals). However, the
accuracy is dropped to 75% when the contaminated noise was
20 dB. Similar to the STFT, ST also requires significant amount
of computational resources. This is due to the fact that the ST
matrix is calculated by performing the inverse Fourier trans-
forms for a number of iterations depending on the frequency
resolution.

For automatic recognition of PQ data, the artificial neural net-
work (ANN) technique was utilized in [9] and [10]. The ad-
vantage of this technique is its capability to handle easily the
noisy data that is present in real-time measurements. However,
the main drawback of ANN technique is the need of a large num-

bers of training cycles and the requirement of retraining the en-
tire ANN for every new PQ event, as demonstrated in [11] and
[12].

Fuzzy Logic (FL) technique was reported in [3] and [13]
for automatic recognition of the PQ events. Although FL tech-
nique does not require training process for automatic recogni-
tion, where it uses simple “IF-THEN” relation, the technique
has some limitation on some PQ events. This is specifically valid
for transients and flickers that cannot be described easily by the
explicit knowledge of such events.

In [1], k-Nearest Neighbor (kNN) pattern recognition tech-
nique was applied to classify the disturbances online. In this
study, the kNN classifier demonstrated 88.42% of accuracy for
a set of simulated data with 3.5% of noise level, without exam-
ining the number of neighbors.

As mentioned previously, the techniques studied so far are
based on single-phase measurements. If a three-phase system
monitoring is required, it is necessary to monitor each phase
separately and then apply a suitable technique to each phase,
which results in more computational recourses and poor accu-
racy. Therefore, this paper considers a new PQ monitoring tech-
nique that is introduced for monitoring the three-phase systems
simultaneously. In addition, for single-phase systems, Hilbert
transform (HT) technique is also examined as an alternative
technique, and compared to the previous single-phase based
techniques.

Although the kNN technique requires a large capacity of
memory to store the training data, due to the recent develop-
ments in semiconductor memory technologies, it is a good
candidate in automatic recognition of PQ events. Therefore,
this paper also considers the kNN technique. The paper utilizes
different signal processing techniques at different numbers
of nearest neighbors to investigate the effect of number of
neighbors on the classification accuracy.

III. FEATURE EXTRACTION TECHNIQUES

To be able to distinguish and classify the different types of
disturbances in power systems, it is necessary to perform further
processing on the original signals. However, due to the signifi-
cant number of events and disturbances that may be present in
modern AC power systems, it is important to study the unique
features of each event and determine the effectiveness of a po-
tential technique(s) in extracting its unique features.

Feature extraction can be defined as a unique process that
transforms the raw signals from its original form to a new form
so that suitable information can be extracted. The feature extrac-
tion step is crucial in an automatic classification system. This
is because a classifier can operate reliably only if the features
of each event are selected properly. A brief background of the
feature extraction techniques that are used in this study will be
given.

A. Wavelet Multiresolution Analysis (MRA)

The wavelet MRA is based on decomposition of the target
signal, into different signals at various levels of resolu-
tion. This can be achieved by convolving the signal with a low
pass filter (also known as the scaling function, ), and a high
pass filter (known as the wavelet function, ), to obtain a set of
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wavelet approximation coefficients, , and detailed coefficients
. Hence, the target signal, , can be represented in terms of

both the scaling and the wavelet functions as [20]

(1)

where is the approximation coefficient at decomposition
level 0, and is the detailed coefficient at level . The letters

and are integers and represent the number of samples and
the level numbers, respectively.

For automatic classification, it is necessary to define a dis-
tinct feature of the signal. The distinguishing feature vector from
wavelet MRA is defined in [8] as

(2)

where is the energy of the wavelet detailed coefficient
at the levels .

In this paper, the vector in (2) is represented statistically
by determining its standard deviation and its mean value, which
will be referred to as the features and , respectively

(3)

(4)

where is the total number of decomposed levels.

B. S-Transform (ST)

The S-transform is defined by convolving the target wave-
form, , with a specific window function. In this technique,
the window function is chosen to be a function of both time
and frequency. This is an advantage over the Wavelet technique
since it has a window function (known as Gaussian window)
that is a function of the frequency of the signal.

The convolution is performed in the frequency domain by
multiplying the Fourier transforms of the analyzed signal and
the window function. Then, the inverse Fourier transform is per-
formed to obtain the analyzed signal in the ST domain. For ex-
ample, for a discrete signal with a Gaussian window, the ST of
the signal is calculated as [3]

(5)

where , , and , , and
is the Fourier transform of the analyzed signal , and

is the length of the Fourier transform (same as the signal).
As can be seen in (5), the output of the ST is a complex matrix.

Its rows represent the frequency content of the signal, and its
columns represent the corresponding time.

The distinct feature vector of the signal can be defined using
the amplitude versus time vector, , which is calculated from
the ST matrix as [3]

(6)

The distinguishing features that used with a FL classifier were
the minima and maxima of the magnitude-time spectrum ob-
tained from the ST matrix. In this study, the extracted features
are the mean value and the standard deviation of the magni-
tude-time spectrum obtained from the ST matrix. These features
are labeled as and respectively and calculated as

(7)

(8)

C. Clarke Transformation (CT)

The Clarke Transformation is commonly utilized in real-time
motor control applications. This is due to the fact that, in a
three-phase system, the phase quantities are not independent
variables. Therefore, it is possible to transform a three-phase
system to an equivalent two-phase representation.

This paper applies this concept to offer an alternative method
which is able to process all three phase signals of the power
system simultaneously. Then, by using the CT, the three-phase
system can be transformed into the two-phase system as follows
[14]:

(9)

where , , and are the three-phase voltages (or
currents) at instant , , and and are known
as the two-phase Clarke’s component vectors.

Similar to the previous discussions, a unique feature can be
obtained using a space vector, that is defined as

(10)

where .
The magnitude of is given by

(11)

The primary advantages of this approach are its capability
to analyze all three phases of the power system simultaneously
and its simplicity. Therefore, this technique can offer faster pro-
cessing time than the previous techniques while it can analyze
all three phases of the system simultaneously.

In the proposed CT technique, this paper describes two fea-
tures and , which are utilized for the feature extraction.
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The features and are the mean value and standard devi-
ation of the magnitude of the space vector, respectively

(12)

(13)

where represents the length of the three-phase signals.

D. Discrete Hilbert Transform (DHT)

The Discrete Hilbert Transform is a mathematical process
used to generate a complex signals from real signals. It is
obtained by convolving the real signal with the function

, as given in [15]

(14)

Since the output of the DHT is, in fact, a 90 phase—shifted
version of the original signal , a complex signal (also known
as analytical signal) that is associated with the original signal
can be constructed as

(15)

The envelope of the original signal is then can be defined as

(16)

The features that were examined from the DHT are the mean
value and the standard deviation of the vector

(17)

(18)

where is the length of the target signal.
Table I summarizes the features defined for each transforma-

tion as described above.

IV. NEAREST NEIGHBORS TECHNIQUE FOR DATA CLUSTERING

The main advantage of the nearest neighbor (NN) technique is
that it is nonparametric technique which is simple, yet, effective
in many cases [16], where no prior statistical knowledge about
the data is required.

The classification decision in the NN technique is made based
on a set of training features that represent all of the expected
classes of the PQ events. In this technique, any unknown pattern,

, is compared with all the cases of the training features of data.
This is done by calculating the distances between the unknown

TABLE I
EXTRACTED FEATURES USING DIFFERENT SIGNAL PROCESSING TECHNIQUES

pattern and all other features, and then is assigned to a class with
a minimum distance [17]

(19)

where is the pattern class, the operator iff is a mathematical
abbreviation for “if and only if,” is a training data sample,
and is the distance between the unknown pattern , and .
The distance is calculated as

(20)

where is the total number of samples.
The k-Nearest Neighbor (kNN) technique is similar to NN

technique described above, except that the algorithm finds the
first k minimum distances , and the decision is made based on
the class which has the majority minimum distances. However,
to apply the kNN, an appropriate number of neighbors should
be chosen since the accuracy of the classification depends on
this number.

To demonstrate the performance of the classifier, so called
“confusion matrix” can be constructed using a set of test data
such as

. . .

where the diagonal entry of the confusion matrix denotes
the number of elements from the test data whose true class is
“ ” and is the total number of classes [18].

V. RESULTS

The accuracy of the selected features has been investigated
using an extensive number of simulated PQ signals by applying
the kNN technique. However, to ensure the highest accuracy,
the kNN classifier has been applied by changing the number
of neighbors from 1 to 50. Therefore, the results given below
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Fig. 2. Sample voltage waveforms (per-unit) that illustrate the time-domain
characteristics of (a) sag, (b) motor sag, (c) swell, (d) switching transient,
(e) harmonics, (f) sag with harmonics, (g) flicker, and (h) interruption.

demonstrate the optimal numbers of neighbors for a given fea-
tures to minimize the classification error.

As will be described below, a total of 4500 events were con-
sidered in this study, which were obtained from nine different
types of events, each containing 500 different cases.

A. Simulation of PQ Events

The PQ events studied in this paper have been classified
into the following nine classes: sags (dips), motor sag, swells,
switching transients, harmonic distortion, sags with harmonics,
flicker and interruption, and pure signal. A set of sample voltage
waveforms given in Fig. 2 demonstrates the characteristics of
the first eight PQ events as a function of time.

Although the figures given above illustrate a typical profile
of each event, in the practical power systems, the characteristics
of each event may vary significantly. Therefore, to be able to
study the effects of such variations, 500 different cases were
generated using the simulated event data. This is performed for
each class of events by randomly changing various parameters.
The parameters used to vary the classes of events are the depth,
the angle, the starting time and the duration of the events, which
are defined below.

The depth of the event is defined as the change in the ampli-
tude of a signal. The angle represents the phase shift at which
the signal is captured. The starting time is the time at which the
event starts. The duration is the time period of the event.

In this study the above described parameters were varied ac-
cording to the IEEE recommended practice in [19]. For ex-
ample, for the sag events, the four parameters were varied ran-
domly as illustrated in Fig. 3.

As can be seen in the figure, the depth of the sag is varied from
10% to 90% of the magnitude of the pure sine waveform. The
angle of the signal is varied from 0% to 100% of the entire period
(which is a realistic assumption since the captured waveforms
in a practical monitoring system could have a phase shift that

Fig. 3. Simulated random changes for the sag parameters, which consist of
500 sag events.

may vary from 0 to ). In addition, the starting time of the
sag is varied from 0% to 80% of the total length of the signal.
Moreover, the duration of the sag is varied from 5% to 100%
of the total length of the waveform. In this study, each event
accommodates 20 cycles of the captured signal. Therefore, a
duration of 5% corresponds to one cycle of the waveform.

For the motor sag events, the recovery pattern of the sag was
simulated using an exponential function of where
is a constant representing the depth of the motor sag, and is
an index that varies from 0 up to the length of the sag. The sag
duration is assumed to be equal or greater than 10 cycles (which
is a realistic value for industrial motor drives), and the depth of
the sag was varied from 90% to 70%.

For the interruption and the swell events, the four parame-
ters (depth, angle, starting time and duration) were also varied
as described above. However, the magnitude of the pure sine
waveform was increased between 10% and 90%.

For the harmonics events, 2nd, 3rd, 5th, 7th, 9th, and 11th
harmonics are used to randomly contaminate the ideal wave-
forms. During the generation of such events, the total harmonic
distortion (THD) of the waveform was kept greater than 5%, as
suggested in [19]. If the THD of a waveform was less than 5%,
it was regarded as a pure sine waveform.

In the case of the flicker events, the amplitude of the simulated
signals was changed periodically to introduce the effect of a
flicker. To achieve this, the magnitude of the target waveform
was varied as a function of another sine wave. This results an
oscillation in the amplitude of the target waveform, which varied
randomly from 50% to 70% of the fundamental frequency.

The parameters which were changed randomly in the case
of transient events are the oscillation frequency of the transients
(varied from 10 times to 15 times of the fundamental frequency)
and the amplitude of the overshoot (varied up to 150% of the
amplitude of the pure signal).

B. Minimization of Classification Errors

In this paper, the kNN wavelet transform classifier utilized a
total of 4500 events for the training purposes. In addition, the
same number of events was generated randomly for testing the
classifier. The performance of the classifier using the selected
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Fig. 4. Average classification errors of kNN-WT (%) using the featuresF1 and
F2.

Fig. 5. Average classification errors of kNN-ST (%) using the features F3 and
F4.

Fig. 6. Average classification errors of kNN-DHT (%) using the features F7
and F8.

Fig. 7. Average classification errors of kNN-CT (%) using the features F5 and
F6.

combinations of the features, as summarized in Table I, were
given in Figs. 4–7.

Fig. 4 shows the average of classification errors for all the
events using the kNN technique, where the features and
were included and plotted from 1 to 50 neighbors. The results
indicate that a minimum error of 25.58% is obtained when the
classification decision was made based on six neighbors. How-
ever, it is known that an even number of neighbors may not in-
dicate a confident classification. Therefore, the best number of
neighbors in this case should be considered as five, which also
indicates an error around the similar value 25.64%.

The confusion matrix at the best number of neighbors (five
neighbors) obtained above is shown in Table II. In the table, the
column headings represent the true classes of the PQ signals,
and the raw headings represent the classification results of the
classes. For example, the number 478 in the first column and raw
indicates that among the 500 cases of pure sine wave signals, the
kNN classifier can classify 478 cases correctly.

Although the classification error may be considered high in
Fig. 4, as indicated above, this is an average error including

TABLE II
CONFUSION MATRIX OF KNN—WT CLASSIFIER WITH 5 NEIGHBORS

TABLE III
CONFUSION MATRIX OF KNN—WT CLASSIFIER WITH 5 NEIGHBORS

all the events, which could be reduced significantly, if similar
events, such as sag, motor sag, and sag with harmonics, are ex-
cluded in the calculations of the classifier average error.

Fig. 5 is given to illustrate the classification error of the kNN
classifier when the features of and are used from ST
matrix, which is also plotted for different number of neighbors.
In this case, a minimum average classification error of 17.78%
occurred when the number of neighbors was five.

Similarly, the corresponding confusion matrix results were
given in Table III for the classifier with five neighbors. Although
the average error is still considered high, it can be noted that
the kNN-ST classifier has a better classification results than the
previous kNN-WT classifier. For example, in this classifier, the
classification of the sags due to faults, the motor sags and the
sags with harmonics have been improved significantly, while the
classification error of the swell event has increased.

As stated previously, this paper offers two new techniques
to improve the classification of the events combining the kNN
technique with DHT and CT, which demonstrated further im-
provements on the average classification error for the events
considered in the study.
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TABLE IV
CONFUSION MATRIX OF KNN—DHT CLASSIFIER FOR K = 1

TABLE V
CONFUSION MATRIX OF KNN—CT CLASSIFIER FOR k = 1

The average classification error of the kNN-DHT at different
number of neighbors is given in Fig. 6. As can be seen in the
figure, the minimum average classification error is 10.8% while
the decision is based on one neighbor only.

The results of the confusion matrix for 1 neighbor are shown
in Table IV. It can be concluded in this table that most of the
classification errors in the kNN-DHT are due to the sag only
events and the sag with harmonics, while the errors in classi-
fying the motor sag events were slightly increased. Moreover,
the error in the swell events was reduced considerably compared
to the kNN-ST classifier.

The average classification error of kNN-CT (with features
and ) versus number of neighbor is shown in Fig. 7.

The minimum average error in this classifier is 11.5% (for one
neighbor). Similarly, the confusion matrix at the best selection
of the number of neighbors (1 neighbor) is given in Table V.

Although the average error in this classifier is slightly higher
than the previous kNN-DHT classifier (primarily due to mis-
classifying the sags and the sag with harmonics events), a better
classification for the motor sags events were achieved.

TABLE VI
KNN PERFORMANCE WITH DIFFERENT FEATURE EXTRACTION TECHNIQUES

VI. CONCLUSION

The paper presented a detailed literature review of mon-
itoring and classification of PQ signals. A brief description
of the S-Transform and Wavelet Transform were described
together with two novel PQ monitoring approaches. It was
concluded that the kNN based techniques can offer an effective
automatic classification of PQ events. However, it is required
to identify the best number of neighbors in the classification of
the events.

In the paper, two new feature extraction techniques were ex-
amined. The kNN-DHT method was developed for the single
phase analysis of the power systems, and the kNN-CT was of-
fered for three phase systems. The performance of these two
techniques were also compared with the Wavelet and ST tech-
niques, using k-Nearest Neighbor pattern recognition technique.

As demonstrated, to ensure a higher accuracy in each classi-
fier, the number of neighbors was varied. This provided a pattern
where a clear conclusion could be drawn based on increasing or
decreasing profile of the average error. The results were given
between 1 to 50 neighbors. It was observed that the above 50
neighbors, the profile of the average error followed the same
pattern.

In the paper, a total of 4500 events were considered, which
were obtained from nine different types of events, each con-
taining 500 different cases. In the study, the motor sags was in-
troduced as an event that had not been studied previously.

It was demonstrated that the proposed two new techniques
(kNN-DHT and kNN-CT) were found to be very effective clas-
sifiers compared with the kNN S-Transform and kNN Wavelet
transform, except in the case of the sag with harmonic events,
where the kNN S Transform offers better solution.

The classification accuracy of each individual class of event
using the techniques studied are summarized in Table VI.
For example, 100% of accuracy in the table indicates that the
confidence about the classification of an event using a given
technique is 100%. The table also includes the best number
neighbor for each classifier, which is always less than 5. The
numbers in bold, in the table, indicate the highest accuracy
that was achieved for a given event and a classifier. As it was
expected, the classification accuracy of sag only events and
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sag with harmonics were low, which due to the similarity of
these two events. However, a significant improvement have
been achieved with the two proposed (kNN-HT and kNN-CT)
in distinguishing the sag only events as compared to the other
classifiers. As it can be seen, while for the sag with harmonics
events the kNN-ST has performed better than others, its per-
formance with swell events was the lowest. Therefore, as an
overall performance, the two new proposed classifiers, for
single phase and three phase systems, have provided improve-
ments in classifying the PQ events considered, except the sag
with harmonic events.
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