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Abstract—The problem of estimating the number of indepen-
dent Gaussian sources and their parameters impinging upon an
antenna array is addressed for scenarios that are problematic for
standard techniques, namely, under “threshold conditions” (where
subspace techniques such as MUSIC experience an abrupt and
dramatic performance breakdown). We propose an antenna geom-
etry-invariant method that adopts the generalized-likelihood-ratio
test (GLRT) methodology, supported by a maximum-likelihood-
ratio lower-bound analysis that allows erroneous solutions (‘“out-
liers”) to be found and rectified. Detection-estimation performance
in both uniform circular and linear antenna arrays is shown to
be significantly improved compared with conventional techniques
but limited by the performance-breakdown phenomenon that is in-
trinsic to all such maximum-likelihood (ML) techniques.

Index Terms—Adaptive signal detection, antenna arrays, cir-
cular arrays, direction-of-arrival estimation, maximum-likelihood
estimation.

I. INTRODUCTION AND BACKGROUND

NE of the significant advantages of high-resolution

techniques such as MUSIC and root-MUSIC [1] for
direction-finding applications is their invariance to the ge-
ometry of the antenna array. For the number of independent
(uncorrelated) Gaussian sources that is less than the number of
antenna sensors (n < M) and a sufficiently large sample size
N and/or signal-to-noise ratio (SNR), high-resolution tech-
niques yield asymptotically optimal direction-of-arrival (DOA)
estimation accuracy, which could be only marginally improved
upon by strictly maximum-likelihood (ML) methods that incor-
porate information on the particular antenna array geometry [2],
[3]. However, the main practical problem with subspace-based
high-resolution methods is that under “threshold conditions”
(with insufficient sample support and/or SNR), they experience
an abrupt and dramatic accuracy degradation (“performance
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breakdown”) due to some severely erroneous DOA estimates
(“outliers”).

Most approaches that try to improve DOA estimation perfor-
mance in the threshold region incorporate specific properties of
the antenna array geometry. In our recent papers on linear an-
tenna arrays [4], [S], we demonstrated that accurate ML estima-
tion allows us to overcome the MUSIC threshold and, in fact,
push the threshold conditions all the way to the region where
“ML performance breakdown” occurs, i.e., where DOA sets
that contain severely erroneous DOA estimates (that are used to
compute the covariance matrix model) yield a likelihood ratio
(LR) that exceeds that of the true (exact) covariance matrix. Nat-
urally, since such erroneous estimates are believed to be “more
likely” than the true parameter, this type of breakdown is in-
trinsic and could not be overcome at all within the ML paradigm.
Still, this important “gap” between, say, MUSIC performance
breakdown threshold conditions and those for the ultimate ML
performance breakdown, represents a region in which our tech-
niques [4], [5] (developed for linear arrays) can be successfully
employed for detection-estimation. Unfortunately, those tech-
niques rely upon certain Toeplitz properties of the linear array-
related covariance matrices, and so are not directly applicable to
different array geometries. More specifically, we cannot apply
these techniques directly for uniform circular arrays (UCAs)
that are often used in direction-finding applications, primarily
due to their complete azimuthal coverage and almost invariant
directional pattern [6], [7].

A recently introduced generalized rectification approach [8]
and a global matched-filter technique [9] each improved UCA
performance sufficiently to push the threshold conditions to-
wards more difficult scenarios, beyond the conventional MUSIC
threshold. In slightly different ways, both techniques take ad-
vantage of some structural properties of UCA-related covari-
ance matrices. Nevertheless, the problem of optimum detection-
estimation performance near the “threshold region” for UCAs,
and in fact for an arbitrary antenna array geometry, has not yet
been addressed.

To achieve this goal, we again exploit the generalized-likeli-
hood-ratio test (GLRT) methodology (that is not specific to any
particular array geometry) which essentially provides a normal-
ized metric framework for covariance matching. A crucial in-
gredient in our method is a test that assesses the “quality” of
the match between the sample matrix and the covariance matrix
produced by candidate models. This test is based on the LR,
which is just a normalized likelihood function (LF). An impor-
tant (and remarkable) property of the LR is that its probability
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density function (pdf) for the true covariance matrix does not
depend on this matrix (i.e., is “scenario-free”). This importance
is due to the fact that the ML model, which is searched over the
admissible set that includes the true parameters, must generate
an LR that equals or exceeds the LR produced by the true co-
variance matrix. Regardless of any particular ML optimization
algorithm, therefore, there is a statistical scenario-free “lower
bound” in LR with which all candidate optimized solutions can
be compared. For example, the MUSIC-generated covariance
matrix model can be checked against the lower bound in order
to reliably recognize MUSIC outliers (where the LR is below
the lower bound). This approach allows us to recognize (“pre-
dict”) the onset of MUSIC performance breakdown in an ar-
bitrary geometry antenna array; the problem of how to rectify
(“cure”) outliers is addressed here.

Itis important to emphasize that performance breakdown usu-
ally occurs for an insufficient sample size and/or SNR, which is
the antithesis of the asymptotic conditions for which most theo-
retical results on ML and subspace techniques (such as MUSIC)
have been derived. For example, instead of the single global ML
extremum in a convex vicinity of the true covariance matrix,
we often observe multiextremal behavior wherein the global ex-
tremum is further from the true solution than some local ex-
tremum (see [10], for example). In this regard, any solution that
is “as likely as” the true one is statistically no worse than the
global ML solution for such “preasymptotic conditions.”

Since we cannot use any asymptotic properties, it is important
to rely on sufficiently accurate nonasymptotic statistical prop-
erties of the LR tests. On the other hand, apart from the sce-
nario-free pdf, very little can be done to analytically explore
the breakdown conditions for any particular technique and sce-
nario, hence most of our results on performance improvement
are demonstrated by simulations.

This paper is organized as follows. Section II formulates
the problem, gives background material, and describes our
GLRT-based framework for detection-estimation. Section III
discusses MUSIC performance breakdown “prediction and
cure” in sensor arrays. In fact, the method developed is ap-
plicable to arbitrary antenna array geometries, but results
for UCAs are presented in Section IV. We also introduce
here the results of a comparative performance analysis for
our geometry-free “prediction and cure” technique with the
ULA-specific LR optimization technique developed in [4] and
[5]. Our summary and conclusions appear in Section V.

II. PROBLEM FORMULATION

Consider an M-sensor antenna array with omnidirectional
sensors located at Cartesian coordinates {py, cos(O), pr sin(6x) }
(k=0,...,M — 1). For simplicity, we assume that the array
sensors and the sources are coplanar so that we can remain
within the one-dimensional DOA estimation problem, similarly
to [9]. The particular array geometry we are considering for the
“prediction and cure” of MUSIC performance breakdown is
a UCA with p;, = p and 8, = 2mk/M, where p is the radius
of the UCA measured in wavelength units A. We also briefly
consider a ULA, for which p; = kd and 65, = 0, where d is the
intersensor spacing, again measured in wavelength units.

For a UCA, the array-signal manifold (“steering’) vector as-
sociated with the azimuthal angle (DOA) 6 € [0, 27) is

T
() = {s(@),s(ﬁ - ZM”) ,...,s<9 - WH (1)

where
s(0) = exp [2m§ cos 9} 2)

while for a ULA, it is

8(0) = [s°(6), ' (6),....s™1(0)] 3)

where

d

s(0) = exp |:2’/TZX sin 9} . @)

Assuming m independent (uncorrelated) Gaussian sources in
the general case, we may express the vector of observed sensor
outputs (the “snapshot”) at time ¢ as

y(t) = S(O)x(t) +n(t) for t=1,...,N 5)
where z(t) € C™*! are the Gaussian signal ampli-
tudes with DOAs 8 = [01,...,0,,]7 and powers P =
diag[p1,...,pm] > 0, the array-signal manifold matrix is
S0) = [8(61),...,8(0m)] € CM*™ and (t) € CM*XL is
Gaussian white noise of power pg

z(t) ~ CN(m,0,P), n(t) ~CN(M,0,poln) (6)
where CA/(M, 0, R) denotes a complex (circular) Gaussian dis-
tribution of dimension M with zero mean and covariance matrix
R. Therefore, the observed data y(t) is described by the com-
plex Gaussian distribution CN' (M, 0, R), where

R =S(0)PS@O)" + polar. @)

We assume that the snapshots are statistically independent

o | R fort; =t
& {y(tl)’y (tQ)} = {0 forty # to

(®)
and so the sufficient statistic for any inference regarding this
data is the direct data covariance (DDC) (sample) matrix

1 Y .
R= ;y(t)y (t) ©)

where N R is described by the complex Wishart distribution
CW(N, M;R) [11].

Suppose that R,, is the set of all possible covariance ma-
trices I?,, that have a structure appropriate to model x indepen-
dent Gaussian sources in noise in any particular antenna array.
According to the GLRT methodology (see [1, Sec. 4.7.1], for
example), for each possible number of sources j, we need to
find the covariance matrix 17, € R, that yields the maximum
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LR for the given R. The LR is designed to test the hypothesis
H) that the covariance matrix derived from the snapshots y(t)
(t = 1,...,N) is proportional to some matrix C, against the
contrary hypothesis H; [1]
R, = arg Cgé%% LR(C). (10)
The “nested” GLRT property, which is crucial for its use in de-
tection, is that
LR(R,) > LR(R,) (11)
for every 11 > 1. Obviously, it is incorrect to try to select the
“best” model by simply choosing max,, LR(R,), since this al-
ways gives the maximum possible number of sources. Amongst
the proper approaches is traditional detection, whereby the
smallest value of 1 for which LR(R,,) exceeds some threshold

is taken to be the estimated number of sources m.
In this study, we choose to employ the sphericity test [12],

Hy: & {C*%IA%C*%} =colps  against

H & {C—%RC—%} Zeolni, o >0 (12)

whereby the definition of the LR for Gaussian mixtures becomes

N
det(C~'R)

—[%tr(C’—lR)} ] (13)

2(0) = = (C).

Note that the LR ~(C) is just a normalized LF [5]. This means
that from the ML point of view, ML optimization is equivalent
to optimizing the LR (C) (13), and all its extrema are the same
as for the LF. Unlike the LF, the LR ~(C') is normalized, i.e.,
0<7y(C) <1 (14)
and, most important, when C' = R (the true covariance matrix),

the pdf of v(R) does not depend on R, i.e., is scenario free.
Indeed

det [R—%RR—%}

’VO(R) = L L M (15)
(drtr [ 2RR-2])
and according to [11]
C =R :*RR™> ~CW(N,M, 1) (16)

which is the complex Wishart distribution that is here com-
pletely specified by the sample volume N and the array dimen-
sion M.

In [5], the well-known properties of vo(R) for real-valued
random Gaussian data [13] were derived for the complex (cir-
cular) Gaussian case. Instead of dealing with the rather cum-
bersome Meijer G function derived in [5], we use direct Monte
Carlo simulations to compute the pdf to the required precision.
We then find threshold values «(Pra ) for various probabilities
of false alarm Ppgp (i.e., incorrect identification, where the true
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ML estimate is wrongly treated as containing an outlier) such
that

Ct(P}:‘A)
1- f(v0)dvo = Pra. (17)
0
Indeed, when R € R, i.e., p > m, then
max Yo(f,) = Y0(R) (18)

RLER,

and so for truly ML estimates, Pra is the upper bound for the
actual probability of false alarm. Therefore, the smallest value
of u for which

Yo(R,) > a(Pra) (19)

is taken to be the estimated number of sources 1.

Within this GLRT approach, Pra may also be treated as the
probability of overestimation; indeed, some number of sources
1 > m could be found that has an LR exceeding the given Pr, .
This scenario-free thresholding does not require information-
theoretic criteria (ITC) [14] to be involved. Yet, the traditional
uncertainty regarding Pra (threshold-level) selection may be
addressed by ITC, whereby

m = arg mﬂin [—log LR(R,) + v,] (20)
where the ITC penalty term v, increases with the hypothesized
number of sources . If d, is the number of real-valued param-
eters that completely define the covariance matrix 7, then typ-
ical choices are [14]

vaic = d,, Akaike information criterion

L, — ) VMpL = %du log N, minimum description length
22 . . . :
maximum a posteriort

probability

vMap = Sd, log N,
(21

For our model of independent point Gaussian sources, d,, = 2 1.

Interestingly, the famous Wax—Kailath ITC detection method
[15] is based on the same sphericity test under the constraint that
C is a positive-definite (p.d.) Hermitian matrix whose (M — p)
smallest eigenvalues are equal.

Since the set of p.d. Hermitian matrices H,, whose smallest
(M — ) eigenvalues are equal includes the set of antenna array-
specific covariance matrices R, i.e., R, C H,, we must have

Yo (H?') > 70 (RY") > 70(R). (22)

Instead of the ITC criteria suggested by Wax and Kailath [15],
we can again apply the “lower bound” thresholding (19)

M .
Hj:p—l—l /\J
M BN

(Ml—u Zj:u-i-l )‘j)

Naturally, property (22) means that this may underestimate the
number of sources. If this occurs, and the erroneous m is used
for DOA estimation, the final test (18) will reject this model if

o (HPY) = 7= > o(Pra). (23)
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Fig. 1. Maximum Cramér—Rao bound for a ten-sensor uniform circular array
and 7 equiangular sources.

the underestimated model R,;, does not have the expected match
with the sample covariance matrix.

More often, we observe a different phenomenon: the
Wax—Kailath test together with the originally proposed ITC,
as well as with the thresholding (23), both give the true esti-
mate for m that could not be resolved even by ML estimation
techniques [16]. This is the typical manifestation of “threshold
conditions,” where initially MUSIC and eventually even the
ML technique generate a set of DOA estimates that may in-
clude completely erroneous DOA estimates for sources that are
beyond practical (or “effective” [17]) resolution capabilities.

Whereas the Wax—Kailath Hermitian embedding R, C H,
applies for a ‘“conventional” number of independent point
sources (m < M), only the general GLRT framework does
not have such limitations; in fact, in [10], [18], and [19], we
used it for detection-estimation for scenarios where R does not
have a “noise subspace.” There, we considered a “superior”
number of sources (m > M) in sparse (nonuniform) minimum
redundancy antenna arrays [10], [18], and also scenarios with
spread (distributed) sources [19].

In this regard, it would be interesting to comment on the
ability of a circular array to address a superior scenario. On one
hand, an M -sensor UCA generates a Hermitian covariance ma-
trix; while it is not Toeplitz, it does have a certain structure that
was exploited in the rectification routine [8]. For a ten-sensor
UCA, the covariance matrix R is fully specified by 51 different
real numbers, rather than the 91 numbers that would be required
for an arbitrary ten-variate Hermitian matrix with constant di-
agonal. Clearly, the maximum number of identifiable sources is
25 in this case, notwithstanding the question whether or not this
number could be identified in practice. On the other hand, it was
noted in [20] that

...the effective number of sources that may be resolved by

a circular antenna array at a fixed elevation is a function

of the radius . .. of the array and elevation angle. In par-

ticular, that number may be smaller than M, the number
of sensors.

Obviously the issues associated with identifiability need to be
better understood.

An insight into this problem is provided by a Cramér—Rao
bound (CRB) analysis. Assuming known noise power,
Fig. 1 shows the maximum CRB for increasingly large

sets of equispaced DOAs in a ten-sensor UCA with p/A =
(1/4)sin(w/M) = 0.809 as in [9], and 1000 snapshots. The
CRB behavior up to eight sources follows the familiar pattern
of increasing accuracy with increasing SNR. For ten or more
sources, we see typical behavior for such superior scenarios,
where the accuracy no longer depends on SNR beyond some
threshold SNR (here, about 20 dB) [21]. The m = 9 case
clearly shows a transition from “conventional” to “superior”
nature. The CRBs for 10 < m < 13 lie close to each other,
and are significantly smaller than the intersource separation
for SNRs above 10 dB. For m = 14, the potential accuracy
drops dramatically; indeed, for all realistic SNRs, the CRB is
comparable to the intersource separation. This makes it clear
that the number of practically identifiable sources here cannot
exceed m = 13, which is significantly less than the number
of sources suggested by this UCAs number of real degrees of
freedom (RDoF = 51, hence my,.x = 25).

In fact, one successful attempt to resolve m = M sources
was reported in [9]. However, for the scenario considered in [9]

P T
— = —sln—,

M =10, N =100,
0, 00, Y =187
010 =[—160, —100, —90, —60, —30,

10, 40, 80, 120, 160]° (24)

with a common SNR of 0 dB, we found the CRB for the third
(worst) source to be 12.8°, which is far too high to cope with
the ten-degree separation between the second and third sources.

Unfortunately, even with sample support greater than the
N = 1000 in Fig. 1, “practically nonidentifiable” scenarios can
frequently occur. Let us give an example that demonstrates this
phenomenon. For the same ten-sensor UCA as above, consider
the 14 sources

6\ = [~175.8,-130.9, —117.7, —108.3, —89.2, —82.3,

8.1,85.4,106.1,135.3,136.9,141.8,164.5,172.7]°  (25)

with a common SNR of 0 dB. Then, the different 14-source
scenario

02 = [~176.5,—130.7, —116.4, —105.8, —85.6, —75.2,

—22.4,8.1,47.9,85.4,106.1,136.7, 146.7, 168.3]°  (26)

with properly selected powers has the exact covariance matrix
R5 that is barely distinguishable from that of the first scenario
according to the sphericity test

det [R; ' Rs]

Yo(l21 vs Ra) =
o(f 2) (Tbtr [Rl_lRZ])M

= 0.9994

27)

hence these two scenarios could not be reliably discriminated in
practice.

This analysis shows that “superior” capabilities of UCAs are
extremely limited. The compactness of the UCA and associated
problems (unlike in sparse linear arrays) do not allow for the
high angular resolution of a large number of sources. While
the GLRT framework includes superior scenarios, and in fact,
the Toeplitz embedding suggested in [8] (where a circular array
covariance matrix is presented as a transformation of a virtual

Authorized licensed use limited to: Adelaide University. Downloaded on October 26, 2008 at 20:53 from IEEE Xplore. Restrictions apply.



24

ULA’s Toeplitz covariance matrix) could be used to initialize
ML optimization, these possibilities are of academic interest
only because of this “practical nonidentifiability.”

Thus, practical nonidentifiability and ML performance break-
down are two sides of the same phenomenon, whereby severely
erroneous solutions arise with extremely high LRs. The problem
is that superior scenarios in UCA are quite likely to encounter
practical nonidentifiability, which is due to the specific structure
of the circular array [17]. Increasing the SNR and/or sample sup-
port cannot overcome this problem, as in the above example. On
the contrary, ML performance breakdown for m < M sources
can be avoided by properly selecting SNR and/or sample sup-
port. For this reason, in what follows, we concentrate on perfor-
mance improvement in the “threshold” region for conventional
scenarios, using the proposed technique.

III. PERFORMANCE BREAKDOWN OF SUBSPACE METHODS:
ARRAY GEOMETRY-FREE GLRT PREDICTION AND CURE

The first step of the traditional subspace-based detection-es-
timation approach is the Wax—Kailath technique [15] for esti-
mating the number of sources; this tests the hypothesis regarding
the equality of the smallest (M — p) eigenvalues of R,. The
second step is to use a subspace technique such as MUSIC to
compute the 7n-variate set of DOA estimates. When the sample
size NV and/or SNR are large enough to expect asymptotically ef-
ficient MUSIC-generated DOA estimates, then the performance
of this approach will be high. In this “asymptotic domain,” then,
we expect the DOA and power estimates to yield by (13) very
accurate LRs that are statistically indistinguishable from the LR
of the true covariance matrix, hence any possible improvement
in performance by use of the GLRT method would be marginal.

In fact, the current justification of this traditional two-step de-
tection-estimation approach relies mainly on these asymptotic
considerations. In practice, when the underlying scenario is un-
known, this reliance does not allow us to verify how close the
results are to the true ML condition. Note that a “perfect match”
in terms of the LR (19) does not guarantee that detection-es-
timation results are free from outliers. For any given sample
size and/or SNR, there should always exist a sufficiently small
intersource separation such that the sources could not be dis-
criminated by any technique. Underestimation of the number of
sources in this case may or may not be treated as a severe error,
considering the fact that the remaining (detected) sources are
properly estimated.

Occurring more frequently is a different phenomenon that
arises because Wax—Kailath detection and MUSIC estimation
deal with different models, and so may have different thresholds
(and in fact they do, see [16]). Indeed, testing the equality of the
“noise-subspace” eigenvalues in an arbitrary Hermitian matrix
may generate the correct number of sources that yet could not
be properly estimated (resolved) even by the true ML technique.
Typically in this case, a subset with a smaller number of esti-
mated sources creates a model that is not “as likely” as the true
set in terms of the LF/LR metric, while for the true number of
sources that are beyond the ML resolution capability, we usu-
ally obtain a severely erroneous “noise-driven” DOA estimate.

This phenomenon is “ML performance breakdown,” as dis-
tinct from “MUSIC performance breakdown.” The latter deals

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007

with a set of DOA estimates that are below the LR bound in
(19), while the former concerns a severely erroneous model
that is “as likely” as the true one. In this regard, the GLRT ap-
proach (17)—(19) that finds the minimum number 1m of sources
with DOA estimates that generate a covariance matrix model
that statistically is as likely as the true covariance matrix can be
used to improve the performance of the traditional Wax—Kailath
detection + MUSIC estimation approach in the threshold area
as follows.

A. Wax—Kailath—-MUSIC Performance Breakdown

Manifestation: The set of MUSIC-generated DOA estimates
for the detected npmber of sources 1, 8, gives the covariance
matrix model R(8,) that does not meet the threshold condition
(19).

Reasons:

* m = m but MUSIC fails due to “subspace swap” [22]; or

* m < m for potentially well-resolvable sources (this is a

significantly less probable event for the Wax—Kailath tech-
nique).

Goal: To correct the DOA estimates and the estimated
number of sources, if necessary, in order to meet the GLRT
condition (19).

B. Overestimation

Manifestation: The set of MUSIC-generated DOA estimates
for the detected numbf:r of sources M, @, gives the covari-
ance matrix model R(6,) that does meet the threshold condi-
tion (19). The (v — 1) subset of (modified) DOA estimates also
meets the threshold condition (19).

Reason: m > m so that severely erroneous “noise-driven”
DOA estimate(s) arise due to ML performance breakdown or
overestimation.

Goal: To specify the minimum number of sources and their

DOA estimates that meet the threshold condition (19).

C. Algorithm

Step 1: Our rectification scheme begins from a “quality as-
sessment” of the DOA estimates 8,;, given by the Wax—Kailath—
MUSIC method. We first estimate the white-noise power (if un-
known) as

1 M

1
and the vector of estimated source powers as [1]

~

b = diag. { [57(0:)5(0:)]
(R — polnr) [SH(ém)S(ém)] 1} (29)

where

. |z, forz; >0
diag, {z;} = {O,J for :L’; <0

Other matching techniques that search for non-negative signal
power estimates are also possible; in [10] and [18], for example,

(30)

Authorized licensed use limited to: Adelaide University. Downloaded on October 26, 2008 at 20:53 from IEEE Xplore. Restrictions apply.



ABRAMOVICH et al.: GLRT-BASED THRESHOLD DETECTION-ESTIMATION PERFORMANCE IMPROVEMENT 25

we used linear programming-based matching. Then, we form
the MUSIC-specific model

Ruusic = polar + S(85:)p,:, 5™ (6,4) (€29)
and check the LR inequality (19).

If the threshold is met then we skip to Step 5, otherwise we
continue.

Step 2: We perform a direct (unconstrained) gradient-type
LR maximization over the set of (2 + 1) parameters
{6,p,P0} in the neighborhood of the MUSIC-generated esti-
mates {6y, Dy, Do }-

In rare cases, when the MUSIC estimate is in the convex prox-
imity of an appropriate LR maximum, we expect to get a so-
lution that exceeds the lower bound, and the same final check
on overestimation as per Step 5 completes Step 2. Unfortu-
nately, this desirable outcome is rare; since the LR optimization
is erroneously initialized by MUSIC, the optimization usually
converges to a local extremum that does not exceed the lower
bound. Therefore, this set either still contains a MUSIC-gener-
ated outlier, or the number of sources has been underestimated.

Step 3: We now have to identify the specific reason for the
negative outcome at Step 2. We could conventionally test the un-
derestimation hypothesis by applying Steps 1 and 2 for the (1, +
j) DOA estimates (j = 1,2,...) generated by MUSIC from
(1 + 7) sources. However, we propose a unified approach for
this testing: we exclude in turn each source from the 1n-variate
model R by defining

Ry =R, —;S(0;)S(8;) for j=1,...,m (32)
where R, is the covariance matrix model comprising the m
sources that are given by the LR-optimized MUSIC DOA esti-
mates from Step 2, with their power estimates computed by (28)
and (29).

We then compute the m values F; (j = 1,...,m) of the LR
70 (C), as follows:

(33)

and compare yo(R,,;) with vyo(R.,). Any source whose exci-
sion from the model does not lead to a significant degradation
in LR, ie.,

Yo(Rimj) = vo(Bm) (34)

can be considered an outlier.

The rationale behind this approach is that an incorrect DOA
estimate cannot contribute significantly to the LR, while the de-
fect in LR is due to the fact that the correct DOA estimate is
missing from Rin. (At this point, we are assuming the scenario is
identifiable.) Hence, if excluded from the model, any erroneous
source should not incur a significant additional degradation in
LR, compared with the original LR for fim. On the contrary, if
a correctly estimated source is removed from the model, then a
significant LR degradation will be observed.

Naturally, this simple procedure for determining outliers
could be made more sophisticated; for example, a direct LR
optimization could be used that is initialized by each E{mj,
so that F; is then the true (but local) LR maximum in the
neighborhood of each DOA set.

In what follows, the source with the maximum F}
(= ~(R,,)) is treated as the most probable outlier that
must be replaced by a “proper” estimate. On the contrary, if for
all j

Yo(Rmj) < Yo(Rm) (35)
then underestimation of the number of sources has occurred, and
only now may MUSIC be initiated for the augmented number of
(m+1) sources. In most cases, we observe a MUSIC outlier that
does not significantly contribute to the LR (34) to be detected
by (34).

In [5], which deals with uniform linear arrays (ULAs), we
suggested an array geometry-specific (more computationally
demanding) approach that is quite unlike the Wax—Kailath—
MUSIC detection-estimation routine. This procedure was
proposed for scenarios where MUSIC failed to meet the lower-
bound condition (19). In essence, we first seek a p.d. Toeplitz
covariance matrix estimate that meets the same threshold con-
dition (19), and then gradually equalize the smallest (M — j)
(j =M —2,M — 3,...) eigenvalues in this Toeplitz matrix,
then define 7 as the smallest ;7 for which the “equalized”
Toeplitz matrix exceeds the lower bound (19). This avoids
“threshold” problems associated with the generic geometry-
independent Wax—Kailath—-MUSIC approach.

As we have seen, the UCA covariance matrix also has a par-
ticular structure, and in fact may be approximated by a Toeplitz
matrix of a certain size [8]. Therefore, similar LR optimization
routines to the ULA geometry-dependent case could also be pro-
posed. Instead, we have suggested a geometry-free approach to
“predict and cure” MUSIC outliers. In Section IV, we compare
these two approaches for a ULA in order to justify this new
approach.

Step 4: Having found the most likely outlier by removing
each in turn, the next step is to replace the suspected outlier by
a proper (ML) estimate. The GLRT philosophy prompted our
following simple two-step rectification algorithm. Let RG1 be
the MUSIC-generated covariance matrix with one outlier re-
moved from the model. We introduce the pseudo-spectrum-like
function

FE(0) = 0 (REH) (36)

where

REIY = RED 4 5(0)s(0)s (9) (37)
where p(6) is the estimate of the additional source power with
azimuth 6. We then simply find the maximum of the function
fED(6) and treat the DOA estimate

1D = arg max FEHD () (38)
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as the rectified outlier. In other words, to the (m — 1) reduced
set of DOAs, we search all azimuths to find the most likely ad-
ditional DOA. The next step is to use the new m set of DOAs
and powers to initialize a further application of the LR maxi-
mization routine. .

If this final set of refined parameters {8, P, po } exceeds the LR
lower bound, then it is accepted, otherwise it is assumed that the
original set contained more than one outlier, and hence we repeat
the outlier recognition and outlier rectification routines (Step 3)
to eliminate further outliers. On rare occasions, this cycle may
repeat indefinitely (so far, we have encountered it with proba-
bility less than 10~?), in which case the iterations are terminated
at some maximum limit, and that set of parameter estimates is
disregarded. Apart from true “false alarms,” the cause of this rare
occurrence is usually when MUSIC failed to initialize most of the
DOA estimates, so other DOA estimation routines may be used
forinitialization (such as the DOA estimation bank method [23]).
Even a random search may be used to find an acceptable solu-
tion (in the LR sense) that must always exist.

Recall that this outlier rectification routine is used only if
the traditional detection-estimation process (Wax—Kailath then
MUSIC, say), followed by LR (local) optimization, gives an un-
acceptable solution (i.e., with LR below the lower bound (19)).

Step 5: The previous four steps may give a model with opti-
mally high LR, but one that still includes an outlier, due to the
ML performance breakdown phenomenon (when the estimated
number of sources is correct), or by occasional overestimation.
Therefore, the procedure (33)—(34) must be finally applied to
eliminate any possible extraneous estimates from the model so
as to obtain the minimal number of estimated sources that meet
the threshold condition.

Note that when the number of sources given by the Wax—
Kailath technique must be reconsidered (in Steps 3 and 5), in-
stead of the thresholding (19), we can still apply the “soft” ITC
approach. However, since the appropriate thresholds need to be
calculated anyway, we suggest that the accurate thresholding
method for some Pgya is used.

One can see that the above outlier rectification routine is ap-
plicable to an arbitrary antenna array geometry.

IV. PERFORMANCE BREAKDOWN OF SUBSPACE METHODS:
SIMULATION RESULTS FOR UCAS AND ULAS

To illustrate the efficiency of this outlier recognition and rec-
tification method, we simulate a M = 10-sensor UCA with
p/A = (1/4)sin(w/10) ~ 0.809 so that the distance between
two neighboring sensors is A /2. Consider the scenario withm =
5 independent sources with 20-dB SNR per source, and N =
300 snapshots. Four sources are uniformly distributed in az-
imuth, while the fifth DOA is placed at various close separations
from the fourth, as follows:

05 = [0°,30°,60°,90°,65]; 65 = {93°,91.6°,91°}. (39)
These three separate DOA values for the fifth source 65 have
been specifically selected to demonstrate the transition from
the MUSIC-specific performance-breakdown conditions, which
can be efficiently rectified by our GLRT technique (65 = 93°),
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Fig. 2. Sample likelihood-ratio pdf for a ten-sensor UCA with 300 snapshots.

to the ML performance-breakdown conditions that could not be
reliably rectified within the ML paradigm (65 = 91°).

The CRB for the fifth source is 0.36°, 0.75°, and 1.46° re-
spectively. Thus, for 5 = 93°, the CRB predicts that the ul-
timate DOA estimation accuracy is sufficient for reliable sep-
aration of the fourth and fifth sources, since it is significantly
smaller than the intersource separation of 3°. At the other ex-
treme, the CRB exceeds the 1° separation; thus, reliable separa-
tion of the last two sources at 90° and 91° is impossible. Still, all
three locations of the fifth source are close enough to the fourth
source to cause a significant number of MUSIC outliers.

In the course of Monte Carlo simulations, we are able to do
something that we cannot in practical applications: since here
we know the true covariance matrix R, as well as comparing the
LR with the scenario-free threshold (19), we can also directly
test

Yo(Ry) > vo(R) (40)
in every trial in order to assess the potential capabilities of
proper ML DOA estimation that must always satisfy this
inequality. We may also evaluate the degradations associated
with the rectification routine proposed above. This “trick”
is similar to the standard CRB calculation that also requires
the true covariance matrix. Moreover, in dealing with the
“preasymptotic-threshold” domain, ML performance assess-
ment judged according to (40) is even more appropriate than
the CRB analysis derived under asymptotic conditions.

Therefore, our outlier analysis is conducted first using the
impractical “strict” condition (40) in order to assess additional
degradation caused by practical thresholding (19), where prob-
abilities of incorrect identification are set at 10~2 and 1073,
We computed the scenario-free pdf f(79) by direct Monte
Carlo simulation with 105 trials, which leads to the thresholds
P(LR < 0.796) = 1072 and P(LR < 0.778) = 1073,
This function (Fig. 2) is very well localized within the range
08 < LR < 0.9.

Fig. 3 shows the sample pdf’s for the least difficult scenario
5 = 93°, with the strict lower bound (“LR threshold type 07).
Table I summarizes detection-estimation results for this sce-
nario. Fig. 3(a) shows the sample LR pdf for i) the (strict) lower
bound ~o(R) (solid line), which is the same as in Fig. 2 but
here is for 1000 Monte Carlo trials; ii) the MUSIC DOA esti-
mates (given the true number of sources) ’YO(R) (dashed line);
and iii) the LR-optimized MUSIC DOAs (Step 2, dotted line).
We see that the vast majority of trials (in fact, 91.9%) resulted in
MUSIC LRs that were extremely poor compared with the strict
lower bound (19). Application of our direct LR maximization
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SAMPLE PERFORMANCE STATISTICS FOR 65 = 93° FOR AN EXACT LR THRESHOLD (LEFT COLUMN); AND FOR AN LR THRESHOLD EQUAL TO 1% (CENTER
COLUMN) AND 0.1% PROBABILITY OF FALSE ALARM (RIGHT COLUMN). THE NUMBER OF NONRECTIFIED OUTLIERS IS ZERO IN EACH CASE

TABLE 1

LR(MUSIC) < LR(threshold) 91.9% | 84.2% | 83.1%

LR(optimization) > LR(threshold) 24.4% | 24.4% | 24.5%

LR(MUSIC) < LR(threshold) & LR(optimization) > LR(threshold) | 16.3% | 8.6% | 7.6%
max CRB in @ (degrees) 036 | 036 036

RMSE in @ after rectification and refinement (degrees) 0.68 1.32 1.39

27

Thus, in this case, the overall algorithm resulted in all 1000 trials
having a LR “better than the true model.”

The result of such LR improvements on DOA estimation ac-
curacy are presented in Fig. 3(c), where we show the maximum-
DOA-error pdf for i) MUSIC estimates in those trials where ap-
plication of the first LR maximization did not exceed the lower
bound (dashed line); ii) subsequent LR maximization estimates
(Step 2, dotted—dashed line); iii) subsequent outlier rectification
(solid line); and iv) Step 2 LR maximization estimates in those
trials where maximization did exceed the lower bound (dotted

First consider the iv) and ii) pdf’s, whereby all 1000 Step 2
maximization trials (LR optimization in the neighborhood of the
MUSIC DOAys) are respectively split into the group of those that
were successful (244 trials) and those that were not (i.e., did not
exceed the LR lower bound, 756 trials). Note that (see Table I)
81 of these 244 successful trials were already successful at the
initial MUSIC estimate stage. The iv) pdf shows that there was
not a single outlier present in the 244 trials, meaning that these
trials could be considered “MUSIC-successful,” despite the fact
that 163 were pushed across the “strict” LR threshold by Step 2
maximization. On the contrary, the ii) pdf shows that each of the
756 optimization-unsuccessful trials contained outlier(s). The
iii) pdf shows that all 756 trials were then successfully rectified,
not only in terms of LR, but by eliminating all DOA estimation

UCA, M =10, 0=][0,30,60,90,93] deg, N =300, 20dB SNR, 1000 trials, LR threshold type 0
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Fig. 3. Sample probability distributions of the maximum azimuth estimation
error for 85 = 93° and an exact LR threshold.

routine at Step 2, given this MUSIC initialization, improved the
statistical LR only slightly, because the MUSIC outliers were
usually far from the true DOAs. Indeed (see Table I), only 24.4%
of trials resulted in a LR after optimization that exceeded the LR
lower bound threshold. Since 8.1% of the original MUSIC trials
exceeded the bound, optimization by itself was able to change
ML-improper estimates to proper ones in only 16.3% of trials.
Fig. 3(b) illustrates the LR improvement during the outlier
rectification process. For only those trials whose LR-optimiza-
tion did not exceed the lower bound, we show the sample LR pdf
for 1) the (strict) lower bound ~yo(R) (solid line); ii) the “outlier
removed” (33) then “DOA augmented” (38) estimates (dashed
line); and iii) the estimates after applying a further LR maxi-
mization (dotted line). We can see that even the first rectifica-
tion step ii) shifts the LR dramatically to the right, quite close
to the lower bound. Better still, the second rectification step iii)
here pushes every single trial across the lower bound threshold.

outliers. However, the final RMSE obtained for DOA estimation
of 0.68° is significantly above the CRB of 0.36°. More specif-
ically, this error is obtained for the worst DOA 6 = 90°, with
the sample bias 0.1735° and standard deviation 0.66, which is
still high above the CRB. In this and the following tables, we re-
port the root mean-square error (RMSE) only, since everywhere
the bias is comparatively small and the standard deviations only
marginally smaller than the RMSE. The only reasonable expla-
nation is that, within the “threshold region,” the likelihood func-
tion is not accurately approximated by its usual second-order
expansion within the neighborhood of the true parameters.

The above scenario demonstrates the properties of an example
where there is a significant distinction between MUSIC and ML-
optimal performance; the latter is achievable only if an LR max-
imization algorithm with guaranteed global extremum exists,
that of course must meet the “strict” threshold inequality (40).

As mentioned, we have presented results involving the
strict (but impractical) lower bound (40) to investigate our
technique’s ultimate performance. We repeated the above
experiment using practical thresholding (19), where the proba-
bilities of false alarm are set at both 10~2 (hence @ = 0.796)
and 1073 (a = 0.778). The results appear in the remainder
of Table I. In both cases, almost the same number of trials
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TABLE II
SAME AS TABLE I BUT FOR 65 = 91.6°

LR(MUSIC) < LR(threshold) 100% | 99.5% | 98.4%
LR(optimization) > LR(threshold) 02% | 1.7% | 6.9%
LR(MUSIC) < LR(threshold) & LR(optimization) > LR(threshold) | 0.2% | 1.2% | 5.3%
max CRB in @ (degrees) 075 | 0.75| 0.75
RMSE in 8 after rectification and refinement (degrees) 1.82 199 | 201
number of nonrectified outliers 0 17 69
TABLE III

SAME AS TABLE I BUT FOR 65 = 91°
LR(MUSIC) < LR(threshold) 98.6% | 70.8% | 56.3%
LR(optimization) > LR (threshold) 6.9% | 51.2% | 68.9%
LR(MUSIC) < LR(threshold) & LR (optimization) > LR(threshold) | 5.5% | 22.0% | 25.2%
max CRB in 6 (degrees) 1.46 1.46 1.46
RMSE in @ after rectification and refinement (degrees) 294 | 335 420
number of nonrectified outliers 68 503 683
number of eliminated sources (Step 5) 0 2 11

exceeded the bound after Step 2 optimization (244 or 245).
These trials are the same trials that passed the threshold for
the previous exact bound, having been rectified by the first LR
maximization. This is another demonstration of the observation
that 16.3% of trials did not contain a MUSIC outlier and were
only marginally below the exact bound. In both cases all trials
that failed the threshold after Step 2 optimization have been
rectified. While none of the MUSIC-induced outliers survived,
practical thresholding gave a final DOA estimation accuracy
that was noticeably inferior to strict thresholding (see Table I).
This degradation can be attributed to the fact that some trial
estimates, whilst being above the bound, are still somewhat
removed from the true LR maximum.

Since the rectified LR in all cases is beyond the lower bound,
with all trials being properly identified, detection-estimation
performance for this scenario is close to the ultimate. In fact,
the Wax—Kailath MAP and MDL detectors achieve 100% cor-
rect detection, hence all of our 1000 trials have been properly
identified (i.e., no outliers).

Finally, in this case, there were no sources eliminated by
Step 5 as ones that do not contribute to the LR.

To summarize, all 1000 trials have been properly addressed
by our GLRT rectification scheme, compared with only 244 by
MUSIC.

The second scenario with 5 = 91.6° was chosen to demon-
strate the transition from MUSIC to ML performance break-
down. Here the maximum CRB (0.75°) is approximately half
the smallest intersource separation. In a similar format as above,
Table II summarizes the estimation results for this more diffi-
cult scenario. While all of our 1000 trials initially failed to ex-
ceed the exact bound, the MUSIC estimates before and after
optimization are statistically much closer to the LR bound than
in the previous 05 = 93° case. For the strict bound, two trials
gave optimized LRs that were higher than LR(R), and neither
of these were outliers; all true outliers were later rectified. For
the two practical bounds, on the other hand, all 17 and 69 such
trials contained outliers. This shows the difference between this

and the previous example. In this case, the Wax—Kailath MAP
and MDL detectors also achieve 100% correct detection; how-
ever, practical identification rate is not ideal, as per the previous
case A5 = 93°.

This example illustrates the transition from ideal ML condi-
tions (where we always have LR(R,,) > LR(R)) to the regime
where our rectification comes to the fore. While not a single
outlier “survived” rectification with the strict lower bound, 17
(respectively 69) trials exceeded the threshold calculated for
Pra = 1072 (respectively, 10~2). These outliers were directly
produced by the optimization in Step 2 in the vicinity of the
MUSIC estimates. Interestingly, none of these outliers were ex-
cluded in Step 5. In each case, the outlier was properly identified
by Step 5 as least contributing to the LR, but LR optimization in
the vicinity of the remaining (correct) four DOA estimates was
unable to exceed the threshold. This once again indicates ML
performance breakdown that stems from the fact that threshold
conditions for detection are significantly different from those
for estimation [16]. Indeed, the set of correct estimates for only
four sources cannot be “as likely” as the true five-source sce-
nario, while proper resolution of the given five-source scenario
is unattainable.

Note, however, that here we have only a 1.7% (respectively,
6.9%) probability of rectification breakdown, whereas MUSIC
failed in 99.9% of trials.

For our third and most difficult scenario with 5 = 91°
(Table III), the ML performance breakdown is more profound.
Almost all trials that passed the strict lower bound still con-
tain outliers (68 out of 69). Moreover, even estimates that
are close enough to the true ones to have a very high LR
still have an RMSE that exceeds the intersource separation.
Hence, this is an example of scenarios that are beyond the ML
threshold conditions, i.e., could not be resolved by any ML
means, despite the fact that for this scenario the Wax—Kailath
MAP and MDL detectors achieve 86.4% and 99.8% correct
detection respectively. This probability of correct detection
is again outstandingly higher than the probability of correct
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TABLE 1V
SAMPLE SIX-SOURCE PERFORMANCE STATISTICS FOR THE THREE TYPES OF LR THRESHOLDS

UCA, M =10, N =300, 20dB SNR, 1000 trials, §=[-3,0,30,60,90,93]°| LR exact| 1072 Pra| 1073 Pr4
LR(MUSIC) < LR(threshold) 99.8% 99.7% 99.7%
LR(opt) > LR(threshold) 0.8% 1.0% 0.7%
LR(MUSIC) < LR(threshold) & LR(opt) > LR(threshold) 0.6% 0.7% 0.4%
prob. outlier identification was correct, given LR(opt) < LR(threshold) 44.1% 44.0% 44.2%
number of iterations required to reach LR threshold 012 3012 30123
number of trials 8 194 796 2|10 192 797 1{7 196 795 2
max CRB in 0 (degrees) 0.61 0.61 0.61
max total error in @,.¢, given LR(opt) < LR(threshold) (degrees) 1.23 1.76 1.82

detection by MUSIC (0%). The complete failure of MUSIC is
not surprising, given that the CRB here exceeds the intersource
separation. Less predictable is that only 68 trials had the LR
for the severely erroneous set exceeding LR(R), and in none
of these 68 trials did the LR for the optimized four-source
scenario exceed this bound at Step 5. This example clearly
demonstrates the inherent discrepancy between detection and
estimation threshold conditions for the “ideal” GLRT method.

For “practical” thresholding, the number of outliers that sur-
vived comparison is significantly greater (503 and 683, respec-
tively), with an almost negligible number of trials (2 and 11 re-
spectively) being rectified by Step 5 as a four-source scenario
with an outlier properly deleted from the DOA set. Even for this
extremely difficult case, 32%—-50% of trials were rectified by our
“practical” scheme, though naturally the accuracy achieved over
the rectified ensemble is significantly worse than the CRB.

This family of three examples has demonstrated the ability of
our GLRT technique to “fill the gap” between the MUSIC- and
the intrinsic ML-threshold conditions in UCAs.

We next briefly investigate our algorithm’s capacity to rectify
multiple outliers by considering the six-source scenario

6s = [-3°,0°,30°,60°,90°,93°] (41)
with the same N = 300 and 20-dB SNR. Table IV shows sim-
ilar data to before, but also the number of iterations required to
reach the respective LR threshold (recall that outliers are recti-
fied one at a time). We see that two iterations were almost always
sufficient, as expected.

Finally, despite the efficient performance demonstrated above
by our geometry-free GLRT rectification, an important question
remains regarding the comparison between this and some geom-
etry-specific LR optimization method. For this purpose, we now
compare the efficiency of our new technique with the one we in-
troduced in [5] for ULAs, where we considered the scenario

d
M=5 =05 N=100, m=3

0.
sin @ = [—0.40, 0, 0.06] (42)

with a common SNR of 20 dB. For this scenario with CRB,,;;;, =
0.010, we reported that MUSIC failed in 541 out of 1000 Monte

Carlo trials and produced outliers with extremely low LR; in the
remaining 459 trials, MUSIC produced acceptable results.

As mentioned above, in order to rectify these poor MUSIC
results, we ignored them and launched a direct LR optimiza-
tion that was based on Toeplitz covariance matrix properties.
We used the Gohberg—Semencul routine of [24] to initialize the
optimization over the set of p.d. Toeplitz matrices. In that study,
we investigated the potential capabilities of that approach by
continuing to search for an “appropriate” Toeplitz matrix until
we achieved LR(T) > LR(R), i.e., the “strict” (impractical)
lower bound. This specific “Toeplitz optimization” routine did
not give a 100% success rate; more precisely, in 45 trials the op-
timization did not reach the strict lower bound. Of these, the op-
timization routine converged to inappropriately low LR values
in only seven trials, and in fact all these seven trials contained an
outlier. The remaining 57 trials had relatively high LR, and in
only 34 out of 64 cases did the LR exceed that of the true covari-
ance matrix. Hence, the overall improvement achieved by our
[5] technique was the reduction of 541 MUSIC outliers to 64.

Table V introduces the results of our scenario-free rectifica-
tion scheme on the same example (42). For the same set of data,
MUSIC produces 538 outlier trials. As in [5], here we define an
outlier as a DOA estimate with an error that exceeds half of the
smallest separation between sources (§ = 0.03 ~ 1.71°). We
see that Step 2 rectifies 370 outliers, while Step 4 rectifies only 80
outliers. This means that our current GLRT routine (with the strict
lower bound) failed to detect ML performance breakdown in ap-
proximately the same number of trials (80 versus 64). Whereas
all our 80 “new” outliers are indeed “more likely” than the true
parameters, compared with 34 instances in [5], the overall per-
formance here is practically the same. Computationally though,
the geometry-specific algorithm is much more involved.

In [5], we did not investigate a “practical” geometry-spe-
cific algorithm that is based on the appropriate selection of a
Toeplitz covariance matrix from statistical thresholds. This anal-
ysis has now been performed for the new geometry-free rectifi-
cation method, with the results shown in Table V. These results
look different from our UCA results mainly because of the much
more stringent outlier condition. If, for example, we define an
outlier as an estimate with an error of less than 5°, then MUSIC
fails in 526 cases, which means that most of the 538 MUSIC
outliers in Table V really are severely erroneous. The number of
5°-outliers not rectified by Step 2 optimization is now between
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TABLE V
SAMPLE PERFORMANCE STATISTICS FOR THE ULA EXAMPLE

ULA, M =5, N=100, 20dB SNR, 1000 trials, sin =[—0.40, 0, 0.06]|LR. exact|10~2 Pp4|10~2 Pr4
LR(MUSIC) < LR(threshold) 77.8% 58.6% 56.2%
LR(opt) > LR(threshold) 87.1%| 90.3%| 91.0%
LR(MUSIC) < LR(threshold) & LR(opt) > LR(threshold) 64.9%| 48.9%| 47.2%
LR(opt) < LR(threshold) & LR(rect) < LR(threshold) 0.3% 0% 0%
number of MUSIC outliers (§ < 1.71°) 538 538 538
number of outliers not rectified by Step 2 opt 168 345 348
number of outliers not rectified by Step 4 rect 80 265 270
number of eliminated sources 0 0 0
max CRB in 6 (degrees) 0.55 0.55 0.55
RMSE in 8 after rectification and refinement (degrees) 0.88 1.26 1.13

MUSIC(Rhat): ULA, M =5, sin6=[-0.40, 0.00, 0.06], N=100, 20dB SNR, 1000 trials, LR threshold type 100
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Fig. 4. Histogram of maximum errors in the DOA estimate at various stages in
the ULA example.

only 85 and 93. None of the 5°-outliers survived our rectifica-
tion routine with the strict lower bound, while only one and 15
trials survived for the practical bounds with Ppy of 10~2 and
1073, respectively.

Fig. 4 shows the sample pdf of the (worst) DOA estimation
error at different stages of our rectification process for Ppy =
10~2. The severe MUSIC outliers (~ 60°) have been mostly
eliminated by the Step 2 optimization (910 trials). Those trials
where Step 2 failed to reach the threshold (“given bad opt”) are
completely rectified by the refinement step. The tail of the error
pdf vanishes at around 6°, but all severe MUSIC outliers are
successfully rectified.

In summary, our numerical experiments make it clear that
the GLRT technique, supported by the LR lower bound, gives
a significant performance improvement over MUSIC in the
“threshold region” for both UCAs and ULAs.

V. SUMMARY AND CONCLUSION

In this paper, we have modified our GLRT detection-esti-
mation scheme to treat independent Gaussian sources for sce-
narios that could not be successfully addressed by conventional
high-resolution techniques. We considered scenarios that lie in
the problematic “threshold region” where subspace techniques
(such as MUSIC) experience a sudden and dramatic “perfor-
mance breakdown.”

Our approach involves LR maximization that is considered
successful if the result gives a LR that exceeds (statistically) that
of the true model. We exploited the invariance property of the
introduced LR which is the scenario-free nature of its pdf with
respect to the true covariance matrix. Based on this property,

we were able to precalculate thresholds that the optimized LR
is compared against for any desired probability of false alarm
(where a truly ML solution is wrongly determined to be an out-
lier). This pdf and the corresponding thresholds are exact and do
not involve asymptotic considerations that are inappropriate in
the threshold region. In simulation studies, we have been able to
also use a “strict” comparison of the optimized LR with the one
calculated from the true covariance matrix; this allows us to in-
vestigate the ultimate performance of our scheme and evaluate
additional degradations caused by the statistical thresholding.

Comparing the LR of any set of estimates with a scenario-free
threshold is a simple way to find non-ML estimates, including
(say) MUSIC-specific outliers with an inappropriately low LR.
We proposed a method of “rectifying” these inappropriate esti-
mates that involves finding and replacing outliers by “proper”
estimates, where the LR threshold is exceeded. This method is
based on the straightforward observation that a set with low LR
should have at least one missing correct estimate, whereas an
outlier should have minimal contribution to the LR compared
with the remaining proper estimates in the set.

Our method is applicable to any antenna array geometry, and
has been tested for both ULAs and UCAs. Indeed, we compared
the results against a different (geometry-specific) algorithm of
ours [5] for ULAs. This showed that the new geometry-free
method is practically as efficient as the earlier ULA-specific
Toeplitz matrix approach.

We demonstrated that the efficiency of our GLRT-based
rectification scheme, and in fact, of any ML-based scheme is
limited by so-called “ML performance breakdown,” which oc-
curs when outliers give LRs that exceed that of the true model.
The well-known intrinsic difference between detection and
resolution thresholds could not be completely overcome by any
approach, unlike the “gap” between MUSIC-specific and ML
performance breakdown conditions. We presented scenarios
where a MUSIC failure rate of 75% was completely rectified,
and others where a 99% MUSIC failure rate was rectified to a
1.7%—7% ML-breakdown failure rate.

While our GLRT method can be applied to detect-estimate
more independent sources than sensors, we showed that UCA
have a very limited capability for such “superior” scenarios (un-
like minimum redundancy linear arrays).
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